Автотранспортные средства УПРАВЛЯЕМОСТЬ И УСТОЙЧИВОСТЬ

Технические требования Методы испытаний

Аўтатранспартныя сродкі КІРУЕМАСЦЬ І ЎСТОЙЛІВАСЦЬ

Тэхнічныя патрабаванні Метады выпрабаванняў

(FOCT P 52302-2004, IDT)

Издание официальное

УДК 629.3.017(083.74)(476)

MKC 43.020

(КГС Д25)

КП 02

IDT

Ключевые слова: управляемость, устойчивость, автотранспортные средства, категории автотранспортных средств, усилие на рулевом колесе, статическая устойчивость, методы испытаний

ОКП 45 1000 ОКП РБ 34.10

Предисловие

Цели, основные принципы, положения по государственному регулированию и управлению в области технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом нормировании и стандартизации»

1 ПОДГОТОВЛЕН производственным республиканским унитарным предприятием «Минский автомобильный завод» (РУП «МАЗ»)

ВНЕСЕН Госстандартом Республики Беларусь

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 18 декабря 2006 г. № 63
- 3 Настоящий стандарт идентичен национальному стандарту Российской Федерации ГОСТ Р 52302-2004 «Автотранспортные средства. Управляемость и устойчивость. Технические требования. Методы испытаний»

Национальный стандарт Российской Федерации разработан государственным научным центром Российской Федерации Федеральным государственным унитарным предприятием «Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт» (ФГУП «НАМИ»), Федеральным государственным унитарным предприятием «Научно-исследовательский центр по испытаниям и доводке автомототехники» (ФГУП «НИЦИАМТ»), Академией проблем качества Российской Федерации.

Официальный экземпляр национального стандарта Российской Федерации, на основе которого подготовлен настоящий стандарт, имеется в БелГИСС.

Степень соответствия – идентичная (IDT)

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Республики Беларусь

Содержание

Введение	IV
1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	1
4 Технические требования	2
4.1 Усилие на рулевом колесе	2
4.2 Стабилизация рулевого управления	2
4.3 Поперечная статическая устойчивость при испытаниях «опрокидывание на стенде»	3
4.4 Устойчивость при испытаниях «рывок руля»	6
4.5 Управляемость и устойчивость при испытаниях «поворот» и «переставка»	7
4.6 Управляемость при испытаниях «прямая»	7
4.7 Управляемость и устойчивость АТС при испытаниях «пробег» в эксплуатационных режимах движения	7
5 Методы испытаний	7
5.1 Требования к испытательному оборудованию и погрешности измерений	7
5.2 Условия проведения испытаний	8
5.3 Определение усилия на рулевом колесе	9
5.4 Испытания «стабилизация»	10
5.5 Испытания «опрокидывание на стенде»	11
5.6 Испытания «рывок руля»	12
5.7 Испытания «поворот» и «переставка»	14
5.8 Испытания «прямая»	18
5.9 Испытания «пробег»	18
Приложение A (обязательное) Нормативные значения $v_{\rm M}$ скоростей выполнения маневров «поворот» и «переставка»	20
Приложение Б (рекомендуемое) Оценка управляемости и устойчивости АТС в эксплуатационных режимах движения	23
Приложение В (обязательное) Требования безопасности	24
Приложение Г (обязательное) Образец технического описания АТС	25
Приложение Д (рекомендуемое) Протоколы испытаний	28
Библиография	31

Введение

Введение в Республике Беларусь ГОСТ Р 52302 в качестве государственного стандарта обусловлено необходимостью гармонизации технических требований и методов испытаний на управляемость и устойчивость автотранспортных средств в Российской Федерации и Республике Беларусь.

Учитывая решение разработчиков ГОСТ Р 52302 о внесении в него изменений по исключению из области применения стандарта троллейбусов, решение о применении настоящего стандарта для оценки управляемости и устойчивости троллейбусов принимает разработчик (изготовитель) транспортного средства.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

Автотранспортные средства УПРАВЛЯЕМОСТЬ И УСТОЙЧИВОСТЬ Технические требования Методы испытаний

Аўтатранспартныя сродкі КІРУЕМАСЦЬ І ЎСТОЙЛІВАСЦЬ Тэхнічныя патрабаванні Метады выпрабаванняў

Road vehicles. Handling and stability. Technical requirements. Test methods

Дата введения 2007-06-01

1 Область применения

Настоящий стандарт распространяется на автотранспортные средства (далее – ATC) категорий М. N и O по ГОСТ Р 52051, кроме ATC:

- имеющие максимальную скорость менее 40 км/ч;
- прицепов-тяжеловозов и полуприцепов-тяжеловозов;
- не предназначенных для эксплуатации на дорогах общего пользования.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 15467-79 Управление качеством продукции. Основные понятия. Термины и определения

ГОСТ 16504-81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 17697-72 Автомобили. Качение колеса. Термины и определения

ГОСТ Р 52051-2003* Механические транспортные средства и прицепы. Классификация и определения

Примечание – При пользовании настоящим стандартом целесообразно проверить действие технических нормативных правовых актов в области технического нормирования и стандартизации (далее – ТНПА) по каталогу, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году.

Если ссылочные ТНПА заменены (изменены), то при пользовании настоящим стандартом следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют термины по ГОСТ 17697, ГОСТ 16504 и [1], а также следующие термины с соответствующими определениями:

- 3.1 скорость автомобиля (v): Линейная скорость центра масс автомобиля.
- 3.2 заброс угловой скорости автомобиля (∆ұ₁): Превышение угловой скорости автомобиля над установившимся ее значением, возникающим при переходе от прямолинейного движения к движению по окружности.

^{*} На территории Республики Беларусь действует ГОСТ 31286-2005, который учитывает положения Сводной резолюции о конструкции транспортных средств (СР.3) Пересмотр 1 – Поправка 2, Приложение 7/Пересмотр 2 – Классификация и определение механических транспортных средств и прицепов (документ TRANS/WP.29/78/Rev.1/Amend.2 от 16.04.1999) и в части механических транспортных средств и прицепов соответствует ГОСТ Р 52051.

CTE FOCT P 52302-2006

- **3.3 усилие на рулевом колесе (***F*_н**)**: Усилие, приложенное к ободу рулевого колеса в его плоскости, необходимое для его поворота или предотвращения поворота.
- 3.4 стабилизация рулевого управления: Свойство рулевого управления, заключающееся в самостоятельном возвращении выведенных из нейтрального положения управляемых колес и рулевого колеса в нейтральное положение, соответствующее прямолинейному движению АТС, после снятия усилия с рулевого колеса.
- **3.5 передаточное число рулевого управления** (i_s): Отношение угла поворота рулевого колеса к среднему углу поворота управляемых колес, которое может определиться при любом значении угла поворота рулевого колеса.
- 3.6 прицеп (полуприцеп)-тяжеловоз: АТС категории О, предназначенное для перевозки неделимых крупногабаритных, в том числе негабаритных тяжеловесных грузов массой 20 т и более.
- **3.7 специализированные автотранспортные средства**: АТС, предназначенные для перевозки грузов одного типа.
- 3.8 габаритный радиус автомобиля: Радиус окружности, которую описывает на горизонтальной опорной поверхности наиболее удаленная от центра поворота точка автомобиля во время его движения по окружности. Проекции выступающих частей кузова типа зеркал заднего вида при измерении габаритного радиуса не учитывают.
- 3.9 база автомобиля (прицепа): Расстояние между вертикальной поперечной плоскостью, проходящей через ось передних колес, и вертикальной поперечной плоскостью, проходящей через ось задних колес.
 - 3.10 автотранспортные средства повышенной проходимости: ATC категории G по ГОСТ Р 52051.

4 Технические требования

4.1 Усилие на рулевом колесе

Усилие на рулевом колесе автомобиля не должно превышать значений, указанных в таблице 1.

Таблица 1

	Усилие на рулевом колесе, Н, не более				
Категория АТС	Неподвижны	й автомобиль	Движущийся автомобиль		
Rateropiis ATO	без рулевого усилителя	с рулевым усилителем	с исправным рулевым управлением	при отказе усилителя	
M ₁	200	60	150	300	
M ₂	250	00	150	300	
M ₃	350	250	200	450	
N ₁	300	180	200	300	
N ₂	350	100	250	400	
N ₃	330	250	200	450*	

Для грузовых автомобилей с двумя или большим числом мостов (осей) с управляемыми колесами допускается 500 Н.

4.2 Стабилизация рулевого управления

- 4.2.1 Требования распространяются на АТС категорий М и N.
- 4.2.2 Угол поворота рулевого колеса после его освобождения не должен увеличиваться.
- **4.2.3** Управляемые колеса и рулевое колесо должны самостоятельно возвращаться в сторону нейтрального положения.
- **4.2.4** Максимальное значение угла поворота рулевого колеса, не достипшего нейтрального положения в течение 6 с после его освобождения, не должно превышать 30 % величины угла поворота рулевого колеса, соответствующего движению АТС по окружности радиусом 50 м.
- 4.2.5 Процесс возврата рулевого колеса в нейтральное положение не должен быть колебательным. Допускается один переход рулевого колеса через нейтральное положение в любом из заездов.

4.3 Поперечная статическая устойчивость при испытаниях «опрокидывание на стенде»

- **4.3.1** Требования распространяются на АТС категорий M, N, O (применительно к категории M₁ только на АТС повышенной проходимости, применительно к категории O для полуприцепов только в составе автопоезда).
 - 4.3.2 Показателями поперечной статической устойчивости против опрокидывания АТС являются:
- угол статической устойчивости $\alpha_{c,y}$ угол наклона опорной поверхности опрокидывающей платформы относительно горизонтальной плоскости, при котором произошел отрыв всех колес одной стороны одиночного ATC или всех колес одной стороны одного из звеньев седельного автопоезда от опорной поверхности;
- угол крена подрессоренных масс ф угол между опорной поверхностью опрокидывающей платформы и поперечной осью подрессоренных масс (осью Y в системе координат по [1]), проходящей через центр масс ATC, полученный в результате наклона ATC на опрокидывающей платформе.
- **4.3.3** Величина угла $\alpha_{c,v}$ статической устойчивости АТС против опрокидывания, полученная в результате испытаний, должна быть не менее нормативного значения α_{H} , зависящего от коэффициента q_{s} поперечной устойчивости АТС.

Коэффициент поперечной устойчивости q_s определяют по формуле

$$q_{\rm s} = \frac{0.5b}{h},\tag{1}$$

где *b* – колея колес, приведенная к поперечному сечению ATC в плоскости, проходящей через его центр масс (рисунок 1), мм;

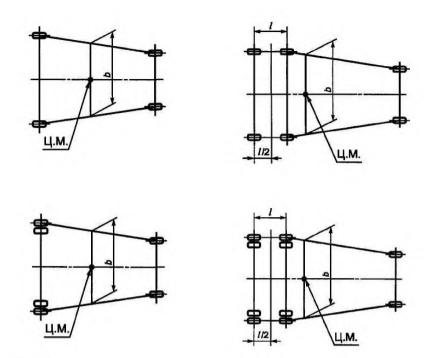
h – высота центра масс над опорной поверхностью, мм.

Величину колеи колес полуприцепа вычисляют как среднее между серединами наружных колес задней оси (тележки) тягача и серединами наружных колес оси (тележки) полуприцепа.

4.3.4 Высоту центра масс определяют по формуле

$$h = \frac{0.5b - h_{\kappa n} \cdot tg\alpha_{c,y} - \Delta}{tg\alpha \cdot \cos\varphi + \sin\varphi} + h_{\kappa n},$$
 (2)

- где $h_{\text{к.п}}$ высота оси крена над опорной поверхностью в поперечном сечении, проходящем через центр масс, мм;
 - боковое смещение центра масс, определяемое по результатам измерений боковой деформации шин, мм.


При отсутствии точных данных величина $h_{\kappa,n}$ может быть принята равной статическому радиусу колеса ATC.

При определении соответствия величины угла $\alpha_{c,y}$ нормативным значениям α_H ATC всех категорий в зависимости от коэффициента поперечной устойчивости (большего или меньшего единицы) разделены на две группы, каждой из которых соответствует своя зависимость $\alpha_H = f(\alpha_s)$:

$$\alpha_{H} = (-2.4 + 42.4q_{s})^{\circ} \text{ при } 0.55 \le q_{s} \le 1.0,$$
(3)

$$\alpha_{\rm H} = (15 + 25q_{\rm s})^{\circ} \text{ при } q_{\rm s} > 1,0,$$
 (4)

 $\alpha_{\rm u} \ge 21^{\circ}$ при $a_{\rm s} < 0.55$.

Ц.М. - центр масс

Рисунок 1 – Схемы определения величины приведенной колеи b

График зависимостей (3) и (4) для АТС различных категорий приведен на рисунке 2.

Для автомобилей-контейнеровозов, предназначенных для эксплуатации на дорогах категорий I и II по [2], при загрузке более 0,8 полного объема контейнера и расположении центра масс балласта в геометрическом центре контейнера минимально допустимое значение $\alpha_{c,v}$ равно 19°.

4.3.5 Угол крена ϕ подрессоренных масс определяют при угле наклона платформы, при котором происходит отрыв всех колес одной стороны одиночного ATC или всех колес одного из звеньев автопоезда от опорной поверхности. Максимальное допустимое значение угла крена ϕ подрессоренных масс в центре масс ATC, полученное в результате испытаний, не должно превышать предельных значений $\phi_{\rm H}$, заданных в зависимости от коэффициента поперечной устойчивости $q_{\rm S}$.

При этом ATC всех категорий (аналогично 4.3.4) разделены на две группы, каждой из которых соответствует своя зависимость $\varphi_{\rm H} = f(q_{\rm s})$:

$$-$$
 при $q_{\rm s} \le 1,0$ $\phi_{\rm H} = (10,8-4,3q_{\rm s})^{\circ}$
 $-$ при $q_{\rm s} > 1,0$ $\phi_{\rm H} = 6,5^{\circ}$ (5)

Критерием соответствия нормативным требованиям настоящего стандарта является условие

$$\varphi \leq \varphi_{\mathsf{H}},$$
 (6)

где Фн – предельно допустимое значение угла крена.

α_μ, ...°

40

35302523
20-

0,7

График зависимостей (5) и (6) представлен на рисунке 3.

0,5

0,6

A — диапазон значений $q_{\rm s}$ для автокранов, автобетоносмесителей, рефрижераторов, контейнеровозов категории $N_{\rm 3}$, двухэтажных автобусов категории $M_{\rm 3}$;

0,8

0,9

1.0

- A_1 диапазон значений q_s для автомобилей-цистерн категории N_3 , прицепов цистерн категорий O_3 , O_4 ;
- Б диапазон значений $q_{\rm s}$ для рефрижераторов, самосвалов категории N_3 , одноэтажных автобусов категории M_3 , прицепов категорий O_3 , O_4 ;
- В диапазон значений q_s для автокранов, самосвалов, рефрижераторов категории N_2 , бортовых автомобилей категории N_3 , автобусов категории M_2 и прицепов категории O_2 ;
- Г диапазон значений q_s для бортовых автомобилей категории N₁, N₂, фургонов категории N₁, автомобилей повышенной проходимости категории M₁;
- Д диапазон значений $q_{\rm s}$ для автомобилей категории ${\rm M}_{\rm 1}$ (за исключением автомобилей повышенной проходимости), прицепов категории ${\rm O}_{\rm 1}$

Рисунок 2 – Зависимость угла α_н опрокидывания АТС на стенде от коэффициента поперечной устойчивости *q*_s АТС различных категорий и типов (зоны A, A₁, Б, B, Γ, Д приведены для справок)

Рисунок 3 – Зависимость угла крена $\phi_{\rm H}$ подрессоренных масс ATC от коэффициента поперечной устойчивости $q_{\rm S}$

CTE FOCT P 52302-2006

4.4 Устойчивость при испытаниях «рывок руля»

- 4.4.1 Требования распространяются на АТС категорий М и N.
- **4.4.2** Курсовую устойчивость оценивают характеристиками поворачиваемости и чувствительности к управлению автомобиля, забросом угловой скорости и временем 90 %-ной реакции по угловой скорости.
- **4.4.3** Характеристика поворачиваемости и чувствительности к управлению автомобиля представляет собой зависимость угла поворота рулевого колеса δ_{H} от установившегося бокового ускорения a_{V} .
- **4.4.4** Углы поворота рулевого колеса, определенные по 4.4.3 для автомобилей категорий M_1 , M_2 и N_1 , должны находиться в пределах, установленных в таблице 2.

Таблица 2

Боковое ускорение,	Радиус траектории, м	Угол поворота рулевого колеса, рад				
M/C ²	(для справок)	минимальный	максимальный			
1	500	$(0.21L + 0.2)i_s \times 10^{-2}$	$(0.21L + 1.3)i_8 \times 10^{-2}$			
2	250	$(0.42L + 0.4)i_s \times 10^{-2}$	$(0,42L + 2,6)i_s \times 10^{-2}$			
4	125	$(0.84L + 0.48)i_s \times 10^{-2}$	$(0.84L + 5.0)i_8 \times 10^{-2}$			
L — база автомобиля, м; $i_{\rm s}$ — среднее передаточное число рулевого управления.						

4.4.5 Углы поворота рулевого колеса, определенные по 4.4.3 для автомобилей категорий M_3 , N_2 и N_3 , должны находиться в пределах, установленных в таблице 3.

Таблица 3

Боковое ускорение,	Радиус траектории, м	Угол поворота рулевого колеса, рад			
M/c ²	(для справок)	минимальный	максимальный		
1	280	$(0,36L + 0,1)i_s \times 10^{-2}$	$(0,36L + 1,3)i_s \times 10^{-2}$		
2	140	$(0.72L - 0.2)i_s \times 10^{-2}$	$(0.72L + 2.6)i_s \times 10^{-2}$		
L — база автомобиля, м; $i_{\rm s}$ — передаточное число рулевого управления.					

4.4.6 Заброс угловой скорости автомобиля определяют по формуле

$$\Delta \psi_1 = f(a_{\mathsf{v}}). \tag{7}$$

Заброс угловой скорости $\Delta \psi_1$ автомобиля над установившимся значением не должен превышать указанного в таблице 4.

Таблица 4

Категория АТС	Значение заброса $\Delta \psi_1$ угловой скорости, %, не более, при установившемся боковом ускорении a_y , м/с 2			
	2	4		
M ₁ , M ₂ , N ₁	30	80		
M ₃ , N ₂ , N ₃	10	-		

4.4.7 Характеристика времени 90%-ной реакции автомобиля t_{90} = f (a_y). 90%-ная реакция при боковых ускорениях от 2 до 4 м/с² не должна превышать: 0,3 с — для автомобилей категорий M_1 , M_2 , N_1 ;

2,0 c » » M₃, N₂, N₃.

4.5 Управляемость и устойчивость при испытаниях «поворот» и «переставка»

- 4.5.1 Требования распространяются на ATC категорий M, N и O (категории O в составе автопоезда).
- **4.5.2** Максимальную скорость ATC при выполнении маневра (далее скорость маневра $v_{\rm M}$) определяют как среднее арифметическое значение скоростей трех заездов с наибольшей скоростью, при которой не было выхода за пределы разметки или отрыва одного из колес ATC от поверхности дороги.

При выполнении маневров на ATC категории M_1 не должен происходить отрыв всех колес одной из сторон от поверхности дороги.

- **4.5.3** Значения $v_{\text{м}}$, полученные при испытаниях, не должны быть ниже приведенных в приложении А нормативных значений $v_{\text{м}}$.
- **4.5.4** Для легковых автомобилей с объемом двигателя до 1200 см³ и специализированных АТС нормативные значения скоростей выполнения маневров «поворот» и «переставка» снижают на 5 %.
- **4.5.5** При выполнении маневра «поворот» не должны возникать незатухающие курсовые колебания у АТС всех категорий.
- **4.5.6** При значении $v_{\rm M}$ для испытуемого АТС ниже нормативного значения $v_{\rm M}$ не более чем на 10 % возможность эксплуатации испытуемого АТС на дорогах общего пользования определяют по результатам испытаний «пробег» в соответствии с 4.7.
- **4.5.7** При значении $v_{\text{м}}'$ для испытуемого АТС ниже нормативного значения $v_{\text{м}}$ более 10 % эксплуатация на дорогах общего пользования не допускается.

4.6 Управляемость при испытаниях «прямая»

- 4.6.1 Требования распространяются на ATC категорий M₃, N, в том числе на автопоезда.
- **4.6.2** Средняя угловая скорость корректирующих поворотов рулевого колеса δ_H при движении по полосе заданной ширины не должна превышать значений, указанных в таблице 5.

Таблица 5

Категория АТС	Значения средних угловых скоростей δ _н ,°/с, не более
N ₁	7
M ₃ , N ₂ , N ₃	14

4.7 Управляемость и устойчивость АТС при испытаниях «пробег» в эксплуатационных режимах движения

- 4.7.1 Испытания «пробег» проводят для определения допустимых скоростей в эксплуатационных режимах движения, если по результатам испытаний «поворот» и «переставка» скорости маневров v_м АТС ниже нормативных значений.
 - 4.7.2 Требования распространяются на АТС всех категорий (категории О в составе автопоезда).
- **4.7.3** Управляемость и устойчивость АТС в эксплуатационных режимах движения оценивают эксперты-испытатели в баллах по пятибалльной шкале в соответствии с приложением Б. Оценки показателей должны быть не ниже рекомендованных значений.
- **4.7.4** При оценке любого из показателей ниже 3,5 балла испытания повторяют еще двое испытателей.
- **4.7.5** Если в результате испытаний оценки отдельных показателей оказались ниже значений, рекомендованных в приложении Б, АТС может быть допущено к эксплуатации на дорогах общего пользования при условии ограничения эксплуатационной скорости, обеспечивающей требуемый уровень оценок показателей. Это ограничение указывают в протоколе испытаний.

5 Методы испытаний

5.1 Требования к испытательному оборудованию и погрешности измерений

5.1.1 Погрешности показаний измерительной системы не должны превышать значений, указанных в таблице 6, для соответствующих диапазонов измерений.

СТБ ГОСТ Р 52302-2006

Таблица 6

Измеряемы	ый параметр	Диапазон измерений	Погрешность, не более	Вид испытаний	
Угол поворота колеса,°	Угол поворота рулевого колеса,°		± 2	Определение усилия на рулевом колесе (5.3)	
			± 1	Испытания «стабилизация» (5.4), «рывок руля» (5.6), «поворот» и «переставка» (5.7)	
		± 30	± 0,5	Испытания «прямая» (5.8)	
Усилие на	без усилителя	± 70	± 1	Определение усилия на рулевом колесе	
рулевом колесе, даН	с усилителем	± 30	± 0,5	(5.3)	
Скорость АТС, км/ч		От 10 до 150	± 0,5	Определение усилия на рулевом колесе (5.3). Испытания «стабилизация» (5.4), «рывок руля» (5.6), «поворот» и «переставка» (5.7), «прямая» (5.8)	
Угловая скорс	ость АТС,°/с	± 60	± 0,5	Испытания «рывок руля» (5.6)	
Боковое ускор	ение, м/с ²	± 10	± 0,15		
Угол крена АТ	C,°	± 15	± 0,25	Испытания «опрокидывание на стенде»	
Угол наклона стенда-опроки	платформы идывателя,°	± 70	± 0,25	(5.5)	
Линейные раз		До 500	± 3	Испытания «опрокидывание на стенде»	
Время, с		Св. 500 до 5000	± 5	(5.5), «поворот» и «переставка» (5.7), «пря- мая» (5.8)	
		Св. 5000	± 10	Испытания «поворот» и «переставка» (5.7)	
		-	± 0,1	Определение усилия на рулевом колесе (5.3). Испытания «стабилизация» (5.4), «рывок руля» (5.6), «прямая» (5.8)	
Температура,	°C	_	± 1		

- **5.1.2** Датчики для измерения различных параметров должны быть установлены в соответствии с инструкциями их использования и обеспечивать требуемую точность измерений.
- 5.1.3 Страховочные приспособления, предотвращающие опрокидывание АТС при испытаниях, должны быть оснащены элементами, защищающими от повреждений внешние панели и детали АТС.
- **5.1.4** Для определения поперечной статической устойчивости АТС используют стенд (стендопрокидыватель), имеющий платформу, размеры которой позволяют разместить автомобиль, прицеп или седельный автопоезд.

Опорная поверхность платформы стенда должна поворачиваться вокруг оси, параллельной продольной оси ATC, на угол не менее 60° относительно горизонтальной плоскости. Платформа должна быть оснащена страховочными приспособлениями в виде цепей или тросов и упорами, которые должны предотвращать скольжение шин ATC в поперечном направлении.

5.1.5 АТС при дорожных испытаниях не должны сбивать вертикальные элементы разметок полос движения.

5.2 Условия проведения испытаний

- 5.2.1 Испытания проводят при соблюдении правил техники безопасности, приведенных в приложении В.
- **5.2.2** Техническое состояние АТС, их агрегатов и узлов должно соответствовать техническим условиям или другой технической документации изготовителя, утвержденной в установленном порядке.

Седельные тягачи испытывают в составе автопоезда, при этом прицепной состав испытывают со штатными тягачами.

Допускается проведение испытаний прицепов на статическую устойчивость без тягача.

- 5.2.3 При проведении испытаний должны соблюдаться требования руководства по эксплуатации.
- 5.2.4 Износ шин АТС перед испытаниями должен быть равномерным и не должен превышать 40 % полной высоты протектора.
- 5.2.5 Перед испытаниями изготовитель или заказчик испытаний должны представить техническое описание объектов по форме, приведенной в приложении Г.
 - 5.2.6 Перед испытаниями АТС нагружают до полной массы, заявленной изготовителем.

Масса балласта, имитирующего людей, должна соответствовать следующим значениям:

- водитель и единица обслуживающего персонала в грузовом автомобиле и автобусе (75 ± 1) кг;
- водитель легкового автомобиля, пассажир легкового автомобиля и автобуса (68 ± 1) кг.

Масса балласта, имитирующего людей, для ATC, разработанных по заказу Министерства обороны Республики Беларусь, должна соответствовать значениям, указанным в ТНПА.

В качестве балласта, имитирующего людей, рекомендуется применять объемные манекены.

Платформы грузовых автомобилей и прицепов нагружают балластом в соответствии с их грузоподъемностью таким образом, чтобы высота центра массы балласта над платформой соответствовала высоте центра масс при равномерном распределении по платформе груза плотностью (0,80 ± 0,05) т/м³. Для полноприводных грузовых автомобилей центр массы балласта должен располагаться на высоте середины бортов платформы с учетом надставных бортов.

Специализированные ATC испытывают при высоте центра массы балласта, исходя из плотности груза, для перевозки которого предназначено данное специализированное ATC, подтвержденной документацией изготовителя.

В качестве балласта для цистерн допускается использовать воду.

5.2.7 Участок дороги, на котором проводят испытания, должен быть горизонтальным, сухим, ровным, чистым, с асфальтобетонным покрытием.

Под сухим покрытием понимают асфальтобетонное покрытие с коэффициентом сцепления 0.75 ± 0.05 .

Максимально допустимый уклон в любом направлении — не более 1 %. Участок дороги для испытаний «прямая» не должен иметь локальных выступов и впадин, превышающих по высоте и глубине 20 мм. если их площадь превышает 20 см².

Дороги, на которых проводят испытания «пробег», должны быть как с сухим, так и с мокрым покрытием.

Под мокрым покрытием понимают асфальтобетонное покрытие, политое водой, с коэффициентом сцепления 0,3 – 0,6.

5.2.8 Участки испытаний размечают эластичными элементами, ограничивающими ширину коридора движения в зависимости от габаритной ширины ATC по колесам на высоте 150 мм.

Размеры участков и схемы разметки приведены в разделах стандарта, описывающих соответствующие методики.

- 5.2.9 При испытаниях скорость ветра не должна превышать 5 м/с в любом направлении.
- Испытания проводят при температуре окружающего воздуха от минус 5 °C до плюс 30 °C.
- **5.2.10** Состояние атмосферы при проведении дорожных испытаний должно обеспечивать видимость не менее 1000 м.
- **5.2.11** Перед проведением испытательных заездов проверяют давление воздуха в шинах, прогревают агрегаты и шины ATC пробегом не менее 15 км.
- 5.2.12 Во время испытаний оформляют протокол, в котором отмечают условия испытаний, выполненные заезды с указанием их особенностей (появление сноса, заноса, курсовых колебаний и их демпфирование, отрыва колес от поверхности дороги, возможные отклонения от условий испытаний, отклонения в работе средств измерений, замечания водителей-испытателей, оператора и контролера, результаты замеров).

5.3 Определение усилия на рулевом колесе

- **5.3.1** Испытания «усилие на рулевом колесе» предназначены для определения усилий, которые должен прилагать водитель для поворота управляемых колес.
- **5.3.2** Испытания «усилие на рулевом колесе» проводят на испытательном участке дороги как на неподвижном ATC, так и на движущемся со скоростью 10 км/ч при переходе от прямолинейного движения к движению по окружности с радиусом $R_{\rm n}$ = 12 м или с минимальным радиусом $R_{\rm мин}$, если он больше 12 м, внутри которой находятся проекции всех точек ATC, за исключением внешних зеркал и передних указателей поворота.

5.3.3 Проведение испытаний на неподвижном АТС

- **5.3.3.1** При наличии рулевого усилителя испытания проводят с работающим в режиме холостого хода двигателем, при отсутствии усилителя с неработающим двигателем.
- 5.3.3.2 На неподвижном испытуемом АТС медленно поворачивают рулевое колесо из нейтрального положения вправо до упора. Фиксируют положение рулевого колеса и перемещают АТС на 0,4-0,6 м вперед или назад, после чего на неподвижном АТС поворачивают рулевое колесо из крайнего правого положения в крайнее левое положение. Фиксируют положение рулевого колеса и проводят следующее перемещение АТС на 0,4-0,6 м, после чего на неподвижном АТС возвращают рулевое колесо в нейтральное положение. Максимальное значение угловой скорости поворота рулевого колеса, замеренное по зависимости $\delta_{\rm H} = f(t)$, не должно превышать 60 °/c. Допускается кратковременная остановка рулевого колеса без снижения усилия на нем.
- 5.3.3.3 Производят не менее двух полных поворотов рулевого колеса из одного крайнего положения в другое.

В процессе испытаний непрерывно измеряют и регистрируют:

 δ_{H} – угол поворота рулевого колеса, ...°;

 F_{H} – усилие на рулевом колесе, H;

t – время поворота рулевого колеса, с.

5.3.3.4 Результатами испытаний являются средние по всем замерам значения усилий на рулевом колесе при его повороте отдельно влево $F_{\rm H,I}$ и вправо $F_{\rm H,I}$ на углы, соответствующие движению по окружности с габаритным радиусом $R_{\rm n}$ = 12 м или по окружности с минимальным габаритным радиусом $R_{\rm numb}$ если он больше 12 м.

5.3.4 Проведение испытаний при движении АТС

5.3.4.1 АТС разгоняют до скорости (10 ± 2) км/ч и с этой скоростью оно движется равномерно и прямолинейно.

Передачу в коробке передач выбирают наивысшую, которая обеспечивает устойчивую работу двигателя.

При въезде на испытательный участок поворачивают рулевое колесо с постоянной угловой скоростью поочередно: в одну сторону до крайнего положения, а затем в другую сторону также до крайнего положения.

- **5.3.4.2** Для АТС всех категорий без рулевого усилителя или с работающим усилителем скорость поворота рулевого колеса задают такую, чтобы обеспечить переход АТС в течение (4,00 \pm 0,25) с от прямолинейного движения к движению по окружности, габаритный радиус которой $R_{\rm n}$ равен (12,00 \pm 0,05) м, или по окружности с минимальным габаритным радиусом, если $R_{\rm мин}$ больше 12 м.
- **5.3.4.3** Для АТС с неработающим рулевым усилителем скорость поворота рулевого колеса задают такую, чтобы обеспечить переход АТС категорий M_1 , M_2 , N_1 и N_2 в течение (4,00 ± 0,25) с, а для АТС категорий M_3 и N_3 в течение (6,00 ± 0,25) с от прямолинейного движения к движению по окружности, радиус которой (20,00 ± 0,05) м.

Неисправность усилителя следует имитировать отсоединением гидронасоса или энергопитания электроусилителя.

5.3.4.4 Проводят не менее трех поворотов влево и вправо для условий, установленных в 5.3.4.2 и 5.3.4.3.

5.3.4.5 В процессе испытаний измеряют и регистрируют:

 δ_{H} – угол поворота рулевого колеса, ...°;

 F_{H} – усилие на рулевом колесе, H;

V — скорость движения, км/ч;

t – время поворота рулевого колеса, с.

5.3.4.6 Результатами испытаний при поворотах вправо и влево являются средние значения усилий $F_{\rm H,D}$, определенные в соответствии с 5.3.4.2, 5.3.4.3 и 5.3.4.5.

5.4 Испытания «стабилизация»

5.4.1 Испытания «стабилизация» предназначены для определения параметров, характеризующих самовозврат управляемых колес и рулевого колеса в нейтральное положение.

5.4.2 Проведение испытаний

5.4.2.1 Оценку показателей стабилизации рулевого управления проводят при равномерном движении АТС внутренним (к центру поворота) управляемым колесом (или колесами) по дуге окружности радиусом 50 м с расположением следа пятна контакта шины в диапазоне полосы движения радиусом

от 50 до 51 м со скоростями (50 \pm 2) км/ч для АТС категорий M_1 , N_1 , (40 \pm 2) км/ч — для АТС категорий M_2 , M_3 , N_2 , N_3 с последующим уходом АТС с круговой траектории после освобождения обода рулевого колеса от прилагаемых усилий. Скорость поддерживают постоянной до прекращения вращения освобожденного от усилий рулевого колеса, но не более 6 с, после чего испытательный заезд считают законченным. По истечении 6 с регистрируют угол, оставшийся до возврата в нейтральное положение, или фиксируют возврат в нейтральное положение. При повороте рулевого колеса в каждую сторону проводят не менее трех заездов.

- **5.4.2.2** В процессе испытаний измеряют и регистрируют по времени угол поворота рулевого колеса δ_и.
 - 5.4.3 Результатами испытаний являются:
 - средние значения остаточного угла поворота рулевого колеса;
 - вывод о наличии или отсутствии колебаний рулевого колеса.

5.5 Испытания «опрокидывание на стенде»

- 5.5.1 Испытания проводят с целью определения показателей поперечной устойчивости против опрокидывания при наклоне платформы стенда до величины, при которой наблюдается отрыв колес одной стороны одиночного АТС или колес одной стороны одного из звеньев седельного автопоезда от опорной поверхности.
- 5.5.2 Испытания «опрокидывание на стенде» проводят на стенде с опрокидывающей платформой. Испытуемое АТС устанавливают на опорной поверхности платформы таким образом, чтобы его продольная ось была параллельна оси поворота платформы. Управляемые колеса АТС должны находиться в положении, соответствующем прямолинейному движению. Стояночный тормоз при этом должен быть включен. Для предотвращения скольжения и опрокидывания АТС устанавливают соответствующие приспособления (см. 5.1.4).
- 5.5.3 Наклон платформы осуществляют с угловой скоростью, не превышающей 0,5 °/с, до отрыва одного, а затем всех колес одной стороны одиночного АТС (звена автопоезда) от опорной поверхности. Момент отрыва определяют визуально.

Платформу возвращают в исходное положение.

- 5.5.4 В процессе испытаний измеряют и регистрируют:
- α_I угол наклона опорной поверхности опрокидывающей платформы относительно горизонтальной опорной поверхности;
- $\phi_{n',h}$ $\phi_{n',h}$ $\phi_{n',h}$ углы наклона подрессоренных масс ATC относительно горизонтальной опорной поверхности в зонах переднего и заднего свесов, соответственно в местах, удобных для установки измерительных приборов (на элементах вторично подрессоренных масс измерения не проводят),

где і – порядковый номер зачетного измерения.

При положении платформы соответствующему углу опрокидывания ATC дополнительно измеряют боковые деформации шин каждой из осей ATC.

На записях $\alpha = f(t)$, $\varphi_n' = f(t)$ и $\varphi_3' = f(t)$ делают отметки в моменты отрыва колес одной стороны от платформы.

Допускается ступенчатый подъем платформы с регистрацией углов α и φ при остановках платформы через каждые 1° – 2° в области, близкой к отрыву всех колес одной стороны от платформы.

5.5.5 Величины углов крена подрессоренных масс АТС (звена автопоезда) относительно платформы, при которых происходит отрыв колес одной стороны от платформы в зонах переднего ϕ_n , и заднего ϕ_n , свесов, определяют по формулам:

$$\varphi_{n\,i} = \varphi_{n\,i} - \alpha_i, \tag{7}$$

$$\varphi_{3i} = \varphi_{3i} - \alpha_i \tag{8}$$

для каждого і-го зачетного измерения.

Средние значения углов крена подрессоренных масс в центре масс определяют по формуле

$$\varphi = \frac{\varphi_n \cdot I_2 + \varphi_3 \cdot I_1}{I_1 + I_2},\tag{9}$$

где l_1 — расстояние от переднего сечения, в котором проводят измерение крена, до центра масс ATC; l_2 — расстояние от заднего сечения, в котором проводят измерение крена, до центра масс ATC.

CTE FOCT P 52302-2006

Для одноосных прицепов углы крена определяют по формулам (7) и (8).

5.5.6 Результатами испытаний являются:

- среднее значение угла поперечной статической устойчивости $\alpha_{c,y}$, при котором происходит отрыв колес одной стороны ATC (звена автопоезда) от платформы;
 - среднее значение угла крена ⊕к в тот же момент.

5.6 Испытания «рывок руля»

5.6.1 Для испытаний используют площадку минимальным диаметром 100 м с примыкающей к ней разгонной полосой длиной не менее 1000 м и шириной не менее 7 м.

5.6.2 Проведение испытаний

5.6.2.1 АТС испытывают при скоростях:

 (80 ± 3) км/ч — для АТС категорий M_1 , M_2 и N_1 ;

 (60 ± 3) км/ч » » M_3 , N_2 и N_3 .

Если максимальная скорость ATC равна или меньше указанной, то скорость при испытаниях принимают на 10 км/ч ниже максимальной, установленной в технических условиях изготовителя.

При этой скорости АТС движется равномерно и прямолинейно до начала поворота рулевого колеса.

- 5.6.2.2 При испытаниях производят максимально быстрый, с угловой скоростью не менее 400°/с, поворот рулевого колеса в заданное положение. Рулевое колесо удерживают в этом положении до начала установившегося кругового движения или, если криволинейное движение не становится установившимся, в течение 3 с.
- **5.6.2.3** Угол поворота рулевого колеса увеличивают ступенчато, от заезда к заезду, до достижения бокового ускорения для АТС категорий M_1 , M_2 и N_1 не менее 4,5 м/c², для АТС категорий M_3 , N_2 и N_3 не менее 2,5 м/c² или близкого к предельному по условиям сцепления шин с дорогой, или максимально возможного по условиям безопасности.

Первый испытательный заезд выполняют при угле поворота рулевого колеса соответствующем боковому ускорению $1,0-1,5 \text{ м/c}^2$.

Всего с постепенным увеличением бокового ускорения должно быть выполнено не менее 12 заездов в каждую сторону как влево, так и вправо.

5.6.2.4 В процессе испытаний измеряют и непрерывно регистрируют во времени:

 δ_{H} – угол поворота рулевого колеса, ...°;

 ψ – угловую скорость автомобиля, ... °/с;

 $a_{\rm v}$ – боковое ускорение автомобиля, м/c²;

v – скорость автомобиля, м/с.

Примечание – Допускается не регистрировать скорость автомобиля непрерывно. В этом случае скорость контролируют в начале и конце заезда.

5.6.2.5 Образец записи угла поворота рулевого колеса и угловой скорости автомобиля приведен на рисунке 4.

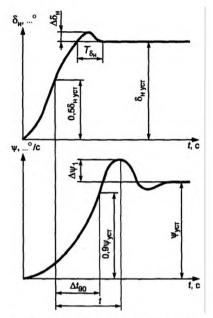


Рисунок 4 — Записи угла поворота рулевого колеса δ_{H} и угловой скорости ψ автомобиля при испытании «рывок руля»

5.6.3 Обработка результатов испытаний

- **5.6.3.1** Образец записи угла поворота рулевого колеса и угловой скорости АТС приведен на рисунке 4.
 - 5.6.3.2 При обработке результатов определяют:
 - установившееся значение угла $\delta_{\rm H}$ и момент времени достижения 50 % этого значения;
 - параметры записи угловой скорости автомобиля:
 - у установившееся значение угловой скорости автомобиля;
 - $\Delta \psi_1$ заброс угловой скорости автомобиля над установившимся значением;
- момент времени достижения значения угловой скорости автомобиля, равного 90 % установившейся угловой скорости;
- Δt_{90} время 90 %-ной реакции автомобиля, представляющее собой интервал времени между моментами достижения 50 % установившегося значения угла поворота рулевого колеса и 90 % установившегося значения угловой скорости автомобиля.
- **5.6.3.3** Если датчик бокового ускорения размещен не на гиростабилизированной платформе, то необходимо установить датчик крена в месте установки датчика бокового ускорения a_y , показания которого корректируют по формуле

$$a_{V} = a_{V, \text{ дат}} - g \sin \varphi, \tag{10}$$

где а_{у, дат} – показания датчика бокового ускорения.

В случае, если датчик бокового ускорения не установлен, а рассчитывают по формуле

$$a_{v} = v \psi, \tag{11}$$

где v – скорость автомобиля, м/с.

- **5.6.4** Результатами испытаний являются следующие характеристики устойчивости АТС, представляемые в графической форме:
- характеристика чувствительности к управлению и поворачиваемости автомобиля, представляющая собой зависимость угла поворота рулевого колеса δ_n от установившегося бокового ускорения a_n
- характеристика заброса угловой скорости автомобиля, представляющая собой зависимость заброса угловой скорости автомобиля $\Delta \psi$ от бокового ускорения a_v ;
- характеристика времени 90 %-ной реакции автомобиля, представляющая собой зависимость времени 90 %-ной реакции Δt_{90} от бокового ускорения a_v .

СТБ ГОСТ Р 52302-2006

5.7 Испытания «поворот» и «переставка»

5.7.1 Испытания проводят с целью определения показателей, характеризующих управляемость и устойчивость ATC в критических режимах движения.

Испытания «поворот R_n = 35 м» предназначены для определения максимальной скорости маневра при входе в поворот.

Испытания «переставка S_n = 16 м», «переставка S_n = 20 м» предназначены для определения максимальной скорости маневра при смене полосы движения на ограниченном участке пути.

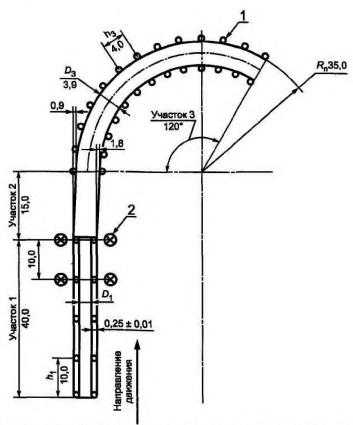

- **5.7.2** Разметку участков дороги для испытаний «поворот R_n = 35 м» и «переставка» осуществляют в соответствии со схемами, приведенными на рисунках 5 и 7.
- **5.7.3** Ширина D_1 коридора участков 1 для всех вариантов испытаний «поворот», «переставка» и «прямая» приведена в таблице 7 в зависимости от максимальной ширины АТС, измеренной на высоте от 0 до 150 мм от опорной поверхности.

Таблица 7

В метрах

Максимальная ширина АТС	До 1,3	Св. 1,3 до 1,5	Св. 1,5 до 1,7	Св. 1,7 до 1,9	Св. 1,9 до 2,1	Св. 2,1 до 2,3	Св. 2,3 до 2,5	Св. 2,5
Ширина входного коридора D_1	1,7	1,9	2,1	2,3	2,5	2,7	2,9	Дополнительно 0,5 к мак- симальной ширине ATC

Размеры в метрах

1 — вертикальные ограничители разметки коридоров движения на участках 1, 2 и 3; 2 — датчики измерения скорости; h_1 — шаг установки вертикальных ограничителей на участке 1; h_3 — шаг установки вертикальных ограничителей на участке 3; D_1 — ширина коридора на участке 1; D_3 — ширина коридора на участке 3.

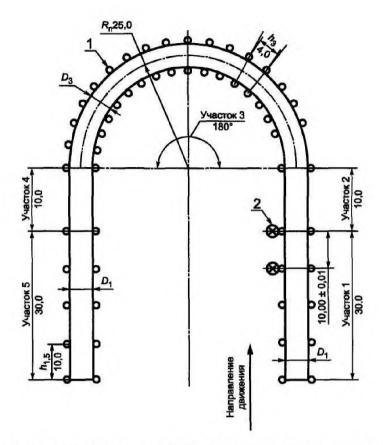
Точность разметки ширины коридора $D_1 \pm 0.1$ м. Точность разметки ширины коридора $D_3 \pm 0.05$ м

Рисунок 5 – Разметка участка испытаний «поворот R_n = 35 м»

5.7.4 Испытания «поворот $R_n = 35 \text{ м}$ »

- **5.7.4.1** При испытаниях выполняют заданный разметкой маневр (разметка участка испытаний представлена на рисунке 5) при постепенном увеличении скорости от заезда к заезду.
- **5.7.4.2** АТС вводят в режим равномерного прямолинейного движения. Передачу в коробке передач выбирают наивысшую, обеспечивающую устойчивую работу двигателя. Положение рук водителя на рулевом колесе не регламентируют.
- **5.7.4.3** При пересечении передними колесами АТС границы между участками 1 и 2 размеченного коридора (см. рисунок 5) водитель быстро снимает ногу с педали газа и начинает поворачивать рулевое колесо вправо для выполнения маневра. Положение всех остальных органов управления должно оставаться постоянным.
- 5.7.4.4 Внешний наблюдатель отмечает отрывы колес от дороги, выходы АТС за пределы коридора и информирует о них водителя.
 - 5.7.4.5 Все заезды подразделяют на предварительные и зачетные.

Предварительные заезды проводят без регистрации измеряемых параметров для определения диапазона начальных скоростей зачетных заездов. Начальные скорости предварительных заездов выбирают такими, при которых не происходит снижения показателей управляемости и устойчивости. Это условие обеспечивается значениями скоростей, равными 60 % от $v_{\text{м}}$, указанными в приложении А для АТС соответствующих категорий. Заканчивают заезды на скорости, при которой начинает проявляться ухудшение свойств управляемости и устойчивости.


- **5.7.4.6** Начальную скорость зачетных заездов принимают на 10 % ниже скорости окончания предварительных заездов. В последующих заездах скорость увеличивают с интервалом 1 2 км/ч, причем с увеличением скорости этот интервал должен уменьшаться.
- **5.7.4.7** При появлении в заезде отрыва колеса от дороги или выходе ATC за боковые границы коридора заезд повторяют с прежней скоростью. Если явление не повторяется, скорость увеличивают. Если в трех заездах на одной скорости происходит отрыв колеса от дороги или выход за пределы коридора, то испытания заканчивают.
- В случае отсутствия явлений, ограничивающих скорость выполнения маневра, испытания заканчивают при скорости ATC, на 5 % превышающей нормативное значение $v_{\rm M}$.
- **5.7.4.8** В процессе испытаний регистрируют скорость $v_{\rm M}$ АТС на участке 1 и отмечают заезды, в которых происходит отрыв колес от поверхности дороги или выход их за пределы размеченного коридора.

Дополнительно регистрируют угол поворота рулевого колеса, позволяющий определить максимальный угол поворота рулевого колеса, момент начала маневра, наличие заноса, сноса или ошибки водителя.

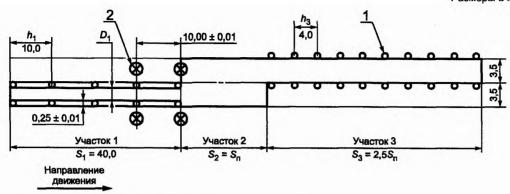
Заезд не засчитывают, если расстояние между границей участков 1 и 2 размеченной траектории и точкой, соответствующей началу поворота руля, превышает 1 м;

Форма графика записи и величина углов поворота руля позволяют судить о наличии сноса или заноса в заезде, о чем делают запись в протоколе (приложение Д).

- **5.7.4.9** Результатом испытаний «поворот $R_n = 35$ м» является средняя скорость маневров $v_{\rm M}'$, которая определяется в соответствии с 4.5.2.
- **5.7.4.10** Допускается по согласованию с заказчиком проведение испытаний «поворот R_n = 25 м» (см. рисунок 6) вместо испытаний «поворот R_n = 35 м» для автомобилей многоцелевого назначения категории N.

1 — вертикальные ограничители разметки коридоров движения; 2 — датчики измерения скорости; $h_{1,5}$ — шаг установки вертикальных ограничителей на участках 1 и 5; h_3 — шаг установки вертикальных ограничителей на участке 3; D_1 — ширина коридора на участках 1 и 5.

Точность разметки ширины коридора $D_1 \pm 0,1$ м. Точность разметки ширины коридора $D_3 \pm 0,05$ м Участки 4 и 5 размечаются только при испытании автомобилей с задними управляемыми колесами. Размер D_3 (ширина коридора на участке 3) и размеры, определяющие коридоры движения на участках 2 и 4, устанавливаются по согласованию с заказчиком


Рисунок 6 – Разметка участка испытаний «поворот R_n = 25 м»

5.7.4.11 В испытаниях «поворот R_n = 25 м» водитель в отличие от испытания «поворот R_n = 35 м» при пересечении границ участков 1 и 2 не снимает ноги с педали подачи топлива, а поддерживает скорость движения постоянной на протяжении всего заезда. Угол поворота рулевого колеса не регламентируется.

В остальном (5.7.4.1, 5.7.4.2, 5.7.4.4 – 5.7.4.9) методика испытаний «поворот R_n = 25 м» не отличается от методики испытаний «поворот R_n = 35 м».

- 5.7.5 Испытания «переставка $S_n = 20$ м» и «переставка $S_n = 16$ м»
- 5.7.5.1 Разметка участков испытаний приведена на рисунке 7.

Размеры в метрах

1 — вертикальные ограничители разметки коридоров движения; 2 — датчики измерения скорости; h_1 — шаг установки вертикальных ограничителей на участке 1;

 h_3 – шаг установки вертикальных ограничителей на участке 3; D_1 – ширина коридора на участке 1. Точность разметки ширины коридора на участках 1 и 3 составляет \pm 0,05 м

Рисунок 7 – Разметка участка испытаний «переставка $S_n = 16$ м», «переставка $S_n = 20$ м»

- **5.7.5.2** Испытания проводят на участке 2, имеющем длину S_n = 20 м. Если на длине S_n = 20 м максимальная скорость выполнения маневра не достигнута из-за ограниченной мощности двигателя, то испытания проводят при S_n = 16 м.
- 5.7.5.3 При испытаниях выполняют заданный разметкой маневр при постепенном увеличении скорости от заезда к заезду.
- **5.7.5.4** АТС вводят в режим равномерного прямолинейного движения. Передачу в коробке передач выбирают наивысшую, обеспечивающую устойчивую работу двигателя. Положение рук водителя на рулевом колесе соответствует цифрам «3» и «9» циферблата часов.
- **5.7.5.5** При пересечении передними колесами АТС границы между участками 1 и 2 размеченного коридора водитель быстро снимает ногу с педали подачи топлива и начинает выполнять маневр.
- **5.7.5.6** Перехват рулевого колеса допускают только при достижении угла поворота, при котором происходит предельное перекрещивание рук водителя. Воздействия на остальные органы управления не допускаются.
- **5.7.5.7** Внешний наблюдатель отмечает отрывы колес от дороги, выходы АТС за пределы коридора и информирует о них водителя.
- **5.7.5.8** Перед зачетными заездами выполняют предварительные заезды, которые допускается проводить без регистрации измеряемых параметров. Эти заезды заканчивают на скорости, при которой водитель вынужден корректировать поворотом рулевого колеса занос, снос, курсовые колебания АТС или возникновение опасности опрокидывания.
- **5.7.5.9** Начальную скорость зачетных заездов принимают на 10 % ниже скорости окончания предварительных заездов.
- В последующих заездах скорость увеличивают с интервалом 1-2 км/ч, причем с увеличением скорости этот интервал должен уменьшаться.
- **5.7.5.10** При появлении в заезде отрыва колеса от дороги или выходе ATC за боковые границы коридора заезд повторяют с прежней скоростью. Если явление не повторяется, скорость увеличивают. Если в трех заездах на одной скорости происходит отрыв колеса от дороги или выход его за пределы коридора, то испытания заканчивают.
- В случае отсутствия явлений, ограничивающих скорость выполнения маневра, испытания заканчиваются при скорости ATC, на 5 % превышающей нормативное значение *v*_м (см. приложение A).
- **5.7.5.11** В процессе испытаний регистрируют скорость v АТС на участке 1 и отмечают те заезды, в которых происходит отрыв колес (колеса) от поверхности дороги или выход их (его) за пределы коридора.

Дополнительно регистрируют угол поворота рулевого колеса, позволяющий определить максимальный угол поворота рулевого колеса, момент начала маневра, наличия заноса, сноса или ошибки водителя. Заезд не засчитывают, если:

- расстояние между границей участков 1 и 2 размеченной траектории (см. рисунок 7) и точкой, соответствующей началу поворота руля, превышает 1,0 м;
- на записи угла поворота руля имеется резкий скачок в сторону увеличения кривизны траектории на угол $\delta_{\rm H} > 0,6 Li_{\rm o}$,

где L — база автомобиля;

- $i_{\rm p}$ передаточное число рулевого управления.
- **5.7.5.12** Результатом испытаний «переставка S_n = 16 м», «переставка S_n = 20 м» является среднеарифметическое значение максимальной скорости маневра $v_{\rm M}$, которая определяется в соответствии с 4.5.2.

5.8 Испытания «прямая»

- **5.8.1** Испытания «прямая» предназначены для определения средней угловой скорости корректирующих поворотов рулевого колеса.
- **5.8.2** Коридор для испытания «прямая» длиной не менее 400 м ограничивают по ширине установкой элементов разметки с интервалом 20 25 м. На расстоянии 50 м до первого элемента и 50 м после последнего элемента разметки коридора устанавливают дополнительно еще по два элемента в виде ворот той же ширины, что и коридор, чтобы обозначить вход в коридор и выход по прямой. Ширина коридора приведена в таблице 7.

5.8.3 Проведение испытаний

При испытаниях выполняют испытательные заезды в размеченном коридоре без выхода АТС за его границы.

АТС испытывают при скоростях:

80 км/ч — для категории N₁, в том числе с прицепом;

70 км/ч — для категории Ма;

60 км/ч – для остальных категорий, в том числе с прицепами.

Выполняют не менее 10 заездов.

В процессе испытаний с общей длиной зачетного пробега не менее 4 км измеряют и регистрируют:

 δ_{H} — угол поворота рулевого колеса;

t – время прохождения мерного участка.

Скорость ATC фиксируют в начале заезда и поддерживают постоянной на всем испытательном участке.

5.8.4 Обработка результатов испытаний

5.8.4.1 При испытаниях может производиться либо непрерывная запись угла поворота рулевого колеса, либо вывод на счетчик суммарного угла за время заезда. При обработке записи или выводе на счетчик должны учитываться углы поворота, превышающие 0,5°.

Обработка записи заключается в суммировании углов поворота рулевого колеса $\sum \delta_{H}$, произведенных за время заезда на заданном отрезке пути.

5.8.4.2 Показателем управляемости АТС при прямолинейном движении является средняя скорость корректирующих поворотов рулевого колеса $\Sigma \delta_n t$, определяемая как отношение суммарного угла поворота рулевого колеса по всем испытательным заездам к суммарному времени всех заездов

$$\sum \delta_{\mu} t = \frac{\sum_{i=1}^{n} \left(\sum \delta_{\mu} \right)_{i}}{\sum_{i=1}^{n} t_{i}},$$
(12)

где t_i — время i-го испытательного заезда, с;

п – число зачетных заездов.

5.9 Испытания «пробег»

5.9.1 Цель испытаний — оценка значений показателей управляемости и устойчивости по 4.7, а также определение допустимой скорости движения испытуемого АТС на дорогах общего пользования.

- **5.9.2** Управляемость и устойчивость в эксплуатационных режимах движения по дорогам общего пользования оценивают эксперты-испытатели с применением балльного способа выражения показателей в соответствии с ГОСТ 15467.
- **5.9.3** Испытатель оценивает управляемость и устойчивость ATC на дорогах с различным состоянием покрытия в следующих режимах:
- движение на участках, имитирующих горную дорогу (выполнение последовательных поворотов влево и вправо по кривым малого радиуса с допустимой по условиям безопасности скоростью);
 - движение на прямой (стационарное, с ускорением, при торможении с различной интенсивностью);
 - движение на повороте (стационарное, с ускорением, при торможении с различной интенсивностью);
 - смена ряда (полосы) движения при ускорении и торможении;
 - маневрирование в условиях интенсивного городского движения;
- маневрирование в ограниченном пространстве на скорости до 10 км/ч при вращении руля от крайнего левого до крайнего правого положения и обратно.

Приложение А (обязательное)

Нормативные значения $v_{\rm M}$ скоростей выполнения маневров «поворот» и «переставка»

Таблица А.1 – Нормативные значения $v_{\rm M}$ скоростей выполнения маневра «поворот $R_{\rm n}$ = 35 м»

Категория АТС	M ₁	M ₁ *	M ₁ **	Автопоезда М₁ с прицепом
ν _м , κм/ч	72	65	67	65

Продолжение таблицы А.1

			M ₃ ***	_
Категория АТС	M ₂	Габаритная длина, м		
		до 8	от 8 до 12	св. 12
ν _м , κ <mark>м</mark> /ч	60	56	51	48

Продолжение таблицы А.1

Категория АТС	N ₁	N ₁ **	N ₂
<i>∨</i> _м , км/ч	60	60	50

Продолжение таблицы А.1

Категория АТС	N₃ Полная масса до 20 т	N ₃ Полная масса св. 20 т	Седельные автопоезда №
<i>∨</i> м, км/ч	49	46	42

Окончание таблицы А.1

Категория АТС	Автопоезда №	Седельные	Автопоезда N₃
	с прицепом	автопоезда N₃	с прицепом
<i>∨</i> _м , км/ч	42	42	42

^{*} Легковые автомобили с числом посадочных мест свыше пяти (включая водителя) и (или) полной массой свыше 2,2 т.

Нормативное значение $v_{\rm M}$ скорости выполнения маневра «поворот $R_{\rm n}$ = 25 м» для АТС категории N составляет 45 км/ч

^{**} АТС повышенной проходимости.

^{***} В том числе сочлененные автобусы.

Таблица А.2 – Нормативные значения v_n скоростей выполнения маневра «переставка $S_n = 20$ м»

Категория АТС	M ₁	M ₁ *	M ₁ **	Автопоезда М₁ с прицепом
<i>∨</i> _м , км/ч	83	76	74	69

Продолжение таблицы А.2

			M ₃ ***	
Категория АТС	ГС M ₂ Габаритная длина,		Габаритная длина, м	1
		до 8	от 8 до 12	св. 12
<i>v</i> _м , км/ч	71	63	56	52

Продолжение таблицы А.2

Категория АТС	N ₁	N ₁ **	N ₂
<i>V</i> _м , км/ч	70	66	59

Продолжение таблицы А.2

		N ₃	_
Категория АТС	Полная масса, т		Седельные автопоезда №
	до 20	св. 20	автопоезда 142
<i>∨</i> м, км/ч	56	54	48

Окончание таблицы А.2

Категория АТС	Автопоезда № с прицепом	Седельные автопоезда N₃	Автопоезда N₃ с прицепом
<i>∨</i> _м , км/ч	47	52	50

^{*} Легковые автомобили с числом посадочных мест свыше пяти (включая водителя) и (или) полной массой свыше 2.2 т.

Таблица А.3 – Нормативные значения $v_{\rm M}$ скоростей выполнения маневра «переставка $S_{\rm n}$ = 16 м»

Категория АТС	M ₁	M ₁ *	M ₁ **	Автопоезда М₁ с прицепом
<i>∨</i> _м , км/ч	70	65	62	59

Продолжение таблицы А.3

			M ₃ ***	
Категория АТС	M ₂	Габаритная длина, м		1
		до 8	от 8 до 12	св. 12
ν _м , κм/ч	59	53	48	42

^{**} АТС повышенной проходимости.

^{***} В том числе сочлененные автобусы.

СТБ ГОСТ Р 52302-2006

Продолжение таблицы А.3

Категория АТС	N ₁	N ₁ **	N ₂
<i>∨</i> _м , км/ч	59	56	49

Продолжение таблицы А.3

Категория АТС	N₃ Полная масса до 20 т	N₃ Полная масса св. 20 т	Седельные автопоезда №
ν _м , κм/ч	46	44	42

Окончание таблицы А.3

Категория АТС	Автопоезда № с прицепом	Седельные автопоезда №	Автопоезда N₃ с прицепом
<i>∨</i> _м , км/ч	41	44	43

^{*} Легковые автомобили с числом посадочных мест свыше пяти (включая водителя) и (или) полной массой свыше 2,2 т.

** АТС повышенной проходимости.

*** В том числе сочлененные автобусы.

Приложение Б (рекомендуемое)

Оценка управляемости и устойчивости АТС в эксплуатационных режимах движения

Б.1 Шкала оценок управляемости и устойчивости АТС в баллах

«Отлично», улучшать не требуется	5,0
Между «хорошо» и «отлично»	4,5
«Хорошо», желательно улучшить	4,0
Между «хорошо» и «посредственно»	3,5
«Посредственно», необходимо улучшить	3,0
Между «посредственно» и «плохо»	2,5
«Плохо»	2,0
«Очень плохо»	1,0

Оценки управляемости и устойчивости АТС выставляют исходя из следующих положений.

Балл 5,0 – водитель не ощущает затруднений при управлении АТС.

Балл 4,0 — водитель начинает ощущать небольшие затруднения, заключающиеся в появлении некоторого несоответствия реакции АТС на управляющее воздействие (по моменту его начала и амплитуде) по отношению к желаемой.

Балл 3,0 – водитель ощущает значительные затруднения в управлении скоростью, замедлением, траекторией, стабилизацией курса и крена. При выставлении этой оценки безопасное движение возможно при максимальном внимании к управлению ATC.

Балл 2,0 – водитель работает на пределе своих возможностей. Минимальная ошибка в выборе момента приложения и величины управляющего воздействия приводит к потере устойчивости и управляемости ATC.

Балл 1.0 – устойчивое управление АТС невозможно.

Б.2 Рекомендуемые значения оценок

			Оценка,	балл, дл	я АТС ра	азличны	х категор	рий	
Показатель	M ₁	M ₁ *	M ₁ **	M ₂	M ₃	N ₁	N ₂	N ₃	Авто- поезда N
Траекторная и курсовая управ- ляемость	4,5	4,0	4,0	4,0	4,0	4,0	4,0	3,5	3,5
Траекторная устойчивость	4,5	4,0	4,0	4,0	4,0	4,0	4,0	3,5	3,5
Курсовая устойчивость	4,5	4,0	4,0	4,5	4,5	4,0	4,0	4,0	3,5
Устойчивость против опроки- дывания	5,0	4,5	4,0	5,0	5,0	4,0	4,0	4,0	4,0
Управление скоростью	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,5	3,5
Управление замедлением	4,0	3,5	4,0	4,0	4,0	3,5	3,5	3,5	3,5
Траекторная устойчивость при торможении	4,0	3,5	4,0	4,0	4,0	3,5	3,5	3,5	3,5
Курсовая устойчивость при торможении	4,0	3,5	4,0	4,0	4,0	3,5	3,5	3,5	3,5
Маневрирование в ограничен- ном пространстве	4,5	4,0	4,0	4,0	4,0	4,0	4,0	3,5	3,5

^{*} Транспортные средства повышенной проходимости.

^{**} Автопоезда M₁.

Приложение В

(обязательное)

Требования безопасности

- В.1 Испытания устойчивости и управляемости АТС являются испытаниями повышенной опасности.
- **В.2** При проведении испытаний необходимо соблюдать действующие в Республике Беларусь «Правила дорожного движения», за исключением испытаний, проводимых на специально выделенных участках, инструкции по технике безопасности, безопасности движения и пользования стендами, приспособлениями и аппаратурой предприятий и организаций, на базе которых проводят испытания.
- **В.3** К проведению дорожных испытаний допускаются только опытные инженеры-испытатели, водители-испытатели с водительскими удостоверениями на право управления транспортным средством соответствующей категории (со стажем практического вождения не менее пяти лет), прошедшие аттестацию и получившие допуск на проведение выше оговоренных испытаний.
- **В.4** Для проведения испытаний должен быть назначен ответственный за проведение испытаний, который несет ответственность за безопасность людей и оборудования.
- **В.**5 Ответственный за испытания (руководитель испытаний) должен наблюдать за четким соблюдением правил и инструкций, перечисленных в В.2.
- **В.**6 Руководитель должен разъяснить каждому участнику испытаний его задание и обязанности и указать рабочее место, которое необходимо занимать во время испытаний.
- **В.7** Во время испытаний по 5.6 и 5.7 водитель и контролер должны быть пристегнуты ремнями безопасности и находиться в защитных шлемах.
- **В.8** Применяемые при проведении испытаний приборы, устройства и т. п. не должны мешать управлению АТС или заставлять водителя управлять им в неудобном положении.
- **В.9** Испытания должны быть прекращены при обнаружении неисправностей АТС или изменения их состояния (например, смещение или ослабление крепления балласта), влияющих на безопасность испытаний, если эти неисправности и изменения состояния не являются предметом исследования.
- **В.10** При проведении испытаний по 5.6 и 5.7 движение испытуемого АТС должно контролироваться внешним наблюдателем, который информирует водителя о появлении отрывов колес от поверхности дороги. При возникновении отрыва одного из колес от дороги у автомобиля или прицепа (полуприцепа), а также неуверенности водителя в возможности корректировки заноса АТС не допускается дальнейшее увеличение скорости испытательных заездов или увеличение угла поворота рулевого колеса при испытаниях.
- **В.11** Если при проведении испытаний по 5.6 и 5.7 скорость движения должна быть увеличена до отрыва всех колес одной стороны от поверхности дороги, то АТС оборудуют дополнительными страховочными приспособлениями, предохраняющими его от полного бокового опрокидывания.

Приложение Г (обязательное)

Образец технического описания АТС

TEXHIUMECKOE OTINCAHIUE	
транспортного средства	в отношении
устойчивости и управляемости в соответствии с СТБ ГОСТ Р 52302	
Г.1 Общие сведения	
Заводская или торговая марка	
Тип АТС	
Модификация (версия, вариант)	
Категория АТС	
Идентификационный номер (VIN)	
Код ОКП (ТН ВЭД для импортируемых транспортных средств)	
Наименование и адрес изготовителя	
Наименование и адрес заявителя	
Максимальный формат A4 (210 × 297 мм)	

На каждой странице технического описания указывается общее число страниц описания и номер данной страницы.

Г.2 Техническая характеристика

Попомотр	Модификация					
Параметр	1	2	3	4		
Колесная формула и тип привода						
Масса, кг:						
– полная						
– на переднюю ось						
– на заднюю ось			-			
Максимальная технически допустимая масса, заявленная заводом-изготовителем, кг:						
– полная			,			
– на переднюю ось						
– на заднюю ось						
Габаритные размеры, мм:						
– длина						
– ширина	<u> </u>					
– высота						

СТБ ГОСТ Р 52302-2006

		Модифи	кация	
Параметр	1	2	3	4
База, мм				
Колея, мм:				
– передних колес				
– задних колес				
Минимальный радиус поворота, м				
Рулевое управление:				
– передаточное число				
– число оборотов рулевого колеса от				
упора до упора				
– тип рулевого механизма				
– усилитель рулевого управления				
 марка насоса гидроусилителя 				
– производительность насоса				
– диаметр рулевого колеса, мм				
– управляемые колеса				
– углы установки управляемых колес,				
— схождение, мм				
Подвеска: тип, направляющие элемен-				
ты, упругие элементы:				
– передняя				
– задняя				
Стабилизаторы, диаметр, мм				
Амортизаторы, тип				
Шины:				
– размер				
– модель				
Давление в шинах, кПа (кгс/см²):				
– передних колес				
– задних колес				
Статический радиус колеса (передне-				
го/заднего), мм				
Тип кузова Двигатель:				
··				
– расположение и число цилиндров				
– рабочий объем, мощность		1		
Трансмиссия, тип		1		
Модели, на которые распространяется техническое описание				
Дополнительные сведения об объектах				
испытаний (конструктивные особенности)				

Г.3 Графическая информация

Общий вид АТС.

Схема рулевого управления.

Чертеж передней подвески.

Чертеж задней подвески.

Г.4 Описание маркировки АТС

Место расположения и форма знака соответствия.

Место расположения таблички изготовителя.

Место расположения идентификационного номера (кода VIN).

Структура и содержание идентификационного номера (номеров) транспортных средств:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

поз. 1 – 3 – WMI (международный идентификационный код изготовителя);

поз. 4 - 9 -тип ATC;

поз. 10 - код года изготовления;

поз. 11 – код сборочного завода;

поз. 12 – 17 – порядковый номер АТС.

Приложение Д (рекомендуемое)

Протоколы испытаний

Д.1 Усилие на рулевом колесе

	Нормативное		Результат измерения				
	требо	требование		т влево	Поворот вправо		
Условие измерения	Усилие, даН, не более	Время поворота, с, не более	Усилие, даН	Время поворота, с	Усилие, даН	Время поворота, с	
Неподвижный автомобиль		_		_	-	_	
Вход в поворот радиусом 12 м со скоростью 10 км/ч							
Неработающий усилитель: вход в поворот радиусом 20 м со скоростью 10 км/ч							

Вывод: усилие на рулевом колесе соответствует/не соответствует нормативным требованиям (ненужное вычеркнуть).

Д.2 Стабилизация рулевого управления при выходе из круга радиусом 50 м

Показатель			Результат испытания		
		Нормативное требование	Поворот влево	Поворот вправо	
Скорость движения	<i>v</i> , к м/ ч	_			
Угол поворота	начальный	_			
рулевого колеса,°	остаточный	_			
Увеличение угла по вого колеса после ег ния		Отсутствие увеличения угла			
Возврат рулевого колеса в нейтральное положение		Наличие возврата. Допускается один переход рулевого колеса через нейтральное положение при отсутствии колебательного процесса			

Вывод: показатели стабилизации рулевого управления соответствуют/не соответствуют нормативным требованиям (ненужное вычеркнуть).

Д.3 Статическая устойчивость при испытаниях «опрокидывание на стенде»

Показатель	Нормативное требование	Результат испытания
Высота центра масс h, мм	-	
Коэффициент поперечной устойчивости q_{s}	_	
Угол опрокидывания на стенде α,°,		
не менее		
Угол крена подрессоренных масс φ при		
опрокидывании,°, не более		

Вывод: показатели статической устойчивости соответствуют/не соответствуют нормативным требованиям (ненужное вычеркнуть).

Д.4 Устойчивость при испытаниях «рывок руля»

Показатель	Нормативное требование	Результат испытания при установив- шемся боковом ускорении, м/с ²				
		1	2	3		
Скорость, км/ч						
Угол поворота рулевого коле са ,°						
Радиус траектории, м (расчетный параметр)						
Заброс угловой скорости, %						
Время 90 %-ной реакции по угловой скорости, с						

Вывод: показатели при испытании «рывок руля» соответствуют/не соответствуют нормативным требованиям (ненужное вычеркнуть).

Д.5 Управляемость и устойчивость при испытаниях в критических режимах движения

Д.5.1 Испытания при выполнении маневра «поворот $R_n = 35$ м» («поворот $R_n = 25$ м»)

Показатель	Нормативное значение (не менее)	Результат испытания		
Скорость маневра <i>v</i> _м , км/ч				
Максимальный угол поворота рулевого колеса при $v_{\rm M}, \dots^{\circ}$	-			
Чем ограничена <i>v</i> _м				
Заключение о соответствии АТС нормативным требованиям				

Д.5.2 Испытания при выполнении маневра «переставка S_n = 20 м», («переставка S_n = 16 м»)

Показатель	Нормативное значение (не менее)	Результат испытания
Скорость маневра <i>v</i> _м , км/ч		
Максимальный угол поворота рулевого колеса при $v_{\rm M}, \dots$ °	-	
Чем ограничена v _м		
Заключение о соответствии АТС нормативным требованиям		

Вывод: в критических режимах движения показатели управляемости и устойчивости соответствуют/ не соответствуют нормативным требованиям (ненужное вычеркнуть).

Д.6 Управляемость при испытаниях «прямая»

Показатель	Нормативное требование	Результаты испытаний
Средняя угловая скорость корректирующих поворотов рулевого колеса,°/с, не более		

Вывод: управляемость при испытаниях «прямая» соответствует/не соответствует нормативным требованиям (ненужное вычеркнуть)

СТБ ГОСТ Р 52302-2006

Д.7 Управляемость и устойчивость в эксплуатационных режимах движения при испытаниях «пробег»

Дорожные условия, режим движения	Состояние покрытия	Соответствие (несоответствие) показателей рекомен- дованным значениям	Скорость АТС, допустимая для движения при несоответствии показателей рекомендованным значениям, км/ч
Имитация горной дороги			
Движение по прямой:			
равномерное			
– с ускорением			
– при торможении			
Движение на повороте:			
– равномерное			
– с ускорением			
– при торможении			
Смена ряда (полосы) движения:			
- с ускорением			
– при торможении			
Маневрирование в условиях:			
– интенсивного городского движения			
– в ограниченном пространстве			

СТБ ГОСТ Р 52302-2006

Библиография

- [1] ОСТ 37.001.051-86 Управляемость и устойчивость автомобилей. Термины и определения
- [2] СНиП 2.05.02-85 Автомобильные дороги

Ответственный за выпуск <i>В.Л. Гуревич</i>						
Сдано в набор 05.01.2007. Подписано в печать 25.01.2007. Формат бумаги 60×84/8. Бума						
Гарнитура Arial. Печать ризографическая. Усл. печ. л. 4,19 Уч изд. л. 1,57 Тираж	экз. Зак	аз				