Безопасность деревообрабатывающих станков Станки круглопильные

Часть 11

СТАНКИ АВТОМАТИЧЕСКИЕ И ПОЛУАВТОМАТИЧЕСКИЕ ГОРИЗОНТАЛЬНЫЕ ПОПЕРЕЧНО-ОТРЕЗНЫЕ ОДНОПОЛОТНЫЕ (СТАНКИ РАДИАЛЬНО-ОТРЕЗНЫЕ)

Бяспека дрэваапрацоўчых станкоў Станкі круглапільныя Частка 11 СТАНКІ АЎТАМАТЫЧНЫЯ І ПАЎАЎТАМАТЫЧНЫЯ ГАРЫЗАНТАЛЬНЫЯ ПАПЯРОЧНА-АДРАЗНЫЯ АДНАПАЛОТНЫЯ (СТАНКІ РАДЫЯЛЬНА-АДРАЗНЫЯ)

(EN 1870-11:2003, IDT)

Издание официальное

53 12-2007



УДК 674.05-52:621.934.32(083.74)(476)

MKC 79.120.10

KΠ 03

IDT

**Ключевые слова:** станки горизонтальные поперечно-отрезные, станки радиально-отрезные, перечень опасностей, требования безопасности, меры защиты, маркировка

ОКП РБ 29.40.22

#### Предисловие

Цели, основные принципы, положения по государственному регулированию и управлению в области технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом нормировании и стандартизации».

1 ПОДГОТОВЛЕН научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации» (БелГИСС)

ВНЕСЕН Госстандартом Республики Беларусь

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 29 декабря 2007 г. № 67
- 3 Настоящий стандарт идентичен европейскому стандарту EN 1870-11:2003 Safety of woodworking machines Circular sawing machines Part 11: Semi-automatic and automatic horizontal cross-cut sawing machines with one sawing unit (radial arm saws) (Безопасность деревообрабатывающих станков. Станки круглопильные. Часть 11. Станки автоматические и полуавтоматические горизонтальные поперечноотрезные однополотные (станки радиально-отрезные).

В разделе «Нормативные ссылки» и тексте стандарта ссылки на европейские и международные стандарты актуализированы.

Европейский стандарт разработан техническим комитетом по стандартизации CEN/TC 142 «Безопасность деревообрабатывающих станков» Европейского комитета по стандартизации (CEN).

Настоящий стандарт реализует существенные требования безопасности Директивы 98/37/EC «Продукция машиностроения. Безопасность», приведенные в приложении ZA.

Перевод с английского языка (en).

Официальные экземпляры европейского стандарта, на основе которого подготовлен настоящий государственный стандарт, и европейских и международных стандартов, на которые даны ссылки, имеются в Национальном фонде ТНПА.

Сведения о соответствии государственных стандартов ссылочным международному и европейским стандартам приведены в дополнительном приложении Д.А.

Степень соответствия – идентичная (IDT)

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Республики Беларусь

#### Содержание

| Введение                                                                                                                         | IV |
|----------------------------------------------------------------------------------------------------------------------------------|----|
| 1 Область применения                                                                                                             | 1  |
| 2 Нормативные ссылки                                                                                                             | 2  |
| 3 Термины и определения                                                                                                          | 3  |
| 3.1 Общие требования                                                                                                             | 3  |
| 3.2 Определения                                                                                                                  | 3  |
| 4 Перечень опасностей                                                                                                            | 2  |
| 5 Требования и/или меры безопасности                                                                                             | 6  |
| 5.1 Общие положения                                                                                                              | ε  |
| 5.2 Органы управления                                                                                                            | ε  |
| 5.3 Меры защиты от воздействия механических опасностей                                                                           | 10 |
| 5.4 Меры защиты от воздействия немеханических опасностей                                                                         | 16 |
| 6 Информация для потребителя                                                                                                     | 19 |
| 6.1 Предупредительные устройства                                                                                                 | 19 |
| 6.2 Маркировка                                                                                                                   | 19 |
| 6.3 Руководство по эксплуатации                                                                                                  | 20 |
| Приложение А (справочное) Примеры систем управления, связанных с безопасностью, с электронными компонентами                      | 22 |
| Приложение В (обязательное) Измерение биения шпинделей пилы                                                                      |    |
| Приложение С (справочное) Рекомендации по безопасному применению                                                                 | 26 |
| Приложение ZA (справочное) Взаимосвязь европейского стандарта с директивами EC                                                   | 26 |
| Библиография                                                                                                                     | 27 |
| Приложение Д.А (справочное) Сведения о соответствии государственных стандартов ссылочным международному и европейским стандартам | 28 |

#### Введение

EN 1870-11:2003 разработан в соответствии с требованиями директив, а также связанных с ними регламентирующих документов Европейской ассоциации свободной торговли (EFTA).

Как установлено в EN 1070:1998, настоящий стандарт относится к стандартам типа C.

Существует иерархическая структура стандартов в области безопасности:

- а) стандарты типа А (стандарты общетехнических вопросов безопасности), содержащие основные концепции, принципы конструирования и общие аспекты, которые могут быть применены к оборудованию всех видов:
- b) стандарты типа В (стандарты групповых вопросов безопасности), касающиеся одного аспекта безопасности или одного вида оборудования, связанного с безопасностью, которые могут быть применены для оборудования широкого диапазона:
- стандарты типа В1 на специальные аспекты безопасности (например, безопасное расстояние, температура поверхности, шум);
- стандарты типа В2 на специальные устройства, обеспечивающие безопасность (например, двуручные органы управления, блокирующие устройства, регуляторы давления);
- с) стандарты типа С (стандарты безопасности изделий), устанавливающие детальные требования безопасности для отдельных видов изделий или группы однородных изделий, определенных областью применения стандарта.

Рассматриваемые типы станков и объем применяемых опасностей, опасные ситуации и меры защиты указаны в области применения настоящего стандарта.

Требованиями настоящего стандарта руководствуются разработчики, изготовители, поставщики и импортеры горизонтальных поперечно-отрезных автоматических и полуавтоматических станков.

Настоящий стандарт содержит информацию, используемую изготовителем в эксплуатационной документации.

Общие требования безопасности рабочего инструмента приведены в EN 847-1:1997.

EN 1870 под общим заголовком «Безопасность деревообрабатывающих станков. Станки круглопильные» состоит из следующих частей:

- Часть 1. Станки настольные круглопильные
- Часть 2. Станки горизонтальные и вертикальные для обрезки плит
- Часть 3. Станки для торцевания сверху и комбинированные
- Часть 4. Станки многополотные для продольной резки с ручной загрузкой и/или выгрузкой
- Часть 5. Станки комбинированные для циркулярной обработки и торцевания снизу
- Часть 6. Станки лесопильные и комбинированные лесопильные, станки настольные круглопильные с ручной загрузкой и/или выгрузкой
- Часть 7. Станки для распиловки бревен с механической подачей стола и с ручной загрузкой и/или выгрузкой
- Часть 8. Станки обрезные и реечные с механизированным пильным устройством и с ручной загрузкой и/или выгрузкой
- Часть 9. Станки двусторонние усорезные с механической подачей и ручной загрузкой и/или выгрузкой
- Часть 10. Станки автоматические и полуавтоматические отрезные однополотные с подачей пилы вверх
- Часть 11. Станки автоматические и полуавтоматические горизонтальные поперечноотрезные однополотные (станки радиально-отрезные)
  - Часть 12. Станки поперечно-отрезные маятниковые
- Часть 15. Станки многополотные поперечно-отрезные с механической подачей и ручной загрузкой и/или выгрузкой)
  - Часть 16. Станки двухсторонние усорезные для V-образного распила
- Часть 17. Станки горизонтальные для поперечной резки с ручным управлением (станки крулопильные радиально-отрезные с ручным управлением)

#### ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

#### Безопасность деревообрабатывающих станков Станки круглопильные Часть 11

# СТАНКИ АВТОМАТИЧЕСКИЕ И ПОЛУАВТОМАТИЧЕСКИЕ ГОРИЗОНТАЛЬНЫЕ ПОПЕРЕЧНО-ОТРЕЗНЫЕ ОДНОПОЛОТНЫЕ (СТАНКИ РАДИАЛЬНО-ОТРЕЗНЫЕ)

# Бяспека дрэваапрацоўчых станкоў Станкі круглапільныя Частка 11 Станкі аўтаматыцыя і паўаўтаматыці

СТАНКІ АЎТАМАТЫЧНЫЯ І ПАЎАЎТАМАТЫЧНЫЯ ГАРЫЗАНТАЛЬНЫЯ ПАПЯРОЧНА-АДРАЗНЫЯ АДНАПАЛОТНЫЯ (СТАНКІ РАДЫЯЛЬНА-АДРАЗНЫЯ)

Safety of woodworking machines – Circular sawing machines –
Part 11: Semi-automatic and automatic horizontal cross-cut sawing machines
with one sawing unit (radial arm saws)

Дата введения 2008-07-01

#### 1 Область применения

Настоящий стандарт устанавливает требования безопасности, меры по устранению опасностей и/или ограничению рисков при работе на автоматических и полуавтоматических горизонтальных поперечно-отрезных однополотных станках (радиально-отрезных станках) (далее — станки), предназначенных для обработки цельной древесины, древесностружечных и древесноволокнистых плит, фанеры и аналогичных материалов, покрытых пластиковой кромкой и/или ламинированных пластиком или легким сплавом.

Настоящий стандарт распространяется на любые приспособления для позиционирования обрабатываемого изделия, установленные на станке.

Настоящий стандарт содержит все опасности, создаваемые станком, перечень которых приведен в разделе 4.

Настоящий стандарт не распространяется на станки:

- а) с ручной подачей пильного устройства;
- b) для поперечной резки бревен;
- с) специально разработанные для резки или строгания стропильных рам;
- d) оснащенные гидравлическими тормозными системами.

Примечание — Радиально-отрезные станки с ручной подачей пильного устройства (пильное устройство перемещается рукой) рассматриваются в prEN 1870-17 и prEN 61029-2-2.

В настоящем стандарте не приведены опасности для станков с числовым программным управлением (CNC), связанные с электромагнитной совместимостью (EMC).

Примечание — Требования настоящего стандарта распространяются на все станки независимо от способа управления, т. е. электромеханического и/или электронного.

Настоящий стандарт распространяется на станки, технические задания на разработку которых утверждены после даты введения его в действие.

#### 2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных ссылок применяют его последнее издание (включая все изменения).

EN 292-1:1991 Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методика

EN 292-2:1991, EN 292-2/A1:1995 Безопасность машин. Основные понятия, общие принципы конструирования. Часть 2. Технические правила и технические требования (изменение 1)

EN 294:1992 Безопасность машин. Безопасные расстояния для предохранения верхних конечностей от попадания в опасную зону

EN 418:1992 Безопасность машин. Установки аварийного выключения. Функции. Принципы проектирования

EN 574:1996 Безопасность машин. Устройство управления двуручное. Функциональные аспекты. Принципы конструирования

EN 847-1:1997 Инструмент деревообрабатывающий. Требования безопасности. Часть 1. Инструменты для обработки фрезерованием и резанием, полотна дисковой пилы

EN 954-1:1996 Безопасность машин. Элементы безопасности систем управления. Часть 1. Общие принципы конструирования

EN 982:1996 Безопасность оборудования. Требования безопасности к гидравлическим и пневматическим системам и их компонентам. Гидравлика

EN 983:1996 Безопасность оборудования. Требования безопасности к гидравлическим и пневматическим системам и их компонентам. Пневматика

EN 1037:1995 Безопасность машин. Предотвращение неожиданного пуска

EN 1070:1998 Безопасность оборудования. Термины и определения

EN 1088:1995 Безопасность машин. Блокировочные устройства, связанные с защитными устройствами. Принципы конструирования и выбора

EN 1760-1:1997 Безопасность машин. Защитные устройства, реагирующие на давление. Часть 1. Основные принципы конструирования и испытаний ковриков и полов, реагирующих на давление

EN 1760-2:2001 Безопасность машин. Защитные устройства, реагирующие на давление. Часть 2. Общие принципы конструирования и испытаний ребер и стоек, реагирующих на давление

EN 60204-1:1992 Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования

EN 60529:1991 Степени защиты, обеспечиваемые оболочками (IP-код)

EN 60825-1:1994 + A11:1996 + A2:2001 Безопасность лазерных устройств. Часть 1. Классификация оборудования, требования и руководство по эксплуатации

EN 60947-4-1:1992 Аппаратура распределения и управления низковольтная. Часть 4. Контакторы и стартеры двигателей. Раздел 1. Электромеханические контакторы и стартеры двигателей

EN 60947-5-1:1997 Аппаратура распределения и управления низковольтная. Часть 5-1. Аппараты и коммутационные элементы цепей управления. Электромеханические аппараты для цепей управления

prEN 61496-2:1997 Безопасность машин. Электрочувствительные защитные устройства. Часть 2. Дополнительные требования к устройствам, использующим активные оптоэлектронные защитные приборы (AOPD)

EN ISO 3743-1:1995 Акустика. Определение уровней звуковой мощности источников шума. Технические методы для малых переносных источников в реверберационных полях. Часть 1. Метод сравнения для испытательных помещений с жесткими стенами

EN ISO 3743-2:1996 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технические методы для малых переносных источников в реверберационных полях. Часть 2. Методы для специальных реверберационных камер

EN ISO 3744:1995 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технический метод в существенно свободном звуковом поле над звукоотражающей плоскостью

EN ISO 3746:1995 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Ориентировочный метод с использованием измерительной поверхности над звукоотражающей плоскостью

EN ISO 4871:1996 Акустика. Декларация и верификация значений шумовых характеристик машин и оборудования

EN ISO 9614-1:1995 Акустика. Определение уровней звуковой мощности источников шума по интенсивности звука. Часть 1. Измерение в дискретных точках

EN ISO 11202:1995 Акустика. Шум, излучаемый машинами и оборудованием. Измерение уровней звукового давления излучения на рабочем месте и в других установленных точках. Контрольный метод измерения на месте

EN ISO 11204:1995 Акустика. Шум, издаваемый машинами и оборудованием. Измерение уровней звукового давления на рабочем месте и в других установленных точках. Метод, требующий поправок на внешние воздействующие факторы

EN ISO 11688-1:1998 Акустика. Практические рекомендации для проектирования машин и оборудования с низким уровнем шума. Часть 1. Планирование

ISO 3745:1977 Акустика. Определение уровней звуковой мощности источников шума. Точные методы для заглушенных и полузаглушенных камер

ISO 7960:1995 Шум, распространяющийся по воздуху при работе станков. Условия эксплуатации деревообрабатывающих станков

HD 21.1 S3:1997 Кабели с поливинилхлоридной изоляцией и номинальным напряжением до 450/750 В включительно. Часть 1. Общие требования

HD 22.1 S3:1997 Кабели с резиновой изоляцией и номинальным напряжением до 450/750 В включительно. Часть 1. Общие требования

HD 22.4 S3:1995 + A1:1999 Кабели с резиновой изоляцией и номинальным напряжением до 450/750 В включительно. Часть 4. Провода и гибкие кабели.

#### 3 Термины и определения

#### 3.1 Общие требования

В настоящем стандарте применяют определения, установленные в EN 1070:1998, со следующими дополнениями, приведенными в подразделе 3.2.

#### 3.2 Определения

- **3.2.1 поперечная распиловка** (cross-cutting): Процесс разрезания древесины поперек волокон обрабатываемого изделия.
- 3.2.2 станок автоматический и полуавтоматический горизонтальный поперечно-отрезной однополотный (станок радиально-отрезной) (semi-automatic and automatic horizontal cutting sawing machine with one saw unit (radial arm saw): Станок, оснащенный пильным устройством на консоли с механической подачей и горизонтальным движением по прямой линии вперед во время рабочего хода и назад при возвращении в исходное положение. Консоль может вращаться относительно оси вертикальной стойки (поворачиваться), а пильное устройство может наклоняться относительно горизонтальной оси консоли (см. рисунок 1).

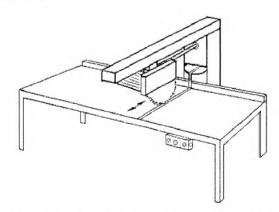



Рисунок 1 – Пример горизонтального поперечно-отрезного станка (полуавтомата)

**3.2.3 станок полуавтоматический поперечно-отрезной** (semi-automatic cross-cut sawing machine): Станок, оснащенный пильным устройством с механической подачей, включаемой вручную.

Обрабатываемое изделие позиционируется вручную или с помощью механизма позиционирования для распиливания в длину.

- **3.2.4 станок автоматический поперечно-отрезной** (automatic cross-cut sawing machine): Станок, оснащенный пильным устройством с механической подачей. Загрузка и выгрузка обрабатываемого изделия осуществляются вручную, изделие автоматически позиционируется для распиливания на предварительно выбранных длинах и включается механическая подача пильного устройства.
- **3.2.5 привод станка** (machine actuator): Устройство, с помощью которого станок приводится в действие.
- **3.2.6 механическая подача радиально-отрезного станка** (integrated feed on radial arm saws): Подача пилы и обрабатываемого изделия при помощи встроенного в станок устройства, которое удерживает и направляет обрабатываемое изделие и пильное устройство вместе с пилой и автоматически управляет циклом обработки.
- **3.2.7 стационарный станок** (stationary machine): Станок, установленный и закрепленный на полу или на других частях конструкций помещения, который остается неподвижным во время эксплуатации.
- **3.2.8 передвижной станок** (transportable machine): Станок, который установлен на полу, остается неподвижным во время эксплуатации и оснащен устройством (обычно колесами), с помощью которого он может перемещаться от одного места расположения к другому.
- **3.2.9 режущая часть дисковой пилы** (cutting area of the saw-blade): Часть пилы, которая может быть задействована в процессе резания.
- **3.2.10 нережущая часть дисковой пилы** (non-cutting area of the saw-blade): Часть пилы, которая не задействована в процессе резания.
- 3.2.11 зона резания полуавтоматического и автоматического радиально-отрезного станка (cutting area of a semi-automatic and automatic radial arm saw): Пространство перед ограждением, определенное всеми возможными положениями дисковой пилы максимального диаметра, для которого предназначен станок, с учетом возможных наклонов или поворотов пильного устройства для угловой распиловки, максимального рабочего хода и глубины резания.
- **3.2.12 время разгона** (run-up time): Время от приведения в действие органа управления пуском станка до достижения шпинделем заданной частоты вращения.
- **3.2.13** время выбега без торможения (unbraked run-down time): Время от приведения в действие органа управления остановом без включения механизма торможения (если имеется) до полной остановки шпинделя.
- **3.2.14 время выбега с торможением** (braked run-down time): Время от приведения в действие органа управления остановом с включением механизма торможения до полной остановки шпинделя пилы.
- 3.2.15 ручная загрузка станков с механической подачей (manual loading of power fed machines): Операция, при которой оператор подает обрабатываемое изделие непосредственно в место загрузки станка с механической подачей, например к вращающимся подающим роликам, подвижному столу, передвигающейся вперед-назад каретке, т. е. не предусмотрено промежуточное загрузочное устройство для принятия и перемещения обрабатываемого изделия от оператора до места загрузки станка с механической подачей.
- **3.2.16 ручная выгрузка станков с механической подачей** (manual unloading of power fed machines): Операция, при которой снятие обрабатываемого изделия осуществляется оператором непосредственно из места выгрузки станка, т. е. не предусмотрено промежуточное разгрузочное устройство для принятия и передачи обрабатываемого изделия от станка к оператору.
- **3.2.17 декларация соответствия** (confirmation): Документ, в котором изготовитель (или поставщик) либо указывает характеристики станка, либо подтверждает соответствие станка соответствующему стандарту.

#### 4 Перечень опасностей

Настоящий стандарт содержит перечень опасностей, относящихся к станкам, указанным в области применения:

- существенные опасности рассматриваются при определении требований и/или мер безопасности или через ссылку на соответствующие стандарты типа В;
- опасности, не являющиеся существенными, например общие, незначительные или вторичные, рассматриваются через ссылку на стандарты типов А или В, преимущественно EN 292-1:1991 и EN 292-2:1991/A1:1995.

Перечень опасностей в таблице 1 приведен согласно EN 292-1:1991 (раздел 4).

Таблица 1 – Перечень опасностей

| Порядковый<br>номер | Опасность                                                                                                 | Соответствующие<br>пункты настоящего<br>стандарта |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1                   | Механические опасности, обусловленные:                                                                    |                                                   |
|                     | <ul><li>формой;</li></ul>                                                                                 |                                                   |
|                     | <ul> <li>относительным положением;</li> </ul>                                                             |                                                   |
|                     | <ul> <li>массой и устойчивостью (потенциальной энергией эле-</li> </ul>                                   |                                                   |
|                     | ментов);                                                                                                  |                                                   |
|                     | <ul> <li>массой и скоростью (кинетической энергией элементов);</li> </ul>                                 |                                                   |
|                     | <ul> <li>недостаточной механической прочностью;</li> </ul>                                                |                                                   |
|                     | – потенциальной энергией упругих элементов (пружин),                                                      |                                                   |
|                     | жидкостей или газов, находящихся под давлением, в вакууме                                                 |                                                   |
| 1.1                 | Опасность раздавливания                                                                                   | 5.3.7, 5.3.8                                      |
| 1.2                 | Опасность пореза                                                                                          | 5.3.7, 5.3.8                                      |
| 1.3                 | Опасность отрезания или разрубания                                                                        | 5.3.2, 5.3.3, 5.3.4, 5.3.7                        |
| 1.4                 | Опасность наматывания                                                                                     | 5.3.7                                             |
| 1.5                 | Опасность затягивания или захвата                                                                         | 5.3.7                                             |
| 1.6                 | Опасность попадания под удар                                                                              | 5.3.7.3, 5.3.7.4                                  |
| 1.8                 | Опасность повреждения наружных тканей под воздействи-                                                     | 5.3.4                                             |
|                     | ем трения                                                                                                 |                                                   |
| 1.9                 | Опасность травмирования выбросом жидкости под высо-                                                       | 5.3.4, 5.3.8, 5.4.6, 5.4.7,                       |
|                     | ким давлением                                                                                             | 5.4.13, 6.3                                       |
| 1.10                | Выбрасывание частей (станка, обрабатываемых материа-                                                      | 5.2.3, 5.2.6, 5.3.2, 5.3.3,                       |
|                     | лов или изделий)                                                                                          | 5.3.5, 5.3.6, 5.3.8                               |
| 1.1 <u>1</u>        | Потеря устойчивости станка и его частей                                                                   | 5.3.1                                             |
| 2                   | Электрические опасности, обусловленные:                                                                   |                                                   |
| 2.1                 | – электрическим контактом (прямым или косвенным);                                                         | 5.4.4, 5.4.12, 5.4.13                             |
| 2.2                 | <ul><li>– электростатическим явлением;</li></ul>                                                          | 5.4.10                                            |
| 2.4                 | <ul> <li>внешними воздействиями на электрооборудование</li> </ul>                                         | 5. <u>4.4,</u> 5.4.8                              |
| 4                   | Опасности от шума, приводящие:                                                                            |                                                   |
| 4.1                 | – к нарушениям речевой коммуникации, ухудшению вос-                                                       | 5.4.2                                             |
|                     | приятия звуковых сигналов и др.;                                                                          | 5.4.0                                             |
| 4.2                 | – к потере слуха (глухоте) или другим физиологическим                                                     | 5.4.2                                             |
|                     | расстройствам (например, потере равновесия, снижению                                                      |                                                   |
|                     | внимания)                                                                                                 |                                                   |
| 6                   | Опасности от излучений, особенно вызванные:                                                               | 5.4.0                                             |
| 6.2                 | – лазерным оборудованием                                                                                  | 5.4.9                                             |
| 7                   | Опасности от воздействия материалов и веществ, приме-                                                     |                                                   |
| 7.4                 | няемых или отработанных в станке:                                                                         | 5.4.3, 6.3                                        |
| 7.1                 | – опасность от контакта или вдыхания вредных жидкостей,                                                   | 5.4.5, 6.5                                        |
| 7.0                 | испарений, паров и пыли;                                                                                  | 5.4.1, 5.4.3                                      |
| 7.2<br>8            | – опасность возникновения пожара                                                                          | 5.4.1, 5.4.5                                      |
| ō                   | Опасности, возникающие из-за несоблюдения эргономи-                                                       |                                                   |
|                     | ческих принципов в конструкции станка (несоответствие па-                                                 |                                                   |
| 8.1                 | раметров станка антропометрическим размерам), например: — формирование неправильной осанки или чрезмерное | 5.2.2, 5.4.5, 6.3                                 |
| 0.1                 | физическое напряжение тела;                                                                               | 0.2.2, 0.4.0, 0.0                                 |
| 8.2                 | — недостаточный учет антропометрических размеров (от-                                                     | 5.2.2, 5.4.5, 6.3                                 |
| 0.2                 | - недостаточный учет антропометрических размеров (от-<br>носительно кисти/руки и стопы/ноги);             | 0.2.2, 0.7.0, 0.0                                 |
| 8.3                 | неправильное использование средств индивидуальной защиты                                                  | 6.3                                               |
| 8.4                 | неправильное использование средств <u>индивидуальной защиты</u> недостаточное освещение;                  | 6.3                                               |
|                     | l ''                                                                                                      |                                                   |
| 8.6                 | <ul> <li>– ошибки персонала</li> </ul>                                                                    | 6.3                                               |

#### СТБ EN 1870-11-2007

#### Окончание таблицы 1

| Порядковый<br>номер | Опасность                                                                                                                                | Соответствующие<br>пункты настоящего<br>стандарта |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 9                   | Комбинация опасностей                                                                                                                    | 5.2.3, 5.2.6, 5.2.7, 5.2.8,                       |
| 10                  | Опасности от неисправностей в энергоснабжении, обу-                                                                                      | 5.3.7.4, 5.4.3, 5.4.4                             |
| 10                  | Опасности от неисправностей в энергоснаожений, обу-<br>словленные выпадающими частями станка и другими функ-<br>циональными неполадками: |                                                   |
| 10.1                | прерыванием энергоснабжения (электрической цепи и/или цепи управления);                                                                  | 5.2.8, 5.2.9, 5.3.4, 5.4.6, 5.4.7                 |
| 10.2                | <ul> <li>неожиданным выбросом частей станка или жидкостей;</li> </ul>                                                                    | 5.2.6, 5.4.6, 5.4.7, 5.4.12                       |
| 10.3                | – прерыванием, отказами в системе управления (неожи-                                                                                     | 5.2.8, 5.2.9, 5.3.3.1                             |
|                     | данный пуск или останов);                                                                                                                |                                                   |
| 10.4                | – ошибками монтажа;                                                                                                                      | 5.3.3, 5.4.11, 6.1, 6.3                           |
| 10.5                | – опрокидыванием станка, непредвиденной потерей ус-                                                                                      | 5.3.1                                             |
|                     | тойчивости                                                                                                                               |                                                   |
| 11                  | Опасности, возникающие из-за (временного) отсутствия                                                                                     |                                                   |
|                     | и/или неправильного расположения средств безопасности,                                                                                   |                                                   |
|                     | например:                                                                                                                                |                                                   |
| 11.1                | – всех видов ограждений;                                                                                                                 | 5.3.7                                             |
| 11.2                | – всех видов предохранительных (защитных) устройств;                                                                                     | 5.2.1, 5.3.7                                      |
| 11.3                | – устройств пуска и останова;                                                                                                            | 5.2.2, 5.2.3, 5.2.4, 5.2.5                        |
| 11.4                | – предупреждающих знаков и сигналов;                                                                                                     | 6.1, 6.2                                          |
| 11.5                | <ul> <li>всех видов информационных и предупредительных устройств;</li> </ul>                                                             | 6.2, 6.3                                          |
| 11.6                | <ul> <li>устройств, отключающих энергообеспечение;</li> </ul>                                                                            | 5.4.6, 5.4.7, 5.4.12                              |
| 11.7                | – аварийных устройств;                                                                                                                   | 5.2.5                                             |
| 11.8                | – устройств загрузки/выгрузки обрабатываемых изделий;                                                                                    | 5.3.6, 5.3.7.3, 5.3.7.4                           |
| 11.9                | – необходимого оборудования и принадлежностей для                                                                                        | 5.4.13                                            |
|                     | безопасного регулирования и/или технического обслужива-                                                                                  |                                                   |
| 1440                | ния;                                                                                                                                     | 542.02                                            |
| 11.10               | – устройств отвода газов и др.                                                                                                           | 5.4.3, 6.3                                        |

#### 5 Требования и/или меры безопасности

#### 5.1 Общие положения

Станок должен соответствовать требованиям безопасности и/или мерам защиты, приведенным в настоящем разделе. Кроме того, конструкция станка должна соответствовать принципам, изложенным в EN 292-1:1991 (разделы 5, 6) для относительно несущественных опасностей, которые не рассматриваются в настоящем стандарте (например, острых кромок).

Указания по уменьшению степени риска при конструировании приведены в EN 292-2:1991/A1:1995 (раздел 3), по мерам защиты – в EN 292-2:1991/A1:1995 (раздел 4).

#### 5.2 Органы управления

#### 5.2.1 Безопасность и надежность систем управления

Рассматриваемые в настоящем стандарте элементы безопасности системы управления представляют собой систему для включения привода или позиционного датчика от точки принятия входного сигнала до завершения работы конечного привода или элемента, например двигателя. В системы управления, связанные с безопасностью станков, включены:

- пуск (5.2.3);
- обычный останов (5.2.4);
- аварийный останов (5.2.5);
- подвижные защитные ограждения с блокировкой (5.2.3, 5.3.7);
- подвижные защитные ограждения с блокировкой и фиксацией (5.2.3 и 5.3.7);
- блокировка рабочего хода вращающейся пилы и зажима обрабатываемого изделия (5.2.3);

- на автоматических станках блокировка механизированного позиционирования обрабатываемого изделия и рабочего хода (5.2.6);
  - выбор режима (5.2.7);
  - приведение в действие системы торможения (5.2.4, 5.2.5 и 5.3.4);
  - двуручное устройство управления (5.2.3 и 5.3.7);
- на полуавтоматических станках блокировка самозамыкающихся автоматически управляемых защитных ограждений с установкой пильного устройства (5.3.7.1);
  - активные оптоэлектронные защитные устройства (световые барьеры) (5.3.7.3);
  - коврики, реагирующие на давление (5.3.7.3);
  - механические размыкающие устройства (размыкающая планка) (5.3.7.3);
  - зажим обрабатываемого изделия (5.3.8).

Если в настоящем стандарте не оговорены иные требования, системы управления должны соответствовать категории 1 по EN 954-1:1996.

В настоящем стандарте «испытанные компоненты и принципы» означает:

- а) для электрических компонентов что они выполнены в соответствии со стандартами:
- i) EN 60947-5-1:1997 (раздел 3) для управляемых переключателей с принудительным отключением, используемых как механически переключаемые позиционные датчики для защитных ограждений с блокировкой и для реле во вспомогательных электрических цепях:
- ii) EN 60947-4-1:1992 для электромеханических контакторов и пускателей двигателей, используемых в главных электрических цепях;
  - ііі) HD 22.1.S3:1997 для кабелей с резиновой изоляцией:
- iv) HD 21.1.S3:1997 для кабелей с поливинилхлоридной изоляцией, если эти кабели имеют дополнительную защиту от механических повреждений при установке (внутри станин);
- b) для электрических принципов что они соответствуют первым четырем мерам, перечисленным в EN 60204-1:1992 (пункт 9.4.2.1). Электрические цепи должны быть либо с жестким аппаратным управлением, либо, если используются электрические компоненты в испытанных системах управления, связанных с безопасностью, соответствовать EN 60204-1:1992 (пункт 9.4.2.2 резервирование с встречным мониторингом, пункт 9.4.2.3 применение разнесения);
- с) для механических компонентов что они работают в режиме принудительного включения по EN 292-2:1991/A1:1995 (пункт 3.5);
- d) для механически переключаемых позиционных датчиков защитных ограждений что они принудительно приводятся в действие, а их расположение и крепление, а также конструкция и установка кулачка выполнены по EN 1088:1995 (подразделы 5.2, 5.3);
  - е) для блокировочных устройств с фиксацией закрывания что они соответствуют:
- i) как минимум блокировочному устройству с фиксацией закрывания ручным механизмом временной задержки по EN 1088:1995 (приложение N), если время выбега шпинделя пилы менее 10 с;
- ii) блокировочному устройству с фиксатором, работающим от пружины или при выключении энергии, по EN 1088:1995 (приложение M) во всех остальных случаях;
- f) для пневматических и гидравлических компонентов и систем что они соответствуют EN 983:1996 и EN 982:1996.
- g) для двуручных устройств управления что они соответствуют как минимум типу III В по EN 574:1996;
- h) для ковриков, реагирующих на давление, что они соответствуют как минимум типу 2 по EN 1760-1:1997 и испытаны вместе с соединенными цепями управления при каждом пуске станка;
- i) для активных оптоэлектронных защитных устройств (светового луча) что они соответствуют как минимум типу 2 по prEN 61496-2:1997 и испытаны вместе с соединенными цепями управления при каждом пуске станка;
- j) механические прижимные устройства (прижимные планки) что они соответствуют как минимум типу 2 по EN 1760-2:2001 и испытаны вместе с соединенными цепями управления при каждом пуске станка.

Реле времени, применяемые в цепях жесткого аппаратного управления, связанного с безопасностью, могут быть категории В по EN 954-1:1996, если реле времени рассчитано не менее чем на миллион срабатываний.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр станка. Для электрических компонентов – проверка наличия декларации от изготовителя компонентов, подтверждающей их соответствие стандартам.

#### 5.2.2 Расположение органов управления

#### 5.2.2.1 Полуавтоматические станки

Основные электрические органы управления пуском и обычным остановом привода шпинделя пилы должны быть расположены рядом на одной из следующих частей станка:

- а) ниже опоры обрабатываемого изделия:
- b) на пульте управления:
  - і) позади и выше ограждения;
  - іі) по горизонтали в пределах 850 мм от переднего края опоры обрабатываемого изделия;
  - ііі) на высоте не более 1600 мм от уровня пола.

Двуручный орган управления рабочим ходом (см. 5.2.3) должен быть расположен:

- с) на передней панели станка в пределах 1,0 м от линии резания, если она расположена под углом 90° к ограждению;
  - d) ниже опоры обрабатываемого изделия;
  - е) на высоте не менее 750 мм от уровня пола.

Если орган управления зажимом обрабатываемого изделия расположен отдельно от двуручного устройства управления, то он должен находиться в пределах 400 мм по горизонтали относительно двуручного устройства управления.

Расположение аварийного останова - см. 5.2.5.

Контроль. Проверка соответствующих чертежей, измерение и осмотр станка.

#### 5.2.2.2 Автоматические станки

Основные электрические органы управления пуском и обычным остановом привода шпинделя пилы, механизмом позиционирования обрабатываемого изделия должны быть расположены рядом на одной из следующих частей станка:

- а) ниже опоры обрабатываемого изделия;
- b) на пульте управления:
  - і) позади и выше ограждения;
  - іі) по горизонтали в пределах 850 мм от переднего края опоры обрабатываемого изделия;
  - ііі) на высоте не более 1600 мм от уровня пола.

Расположение аварийного останова - см. 5.2.5.

Контроль. Проверка соответствующих чертежей, измерение и осмотр станка.

#### 5.2.3 Пуск

Перед пуском или повторным пуском станка все защитные устройства должны быть установлены и работоспособны. Это обеспечивается путем расстановки блокировочных устройств по 5.3.7. Пуск и повторный пуск должны происходить только при включении устройства управления пуском, предназначенного для этих целей.

На полуавтоматических и автоматических станках рабочий ход должен начинаться только после включения вращения дисковой пилы и устройства зажима обрабатываемого изделия.

В полуавтоматических станках управление рабочим ходом пильного устройства должно обеспечиваться двуручным устройством управления как минимум типа III В по EN 574:1996.

Все повторно включаемые органы управления должны располагаться вне защищенных зон и быть недоступными, если они находятся в защищенной зоне.

Электрический пуск станков – см. EN 60204-1:1992 (пункт 9.2.5.2). Приведенные в EN 60204-1:1992 (пункт 9.2.4) случаи не применяются.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.4 Обычный останов

Станок должен быть оснащен системой управления остановом, которая отключает подачу энергии ко всем приводам станка и приводит в действие тормоз (если имеется).

Орган управления остановом должен соответствовать категории 1 по EN 60204-1:1992 (пункт 9.2.2). Последовательность останова должна быть следующей:

- а) включение обратного хода пильного устройства;
- b) выключение устройства зажима обрабатываемого изделия:
- с) отключение подачи энергии к двигателю привода шпинделя пилы и приведение в действие тормоза (если установлен);

d) выключение тормоза после полного завершения процесса торможения (если установлен электрический тормоз).

Последовательность останова должна быть обеспечена цепями управления. При использовании реле времени время задержки должно быть не меньше максимального времени выбега. Время задержки должно быть постоянным, или регулятор реле времени должен быть опломбирован.

Отдельный орган управления остановом, как в 5.2.4, не требуется, если станок оснащен устройством аварийного останова, которое может выполнять эту же функцию. В этом случае должен быть предотвращен автоматический или непреднамеренный повторный пуск (см. EN 60204-1:1992, пункт 7.5).

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.5 Аварийный останов

Применяют требования EN 418:1992 со следующими дополнениями.

Станок должен быть оснащен системой аварийного управления, которая должна соответствовать EN 60204-1:1992 (пункты 9.2.5.4, 10.7). Требования по EN 60204-1:1992 (пункт 10.7.5) не применяют.

В зависимости от размера станка аварийный(ые) останов(ы) должен(ы) быть расположен(ы):

- а) в пределах 1,0 м от места загрузки;
- b) в пределах 1,0 м от места выгрузки;
- с) на основном пульте управления;
- d) в пределах 500 мм от двуручного устройства управления (если установлено);
- е) в пределах 3,0 м от пильного устройства.

Примечание — Устройство аварийного останова может быть расположено отдельно для выполнения более чем одного из этих требований.

При приведении в действие устройства аварийного останова должна отключаться подача энергии ко всем приводам станка и приводиться в действие тормоз (если установлен).

Орган управления аварийным остановом должен быть категории 1 по EN 60204-1:1992 (пункт 9.2.2). Последовательность останова должна быть следующей:

- а) включение обратного хода пильного устройства;
- b) выключение устройства зажима обрабатываемого изделия;
- с) отключение подачи энергии к двигателю привода шпинделя пилы и приведение в действие тормоза (если установлен);
- d) выключение тормоза после полного завершения процесса торможения (если установлен электрический тормоз).

Последовательность останова должна быть обеспечена цепями управления. При использовании реле времени время задержки должно быть не меньше максимального времени выбега. Время задержки должно быть постоянным, или регулятор реле времени должен быть опломбирован.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, измерение, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.6 Механическая подача

Механическая подача устройства позиционирования обрабатываемого изделия должна функционировать только тогда, когда пильное устройство находится в исходном положении.

Механическая подача пильного устройства – согласно 5.2.3.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.7 Орган выбора режима

У станков, предназначенных для функционирования как в полуавтоматическом, так и автоматическом режимах, должен быть предусмотрен орган выбора режима. Все требования для каждого типа станка должны выполняться при эксплуатации в соответствующем режиме.

Орган выбора режима должен соответствовать следующим требованиям:

- а) он должен доминировать над всеми другими органами системы управления станка, за исключением аварийного останова;
  - b) он должен быть блокируемым, например при помощи запирания на ключ:
  - с) переключение режима не должно вызывать никакого движения станка.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.8 Неисправности в энергоснабжении

В станках с электрическим приводом в случае прерывания напряжения питания должен быть исключен повторный автоматический пуск станка после восстановления напряжения питания по EN 60204-1:1992 (пункт 7.5, абзацы 1 и 3).

В случае падения пневматического или гидравлического давления зажим обрабатываемого изделия должен быть сохранен до окончания хода дисковой пилы. Для соблюдения этих требований используются обратные клапаны, которые должны быть установлены в рабочих цилиндрах.

После восстановления пневматической или гидравлической энергии должен быть исключен повторный автоматический пуск станка.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.2.9 Неисправности в схеме управления

Применяют требования EN 1037:1995 со следующими дополнениями.

Цепи управления должны быть сконструированы так, чтобы прерывание любой цепи (например, обрыв провода, разрыв трубопровода или рукава) не приводило к потере функции безопасности, например непреднамеренному пуску станка или ослаблению зажима обрабатываемого изделия (см. EN 60204-1:1992, EN 982:1996 и EN 983:1996).

Остальные требования приведены в 5.2.1.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.3 Меры защиты от воздействия механических опасностей

#### 5.3.1 Устойчивость

Следует крепить стационарные станки к надежной устойчивой конструкции, например к полу. Крепление осуществляется через крепежные отверстия в станине станка (см. 6.3).

Передвижные станки, имеющие колеса, должны иметь приспособления для обеспечения устойчивости во время распиловки. Такими приспособлениями могут быть, например:

- а) тормоза для колес;
- b) комбинация колес и стабилизаторов;
- с) устройство для отвода колес от пола.

Примечание — Требования для испытаний на устойчивость передвижных станков с колесами как при перемещении, так и при эксплуатации будут пересмотрены.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.3.2 Риск разрушения в процессе эксплуатации

Защитные ограждения для дисковой пилы должны быть изготовлены из следующих материалов:

- а) стали с пределом прочности при растяжении не менее 350 H/мм² и толщиной стенок не менее 1,5 мм;
  - b) легких сплавов со свойствами в соответствии с таблицей 2:

Таблица 2 – Толщина стенок и предел прочности при растяжении защитных ограждений дисковой пилы из легких сплавов

| Минимальный предел прочности<br>при растяжении, Н/мм <sup>2</sup> | Минимальная толщина, мм |
|-------------------------------------------------------------------|-------------------------|
| 180                                                               | 5                       |
| 240                                                               | 4                       |
| 300                                                               | 3                       |

с) поликарбоната с минимальной толщиной стенок 3 мм или пластмасс с другой толщиной стенок, которые обладают равной или более высокой, чем у поликарбоната с толщиной стенок 3 мм, ударной прочностью;

d) чугуна с пределом прочности при растяжении не менее 200 Н/мм² и толщиной стенок не менее 5 мм. Контроль. Проверка соответствующих чертежей, измерение, осмотр на станке и декларация соответствия изготовителя материала для предела прочности при растяжении.

#### 5.3.3 Конструкция держателя инструмента и инструмент

Применяют требования EN 847-1:1997 со следующими дополнениями.

#### 5.3.3.1 Блокировка шпинделя

Для замены пилы необходимо, чтобы шпиндель был неподвижным, для этого он должен удерживаться, например, при помощи гаечного ключа или встроенного стопорного штифта, вставляемого в шпиндель. Стопорный штифт должен иметь минимальный диаметр 8 мм и должен быть изготовлен из стали с пределом прочности при растяжении не менее 350 Н/мм<sup>2</sup>.

Стопорные штифты должны предотвращать вращение шпинделя в случае непреднамеренного включения двигателя.

**Контроль.** Проверка соответствующих чертежей, осмотр, измерение, декларация соответствия изготовителя стопорного штифта и проведение соответствующего функционального испытания станка. Альтернативная проверка для станков со стопорным штифтом: после включения привода шпинделя со вставленным стопорным штифтом шпиндель не должен вращаться.

#### 5.3.3.2 Устройство крепления пилы

Пилы должны иметь фланцы (либо, в случае асимметричного крепления пилы, фланец).

Диаметр обоих фланцев (или фланца для асимметричного крепления) для пил диаметром не более 450 мм должен составлять не менее D/4 (где D – диаметр наибольшей пилы, для которой разработан станок).

Диаметр фланцев для пил диаметром более 450 мм должен составлять не менее *D*/6, но не менее 115 мм.

Для фланцев, отличных от предназначенных для асимметричного крепления пилы, зажимная поверхность наружной части фланца должна быть шириной не менее 5 мм с поднутрением к центру (см. рисунок 2).

Если применяются два фланца, оба наружных диаметра должны быть в пределах допуска ± 1 мм. Необходимо принять меры предосторожности, чтобы избежать отсоединения пилы во время пуска, вращения, выбега или торможения, например при помощи принудительного соединения шпинделя с пилой или переднего фланца со шпинделем.

Шпиндели пил должны быть изготовлены в соответствии с допусками, указанными в приложении В. **Контроль.** Проверка соответствующих чертежей, измерение и осмотр станка.

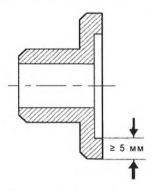



Рисунок 2 - Фланец пилы

#### 5.3.4 Торможение

#### 5.3.4.1 Полуавтоматические станки

Автоматический тормоз шпинделя пилы должен быть предусмотрен, если время выбега без торможения превышает 10 с. Время выбега с торможением должно быть менее 10 с или, если время разгона превышает 10 с, не должно быть более 30 с.

Не допускается противотоковое торможение электрическим тормозом (если установлен).

**Контроль.** Измерение времени разгона, времени выбега с торможением и без торможения (см. соответствующие испытания, приведенные в 5.3.4.4).

#### 5.3.4.2 Автоматические станки

Автоматический тормоз для шпинделя пилы должен быть предусмотрен, если время выбега без торможения превышает 40 с.

Время выбега с торможением должно быть менее 40 с.

Не допускается противотоковое торможение электрическим тормозом (если установлен).

**Контроль.** Измерение времени разгона, времени выбега с торможением и без торможения (см. соответствующие испытания, приведенные в 5.3.4.4).

#### 5.3.4.3 Условия проведения испытаний

- а) испытания должны проводиться с самой большой по размерам пилой (по диаметру и толщине), для которой предназначен станок;
  - b) перед началом испытания шпиндель пилы должен работать не менее 15 мин на холостом ходу;
- с) следует убедиться, что действительная частота вращения шпинделя пилы находится в пределах 10 % от заданной частоты вращения;
- d) при испытании станка с использованием ручного переключателя по схеме звезда/треугольник необходимо следовать указаниям, изложенным в руководстве по эксплуатации;
- е) приборы для измерения частоты вращения должны иметь точность не менее ± 1 % от конечного значения на шкале измерений;
  - f) приборы для измерения времени должны иметь точность не менее ± 0.1 с.

#### 5.3.4.4 Испытания

#### **5.3.4.4.1** Время разгона

Время разгона должно измеряться следующим образом:

- а) включить двигатель привода шпинделя пилы и измерить время разгона (3.2.12);
- b) отключить двигатель привода шпинделя пилы до его полной остановки;
- с) повторить действия а) и b) два раза.

Время разгона шпинделя пилы определяется как среднеарифметическое трех произведенных измерений.

#### 5.3.4.4.2 Время выбега без торможения

Время выбега без торможения должно измеряться следующим образом:

- а) включить двигатель привода шпинделя пилы и дать поработать с заданной частотой вращения (без нагрузки) в течение 1 мин;
  - b) отключить двигатель привода шпинделя пилы и измерить время выбега без торможения;
  - с) повторить действия а) и b) два раза.

Время выбега без торможения определяется как среднеарифметическое трех произведенных измерений.

#### 5.3.4.4.3 Время выбега с торможением

Время выбега с торможением должно измеряться следующим образом:

- а) включить двигатель привода шпинделя пилы и дать поработать с заданной частотой вращения (без нагрузки) в течение 1 мин;
  - b) отключить двигатель привода шпинделя пилы и измерить время выбега с торможением;
  - с) оставить шпиндель неподвижным на 1 мин;
  - d) повторить действия с a) по c) девять раз.

Время выбега с торможением определяется как среднеарифметическое десяти произведенных измерений.

#### 5.3.5 Устройства, снижающие или предотвращающие вероятность выбрасывания

Направление вращения пилы должно быть таким, чтобы усилие резания было направлено к ограждению.

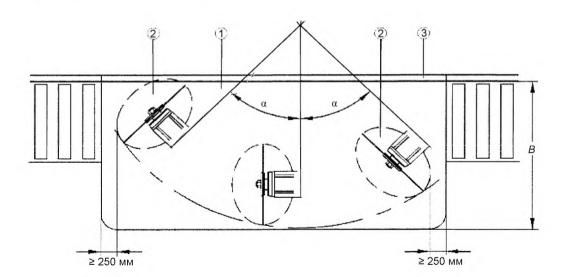
**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.3.6 Опоры и направляющие обрабатываемого изделия

#### 5.3.6.1 Опора обрабатываемого изделия

Станок должен быть оснащен опорой для обрабатываемого изделия, выполненной в соответствии со следующими требованиями:

- а) она должна выступать по обе стороны от зоны резания не менее чем на 250 мм (см. 3.11);
- b) ширина *B* (см. рисунок 3) должна быть такой, чтобы передняя кромка самой большой по размерам пилы, для которой предназначен станок, не выступала за опору обрабатываемого изделия, когда пила находится в максимально выдвинутом вперед положении;
- с) в зоне резания опора обрабатываемого изделия должна быть изготовлена из дерева, материала на основе дерева, пластмасс или легкого сплава:
  - d) в зоне резания и в пределах 250 мм от нее не должно быть роликового конвейера.


**Контроль.** Проверка соответствующих чертежей, осмотр, измерение и проведение соответствующего функционального испытания станка.

#### 5.3.6.2 Направляющие обрабатываемого изделия

Станок должен быть оснащен вертикальной направляющей обрабатываемого изделия, представляющей собой ограждение с каждой стороны линии резания и выполненной в соответствии со следующими требованиями:

- а) она должна быть расположена под прямым углом к неповернутой пиле;
- b) не должно допускаться ее регулирование таким образом, чтобы дисковая пила выступала за пределы ограждения, когда пильное устройство находится в исходном положении:
- с) учитывая поворот пильного устройства вокруг вертикальной оси при угловой распиловке, та часть направляющей, которая находится в пределах 10 мм от линии резания, должна быть изготовлена, например из дерева, пластмасс или легкого сплава.

**Контроль.** Проверка соответствующих чертежей, осмотр, измерение и проведение соответствующего функционального испытания станка.



- 1 опора обрабатываемого изделия (стол станка);
- 2 дисковая пила (установлена на максимальный угол поворота и наклона);
- 3 ограждение;
- В ширина опоры обрабатываемого изделия;
- α максимальный угол поворота

Рисунок 3 – Размеры опоры обрабатываемого изделия (стола станка)

#### 5.3.7 Предотвращение доступа к движущимся частям станка

#### 5.3.7.1 Защита пилы и пильного устройства на полуавтоматических станках

Доступ к нережущей части пилы должен быть предотвращен неподвижным защитным ограждением, продленным до оси вращения шпинделя пилы. Если требуется получить доступ для замены пилы, часть ограждения, обеспечивающая доступ, должна открываться только при помощи инструмента, и даже в открытом состоянии должна оставаться неотъемлемой частью станка, например крепиться при помощи шарниров. Защитное ограждение не должно оставаться на станке без фиксации.

Когда пильное устройство находится в исходном положении, доступ к режущей части дисковой пилы должен быть предотвращен следующими средствами:

- а) неподвижными защитными ограждениями, все проемы которых должны быть выполнены с соблюдением безопасных расстояний по EN 294:1992 (таблица 4);
  - b) автоматически закрывающимися управляемыми защитными ограждениями;
- с) комбинацией неподвижных защитных ограждений и автоматически закрывающихся управляемых защитных ограждений.

Если используются автоматически закрывающиеся управляемые защитные ограждения, они должны быть с блокировкой положения пильного устройства.

Открытый доступ с тыльной стороны станка ко всем местам, где возможно возникновение опасностей раздавливания или пореза, создаваемых обратным ходом пильного устройства, должен быть предотвращен неподвижными защитными ограждениями, все проемы которых должны быть выполнены с соблюдением безопасных расстояний по EN 294:1992 (таблица 4).

Рабочий ход пильного устройства должен управляться двуручным устройством, указанным в 5.2.3. При отключении этого органа управления пильное устройство должно возвратиться в исходное положение в пределах 1,5 с.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, измерение и проведение соответствующего функционального испытания станка.

#### 5.3.7.2 Защита пилы и пильного устройства на автоматических станках

Доступ к пиле должен быть предотвращен неподвижными защитными ограждениями. Любой доступ должен осуществляться через защитные ограждения с блокировкой и фиксацией. Все проемы в таких неподвижных защитных ограждениях должны быть выполнены с соблюдением безопасных расстояний по EN 294:1992 (таблица 4).

Типы защитных ограждений с блокировкой и фиксацией приведены в 5.2.1.

Открытый доступ с тыльной стороны станка ко всем местам, где возможно возникновение опасностей раздавливания или пореза, создаваемых обратным ходом пильного устройства, должен быть предотвращен неподвижными защитными ограждениями, все проемы которых должны быть выполнены с соблюдением безопасных расстояний по EN 294:1992 (таблица 4).

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, измерение, осмотр и проведение соответствующего функционального испытания станка.

#### 5.3.7.3 Защита механизма позиционирования обрабатываемого изделия

Кроме зоны загрузки и выгрузки, доступ к опасным частям (например, вызывающим риск раздавливания или пореза) механизма позиционирования обрабатываемого изделия должен быть предотвращен либо неподвижным защитным ограждением, либо подвижным защитным ограждением с блокировкой и фиксацией закрывания.

В зоне загрузки и выгрузки доступ к местам, где возможно возникновение опасности попадания под удар (т. е. при скорости подачи не менее 25 м/мин), и к местам, где возможно возникновение опасностей затягивания или пореза, должен быть предотвращен следующими средствами:

- а) неподвижными защитными ограждениями или подвижными защитными ограждениями с фиксацией закрывания как минимум блокировочным устройством с механизмом временной задержки по EN 1088:1995 (приложение N). Все проемы в этих ограждениях должны быть выполнены с соблюдением безопасных расстояний по EN 294:1992 (таблица 4);
- b) ковриками, реагирующими на давление по EN 1760-1:1997, которые блокируют опасные движения и которые должны действовать на расстоянии не менее 1,3 м по горизонтали от ближайшего места попадания под удар, затягивания или пореза;
- с) активным оптоэлектронным защитным устройством (световым барьером) по prEN 61496-2:1997, которое останавливает опасные движения и расположено на расстоянии не менее 1,3 м по горизонтали от ближайшего места попадания под удар, затягивания или пореза. Оно должно иметь не менее двух горизонтальных лучей на расстоянии 400 и 900 мм соответственно от уровня пола;

d) комбинацией вышеуказанных средств защиты.

Доступ к местам затягивания или пореза в загрузочных проемах неподвижных или подвижных защитных ограждений может быть предотвращен с помощью применения средств защиты по 5.3.7.3 (перечисления а) – d) или использования размыкающей планки по EN 1760-2:2001.

Если используется размыкающая планка, она должна располагаться над загрузочным отверстием и соответствовать следующим требованиям:

- а) при срабатывании она должна останавливать позиционирование до того, как рука, находящаяся на обрабатываемом изделии, движущемся с максимальной скоростью позиционирования, для которой предназначен станок, может достичь места попадания под удар, затягивания или пореза;
  - b) ширина размыкающей планки должна быть приблизительно равна ширине загрузочного проема;
- с) нижний край размыкающей планки должен быть не более чем на 25 мм выше поверхности любого обрабатываемого изделия, для которого предназначен станок, и должен регулироваться на соответствующую высоту для каждого обрабатываемого изделия. Регулирование может быть автоматическим или ручным;
  - d) размыкающая планка не должна создавать опасность захвата.

Если устройство позиционирования обрабатываемого изделия оснащено зажимом и опасности раздавливания при зажиме не предотвращены средствами, установленными в 5.3.7.3 (перечисления а) – d), они должны быть предотвращены средствами, указанными в 5.3.8.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, измерение и проведение соответствующего функционального испытания станка.

#### 5.3.7.3.1 Защита роликового конвейера

Если станок оснащен механизированным роликовым конвейером для загрузки и выгрузки, доступ к местам затягивания между ведущими роликами и неподвижными частями механизированного роликового конвейера должен быть предотвращен следующими средствами:

- а) вставками в местах затягивания согласно размерам, указанным на рисунке 4;
- b) активным оптоэлектронным защитным устройством (световым лучом) по prEN 61496-2:1997, которое останавливает опасные движения и располагается на расстоянии не менее 1,3 м по горизонтали от ближайшего места затягивания роликового конвейера. Оно должно иметь не менее двух горизонтальных лучей, расположенных на высоте 400 и 900 мм соответственно от уровня пола;
- с) ковриками, реагирующими на давление по EN 1760-1:1997, которые блокируют опасные движения и должны срабатывать на расстоянии не менее 1,3 м по горизонтали от ближайшего места затягивания и действовать по всей длине роликового конвейера;
  - d) комбинацией вышеуказанных средств защиты.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, измерение и проведение соответствующего функционального испытания станка.

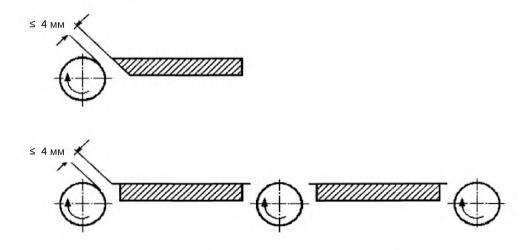



Рисунок 4 – Пример защиты роликового конвейера

#### 5.3.7.4 Защита приводов

Доступ к приводу пилы и любому другому приводному механизму должен быть предотвращен либо неподвижным защитным ограждением, либо подвижным защитным ограждением с блокировкой, либо комбинацией неподвижного и подвижного защитных ограждений с блокировкой. Если установлено подвижное защитное ограждение с блокировкой, оно должно быть оснащено фиксацией, если при открытом ограждении вращающаяся пила доступна.

Тип фиксации приведен в 5.2.1, перечисление е).

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.3.7.5 Ограничение наклона, поворота и вращения пильного устройства и его консоли

Приспособление для наклона пильного устройства относительно горизонтальной оси должно быть ограничено до 60° с обеих сторон от вертикали.

Приспособление для поворота консоли пильного устройства вокруг вертикальной оси для изменения направления рабочего хода должно быть ограничено до 70° слева и справа от линии, перпендикулярной направляющей обрабатываемого изделия (ограждению).

Не допускается вращение пильного устройства вокруг вертикальной оси относительно консоли, за исключением случаев, когда необходимо установить пилу в плоскости хода.

**Контроль.** Проверка соответствующих чертежей, осмотр, измерение и проведение соответствующего функционального испытания станка.

#### 5.3.8 Устройства зажима

На всех станках должно быть предусмотрено механическое устройство зажима обрабатываемого изделия.

Устройства зажима должны быть расположены таким образом, чтобы они не соприкасались с роликовым конвейером.

Если опасности раздавливания не предотвращены средствами по 5.3.7.2 или 5.3.7.3, они должны предотвращаться за счет, например:

- а) двухступенчатого зажима с максимальным усилием в устройстве зажима не более 50 H на первой ступени с последующим приложением полного усилия зажима ручным органом управления;
- b) уменьшения зазора между зажимом и обрабатываемой деталью до 6 мм (или менее) ручным регулирующим устройством и ограничения рабочего хода до 10 мм;
  - с) ограничения скорости смыкания зажима до 10 мм/с (или менее);
- d) ограждения места зажима защитным ограждением, закрепленным на устройстве зажима, обеспечивающим зазор между обрабатываемым изделием и ограждением до 6 мм (или менее). Зажим может выступать за пределы ограждения не более чем на 6 мм.

Остальные требования приведены в 5.2.8 и 5.3.7.3.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, измерение и проведение соответствующего функционального испытания станка.

#### 5.4 Меры защиты от воздействия немеханических опасностей

#### 5.4.1 Пожар

Для предотвращения или сведения к минимуму опасности пожара следует соблюдать требования 5.4.3 и 5.4.4, а также 6.3.

#### 5.4.2 Шум

#### 5.4.2.1 Снижение шума на стадии проектирования

При проектировании станков следует учитывать и соблюдать требования по регулированию уровня шума, приведенные в EN ISO 11688-1:1998. Основным источником шума является вращающаяся пила.

#### 5.4.2.2 Измерение уровня излучения шума

Режим работы для измерения уровня шума должен соответствовать требованиям ISO 7960:1995 (приложение N).

Расположение и режим работы станка должны быть одинаковыми при определении уровней звукового давления излучения шума и уровней звуковой мощности на рабочем месте.

Для станков, к которым требования ISO 7960:1995 (приложение N) неприменимы, например с различными частотами вращения шпинделя или диаметрами дисковых пил, применяемый режим работы должен быть детально описан в протоколе испытаний.

Уровни звуковой мощности должны определяться по ориентировочному методу с использованием измерительной поверхности над звукоотражающей плоскостью по EN ISO 3746:1995 со следующими дополнениями:

- а) показатель акустических условий  $K_{2A}$  должен быть равен 4 дБ или менее;
- b) разница между уровнем звукового давления фонового шума и уровнем звукового давления станка в любой точке замера должна быть равна 6 дБ или более. Поправочную формулу этой разности следует применять до разницы в 10 дБ (см. EN ISO 3746:1995, пункт 8.2);
- с) должна быть использована измерительная поверхность только в виде параллелепипеда на расстоянии 1,0 м от контрольной поверхности;
- d) если расстояние от станка до вспомогательного устройства менее 2 м, вспомогательное устройство должно быть включено в огибающий параллелепипед;
- е) требования к продолжительности измерения 30 с по EN ISO 3746:1995 (пункт 7.5.3) не должно применяться;
  - f) погрешность измерения должна составлять менее 3 дБ;
  - а) количество положений микрофона должно составлять девять по ISO 7960:1995 (приложение N).

Альтернативно, при наличии условий и применимости метода измерения к типу станка, уровни звуковой мощности могут также быть измерены по соответствующему методу с более высокой точностью, т. е. по EN ISO 3743-1:1995, EN ISO 3743-2:1996, EN ISO 3744:1995 и ISO 3745:1977, без предыдущих изменений.

Для определения уровня звуковой мощности излучения шума применяется метод интенсивности звука по EN ISO 9614-1:1995 (по согласованию между поставщиком и потребителем).

Уровни звукового давления излучения на рабочем месте должны быть измерены по EN ISO 11202:1995 со следующими дополнениями:

- h) показатель акустических условий  $K_{2A}$  или локальная коррекция на акустические условия на рабочем месте  $K_{3A}$  должны быть равны 4 дБ или менее;
- і) разница между уровнем звукового давления излучения фонового шума и уровнем звукового давления излучения на рабочем месте должна быть равна 6 дБ или более;
- j) локальная коррекция на акустические условия на рабочем месте  $K_{3A}$  должна рассчитываться по EN ISO 11204:1995 (раздел A.2) с ограничениями по EN ISO 3746:1995 вместо метода, приведенного в EN ISO 11202:1995 (приложение A), или рассчитываться по EN ISO 3743-1:1995, EN ISO 3743-2:1996, EN ISO 3744:1995 или ISO 3745:1977 в случаях, когда применялся метод измерения по одному из этих стандартов.

#### 5.4.2.3 Заявление шумовых характеристик

Применяют требования 6.3.

#### 5.4.3 Выброс опилок и пыли

Должны быть предприняты меры для отвода опилок и пыли от станка, предусматривающие выход(ы) для возможного подсоединения станка к отдельной вытяжной системе сбора опилок и пыли.

Для обеспечения отвода опилок и пыли из места их возникновения в систему сбора конструкция кожухов, трубопроводов и отражателей должна быть рассчитана на скорость движения выходящего воздуха по трубе 20 м/с для сухих опилок и 28 м/с для влажных опилок (содержание влаги – 18 % или более).

Также применяют требования 6.3.

Контроль. Проверка соответствующих чертежей и осмотр станка.

#### 5.4.4 Электрооборудование

Применяют требования EN 60204-1:1992, если в других частях EN 1870 иное не установлено.

В частности, требования к защите от поражения электрическим током приведены в EN 60204-1:1992 (раздел 6), а к защите от короткого замыкания и перегрузки – в EN 60204-1:1992 (раздел 7).

Степень защиты для электрических компонентов должна быть следующей:

- а) для электрической аппаратуры управления не ниже IP 65 в соответствии с EN 60529:1991;
- b) для трехфазных двигателей не ниже IP 5X в соответствии с EN 60529:1991.

#### CTE FN 1870-11-2007

Кабель электропитания передвижных станков должен быть как минимум типа H07 по HD 22.4 S3:1995 + A1:1999.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, декларация соответствия изготовителя и проведение соответствующих испытаний (приведенных в EN 60204-1:1992).

#### 5.4.5 Эргономика

Применяют требования EN 614-1:1995, а также 5.2.2, 5.3.3.1, 6.3 со следующими дополнениями. Высота опоры обрабатываемого изделия должна быть от 850 до 950 мм над уровнем пола.

Примечание – Дополнительные требования будут добавлены при пересмотре настоящего стандарта.

Контроль. Проверка соответствующих чертежей, измерение и осмотр станка.

#### 5.4.6 Пневматика

Применяют требования 5.2.1, 5.2.8, 5.2.9, 5.4.12, 5.4.13, 6.1, 6.2, 6.3 и EN 983:1996.

#### 5.4.7 Гидравлика

Применяют требования 5.2.1, 5.2.8, 5.2.9, 5.4.12, 5.4.13, 6.1, 6.2, 6.3 и EN 982:1996.

#### 5.4.8 Излучение

Станок должен иметь достаточную устойчивость к электромагнитным воздействиям для обеспечения его соответствующего функционирования (см. также EN 60439-1:1999, EN 61000-6-1:2001 и EN 61000-6-2:2001).

Примечание — Станки с электрическим оборудованием, обозначенным маркировкой СЕ, монтаж которого выполнен в соответствии с указаниями изготовителя, можно считать защищенными от внешних электромагнитных воздействий.

Для станков с CNC см. раздел 1.

Другие излучения несущественны.

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр, подтверждение соответствия оборудования требованиям стандартов.

#### 5.4.9 Лазерное оборудование

Лазерное оборудование, которым может быть оснащен станок для обозначения линии резания, должно быть категории 2 или ниже по EN 60825-1:1994 + A1:1996 + A2:2001.

Прямой контакт глаза с опасной для него зоной должен быть предотвращен, например с помощью оптической насадки, обеспечивающей безопасную дистанцию.

Лазерное оборудование должно устанавливаться на станке таким образом, чтобы предупреждающие знаки и надписи на нем оставались видимыми.

**Контроль**. Проверка соответствующих чертежей, осмотр и декларация соответствия от изготовителя лазерного оборудования.

#### 5.4.10 Статическое электричество

Если станок оснащен гибкими рукавами для удаления опилок и пыли, эти рукава должны быть заземлены.

Контроль. Проверка соответствующих чертежей и осмотр станка.

#### 5.4.11 Ошибки монтажа

Должна быть исключена возможность установки пилы, имеющей диаметр, превышающий максимальный, для которого предназначен станок.

Дополнительно см. 5.4.12. 6.2 и 6.3.

Контроль. Проверка соответствующих чертежей и осмотр станка.

#### 5.4.12 Отключение питания (разъединение)

Применяют требования EN 1037:1995 (раздел 5) со следующими дополнениями.

Электрический разъединитель должен соответствовать EN 60204-1:1992 (пункт 5.3).

Если станок оснащен вилкой для подключения к трехфазной электросети, эта вилка может иметь встроенный фазопереключатель.

При использовании пневматической энергии следует предусмотреть пневматический разъединитель с запирающим устройством в отключенном состоянии. При использовании пневматической

энергии только для зажимных устройств должно применяться быстроразъемное соединение (см. EN 983:1996) без запирающего устройства, если отключение энергии станка (или его части) может находиться под непосредственным наблюдением находящегося рядом персонала (см. EN 1037:1995, пункт 5.2).

Если станок имеет гидравлическую систему, ее разъединение должно осуществляться:

- а) разъединением энергоснабжения для двигателя гидравлического привода (см. EN 60204-1:1992, пункт 5.3);
- b) разъединяющим устройством, например клапаном с механической блокировкой в закрытом состоянии (см. EN 982:1996).

**Контроль.** Проверка соответствующих чертежей и/или функциональной схемы, осмотр и проведение соответствующего функционального испытания станка.

#### 5.4.13 Техническое обслуживание

Применяют требования EN 292-2:1991/A1:1995 (пункт 3.12), а также 6.3.

Если предусмотрены места смазки, они должны быть расположены вне опасных зон и доступны оператору, стоящему на полу.

При накоплении остаточной энергии, например, в резервуаре или трубе, следует предусмотреть средства для сброса остаточного давления, например при помощи клапана. Сброс давления не должен осуществляться за счет отсоединения трубы.

**Контроль.** Проверка соответствующих чертежей, руководства по эксплуатации, осмотр и проведение соответствующего функционального испытания станка.

#### 6 Информация для потребителя

#### 6.1 Предупредительные устройства

На станке или на прочно закрепленной на нем табличке должна быть нанесена следующая постоянная маркировка:

- а) пиктограммы с обозначениями направления вращения пилы;
- b) предупреждающие надписи на этикетке, размещенные вблизи устройства отключения электрической энергии, о том, что пневматическая или гидравлическая энергия не отключается этим устройством (если применяется пневматическая или гидравлическая энергия и ее отключение не осуществляется устройством отключения электрической энергии).

Способы нанесения маркировки – гравировка, травление, чеканка или штамповка.

Предупреждающие надписи должны быть выполнены на языке той страны, в которой станок будет эксплуатироваться, или по возможности должны использоваться пиктограммы.

Контроль. Проверка соответствующих чертежей и осмотр станка.

#### 6.2 Маркировка

Применяют требования EN 292-2:1991/А1:1995 (подраздел 5.4) со следующими дополнениями.

На станке или на прочно закрепленной на нем табличке должна быть нанесена следующая постоянная маркировка:

- а) максимальный и минимальный диаметры пилы и ее отверстий, для которых предназначен станок;
- b) номинальное давление в пневматической или гидравлической системе (для станков с пневматической или гидравлической системой);
- с) функции, расположение и рабочее(ие) положение(я) пневматического или гидравлического устройства отключения энергии (для станков, оснащенных этим устройством), например на этикетке посредством пиктограммы.

Обозначения и пиктограммы для маркировки номинального давления и данных по устройствам отключения энергии должны находиться как можно ближе к месту расположения этих устройств на станке

Предупреждающие надписи должны быть выполнены на языке той страны, в которой станок будет эксплуатироваться, или по возможности должны использоваться пиктограммы.

Способы нанесения маркировки – гравировка, травление, чеканка или штамповка.

Контроль. Проверка соответствующих чертежей и осмотр станка.

#### 6.3 Руководство по эксплуатации

Требования к руководству по эксплуатации приведены в EN 292-2:1991/A1:1995 (подраздел 5.5), а также оно должно содержать следующее:

- а) повторение маркировки, пиктограмм и других инструкций, нанесенных на станок (см. 6.1 и 6.2) и (при необходимости) информацию относительно их значения:
  - b) применение станка по назначению:
  - с) предупреждение об остаточных рисках;
- d) рекомендации по безопасному применению, приведенные в EN 292-2:1991/A1:1995 (см. также 5.5.1, перечисление e).

Примечание – Некоторые рекомендации относительно мест, главным образом для оператора, приведены в приложении С:

- е) для стационарных станков (при необходимости) требования по креплению станка к полу и процедура его выполнения;
- f) для передвижных станков информацию о процедуре перемещения и обеспечении устойчивости станка во время распиловки;
  - g) указания по использованию пил, выполненных только по EN 847-1:1997;
- h) указания, что не следует использовать пилы с маркировкой меньшей максимальной частоты вращения, чем частота вращения шпинделя пилы;
  - і) максимальные ширину и толщину обрабатываемого изделия, для которых предназначен станок;
- j) информацию, что операторы должны быть достаточно обучены применению, техническому обслуживанию и работе на станке;
  - к) инструкции по соответствующему общему и местному освещению;
- I) требования к установленному лазерному оборудованию: не допускается замена его на другой тип, не должны использоваться дополнительные оптические устройства и ремонт может проводиться только изготовителем лазерного оборудования или уполномоченными лицами;
  - m) информацию, касающуюся устройства для отвода опилок и пыли, установленного на станке:
    - 1) расход воздуха, м<sup>3</sup>/ч;
- 2) нижнее давление в каждом выходном соединении для отвода пыли в соответствии с рекомендованной скоростью движения выходящего воздуха;
  - 3) рекомендуемая скорость движения выходящего воздуха в трубопроводе, м/с;
  - 4) размеры поперечного сечения и подробное описание каждого выходного соединения;
- n) информацию о том, что станок, используемый в помещении, должен быть подключен к внешней системе сбора опилок и пыли.

Примечание - Стационарные установки для сбора опилок и пыли рассматриваются в prEN 12779:2004.

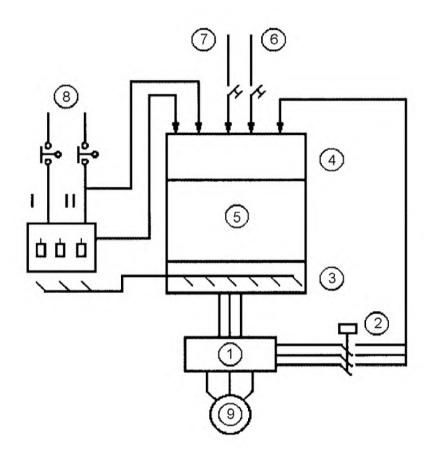
- о) инструкции о необходимости подключения оборудования для отвода опилок и пыли перед началом работы станка;
- р) информацию о том, что техническое обслуживание станка можно проводить только в том случае, если он отключен от всех источников питания и предотвращен непреднамеренный повторный пуск;
  - q) информацию по безопасной уборке станка;
- r) метод безопасного сброса остаточной энергии для пневматических или гидравлических систем (см. 5.4.13);
- s) перечень устройств безопасности, которые должны быть испытаны, периодичность и метод проведения испытаний. Как минимум должны быть включены:
  - 1) аварийный(ые) останов(ы) при функциональном испытании;
- 2) защитные ограждения с блокировкой при открытии каждого ограждения последовательно остановить станок и обеспечить невозможность его пуска при открытом ограждении;
- 3) защитные ограждения с фиксацией закрывания при обеспечении невозможности открытия защитного ограждения, пока вращается пила;
  - 4) все коврики, обеспечивающие безопасность, при функциональном испытании;
  - 5) все световые барьеры при функциональном испытании;
  - 6) все размыкающие устройства при функциональном испытании;
- 7) тормоз при функциональном испытании для проверки торможения станка за установленное время;

- t) заявление шумовых характеристик EN 292-2:1991/A1:1995 (пункт A.1.7.4, перечисление f), измеренных по методам, приведенным в 5.4.2.2. В заявлении в виде двухчисловых значений по EN ISO 4871:1996 должны быть изложены применяемый метод измерения, режим работы во время испытаний и параметр неопределенности *К* со следующим значением:
  - 4 дБ при использовании EN ISO 3746:1995 и EN ISO 11202:1995;
  - 2 дБ при использовании EN ISO 3743-1:1995, EN ISO 3743-2:1996 или EN ISO 3744:1995;
  - 1 дБ при использовании ISO 3745:1977, например для уровня звуковой мощности:
     L<sub>WA</sub> = 93 дБ (измеренное значение).

Параметр неопределенности K = 4 дБ.

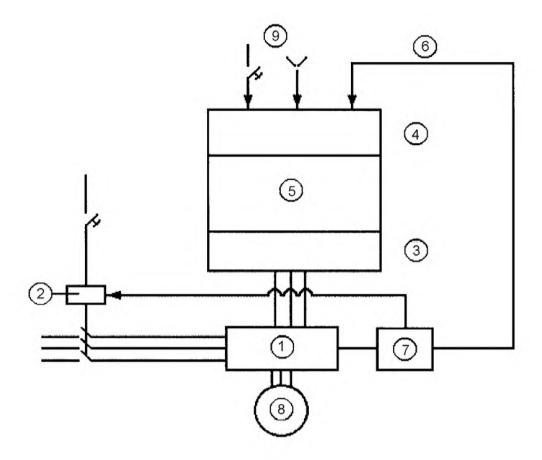
Измерения произведены в соответствии с EN ISO 3746:1995.

Чтобы подтвердить точность заявленных шумовых характеристик, измерения должны проводиться таким же методом и в таком же режиме работы, которые были заявлены.


Заявление шумовой характеристики должно сопровождаться следующим утверждением: «Указанные значения уровней излучения шума не достаточны для оценки безопасности на рабочем месте. Хотя между уровнями излучения и воздействия шума существует взаимосвязь, определить необходимость дополнительных мер предосторожности невозможно. Факторами, влияющими на уровень действительного уровня воздействия на рабочее место, являются характеристики рабочего помещения и другие источники шума, например другие работающие рядом станки и происходящие вблизи процессы. Допустимый уровень воздействия может быть различным в разных странах. Тем не менее, эта информация позволит пользователю станка провести соответствующую оценку опасностей и риска».

Контроль. Проверка руководства по эксплуатации и соответствующих чертежей.

# **Приложение А** (справочное)

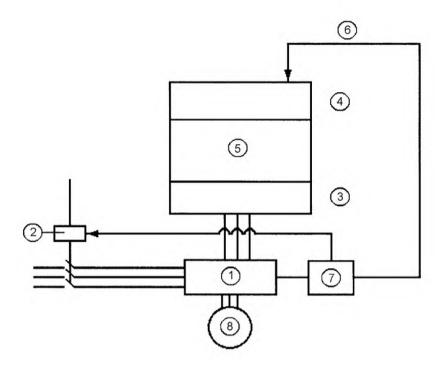

# Примеры систем управления, связанных с безопасностью, с электронными компонентами

На следующих рисунках приведены примеры различных систем управления, связанных с безопасностью, которые соответствуют требованиям настоящего стандарта.



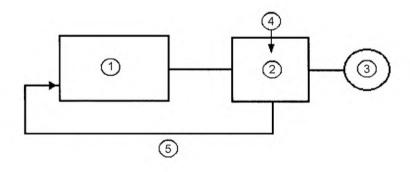
- 1 контроллер привода;
- 2 контактор;
- 3 выход программируемой электронной системы;
- 4 вход программируемой электронной системы;
- 5 программируемая электронная система;
- 6 останов;
- 7 пуск;
- 8 блокируемое ограждение;
- 9 двигатель

Рисунок А.1 – Система управления, связанная с безопасностью, для блокировки




- 1 контроллер привода; 2 контактор для двигателя;
- 3 выход программируемой электронной системы;
- Выход программируемой электронной системы;
   программируемая электронная система;
   программируемая электронная система;
   программируемая;

- 7 управляющая программа;
- 8 двигатель;
- 9 орган управления пуском и остановом


Рисунок А.2 – Система управления, связанная с безопасностью, категории 2 по EN 60204-1:1992 для нормального функционирования

#### СТБ EN 1870-11-2007



- 1 контроллер привода;
- 2 контактор для включения двигателя пилы;
- 3 выход программируемой электронной системы;
- 4 вход программируемой электронной системы;
- 5 программируемая электронная система;
- 6 цепь тестирования; 7 управляющая программа; 8 двигатель

Рисунок А.3 – Система управления, связанная с безопасностью, для включения двигателя пилы



- 1 программируемая электронная система;
- 2 фазопереключатель;
- 3 двигатель;
- 4 первичная цепь;
- 5 вторичная цепь

Рисунок А.4 – Система управления, связанная с безопасностью, для контроля частоты вращения

# **Приложение В** (обязательное)

#### Измерение биения шпинделей пилы

| Схема измерения                                                     | Измеряемый<br>параметр           | Предельное<br>отклонение, мм | Измерительный прибор |
|---------------------------------------------------------------------|----------------------------------|------------------------------|----------------------|
| Managama na nagama na fizuaran                                      | Радиальное биение шпинделя пиллы | 0,03                         | Индикатор            |
| Измерение на максимально близком расстоянии от фланца дисковой пилы | Торцевое бие-                    | 0,03 для <i>М</i> ≤ 100      | Индикатор            |
| F- P-S                                                              | ние фланца пилы                  | 0,04 для <i>M</i> > 100      |                      |
| Приложение осевого усилия <i>F</i> , рекомендованного изготовителем |                                  |                              |                      |

## **Приложение С** (справочное)

#### Рекомендации по безопасному применению

Оператору важно знать, что необходимо:

- а) не оставлять включенный станок без присмотра:
- b) удостовериться, что пол вокруг станка ровный, чистый и свободный от отходов, например опилок и обрезков:
- с) сообщать о неполадках станка, включая защитные ограждения и инструмент, по мере их выявления:
- d) регулярно проводить процедуры для обеспечения безопасности по уборке, техническому обслуживанию и удалению опилок и пыли, чтобы исключить риск пожара;
- е) применять оправки шпинделя и фланцы пилы в соответствии с указаниями изготовителя и целями эксплуатации;
  - f) использовать необходимые средства индивидуальной защиты:
    - 1) органов слуха, чтобы снизить риск потери слуха;
    - 2) органов дыхания, чтобы снизить риск при вдыхании вредной пыли:
- 3) перчатки для работы с инструментом (инструмент следует переносить с помощью любых подходящих держателей).

### Приложение ZA (справочное)

#### Взаимосвязь европейского стандарта с директивами ЕС

Европейский стандарт, на основе которого подготовлен настоящий государственный стандарт, разработан Европейским комитетом по стандартизации (CEN) по поручению Комиссии Европейского сообщества и Европейской ассоциации свободной торговли (EFTA) и реализует основополагающие требования Директивы 98/37/EC (с учетом изменений, внесенных Директивой 98/79/EC).

Соответствие требованиям настоящего стандарта является средством выполнения основополагающих требований соответствующей директивы ЕС и регламентирующих документов EFTA.

**ВНИМАНИЕ!** К продукции, на которую распространяется настоящий европейский стандарт, могут применяться требования других стандартов (документов) и директив EC.

#### Библиография

| [1] | EN 614-1:1995     | Safety of machinery – Ergonomic design principles – Part 1: Terminology and general principles (Безопасность машин. Эргономические принципы проектирования. Часть 1. Термины, определения и общие принципы)                                                                                                                                                            |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                   | Неофициальный перевод Бе <b>лГИСС</b><br>Перевод с английского язык <b>а (en</b> )                                                                                                                                                                                                                                                                                     |
| [2] | prEN 12779:2000   | Woodworking machines – Chips and dust extraction systems with fixed installation – Safety related performance and safety requirements (Безопасность деревообрабатывающего оборудования. Стационарные установки для удаления стружки и пыли. Рабочие характеристики, связанные с безопасностью)                                                                         |
|     |                   | Неофициальный перевод <b>БелГИСС</b><br>Перево <b>д с</b> английского <b>языка (en)</b>                                                                                                                                                                                                                                                                                |
| [3] | EN 60439-1:1999   | Low voltage switchgear and gear assemblies – Part 1: Type-tested and partially type-tested assemblies (IEC 60439-1:1999) (Аппаратура распределения и управления низковольтная комплектная. Часть 1. Узлы, подвергаемые частичным или полным типовым испытаниям) (IEC 60439-1:1999) Неофициальный перевод БелГИСС Перевод с английского языка (en)                      |
| [4] | EN 61000-6-1:2001 | Electromagnetic compatibility (EMC) – Part 6-1: Generic standards – Immunity for residential, commercial and light-industrial environments (IEC 61000-6-1:1997, modified) (Электромагнитная совместимость (ЭМС). Часть 6-1. Общие стандарты. Помехоустойчивость для жилых и торговых зон и зон с небольшими производственными предприятиями) (IEC 61000-6-1:1997, MOD) |
|     |                   | Неофициальный перевод БелГИСС<br>Перевод с английского языка (en)                                                                                                                                                                                                                                                                                                      |
| [5] | EN 61000-6-2:2001 | Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity for industrial environments (IEC 61000-6-2:1999, modified) (Электромагнитная совместимость (ЭМС). Часть 6-2. Общие стандарты. Устойчивость к электромагнитным помехам технических средств, применяемых в промышленных зонах) (IEC 61000-6-2:1997, MOD)                                    |
|     |                   | Неофициальный перевод БелГИСС<br>Перевод с английского языка (en)                                                                                                                                                                                                                                                                                                      |

# **Приложение Д.А** (справочное)

# Сведения о соответствии государственных стандартов ссылочным международному и европейским стандартам

Таблица Д.А.1 – Сведения о соответствии государственных стандартов ссылочным европейским стандартам

|                                                                                                                                                                                   |                         | <del></del>                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Обозначение и наименование европейского стандарта                                                                                                                                 | Степень<br>соответствия | Обозначение и наименование<br>государственного стандарта                                                                                                                               |
| EN 292-1:1991 Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методика                                                           | IDT                     | ГОСТ ИСО/ТО 12100-1-2001 Безопасность оборудования. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методика                                              |
| EN 292-2:1991 Безопасность машин. Основные понятия, общие принципы конструирования. Часть 2. Технические правила и технические требования                                         | IDT                     | ГОСТ ИСО/ТО 12100-2-2002 Безопасность оборудования. Основные понятия, общие принципы конструирования. Часть 2. Технические правила и технические требования                            |
| EN 294:1992 Безопасность машин. Безопасные расстояния для предохранения верхних конечностей от попадания в опасную зону                                                           | IDT                     | ГОСТ ЕН 294-2002 Безопасность ма-<br>шин. Безопасные расстояния для предо-<br>хранения верхних конечностей от попа-<br>дания в опасную зону                                            |
| EN 418:1992 Безопасность машин. Установки аварийного выключения. Функции. Принципы проектирования                                                                                 | IDT                     | ГОСТ ЕН 418-2002 Безопасность ма-<br>шин. Установки аварийного выключения.<br>Функции. Принципы проектирования                                                                         |
| EN 574:1996 Безопасность машин. Устройства управления двуручное. Функциональные аспекты. Принципы конструирования                                                                 | IDT                     | СТБ ЕН 574-2006 Безопасность машин.<br>Устройство управления двуручное. Прин-<br>ципы конструирования                                                                                  |
| EN 982:1996 Безопасность оборудования. Требования безопасности к гидравлическим и пневматическим системам и их компонентам. Гидравлика                                            | MOD                     | ГОСТ 31177-2003 (ЕН 982:1996) Безопасность оборудования. Требования безопасности к гидравлическим и пневматическим системам и их компонентам. Гидравлика                               |
| EN 983:1996 Безопасность оборудования. Требования безопасности к гидравлическим и пневматическим системам и их компонентам. Пневматика                                            | MOD                     | ГОСТ 30869-2003 (ЕН 983:1996) Безо-<br>пасность оборудования. Требования<br>безопасности к гидравлическим и пнев-<br>матическим системам и их компонентам.<br>Пневматика               |
| EN 1037:1995 Безопасность машин.<br>Предотвращение неожиданного пуска                                                                                                             | IDT                     | ГОСТ ЕН 1037-2002 Безопасность ма-<br>шин. Предотвращение неожиданного пус-<br>ка                                                                                                      |
| EN 1070:1998 Безопасность оборудования. Термины и определения                                                                                                                     | IDT                     | ГОСТ ЕН 1070-2003 Безопасность оборудования. Термины и определения                                                                                                                     |
| EN 1088:1995 Безопасность машин.<br>Блокировочные устройства, связанные с<br>защитными устройствами. Принципы<br>конструирования и выбора                                         | IDT                     | ГОСТ ЕН 1088-2002 Безопасность машин. Блокировочные устройства, связанные с защитными устройствами. Принципы конструирования и выбора                                                  |
| EN 1760-1:1997 Безопасность машин. Защитные устройства, реагирующие на давление. Часть 1. Основные принципы конструирования и испытаний ковриков и полов, реагирующих на давление | IDT                     | ГОСТ ЕН 1760-1:2004 Безопасность машин. Защитные устройства, реагирующие на давление. Часть 1. Основные принципы конструирования и испытаний ковриков и полов, реагирующих на давление |

Таблица Д.А.2 – Сведения о соответствии государственных стандартов ссылочным европейским стандартам, которые являются идентичными или модифицированными по отношению к международным стандартам

| поотноше                                                                                                                                                                                                                                      | нию к международным станда                                                                                                                                                                                                                           | іртам                        |                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Обозначение и наименование ссылочного европейского стандарта                                                                                                                                                                                  | Обозначение и наименование<br>международного стандарта                                                                                                                                                                                               | Степень<br>соответ-<br>ствия | Обозначение и наименование государственного стандарта                                                                                                                                                                                                                                                                                    |
| EN 60529:1991 Степени<br>защиты, обеспечиваемые<br>оболочками (IP-код)                                                                                                                                                                        | IEC 529-89 Степени за-<br>щиты, обеспечиваемые<br>оболочками (IP-код)                                                                                                                                                                                | MOD                          | ГОСТ 14254-96 (МЭК 529-89)<br>Степени защиты, обеспечи-<br>ваемые оболочками (Код IP)                                                                                                                                                                                                                                                    |
| EN 60947-4-1:1992 Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели. Электромеханические контакторы и статоры двигателей                                                                                 | IEC 60947-4-1:1990 Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели. Электромеханические контакторы и статоры двигателей                                                                                       | MOD                          | ГОСТ 30011.4.1-96 (МЭК 60947-4-1:1990) Низковольтная аппаратура распределения и управления. Часть 4. Контакторы и пускатели. Раздел 1. Электромеханические контакторы и пускатели                                                                                                                                                        |
| EN 60947-5-1:1997 Аппаратура распределения и управления низковольтная. Часть 5-1. Аппараты и коммутационные элементы цепей управления. Электромеханические аппараты для цепей управления                                                      | IEC 60947-5-1:1997 Аппаратура распределения и управления низковольтная. Часть 5-1. Аппараты и коммутационные элементы цепей управления. Электромеханические аппараты для цепей управления                                                            | MOD                          | ГОСТ 30011.5.1-2002 (МЭК 60947-5-1:1997) Аппаратура распределения и управления низковольтная. Часть 5-1. Аппараты и коммутационные элементы цепей управления. Электромеханические аппараты для цепей управления                                                                                                                          |
| EN ISO 3743-1:1995 Акустика. Определение уровней звуковой мощности источников шума. Технические методы для малых переносных источников в реверберационных полях. Часть 1. Метод сравнения для испытательных помещений с жесткими стенами      | ISO 3743-1:1994 Акусти- ка. Определение уровней  звуковой мощности ис- точников шума. Техниче- ские методы для малых  переносных источников в  реверберационных полях.  Часть 1. Метод сравнения  для испытательных по- мещений с жесткими сте- нами | MOD                          | СТБ ГОСТ Р 51400-2001 (ИСО 3743-1-94, ИСО 3743-2-94) Шум машин. Определение уровней звуковой мощности источников шума по звуковому давлению. Технические методы для малых переносных источников шума в реверберационных полях в помещениях с жесткими стенами и в специальных реверберационных реверберационных реверберационных камерах |
| EN ISO 3743-2:1996 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технические методы для малых переносных источников в реверберационных полях. Часть 2. Методы для специальных реверберационных камер | ISO 3743-2:1994 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технические методы для малых переносных источников в реверберационных полях. Часть 2. Методы для специальных реверберационных камер           | MOD                          | СТБ ГОСТ Р 51400-2001 (ИСО 3743-1-94, ИСО 3743-2-94) Шум машин. Определение уровней звуковой мощности источников шума по звуковому давлению. Технические методы для малых переносных источников шума в реверберационных полях в помещениях с жесткими стенами и в специальных реверберационных камерах                                   |

#### СТБ EN 1870-11-2007

#### Продолжение таблицы Д.А.2

|                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                      |                              |                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Обозначение и наименование<br>ссылочного европейского<br>стандарта                                                                                                                                                  | Обозначение и наименование международного стандарта                                                                                                                                                                                    | Степень<br>соответ-<br>ствия | Обозначение и наименование государственного стандарта                                                                                                                                                                   |
| EN ISO 3744:1995 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технический метод в существенно свободном звуковом поле над звукоотражающей плоскостью                      | ISO 3744:1994 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Технический метод в существенно свободном звуковом поле над звукоотражающей плоскостью                                            | MOD                          | СТБ ГОСТ Р 51401-2001 (ИСО 3744-94) Шум машин. Определение уровней звуковой мощности источников шума по звуковому давлению. Технический метод в существенно свободном звуковом поле над звукоотражающей плоскостью      |
| EN ISO 3746:1995 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Ориентировочный метод с использованием измерительной поверхности над звукоотражающей плоскостью             | ISO 3746:1995 Акустика. Определение уровней звуковой мощности источников шума по звуковому давлению. Ориентировочный метод с использованием измерительной поверхности над звукоотражающей плоскостью                                   | MOD                          | ГОСТ 31277-2002 (ИСО 3746:1995) Шум машин. Определение уровней звуковой мощности источников шума по звуковому давлению. Ориентировочный метод с использованием измерительной поверхности над звукоотражающей плоскостью |
| EN ISO 4871:1996 Акустика. Декларация и верификация значений шумовых характеристик машин и оборудования                                                                                                             | ISO 4871:1996 Акустика. Декларация и верификация значений шумовых характеристик машин и оборудования                                                                                                                                   | MOD                          | ГОСТ 30691-2001 (ИСО 4871-96) Шум машин. Заявление и контроль значений шумовых характеристик                                                                                                                            |
| EN ISO 9614-1:1995 Акустика. Определение уровней звуковой мощности источников шума по интенсивности звука. Часть 1. Измерение в дискретных точках                                                                   | ISO 9614-1:1993 Акусти- ка. Определение уровней  звуковой мощности ис- точников шума по интен- сивности звука. Часть 1.  Измерение в дискретных  точках                                                                                | MOD                          | ГОСТ 30457-97 (ИСО 9614-1-93) Акустика. Определение уровней звуковой мощности источников шума на основе интенсивности звука. Измерение в дискретных точках. Технический метод                                           |
| EN ISO 11202:1995 Акустика. Шум, излучаемый машинами и оборудованием. Измерение уровней звукового давления излучения на рабочем месте и в других установленных точках. Контрольный метод измерения на месте         | ISO 11202:1995 Акусти- ка. Шум, излучаемый ма- шинами и оборудовани- ем. Измерение уровней  звукового давления излу- чения на рабочем месте и  в других контрольных точ- ках. Ориентировочный  метод для измерений на  месте установки | MOD                          | ГОСТ 31169-2003 (ИСО 11202:1995) Шум машин. Измерение уровней звукового давления излучения на рабочем месте и в других контрольных точках. Ориентировочный метод измерений на месте установки                           |
| EN ISO 11204:1995 Акустика. Шум, излучаемый машинами и оборудованием. Измерение уровней звукового давления излучения на рабочем месте и в других контрольных точках. Метод, требующий коррекций на окружающую среду | ISO 11204:1995 Акусти- ка. Шум, излучаемый ма- шинами и оборудованием. Измерение уровней зву- кового давления излуче- ния на рабочем месте и в других контрольных точ- ках. Метод, требующий коррекций на окружающую среду             | MOD                          | ГОСТ 30683-2000 (ИСО 11204-95) Шум машин. Измерение уровней звукового давления излучения на рабочем месте и в других контрольных точках. Метод с коррекциями на акустические условия                                    |

#### Окончание таблицы Д.А.2

| Обозначение и наименование<br>ссылочного европейского<br>стандарта                                                            | Обозначение и наименование международного стандарта | Степень<br>соответ-<br>ствия | Обозначение и наименование государственного стандарта                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| EN ISO 13849-2:2003 Безопасность машин. Элементы систем управления, связанные с обеспечением безопасности. Часть 2. Валидация | l I                                                 | IDT                          | СТБ ИСО 13849-2:2005 Безо-<br>пасность машин. Элементы<br>безопасности систем управле-<br>ния. Часть 2. Валидация |  |

Таблица Д.А.3 – Сведения о соответствии государственных стандартов ссылочным международному и европейскому стандартам другого года издания

| Обозначение и наименование ссылочного международного (европейского) стандарта                                                                                             | Обозначение и наименование международного (европейского) стандарта другого года издания                                                     | Степень<br>соответ-<br>ствия | Обозначение и наименование государственного стандарта                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISO 3745:1977 Акустика. Определение уровней звуковой мощности источников шума с использованием звукового давления. Точные методы звукопоглощающих и звукоотражающих камер | , , , ,                                                                                                                                     | MOD                          | ГОСТ 31273-2003<br>(ИСО 3745:2003) Шум машин.<br>Определение уровней звуковой<br>мощности по звуковому давле-<br>нию. Точные методы для за-<br>глушенных камер<br>(ISO 3745:2003, MOD) |
| EN 60204-1:1992<br>(IEC 60204-1:1992) Безо-<br>пасность машин. Элек-<br>трооборудование машин<br>и механизмов. Часть 1.<br>Общие требования                               | EN 60204-1:1997<br>(IEC 60204-1:1997) Безо-<br>пасность машин. Элек-<br>трооборудование машин<br>и механизмов. Часть 1.<br>Общие требования | IDT                          | ГОСТ МЭК 60204-1-2002 Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования (IEC 60204-1:1997, IDT)                                                    |

| Ответственный за выпу <b>с</b> к <i>В.Л. Гуревич</i>                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сдано в набор 15.01.2008. Подписано в печать 05.03.2008. Формат бумаги 60×84/8. Бумага офсетная. Гарнитура Arial. Печать ризографическая. Усл. печ. л. 3,95 Уч изд. л. 2,23 Тираж экз. Заказ                  |
| Издатель и полиграфическое исполнение<br>НП РУП «Белорусский государственный институт стандартизации и сертификации» (БелГИСС)<br>Лицензия № 02330/0133084 от 30.04.2004.<br>220113, г. Минск, ул. Мележа, 3. |