

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ МЕМЛЕКЕТТІК СТАНДАРТЫ

СҮТ МАЙ МӨЛШЕРІН АНЫҚТАУ ГРАВИМЕТРЛІК ӘДІС (БАҚЫЛАУ ӘДІСІ)

МОЛОКО ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЖИРА ГРАВИМЕТРИЧЕСКИЙ МЕТОД (КОНТРОЛЬНЫЙ МЕТОД)

КР СТ ИСО 1211-2011

ISO 1211-2010 Milk. Determination of fat content. Gravimetric method (Reference method), IDT

Ресми басылым

Қазақстан Республикасы Индустрия және жаңа технологиялар министрлігі Техникалық реттеу және метрология комитеті Мемстандарт

Астана

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ МЕМЛЕКЕТТІК СТАНДАРТЫ

СҮТ МАЙ МӨЛШЕРІН АНЫҚТАУ ГРАВИМЕТРЛІК ӘДІС (БАҚЫЛАУ ӘДІСІ)

ҚР СТ ИСО 1211-2011

ISO 1211-2010 Milk. Determination of fat content. Gravimetric method (Reference method), IDT

Ресми басылым

Қазақстан Республикасы Индустрия және жаңа технологиялар министрлігі Техникалық реттеу және метрология комитеті (Мемстандарт)

Астана

Алғысөз

- 1 «Қазақстан метрология институты» республикалық мемлекеттік кәсіпорны тарапынан № 69 «Инфракұрылымның инновациялық технологиялары» Стандарттау жөніндегі техникалық комитеті **ӘЗІРЛЕП ЕНГІЗДІ**
- 2 Қазақстан Республикасы индустрия және жаңа технологиялар министрлігінің техникалық реттеу және метрология комитеті төрағасының 2011 жылғы 17 қарашаның № 623-од бұйрығымен БЕКІТІЛІП ҚОЛДАНЫСҚА ЕНГІЗІЛДІ
- 3 Бұл стандарт ISO 1211-2010 Milk. Determination of fat content. Gravimetric method (Reference method) (ИСО 1211 Сүт. Май мөлшерінің анықталуы. Гравиметрикалық әдісі (Бақылау әдісі)) бірдей. Ресми нұсқасы мемлекеттік және орыс тілдеріндегі мәтін болып табылады

Халықаралық стандарт Тамақ өнімдері, Сүт және сүт өнімдері SC 5 комитет бөлімшесі мен IDF және ISO-мен бірге ИСО/ТК 34 Техникалық комитеті тарапынан пайындалған

Ағылшын тілінен аударма (en) Сәйкестік деігейі – бірдей, IDT

4 БІРІНШІ ТЕКСЕРУ МЕРЗІМІ ТЕКСЕРУ КЕЗЕНДІЛІГІ 2016 жыл 5 жыл

5 АЛҒАШ РЕТ ЕНГІЗІЛДІ

Бұл стандартқа қатысты өзгерістер туралы мәлімет жылда басылатын «Стандарттау бойынша нормативтік құжаттар» атты ақпараттық сілтеуіште, ал өзгерістер мен түзетулер мәтіні ай сайын балысып отыратын «Мемлекеттік стандарттар» атты ақпараттық сілтеуіштерінде жарияланады. Бұл стандартты қайта қаратстыру (алмастыру) немесе жою жағдайында сәйкес хабарлама ай сайын балысып отыратын «Мемлекеттік стандарттар» атты ақпараттық сілтеуіштерінде жарияланады.

Бұл стандарт ресми басылым ретінде Қазақстан Республикасы индустрия және жаңа технологиялар министрлігінің техникалық реттеу және метрология комитетінің шешімінсіз толық немесе жартылай жаңадан өндірілуі, тираждануы, және таратылуы мүмкін емес

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ МЕМЛЕКЕТТІК СТАНДАРТЫ

СҮТ. МАЙ МӨЛШЕРІН АНЫҚТАУ ГРАВИМЕТРЛІК ӘДІС (БАҚЫЛАУ ӘДІСІ)

Енгізілген күні 2012-07-01

1 Қолданылу саласы

Бұл мемлекеттік стандарт физикалық-химиялық сапасы жақсы сүттің май мөлшерін анықтау үшін эталлон әдісін белгілейді.

Әдіс шикі күйіндегі сиыр сүтіне, шикі күйіндегі қой сүтіне, шикі күйіндегі ешкі сүтіне, қаймағы алынғын сүтке, химиялық заттармен косервілген сүтке және өңделген сұйық сүтке қатысты қолданылады.

Майсыздандырылған сүт үшін жоғары дәлдік қажет босағна жағдайда бұл әдіс қолданылмайды, мысалы сүт сепараторларының жұмыс істеу тиімділігін анықтау үшін.

Әдіс шикі күйіндегі сиыр сүтіне, шикі күйіндегі қой сүтіне, шикі күйіндегі ешкі сүтіне, қаймағы алынғын сүтке, химиялық заттармен косервілген сүтке және өңделген сұйық сүтке қатысты қолданылады.

ЕСКЕРТПЕ [7] майсыздандырылған сүттен жасалған өнімдер үшін қолданылған арнайы әдісті көрсетеді.

2 Нормативтік сілтемелер

Бұл стандартты қолдану үшін мынадай сілтемек нормативтік құжаттар қажет. Күні белгіленген сілтемелер үшін тек қана белгіленген сілтемелі құжаттың басылымы колднылады.

ҚР СТ 1.9–2007 Қазақстан Республикасының мемлекеттік техникалық реттеу жүйесі. Қазақстан Республикасында стандарттау бойынша шетел мемлекеттерінің халықаралық, аймақтық және ұлттық стандарттарының, басқа нормативті құжаттарының қолданылу реті.

ISO 3889:2006* IDF 219 Milk and milk products. Specification of Mojonnier-type fat extraction flasks (Сүт және сүт өнімдері. Можонье әдісі арқылы май мөлшерін анықтау үшін экстракциондық шыны сауыттардың айрықшаламасы).

ЕСКЕРТПЕ Бұл стандарттарды қолданған кезде ағымдағы жылдың 1-ші қаңтарындағы жағдайға қарай құрастырылған «Стандарттау бойынша нормативті құжаттар» сілтеуіші және ағымдағы жылда жарияланған сәйкес ақпараттық сілтеуіш бойынша сілтеме стандарттарының іске қосылуын тексеру маңызды болып табылады. Егер сілтеме құжаты алмастырылған (өзгертілген) болса, онда бұл стандартты қолданған кезде алмастырылған (өзгертілген) стандартты нұсқау етіп қолдану қажет. Егер сілтеме құжаты алмастырылмай күші ойылса, онда оған берілген сілтеме ережелерінде бұл сілтемеге қатысты болмайтын бөлімі беріледі.

3 Терминдер мен анықтамалар

Бұл стандартта келесі термин сәйкес анықтамамен қолданылады:

Сүттегі май мөлшері (fat content of milk): бұл стандартта сипатталған әдіс бойынша анықталған заттардың салмақтық мөлшері.

ЕСКЕРТПЕ Май мөлшері салмақтық үлес ретінде көрсетілген, пайызбен.

^{*} СТ РК 1.9 КР СТ сәйкес қолданылады.

КР СТ ИСО 1211-2011

4 Әдістін мәні

Сыналатын үлгінің амиак-спирт ерітіндісі диэтил эфирі мен петролейн эфирі көмегімен айырылып алынады. Еріткіштерді айыру немесе буландыру арқылы жояды. Айырылатын заттардың салмағын анықтайды.

ЕСКЕРТПЕ Әдіс Розе-Готлиб ережесі ретінде танымал.

5 Реактивтер

Тек қана анықталған аналитикалық біліктілік реактивтерін және сүзілген су немесе тазалығы эквивалентті диминералды суды қолдану.

Көрсетілген 9.3.2 әдісі арқылы анықтау үрдісі жүргізілген кезде реактивтер айтарлықтай тұнба қалдырмауы қажет.

5.1 Аммиак ерітіндісі, салмақ үлесі NH₃ шамамен 25 % [ρ_{20} = 910 г/л].

ЕСКЕРТПЕ Егер аммиак ерітіндісінің қажетті концентрациясы қолда болмаса, концентрациясы элдекайда қатты ерітіндіні пайдалануға болады (9.5.1).

- 5.2 Этанол (C₂H₅OH), немесе этанол, денатурирленген метанол, құрамында этанолдың үлкен үлесі болады, кем дегенде 94 % (A.4).
 - 5.3 Конго қызыл ерітіндісі

1г Конго қызыл реактивін ($C_{32}H_{22}N_6Na_2O_6S_2$) сыйымдылығы 100 мл бір таңбасы бар шыны өлшеу сауытында суға ерітеді (6.14). таңбаға дейін сумен араластырады.

ЕСКЕРТПЕ 1 Бұл ерітіндіні қолдану еріткіш пен судың арасындағы бөлу шекарасын нақты көруге мүмкіндік береді, міндетті түрде емес (9.5.2). Басқа су түсті ерітінділер қолданылуы мүмкін, егер олар анықтау нәтижелеріне әсер тигізбесе.

ЕСКЕРТПЕ 2 Конго қызыл канцерогенді болып табылады.

5.4 Диэтил эфирі ($C_2H_5OC_2H_5$), тотықтан еркін (A.3), және бақылау тәжірибесі талаптарын қанағаттандырады (9.3.2 және A.2).

ЕСКЕРТПЕ Диэтил эфирінің қолданылуы қауіпті жағдайларға әкелуі мүмкін. Жұмыс істеген кезде, қолданған және жойған кезде қауіпсіздік шараларын сақтау қажет.

- 5.5 Петролейн эфирі, қайнау температурасының диапазоны 30 °C тан 60 °C дейін, эквивалент ретінде, пентан (CH₃[CH₂]₃CH₃) қайнау температурасы 36 °C, тәжірибесі талаптарын қанағаттандырады (9.3.2, A.1 және A.2).
- 5.6 Араластырылған ерітінді. Қолданыстан бұрын бірдей мөлшерде диэтил эфирі (5.4) мен петролей эфирін (5.5) араластырыңыз.

6 Аппаратура

ЕСКЕТПЕ Барлық жұмыс істейтін электр аппаратура мұндай ерітінділерді қолданған кезде қауіпсіздік ережелеріне сай болуы қажет, өйткені анықтама кезінде өртенгіш ұшпа ерітінділер қолданылады.

Қалыпты зертханалық жабдық және, әсіресе, келесі:

- 6.1 1 мг дейін нақты өлшемді қамтамасыз ететін аналитикалық таразы, шкала бөлімі 0.1 мг.
- 6.2 Шыны сауыттың немесе түтіктің сытрқы жағынан радиалды жылдамдығы 80 гнан 90-ға дейін, айналым жиілігі 500 мин⁻¹ дан 600 мин⁻¹ дейін май айыру үшін шыны сауыт немесе түтіктерді (6.6) ұстай алатын центрифуга.

Центрифуганы қолдану міндетті емес, бірақ ұсынылады (9.5.5).

- 6.3 Айыру немесе буландыру үшін, шыны сауыттан ерітіндіні немесе этанолды айыру үшін, айыру немесе коникалық шыны сауыт үшін, немесе темепературасы 100 °Сден жоғары болмаған кезде станкандар мен тостағандардан (9.5.12) буландыру үшін аппарат.
- 6.4 Желдету тесіктері ашық электр кептіргіш шкаф, жұмыс кезіндегі қолданылатын температура (102 ± 2) °C.

Шкаф сәйкес термометрмен жабдықталуы қажет.

- 6.5 Су моншасы, қолданылатын температуры 35 °С тан 40 °С дейін.
- 6.6 Майды айырып алу үшін ISO 3889 суреттелген Можонье шыны сауыттары.

ЕСКЕРТПЕ Сифоны немесе жуу қондырғысы бар май айыру түтігін пайдалану мүмкін, бірақ бұл жағдайда әдіс айырықша болады. Балама әдісі В қосымшасында суреттелген.

Май айыру шыны сауыттар сапасы жақсы қабық тығындармен немесе басқа материалдардан жасалған пайдаланылатын реагенттермен әрекеттеспейтін стопорлармен қамтамасыз етілуі қажет (мысалы, силикон резеңкесі немесе полиэтилентерефталат (РТГЕ)). Қабық тығын диэтил эфирмен өңделуі (5.4), кем дегенде 15 минуттың ішінде 60 °С немесе одан да асқан температурада суда сақталуы қажет жне содан кейін қолданылудан бұрын сумен толтыру үшін суда суытылған.

- 6.7 Май айыру шыны сауыттарды (немесе түтіктер) тіреп тұру үшін тіреуіштер (6.6).
- 6.8 Аралас ерітінділерді пайдалану үшін қолайлы жуу қондырғылары (5.6). Жуу үшін пластмас қондырғыларды қолданбау кажет.
- 6.9 сыйымдылығы 125 мл ден 250 мл дейін айыру үшін (түбі жазық) шыны сауыттар, сыйымдылығы 250 мл коникалық шыны сауыттар мен металл тостақандар сияқты май жинау ыдыстар.

Егер металл тостакандар колданылса, олар тот баспайтын құрыштан жасалуы қажет, тубі жазық және диаметрі 80 мм ден 100 мм дейін, ал биіктігі шамамен 50 мм.

- 6.10 Қайнатуды жеңілдететін материал, майсыздандырылған, көпіршіктелмеген фарфордан, кремний карбит немесе шыныдан.
- 6.11 Сыйымдылығы 5 мл ден 25 мл дейін өлшеу цилиндрлері, [4] класс А, немесе берілген өнімге сай кез келген басқа аппарат.
 - 6.12 Сыйымдылығы 10 мл градуирленген пипетка, [2] класс А.
- 6.13 Шыны сауыттарды, зертханалық стақандар мен тостақандарды ұстау үшін металдан жасалған ұстаушылар.
 - 6.14 Сыйымдылығы 100 мл бір таңбалы өлшеу шыны сауыттар, [3] класс А.

7 Үлгілерді іріктеу

Бұл стандартта үлгілерді іріктеу үрдісі сипатталмаған. Ұсынылған үлгілерді іріктеу әдісі [1] көрсетілген.

Зертхананың шын мәнінде белсенді және тысамал немесе сақталу кезінде бұзылмаған үлгі алуы өте маңызды болып табылады.

Үлгілерді іріктеу мерзімінен бастап 2 °С ден 6 °С дейін температурада сақтау қажет.

8 Сынақ үшін үлгіні дайындау

Су моншасына сыналатын үлгіні (38 ± 2) °C температураға дейін жылытады (6.5). Сүт майының көбіктенуін немесе шайқалуын болдырмай үлгіні мұқият араластырады. Үлгіні тез арада (20 ± 2) °C температураға дейін суытады.

Егер біртекті үлгілер алдын ала жылыту жасалынбай алынуы мүмкін болса (мысалы, майсыздандырылған сүт үлгілері), сынақ үшін үлгіні (20 ± 2) °C температурасына дейін

КР СТ ИСО 1211-2011

жеткізеді және көптеген рет үлгілерге арналған шыны сауытты бұрып мұқият араластырады.

Май мөлшерінің нақты мәнін алуға болмайды, егер:

- а) сүт майы бұлғанса;
- b) еркін май қышқылдарының анық иісі нақты сезіледі;

ЕСКЕРТПЕ Ешкі сүтінің құрамында табиғи түрде еркін май қышқылының төмен деңгейі бар, бұл әдіспен барлығы шығарып алынбайды.

с) егер үлгінің дайындығы кезінде немесе одан кейін үлгісі бар шыны сауыттың қабырғасында ақ бөлшектер көрінген немесе үлгінің бетінде май тамшысы қалқып жүреді.

9 Үрдіс

9.1 Жалпы ережелер

Қайталану шегінің сәйкестігіне әдісті тексеру үшін (11.2) 9.2 және 9.5 сәйкес екі анықтама жасайлы.

ЕСКЕРТПЕ Сифоны немесе жуу құрылғысы бар (6.6 қатысты Ескертпе) май айыру түтігін пайдалана отырып балама әдісі В қосымшасында берілген.

9.2 Сыналатын үлгі

Сауытты үш немесе төрт рет бұра отырып үлгіні мұқият араластырады (8-ші бөлім). Бірден 10 г нан 11 г дейін сыналатын үлгіні тікелей немесе 1 мг нақтылықпен майды айыру шыны сауытында (6.6) кеміту арқылы өлшейді.

Мүмкіндігінше үлгіні кішкентай май айыру шыны сауытына толық тасымалдайды.

- 9.3 Бақылау тәжірибесі
- 9.3.1 Әдісті тексеру үшін бақылау тәжірибесі

Бақылау тәжірибесін бірдей әдіс пен бірдей реактивтерді пайдалана отырып, бірақ сыналатын үлгіні 9.2-да 10 мл суға (А.1) алмастыра отырып үлгінің талдауымен бірге орындайды.

Сынақ үшін үлгі топтама талданған кезде, кептіру кезеңдерінің сандары әртүрлі үлгілердің арасында айрықша болуы мүмкін. Егер барлық топтама үшін бланкілік үлгісі қолданылса, онда кез келген бөлек үлгінің май мөлшерінің есебінде қолданылатын бланкілік үлгі үшін мағына сынақ үшін бөлек үлгімен бірдей шарттарда алынуы қажет.

Егер бақылау тәжірибесі барысында алынған мағына әрдайым 1,0 мг асатын болса, реактивтерді тексеру қажет (9.3.2). 2,5 мг түзетулер сынақ протоколдарында белгіленуі кажет.

9.3.2 Реактивтерді тексеру үшін бақылау тәжірибесі

Реактивтердің сапасын тексеру үшін 9.3.1 бойынша бақылау тәжірибесі орындалады. Май жинау үшін салмақты бақылау мақсатымен қосымша ретінде 9.4 бойынша дайындалған бос ыдысты қолданады. Реактивтер 1,0 мг (А.2) астам тұнба қалдырмауы кажет.

Егер бақылау тәжірибесінде тұнба салмағы 1,0 мг астам болса, бөлек айдау жолымен 100 мл диэтил эфир (5.4) және петролейн эфир (5.5) сәйкес ерітінділердің тұнба мөлшерін анықтау қажет. 1,0мг-ден аспауы қажет болған тұнбаның нақты салмағын алу үшін жоғарыда сипатталғандай бақылау мақсаттары үшін дайындалған бос май жинау ыдысын қолданады.

Сапасы төмен реактивтерді, ерітінділерді және реактивтерді қайталанған айдаудан кейін алмастыру.

9.4 Май үшін жинақ дайындау

Қайнатуды жеңілдететін (6.10) материалды қосуми май жинау ыдысын (6.9) кептіргіш шкафында (6.4) 1 сағат ішінде (102 ± 2) °C температура кезінде кептіреді.

ЕСКЕРТПЕ 1 Қайнатуды жеңілдететін материалдар ерітінділердің келесі жойылуы кезінде қалыпты қайнауын сақтау үшін қажет, әсіресе егер май жинау үшін шыны ыдыстар қлданылса.

Май жинау ыдысын шаңнан қорғау және таразы бөлменің температурасына дейін суыту қажет. Май жинау үшін шыны ыдысты – кем дегенде 1 сағат, металл тостақанды – кем дегенде 30 минут. Жартылай суытуды болдырмау үшін немесе суытудың шамадан тыс ұзақ уақытын болдырмау үшін май жинау ыдыстарын эксикаторға орналастырмау кажет.

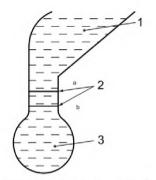
Таразыға май жинау ыдыстарын орналастыру үшін ұстауыштарды пайдаланады (6.13). Май жинау ыдысын 1,0 мг нақтылықпен өлшейді.

ЕСКЕРТПЕ 2 Әсіресе, температуралық өлшемдерді болдырмау үшін ұстауыштарды пайдалану ұсынылады.

- 9.5 Анықтау
- 9.5.1 Анықтауды үлгіні өлшеу мерзімінен бастап 1 сағаттың ішінде орындайды.

Май айыру шыны сауытына (9.2) сынаталатын үлгіге қатысты 2 мл аммиак ерітіндісін (5.1) немесе әлдеқайда қатты концентрленген эквивалентті аммиак ерітітіндісін (5.1) қосады. Айыру шыны сауытының кіші ыдысында сынаталтын үлгімен мұқият араластырады.

- 9.5.2 10 мл этанол қосады (5.2). Айыру шыны сауытының ішіндегісінің кіші және үлкен ыдыс арасында тікелей және кері бағыттарда ағуы үшін ұқыпты, алайда мұқият араластырады. Сұйықтықтың шыны сауыттың аузына қарай жақын жетуін бодырмау. Қажет болса, Конго қызыл (5.3) етітіндісінің 2 тамшысын қосуға болады.
- 9.5.3 25 мл диэтил эфирін қосады (5.4). Шыны сауытты суланған қабат тігінен жабады (6.6). түрақты эмульсиялардың пайда болуын бодырмау үшін 1 минуттың ішінде сілкеу, бірақ қатты емес.


Сілкеу кезінде жоғары бағытталған кіші ыдысы бар май айыру шыны сауытын көлденең ұстау қажет, дүркін-дүркін сұйықтыққа кіші ыдыстан үлкен ыдысқа ағуға мүмкіндік бере отырып. Қажет болған кезде бөлме температурасына дейін ағын суға суытады. Мұқият тығынды алып шығады және оны сонымен қатар оның аузын аралстаралған ерітіндісінің аз ғана мөлшерімен жуады (5.6). Жуу сұйықтығы шыны сауытына ағуы үшін жуу құрылғысын пайдаланады (6.8).

- 9.5.4 25 мл потролит эфирін қосады (5.5). Айыру шыны сауытын қайтадан суланған тығынмен немесе бітеуішпен жабады. 9.5.3 суреттелгендей 30 секундтың ішінде мұқият араластырады.
- 9.5.5 Жабық шыны сауытты жылдамдығы 80 г-нан 90г дейін 1 минуттан 5 минутке дейін центрифугтайды. Егер центрифуга болмаса (6.2), жабық шыны сауытты тіреуішке қою қажет (6.7) және сұйықтықтың үстіңгі қабаты мөлдір болып су қабатынан бөлінгенше 30 минут ұстау қажет.
- 9.5.6 Мұқият тығын немесе бітеуішті алып тастыйды және араласқан ерітіндінің аз ғана мөлшерімен оны және аузын жуады (5.6). Жуу сұйықтығы шыны сауытқа ағуы үшін жууға арнылған құрылғыны пайдаланады (6.8). Егер шыны сауыттың төменгі жағында орналасқан қабаттар арасындағы ерітіндінің декантациясын жеңілдету үшін қабаттар арасындағы бөліну шекарасы шыны сауыт негізінің астыңғы жағында орналасса, ерітіндінің декантациясын жеңілдету үшін мұқият су қоса отырып, оны бұл деңгейден сәл жоғары көтеруге болады (1-ші Сурет).

КР СТ ИСО 1211-2011

ЕСКЕРТПЕ 1 және 2 суретте ISO 3889-да суреттелген үш шыны сауыттың бірі таңдалған, алайда бұл басқа түрлердің арасында оның артықшылығын білдірмейді.

- 9.5.7 Ұстауыш арқылы шыны сауытты ұстай отырып, айдау үшін шыны сауыттан немесе дайындған май жинау ыдысына коникалық шыны сауыттар үстіңгі қабатты мұқият деканттейді (9.4) (1-ші суреттің ерітінділері). Кез келген су қабатының декантациясын қажет (2-ші сурет).
- 9.5.8 Араласқан ерітіндінің аз ғана мөлшерімен шыны сауыты ауызының сыртқы бетін шаяды (5.6). Жуу сұйықтығын май жинау ыдысына жинайды. Араласқан ерітіндінің шыны сауыттың сыртқы бетінен ағуын болдырмау қажет. Қажет болса, 9.5.12-де суреттелгендей айдау немес буландыру кезінде май жинау ыдысынан еріткішті толық немесе жартылай жоюға балды.
- 9.5.9 Айыру шыны сауытына 5 мл этанол (5.2) қосады. Этанолды пайдалана отырыпп, 9.5.2-де суреттелгендей шаяда. Егер алдында Конго қызыл ерітіндісі (5.3) қосылған болса, онда енді ерітіндіні қоспайды.

Шартты белгілер: 1 - еріткіш; 2 – бөлініс шекарасы; 3 – су қабаты а — Екінші және үшінші айыру кезінде; b – Бірінші айыру кезінде.

2 ----

Шартты белгілер: 1 бөлініс шекарасы; 2 – су қабаты.

- а Екінші және үшінші айыру кезінде;
- b Бірінші айыру кезінде.

1-ші сурет – Декантациядан бұрын

2-ші сурет – Декантациядан кейін

- 9.5.10 Екінші айыруды 9.5.3 тен 9.5.7 дейінгі әрекеттерді қайталай отырып, 25 мл диэтил эфирінің орнына (5.4) тек қана 15 мл косып, сонымен қатар 15 петролейн эфирін қосып (5.5) орындайды. Қажет болса, бөлініс шекарасын шыны сауыт негізінің ортасына дейін кішкене ғана көтереді, еріткіштің декантациясын жеңілдету үшін (2-ші сурет) мұқият су қоса отырып (1-ші сурет).
- 9.5.11 Үшінші айыруды этил спиртін қоспай-ақ 9.5.3тен 9.5.7 дейінгі операцияларды қайталай отырып орындайды.

Тек қана 15 мл диэтилэфирі (5.4) мен 15 мл петролей эфирі қолданылады (5.5). Қажет болса, бөліні шекарасын шыны сауыт негізінің ортасына дейін кішкене ғана көтереді, еріткіштің декантациясын жеңілдету үшін (2-ші сурет) мұқият су қоса отырып (1-ші сурет).

Үшінші айыру май мөлшері салмақ үлесінен 0,5% кем сүт үшін жасалынбауы мүмкін.

9.5.12 Ерітінділерді (соның ішінде этанол) мүмкіндігінше толығымен шыны айыру сауытынан айдау арқылы жояды, егер айдау немесе коникалық шыны сауыттарды

пайдаланса, немесе буландыру арқылы жояды, егер стақан немесе тостақан пайдаланса (6.3). Айдау алында араласқан ерітіндінің аз ғана мөлшерімен (5.6) айдау немесе коникалық шыны сауыттарының аузын шаяды.

9.5.13 Май жинау шыны сауытын (айдау немесе коникалық шыны сауытты) көлденең (102 ± 2) °C температураға кептіру шкафына орналастырады (6.4) және 1сағат ұстайды (ерітінділердің буларының ұшып кетуі үшін).

Май жинай ыдысын кептіру шкафынан алып шығады және бірден тексерді, май таза болады ма. Егер майда басқа қоспалар бар болса, онда барлық үрдісті қайталау қажет. Егер май таза болса, ыдысты шаңнан қорғап, өлшеу бөлмесінің температурасына дейін суытады(май жинау шыны ыдысты – шамамен 1 сағат, металл тостақанды кем дегенде 30 минут. Май жинау ыдысын жартылай суытуды болдырмау үшін және суыту уақытының тым ұзақ болуын болдырмау үшін эксикаторға орналастырмау кажет.

Май жинау ыдысын дәл өлшеу алдында сүрту қажет емес. Ыдысты таразыға (6.1) орнықтыру үшін ұстаушыларды пайдаланады (6.13). ыдысты 1,0 мг нақтылығымен өлшейлі.

9.5.14 Май жинау шыны сауытын, айдау немесе коникалық шыны сауытты көлденең (102 ± 2) °C температураға кептіру шкафына орналастырады (6.4) және 30 минут ұстайды. Суытады және 9.4.13де суреттелгендей қайтадан өлшейді. Қажет болса, келесі екі өлшеу арасындағы салмақ 1,0 мг дейін азайғанша немесе арта бастағанша жылытуды және өлшеуді қайтадан қайталайды. Минималды салмақты май жинау ыдысының және айырып алынатын заттың салмағы ретінде тіркейді.

10 Нәтижелерді өңдеу және ұсыну

10.1 Нәтижелерді өңдеу

Үлгіде май мөлшерін есептейді, $w_{\rm f}$, (1) Формуласын пайдалана отырып үлгінің салмақтық үлесінің пайызы ретінде көрсетілген:

$$w_{f} = \frac{(m_{1} - m_{2}) - (m_{3} - m_{4})}{m_{0}} \times 100\%, \tag{1}$$

мұндағы m_0 – сыналатын үлгінің салмағы (9.2), г;

 m_I — май жинау ыдыстың және айырып алынған заттың салмағы, 9.5.14 бойынша анықталған, г;

 m_2 – май жинау үшін дайындалған ыдыстың салмағы (9.4), г;

 m_3 — бақылау тәжірибесінде пайдаланылатын май жинау ыдысының (9.3.1) және 9.5.14-те берілген айырып алынатын кез келген заттың салмағы, г;

 m_4 — бақылау тәжірибесінде (9.3.1) қолданылатын май жинау ыдысының салмағы (9.4), г.

10.2 Нәтижелердің білдірілмесі

Нәтижені екі ондық белгіге дейін жинақтайды.

11 Ұқсастық

11.1 Зертхана аралық анықтау

Ұқсастық әдісінің зертхана аралық анықтауының толықтығы [5] және [6] халықаралық стандарттарға сәйкес.

Зертхана аралық сынақтардың толық мәліметтері әдістің нақтылығы бойынша С және D қосымшаларында сәйкес берілген (сонымен қатар [8] сілтемесі). Қайталау мен

КР СТ ИСО 1211-2011

қайта орындау шектерінің мағыналары 95 %-дық сенім деңгейі үшін көрсетілген және концентрация саласы мен мәліметтерден өзгеше матрицалар үшін қолданылмайды.

11.2 Қайталану

Материалдың бірдей үлгісінің әртүрлі зертханаларда әртүрлі операторлармен әртүрлі құралдармен бір әдіс қолдану нәтижесінде алынған өлшемнің екі тәуелсіз нәтижелері арасындағы абсолюттік айырмашылық қысқа мерзім ішінде салмақтық үлестен 5 % жағдайлардан көп болмауы қажет:

- а) 0,031 % майсыздандырылған сиыр сүті үшін;
- b) 0,036 % май мөлшері төмен сиыр сүті үшін;
- с) 0,043 % тұтас сиыр сүті үшін;
- d) 0,030 % ешкі сүті үшін;
- е) 0,069 % қой сүті үшін.
- 11.3 Қайта орындалу

Материалдың бірдей үлгісінің әртүрлі зертханаларда әртүрлі операторлармен әртүрлі құралдармен бір әдіс қолдану нәтижесінде алынған өлшемнің екі тәуелсіз нәтижелері арасындағы абсолюттік айырмашылық қысқа мерзім ішінде салмақтық үлестен 5 % жағдайлардан көп болмауы қажет:

- а) 0,043 % майсыздандырылған сиыр сүті үшін;
- b) 0,042 % май мөлшері төмен сиыр сүті үшін;
- с) 0,056 % тұтас сиыр сүті үшін;
- d) 0,052 % ешкі сүті үшін;
- е) 0,096 % қой сүті үшін.

12 Сынақтар протоколы

Сынақтар протоколының құрамында кем дегенде келесі мәліметтер болуы қажет:

- а) үлгілердің толық сәйкестендірілуі үшін қажет болатын барлық ақпарат;
- b) егер белгілі болса, онда улгілерді іріктеу әдісі;
- с) бұл стандартқа сүйене отырып қолданылған әдіс;
- d) бұл стандартта сипатталмаған немесе міндетті емес барлық бөлшектер, талдаудың нітижелеріне әсер ететін болжанбаған кез келген жағдайлармен бірге;
 - е) егер бақылау тәжірибесінде мағына 2,5 мг-тен көп болса, түзетүлер енгізу;
- f) алынған нәтиже (лер); немесе ақырғы жарияланған нәтиже, егер қайталану орындалса.

А қосымшасы (ақпараттық)

Үрдістерге қатысты ескертпелер

А.1 Анықтаумен бірге орындалатын бақылау тәжірибесі (9.3.1)

Анықтау мен бірге жасалған бақылау тәжірибесін өткізу кезінде алынған мағына кез келген ұшпа емес заттың бар болуымен, сонымен қатар екі өлшеу кезінде таразы бөлмесінде кез келген атмосфералық өзгерістердің бар болуымен бірге сыналған үлгіден $(m_1 - m_2)$ айырып алынған заттардың соңғы салмағын түзетуге мүмкіндік береді (9.5.14) және (9.4). бақылау үлгілерін пайдаланған кезде сынаққа арналған бірнеше үлгі үшін бос сауыт үлгілерді жинау сауытын соңығы саут тұрақты салмаққа дейін жеткенше сүйемелдейді.

Май мөлшерін есептеу үшін сыналатын үлгіні кептіру цикліне сәйкес болатын бос ыдыс салмағын пайдаланады [яғни n кептіру циклінде турақты салмаққа жеткен сынақ ыдысы үшін n кептіру циклінде бос салмақты пайдаланады; кептіру циклі үшін (n + 1) кептіру циклінің бос салмағын (n + 1) пайдаланады және т.б. (9.3.1)].

Қолайлы шарттарда, реактивтер бойынша басқылау тәжірибеде төмен мағына сияқты, өлшеуді жасау үшін бөлмедегі тұрақты температурасы, май жинау ыдысының суытуы үшін жеткілікті уақыт, әдетте мағына 1,0 мг төмен және қалыпты анықтаулар жағдайында есептеулер жасаған кезде есепке алына алмайды. Біраз көтерілген мағыналарды (оң немесе теріс) 2,5 мг дейін де есепке алмайды. Мұндай мағыналардың түзетілуінен кейін нәтижелер нақты болады. Егер 2,5 мг артық түзетулер енгізілсе, онда бұл сынақ протоколнда белгіленуі қажет (12-ші бөлім).

Егер бақылау тәжірибесінде алынған мән әрдайм 1,0 мг асса, онда реактивтер тексерілуі қажет. Қоспалары бар кез келген реактивтер алмастыру және тазарту қажет (9.3.2 и А.2).

А.2 Реактивтерді тексеру үшін бақылау тәжірибесі (9.3.2)

Бақылау тәжірибені өткізген кезде салмақты бақылау үшін мұндай май жинау ыдысы пайдалануы қажет, таразы бөлменің атмосфералық шарттарының өзгеруінен немесе реагенттердің экстрактыда ұшпалы емес заттар болмағандықтан. Осындай май жинау ыдысы теңестіретін ыдыс ретінде қолдануы мүмкін, егер екі тостақаны бар таразы пайдаланылса. Теріс жағдайда май жинау ыдысы салмағының ауытқуы (m_3 - m_4 в 10.1) есептелуі қажет, егер бақылау тәжірибесінде май жинау ыдысының салмағы тексерілсе. Сол себепті бақылау әдісі кезінде май жинау ыдысының сыйымдылық салмағының өзгеруі 1,0 мг артық болмауы қажет.

Ерітінділердің құрамында майда берік сақталған ұшпа заттары болуы мүмкін. Егер мұндай заттардың болуын дәлелдейтін индикаторлар болса, май жинау үшін ыдысты және шамамен 1 г сусыз сүт майын пайдалана отырып барлық реактивтер үшін және әрбір ерітінді үшін бақылау тексеруін орындау қажет. Егер қажет болса, ерітінділерді 100 мл ерітіндіге 1 г сусыз сүт майымен қайтадан айдайды. Ерітінділерді екінші айдаудан кейін бірден пайдалану қажет.

А.3 Тотықтардың бар болуына қатысты зерттеулер

Тотықты зерттеу үшін алдымен эфирмен жуылған берік кептелген тығыны бар кіші шыны цилиндрдің ішіндегі 10 мл диэтил эфиріне (5.4) жаңа жасалған концентрациясы 100

КР СТ ИСО 1211-2011

г/л йодид калий ерітіндісінің 1 мл қосады. Цилиндрді сілкейді және 1 минутқа қалдырады. Сонымен бірге диэтил қабаты сарғаймауы қажет.

Тотықтарды анықтау үшін басқа да тәсілдер қолданылуы мүмкін.

Диэтил эфирі тотықтардан бос екеніне кепілдік бері үшін диэтил эфирін келесі жолмен өңдеу қажет.

Цинк фольгасын кесінділерге кеседі, олармен диэтил эфирі бар үлкен шыны ыдысты жартылай толтырады, ол үшін 1 литр диэтил эфиріне шамамен 8000 мм² фольга пайдаланылады.

Пайдалану алдында фольганың кесінділерін 1 минутқа толығымен 1 литрге 10 г бессулы сульфат мыс (II) ($CuSO_4$ · $5H_2O$) пен 2 мл концентрленген күкірт қышқылы (салмақ үлесі 98 %) бар ерітіндіге батырады. Кесінділерді мұқият толығымен сумен жуады, мыспен қапталған су кесінділерді диэтил эфирі бар үлкен шыны сауытқа орналастырады және кесінділерді сонда қалдырады.

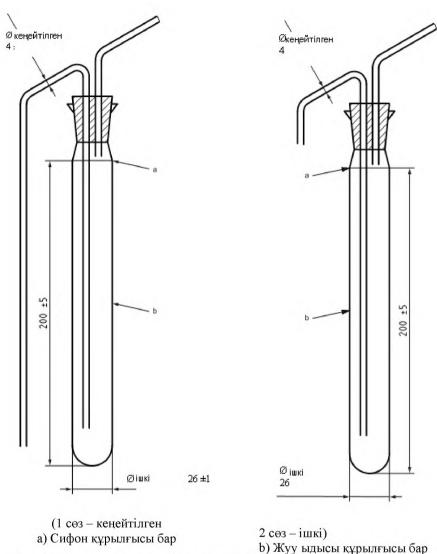
Басқа тәсілдер қолданылуы мүмкін, егер олар анықтау нәтижелеріне әсер етпесе.

А.4 Этанол

Этанол, метанол емес, басқа бір тәсіл арқылы денатурирленген, денатурат анықтай нәтижелеріне әсер етпейтін жағдайда ғана қолданылуы мүмкін.

В косымшасы

(ақпараттық)


Сифоны бар майсыздандырылған құбырлар мен жуу жабдықтарын пайдалану арқылы балама үрдістер

В.1 Жалпы ережелер

Егер майды жою үшін сифоны бар түтіктер немесе жуу үшін жабдықтар колданылса, бұл қосымшада суреттелген әдісті пайдалану кажет. Түтіктердің сапасы жақсы қабықша тығындары немесе 6.6 (Мысал В.1 суретінде берілген) сипатталған стопорлары болуы кажет

В.2 Әдістеме

- В.2.1 Сынақтан өтетін үлгіні дайындау
- 8-ші Бөлім.
- В.2.2 Сынақтан өткізілетін үлгі
- 9.2 суреттелгендей майды айырып алу үшін түтіктерді пайдалана отырып дайындайды (6.6 және В.1 Ескертпе). Сыналатын үлгі майдыі айырып алынуы үшін түтіктің түбіне орнатылуы қажет.
 - В.2.3 Бақылау тәжірибесі
 - 9.3 және А.1.
 - В.2.4 Майды жинау үшін ыдыс дайындау
 - 9.4.
 - В.2.5 Анықтама
 - В.2.5.1 Өлшемдерді бірден жсайды.
- В.2.5.2 10 мл этанол қосады (5.2). Абайлып, бірақ майды айырып алу үшін түтікте қоспамен мұқият араластырады. Қажет болса Конго қызыл ерітіндісінің 2 тамшысын қосады (5.3).
- В.2.5.3 25 мл диэтил эфирін қосады (5.4). Майды айырып алу үшін түтікті су сіңген тығынмен немесе суланған стопормен жабады (6.6). түтікті қатты сілкейді, бірақ 1 минуттың ішінде бірнеше рет катты бұрамайды, ауыр эмульсияның пайда болуын болдырмау үшін. Қажет болса, ағын суға түтікті суытады. Мұқият тығынды немесе сторды алып тастайды және оны және түтіктің аузын аз мөлшерде араластырылған ерітіндімен жуады (5.6). Жуу үшін арнайы құрылғыларды пайдаланады (6.8), жуу сұйықтығы түтікке ағуы үшін.

- а) Жойылған арматурамен берілген деңгейге дейін сыйымдылық (105 ± 5) мл.
- b) Қабырға қалыңдығы $(1,5\pm0,5)$ мм.

В.1 суреті - Майды айырып алу үшін түтіктердің мысалдары

- В.2.5.4 25 мл петролей эфирін қосады (5.5). Майды айырып алу үшін қайталанып суланған (суға батырылған) тығынмен немесе стопормен түтікті жабады. В.2.5.3-те суреттелгендей 30 секундтың ішінде түтікті мұқият сілкейді.
- В.2.5.5 Радиалды жылдамдығы 80 г ден 90 г дейін 1 минуттан 5 минутқа дейінгі уақыттың ішінде майды айырып алу үшін жабық трубканы центрифугтайды. Егер

центрифугтайды жасауға мүмкіндік болмаса (6.2), су қабатындан бөлінген қалқып шыққан қабат пайда болғанша дейін кем дегенде 30 минут бұрын жабық трубканы түреуіште қалдырады (6.7). Қажет болса, трубканы бөлме температурасына дейін ағын суға суытады.

- В.2.5.6 Тығынды немесе бітеуішті мұқият алып шығады және майды айырып алу үшін оны немесе оның аузын араластырылған ерітіндінің аз бөлігімен жуады (5.6). Жуу сауытын пайдаланады (6.8.), яғни түтікте шыныны жуу үшін.
- В.2.5.7 Сифон құрылғысын немесе жуу құралын түтікке орналастырады. Қабаттардың арасындағы бөлініс шегі шамамен 4 мм-ден жоғары болған кезге дейін құрылғының ұзын ішкі трубкасын басады. Құрылғының ішкі трубкасы май айыру түтігінің ось сызығына параллельді болуы қажет.

Майды айыру түтігінен үстіңгі қабатты құрамында қайнатуды жеңілдететін материалдары бар (6.10) май ыдысына мұқият тасымалдайды (9.4), егер айыру және коникалық шыны сауыттар қолданылса (міндетті емес). Кез келген су қабатының жөнелтілуін болдырмайды.

ЕСКЕРТПЕ Үстіңгі қабатты май айыру түтігінен мысалыға, қысым жасау үшін қысқа өзекке бекітілген резеңке грушаны пайдалана отырып алуға болады.

- В.2.5.8 Май айыру түтігінің аузынан құрылғыны алып тастайды. Арматураны кішкене ғана жоғары көтереді және араласқан ерітіндінің аз мөлшерімен оның ұзын өзігінің төменгі жағын жуады (5.6). Құрылғыны төмен түсіреді және қайтадан орнатады және май жинайтын ыдысқат жуу сұйықтығын тасымалдайды. Май жинағыш жуу сұйықтығын жинай отырып қайтадан араласқан ерітіндінің аз мөлшерімен құрылғының шығу тесігін жуады. Қажет етілсе 9.5.12 суреттелгендей айырумен немесе буландырумен май жиналатын ыдыстан ерітіндіні толығымен немесе жартылай алып тастауға болады.
- В.2.5.9 Қайтадан құрылғыны аузынан алып тастайды. Құрылғыны аз ғана көтереді және май айыру түтігінің ішіндегісіне 5 мл этанол қосады. Этанолды пайдалана отырып құрылғының ұзын ішкі трубкасын жуады. В.2.5.2 бойынша араластырады.
- В.2.5.3 ден В.2.5.8 дейін суреттелгендей әрекеттерді қайталай отырып В.2.5.10 екінші айыруды орындайды. 25 мл орнына тек қана 15 мл диэтил эфирі (5.4) мен 15 мл петролейн эфирін пайдаланады. Бұрын жасалған айырудан кейін құрылғының ұзын ішкі трубқасын жуу ушін диэтил эфирін пайдаланады.
- В.2.5.11 Ушінші экстракцияны этанолды қоспай-ақ жасайды, В.2.5.3ден бастап В.2.5.8ге дейінгі әрекеттерді қайталай отырып. Тек қана 15 мл диэтил эфирі және 15 мл петролейн эфирі қолданылады. құрылғының ұзын ішкі құбырын жуу үшін В.2.5.10 суреттелгендей диэтил эфирін қолданады.

Май мөлшері салмақ мөлшерінен 0,5% кем болған сүт үшін үшінші экстракцияны өткізбеуге болады.

В.2.5.12 9.5.12 ден 9.5.14 дейін анықтамаларды жалғастырады.

С қосымшасы

(ақпараттық)

Шикі сүт бойынша зертханалар аралық сынақтар

С.1 Жалпы ережелер

Біріккен халықаралық сынақтар 2005 жылы желтоқсан айында өткізілді [8], құрамына 13 елден 19 зертхана кіреді. Сынақ сүттің әр бір түрі бойынша 12 жұл еркін бақылау үлгілерінде өткізілді, құрамында:

- а) майсыздандырылған сүттің үш жұп үлгісі,май мөлшері $w_{\rm f} < 0.5$ г / 100 г шамасында:
- b) май мөлшері төмен сүттің үш жұп үлгісі, май мөлшері 0,5 г / 100 г \leq $w_{\rm f}$ \leq 2 г / 100 г шамасында:
- с) алты жұп шикі сүттің үлгілеріндегі май мөлшері 3 г / 100 г $\leq w_{\rm f} \leq$ 6 г / 100 г. шамасында. Сынақ Associazione Italiana Allevatori, Laboratorio Standard Latte, Maccarese, Италия тарапынан ұйымдастырылған.

Алынған нәтижелер [5] мен [6] сәйкес статистикалық талдау объектісі болып табылды, сәйкес С.1, С.2 және С.2 кестелерінде берілген.

С.2 Сынақ нәтижелері

С.1 кесте – Майсыздандырылған сүт үшін берілген нәтижелер

Параметрлер		Үлгі	Жалпы ортоша ^{а)}	
	3	12	1	орташа ^{а)}
Тасталындылардың жойылуынан кейін жұмыс	11	10	11	-
істеген зертханалар саны				
Орташа мағына г/100 г	0,222	0,336	0,487	0,348
Қайталанудың стандарттық ауытқулары, s_r , г/100г	0,011	0,010	0,012	0,011
Қайталанудың шекаралары r (2,8· s_r), г/100 г	0,030	0,028	0,034	0,031
Қайталану түрлендірмесінің коэффициенті, $C_{V,r}$,	13,7	8,3	7,0	8,9
%				
Іске қосудың стандарттық ауытқулары, s_R , г/100 г	0,018	0,010	0,017	0,016
Іске қосудың шекаралары R (2,8· s_R), г/100 г	0,051	0,028	0,047	0,043
Іске қосу түрлендірмесінің коэффициенті, $C_{V, R}$, %	23,0	8,5	9,6	12,5

^{а)} Орташа мағыналар тек қана жойылған тасталындылары бар іріктемелердің қолданылуымен ғана есептелген. Басқа статистикалық орташа ауытқу квадратының орташа мағынасының квадратты түбірінен есептелген.

С.2 кесте – Май мөлшері төмен сүт үшін берілген нәтижелер

Попоможную		Улгі		Жалпы
Параметрлер	7	6	2	орташа ^{а)}
Тасталындылардың жойылуынан кейін жұмыс істеген зертханалар саны	11	11	11	_
Орташа мағына г/100 г	0,561	1,368	2,039	1,323
Қайталанудың стандарттық ауытқулары, s_r , г/100г	0,011	0,011	0,016	0,013
 Қайталанудың шекаралары r (2,8· s_r), г/100 г	0,031	0,032	0,044	0,036
Қайталану түрлендірмесінің коэффициенті, $C_{V, r}$,	5,5	2,4	2,2	2,7
Іске қосудың стандарттық ауытқулары, s_R , г/100 г	0,016	0,013	0,016	0,015
Іске қосудың шекаралары R (2,8 · s_R), г/100 г	0,044	0,036	0,045	0,042
Іске қосу түрлендірмесінің коэффициенті, $C_{V,R}$, %	7,8	2,6	2,2	3,2

а) Орташа мағыналар тек қана жойылған тасталындылары бар іріктемелердің қолданылуымен ғана есептелген. Басқа статистикалық орташа ауытқу квадратының орташа мағынасының квадратты түбірінен есептелген.

С.3 кесте – Тұтас сүт үшін берілген нәтижелер

C.5 Kecre	- 1¥1a	ccyr	шіп О	chmire	U UAIN	імелер	<u> </u>
Попомотриор			YJ	тгі			Жалпы орташа ^{а)}
Параметрлер	9	5	10	4	11	8	жалпы орташа
Тасталындылардың	10	11	10	11	9	11	_
жойылуынан кейін жұмыс							
істеген зертханалар саны							
Орташа мағына г/100 г	3,032	3,287	4,052	4,305	5,503	5,825	4,334
Қайталанудың стандарттық	0,010	0,017	0,011	0,022	0,014	0,013	0,015
ауытқулары , s_r , г/100 г Қайталанудың шекаралары r							
$(2,8\cdot s_r), \Gamma/100 \Gamma$				_			
Қайталану түрлендірмесінің коэффициенті, $C_{V,r}$, %	0,9	1,4	0,8	1,5	0,7	0,7	1,0
Іске қосудың стандарттық	0,014	0,021	0,013	0,025	0,015	0,025	0,020
ауытқулары, s_R , г/100 г							
Іске қосудың шекаралары R	0,040	0,059	0,037	0,071	0,043	0,069	0,056
$(2,8\cdot s_R)$, $\Gamma/100 \Gamma$							
Іске қосу түрлендірмесінің	1,3	1,8	0,9	1,7	0,8	1,2	1,3
коэффициенті, $C_{V,R}$, %							

^{а)} Орташа мағыналар тек қана жойылған тасталындылары бар іріктемелердің қолданылуымен ғана есептелген. Басқа статистикалық орташа ауытқу квадратының орташа мағынасының квадратты түбірінен есептелген.

D қосымшасы

(ақпараттық)

Шикі күйіндегі қой сүті және шикі күйіндегі ешкі сүтінің зертханалар аралық сынақтар

D.1 Жалпы ережелер

Біріккен халықаралық сынақтар 2006 жылы қарашада өткізілді [8], құрамына тоғыз елден 16 зертхана кіреді. Сынақ сүттің әр бір түрі бойынша 6 жұп еркін бақылау үлгілерінде өткізілді. Қой сүтінің үлгілерінде 100 г. 4,5 г. майдан, 100 г. 8,5 майға дейін құрады; ешкі сүтінің үлгілерінің құрамында май мөлшері 100 г. 1,5тен 100 г. 5,0 дейін болды.

Сынақтар Associazione Italiana Allevatori, Laboratorio Standard Latte, Maccarese, Италия тарапынан ұйымдастырылды.

Алынған нәтижелер [5] мен [6] сәйкес статистикалық талдау объектісі болып табылды, сәйкес D1 және D.2 кестелерінде берілген.

D.2 Сынақ нәтижелері

D.1 кестесі – Қой сүті үшін берілген нәтижелер

D.1 Ketteti-	T(OH C)	11 YILL	ii ocpi	11 (11 110	THIMCSI	<u>ср</u>	
			YJ	ıri			N C
Параметрлер	9	5	10	4	11	8	Жалпы орташа ^{а)}
Тасталындылардың жойылуынан кейін жұмыс істеген зертханалар		12	13	14	12	14	_
саны							
Орташа мағына г/100 г	6,492			8,334		-	6,678
Қайталанудың стандарттық ауытқулары , s_r , г/100 г	0,032	0,022	0,013	0,032	0,012	0,028	0,025
1	0,090	0,062	0,038	0,090	0,033	0,078	0,069
$(2,8\cdot s_r)$, г/100 г Қайталану түрлендірмесінің коэффициенті, $C_{V,r}$, %		1,4	0,7	1,1	0,4	1,0	1,0
Іске қосудың стандарттық ауытқулары, s_R , г/100 г	0,044	0,022	0,033	0,042	0,025	0,033	0,034
Іске қосудың шекаралары R (2,8 · s_R), г/100 г	0,123	0,062	0,091	0,119	0,069	0,092	0,096
Іске косу түрлендірмесінің коэффициенті, $C_{V,R}$, %	1,9	1,4	1,6	1,4	0,9	1,2	1,4

^{а)} Орташа мағыналар тек қана жойылған тасталындылары бар іріктемелердің қолданылуымен ғана есептелген. Басқа статистикалық орташа ауытқу квадратының орташа мағынасының квадратты түбірінен есептелген.

КР СТ ИСО 1211-2011

D.2 кесте – Ешкі сүті үшін берілген нәтижелер

			\mathbf{Y}_{J}	ті			Жалпы
Параметрлер	1	2	3	4	5	6	орташа ^{а)}
Тасталындылардың жойылуынан	l	14	12	14	14	13	_
кейін жұмыс істеген зертханалар							
саны							
Орташа мағына г/100 г				2,200			3,285
Қайталанудың стандарттық	0,008	0,012	0,011	0,008	0,012	0,010	0,011
ауытқулары , s_r , г/100 г							
Қайталанудың шекаралары r	0,023	0,035	0,031	0,023	0,035	0,029	0,030
$(2,8\cdot s_r), \Gamma/100 \Gamma$							
Қайталану түрлендірмесінің	0,7	2,3	0,6	1,1	0,8	0,8	0,9
коэффициенті, $C_{V, r}$, %				·			
Іске қосудың стандарттық	0,017	0,018	0,020	0,019	0,023	0,015	0,019
ауыткулары, s_R , г/100 г							
Іске қосудың шекаралары R (2,8 · s_R),	0,048	0,051	0,055	0,053	0,063	0,042	0,052
г/100 г							
Іске қосу түрлендірмесінің	1,6	3,3	1,1	2,4	1,4	1,1	1,6
коэффициенті, $C_{V, R}$, %							

а) Орташа мағыналар тек қана жойылған тасталындылары бар іріктемелердің қолданылуымен ғана есептелген. Басқа статистикалық орташа ауытқу квадратының орташа мағынасының квадратты түбірінен есептелген.

Библиография

- [1] ISO 707/IDF 50 Milk and milk products. Guidance on sampling (Сүт және сүт өнімдері. Үлгі алу бойынша нұсқаулық).
- [2] ISO 835 Laboratory glassware. Graduated pipettes (Шыны зертханалық ыдыс. Градуирленген тамшуыр).
- [3] ISO 1042 Laboratory glassware. One-mark volumetric flasks (Шыны зертханалық ыдыс. Бір таңбасы болған өлшеу шыны сауыттары).
- [4] ISO 4788 Laboratory glassware. Graduated measuring cylinders (Шыны зертханалық ыдыс. Градуирленген өлшеу цилиндрлері).
- [5] ISO 5725-1 Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions (Әдістер (нақталақ және маңыздылық) дәлдігі мен өлшем нәтижелері. 1-ші бөлім. Жалпы ережелер мен анықтамалар).
- [6] ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results. Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (Әдістер (нақталақ және маңыздылық) дәлдігі мен өлшем нәтижелері. 2-ші бөлім. Стандартты өлшеу әдісінің қайталануы мен жұмыс істеуін анықтаудағы негізгі әдіс).
- [7] ISO 7208/IDF 22, Skimmed milk, whey and buttermilk. Determination of fat content. Gravimetric method (Reference method) (Сепарациядан өткен сүт, іркіт және майсу. Май мөлшерін аықтау. Гравиметрикалық әдіс (Стандартты әдіс)).
- [8] International dairy federation. Interlaboratory collaborative studies on reference method ISO 1211/DF 1 for the determination of the fat content in cow milk, sheep milk and goat milk. Bull. Int. Dairy Fed. 2009, (439), pp. 1-34 (Халықаралық сүт федерациясы. Сиыр сүтінде, кой сүті мен ешкі сүтінде май мөлшерін анықтау үшін ISO 1211/IDF 1 бақылай әдісі арқылы зертханалар аларық біріккен зерттеулер. Халықаралық сүт федерациясының бюллетені, 2009 ж, (439), 1-34 бет).

ӘОЖ 637,11.001.4:006.354

МСЖ 67.100.10

Түйінді сөздер: сүт, шикі күйіндегі сиыр сүті, шикі күйіндегі қой сүті, шикі күйіндегі ешкі сүті, май мөлшері төмен сүт, майсыздандырылған сүт, химиялық жолмен консервілген сүт, өңделген сұйық сүт, сүттегі май мөлшері

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

МОЛОКО ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЖИРА ГРАВИМЕТРИЧЕСКИЙ МЕТОД (КОНТРОЛЬНЫЙ МЕТОД)

СТ РК ИСО 1211-2011

ISO 1211:2010 «Milk. Determination of fat content. Gravimetric method (Reference method)», (IDT)

Издание официальное

Комитет технического регулирования и метрологии Министерства индустрии и новых технологий Республики Казахстан (Госстандарт)

Астана

СТ РК ИСО 1211-2011

Предисловие

- 1 ПОДГОТОВЛЕН Республиканским государственным предприятием «Казахстанский институт метрологии», Техническим комитетом по стандартизации № 69 «Инновационные технологии инфраструктуры»
- **2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ** Приказом Председателя Комитета технического регулирования и метрологии Министерства индустрии и новых технологий Республики Казахстан от 17 ноября 2011 года № 623-од
- **3** Настоящий стандарт идентичен ISO 1211-2010 Milk. Determination of fat content. Gravimetric method (Reference method) (ИСО 1211 Молоко. Определение содержания жира. Гравиметрический метод (Контрольный метод)). Официальной версией является текст на государственном и русском языках

Международный стандарт подготовлен Техническим комитетом ИСО/ТК 34 Пищевые продукты, Подкомитетом SC 5 Молоко и молочные продукты, совместно с IDF и ISO

Перевод с английского языка (en) Степень соответствия – идентичная, IDT

4 СРОК ПЕРВОЙ ПРОВЕРКИ ПЕРИОДИЧНОСТЬ ПРОВЕРКИ 2016 год 5 лет

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Нормативные документы по стандартизации», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Государственные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Государственные стандарты

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без решения Комитета технического регулирования и метрологии Министерства индустрии и новых технологий Республики Казахстан

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

МОЛОКО ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЖИРА ГРАВИМЕТРИЧЕСКИЙ МЕТОД (КОНТРОЛЬНЫЙ МЕТОД)

Дата введения 2012-07-01

1 Область применения

Настоящий стандарт устанавливает эталонный метод для определения содержания жира в молоке хорошего физико-химического качества.

Метод применим к сырому коровьему молоку, сырому овечьему молоку, сырому козьему молоку, молоку с пониженным содержанием жира, обезжиренному молоку, молоку, консервированному химическими веществами, и переработанному жидкому молоку.

Метод не применим, когда требуется большая точность для обезжиренного молока, например, для установления эффективности работы молочных сепараторов.

ПРИМЕЧАНИЕ [7] указывает специальный метод, применимый для продуктов из обезжиренного молока.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные нормативные документы. Для датированных ссылок применяют только указанное издание ссылочного документа.

СТ РК 1.9-2007 Государственная система технического регулирования Республики Казахстан. Порядок применения международных, региональных и национальных стандартов иностранных государств, других нормативных документов по стандартизации в Республике Казахстан.

ISO $3889:2006^*$ / IDF 219 Milk and milk products. Specification of Mojonnier-type fat extraction flasks (Молоко и молочные продукты. Определение содержания жира. Колбы типа Можонье для экстракции жира).

ПРИМЕЧАНИЕ При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Нормативные документы по стандартизации», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяется следующий термин с соответствующим определением:

Содержание жира в молоке (fat content of milk): Массовая доля веществ, определенная по методу, описанному в настоящем стандарте.

ПРИМЕЧАНИЕ Содержание жира выражается как массовая доля, в процентах.

^{*} Применяется в соответствии с СТ РК 1.9

СТ РК ИСО 1211-2011

4 Сущность метода

Аммиачно-спиртовой раствор испытуемой пробы экстрагируют с помощью диэтилового эфира и петролейного эфира. Растворители удаляют перегонкой или выпариванием. Определяют массу экстрагируемых веществ.

ПРИМЕЧАНИЕ Метод известен как принцип Розе-Готлиба.

5 Реактивы

Применяют реактивы только установленной аналитической квалификации и дистиллированную или деминерализованную воду эквивалентной чистоты.

Реактивы не должны оставлять значительные осадки при проведении определения по 9.3.2.

5.1 Раствор аммиака, массовая доля NH_3 приблизительно 25 % $[\rho_{20} = 910 \text{ г/л}].$

ПРИМЕЧАНИЕ Если нет в наличии аммиачного раствора такой концентрации, можно использовать более концентрированный раствор (9.5.1).

- 5.2 Этанол (C_2H_5OH), или этанол, денатурированный метанолом, содержащий объемную долю этанола минимум 94% (A.4).
 - 5.3 Раствор Конго красный

Растворяют 1 г реактива Конго красного ($C_{32}H_{22}N_6Na_2O_6S_2$) в воде в мерной колбе с одной меткой вместимостью 100 мл (6.14). Разбавляют до метки водой.

ПРИМЕЧАНИЕ 1 Применение данного раствора, который позволяет четко видеть границу раздела между слоями растворителя и воды, необязательно (9.5.2). Могут применяться другие водные цветные растворы, если они не оказывают влияния на результат определения.

ПРИМЕЧАНИЕ 2 Конго красный является канцерогенным.

5.4 Диэтиловый эфир ($C_2H_5OC_2H_5$), свободный от перекисей (A.3), и удовлетворяющий требованиям контрольного опыта (9.3.2 и A.2).

ПРИМЕЧАНИЕ Применение диэтилового эфира может привести к опасным ситуациям. Необходимо соблюдать меры предосторожности при обращении, применении и удалении.

- 5.5 Петролейный эфир, с диапазоном кипения температур от 30 °C до 60 °C, в качестве эквивалента, пентан ($CH_3[CH_2]_3CH_3$) с температурой кипения 36 °C, удовлетворяющий требованиям контрольного опыта (9.3.2, A.1 и A.2).
- 5.6 Растворитель смешанный. Перед применением смешать в равных объемах диэтиловый эфир (5.4) и петролейный эфир (5.5).

6 Аппаратура

ПРИМЕЧАНИЕ Вся работающая электрическая аппаратура должна соответствовать правилам безопасности при использовании таких растворов, так как при определении используются огнеопасные летучие растворители.

- 6.1 Аналитические весы, обеспечивающие взвешивание с точностью до 1 мг, с ценой деления шкалы 0,1 мг.
- 6.2 Центрифуга, способная удерживать колбы для экстрагирования жира или пробирки (6.6), с частотой вращения от 500 мин⁻¹ до 600 мин⁻¹ с радиальным ускорением от 80 г до 90 г с наружной стороны колб или пробирок.

Применение центрифуги не обязательно, но рекомендовано (9.5.5).

- 6.3 Аппарат для перегонки или выпаривания, для перегонки растворителей и этанола из колбы для перегонки или конической колбы, или выпаривания из стаканов или чаш (9.5.12)при температуре не выше $100\,^{\circ}\mathrm{C}$.
- $6.4~{\rm Шкаф}$ сушильный электрический, с открытыми вентиляционными отверстиями, поддерживающий в его рабочей области температуру (102 ± 2) °C.

Шкаф должен быть оснащен подходящим термометром.

- 6.5 Водяная баня, поддерживающая температуру от 35 °C до 40 °C.
- 6.6 Колбы Можонье для экстрагирования жира, согласно ISO 3889.

ПРИМЕЧАНИЕ Возможно применять пробирки для экстрагирования жира, с сифоном или приспособлением для промывания, но в этом случае методика будет отличаться. Альтернативная методика описана в Приложение В.

Колбы для экстрагирования(экстракции) жира должны быть снабжены корковыми пробками хорошего качества или стопорами из других материалов (например, силиконовая резина или полиэтилентерефталат (РТГЕ)), не взаимодействующих с применяемыми реагентами. Корковые пробки должны быть обработаны диэтиловым эфиром (5.4), выдержаны в воде при температуре 60 °С или более, в течение, не менее 15 минут, и затем охлаждены в воде для насыщения водой перед использованием.

- 6.7 Подставка, удерживающая колбы (или пробирки) для экстрагирования жиров (6.6).
- 6.8 Приспособление для промывания, подходящее для применения смешанных растворителей (5.6). Не следует использовать пластмассовые приспособления для промывания.
- 6.9 Емкости для сбора жира, такие как колбы для перегона (плоскодонные) вместимостью от 125 мл до 250 мл, конические колбы вместимостью 250 мл или металлические чаши.

Если применяются металлические чаши, они должны быть изготовлены из нержавеющей стали, плоскодонные с диаметром от 80 мм до 100 мм и высотой приблизительно 50 мм.

- 6.10 Материал, облегчающий кипение, обезжиренный, из непористого фарфора, кремниевого карбида или стекла. Их применение не обязательно.
- 6.11 Цилиндры мерные вместимостью 5 мл и 25 мл, [4] класс А, или любой другой аппарат, соответствующий для указанного продукта.
 - 6.12 Пипетки градуированные вместимостью 10 мл, [2] класс А.
- 6.13 Держатели, изготовленные из металла, для удержания колб, лабораторных стаканов и чаш.
 - 6.14 Колбы мерные с одной меткой, вместимость 100 мл, [3] класс А.

7 Отбор проб

В настоящем стандарте процедура отбора проб не описана. Рекомендуемый метод отбора проб указан в [1].

Важно, чтобы лаборатория получила пробу, которая действительно является представительной и не была повреждена во время транспортировки или хранения.

Пробы хранят с момента отбора при температуре от 2 °C до 6 °C.

8 Подготовка пробы для испытания

Испытуемую пробу нагревают до температуры (38 \pm 2) °C на водяной бане (6.5). Осторожно перемешивают пробу, не вызывая вспенивания или взбалтывания молочного жира. Быстро охлаждают пробу до температуры (20 \pm 2) °C.

СТ РК ИСО 1211-2011

Если однородные пробы могут быть получены без предварительного подогрева (например, пробы обезжиренного молока), пробу для испытания доводят до температуры (20 ± 2) °C и осторожно перемешивают, многократно переворачивая колбу для проб.

Действительное значение содержания жира нельзя получить, если:

- а) произошло сбивание молочного жира;
- b) четко ощутим явный запах свободных жирных кислот;

ПРИМЕЧАНИЕ Козье молоко естественно содержит низкий уровень свободных жирных кислот, которые не полностью извлекаются этим методом.

с) если во время или после подготовки пробы на стенках колбы с пробой видны белые частицы или на поверхности пробы плавают жирные капли.

9 Процедура

9.1 Общие положения

Для проверки методики на соответствие пределу повторяемости (11.2), выполняют два определения в соответствии с 9.2 - 9.5.

ПРИМЕЧАНИЕ Альтернативная методика с использованием пробирок для экстрагирования жира с сифоном или приспособлением для промывания (Примечание к 6.6) приведена в Приложении В.

9.2 Испытуемая проба

Перемешивают пробу согласно Разделу 8 осторожно переворачивая флакон три или четыре раза. Незамедлительно взвешивают от 10 г до 11 г испытуемой пробы непосредственно или путем вычитания в колбе для экстракции жира (6.6) с точностью до 1 мг.

Переносят пробу по возможности полностью в малый сосуд колбы для экстрагирования жира.

- 9.3 Контрольные испытания
- 9.3.1 Контрольные испытания для проверки метода

Контрольные испытания выполняют одновременно с анализом пробы, используя тот же метод и те же реактивы, но заменяя испытуемую пробу в 9.2 на 10 мл воды (A.1).

Когда анализируется партия проб для испытания, число циклов сушки может отличаться между различными пробами. Если используется бланковая проба для всей партии, необходимо убедиться, что значение для бланковой пробы, используемое в расчете содержания жира любой отдельной пробы, было получено в тех же условиях, что и отдельная проба для испытания.

Если значение, полученное, при проведении контрольного испытания, постоянно превышает 1,0 мг, следует проверить реактивы (9.3.2). Поправки более 2,5 мг должны быть отмечены в протоколе испытаний.

9.3.2 Контрольные испытания для проверки реактивов

Для проверки качества реактивов выполняют контрольные испытания по 9.3.1. Дополнительно используют пустую емкость для сбора жира, подготовленную по 9.4, с целью контроля массы. Реактивы не должны оставлять осадок более 1,0 мг (A.2).

Если масса осадка в контрольном опыте больше 1,0 мг, необходимо определить количество осадка растворителей отдельно путем перегонки 100 мл диэтилового эфира (5.4) и петролейного эфира (5.5) соответственно. Для получения действительной массы осадка, которая должна быть не более 1,0 мг, используют пустую емкость для сбора жира, подготовленную для контрольных целей как описано выше.

Заменить некачественные реактивы, растворители или реактивы после повторной перегонки.

9.4 Подготовка сборников для жира

Сушат емкость для сбора жира (6.9) с добавлением материала, облегчающего кипения (6.10) в сушильном шкафу(6.4), при температуре (102 ± 2) °C в течение 1 часа.

ПРИМЕЧАНИЕ 1 Материалы, облегчающие кипение, необходимы, чтобы поддерживать плавное кипение во время последующего удаления растворителей, особенно если используются стеклянные емкости для сбора жира.

Следует защитить емкость для сбора жира от пыли и охладить до температуры весовой комнаты. Стеклянную емкость для сбора жира - не менее 1 час, металлическую чашу — не менее 30 минут. Не следует помещать емкость для сбора жира в эксикатор, чтобы избежать неполного охлаждения или чрезмерно длительного времени охлаждения.

Для размещения емкости для сбора жира на весы используют держатели (6.13). Емкость для сбора жира взвешивают с точностью до 1.0 мг.

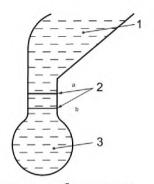
ПРИМЕЧАНИЕ 2 Предпочтительно использовать держатели, чтобы избежать, в частности, температурных измерений.

9.5 Определение

9.5.1 Выполняют определение в период 1 часа с момента взвешивания пробы.

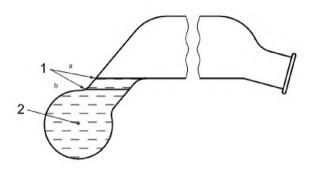
Добавляют в колбу для экстрагирования жира (9.2) к испытуемой пробе 2 мл раствора аммиака (5.1), или эквивалентный объем более концентрированного раствора аммиака (5.1). Тщательно перемешивают с испытуемой пробой в малом сосуде колбы для экстрагирования.

- 9.5.2 Добавляют 10 мл этанола (5.2). Осторожно, но тщательно перемешивают, чтобы содержимое колбы для экстрагирования текло в прямом и обратном направлении между малым и большим сосудом. Избегать попадания жидкости близко к горлышку колбы. По желанию, можно добавить 2 капли раствора Конго красного (5.3).
- 9.5.3 Добавляют 25 мл диэтилового эфира (5.4). Закрывают колбу корковой пробкой, смоченной водой (6.6). Встряхивают в течение 1 минуты, но не сильно, чтобы избежать образования стойких эмульсий.


Во время встряхивания, следует держать колбу для экстрагирования жира в горизонтальном положении с малым сосудом, направленным вверх, периодически давая возможность жидкости перетекать из большого сосуда в малый. При необходимости охлаждают колбу в проточной воде до комнатной температуры. Аккуратно достают пробку и промывают ее и горлышко колбы небольшим количеством растворителя смешанного по 5.6. Используют приспособление для промывания (6.8) для того, чтобы промывная жидкость стекала в колбу.

- 9.5.4 Добавляют 25 мл петролийного эфира (5.5). Закрывают колбу для экстрагирования повторно увлажненной пробкой или заглушкой. Осторожно смешивают в течение 30 секунд, как описано в 9.5.3.
- 9.5.5 Центрифугируют закрытую колбу в течение от 1 минуты до 5 минут с ускорением от 80 г до 90 г. Если нет центрифуги (6.2), следуют поставить закрытую колбу на подставку (6.7), и выдержать 30 минут до тех пор, пока верхний слой жидкости не станет прозрачным и четко не отделится от слоя воды.
- 9.5.6 Аккуратно снимают пробку или заглушку, и ополаскивают ее и горловину колбы небольшим количеством растворителя смешанного (5.6). Используют промывную склянку таким образом (6.8), чтобы запустить воду, оставшуюся после полоскания, в колбу. Если граница находится ниже нижней части стержня колбы, ее поднимают немного выше этого уровня, осторожно добавляя воду вниз по стороне колбы (см. Рисунок 1) для облегчения слива растворителя.

СТ РК ИСО 1211-2011


ПРИМЕЧАНИЕ На Рисунках 1 и 2 выбран один из трех типов колб, описанных в ISO 3889, но это не означает его преимущества перед другими типами.

- 9.5.7 Удерживая колбу с помощью держателя, тщательно декантируют поверхностный слой из колбы для перегонки или конической колбы в приготовленную емкость для сбора жира (9.4) (растворитель, Рисунок 1). Необходимо избегать декантации какого-либо водного слоя (Рисунок 2).
- 9.5.8 Ополаскивают наружную поверхность горловины колбы небольшим количеством смешанного растворителя (5.6). Промывную жидкость собирают в емкость для сбора жира. Необходимо избегать растекания смешанного растворителя по наружной поверхности колбы. По желанию, можно удалить растворитель или его часть его из емкости для сбора жира при перегонке или выпаривании, как описано в 9.5.12.
- 9.5.9 Добавляют 5 мл этанола (5.2) к содержимому колбы для экстрагирования. Используя этанол ополаскивают по 9.5.2. Если ранее был добавлен раствор Конго красный (5.3), то раствор больше не добавляют.

Условное обозначение: 1 - растворитель; 2 - граница раздела; 3 - слой воды

- а При второй и третьей экстракции;
- b При первой экстракции.

Условное обозначение: 1 - граница раздела;

- 2 слой воды.
- а При второй и третьей экстракции;
- b При первой экстракции.

Рисунок 1 - Перед сливом

Рисунок 2 - После слива

- 9.5.10 Второе экстрагирование выполняют, повторяя операции с 9.5.3 по 9.5.7 и добавляя вместо 25 мл диэтилового эфира (5.4) только 15 мл, а также 15 мл петролейного эфира (5.5). При необходимости слегка поднимают границу раздела до середины основания колбы, осторожно добавляя воду (Рисунок 1), чтобы облегчить слив растворителя (Рисунок 2).
- 9.5.11 Третье экстрагирование выполняют без добавления этилового спирта, повторяя операции, описанные в 9.5.3 по 9.5.7. Используют только 15 мл диэтилового эфира (5.4) и 15 мл петролейного эфира (5.5). При необходимости слегка поднимают границу раздела до середины основания колбы (Рисунок 1), чтобы облегчить слив раствора (Рисунок 2).

Третья экстракция может быть проведена для молока с содержанием жира менее 0,5% массовой доли.

9.5.12 Удаляют растворители (включая этанол) по возможности полностью из емкости для сбора жира перегонкой, если используют перегонную или коническую колбу, или выпариванием, если используют стакан или чашу (6.3). Ополаскивают внутреннюю

поверхность горловины перегонной или конической колбы небольшим количеством растворителя смешанного (5.6) перед началом перегонки.

9.5.13 Емкость для сбора жира (колбу для перегонки или коническую колбу) помещают в горизонтальном положении в сушильный шкаф (6.4) при температуре (102 ± 2) °C и выдерживают 1 час (для улетучивания паров растворителей).

Извлекают емкость для сбора жира из сушильного шкафа и немедленно проверяют, будет ли жир чистый. Если жир не чистый и предполагается наличие посторонних примесей, всю процедуру следует повторить. Если жир чист, защищают емкость от пыли и охлаждают до температуры весовой комнаты (стеклянную емкость для сбора жира - примерно 1 час, металлическую чашу - минимум 30 минут). Не следует помещать емкость для сбора жира в эксикатор, чтобы избежать неполного охлаждения или чрезмерно длительного времени охлаждения.

Не следует протирать емкость для сбора жира непосредственно перед взвешиванием. Для установления емкости на весы (6.1) используют держатели (6.13). Взвешивают емкость с точностью до 1,0 мг.

9.5.14 Емкость для сбора жира, колбу для перегонки или коническую колбу помещают в горизонтальном положении в сушильный шкаф (6.4) при температуре (102 ± 2) °C и выдерживают 30 минут. Охлаждают и взвешивают повторно, как указано в 9.4.13. При необходимости повторяют нагревание и взвешивание пока разница в массе между двумя последующими взвешиваниями не уменьшится до 1,0 мг или начнет увеличиваться. Записывают минимальную массу как массу емкости для сбора жира и экстрагируемого вещества.

10 Обработка и представление результатов

10.1 Расчеты результатов

Рассчитывают содержание жира в пробе, w_f , выраженное как процент массовой доли пробы, используя Формулу (1):

$$w_f = \frac{(m_1 - m_2) - (m_3 - m_4)}{m_0} \times 100\%, \qquad (1)$$

где m_0 - масса испытуемой пробы (9.2), г;

 m_{I} - масса емкости для сбора жира и экстрагированного вещества, определенная по 9.5.14, г;

 m_2 - масса подготовленной емкости для сбора жира (9.4), г;

 m_3 - масса емкости для сбора жира, используемая в контрольном опыте (9.3.1) и какого-либо экстрагируемого вещества, указанного в 9.5.14, г;

 m_4 - масса емкости для сбора жира (9.4), используемая в контрольном опыте (9.3.1), г.

10.2 Выражение результатов

Результат округляют до двух десятичных знаков.

11 Прецизионность

11.1 Межлабораторное определение

Подробности межлабораторного определения прецизионности метода в соответствии с международными стандартами [5] и [6].

Подробные данные межлабораторных испытаний по точности метода представлены в Приложениях С и D, соответственно (см. также [8]). Значения пределов

СТ РК ИСО 1211-2011

повторяемости и воспроизводимости выражаются для 95 %-ого доверительного уровня и не могут применяться для области концентраций и матриц, отличных от данных.

11.2 Повторяемость

Абсолютная разность между двумя независимыми результатами измерений, полученными и с использованием одного и того же метода на идентичных пробах материала в одной лаборатории одним оператором, на одном оборудовании в течение короткого промежутка времени, не должна превышать следующие показатели массовой доли в не более чем 5% случаев:

- а) 0,031 % для обезжиренного коровьего молока;
- b) 0,036 % для коровьего молока с пониженным содержанием жира;
- с) 0,043 % для цельного коровьего молока;
- d) 0,030 % для козьего молока;
- е) 0,069 % для овечьего молока.
- 11.3 Воспроизводимость

Абсолютная разность между двумя независимыми результатами измерений, полученными с использованием одного и того же метода на идентичных пробах материала в разных лабораториях разными операторами на разном оборудовании, в течение короткого промежутка времени не должна превышать следующие показатели массовой доли в не более чем 5% случаев:

- а) 0,043 % для обезжиренного коровьего молока;
- b) 0,042 % для коровьего молока с пониженным содержанием жира;
- с) 0,056 % для цельного коровьего молока;
- d) 0,052 % для козьего молока;
- е) 0,096 % для овечьего молока.

12 Протокол испытаний

Протокол испытаний должен включать, как минимум, следующую информацию:

- а) всю информацию, необходимую для полной идентификации пробы;
- b) метод отбора проб, если он известен;
- с) использованный метод со ссылкой на настоящий стандарт;
- d) все детали, не описанные в настоящем стандарте, или не обязательные, вместе с подробностями любых непредвиденных случайностей, которые могут повлиять на результат(ы) анализа;
 - е) внесение поправки, если в контрольном опыте получено значение, более 2,5 мг;
- f) полученные результат(ы); или окончательный заявленный результат, если была проверена повторяемость.

Приложение А

(информационное)

Примечания к процедурам

А.1 Контрольное испытание, выполняемое одновременно с определением (9.3.1)

Значение, полученное при проведении контрольного испытания, выполняемого одновременно с определением, дает возможность корректировать присоединенную массу веществ, экстрагированных из испытуемой пробы $(m_1 - m_2)$, с учетом присутствия любого нелетучего вещества, полученного из реактивов, а также любого изменения атмосферных условий в весовой комнате при двух взвешиваниях (9.5.14 и 9.4). При использовании контрольных проб для нескольких образцов для испытания необходимо удостовериться, что пустая емкость сопровождает емкости для сбора проб с пробами до тех пор, пока последняя емкость для сбора проб не достигнет постоянной массы.

Для расчета содержания жира используют массу пустой емкости, соответствующего циклу сушки пробы для испытания [то есть, для тестовой емкости, достигшей постоянной массы в цикле сушки n используют пустую массу в цикле сушки n; для цикла сушки (n+1) и спользуют пустую массу цикла сушки (n+1) и т.д. (9.3.1)].

При благоприятных условиях, таких, как низкое значение в контрольном испытании по реактивам, постоянная температура в комнате для проведения взвешивания, достаточное время охлаждения емкости для сбора жира, значение обычно ниже 1,0 мг, и может быть не учтено при расчетах в случае обычных определений. Немного завышенные значения (положительные или отрицательные) до 2,5 мг также часто не принимают в расчет. После корректировки таких значений результаты будут точными. Если вносятся поправки более 2,5 мг, то это должно быть отмечено в протоколе испытаний (Раздел 12).

Если значение, полученное в контрольном испытании, постоянно превышает 1,0 мг, то реактивы должны быть проверены. Любые реактивы с примесями необходимо заменить или очистить (9.3.2 и А.2).

А.2 Контрольные испытания для проверки реактивов (9.3.2)

При проведении контрольного испытания для контроля массы должна быть использована такая емкость для сбора жира, чтобы из-за изменений в атмосферных условиях весовой комнаты или отсутствие нелетучего вещества в экстракте реагентов. Такая емкость для сборки жира, может быть использована как уравновешивающая емкость, если используются весы, имеющие две чаши. В противном случае должно учитываться отклонение массы ($m_3 - m_4$ в 10.1) емкости для сборки жира при контроле, если в контрольном опыте проводится проверка массы емкости для сбора жира. Поэтому изменение массы емкости для сбора жира, скорректированной по изменению массы емкости для сбора жира при контрольном методе, не должно превышать 1,0 мг.

Растворители могут содержать летучее вещество, которое прочно удерживается в жире. Если существуют индикаторы присутствия таких веществ, необходимо выполнить контрольную проверку для всех реактивов и для всех реактивов и для каждого растворителя, используя емкость для сбора жира и около 1 г безводного молочного жира. При необходимости растворители повторно перегоняют в присутствии 1 г безводного молочного жира на 100 мл растворителя. Использовать растворители необходимо сразу после повторной перегонки.

СТ РК ИСО 1211-2011

А.З Исследование на наличие перекисей

Для исследования перекисей к 10 мл диэтилового эфира (5.4) в малый стеклянный цилиндр с притертой пробкой, предварительно промытый эфиром, добавляют 1 мл свежеприготовленного раствора йодида калия концентрацией 100 г/л. Встряхивают цилиндр и оставляют на 1 минуту. Слой диэтилового эфира не должен при этом желтеть.

Для определения перекисей могут быть использованы другие методы.

Чтобы гарантировать, что диэтиловый эфир свободен от перекисей, необходимо обработать диэтиловый эфир минимум за 3 дня до использования как указано далее.

Разрезают цинковую фольгу на полоски, которыми заполнят наполовину бутыль, содержащую диэтиловый эфир, используя приблизительно 8000 мм² фольги на 1 литр диэтилового эфира.

Перед использованием полностью погружают полоски фольги на 1 минуту в раствор, содержащий 10 г пятиводного сульфата меди (II) (CuSO₄·5H₂O) и 2 мл концентрированной серной кислоты (98 % массовой доли) на 1 литр. Осторожно, но полностью промывают полоски водой, помещают мокрые покрытые медью полоски в бутыль, содержащую диэтиловый эфир, и оставляют полоски в бутыли.

Могут быть использованы другие методы, если они не оказывают воздействия на результат определения.

А.4 Этанол

Этанол, денатурированный не с помощью метанола, а каким-либо другим способом, может быть использован при условии, что денатурат не оказывает влияния на результат определения.

Приложение В

(информационное)

Альтернативные процедуры с использованием обезжиренных трубок с сифоном или промывных устройств

В.1 Общие положения

Если используют пробирки для экстрагирования жира с сифоном или приспособлением для промывания, необходимо применять методику, описанную в настоящем приложении. Пробирки должны быть снабжены корковыми пробками хорошего качества или стопорами, описанными в 6.6 (пример приведен на Рисунке В.1).

В.2 Методика

В.2.1 Приготовление испытуемой пробы

См. Раздел 8.

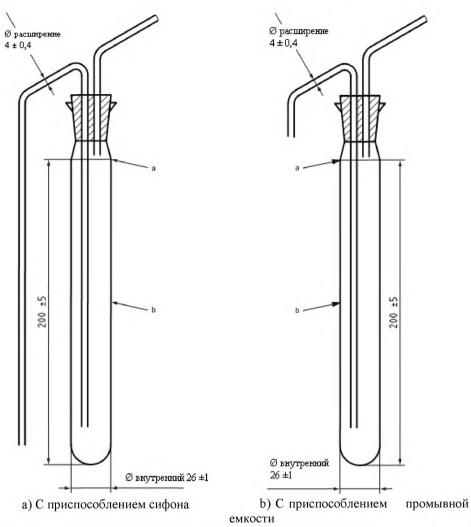
В.2.2 Испытуемая проба

Подготавливают, как описано в 9.2, используя пробирки для экстракции жира (Примечание к 6.6 и В.1). Испытуемая проба должна быть помещена на дно пробирки для экстракции жира.

В.2.3 Контрольный опыт

См. 9.3 и А.1.

В.2.4 Подготовка емкости для сбора жира


См. 9.4.

В.2.5 Определение

В.2.5.1 Измерение выполняют незамедлительно.

В.2.5.2 Добавляют 10 мл этанола (5.2). Осторожно, но тщательно смешивают со смесью в пробирке для экстракции жира. При желании добавляют 2 капли раствора Конго красного (5.3)

В.2.5.3 Добавляют 25 мл диэтилового эфира (5.4). Закрывают пробирку для экстракции жира пробкой, пропитанной водой, или стопором из другого материала, смоченного водой (6.6). Сильно встряхивают пробирку, но не сильно, поворачивая несколько раз в течение 1 минуты, избегая образования стойких эмульсию. При необходимости охлаждают пробирку в проточной воде. Осторожно удаляют пробку или стопор и промывают ее и горловину пробирки небольшим количеством растворителя смешанного (5.6). Используют приспособление для промывания (6.8), чтобы промывная жидкость стекала в пробирку.

- а) Вместимость до данного уровня с удаленной арматурой (105 ± 5) мл.
- b) Толщина стенок $(1,5 \pm 0,5)$ мм.

Рисунок В.1 - Примеры трубок для экстракции жира

- В.2.5.4 Добавляют 25 мл петролейного эфира (5.5). Закрывают пробирку для экстракции жира повторно увлажненной (окунанием) пробкой или стопором. Осторожно встряхивают пробирку в течение 30 секунд, как описано в В.2.5.3.
- В.2.5.5 Центрифугируют закрытую трубку для экстракции жира в течение от 1 до 5 минут с радиальным ускорением от 80 г до 90 г. Если нет возможности провести центрифугирование (6.2), оставляют закрытую трубку на подставке (6.7) не менее чем на 30 минут, до тех пор, пока не появится всплывающий слой, отделившийся от водяного слоя. При необходимости трубку остужают под струей воды до комнатной температуры.

- В.2.5.6 Осторожно вынимают пробку или заглушку и промывают ее и горлышко трубки для экстракции жира небольшим количеством смешанного растворителя (5.6). Используют промывную склянку (6.8) так, чтобы намыв стекал в трубку.
- В.2.5.7 Вставляют сифонное приспособление или приспособление для промывания в пробирку. Нажимают вниз длинную внутреннюю трубку приспособления, пока ввод окажется приблизительно на 4 мм выше границы раздела между слоями. Внутренняя трубка приспособления должна быть параллельна осевой линии пробирки для экстракции жира.

Осторожно переносят поверхностный слой из пробирки для экстракции жира в емкость жира (9.4), содержащую материалы, облегчающие кипение (6.10), если используются перегонные или конические колбы (необязательно). Избегают переноса какого-либо водяного слоя.

ПРИМЕЧАНИЕ Поверхностный слой можно перенести из пробирки для экстракции жира, используя, например, резиновую грушу, прикрепленную к короткому стержню для оказания давления.

- В.2.5.8 Отсоединяют приспособление от горловины пробирки для экстракции жира. Немного приподнимают арматуру и промывают нижнюю часть ее длинного внутреннего стержня небольшим количеством смешанного растворителя (5.6). Опускают и переустанавливают приспособление и переносят промывную жидкость в емкость для сбора жира. Промывают выходное отверстие приспособления, небольшим количеством смешанного растворителя снова, собирая промывную жидкость для сбора жира. По желанию можно удалить растворитель или часть его из емкости для сбора жира перегонкой или выпариванием, как описано в 9.5.12.
- В.2.5.9 Повторно отсоединяют приспособление от горловины. Слегка поднимают приспособление и добавляют 5 мл этанола к содержимому пробирки для экстракции жира. Используя этанол, промывают длинную внутреннюю трубку приспособления. Смешивают, по В.2.5.2.
- В.2.5.10 Выполняют вторую экстракцию, повторяя действия, описанные от В.2.5.3 до В.2.5.8. Взамен 25 мл используют только 15 мл диэтилового эфира (5.4) и 15 мл петролейного эфира. Для промывания длинной внутренней трубки приспособления, после предыдущей экстракции, используют диэтиловый эфир.
- В.2.5.11 Третью экстракцию выполняют без добавления этанола, повторяя действия, описанные от В.2.5.3 до В.2.5.8. Используют только 15 мл диэтилового эфира и 15 мл петролейного эфира. Для промывания длиной внутренней трубки приспособления используют диэтиловый эфир, как описано в В.2.5.10.

Третью экстракцию можно не проводить для молока с содержанием жира менее чем $0.5\,\%$ от массовой доли.

В.2.5.12 Продолжают определение по 9.5.12 - 9.5.14.

Приложение С

(информационное)

Межлабораторное испытание сырого молока

С.1 Общие положения

Совместное международное испытание, включившее в себя 19 лабораторий в 13 странах, проведено в декабре 2005 года [8]. Испытание было проведено на 12 парах произвольных повторных выборок, содержащих:

- а) три пары проб обезжиренного молока с содержанием жира $w_f < 0.5 \, \text{г} / 100 \, \text{г};$
- b) три пары проб молока с пониженным содержанием жира, с содержанием жира в пределах 0,5 г / 100 г \leq $w_{\rm f}$ \leq 2 г / 100 г;
- с) шесть пар проб сырого молока с содержанием жира в пределах $3 \ \Gamma / 100 \ \Gamma \le w_{\rm f} \le 6 \ \Gamma / 100 \ \Gamma$. Испытание было организовано Associazione Italiana Allevatori, Laboratorio Standard Latte, Maccarese, Италия.

Полученные результаты стали объектом статистического анализа в соответствии с международными стандартами [5] и [6] и приведены в Таблице С.1, С.2 и С.3, соответственно.

С.2 Результаты испытания

Таблица С.1 - Результаты для обезжиренного молока

Параметры		Проба	Общее среднее ^{а)}	
	3	12	1	среднее
Количество задействованных лабораторий после удаления выбросов	11	10	11	-
Среднее значение г/100 г	0,222	0,336	0,487	0,348
Стандартное отклонение повторяемости, s_r , г/100 г	0,011	0,010	0,012	0,011
Границы повторяемости r (2,8 s_r), г/100 г	0,030	0,028	0,034	0,031
Коэффициент вариации повторяемости, $C_{V, r}$, %	13,7	8,3	7,0	8,9
Стандартное отклонение воспроизводимости, s_R , $\Gamma / 100 \ \Gamma$	0,018	0,010	0,017	0,016
Границы воспроизводимости = R (2,8 s_R), г/100 г	0,051	0,028	0,047	0,043
Коэффициент вариаций воспроизводимости, $C_{V, R}$,	23,0	8,5	9,6	12,5

а) Средние значения были рассчитаны с использованием только данных выборки с удаленными выбросами. Прочие статистические средние были рассчитаны из квадратного корня среднего значения квадрата отклонений.

Таблица С.2 - Результаты для молока с пониженным содержанием жира

Параметры		Проба	Общее	
	7	6	2	среднее ^{а)}
Количество задействованных лабораторий после удаления выбросов	11	11	11	-
Среднее значение г/100 г	0,561	1,368	2,039	1,323
Стандартное отклонения повторяемости, s_r , г/100г	0,011	0,011	0,016	0,013
Границы повторяемости r (2,8 · s_r), r /100 г	0,031	0,032	0,044	0,036
Коэффициент вариаций повторяемости, $C_{V, r}$, %	5,5	2,4	2,2	2,7
Стандартное отклонение воспроизводимости, s_R , $\Gamma/100 \Gamma$	0,016	0,013	0,016	0,015
Границы воспроизводимости R (2,8 · s_R), г/100 г	0,044	0,036	0,045	0,042
Коэффициент вариаций воспроизводимости, $C_{V, R}$, %	7,8	2,6	2,2	3,2

а) Средние значения были рассчитаны с использованием только данных выборки с удаленными выбросами. Прочие статистические средние были рассчитаны из квадратного корня среднего значения квадрата отклонений.

Таблица С.3 - Результаты для цельного молока

Параметры			Пр	оба			Общее среднее ^{а)}
Параметры	9	5	10	4	11	8	Оощее среднее
Количество задействованных	10	11	10	11	9	11	-
лабораторий после удаления							
выбросов							
Среднее значение г/100 г	3,032	3,287	4,052	4,305	5,503	5,825	4,334
Стандартное отклонение	0,010	0,017	0,011	0,022	0,014	0,013	0,015
повторяемости, s_r , г/100 г							
Границы повторяемости <i>r</i>	0,028	0,047	0,031	0,063	0,040	0,038	0,043
$(2,8\cdot s_r)$, $\Gamma/100 \Gamma$							
Коэффициент вариаций	0,9	1,4	0,8	1,5	0,7	0,7	1,0
повторяемости, $C_{V, r}$, %							
Стандартное отклонение	0,014	0,021	0,013	0,025	0,015	0,025	0,020
воспроизводимости, s_R , г/100 г							
Границы воспроизводимости R	0,040	0,059	0,037	0,071	0,043	0,069	0,056
$(2,8\cdot s_R)$, $\Gamma/100 \Gamma$							
Коэффициент вариаций	1,3	1,8	0,9	1,7	0,8	1,2	1,3
воспроизводимости, $C_{V, R}$, %							

^{а)} Средние значения были рассчитаны с использованием только данных выборки с удаленными выбросами. Прочие статистические средние были рассчитаны из квадратного корня среднего значения квадрата отклонений.

Приложение D

(информационное)

Межлабораторное испытание сырого овечьего молока и сырого козьего молока

D.1 Общие положения

Совместное международное испытание [8], включившее в себя 16 лабораторий в девяти странах, проводились в ноябре 2006 года. Испытание было проведено на 6 парах произвольных контрольных проб по каждому виду молока. Пробы овечьего молока содержали жир от 4,5 г на 100 г до 8,5 г на 100 г; пробы козьего молока имели содержание жира от 1,5 г на 100 г до 5,0 г на 100 г.

Испытания были организованы Associazione Italiana Allevatori, Laboratorio Standard Latte, Maccarese, Италия.

Полученные результаты стали объектом статистического анализа в соответствии с [5] и [6], и приведены в Таблице D1 и D.2, соответственно.

D.2 Результаты испытания

Таблица D.1 - Результаты для овечьего молока

			Пр	оба			
Параметры	9	5	10	4	11	8	Общее
							среднее ^{а)}
Количество задействованных	14	12	13	14	12	14	-
лабораторий после удаления							
выбросов							
Среднее значение г/100 г	6,492	4,497	5,554	8,334	7,312	7,877	6,678
Стандартное отклонение повторяемости, s_r , г/100 г	0,032	0,022	0,013	0,032	0,012	0,028	0,025
Границы повторяемости r (2,8 s_r), $r/100$ г	0,090	0,062	0,038	0,090	0,033	0,078	0,069
Коэффициент вариаций	1,4	1,4	0,7	1,1	0,4	1,0	1,0
повторяемости, $C_{V, r}$, % Стандартное отклонение воспроизводимости, s_R , $r/100$ г	0,044	0,022	0,033	0,042	0,025	0,033	0,034
Границы воспроизводимости = R	0,123	0,062	0,091	0,119	0,069	0,092	0,096
(2,8 <i>s</i> _R), г/100 г							
Коэффициент вариаций	1,9	1,4	1,6	1,4	0,9	1,2	1,4
воспроизводимости, $C_{V, R}$, %							

^{а)} Средние значения были рассчитаны с использованием только данных выборки с удаленными выбросами. Прочие статистические средние были рассчитаны из квадратного корня среднего значения квадрата отклонений.

СТ РК ИСО 1211-2011

Таблица D.2 - Результаты для козьего молока

			Пр	оба			Общее
Параметры	1	2	3	4	5	6	среднее ^{а)}
Количество задействованных	12	14	12	14	14	13	-
лабораторий после удаления							
выбросов							
Среднее значение г/100 г	3,017			2,200	1 1	3,673	3,285
Стандартное отклонение	0,008	0,012	0,011	0,008	0,012	0,010	0,011
повторяемости, s_r , г/100 г							
Границы повторяемости r (2,8· s_r),	0,023	0,035	0,031	0,023	0,035	0,029	0,030
г/100 г							
Коэффициент вариаций	0,7	2,3	0,6	1,1	0,8	0,8	0,9
повторяемости, $C_{V, r}$, %							
Стандартное отклонение	0,017	0,018	0,020	0,019	0,023	0,015	0,019
воспроизводимости, s_R , г/100 г							
Границы воспроизводимости <i>R</i>	0,048	0,051	0,055	0,053	0,063	0,042	0,052
(2,8·s _R), г/100 г							
Коэффициент вариаций	1,6	3,3	1,1	2,4	1,4	1,1	1,6
воспроизводимости, $C_{V, R}$, %							

^{а)} Средние значения были рассчитаны с использованием только данных выборки с удаленными выбросами. Прочие статистические средние были рассчитаны из квадратного корня среднего значения квадрата отклонений.

Библиография

- [1] ISO 707/IDF 50 Milk and milk products. Guidance on sampling (Молоко и молочные продукты. Руководство по отбору проб).
- [2] ISO 835 Laboratory glassware. Graduated pipettes (Посуда лабораторная стеклянная. Пипетки градуированные).
- [3] ISO 1042 Laboratory glassware. One-mark volumetric flasks (Посуда лабораторная стеклянная. Мерные колбы с одной меткой).
- [4] ISO 4788 Laboratory glassware. Graduated measuring cylinders (Посуда лабораторная стеклянная. Градуированные мерные цилиндры).
- [5] ISO 5725-1 Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions (Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Общие принципы и определения).
- [6] ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results. Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения).
- [7] ISO 7208/IDF 22, Skimmed milk, whey and buttermilk. Determination of fat content. Gravimetric method (Reference method) (Сепарированное молоко, сыворотка и пахта. Определение содержания жира. Гравиметрический метод (Стандартный метод)).
- [8] International dairy federation. Interlaboratory collaborative studies on reference method ISO 1211/DF 1 for the determination of the fat content in cow milk, sheep milk and goat milk. Bull. Int. Dairy Fed. 2009, (439), pp. 1-34 (Международная молочная федерация. Межлабораторные совместные исследования по контрольному методу ISO 1211/IDF 1 для определения содержания жира в коровьем молоке, овечьем молоке и козьем молоке. Бюллетень международной молочной федерации, 2009 г, (439), стр. 1-34).

УДК 637.11:006.354

MKC 67.100.10

Ключевые слова: молоко, сырое коровье молоко, сырое овечье молоко, сырое козье молоко, молоко с пониженным содержанием жира, обезжиренное молоко, химически консервированное молоко, переработанное жидкое молоко, содержание жира в молоке

Басуға	ж. қол қойылды. Пішімі 60х84 1/16 Қағазы офсеттік.
	Қаріп түрі «Times New Roman»
	Шартты баспа табағы 1,86. Таралымы дана.
Тапсырыс	
«Қазақстан стан,	дарттау жөне сертификаттау институты» республикалық мемлекеттік
	кәсіпорны

010000, Астана қаласы Орынбор көшесі, 11 үй «Эталон орталығы» ғимараты Тел.: 8(7172) 240074, 793324