ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

(ГОССТАНДАРТ РОССИИ)

ГОСУДАРСТВЕННАЯ СЛУЖБА СТАНДАРТНЫХ СПРАВОЧНЫХ

ДАННЫХ (ГСССД)

УДК 546.212:534.22 (08)

ТАБЛИЦЫ СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ

А. А. Александров, В.А. Белогольский, В.И. Левцов, Л.М. Саморукова, С.С. Секоян, С.Р. Стефанов

Вода. Скорость звука при температурах 0...100 °C и давлениях 0,101325...100 МПа

ГСССД 190 - 2000

Авторы: Нефен А.А. Александров Берем А. Белогольский П.И. Девцов Мумо Л.М. Саморукова С.С. Секоян С.Р. Стефанов

РАЗРАБОТАНЫ ГП "ВНИИФТРИ" и Московский энергетический институт (технический университет)

АВТОРЫ: д – р техн. наук А.А. Александров, В.А. Белогольский, канд. техн. наук В.И. Левцов, Л.М. Саморукова, канд. техн. наук С.С. Секоян, канд. техн. наук С.Р. Стефанов

РЕКОМЕНДОВАНЫ К АТТЕСТАЦИИ Российским национальным комитетом Международной ассоциации по свойствам воды и водяного пара

ОДОБРЕНЫ экспертной комиссией в составе:

д – ра техн. наук В.В. Рошупкина, д – ра техн. наук Л.Р. Фокина, С.Н. Скородумова, канд. техн. наук П.В. Попова

УВЕРЖДЕНЫ Государственным комитетом Российской Федерации по стандартизации и метрологии "18" декабря 2000 г. (протокол № 16)

ДЕПОНИРОВАННАЯ РУКОПИСЬ

УДК 546.212 : 534.22 (08)

Таблицы стандартных справочных данных ГСССД 190 – 2000. Вода. Скорость звука при температурах 0...100 °C и давлениях 0,101325...100 МПа/Александров А.А., Белогольский В.А, Левцов В.И. и др. ; Всеросс. науч. — иссл. центр стандартизации, информации и сертификации сырья, материалов и веществ Госстандарта РФ. — 2000. 12 с. : Ил. : - Библиогр. — 17 назв. — Рус. — Деп. во ВНИЦСМВ 48.12.2000г, N782-60 кк.

Таблицы содержат значения термодинамической скорости распространения звука в нормальной, деаэрированной воде при температурах от 0 до 100 °C и при давлениях от атмосферного до 100 МПа.

Авторы Эменьскандров

<u>В.И. Л</u>евцов ДЛ.М. Саморукова

, С.С. Секоян

С.Р. Стефанов

ГОСУДАРСТВЕННАЯ СЛУЖБА СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ

Таблицы стандартных справочных данных	
ВОДА. СКОРОСТЬ ЗВУКА ПРИ ТЕМПЕРАТУРАХ	ГСССД
от 0 до 100°С И ДАВЛЕНИЯХ от 0,101325 до 100 МПа	190 - 2000
	Взамен
	ГСССД 117 -88
Tables of Standard Reference Data	GSSSD
Ordinary water. Sound velocity in the	190 - 2000
temperature range 0 to 100 °C and the	Instead of
pressure range 0,101325 to 100 MPa	GSSSD 117 -88

Аннотапия

Настоящие таблицы стандартных справочных данных содержат значения термодинамической скорости распространения звука в нормальной, деаэрированной, дистиллированной (ГОСТ 6709 –72) воде при температурах от 0 до 100°С и при давлениях от атмосферного до 100 МПа.

Таблицы составлены на основе уравнения, полученного в результате статистической обработки массива имеющихся в литературе экспериментальных данных, основу которого составляют значения скорости звука, измеренные в ГП «ВНИИФТРИ» с помощью рабочего эталона нулевого разряда УВТ-90-А-96.

Погрешности табличных значений определены в соответствии с ГОСТ 8.381-80. Средняя квадратическая погрешность значений скорости звука при атмосферном давлении составляет 0,02 м/с, а величины средней квадратической погрешности значений скорости звука при повышенных давлениях, изменяющиеся в зависимости от температуры и давления от 0,03 до 0,25 м/с, представлены в отдельной таблице.

ГОСУДАРСТВЕННАЯ СЛУЖБА СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ

Таблицы стандартных справочных данных	
ВОДА. СКОРОСТЬ ЗВУКА ПРИ ТЕМПЕРАТУРАХ от 0 до 100°С И ДАВЛЕНИЯХ от 0,101325 до 100 МПа	ГСССД 190 - 2000 Взамен ГСССД 117 –88
Tables of Standard Reference Data Ordinary water. Sound velocity in the temperature range 0 to 100 °C and the pressure range 0,101325 to 100 MPa	GSSSD 190 - 2000 Instead of GSSSD 117 -88

Применение стандартных справочных данных обязательно во всех отраслях народного хозяйства

Вводная часть

Настоящие таблицы стандартных справочных данных содержат значения термодинамической скорости распространения звука в нормальной, деаэрированной, дистиллированной (ГОСТ 6709 –72) воде при температурах от 0 до 100°С и при давлениях от атмосферного до 100 МПа

Уравнение, описывающее зависимость скорости распространения звука от температуры и давления принятое для построения этих таблиц в предыдущем издании [1], базировалось на совокупности высокоточных и хорошо согласующихся между собой экспериментальных данных для атмосферного давления [2—6] и данных работ [6—10] для высоких давлений, признанных наиболее надежными из экспериментальных исследований в этой области параметров, полный список которых приведен в [1]. Несколько позже в 1994 г. автор работы [10] указал на необходимость корректировки приведенных в ней значений и предложил поправочную формулу для диапазона температур от 0 до15°С и давлений до 100 МПа [11].

В последующие годы в ГП "ВНИИФТРИ" был разработан метод [12,13] и создан рабочий эталон нулевого разряда (УВТ –90 –А –96) для воспроизведения единицы скорости звука в дистиллированной воде в диапазоне температур 0 40°С и избыточных давлений 0 60 МПа. [14]. С помощью него были проведены систематические измерения скорости звука в дистиллированной воде во всей этой области параметров [15]. Полученные значения для атмосферного давления согласуются с величинами [1,2], а также с полученными несколько

позже данными [16], в пределах погрешности эталона. При повышенных давлениях отклонения табличных величин [1] в некоторых местах превышают эту погрешность.

Указанные обстоятельства и введение новой Международной температурной шкалы 1990 г. (МТШ-90) обусловили необходимость корректировки таблиц [1].

В дальнейшем использованы следующие условные обозначения:

w - скорость распространения звука в воде, м/с;

р – давление, МПа;

t – температура, °С (МТШ-90);

 $\pi = p - 0.101325$;

 $\tau = t/100$:

∆w – абсолютная средняя квадратическая погрешность, м/с.

Метолическая часть

При разработке настоящих таблиц сохранена структура уравнения, принятая в [1], и часть его, описывающая скорость звука при атмосферном давлении, оставлена такой же как и в [1] с коррекцией лишь на температурную шкалу МТШ-90. При получении уравнения для области высоких давлений в качестве исходных величин использованы новые данные, полученные в ГП «ВНИИФТРИ» для дистиллированной воды на рабочем эталоне нулевого разряда УВТ-90-А-96 [15], и данные работ [6, 8,11], относящиеся к температурам и давлениям более высоким, чем исследованы в [15]. После проверки согласованности исходных величин по изотермам и изобарам, им приданы статистические веса, соответствующие погрешностям экспериментального измерения, и коэффициенты уравнения определены с помощью метода наименьших квадратов с учетом их значимости.

Основой оценки погрешности табличных значений скорости звука в воде при атмосферном давлении является средняя квадратическая погрешность, полученная обычным методом расчета погрешности линейной функции при статистической обработке исходных экспериментальных данных. Однако, имея в виду возможное влияние на скорость звука способов приготовления образцов воды, на что указывается, например, в [17], и отсутствие надежных данных для учета такого влияния, значение погрешности получено удвоением результата статистического расчета. Средние квадратические погрешности табличных

значений скорости звука в воде при повышенных давлениях получены на основе экспертной оценки и анализа их согласования с экспериментальными данными.

Основная часть.

При температурах от 0 до 100°С и при давлениях от давления насыщения и до 100 МПа скорость распространения звука в воде w описывается уравнением, полученным в результате обработки наиболее достоверных экспериментальных данных с учетом их статистических весов

$$w = \sum_{i=0}^{5} a_{i0} \tau^{i} + \sum_{i=1}^{3} \sum_{i=1}^{3} a_{ij} \tau^{i} \pi^{j}$$

где a_{ij} — коэффициент при члене уравнения, содержащем τ в степени i и π в степени j

Первая сумма в правой части этого уравнения передает значения скорости звука при нормальном (0,101325 МПа) атмосферном давлении и при проведении расчетов для этого давления вторая сумма может быть отброшена.

Коэффициенты a_{ij} в уравнении определялись методом наименьших квадратов при использовании указанных выше массивов исходных данных Значения их приведены в табл. 1.

i *	j "= 0	j=1	j=2	j=3
0	1402,3874	149,94347	39,695230	-15,235495
1	503,83617	81,039755	-200,48177	66,311236
2	-581,17292	-111,69791	328,56051	-105,55834
3	334,63882	172,922898	-334,0451345	105,03105
4	-148,25967	-76,999585	137,256278	-45,780857
5	31,658502	-	-	-
степень т	в уравнении			

Таблица 1. Числовые значения коэффициентов а;;

В табл. 2 приведены рассчитанные по уравнению значения скорости распространения звука в воде при атмосферном давлении. При этом значение , указанное для температуры $t=100^{\circ}$ С, является экстраполированным значением для жидкой фазы, так как в шкале МТШ-90 температура насыщения воды при атмосферном давлении 0,101325 МПа равна 99,974°С и при температуре 100° С

вода находится в паровой фазе. Средняя квадратическая погрешность значений скорости звука, приведенных в табл. 2, равна 0,02 м/с.

Значения скорости звука в воде при повышенных давлениях , рассчитанные по уравнению, приведены в табл. 3. Средние квадратические погрешности этих значений указаны в табл. 4.

Список литературы

- 1 Вода. Скорость звука при температурах 0. . .100 °С и давлениях. 0.101325...100 МПа. ГСССД 117 –88. Изд –во стандартов. –1989. –19стр.
- 2. Del Grosso V, A.. Mader C. W. Speed of sound in pure water. J. Acoust. Soc. Amer. 1972. Vol. 52. N 5. P. 1442-1446.
- 3. Del Grosso V. A. Sound speed in pure water and sea water. J. Acoust. Soc, Amer. 1970. Vol. 47. P. 947-949,
- 4. Barlow A. J., Yazgan E, Phase -change method for measurements of ultrasonic wave velocity and determination of the speed of sound in water, Brit. J. Appl. Phys. 1966. Vol. 17. " P. 807-819.
- 5. Kroebel W., Mahrt K. H. Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure. Acoustica. 1976. Vol. 35. P. 154-164.
- 6. Александров А. А., Ларкин. Д. К. Экспериментальное определение скорости ультразвука в воде в широком диапазоне температур и давлений. Теплоэнергетика.-1976. N. 2. С. 75-78.
- 7. Barlow A. J., Yasgan E. Pressure dependence of the velocity of sound in water as a function of temperature. Brit. J. Appl. Phys. 1967. Vol. 18. P. 645-651.
- 8. Александров А. А., Кочетков А. И. Экспериментальное определение скорости ультразвука в воде при температурах 266-423 К и давлениях до 100 МПа. Теплоэнергетика. 1979. N. 9. С. 65-66.
- 9. Wilson Y. D. Speed of sound in distilled water as a function of temperature and pressure. J. Acoust. Soc. Amer, 1959. Vol. 51. N. 8. P. 1067-1072.
- 10. Chen-Tung Chen. Millero F. J, Reevaluation of Wilson's sound speed measurements for pure water. J. Acoust, Soc. Amer, 1976, Vol. 60. N 6. P. 1270-1273;

- 11. Millero F.J., Xu L. Comments on equations for the speed of sound in seawater. J. Acoust. Soc. Am. 1994. V. 95. N 5. Pt. 1. P. 2757-2759.
- 12. Белогольский В,А., Саморукова Л. М. Анализ временной задержки импульсных преобразователей скорости звука. Метрологические проблемы гидрофизических и гидроакустических измерений. Сборник научных трудов. Москва. 1990 г.
- 13. Белогольский В, А., Оводов Г. И., Саморукова Л. М., Левцов В. И., Власов Ю.Н. Времяпролетный способ определения скорости звука в жидкой среде и устройство для его реализации. Заявка на патент РФ N 92-000526/28 1992 г. Изобретения. Официальный бюллетень комитета Российской федерации по патентам и товарным знакам,- 1996.∼ N 35.
- 14. Белогольский В.А., Оводов Г,И.,, Саморукова Л. М, Лабораторный комплекс для измерений скорости звука в водных средах. Законодательная метрология. 1995. N 6. C. 20-22.
- 15. Белогольский В.А., Секоян С.С., Саморукова Л М., Стефанов С. Р., Певцов Б. И. Исследование зависимости скорости звука от давления в дистиллированной воде. Измерительная техника. 1999. -№ 4. –С. 66 -69.
- 16. Fujii Ken-ichi, Masui R. Accurate measurements of the sound velocity in pure water by combining a coherent phase –detection technique and a variable path length interferometer. J. Acoust. Soc. Amer. –1993. –Vol. 93. -№ 1. –P. 276 –282.
- 17. Juszkiowicz A., Kopylowicz J., Kozlowski Z. Measurements of some anomalies in the propagation of ultrasonic waves in pure water. Proc. Congr. of Federation of Acoust. Soc. of Europe, FASE -78. -Warszawa, 1978. -Vol. 1. -p. 25 -

Таблица 2. Значения скорости звука при атмосферном давлении (0,101325 МПа) w,м/с

t°C	0	1	2	3	4	5	6	7	8	9
0	1402,39	1407,37	1412,23	1416,99	1421,63	1426,17	1430,60	1434,92	1439,14	1443,26
10	1447,28	1451,20	1455,03	1458,76	1462,40	1465,94	1469,40	1472,77	1476,05	1479,25
20	1482,36	1485,39	1488,33	1491,20	1493,99	1496,70	1499,34	1501,90	1504,39	1506,80
30	1509,14	1511,42	1513,62	1515,76	1517,82	1519,83	1521,76	1523,64	1525,45	1527,19
40	1528,88	1530,51	1532,07	1533,58	1535,03	1536,42	1537,76	1539,04	1540,27	1541,44
50	1542,57	1543,63	1544,65	1545,61	1546,53	1547,39	1548,21	1548,98	1549,70	1550,37
60	1551,00	1551,58	1552,11	1552,60	1553,04	1553,44	1553,80	1554,11	1554,39	1554,61
70	1554,80	1554,95	1555,06	1555,12	1555,15	1555,13	1555,08	1554,99	1554,86	1554,69
80	1554,49	1554,25	1553,97	1553,65	1553,30	1552,91	1552,49	1552,04	1551,55	1551,02
90	1550,46	1549,87	1549,24	1548,59	1547,89	1547,17	1546,42	1545,63	1544,81	1543,97
100	1543,09	_	-	_	-	_	-	-	-	

Таблица 3. Значения скорости звука ,w,м/с при повышенных давлениях

t,°C		Давление р, МПа											
'	5	10	15	20	25	30	35	40	45	50			
0	1409,83	1417,60	1425,56	1433,68	1441,95	1450,36	1458,90	1467,56	1476,33	1485,20			
10	1455,03	1463,04	1471,15	1479,36	1487,65	1496,01	1504,45	1512,95	1521,51	1530,11			
20	1490,36	1498,58	1506,84	1515,15	1523,48	1531,85	1540,25	1548,66	1557,10	1565,55			
30	1517,39	1525,81	1534,23	1542,65	1551,07	1559,49	1567,91	1576,31	1584,71	1593,10			
40	1537,37	1546,01	1554,61	1563,19	1571,74	1580,26	1588,75	1597,21	1605,64	1614,05			
50	1551,32	1560,21	1569,03	1577,81	1586,53	1595,20	1603,82	1612,39	1620,91	1629,39			
60	1560,05	1569,22	1578,31	1587,32	1596,26	1605,12	1613,92	1622,65	1631,32	1639,93			
70	1564,19	1573,68	1583,06	1592,35	1601,55	1610,65	1619,67	1628,61	1637,47	1646,25			
80	1564,24	1574,07	1583,78	1593,38	1602,87	1612,26	1621,54	1630,72	1639,80	1648,80			
90	1560,58	1570,78	1580,84	1590,77	1600,58	1610,27	1619,85	1629,31	1638,66	1647,91			
100	1553,56	1564,11	1574,52	1584,80	1594,95	1604,97	1614,86	1624,64	1634,29	1643,84			

Продолжение табл. 3

t,°C	Давление р, МПа										
	55	60	65	70	75	80	85	90	95	100	
0	1494,15	1503,17	1512,25	1521,39	1530,56	1539,76	1548,98	1558,20	1567,41	1576,60	
10	1538,76	1547,44	1556,14	1564,87	1573,61	1582,36	1591,10	1599,84	1608,56	1617,25	
20	1574,01	1582,48	1590,96	1599,43	1607,89	1616,35	1624,79	1633,21	1641,61	1649,99	
30	1601,48	1609,85	1618,20	1626,53	1634,84	1643,13	1651,40	1659,65	1667,87	1676,06	
40	1622,42	1630,76	1639,08	1647,36	1655,62	1663,84	1672,04	1680,21	1688,34	1696,45	
50	1637,83	1646,22	1654,57	1662,88	1671,14	1679,38	1687,57	1695,73	1703,86	1711,95	
60	1648,48	1656,97	1665,41	1673,79	1682,13	1690,42	1698,67	1706,88	1715,05	1723,18	
70	1654,96	1663,60	1672,17	1680,68	1689,13	1697,53	1705,87	1714,16	1722,41	1730,61	
80	1657,71	1666,54	1675,29	1683,96	1692,56	1701,10	1709,57	1717,98	1726,34	1734,65	
90	1657,06	1666,12	1675,08	1683,96	1692,75	1701,47	1710,11	1718,68	1727,18	1735,62	
100	1653,27	1662,60	1671,83	1680,96	1689,99	1698,93	1707,79	1716,55	1725,24	1733,85	

Таблица 4. Средняя квадратическая погрешность значений скорости звука в воде при повышенных давлениях

t,°C	Δw, м/с, при давлении р, МПа										
	10	20	30	40	50	60	70	80	90_	100	
0	0,04	0,05	0,06	0,07	0,08	0,09	0,15	0,17	0,20	0,24	
10	0,03	0,04	0,05	0,06	0,07	0,08	0,13	0,15	0,18	0,22	
20	0,03	0,04	0,05	0,06	0,07	0,08	0,12	0,14	0,17	0,20	
30	0,03	0,04	0,05	0,06	0,07	0,08	0,11	0,13	0,16	0,18	
40	0,03	0,04	0,05	0,06	0,07	0,08	0,12	0,14	0,17	0,20	
50	0,05	0,06	0,07	0,08	0,08	0,10	0,14	0,16	0,18	0,21	
60	0,06	0,07	0,08	0,09	0,10	0,11	0,15	0,17	0,19	0,22	
70	0,06	0,07	0,08	0,09	0,10	0,11	0,15	0,17	0,19	0,22	
80	0,06	0,07	0,08	0,09	0,10	0,11	0,15	0,17	0,19	0,22	
90	0,08	0,09	0,10	0,11	0,12	0,13	0,17	0,19	0,21	0,24	
100	0,10	0,11	0,12	0,13	0,14	0,15	0,19	0,21	0,23	0,25	