


Bunyok 17

Bunyok 17

ФУНДАМЕНТЫ ИЗ СВАЙ С ЗАКРЫЛЬАМИ

№ 10362тм-т17

Корректировка 195.

# Министерство энергетики и электрификеции СССР ГЛАВНИИПРОЕКТ

Всесораный Госудерственный проектно-изыскательский и неучно-исследовательский институт энергетических систем и электрических сетей "ЭНЕРГОСЕТЫПРОЕКТ"

НОВЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ
В ЭЛЕКТРОСЕТЕВОМ СТРОИТЕЛЬСТВЕ
Выпуск 17
ФУНЛАМЕНТЫ ИЗ СВАЙ С ЗАКРЫЛКАМИ
В 10362тм—т17

Корректировка 1981 г.

Главный инженер института

√Зеу√ и.и.сыирнов

Нечельник ОТП и HT

Имина.Б.Рубинитейн

Глевный специелист

В.А. Хорьнов

# I0362mm-TI7

# COLEPHANIE

|     |                                                                    | Cab. |
|-----|--------------------------------------------------------------------|------|
|     | Аннотация                                                          | 3    |
|     | Пояснительная записка                                              | 4    |
| I.  | Назначение и область применения                                    | 4    |
| 2,  | Сущность нового технического решения                               | 5    |
| з.  | Описание конструкций                                               | Б    |
| 4.  | Основние данные об изготовлении и материалах                       |      |
|     | конструкций                                                        | 8    |
| 5.  | Указания по подбору фундаментов                                    | 9    |
| 6.  | Соображения по технологии производства работ и                     |      |
|     | организации строительного процесса                                 | 10   |
| 7.  | Комплексная экономическая оценка эффективности                     |      |
|     | свай с закрылками                                                  | 20   |
|     | Приложения                                                         |      |
| I.  | Сваи с закрылками. Геометрические размеры и рас-<br>ход материалов | 60   |
| 2.  | Закрепление стоек типа СКІ, СК2, СКЗ и СЦ с при-                   |      |
|     | менением свай с закрылками                                         | 62   |
| з.  | Зякрепление стоек типа СК4, СК5, СК6 и СК7 с при-                  |      |
|     | менением свай с закрылками                                         | 61   |
| 4.  | 5. Таблица несущей способности закреплений с при-                  |      |
|     | менением свей с закрылками. І случай установки                     | લ્ડ  |
| 6.' | 7. Таблица несущей способности закреплений с при-                  | 07   |
|     | менением свей с векрылками. 2 случей установки                     |      |
| 8.  | График несущей способности свай, исходя из дефор-                  |      |
|     | NAUNI OCHOBOHNA                                                    | 67   |

# RMUATOHHA

Настоящий выпуск выполнов в совтроствии с комплексной программой института «Энергосетьпроект» по внедрению в электросетевое строительство новых технических решений в XI пятилетке.

Фундаменты из свей с закрылками предназначены для закрепления в сдабых грунтах унифицированных свободностоящих железобетонных опор ВЛ 35-330 кВ на базе стоек \$ 650 и 560 мм, в также стоек порталов ОРУ ПС.

Закрепление этих конструкций осуществляется путем установки стоек в полость погруженной в грунт овам.

В реботе даны описание конструкций, указания по подбору фундементов, соображения по технологии производстве работ, а также комплексием экономическая оценка эффективности применения фундаментов из овай с закрылками.

Настояций выпуск представляет собой откорректированный В 1026 2тм-т Г7, в который вошли изменения и дополнения. 10362 TM--- 17

# HORCHUTERIBHAR BAHWCKA

#### навначение и область применения.

Слем с закрылками предназначены для закрепления в грунте унифици юванных свободностоящих железобетонных опор ВЛ 35-330 кВ на баз стоек диаметром 650 и 560 мм, а также стоек порталов ОРУ ПС Закрепление этих конструкций осуществляется путем установ стоек в полость погруженной в грунт свам.

О-новная область применения свай с закрылками — закрепление в элабых, болотистых и насыпных (в случае порталов ОРУ)

грунт: с, а также в грунтах с разрыхленным почвенно-растительным слоем большой глубины или размачиваемых от выпадения осадков грунт: с.

тамо се вирокое применение находят конструкции с ригелями устамо сенными в насыпной банкетке, закрепления в копаном котловане з заменой слабого местного грунта привозным, обладающим
боле: высшими физико-механическими характеристиками, закрепления
с применением оттяжек, прикрепляемых к сваям или анкерным плитам свайные закрепления с монодитным стаканом (под порталы ОРУ)
и т. (. Однако все эти закрепления трудоемки, материалоемки, отлича этся высокой стоимостью и в ряде случаев существенно снижают
эффективность применения экономичных железоботонных опор.

Указанные недостатки применяемых закреплений в слабых грунтах являются существенным фактором, сдерживающим наметившиеся в последнее время тенденции повсеместной замены материалоемких металлических опор более экономичными железобетонными.

В силзи с этим, институтом Эмергосетыпроект разработан целый ряд новых конструктивных решений закрепления свободностоядих железобетонных опор в слабых грунтах, отличающихся высокой несущей способностыр, и ориентированных на максимальную индустриализацию работ на пикете, сокращение трудоемиссти, материалоемкости и стоимости закреплений.

Одним из таких конструктивных решений являются закрепления с применением свай с закрымками.

# 2. СУЩНОСТЬ НОВОГО ТЕХНИЧЕСКОГО РЕМЕНИЯ

В основу рассматриваемого технического решения положена идея устранения главного недостатка традиционных закреплений свободностоящих опор в сверлених котлованах — повышенной деформативности закрепления из-за некачественной засыпки пазух сверменых котлованов, а также пазух копаных котлованов, устраиваемых на поверхности грунта для установки навесных ригелей. В соответствии с этим стойка опоры устанавливается не в свэрленый котлован, а в полость сваи, т.е. в железобетонный стакин сваи с дизметром, мало отдичающимся от диаметра стойки, принем помость между стойкой и стакином тщательно заполняется поском или цементным раствором.

Телезобетонная свая погружается в грунт при помоща свазпогружающего обсрудования методами вибровдавливания или ударным способом, с устройством лидирующего отверстия или о́за изпо. Таким образом, устраняется один из недостатков традицизиного закрепления — его деформативность из-за некачественного
уплотнения засыпки пазух сверленого котлована. Свая снабжега в

## 10362TM-TI7

верхней своей части закрылками, имитирующими ригель, который вдавливается в грунт ненарушенной структуры по мере погружения сваи. Таким образом устраняется второй недостаток традиционного закрепления — его деформативность за счет некачественной засышки котлована, устраиваемого для установки навесного ригеля.

Проведенные испытания свай с закрыжами, установленными под стойки порталов СРУ и стойки мелезобетонных опор показали значительно меньшую деформативность таких закреплений (в I,5-3 раза), чем традиционных с установкой стоек в сверленом котловане.

# 3. ORUCAHUE KOHCTPJHIMA

Свая с закрыжным представляет собой железобетонный циминдр с закрытым нижним конусообразным концом и двумя плоскими элементами, а также кольцевым уширением в верхней части(лист I).

В технических решениях приведены две разновидности свай, изготавливаемые в одной опалубке (сваи типа СЗ—4,0 и СЗ—4,0У). Влина свай — 4,0 м, наружный диаметр ствола — 0,84 м, диаметр верхнего кольцевого уширения — 0,92 м, общий "размах" (ширина) закрылков — 2,0 м, их высота (с учетом нижней скошенной части — 1,4 м. Эти внешние геометрические размеры приняты, исходя из размеров опалубок, имеющихся на Светлогорском заводе железобетонных конструкций Главэнергостройпрома и прездназначенных для вналогичных конструкций, разрасстанных Оргэнергостроем. Полость внутри сваи, исходя из возможности ее формирования с помощьт вынимающегося вкладыща, принята конпческой, и имеет диаметр поверху:

# 10362TM-T17

для свай типа СЗ-4,0(предназначенных для закрепления железобетонных опор на базе конических и цилиндрических стоек в 0,56 м, а также стоек порталов ОРУ ПС) диаметр отверстия равен 0,64 м (дист 2);

для свай типа СЗ-4,0У (предназначенных для закреплений железобетонных опор на базе стоек в 0,65 м) диаметр отверстил увеличен до 0,72 м (лист 8).

Как указано выше, сваи погружаются в грунт методами вибровдавливания или ударными методами с устройством лидирующего отверстия или без него. Последнее рекомендуется в грунтах со средними физико-механическими тарактеристиками.

Диаметр отверстия должен быть на 100мм меньше диаметра сваи и глубина — меньше глубины погружения сваи на длину острия (0,8 м).

До установки стойки опоры полость сваи на заданную высоту заполняется уплотненным крупно-зернистым песком или песчано-гравийной смесью. Высота заполнения принимается с таким расчетом, чтобы заделка стойки в полость сваи была для стоек в 0,56 м, а также стоек порталов СРУ не менее I,2 м и для стоек в 0,65 м - не менее I,5 м. Пазухи между стойкой и стенуами сваи заполняются:

- в случае применения свай типа СЗ-4,0 уплотненным штыковкой крупнозернистым песком;
- в случае применения свай C3 4.0У, имеющих более тонкие стенки стакана цементным раствором.

Пифровка свай с закрылками понятна из приведенного ниже примера:

СЗ - 4.0У расшифровывается

С - свая

3 - с закрышкамы

#### I03327M-TI7

- 4.0 длиной 4.0 м
- У. с уширенной полостью.

# замечания по применению

В случае применения звай с закрылками в грунтск со значительным повержностным слоем водонасыщенного торфа (до 3 м) возмежно погрушение сваи через этот слой с применением специальноте приспоссоления, разработанного Одесским фидиалом института Срганергострой.

Такое приспособление состоит из удлинителя в виде металимпеской трубы, предназначенного для передачи усилий от вибровдавливающего агрегата (ВВКС) на сваю, и защитного кожуха, предназначенного для ващиты удлинителя от соприкасания с грувтом и полости свам от попадания грунта до установки и заделки в нед стойки опоры. Эскизы этих приспособлений для погружения свай ните уровня земли имеются в Одесском филиале института форганергострой по адресу: 270056, г.Одесса, ул.Солнечная, 5.

# 4. ОСНОВНЫЕ ДАННЫЕ ОБ ИЗГОТОВЛЕНИИ И МАТЕРИАЛАХ КОНСТРУКЦИЙ

4.І. Свам с закрынками должны изготавливаться в строгом соответствии с рабочими чертежным, приведенными в типовых ремениях поруддаменты под унифицированные опоры ВЛ 35-500 кВ для особых грунтовых условий. Выпуск 2. Специальные конструкции вакреплений желевобетонных опор<sup>в</sup> вив. в 9432гм, ЭСП, 1977 год, см. дисти 65,66,67,68,69,70,71.

# 10362TM-T17

- 4.2. В настоящее время изготовление свей с закрылками освоено на Светдогорском заводе Ж.Б.К. ...треста "Энергострой-конструкция" Главэнергостройпрома Минэнэрго СССР, где принято изготовление на полигоне в разъемных формах с уплотнением бетонной смеси на формовочной установке с вертикально направленными колебаниями и последующей тепловлажностной обработкой в камерах ямного типа.
- 4.3. Все указания о материалах конструкций, требования по изготовлению, приемке, складированию и т.д. принимат; в соответствии с указаниями Пояснительной записка и проекту инв. 
  ж 9482ти, выпуск 2, листы 39-44.

# 5. УКАЗАНИЯ ПО ПОЛБОРУ ФУНЛАМЕНТОВ

При подборе фундаментов с применением свой с закрынками рассматривеется два случая работы основания:

Устойчивость (I-ое предельное состояние), деформации (2-ое предельное состояние).

Подбор фундаментов производится, исходя на I-го предельного состояния по "Таблицам несущей способности (допускаемых изгибающих моментов Мтсм) закреплений", см. листы 447.

Таблицы составлены для двух случаев установки свой с вакрылками:

I случай - когда грунт работает по всей высоте закрепления (см. листы 445).

2 случий - когда верхний сдой толщиной I м не работает (см. дисты 6 + 7).

В таблицах рассмотрены 54 условных номера грунтов в соот-

## I0362TH-TI7

ветствии со СНиП П-15-74, все расчеты выполнены с применением Эвм.

Подбор фундамента производится из условия

$$M \leq [M] \frac{1}{K_{H}}$$

момент, действующий в стойке в сечении по ее заделке,

[М - табличное значение несущей способности закрепления;

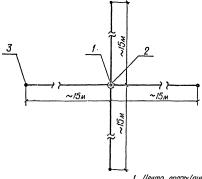
Кы - коэффициент надежности, принимаемый в зависимссти от типа закрепляемой оперы в соответствии с табл.24 СНиШ П-15-74

Выбранное по указанным выше таблицам закрепление проверяется по графикам несущей способности (см. лист 8), где определены допускаемые изгибающие моменты [М"] тсм, в зависимости от модуля деформации В (кгс/см<sup>2</sup>) грунта. Применимость выбранного закрепления определяется из условия

$$M'' \leq [M'']$$
 . rge

- М⁴- нормативный изгибающий момент в сечении по заделке стойки
- [M"]- несущая способность закрепления, определенная по графику при заданном модуле деформации грунта.
  - 6. СООБРАЖЕНИЯ ПО ТЕХПОЛОГИИ ПРОИЗВОДСТВА РАБОТ

    и организации строительного процесса
  - 6.1. Общая часть
- 6.І.І. В настоящих указаниях содержатся основные положения по технологии погрумения свай с закрылками.
  - 6.1.2. При разработке технологии принято, что до начале ра-


## 10862TM-T17

#### бот выполняется:

- переоборудование, в случае необходимости, сваебойного агрегата для возможности погружения свей диаметром 840 мм;
  - устройство подъездных дорог к пикету;
- расчистка и планировка территории в местах прохода сваебойного агрегата с уклонами не более  $5^{0}$  и микронеровностями не более  $\pm 10$  см;
- завоз на пикот свай и песчано-гравийной смеси для заполнения полости сваи;
- проверка соответствия проектному положению места погружения сваи.
  - 6. І.З. В зимнее время дополнительно производится:
  - расчистка монтажной площадки от снега:
  - защита утеплителями песчано-гравийной смеси от смервания.
  - 6.2. Технология производства работ
- 6.2.1. Работа по устроиству фундаментов с применением свай с закрылками ведется специализированным авеном в составе комплексной бригады.
- 6.2.2. Последовательность работ по погружению свай с зак-
  - бурение котлована глубиной 3,2 и диаметром 750 мм;
- погружение сваи с использованием пробуренного котлована в качестве лидерной скважины;
- заполнение с уплотнением полости сваи гравийно-песчаной смесью.
- 6.2.3. Бурение котлована производится бурильной машинойтипа мРК в следующей последовательности:

- проверка наличия разбивочных кольшков и правильности разбилист дагора котлована;
- установка машины с выверкой по отвесу положения бура над центром котлована;
  - усиление пикетного знака;
  - бурение котлована на глубину Н = 3,2 м;
  - подъем бура;
  - откидывание грунта от бровки;
- опускание мачты и подготовки машины к переезду на следуювым пикет.
- 6.2.4. Организация рабочей зоны при бурении котлована см. ржс. I.
- 6.2.5, Погружение свай может производиться либо ударным способом, либо вибропогружением.
- 6.2.6. Последовательность работ при погружении свай ударшим способом с помощью сваебойного агрегата типа СП-49:
- установка агрегата таким образом, чтобы вертикальная ось молота проецировалась на центр лидерной скважины;
- подтягивание свым к агрегату через отводной блок на нижжей раме копра:
  - заводка сраи под молот и опускание на нее наголовника;
  - забивка сваи до проектной отметки;
  - сиятие нагодовника со сваи.
- 6.2.7. Последовательность работ при погружении свай агрегатом ВВГС-20/II:
- стыковка горизонтально выпоженной снаи с наголовником с помощью навешенной на вибропогружатель ручной тали, удерживающей наголовник в горизонтальном положении;

# Разбивка котлованов



- 1. Центр опоры (пикетный столб)
- 2. Контур котлована
- 3. Разбивачные колышки
- 4. Буровая машина




Рис. Г Организация рабочей зоны при бурении котлованов.

# I0862TH-T17

- подъем свам с нагологником и вывешивание ее над центром лидерной скважины (котлована);
  - погружение сваи до проектной отметки.
  - 6.2.8. Особенности работы со сваебойным агрегатом СП-49:
- подтягивание сваи разрешается с расстояния не более 5 м
   только перпендикулярно оси движения копра;
- авбивка сваи производится до проектной отметки, либо до получения проектного "отказа" сваи;
- свая, не давшая при забивке расчетного "отказа", должна быть добита после "отдыха" в грунте;
- окончательное решение при превышении расчетного "отказа" при контрольной добивке принимается проектной организацией;
- первые удары (до заглубления сваи на I-I,5 м) производятся при небольшой высоте подъема ударной части молота с последурщим переходом на максимальную высоту подъема.
  - 6.2.9. Особенности работы с вибропогружателями:
- обязательным условием вибропогружения сваи является жесткое крепление вибропогружателя к свае:
- контроль за погружением сваи ведется измерением скорости погружения и амплитуды колебаний погружаемой сваи;
- погружение приостанавливается до выяснения причин при
   резком снижении скорости или значительном увеличении амплитуды.
- 6.2.10. Организация рабочей зоны при погружении свай см. рис.2.
  - 6.3. Соображения по эрганизации строительного процесса
- 6.3.1. Работы по погружению свай с закрилками ведутся специализированным звеном из состава комплексной бригадн.
  - 6.3.2. Состав звена приведен в графике выполнения работ.

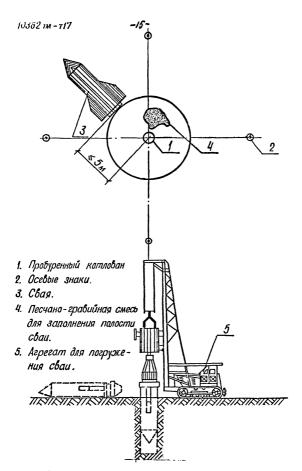



Рис. 2. Организации рабочей зоны при погружении свай с закрыжами

## I0362#W-#I7

При ооставлении графика приняты следующие основные положения:

- продолжительность рабочей смены 8,2 часа;
- работы проводятся в летнее время на равнинной местности в мокрых, сильно налипающих на бур, грунтах;
- не учитываются подготовительные, а также транспортные и погрузочно-разгрузочные работы;
- приведенной в графике трудовикостью учтены затраты труда механизаторов;
  - затраты механизмов приняты по фактической занятости звена.
- 6.8.8. Технико-экономические показатели и график выполнения работ, составлены, исходя из необходимости устройства лидерной скважины и 20минутного погружения сваи, но должны быть уточнены по месту, исходя из конкретных условий.

6.3.4. График выполнения работ по устройству фундаментов из свай с закрыпками

| Этапы<br>работы | Наименование работы                                                                                                                                              | Един.<br>Изм. | работы<br>Объем | Трудоемкость<br>на весь объем<br>челдни | Состав звена,исполь-<br>зуемые механизмы                                                                                    | Смена            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
|                 | Устройство фундамента из свай с закрылками (бурение котлована, подготовка сваи к погружение, погружение сваи, заполнение полости сваи песвано-гравийной смесью). | І фунд.       | I               | I,50                                    | влектролинейщики 5 р. — I чел. 3 р. — 2 чел. машинист сваепогру— жателн 6 р. — I чел. машинист буровой машины 5 р. — I чел. | 0,5 см<br>5 чел. |
|                 | Итого                                                                                                                                                            |               |                 |                                         |                                                                                                                             | 0,5 cm           |
|                 |                                                                                                                                                                  |               |                 |                                         |                                                                                                                             |                  |
|                 |                                                                                                                                                                  |               |                 |                                         |                                                                                                                             |                  |
|                 |                                                                                                                                                                  |               |                 |                                         |                                                                                                                             |                  |
|                 |                                                                                                                                                                  | 1             | ;               |                                         |                                                                                                                             |                  |

| D ISXBUKU BAKOBUMU 4CCKNG HOKASATUJ | 6.4. | Технико-экономические | показатели |
|-------------------------------------|------|-----------------------|------------|
|-------------------------------------|------|-----------------------|------------|

|                         | Iorasatena                                      | Един.<br>Изк. | Устройство<br>фундамента |
|-------------------------|-------------------------------------------------|---------------|--------------------------|
| Трудова                 | атраты                                          | чел.—Дии      | 1,50                     |
| Ватрати<br>машино-очени | Буровая <b>мантыя</b><br>Установка вибровдавли- | машсм.        | 0,50                     |
| В В ПИН                 | варщего действия                                | машсм.        | 0,50                     |
| численн                 | ый состав звена                                 | чел.          | 5                        |
| Продолж                 | ительность операции                             | смена         | 0,5                      |
| Произво                 | дительность эвена за                            |               |                          |
| смену                   |                                                 | фунд/смена    | 2,0                      |

# 6.5. Техника безопасности

- 6.5.1. При производстве работ необходимо строго руководствоваться СниП В.А-II.70 "Техника безопасности в строительстве", "Правилами техники безопасности при строительстве воздушных линий электропередачи", соответствующими инструкциями по эксплуатации применяемых мехенизмов.
- 6.5.2. Особое внимание следует обратить на выполнение следующих требований:
- исправности механизмов, канатов, блоков, кроков и других такелажных приспособлений;
- планировке площадки в местах прохода механизмов, таким образом, чтобы уклоны не превышали  $5^0$ ;
  - специальной подготовке и медицинского освидетельствова-

# 10362TH-TI7

ния рабочих механизаторов и электролинейщиков.

- 6.5.3. При производстве работ запрещается:
- выполнять в опасной зоне (высота копровой стрелы плюс пять метров) вспомогательные работы, не имеющие прямого отношения к технологическому процессу:
- допускать одновременного производства двух операции, например, подъем молота и сваи;
- производить косые и нецентральные удары молота по свае при ее забивке;
- продолжать работу при имеющейся опасности разрушения сваи;
  - работать на неисправных машинах;
  - перемещать агрегаты с поднятым молотом;
  - допускать посторонних лиц к работающим машинам.

Раздел "Техника безопасности" согласован:

инженер по технике безопасности И.Б.Покровский

- 7. КОМПЛЕКСНАЯ ЭКОНОМИЧЕСКАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ
- 7.1. Краткая характеристика и выбранные эталоны для сравнения
- 7.1.1. Применение полых свай с закрылками (вариант № 1) для закрепления унифицированных железобетонных центрифугированных стоек опор линий электропередски, а также стоек железобетонных порталов ОРУ в средних и слабых грунтах позволяет сократить трудозатраты в строительстве.
  - 7.1.2. В качестве эталонов для сравнения приняти:
- установка металлической опоры П IIO-I на свайных фундаментах (вариант П);
- установка метадлической опоры П 110-1 на подножниках Ф3-2 (вариант Ш);
- установка железобетонной опоры ПБ IIO-I с 4 ригелями в котлован (вариант іУ); при всех этих вариантах сохраняется условие равнопрочности заделки.
  - 7.2. Основные положения
- 7.2.I. Для сравниваемых вариантов устройство фундаментов осуществляется в равнинной местности в обводненных грунтах I категории.
- 7.2.2. При расчете трудоватрат на транспортировку грузов по трассе расстояние перевозок условно принято 5 км в условиях бездорожья.
- 7.2.3. Стоимость сооружения полой сваи с закрылками принята на основании единичных расценок.
- 7.2.4. Расчет сметных стоимостей традиционных решений принят на основании EPEP.

# I0362TH-TI7

- 7.2.5. Все стоимости по сравниваемым вариантам определены без учета личитированных затрат по ценам I территориального района на основании ЕРЕРов.
  - 7.2.6. Все показатели приведены в расчете на I опору.
  - 7.2.7. При приведении показателей на I км принято:
  - район гололедности I, габаритный пролет для опоры II IIO--I - 375 м, для опоры IIБ IIO-I - 285 м.
- 7.2.8. При расчете заводских трудозатрат на изготовление конструкций использованы усредненные показатели, полученные не основании данкых трестов "Энергостройконструкция" и "Энергостальконструкция".
- 7.2.9. При расчете трудозатрат продолжительность рабочего дня и машиносмен принята равной 8,2 часа.

Технико-вкономические показатели по сравниваемым вариантам

| Показатели                                     | Измери-<br>тель |             | Вариант | 'H   |      |
|------------------------------------------------|-----------------|-------------|---------|------|------|
|                                                | 10112           | I           | п       | п    | IУ   |
| . Расход материалов                            |                 |             |         |      |      |
| CTARE - BCGFO:                                 | KI              | 976         | 4887    | 2427 | 850  |
| - приведенная к Ст.3                           | _n_             | <b>I534</b> | 5927    | 2623 | 1306 |
| цемент                                         | _n_             | 1207        | 2611    | 2036 | 1115 |
| песок                                          | мв              | 0,8         | -       | I45  | 80   |
| . Капиталовложения:                            |                 |             |         |      |      |
| - стоимость СМР                                | pyo.            | 438         | 2121    | 2205 | 893  |
| в т.ч. стоимость материалов                    | _11-            | 376         | 1766    | 1805 | 711  |
| . Трудозатраты: - всего                        | челдн.          | 6,0         | 22,0    | 27,0 | 10,0 |
| - в изготовлении                               | челдн.          | 3,0         | ID,0    | 7,0  | 2,6  |
| - в строительств <b>е</b>                      | -n-             | 3,0         | 12,0    | 20,0 | 7,4  |
| . Экономия:                                    | İ               |             | İ       |      |      |
| - стали - всего по сравнению со<br>П вариантом | кr              | 3911        | -       | -    | -    |

|                                                            |      | I                | П | Ш | IA       |
|------------------------------------------------------------|------|------------------|---|---|----------|
| то же по сравнению с Ш вариантом                           | Kľ   | I45I             | - | - | -        |
| то же по сравнению с 1У вариантом                          | -11- | <b>-</b> I26     | - | - | -        |
| - стали, приведенной к Ст.З но<br>сравнению со П вариантом | _11_ | 4393             | - | - | -        |
| то же по сравнению с Ш вариантом                           | -n-  | 1089             | - | - | <u> </u> |
| то же по сравнению с ІУ вариантом                          | -n-  | -232             | - | - | -        |
| - цемента по сравнению со П вариан-<br>том                 | -n-  | I404             | - | _ | -        |
| то же по сравнению с 🏻 вариантом                           | -n-  | 829              | - | - | -        |
| то же по сравнению с ІУ вариантом                          | _n_  | -92              | - | - | -        |
| - песка по сравнению со П вариантом                        | мз   | -0,8             | - | _ | -        |
| то же по сравнению с Ш вариантом                           | _n_  | I44              | - | - | -        |
| то же по сравнению с ІУ вариантом                          | _"-  | 79               | - | - | -        |
| - капиталовложений                                         |      |                  |   |   | •        |
| стоимость СМР по сравнению со П<br>вариантом               | pyo. | I68 <del>3</del> | - | - | -        |
| то же по сравнению с П вариантом                           | _n_  | 1767             | - | - | -        |
| то же по сравнению с ІУ вариантом                          | _11_ | 435              | - | - | -        |
|                                                            |      | :                |   |   | ;        |

|                         |                                                       |             | I    | а      | Ш | IÀ |
|-------------------------|-------------------------------------------------------|-------------|------|--------|---|----|
| B T.4.                  | стоимость материалов по срав-<br>немию со П вариантом | py6.        | 1390 | _      | - | -  |
|                         | то же по сравнению с 🛚 вариантом                      | _11_        | I429 | -      | - | -  |
|                         | то же по сравнению с ІУ вариантом                     | _n_         | 835  | -      | - | _  |
| <b>- т</b> р <b>у</b> д | озатрат                                               |             |      |        |   | ł  |
|                         | в изготовлении по сравнению со<br>П вариантом         | челдн.      | 7,0  | -      | - | -  |
|                         | то же по сравнению с П вариантом                      | -# <b>-</b> | 4,0  | -      | - | -  |
|                         | то же по сравнению с ІУ вариантом                     | -"-         | -0,4 | -      | - | -  |
|                         | в строительстве по сравнению со<br>П вариантом        | _#_         | 9,0  | -      | - | -  |
|                         | то же по сравнению с 🏻 ва-                            | _#_         | 17,0 | -      | - | _  |
|                         | то же по сравнению с <b>ІУ ва-</b>                    | -"-         | 4,4  | -      | - | -  |
|                         |                                                       |             |      |        |   |    |
|                         |                                                       | 1           |      | •      |   |    |
|                         |                                                       |             |      | i<br>1 |   |    |
|                         |                                                       |             |      | 1      | ! |    |
|                         |                                                       |             | 1    | 1      | • |    |
|                         |                                                       |             |      | :      | i | ļ  |

10362TM-TI7

# Экономия основных строительных материалов, капвложений и трудозатрат при применении лвай с закрылками по сравниваемым вариантам на I км ВЛ

| Показатели             | Измеритель | Экономия<br>С н | по сраз<br>варианто | и<br>Внению |
|------------------------|------------|-----------------|---------------------|-------------|
| 1                      |            | П               | Ш                   | IJ          |
| Сталь - всего          | кr         | 9779            | 3137                | -44I        |
| - приведенная к Ст     | 3 -"-      | I0634           | 1713                | -798        |
| тнемеД                 | -n-        | 2825            | 127 <b>2</b>        | -322        |
| Песок                  | МЗ         | -3              | 389                 | 277         |
| Стоиность СМР          | руб.       | 4194            | 442I                | 1593        |
| В Т.ч. СТОИМОСТЬ МАТО- |            |                 |                     |             |
| риалов                 | _11_       | 3452            | 3558                | 1173        |
| Трудоватраты всего     | челдни     | 38              | 52                  | 14          |
| иинэдеотогси в .у.т в  | _#_        | 16              | 8                   | -I          |
| в строительстве        | _11_       | 22              | 43                  | 15          |
|                        |            |                 |                     |             |

Вариант І. Калькуляция трудозатрат и машеносмен на установку железобетонной одностоечной опоры ПЕПО-І с использованием свай с закрылками в слабых грунтах (на I опару)

| Вид работы                                                          | Изме-<br>ритель                                                                                                                                   | Объем                                                                                                              | Норма вре-                                                                                                                | Трудозат-                | Состав                                                                                                                                                                                                               | Noncommon. W                       | Приме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                   | puou                                                                                                               | мени на из-<br>меритель,<br>челчас                                                                                        | раты<br>челчас<br>челдн. | Внеце                                                                                                                                                                                                                | Механизмы и<br>кол-во<br>маш. —См. | ASHNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                                   | 3                                                                                                                                                 | 4                                                                                                                  | 5                                                                                                                         | 6                        | 7                                                                                                                                                                                                                    | 8                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I. Бурение котло-<br>вана                                           | I кот-<br>лован                                                                                                                                   | I                                                                                                                  |                                                                                                                           | 1,0/0,12                 | Машинист<br>5 р I                                                                                                                                                                                                    | MPK-8A<br>- 0,12                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Погружение сваи                                                  | І свая                                                                                                                                            | I                                                                                                                  |                                                                                                                           | 4,0/0,49                 | Электро-<br>линейщик<br>4 р. — I<br>3 р. — I<br>Машинист<br>6 р. — I<br>Пом. маши—<br>ниста<br>5 р. — I                                                                                                              | BBNC-20/II<br>- 0,12               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. Засыпка полости<br>сваи уплотненным<br>крупнозернистым<br>песком | μЗ                                                                                                                                                | 0,77                                                                                                               | 0,58                                                                                                                      | 0,45/0,05                | - 10                                                                                                                                                                                                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. Сборка опоры                                                     | І опор                                                                                                                                            | a I                                                                                                                | 0,45+0,45+<br>+3,7=4,6                                                                                                    | 4,6/0,56                 | Электро-<br>плнейщик<br>5 р. — I<br>4 р. — I<br>3 р. — I<br>манинист                                                                                                                                                 | Kpan Tpak-<br>Tophuk<br>r/n.5 T    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                     | <ol> <li>Бурение котло-<br/>вана</li> <li>Погружение сваи</li> <li>Засыпка полости<br/>сваи уплотненным<br/>крупнозернистым<br/>песком</li> </ol> | І. Бурение котло- І кот- вана 2. Погружение сваи І свая 3. Засыпка полости сваи уплотненным крупнозернистым песком | І. Бурение котло- І кот- І лован І 2. Погружение сваи І свая І 3. Засыпка полости сваи уплотненным крупнозернистым песком | Бурение котло-           | 1. Бурение котло- вана       I кот- и лован       I ,0/0,12         2. Погружение сваи       I свая       I 4,0/0,49         3. Засыпка полости сваи уплотненным крупнозернистым песком       м³ 0,77 0,58 0,45/0,05 | I. Бурение котло-                  | I. Бурение котло- пован I кот- пован I свая I I,0/0,12 Кашинист 5 р I — 0,12  2. Погружение сваи I свая I 4,0/0,49 Электро- линейщик 4 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 5 р I помащинист 5 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I помащинист 6 р I | I. Бурение котло- вана  1. Свая  1. Св |

| I                                                                                                                                                    | 2                                                                                           | 3          | 4                                     | 5            | 6         | 7                                                                    | 8 !                                               | 9 5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|---------------------------------------|--------------|-----------|----------------------------------------------------------------------|---------------------------------------------------|-----|
| § 23-3-ī2<br>radn.2 n.īa,d                                                                                                                           | 5. Установка опоры                                                                          | I<br>опора | I 4                                   | ,6+I,55=6,I5 | 6,15/0,75 | Электро-<br>пинекщик<br>5 р. — I<br>3 р. — I<br>Вешиниот<br>6 р. — I | Кран авто-<br>мобильный<br>г/п 5 т<br>- 0,19      | 9   |
| "Единые нормы выработки и времени на вагонные, ав- тстранспорт- ные и склад- ские погру- зочно-раз- грузочные работы" и=1,66 учитывает груз ш класса | 6. Доставка грузов                                                                          | I т-кы     | 6,53x5=<br>=32,65<br>I,31x5=<br>=6,55 |              | 1,03/0,13 | ≖oφep−I                                                              | SNI-ISI                                           |     |
| EnиP<br>9 24-I3<br>п.5д,е,<br>18д,е                                                                                                                  | 7. Погрузка-выг-<br>рузка конструк-<br>ций  Итого:  с учетом непредви-<br>денных работ (3%) | Ιτ         | 6,53                                  | 1            | ·         | Электро-<br>пинейшик<br>3 р. — I<br>2 р. — I<br>Машинист<br>3 р. — I | Кран ав-<br>томобиль-<br>ный г/п<br>5 т<br>- 0,21 |     |
|                                                                                                                                                      |                                                                                             |            | . !<br>. !<br>. !<br>. !              |              |           |                                                                      | :                                                 |     |

Калькуляция трудоватрат и машиносмен на установку металлической опоры ППО-I на свайном фундаменте (на I опору)

|                              |                                    |                                 |                |                                               |                                        |                                                                 |                               |                 | ŗ      |
|------------------------------|------------------------------------|---------------------------------|----------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------------------------|-------------------------------|-----------------|--------|
| Основание                    | Вид работ                          | на пель<br>Тель                 | Объем<br>работ | Норма вре-<br>мени на<br>измеритель<br>челчас | Трудо-<br>затраты,<br>челчас<br>челдн. | Состав<br>звена                                                 | машсм<br>машсм                | Приме-<br>чание | ) TYLE |
| I                            | 2                                  | 3                               | 4              | 5                                             | 6                                      | 7                                                               | 8                             | 9               |        |
| ЕНиР § 21-24<br>габл. 2 п.9а | I. Планировка<br>щадей буль<br>ром | пло-<br>дозе-<br>дозе-<br>доход | 200x2          | 0,31                                          | 0,124/0,018                            | Машинист<br>6 разр1                                             | Бульдозер<br>Д-271<br>- 0,015 |                 |        |
| \$ 23-3-I<br>n.66            | 2. Разбивка м<br>погружения        |                                 | I              | 1,8                                           | 1,8/0,22                               | Электро-<br>линейщик<br>5 разр1<br>2 -"2                        |                               |                 |        |
| 23-3-3<br>габл.2 п.5,6       | 3. Прокамиван<br>окважин ли        |                                 | 8              | 0,63+0,3I=<br>=0,94                           | 7,52/0,9                               | Электро-<br>линейщик<br>5 разр1<br>2 -"1<br>Машинист<br>6 разр1 | BBRC-20-II<br>- 0,8           |                 |        |
| \$ 23-3-3<br>габл.4 п.5,6    | 4. Погружение лезобетонн свай      |                                 | 8              | 2,I+I,05=<br>=3,I5                            | 25,2/3,I                               | Электро-<br>линейщик<br>5 разрI<br>2 -"I<br>Машинист<br>6 разрI | BBNC-20-II<br>- 0,I           |                 |        |
|                              |                                    |                                 |                |                                               |                                        |                                                                 |                               |                 |        |

| I                          | 2                                                                                      | 3                | 4 | 5                  | 6         | 7                                                                        | 8                                     | 9 |
|----------------------------|----------------------------------------------------------------------------------------|------------------|---|--------------------|-----------|--------------------------------------------------------------------------|---------------------------------------|---|
| НиР Т-32<br>2 п.I          | 5. Установка рост-<br>верков                                                           | I рост-<br>верк. | 4 | 2,0                | 8,0/0,98  | Электро-<br>пинейщик<br>5 разрI<br>4 I<br>2 I<br>машинист<br>5 разрI     | - 0,2                                 |   |
| 23-3-9<br>Рабл.2 п.Іа,б    | 6. Сборка стальной<br>опоры                                                            | 1 опора          | I | 26,0+4,3=<br>=30,3 | 30,3/3,7  | Электро-<br>линейщик<br>5 разр1<br>4 -"1<br>3 -"4<br>Машинист<br>5 разр1 | торный<br>г/п 5 т<br>- 0,53           |   |
| ) 23-3-10<br>габл.2 п.Іа,б | 7. Установка шар-<br>ниров и присое-<br>динение к ним<br>пят опоры при<br>помощи крана | і опора          | I | I,3+0,65=<br>=1,95 | I,95/0,24 | Электро-<br>пинейщик<br>5 разр1<br>3 -"1<br>машинист<br>5 разр1          | r/n 5 7<br>- 0,08                     | • |
| 23-3-I3<br>radm.2m,la,d    | 8. Установка опоры                                                                     | I спора          | I | 3,I+I,2ō=<br>=4,35 | 4,35/0,53 | линейщик<br>5 разр.—[<br>4 — —————————————————————————————————           | - 0,08<br>Трактор<br>Т-100м<br>- 0,08 | • |

| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                            | 8      | 4      | 5          | 6           | 7                                                       | 8                                               | 8      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|--------|------------|-------------|---------------------------------------------------------|-------------------------------------------------|--------|
| EHиP \$ 24-13<br>п.5д,е;<br>18д,е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9. Погрузка-выг-<br>рукций<br>рукций         | IT     | 22,214 | 0,795      | 17,67/2,18  | DISKTPO-<br>NUMENTANDE<br>S PASPI<br>MAMMANT<br>S PASPI | Кран ав-<br>томобиль-<br>ный<br>г/п 5 т<br>0,72 |        |
| "Единые нор- мы выработки и времени на вагонные ав- тотранспорт- ные и склад- ские погру- зочно-разгру зочные ра- боты" кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- кыза- | 10.Доставка грувов                           | I T-KM | III,07 | 0,017x1,66 | 8,11/0,88   | Шофер — I                                               | 3NJ-131                                         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Итого:<br>С учетом непред-<br>виденных расот |        |        |            | 100/12,2    |                                                         |                                                 | ****** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3%)                                         |        |        |            | 103,0/12,44 |                                                         |                                                 |        |

Вариант Ш Калькуляция трудозатрат и машиносмен на установку металлической опоры П IIC-I на подножниках ФЗ-2 в слабых грунтах (на I опору)

|                                      |                                       |                 |                |                                                |           |                                                             |                                         |                 | ೱ      |
|--------------------------------------|---------------------------------------|-----------------|----------------|------------------------------------------------|-----------|-------------------------------------------------------------|-----------------------------------------|-----------------|--------|
| <b>Э</b> инавоно(                    | Вид работы                            | Измери-<br>тель | Объем<br>работ | Норма вре-<br>мени на<br>измеритель<br>час-час | paru.     | Состав<br>звена                                             | Механизин<br>и кол-во<br>ившсм.         | нание<br>Приме- | TH-TI7 |
| I                                    | 2                                     | 3               | 4              | õ                                              | 6         | 7                                                           | 8                                       | 9               | •      |
| ЕНИР<br>§ 23-3-I<br>и.За             | I. Разбивка конту-<br>ра котлована    | І опора         | I              | 2,5                                            | 2,5/0,3   | Электро-<br>линейщик<br>5 разрI<br>2 -"2                    |                                         |                 |        |
| \$ 2-1-10<br>raon.4 n.2r             | 2. Разработка грук-<br>та в котловано | 100 mg          | I45            | 8,5                                            | 5,10/0,62 | Машинист<br>6 разрІ<br>Пом.маши-<br>ниста<br>5 разрІ        | Экскава-<br>тор<br>8-652<br>- 0,31      |                 | \$     |
| ЕНиР § 23-3<br>вводная части<br>п.12 | 3. Водоотлив                          | yac             |                |                                                | 5,2/0,68  | o paop. 2                                                   | Hacoc<br>8AIIBM-IOx<br>0.63             |                 |        |
| § 23-3-6<br>К=1,2 прим.              | 4. Уплотнение основания под фундамент |                 | 10             | 2,8xI,2=<br>=3,36                              | 33,6/4,1  | Электро-<br>линейщик<br>4 разрI<br>2 -"I                    |                                         |                 |        |
| § 23-3-7<br>n.5                      | 5. Установка под-<br>ножников         | I подн.         | 4              | (4,8+1,1)=<br>=5,4                             | 21,6/2,6  | Электро-<br>линейщик<br>6 разр1<br>22<br>Машинот<br>6 разр1 | Кран трак-<br>торный<br>г/п 5 т<br>0,63 |                 |        |

| I                                                        | 2                                                                 | 3                  | 4   | 5                        | 6                 | 7                                                                            | 8                                                                       | 9 |             |
|----------------------------------------------------------|-------------------------------------------------------------------|--------------------|-----|--------------------------|-------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|---|-------------|
| \$ 2-I-2I<br>raon.2 n.9<br>K-I,2 ns<br>EHNP<br>R 23 n.10 | 6. Обратная засыпка                                               | 100 m <sub>3</sub> | 135 | 0,43.I,2=<br>=0,52       | 0,70/0,09         | машинист<br>6 разрІ                                                          | Бульдо-<br>аер<br>Д-271<br>0,89                                         |   | I036214-117 |
| § 2-I-45<br>Tagn.9<br>n.1a                               | 7. Трамбование по-<br>споино, толщина<br>слоя 25 см               | 100 m <sup>2</sup> | 550 | 2,4                      | I3,2/I,6          | Электро-<br>линейщик<br>Зразр2                                               | Компрес-<br>cop<br>7 ara<br>0,8                                         |   | 7           |
| \$ 23-3-9<br>табл.2<br>п.Іг,б                            | 8. Сборка стальной<br>опоры                                       | I опо-<br>ра       | I   | 26+4,3 <u>=</u><br>=30,3 | 30,9/3,7          | Электро-<br>линейщик<br>5 разр.—I<br>4 — Т<br>3 — 4<br>Машинист<br>5 разр.—I | Кран<br>трактор-<br>ный<br>г/п 5 т<br>0,53                              |   |             |
| \$ 23-3-10<br>ragn.2<br>n.Ia,6                           | 9. Установка шарни-<br>ров и присоедине<br>нир к ниш пят<br>опоры | I опо-             | I   | I,95                     | I,95/0,24         | Электро-<br>линейщик<br>5 разр1<br>8 I<br>Машинист<br>5 разр1                | Kpan<br>Tpak-<br>Tophun<br>r/n 5 T<br>0,08                              |   |             |
| \$ 23-3-13<br>radn.2<br>n.1a,d                           | 10.Установка опоры                                                | I опо-<br>ра       | I   | 4,35                     | <b>4,85/0,5</b> 3 | Электро-<br>линейцик<br>Э разр1<br>4 1<br>3 2<br>Машинист<br>6 разр1         | Kpah<br>Tpak-<br>Tophun<br>r/n 5 T<br>0,08<br>Tpaktop<br>T-100M<br>0,03 |   |             |
|                                                          | •                                                                 | <b>{</b>           | I   | •                        | ĺ                 | 1                                                                            | •                                                                       |   |             |

I0362TH-TI7

| I                                                                                                                                                                                                       | 2                                                    | ĝ      | 4          | 5                             | 6                         | 7                                                               | 8                                             | 9 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|------------|-------------------------------|---------------------------|-----------------------------------------------------------------|-----------------------------------------------|---|
| ў 1-3<br>абл.2 п.3                                                                                                                                                                                      | II. Погрузка в авто-<br>мобили сыпучих<br>материалов | 100 mg | II5        | ອ,2                           | 4,64/0,57                 | Машинист<br>З разрI<br>Пом.маш.<br>4 разрI                      | Экска-<br>ватор<br>3-652<br>0,285             |   |
| "Единые нормы выра-<br>ботки и вра-<br>мег": на ва-<br>гонные, авто<br>транспорт-<br>ные и склад<br>ские погру-<br>зочно-разгр<br>зочно-разгр<br>зочные ра-<br>боты" к=1,6<br>учиты дарт<br>груз ш клас | 5 κû<br>9                                            | I т-юм | 67<br>II60 | 0,017•1,66<br>=0,028<br>0,017 | 21,6/2,6                  | Шофер-I                                                         | SNI-ISI                                       |   |
| ЕНиР<br>9 24-I3<br>п.эд,е<br>I8 д,е                                                                                                                                                                     | 13. Погрузка-выг-<br>рузка конструк-<br>ций          | Ιτ     | 13,4       | 0,795                         | 10,7/1,3                  | Электро-<br>линейщик<br>З разр1<br>2 -"1<br>Машинист<br>5 разр1 | Кран<br>автомо-<br>бильный<br>г/п 5 т<br>0,43 |   |
|                                                                                                                                                                                                         | Итого:<br>С учетом непредви-<br>денных работ (3%):   |        |            |                               | 155,44/19,0<br>160,1/19,5 |                                                                 |                                               |   |

Вармант ІУ Калькуляция трудозатрат и машиносмен на установку желевобеголной одностоечной опоры ПБ IIO-I с 4 ригелями в слабых грунтах (на 1 опору)

I0362\*#-\*I7 Основание Вил работы Механизмы Измери-Объем Норма вре-Состав Приме-Трудо-затраты. и кол-во виная тель работ мени на ввена Mam. -CM. измеритель чел. - чао чел. - дн. YON. - YAC I 2 7 8 9 8 4 5 6 EHnP \$ 23-3-1 I. Разбивка конту-I опо-I I,95 1.95/0.24 Электрора котлована pa линейшик n.Ia 5 pasp.-I 2 -"-100 mg § 2-I-I0 2,80/0.34 2. Разработка грун-80 8.5 Машинист Экскатабл.4 п.2д та в котловане 6 pasp.-I Baron Пом. маш. 8-652 5 pasp.-I 0.17 \$ 23-3-6 З. Уплотнение осноuВ 5.04/0.6I 1,5 Электро-2.8.I.2= K=I.2 прич. вания под фунда-=3,36 линендик Ment 4 pasp.-I 4.6/0.56 § 23-3-8 Электро-4. Сборка опоры BII0-Ι 0.45+0.45+ Кран табл.2 линейшик +3.7=4.6 pa TDAKTOD-5 pasp.-I n.1a,2a,4a ный r/n 5 r \_11\_ 0,093 машинист 5 pasp.-I

| I                                                         |             | 2                                           | 8                  | 4   | 5                  | 6         | 7                                                                        | 8                                                                            | 9 |
|-----------------------------------------------------------|-------------|---------------------------------------------|--------------------|-----|--------------------|-----------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---|
| § 23-3-I2<br>п.Іде,                                       | 5. Ус       | тановка опоры                               | I опо-<br>ра       | I   | 6,2+2,5=<br>=8,7   | 8,7/I,I   | Электро-<br>линейщик<br>5 разрI<br>3 -"I<br>2 -"I<br>машинист<br>6 разрI | Кран ав-<br>Томобиль-<br>Ный<br>г/п 5 т<br>О,16<br>Трактор<br>Т-1004<br>О,16 |   |
| § 23-3-I5<br>E.I-,2r                                      | 6. Ус<br>ле | тановка риге-                               | I ono-             | I   | 8+I=4              | 4,0/0,48  | Электро-<br>линейшик<br>5 разр1<br>31<br>21<br>Машинист<br>5 разр1       | Кран<br>Троктор-<br>ный<br>г/п 5 т<br>0,12                                   |   |
| ЕНиР<br>№ 23-3<br>вводная<br>часть п.12                   | 7. Bo       | доотлив                                     | Yac                |     |                    | 2,71/0,33 |                                                                          | Hacœ<br>8ANBM-10x7<br>0,33                                                   |   |
| § 2-I-2I<br>табл.2 п.9<br>К=I,2 из<br>ЕНИР<br>№ 23-3 п.IO | ка          | ратная засып-                               | 100 м <sub>8</sub> | 80  | 0,43.I,2=<br>=0,52 | 0,41/0,05 | Машинист<br>6 разрІ                                                      | Бульдо-<br>вер Д-271<br>0,05+0,58-<br>=0,68                                  |   |
| § 2-I-45<br>табл.Э п.]а                                   | CI          | амбование по-<br>ойно, толщиной<br>оя 25 см | 100 n <sup>2</sup> | 396 | 2,4                | 9,5/1,16  | Электро-<br>линейщик<br>З разр2                                          | Компрессор<br>7 ата<br>0,58                                                  |   |

| I                                                                                                                                                                                                | 2                                                      | 8              | Ħ            | 5                             | 6         | 7                                                             | 8                                        | 9 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|--------------|-------------------------------|-----------|---------------------------------------------------------------|------------------------------------------|---|
| § I-3<br>redm.2 m.3                                                                                                                                                                              | IO. Погрузка в ав-<br>томобили сыпу-<br>чих материалов | 100 mg         | 80           | 8,2                           | 2,56/0,81 | Машинист<br>3 разрІ<br>Пом.машин.<br>4 разрІ                  | Экскава-<br>тор<br>Э-652<br>0,155        | 9 |
| жедилые нор-<br>мы времени и<br>выработки на<br>вагонные, ав-<br>тотранспорт-<br>ные и скляд-<br>ские погру-<br>зочно-разгру<br>зочные ра-<br>боты"<br>К=1,66<br>учитывает<br>груз Ш клас-<br>са | на расстояние<br>5 км                                  | I т-кы         | 82,25<br>640 | 0,017.1,66<br>=0,028<br>0,017 | II,78/I,4 | ∏o∯ep-I                                                       | SNI-ISI                                  |   |
| ЕНиР<br>§ 24-IS п.5<br>д,е; ІЗд,е                                                                                                                                                                | 12. Погрузка-выг-<br>рузка конструк-<br>ций            | I <del>z</del> | 6,45         | 0,795                         | 5,19/0,63 | Электро-<br>линейщик<br>Э разрI<br>2 I<br>Вашинист<br>5 разрI | Кран ав-<br>мобильный<br>г/п 5 т<br>0,21 |   |
|                                                                                                                                                                                                  | MTOPO:                                                 |                |              |                               | 59,18/7,2 |                                                               |                                          |   |
|                                                                                                                                                                                                  | С учетом непредви-<br>денных расот (3%):               |                |              |                               | 61,0/7,4  |                                                               |                                          |   |
| -                                                                                                                                                                                                |                                                        |                |              |                               |           |                                                               |                                          |   |

Единичная расценка
на установку железобетонной одностоечной опоры ПБІІО-І
с использованием свай с закрылками в слабых грунтах

| Основание                                                                   | Наименование<br>затрат и видов<br>работ      | Измери-<br>тель             | Стои-<br>мость<br>на из-<br>мери-<br>тель,<br>руб. | Konu-<br>чест-<br>во         | CTON-<br>MOCTE,<br>ECETO,<br>PYG. |
|-----------------------------------------------------------------------------|----------------------------------------------|-----------------------------|----------------------------------------------------|------------------------------|-----------------------------------|
| I                                                                           | 2                                            | 8                           | 4                                                  | 5                            | 6                                 |
| Сборник до-<br>полнений и<br>разъяснений<br>к ЕРЕР-69<br>Вып. I 1970г.      | I.Зарплата Электролинейщик 4 разр. 3 2 I     | челчас<br>_"-<br>_"-<br>_"- | 0,49<br>0,43<br>0,40<br>0,36                       | I,0<br>I,0<br>0,225<br>0,225 | 0,49<br>0,43<br>0,09<br>0,08      |
|                                                                             | Итого:                                       |                             |                                                    |                              | 1,09                              |
|                                                                             | С учетом не-<br>предвиденных<br>работ (3%):  |                             |                                                    |                              | 1,13                              |
|                                                                             | Переход к смет<br>ным нормативам<br>(K=I,II) |                             |                                                    |                              | I,26                              |
|                                                                             | 2.Стоимость<br>материалов                    |                             |                                                    |                              |                                   |
| Зазодская<br>калькуляц <b>ия</b>                                            | Сьая СЗ-4,0                                  | mT.                         | 155                                                | I                            | 155                               |
| ЭСЦ доп.З<br>п.226                                                          | Опора ПБ<br>IIO-I                            | -4-                         | 206                                                | 1                            | 206                               |
| Соорник<br>ЕРЕР на<br>строитель-<br>ные работы<br>для строек<br>москов.обл. | Песок <b>строи-</b><br>тельный               | N <sub>3</sub>              | 4,96                                               | 0,77                         | 4,0                               |
|                                                                             | Итего:                                       |                             |                                                    |                              | 365,0                             |
|                                                                             | Неучтенные<br>материалы(3%):                 |                             |                                                    |                              | 11,0                              |
|                                                                             |                                              |                             |                                                    | :                            |                                   |

I0962TH-TI7

| I                                                                  | 2                                                                            | 3                               | 4      | 5               | 6                                  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|--------|-----------------|------------------------------------|
| •                                                                  | 8.Стоимость машино—<br>смен                                                  |                                 |        |                 | ·                                  |
| ц.2.п.242                                                          | MPK-3A                                                                       | машсм.                          | 25,4   | 0,12x<br>x1,202 | 25,4x<br>x0,14x<br>x1,25=4,        |
| Ц.2 п.339                                                          | выс-20-11                                                                    | ¥                               | 28,0   | 0,12x<br>x1,202 | 23,0x<br>x0,14x<br>x1,33=<br>=5,21 |
|                                                                    | MTOPO:                                                                       |                                 |        |                 | 9,61                               |
|                                                                    | K=I,202 - переход от<br>к машиносы                                           | фактическ<br>эна <b>м</b> Ценни | ka r 2 | иносмен         |                                    |
|                                                                    | K=1,25 и 1,33 - пере<br>ных нормативов к с                                   | ход <b>от</b> про<br>метным     | изводс | твен-           |                                    |
|                                                                    | Вспомогательные материалы (2% от стоимости машино-смен и зарплаты):          |                                 |        |                 | 0,2                                |
| EPEP<br>Nº 35-518                                                  | Установка ж.б.про-<br>межуточных одно-<br>стоечных свободно-<br>стоящих опор | л <sub>3</sub>                  | 17,8   | 1,67            | 29,7                               |
|                                                                    | 4. Транспортировка<br>материалов                                             |                                 |        |                 |                                    |
|                                                                    | Погрузка-выгрузка:                                                           |                                 |        |                 |                                    |
| EPEP<br>Ne 35-606                                                  | - ж.б.ЦФО                                                                    | T                               | 1,57   | 4,6             | 7,2                                |
| EPEP<br>№ 35-600                                                   | - ж.б.вибрирован-                                                            | -H                              | 1,93   | 2,2             | 4,24                               |
| Соорник<br>ЕРЕР на<br>строит.<br>работы<br>для строек<br>Моск.обл. | - песка строитель-<br>ного                                                   | -r                              | 0,26   | 1,3             | 0,3                                |
|                                                                    |                                                                              |                                 |        |                 |                                    |
|                                                                    |                                                                              |                                 |        |                 |                                    |

10362TH-T17

| I                           | 2                                 | 3   | 4    | 5   | 6           |
|-----------------------------|-----------------------------------|-----|------|-----|-------------|
|                             | Доставка на расстоя-<br>ние 5 км: |     |      |     |             |
| EPEP<br>№ 35-595,<br>35-596 | - конструкция                     | Ť   | I,32 | 6,8 | 9,0         |
| Ц.З ч.І<br>стр.28           | - песка                           | _n_ | 0,43 | 1,3 | 0,6         |
|                             | Итого:<br>Всего стоимость:        |     |      |     | 21,0<br>438 |

I0362#w-#I7

# Расчет стоимости установки опор ППО-I на свайном фундаменте

| Основание                                                            | Наименование                                                           | Изме-<br>ритель       | Стои-<br>мость<br>на из-<br>мери-<br>тель,<br>руб. | Коли-<br>чество   | CTOU-<br>MOCTE<br>BCGTO,<br>pyG. |
|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|----------------------------------------------------|-------------------|----------------------------------|
| I                                                                    | 2                                                                      | 8                     | 4                                                  | 5                 | 6                                |
| EPEP 7-7I                                                            | I.Вибровдавливание<br>железобетонных<br>свай сечением<br>850х350 мм на |                       |                                                    |                   |                                  |
|                                                                      | трассе в грунты<br>І группы                                            | м8                    | 23,8                                               | 7,68              | 182,8                            |
| ЕРЕР 35-524<br>Расчети.                                              | 2.Установка стальных<br>опор                                           | T                     | 38,7                                               | 1,795             | 69,5                             |
|                                                                      | 8.Установка роствер-<br>ков                                            | 7                     | 55,68                                              | 0,44              | 24,5                             |
|                                                                      | Ntoro:                                                                 |                       |                                                    |                   | 276,5                            |
|                                                                      | 4.Основные материалы                                                   |                       |                                                    |                   |                                  |
| ЭСЦ №<br>п.105<br><i>У.</i> Г.Ү <u>й</u><br>П. <b>№</b> ч.П<br>п.428 | C-35-2-8-I<br>N 110-I<br>P 2-35-I6-2                                   | м <sup>3</sup><br>шт. | 138<br>546<br>247                                  | 7,68<br>I<br>0,44 | 1060<br>546<br>108,7             |
| 11.420                                                               | Nroro no n.4:                                                          |                       |                                                    |                   | 1714,7                           |
|                                                                      | Неучтенные материа-<br>лы (3%).                                        |                       |                                                    |                   | 51,4                             |
|                                                                      | 5. Транспортировка<br>материалов                                       |                       |                                                    |                   |                                  |
|                                                                      | Погрузка-выгрузка                                                      |                       |                                                    |                   |                                  |
| EPEP<br>Ne 35-597                                                    | — стальных конст-<br>рукций                                            | *                     | 4,62                                               | 2,235             | 10,3                             |
|                                                                      |                                                                        |                       |                                                    |                   |                                  |

| I                                               | 2                                                               | 3                                          | 4            | 5               | 6            |
|-------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|--------------|-----------------|--------------|
| EPEP<br>& 35-600<br>EPEP<br>& 35-595,<br>35-596 | - вибрированных ж.б.свай Доставка материалов на расстояние 5 км | T<br>_==================================== | I,93<br>I,32 | 2,5x8<br>22,235 | 38,6<br>29,4 |
|                                                 | Итого:<br>Всего стоимость:                                      |                                            |              |                 | 78,3<br>2121 |

#### I0362TL-TI7

# Расчет стоимости установки опор ППО-1 на подножниках ФЗ-2

| Основание                                                   | Наименование затрат,<br>видов работ               | Изме-<br>рителн | Стои-<br>мость<br>на из-<br>мери-<br>тель,<br>руб. | Коли-<br>чөство | Стои-<br>мость<br>всего,<br>руб. |
|-------------------------------------------------------------|---------------------------------------------------|-----------------|----------------------------------------------------|-----------------|----------------------------------|
| I                                                           | 2                                                 | 8               | 4                                                  | 5               | 6                                |
| EP14P<br>16 35-504                                          | I.Установка железо-<br>бетонных поднож-<br>можнов | м <sup>3</sup>  | 25,7                                               | 4,68            | 120,3                            |
| EPEP<br>10:35-524                                           | 2.Установка опоры<br>ПІІО-І                       | T               | 38,7                                               | I,8             | 69,7                             |
|                                                             | NTOPO:                                            |                 |                                                    |                 | 190,0                            |
|                                                             | 3.Основные материалы                              |                 |                                                    |                 | -                                |
| П.у І.Д                                                     | Onopa NIIO-1                                      | шт.             | 546                                                | 1               | 546,0                            |
| ЖІ ч.П<br>п.143                                             | Подножник ФЗ-2                                    | ма              | 104                                                | 4,68            | 487,0                            |
| Сборник<br>ЕРЕР на<br>стр.работы<br>для строек<br>моск.обл. | Песок                                             | я               | 4,96                                               | 145             | 719,0                            |
|                                                             | NTOPO:                                            |                 |                                                    |                 | 1752,0                           |
|                                                             | Неучтенные материя-<br>лы (3%)                    |                 |                                                    |                 | 53,0                             |
|                                                             | 4. Транспортировка<br>материалов                  |                 |                                                    |                 |                                  |
|                                                             | Погрузка-выгрузка                                 |                 |                                                    |                 |                                  |
| EPEP<br>Ne 35–597                                           | - стальных конст-<br>рукций                       | 7               | 4,62                                               | 1,8             | 8,3                              |
| KPKP<br>Ne 85-598                                           | ж.б. фундаментов                                  | a               | 1,58                                               | 11,7            | 18,5                             |
| Ц.З ч.І<br>стр.4                                            | - песка                                           | n .             | ,26                                                | 239             | 62,0                             |
|                                                             |                                                   |                 |                                                    | }               |                                  |

I0362TM-TI7

| I                     | 2                                | 8  | 4    | 5    | 6    |
|-----------------------|----------------------------------|----|------|------|------|
|                       | Доставка на расстоя-<br>ние 5 км |    |      |      |      |
| EPEP                  | - материалов                     | 7  | 1,32 | 13,5 | 17,8 |
| ® 35,-595,<br>35,-596 | - песка                          | -H | 0,43 | 239  | 103  |
|                       | Итого:                           |    |      |      | 210  |
|                       | Всего стоимость:                 |    |      |      | 2205 |
|                       |                                  |    |      |      |      |

I0362TM-TI7

# Расчет стоимости на установку железобетонной одностоечной споры ПБ IIC-I с 4 ригелями

| Основание                                                     | Наименование зат-<br>рат и видов работ                                    | Изме-<br>рителі       | Стои-<br>мость<br>на из-<br>мери-<br>тель,<br>руб. | Коди- | CTON-<br>MOCTL<br>BCETO,<br>PyG. |
|---------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|----------------------------------------------------|-------|----------------------------------|
| I                                                             | 2                                                                         | 3                     | 4                                                  | 5     | 6                                |
| EP EP<br>No. 35-505                                           | I.Установка железо-<br>бетонных ригелей<br>на ж.б. опорах                 | яa                    | 51,4                                               | 0,8   | 4I,I                             |
| EPEP<br>Me 35-518                                             | 2. Установка промежу-<br>точных одностоеч-<br>ных свободностоящих<br>опор | и <sup>8</sup>        | 17,8                                               | 1,67  | 29,7                             |
|                                                               | NTOPO:                                                                    |                       |                                                    |       | 70,8                             |
|                                                               | З.Основные материалы                                                      |                       |                                                    |       |                                  |
| ЭСЦ ч.П<br>п.168                                              | Ригель ж.б. РІ-А                                                          | из                    | 109                                                | 0,8   | 87,2                             |
| Доп.3<br>п.216                                                | Опора ПБІІО-І                                                             | щT.                   | 206                                                | 1,0   | 206,0                            |
| Сб. EPEP<br>на строит.<br>работы для<br>строек<br>Москов. обл | Песок                                                                     | <b>м</b> <sup>8</sup> | 4,96                                               | 80,0  | 396,8                            |
|                                                               | MTOPO:                                                                    |                       |                                                    |       | 690,0                            |
|                                                               | Неучтенные материалы<br>(3%):                                             |                       |                                                    |       | 20,7                             |
|                                                               | 4. Транспортировка<br>материалов                                          |                       |                                                    |       |                                  |
|                                                               | Погрузка-выгрузка                                                         |                       |                                                    |       |                                  |
| EPLIY<br>125-598                                              | - ж.б.ригелей                                                             | r                     | 1,58                                               | 2,12  | 3,3                              |
| KPKP<br>Ne 95-599                                             | - ж.б.Ц <b>Ф</b> О                                                        | _#_                   | I,57                                               | 4,6   | 7,2                              |
|                                                               |                                                                           |                       |                                                    |       |                                  |
|                                                               |                                                                           |                       |                                                    |       |                                  |

#### 10362TM-TI7

| I                                     | 2                                | 3   | 4    | 5   | 6     |
|---------------------------------------|----------------------------------|-----|------|-----|-------|
| U.I v.I<br>ctp.4                      | - песка                          | T   | 0,26 | 132 | 34,0  |
|                                       | Доставка на расстоя-<br>ние 5 км |     |      |     |       |
| EPEP<br>18 35-59 <b>5</b> ,<br>35-596 | - материалов                     | _H_ | 1,32 | 6,7 | 8,8   |
| Ц.І ч.І<br>стр.28                     | - песка                          | _#_ | 0,43 | 132 | 58,0  |
|                                       | MTOPO:                           |     |      |     | 111,0 |
|                                       | Всего стоимость:                 |     |      |     | 893,0 |

#### 10362TM-T17

Состав работ при устройстве фундаментов в слабых грунтах с использованием свай с вакрылками, сборке и установке одностоечных железобетенных опер ПБ IIO-I

| Вид работы                            | Состав работы                                                                                                                                                                |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. Разбивка мест погруже-<br>кия свай | I.I. Разбивка мест погружения свац<br>I.2. Забивка кольшков                                                                                                                  |
| 2. Бурение котлованов                 | 2.1. Установка буровой машины и выверка штанги бура над от- меткой центра котлована     2.2. Бурение котлована     2.8. Чистка бура и откидывание грунта от бровки котлована |
|                                       | 2.4. Подготовка буровой машины к<br>пересзду                                                                                                                                 |
| в. Погружение свай                    | 8.1. Подтаскивание свай к месту погружения                                                                                                                                   |
|                                       | 3.2. Подъезд погружателя к свае                                                                                                                                              |
|                                       | 3.3. Оснотр сваи и установка на<br>нее нагологника                                                                                                                           |
|                                       | 3.4. Крепление сваи к вибратору и подъем ее                                                                                                                                  |
|                                       | 8.5. Установка погружателя над местом погружения свам                                                                                                                        |
|                                       | 8.6. Укладка в скважину шин зазем-<br>ления                                                                                                                                  |
|                                       | 8.7. Погружение свам                                                                                                                                                         |

### I0362TH-TI7

| Вид работы      | Состав работы                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <ul> <li>3.8. Отсоединение сваи от вибратора и снятие с нее наголовника</li> <li>3.9. Проверка правильности погружения сваи</li> <li>3.10.Укладка стрель и подготовка погружателя к пересэду</li> </ul>                                                                                                                                                                                                                     |
| 4. Засыпка      | 4.1. Заполнение нижней части полости сваи до уровня низа стойки уплот-                                                                                                                                                                                                                                                                                                                                                      |
| 5. Сборка опоры | А. Выкладка стоек одностоечных желе- аобетонных опор  5.1. Установка крана  5.2. Подкопка грунта под стойкой для удобства строповки  5.3. Строповка, подъем, разворот, пе- ремещение и укладка стойки на под кладки  5.4. Расстроповка стойки  Б. Сборка одностоечных железобетонных опор  5.5. Проверка стойки опоры на выбоины и трещины  5.6. Выкладка металлических деталей опоры в положение, удобное для сборки опоры |

#### 10362TM-T17

|                    | 5.7. Установка траверс и крепление их  |
|--------------------|----------------------------------------|
|                    |                                        |
|                    | к стойке опоры болгами                 |
|                    | 5.8. Установка тросостойки на стойку   |
|                    | опоры и ее закрепление                 |
|                    | 5.9. Проверка расположения на собран-  |
|                    | ной опоре всех транерс, тросостой-     |
|                    | ки согласно нормам и допускам, за-     |
|                    | тяжка до отказа гаск и раскернов-      |
|                    | ка резьбы болтов                       |
| . Установка опоры  | 6.1. Установка крана                   |
| в полость сван     | 6.2. Крепление к опоре и механизмам    |
|                    | Tpocon.                                |
|                    | 6.3. Подрем опоры и установка ее в по- |
|                    | лость сваи.                            |
|                    | 6.4. Выверка опоры.                    |
|                    | 6.5. Засыпка пазух между стенками свам |
|                    | и стойкой опоры уплотненным круп-      |
|                    | нозернистым песком.                    |
|                    | 6.6. Снятие с опоры тросов.            |
| 7. Доставка грузов | 7.1. Доставка опоры.                   |
|                    | 7.2. Доставка сваи.                    |
|                    | 7.3. Достевка уплотненного крупнозер-  |
|                    | нистого песка.                         |

I0362TM-T17

# Состав работ при установке опор П IIO-I на свайном фундаменте

| -  | Вид работы                                | Состав работы |                                                                                                                |  |  |  |  |
|----|-------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I. | Планировка поверх-<br>ности под фундамент | I.I.          | Планировка площадки бульдозером под фундамент.                                                                 |  |  |  |  |
| 2. | Разбивка мест погру-<br>жения свай        |               | Разбивка ъест погружения свай.<br>Забивка колышков (шпилек).                                                   |  |  |  |  |
| 3. | Прокалывание сква-<br>жин лидером         |               | Крепление лидара к вибратору. Подъезд погружателя, установка его иад местом прокалывания сква- жины и выверка. |  |  |  |  |
|    |                                           | 3.4.          | Прокальвание скважины лидерон.<br>Вытаскивание лидера из скважины.<br>Отсоединение лидера от вибратора.        |  |  |  |  |
| 4. | Погружение железо-<br>бетонных свай       | 4.I.          | Подтаскивание свай к месту пог-<br>ружения.                                                                    |  |  |  |  |
|    |                                           |               | Подъезд погружателя к свае.<br>Осмотр сваи и установка наголов-<br>ника.                                       |  |  |  |  |
|    |                                           | 4.4.          | Крепление сваи к вибратору и подъем ее.                                                                        |  |  |  |  |
|    |                                           | 4.5.          | Установка погружателя над местом погружения свай.                                                              |  |  |  |  |
|    |                                           | 4.6.          | Укладка в скважину шин завемле-<br>ния и крепление их к свае.                                                  |  |  |  |  |

10362TH-T17

| Вид работы            | Состав работы |                                  |  |  |  |  |
|-----------------------|---------------|----------------------------------|--|--|--|--|
|                       | 4.7.          | Погружение сваи.                 |  |  |  |  |
|                       | 4.8.          | Отсоединение сваи от вибратора и |  |  |  |  |
|                       |               | снятие с нее нагодовника.        |  |  |  |  |
|                       | 4.9.          | Укладка стрелы и подготовка пог- |  |  |  |  |
|                       |               | ружателя и переезду.             |  |  |  |  |
| 5. Установка роствер- | 5.I.          | Выверка свам по нивелиру с уста- |  |  |  |  |
| ROD HA K.O.CBAN       |               | новкой металлических подкладок.  |  |  |  |  |
|                       | 5.2.          | Строповка и подтаскивание рост-  |  |  |  |  |
|                       |               | верка и месту установки.         |  |  |  |  |
|                       | 5.8.          | Јстановка ростверка на анкерные  |  |  |  |  |
|                       | Bentoi        | CESE.                            |  |  |  |  |
|                       | 5.4.          | Прогония резьбы анкерных болтов  |  |  |  |  |
|                       |               | и закрепление ростверков.        |  |  |  |  |
|                       | 5.5.          | Выверка и закрепление деталей    |  |  |  |  |
|                       |               | ростверка электросваркой.        |  |  |  |  |
| 6. Сборка станькой    | 6.I.          | Респекорка пакетов с деталями и  |  |  |  |  |
| овгоби                |               | частями секций опоры.            |  |  |  |  |
|                       | 6.2.          | Подтаскивание, кантовка, выклад- |  |  |  |  |
|                       |               | ка детакей и секций опоры.       |  |  |  |  |
|                       | 6.8.          | Соединение деталей и сенции опо- |  |  |  |  |
|                       |               | ри сборочными и монтажными бол-  |  |  |  |  |
|                       |               | Tamu.                            |  |  |  |  |
|                       | 6.4.          | Раскерновка резыбы болгов.       |  |  |  |  |
|                       | 6.4.          | Раскерновка резьбы болтов.       |  |  |  |  |

#### 10362TH-T17

| Вид работы            | Состав работы                                                                          |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| 7. Установка шарниров | 7.1. Установка шарниров и присоедина-<br>ние к ним пят опор при помощя<br>крана        |  |  |  |  |  |
| 8. Установка опоры    | 8.1. Копка приямков для упора стрелы, оснастка и подъем стрелы.                        |  |  |  |  |  |
|                       | 8.2. Установка инвентарных распорок.                                                   |  |  |  |  |  |
|                       | 8.3. Крепление монтажных тросов к опо-                                                 |  |  |  |  |  |
|                       | ре и механизман.                                                                       |  |  |  |  |  |
|                       | 8.4. Подъем опоры.                                                                     |  |  |  |  |  |
|                       | 8.5. Снятие шарниров, установка опоры на фундамент с предварительным закреплением.     |  |  |  |  |  |
|                       | 8.6. Выверка и окончательное закрепле-<br>ние опоры.                                   |  |  |  |  |  |
|                       | <ol> <li>8.7. Снятие с опоры инвентарных распо-<br/>рок, тросов и растяжек.</li> </ol> |  |  |  |  |  |
| 9. Доставка грузов    | 9.1. Доставка опоры.                                                                   |  |  |  |  |  |
|                       | 9.2. Доставка свай.                                                                    |  |  |  |  |  |
| 1                     | 9.3. Доставка роствернов.                                                              |  |  |  |  |  |

#### 10362TM-TI7

# Состав работ при устройстве подножников Ф-3-2 в слабых грунтах и установке металлической опоры ППО-I

| Вид работы                          | Состав работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. Разбивка контура котлована       | <ol> <li>1.1. Разбивка контура котлогана.</li> <li>1.2. Забивка колышков.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. Разработка грунта<br>в котловане | <ul><li>2.1. Установка экскаватора в забое.</li><li>2.2. Разработка грунта с очисткой ковша</li><li>2.3. Передвижка экскаватора в процессе работы.</li></ul>                                                                                                                                                                                                                                                                                                                                                           |
| З. Установка подножни-<br>ков       | <ul> <li>3.1. Выравнивание дна котлована.</li> <li>3.2. Установка крана на площадке.</li> <li>3.3. Подтаскивание и опускание подножников в котлован.</li> <li>3.4. Вабивка колышков и натягивание внура по осевым линиям.</li> <li>3.5. Установка шаблона на подножники.</li> <li>3.6. Выверка подножников по осям при помощи шаблона, отвеса и нивелира.</li> <li>3.7. Снятие шаблона.</li> <li>3.8. Опускание в котлован шин заземшления.</li> <li>3.9. Покрытие металлических частей подножника битумом.</li> </ul> |
| 4. Обратная засыпка                 | 4.1. Засыпка котлована привозным грун-<br>том бульдозером.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

10362TM-TI7

| Вид работы            | Состав работы                           |
|-----------------------|-----------------------------------------|
| 5. Трамбование грунта | 5.1. Присоединение башиака и транбовке. |
| послойно, толщиной    | 5.2. Раскатка шлангов.                  |
| слоя 25 см            | 5.3. Присоединение шланга к компрес-    |
|                       | сору и трамбовке.                       |
|                       | 5.4. Трамбование грунта.                |
|                       | 5.5. Обслуживание трамбовки (смазка,    |
|                       | мелкий ремонт).                         |
|                       | 5.6. Отсоединение шланга от трамбовки   |
|                       | и компрессора.                          |
|                       | 5.7. Снятие багмака.                    |
| в. Сборка опоры       | 6.1. Распаковка пакетов с деталими и    |
| -                     | частями секций опоры.                   |
| 1                     | 6.2. Подтаскивание, кантовка, выкладка  |
|                       | деталей и секций опоры.                 |
|                       | 6.3. Правка мелких погнутостей поясов   |
|                       | и обрешетки в холодном состоянии.       |
|                       | 6.4. Соединение деталей и секций опоры  |
|                       | сборочными или монтажными болтами       |
| Ī                     | сиятие сборочных болтов.                |
|                       | 6.5. Проверка правильности сборки оно-  |
|                       | ры₀                                     |
|                       | 6.6. Раскерновка резыбы болтов.         |
| 7. Установка маримров |                                         |
| и присоединение ж     |                                         |
| жди ыдопс тяп инн     |                                         |
| помощи крана.         |                                         |
|                       |                                         |

#### 10362TM-T17

| Вид работы         | Состав работы                          |  |  |  |  |  |
|--------------------|----------------------------------------|--|--|--|--|--|
| 8. Установка опоры | 8.1. Прогонка и исправление резьбы     |  |  |  |  |  |
|                    | анкерных болтов.                       |  |  |  |  |  |
|                    | 8.2. Копка приямков для упора стрели,  |  |  |  |  |  |
|                    | оснастка и подъем стрель.              |  |  |  |  |  |
|                    | 8.3. Укладка монтажных упоров подном-  |  |  |  |  |  |
|                    | ников на период установки опоры.       |  |  |  |  |  |
| į                  | 8.4. Крепление тросов и растяжек к     |  |  |  |  |  |
|                    | опоре и механизмам.                    |  |  |  |  |  |
|                    | 8.5. Подъем опоры.                     |  |  |  |  |  |
|                    | 8.6. Сиятие шарниров, установка опоры  |  |  |  |  |  |
|                    | на фундамент с предварительным         |  |  |  |  |  |
|                    | закреплением.                          |  |  |  |  |  |
| l                  | 8.7. Выверка и окончательное закрепле- |  |  |  |  |  |
|                    | ние опоры.                             |  |  |  |  |  |
|                    | 8.8. Снятие с опоры монтажных тросов   |  |  |  |  |  |
|                    | и монтажных упоров подножников.        |  |  |  |  |  |
| . Доставка грузов  | 9.1. Доставка фундаментов.             |  |  |  |  |  |
|                    | 9.2. Доставка опоры.                   |  |  |  |  |  |
|                    | 9.3. Доставка грунта.                  |  |  |  |  |  |
|                    |                                        |  |  |  |  |  |
|                    |                                        |  |  |  |  |  |

# Состав работ при установке железобетонной одностоечной опоры ПБ IIO-I и устройстве ригелей в слабых грунтах

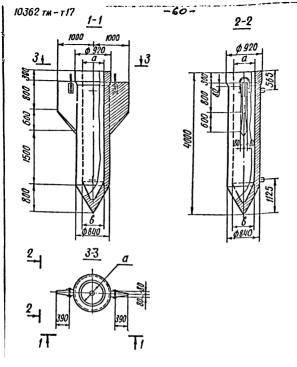
| Вид работы                          | Состав работы  1.1. Разбивка контура котлована.  1.2. Забивка колышков.                                                                                                                                                                                                              |  |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| I. Разбивка контура котдована       |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 2. Разработка грунта<br>в котловане | <ul><li>2.1. Установка экс даватора в забое.</li><li>2.2. Разработка грунта с очисткой ков- ма.</li><li>2.3. Передвижка экскаватора в процессе работы.</li></ul>                                                                                                                     |  |  |  |  |  |
| 3. Сборка опоры                     | <ul> <li>А. Выкладка стоек сдностоечных железо-<br/>бетонных опор.</li> <li>З.І. Установка крана.</li> <li>З.2. Подкопка грунта под стойкой для<br/>удобства строповки.</li> <li>З.3. Строповка, подъем, разворот, пере-<br/>мещение и укладка стойки на под-<br/>кладки.</li> </ul> |  |  |  |  |  |
|                                     | <ul> <li>3.4. Расстроповка стойки.</li> <li>Б. Сборка одностоечных железобетонных опор.</li> <li>3.5. Проверка стойки опоры на выбоины и трещины.</li> <li>3.6. Выкладка металлических деталей опоры в положение, удобное для сборки опоры.</li> </ul>                               |  |  |  |  |  |

### 10362TM-T17

## Продолжение

| Вид работы        | Состав работы                          |  |  |  |  |
|-------------------|----------------------------------------|--|--|--|--|
|                   | 3.7. Установка траверс и крепление их  |  |  |  |  |
|                   | к стойке опоры болтами.                |  |  |  |  |
|                   | 8.8. Установка тросостойки на стойку   |  |  |  |  |
|                   | опоры и ее закрепление.                |  |  |  |  |
|                   | 8.9. Проверка расположения на собран-  |  |  |  |  |
|                   | ной опоре всех траверс, тросо-         |  |  |  |  |
|                   | стойки согласно нормам и допускам      |  |  |  |  |
|                   | ватяжка до отказа гаек и раскер-       |  |  |  |  |
|                   | новка резьбы болтов                    |  |  |  |  |
| . Јотановка опоры | 4.1. Установка крана.                  |  |  |  |  |
| и ригелей         | 4.2. Крепление к опоре и механизмам    |  |  |  |  |
|                   | TpocoB.                                |  |  |  |  |
|                   | 4.8. Подъем опоры и установка ее в     |  |  |  |  |
|                   | котлован.                              |  |  |  |  |
|                   | 4.4. Выверка опоры.                    |  |  |  |  |
|                   | 4.5. Засыпка котлована аривозным грун- |  |  |  |  |
|                   | том до уровня установки нижнего        |  |  |  |  |
|                   | ригеля.                                |  |  |  |  |
|                   | 4.6. Трамбование послойно, толщиной    |  |  |  |  |
|                   | слоя 25 см                             |  |  |  |  |
|                   | 4.7. Установка ригеля                  |  |  |  |  |
|                   | 4.8. Васыпка котлована привознім грун- |  |  |  |  |
|                   | том до уровня установки верхнего       |  |  |  |  |
|                   | ригеля.                                |  |  |  |  |

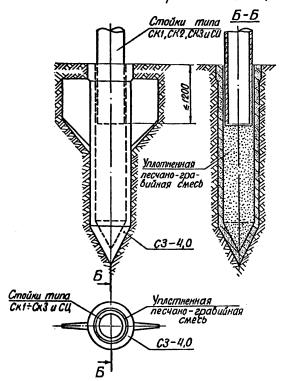
#### 10362TH-T17


### Продолжение

| ты Состав работы 4.9. Трамбование послойно. |
|---------------------------------------------|
| 4.9. Трамбование послойно.                  |
|                                             |
| 4.10. Установка верхнего ригеля.            |
| 4.II. Засыпка котлована привозным           |
| грунтом до уровня поверхности               |
| земли.                                      |
| 4.12. Трамбование послойно.                 |
| 4.13. Снятие с опоры тросов.                |
| Трамбрвание грунта пневматической           |
| трамбовкой включает:                        |
| I. Присоединение башмака к трамбовк         |
| 2. Раскатка шлангов.                        |
| З. Присоединение шланга и компрессо         |
| и Трамбовке.                                |
| 4. Трамбование грунта.                      |
| 5. Обслуживание трамбовки (смазка,          |
| мелкий ремонт).                             |
| 6. Отсоединение шланга от трамбовки         |
| и компрессора.                              |
| 7. Снятие башмака.                          |
| Установка ригеля на стойку желез            |
| бетонной опоры включает:                    |
| I. Осмотр ригеля и прочистка отверс         |
| 2. Строповка ригеля.                        |
| З. Установка ригеля в котлован.             |
| 4. Установка хомута и крепление риг         |
| к свойке опоры.                             |

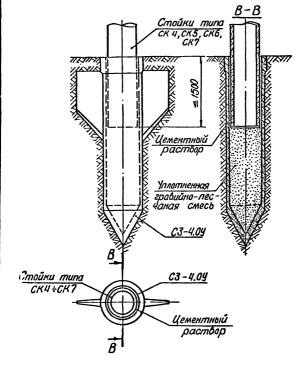
## Продолжение

| Вид работы         | Состав работы                                                           |
|--------------------|-------------------------------------------------------------------------|
|                    | <ol> <li>Расстроновка ригеля.</li> <li>Окраска хомута лаком.</li> </ol> |
| 5. Доставка грузов | 5.1. Доставка опоры.                                                    |
|                    | <b>5.2.</b> Доставка ригелей.                                           |
|                    | 5.8. Доставка грунта.                                                   |


приложения



| Марка    | Pas   | мепы | DHOL   | Расход материалов<br>За Сталь, кг |          |                     |       | on pu          |                    | 72.73<br>2.73<br>2.73<br>2.73 |                      |
|----------|-------|------|--------|-----------------------------------|----------|---------------------|-------|----------------|--------------------|-------------------------------|----------------------|
| Элементо | 1     | М    | ка бел | JH, MS                            | C<br>ADM | man<br>amyr         | b , 1 | 324003         | ADHCO.             | rcca<br>Men.<br>T             | 700 X                |
| <u></u>  | a     | б    | Map    | Бетон,                            | A III    | aced<br>A- <u>I</u> | B-I   | льте<br>Детали | dop<br>dop<br>Ooge | 3/16                          | N.N.<br>665.<br>65.0 |
| C3-4,0   | 0 640 | 610  | 300    | 1,07                              | 176,3    | 29,3                | 25,1  | 21,4           | 230                | 2,67                          | 65÷67                |
| C3 -4,0  | 4 720 | 690  | 300    | 0,91                              | 106,0    | 29,8                | 25,7  | 21,4           | 254                | 2,28                          | 68÷7!                |


Сваи с закрылками. Геометрические <u>Лист</u> размеры и расход материалов. |

# Закрепление стоек типа СКІ,СК2,СК3 и СЦ с приме - нением свай с закрылками СЗ - 4,0



## Примечания:

- 1. Минимальная заделка стоек в сваю СЗ -4,0-1,2м
- 2. На установки стойки полость сваи гаполняется уплотненной щевеночно— гравийной смесью.
- 3. Пазухи между стенкой сваи и стойкой заполнить уплотненной штыковкой песчано-гравийной смесью.



## Примечания:

- 1. Минимальная заделка стоек в сваю СЗ-4.04-1.5м
- 2. До установки стойки полость сваи заполняется уплотненной щебеночно-гравийной смесью.
- 3. Пазухи между стенкой сваи и стойкой заполнить цементным раствором марки 200.

10362 TM - T17

Таблица несущей спосовности і допускаемых изгибающих моментов Мтсм) закреплений с применением свай с закрылками. Іслучай установки (грунт работает по всей высоте закрепления)

| Условный<br>номер грунт | Наименова-<br>ние грунта | 7          | un.H       | C"                              | φ#   | Свая с закрымани |              |
|-------------------------|--------------------------|------------|------------|---------------------------------|------|------------------|--------------|
| OHO<br>Sp 23            | жен<br>Съ                | <u>I</u> L | x"         |                                 |      |                  | C3 - 4,0     |
|                         | Наил<br>ние              |            | TC/M3      | TC/M <sup>2</sup>               | град | -0-              | <b>⊕</b>     |
| 1                       |                          |            | 2,0        | 0,2                             | 43   | 104,2            | 85,0         |
| 3                       |                          |            | 1,9        | 0,1                             | 40   | 81,4             | 65,4         |
| 3                       | ì                        |            | 1,8        |                                 | 38   | 67,8             | 54,0         |
| 5<br>6                  | 1                        |            | 2,0        | 0,3                             | 40   | 87,3             | 70,1         |
| 5                       | 1                        |            | 1,9        | 0,2                             | 38   | 73,1             | 58,1         |
| 6                       | -                        |            | 1,8        | 0,1                             | 35   | 57,7             | 45,2         |
| 7                       | Песок                    |            | 2,0        | 0,6<br>0,4                      | 38   | 88,2             | 70,0         |
| 8                       | 0/0                      |            | 1,9        | 0,4                             | 36   | 73,4             | 57,6         |
| g                       | `                        |            | 1,8        | 0,2                             | 32   | 54,5             | 42.0         |
| 10                      |                          |            | 1,8        |                                 | 28   | 42.6             | 32,1<br>63,2 |
| 11                      |                          |            | 1,9        | 0,8                             | 36   | 80,6             | 63,2         |
|                         | 1                        |            | 1,9        | 0,6                             | 34   | 70,4             | 54,6         |
| 13                      |                          |            | 1,8        | 0,4                             | 30   | 52,7             | 40,1         |
| 14                      |                          |            | 1,8        | 0,2                             | 26   | 41,5             | 30,9         |
| 15<br>16                |                          | 0,25       | 1,8        | 0,2<br>1,5<br>1,1               | 30   | 41,5<br>74,9     | 30,9<br>56,7 |
| 17                      |                          | 0,25       |            | 1,1                             | 29   | 66,0             | 49,6         |
| 18                      | 20                       | 0,25       | 1,8        | 0.8                             | 27   | 56,1             | 41,7         |
| _                       | au.                      | 0,6        | 1,8        | 1,3                             | 28   | 60,8             | 45,5         |
| 19                      | Cynecb                   | 0,6        | 1,8        | 0,9                             | 26   | 51,6             | 38,2         |
| 20                      | 1                        | 0,6        | 1,8        | 0,6                             | 24   | 44.3             | 32,5         |
| 21                      |                          | 0,6<br>0,6 | 1,75       | 0,3                             | 21   | 35,2             | 25,4         |
| 22                      | Суглинон                 | 0,25       | 2,0        | 4,7                             | 26   | 118,0            | 88,8         |
| 23                      |                          | 0.25       | 1,95       | 3,7                             | 25   | 98,6             | 73,2         |
| 24                      |                          | 0,25       | 1,9        | 3,1                             | 24   | 85,7             | 63,0         |
| 25                      | ys/                      | 0,25       | 1,9<br>1,8 | 2,5                             | 23   | 72,5             | 52,9         |
| 26<br>27                | 0                        | 0,25       | 1,75       | 2,2                             | 22   | 64,9             | 46,9         |
| 27                      |                          | 0,25       | 1,7        | 3,7<br>3,1<br>2,5<br>2,2<br>1,9 | 20   | 55,3             | 39,4         |

.....

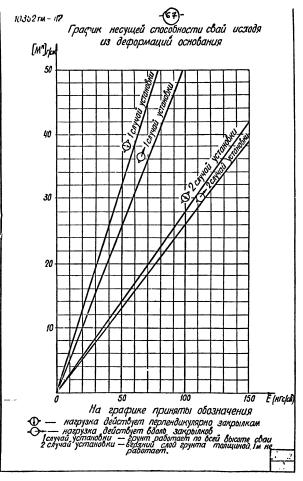

| i di                    | ž 2                            | · .     | #     | ۵,4   | , a H | Свая сз  | гурылкани |
|-------------------------|--------------------------------|---------|-------|-------|-------|----------|-----------|
| 30                      | иненовани<br>грунта            | $I_{L}$ | 18"   | C"    | 4"    | C3 - 4,0 |           |
| Условный<br>номер групт | Ноименова <b>ние</b><br>грунта |         | 7C/M3 | TC/M2 | град  | -0-      |           |
| 28                      |                                | 0,5     | 2,0   | 3,9   | 24    | 98,1     | 72,6      |
| 29                      | }                              | 0,5     | 1,95  | 3,4   | 23    | 86,8     | 63,6      |
| 30                      | l                              | 0,5     | 1,9   | 2,8   | 22    | 75,0     | 54,4      |
| 31                      | ≿                              | 0,5     | 1,8   | 2,3   | 21    | 64,2     | 46,2      |
| 32                      | ₹                              | 0,5     | 1,75  | 1,8   | 19    | 52,7     | 37,4      |
| 33                      | Суглинок                       | 0,5     | 1,7   | 1,5   | 17    | 44,5     | 31,1      |
| 34                      | 3                              | 0,6     | 1,9   | 2,5   | 19    | 55,5     | 39,3      |
| 35<br>36                | ] ~                            | 0,6     | 1,8   | 2,0   | 18    | 47,7     | 33,6      |
| 36                      | 1                              | 0,6     | 1,75  | 1,6   | 16    | 40,1     | 27,8      |
| 37                      | ļ                              | 0,6     | 17    | 1,4   | 14    | 34,7     | 23,7      |
| 38                      |                                | 0,6     | 1,65  | 1,2   | 12    | 29,8     | 20,1      |
| 39                      | ļ                              | 0,25    | 1,95  | 8,1   | 21    | 143,4    | 108,8     |
| 40                      | l                              | 0,25    | 1,9   | 6,8   | 20    | 121,0    | 90,2      |
| 41                      |                                | 0,25    | 1,8   | 5,4   | 19    | 98,2     | 71,9      |
| 42                      |                                | 0,25    | 1,75  | 4,7   | 18    | 85,7     | 62,0      |
| 43                      |                                | 0,25    | 1,7   | 4,1   | 16    | 72,1     | 51,3      |
| 44                      |                                | 0,25    | 1,65  | 3,6   | 14    | 61,1     | 42,7      |
| 45                      |                                | 0,5     | 1,9   | 5,7   | 18    | 99,6     | 72,7      |
| 46                      | Ĭ                              | 0,5     | 1,8   | 5,0   | 17    | 86,4     | 62,3      |
| 47                      | Глина                          | 0,5     | 1,75  | 4,3   | 16    | 75,0     | 53,4      |
| 48                      | `                              | 0,5     | 1,7   | 3,7   | 14    | 62,8     | 49,9      |
| 49                      | _                              | 0,5     | 1,65  | 3,2   | 11    | 50,7     | 34,6      |
| 50                      |                                | 0,6     | 1,9   | 4,5   | 15    | 64,4     | 45,0      |
| 51                      |                                | 0,δ     | 1,8   | 4,1   | 14    | 57,5     | 35,9      |
| 52                      |                                | 0,6     | 1,75  | 3,6   | 12    | 49,0     | 33,4      |
| 53                      |                                | 0,6     | 1,7   | 3,3   | 10    | 42,7     | 28,7      |
| 54                      |                                | 0,6     | 1,65  | 2,9   | 7     | 34,8     | 22,8      |

Таблица несущей способности (допускаемых изгибающих моментов Мтом) закреплений с применением свай с закрылками.. 2случай установки (1м грунта не работает).

| Уславный<br>номер грунта        | Наименова <b>ж</b> е<br>грунта | Īι                                           | <i>y</i> "                                                                | C"                                                          | 4"             | Свая с<br>закрылками<br>СЗ - 4,0                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------|--------------------------------|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Условный<br>номер груп          | Наиме<br>гр.                   |                                              | TC/M3                                                                     | TC/M2                                                       | град           | <del>-</del> <b>0</b> -                                                      | -⊕-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                               |                                |                                              | 2.0                                                                       | 0.2                                                         | 43             | 38,9                                                                         | 37,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                               |                                |                                              | 1,9                                                                       | 0,2                                                         | 40             | 30,3                                                                         | 37,1<br>28,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                               |                                |                                              | 1,8                                                                       |                                                             | 38             | 25,2                                                                         | 24,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                               |                                |                                              | 2,0                                                                       | 0,3                                                         | 40             | 32,6                                                                         | 30,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _ 5                             | 1                              |                                              | 1,9                                                                       | 0,2                                                         | 38             | 27, 2                                                                        | 25,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6                               | 3                              |                                              | 1,8                                                                       | 0,3<br>0,2<br>0,1                                           | 35             | 27,5                                                                         | 20,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8 | Песок                          |                                              | 2,0<br>1,9<br>1,8<br>2,0<br>1,9<br>1,8<br>2,0<br>1,9<br>1,8<br>1,8<br>1,9 | 0,6                                                         | 38             | 32,6<br>27,2<br>27,5<br>33,2<br>27,5<br>20,3<br>/5,6<br>30,7<br>26,5<br>/9,7 | 31,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8                               | 10                             |                                              | 1,9                                                                       | 0,4                                                         | 36             | 27,5                                                                         | 25,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9                               | 1                              |                                              | 1,8                                                                       | 0,2                                                         | 32             | 20,3                                                                         | 19,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                              |                                |                                              | 1,8                                                                       |                                                             | 28<br>36<br>34 | 15,6                                                                         | 14,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11                              |                                |                                              | 1,9                                                                       | 0,8                                                         | 36             | 30,7                                                                         | 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                              |                                |                                              | 1,9                                                                       | 0,6                                                         | 34             | 26,5                                                                         | 24,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13                              |                                |                                              | 1,8                                                                       | 0,4                                                         | 30             | 19,7                                                                         | 18,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14                              |                                |                                              | 1,8                                                                       | 0,2                                                         | 26             | 15,3                                                                         | 14, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                              |                                | 0,25<br>0,25<br>0,25<br>0,6<br>0,6<br>0,6    | 1,8<br>1,8<br>1,8<br>1,8                                                  | 0,2<br>1,5<br>11                                            | 30             | 15,3<br>30,1<br>26,0                                                         | 26,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16<br>17                        | _                              | 0,25                                         | 1,8                                                                       | 11                                                          | 29             | 26,0                                                                         | 23,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17                              | 25                             | 0,25                                         | 1,8                                                                       | 0,8                                                         | 27             | 21,7                                                                         | 19,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18                              | Супесь                         | 0,6                                          | 1, 8<br>1, 8<br>1, 8                                                      | 0,8                                                         | 28<br>26       | 23.8                                                                         | 21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19                              | 5                              | 0,6                                          | 1,8                                                                       | 0,9                                                         | 26             | 19,8                                                                         | 17,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20<br>21                        |                                | 0,6                                          | 1,8                                                                       | 0,6                                                         | 24             | 16.7                                                                         | 15,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                              |                                | 0,6                                          | 1,75                                                                      | 0,3                                                         | 21             | 12,9                                                                         | 11,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22                              |                                | 0,6<br>0,25                                  | 1,75<br>2,0<br>1,95<br>1,9<br>1,8<br>1,75                                 | 0,9<br>0,6<br>0,3<br>4,7<br>3,7<br>3,1<br>2,5<br>2,2<br>1,9 | 26             | 16,7<br>12,9<br>50,8<br>41,9<br>36,0<br>30,2                                 | 43,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3                             | Суглинок                       | 0,25                                         | 1,95                                                                      | 3,7                                                         | 25             | 41,9                                                                         | 35,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24<br>25                        |                                | 0,25                                         | 1,9                                                                       | 3.1                                                         | 24             | 36,0                                                                         | 30,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25                              |                                | 0,25                                         | 1,8                                                                       | 2,5                                                         | 23             | 30,2                                                                         | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26<br>27                        |                                | 0,25                                         | 1,75                                                                      | 2, 2                                                        | 22             | 26, 9<br>22, 7                                                               | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27                              |                                | 0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25 | 1,7                                                                       | 1,9                                                         | 20             | 22,7                                                                         | 24,0<br>30,9<br>25,8<br>20,3<br>31,2<br>25,9<br>19,0<br>14,7<br>18,6<br>24,7<br>18,4<br>20,8<br>23,3<br>19,6<br>21,4<br>17,9<br>15,2<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9<br>17,9 |

Таблица несущей способности (допускаемых изгибающих моментов М тем) закреплений с применением свай с закрылками. 2 случай установки (1м грунта не работает).

| Условной но-<br>мер грунта | Наименова-<br>ние грунта | Ιι                                                                                                                                                                                                                                                              | 8"                                        | C"                                                   | φ"             | Свая с<br>закрыяками<br>СЗ - 4.0             |                                                                                             |  |
|----------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------|----------------------------------------------|---------------------------------------------------------------------------------------------|--|
|                            | Наил<br>ние              |                                                                                                                                                                                                                                                                 | TC/M <sup>3</sup>                         | TC/M2                                                | град           | -0-                                          | -⊙-                                                                                         |  |
| 28                         |                          | 0,5                                                                                                                                                                                                                                                             | 2,0                                       | 3,9                                                  | 24             | 41,7                                         | 35,3                                                                                        |  |
| 29                         |                          | 0,5                                                                                                                                                                                                                                                             | 1,95                                      | 3,4                                                  | 23             | 36.5                                         | 31,0                                                                                        |  |
| 30<br>31<br>32<br>33       |                          | 0,5                                                                                                                                                                                                                                                             | 1,95<br>1,9<br>1,8<br>1,75<br>1,7         | 3,4<br>2,8<br>2,3<br>1,8<br>1,5<br>2,5               | 23<br>22<br>21 | 31,0<br>26,6<br>21,5<br>17,9                 | 31, 0<br>26,5<br>22,6                                                                       |  |
| 31                         | Суглинок                 | 0,5                                                                                                                                                                                                                                                             | 1,8                                       | 2,3                                                  | 21             | 26,6                                         | 22,6                                                                                        |  |
| 32                         | 1                        | 0,5                                                                                                                                                                                                                                                             | 1,75                                      | 1,8                                                  | 19             | 21,5                                         | /8,2<br>/5,2<br>/9,0                                                                        |  |
| 33                         | 2                        | 0,5                                                                                                                                                                                                                                                             | 1,7                                       | 1,5                                                  | 17             | 17,9                                         | 15,2                                                                                        |  |
| 34                         | 2                        | 0,6                                                                                                                                                                                                                                                             | 1,9<br>1,8<br>1,75<br>1,7<br>1,65<br>1,95 | 2,5                                                  | 19             | 22,4                                         | 19,0                                                                                        |  |
| 35<br>36<br>37<br>38       | 0                        | 0,6                                                                                                                                                                                                                                                             | 1,8                                       | 2,0<br>1,6<br>1,4                                    | 18             | 19,0<br>15,7<br>13,4                         | 16,3<br>13,5<br>11,5<br>9,7<br>53,3<br>44,5<br>35,6<br>30,8<br>25,6<br>21,4<br>35,9<br>31,0 |  |
| 36                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,75                                      | 1,6                                                  | 16             | 15,7                                         | 13,5                                                                                        |  |
| 37                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,7                                       | 1,4                                                  | 14             | 13,4                                         | 11,5                                                                                        |  |
| 38                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,65                                      | 1.2                                                  | 12             | 11,4                                         | 9,7                                                                                         |  |
| 39                         |                          | 0,25                                                                                                                                                                                                                                                            | 1,95                                      | 8,1                                                  | 21<br>20       | 63,9                                         | 53,3                                                                                        |  |
| 39<br>40<br>41             |                          | 0,25                                                                                                                                                                                                                                                            | 1,9<br>1,8<br>1,75                        | 8,1<br>6,8<br>5,4<br>4,7                             | 20             | 63,9<br>53,7<br>43,2<br>37,5<br>31,4<br>26,4 | 44,5                                                                                        |  |
| 41                         | i                        | 0,25                                                                                                                                                                                                                                                            | 1,8                                       | 5,4                                                  | 19             | 43,2                                         | 35,6                                                                                        |  |
| 42                         |                          | 0,25                                                                                                                                                                                                                                                            | 1,75                                      | 4,7                                                  | 18             | 37,5                                         | 30,8                                                                                        |  |
| 43                         |                          | 0,25                                                                                                                                                                                                                                                            | 1,7<br>1,65                               | 4,1                                                  | 16             | 31,4                                         | 25,6                                                                                        |  |
|                            |                          | 0,25                                                                                                                                                                                                                                                            | 1,65                                      | 3,6                                                  | 14             | 26,4                                         | 21,4                                                                                        |  |
| 45                         | ×                        | 0,5                                                                                                                                                                                                                                                             | 1,9                                       | 5,7                                                  | 18             | 43,7                                         | 35,9                                                                                        |  |
| 46                         | 20                       | 0,5                                                                                                                                                                                                                                                             | 1,9<br>1,8                                | 5,0                                                  | 17             | 37,9                                         | 31,0                                                                                        |  |
| 47                         | Глина                    | 0,5                                                                                                                                                                                                                                                             | 1.75                                      | 4,3                                                  | 16             | 32,7                                         | 26,6                                                                                        |  |
| 48                         | '                        | 0,5                                                                                                                                                                                                                                                             | 1,7                                       | 3,7                                                  | 14             | 27,1                                         | 21,9                                                                                        |  |
| 49                         |                          | 0,5                                                                                                                                                                                                                                                             | 1,65                                      | 4,1<br>3,6<br>5,7<br>5,0<br>4,3<br>3,7<br>3,2<br>4,5 | 11             | 32,7<br>27,1<br>21,6                         | 17,3                                                                                        |  |
| 50                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,9                                       | 4,5                                                  | 15             | 27,2                                         | 22,2                                                                                        |  |
| 51                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,7<br>1,65<br>1,9                        | 4,1                                                  | 14             | 24.2                                         | 19,8                                                                                        |  |
| 51<br>52<br>53             |                          | 0,6                                                                                                                                                                                                                                                             | 1,75                                      | 5,6                                                  | 12             | 20,4                                         | 16,6                                                                                        |  |
| 53                         |                          | 0,5<br>0,5<br>0,5<br>0,5<br>0,6<br>0,6<br>0,6<br>0,6<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,5<br>0,5<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5<br>0,5 | 1.7                                       | 3,3                                                  | 10             | 17,7                                         | 26,6<br>21,9<br>17,3<br>22,2<br>19,8<br>16,6<br>14,2                                        |  |
| 54                         |                          | 0,6                                                                                                                                                                                                                                                             | 1,65                                      | 4,1<br>5,6<br>3,3<br>2,9                             | 7              | 14,2                                         | 11,3                                                                                        |  |

