УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия населения

Главный Государственный санитарный врач Российской Федерации

Г.Г. ОНИЩЕНКО

Дата введения: е момента

you left regeries

4.1. МЕТОДЫ КОНТРОЛЯ ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по определению остаточных количеств Диазинона в мышечной ткани, печени, почках и жире овец.

1.Вводная часть.

Фирма производитель: ООО «Ариста Восток».

Торговое название: Диазинон.

Название действующего вещества по ИСО: Диазинон.

Название по ИЮПАК: О-О-диэтил О-[6-метил-2-(1-метилэтил)-4-ппридыпил] фосфоротирог.

Эмпирическая формула: $C_{12}H_{21}N_2O_3PS$.

Структурная формула:

Молекулярная масса: 304,3.

Химически чистый Диазилон представляет собой бесцветную жидкость.

Температура кипения 89°С при давлении 13 Па.

Давление паров: 1,2 мПа х 10¹ при 25°C.

Растворимость в воде 60 мг/л при 20°С.

Хорошо растворим в большинстве органических растворителей: ецетоне, эфире, спиртах,

бензоле, толуоле, гексане, циклогексане, дихлорметане.

 $K_{OW} \log P = 3.3.$

Константа диссоциации р. (а = 2.6.

Разлагается под действием кислот и щелочей, в воде гидролизуется с $ДТ_{50}$ при $20^{\circ}C-11,77$ часов (pH 3,1), 185 дней (pH 7,4), 6 дней (pH 10,4).

При нагревании до 120°C разрушается.

Краткая токсикологическая характеристика: Диазинон относится к веществам опасным по острой оральной (ЛД₅₀ для крыс 1250, для мышей 80-135 мг/кг) и ингаляционной токсичности (СК₅₀, 4 часа, для крыс >2330 мг/м³⁾ и мало опасным веществам по дермальной токсичности (ЛД₅₀ для крыс >2150 мг/кг). Кумулятивные свойства выражены слабо.

В России установлены следующие гигиенические нормативы

ДСД для человека – 0,002 мг/кг/сут.

ПДК в воздухе рабочей зоны -0,2 мг/м3.

 ПДК в атмосферном воздухе
 - 0,0001 мг/м3 (с.-с.).

 ПДК в воде водоема
 - 0,004 мг/дм3 (с.-т.).

ПДК в почве -0.1 мг/кг (тр.).

МДУ (мг/кг):

зерно хлебных злаков, кукуруза, картофень, капуста, хлопчатник (семена и масло), лук, брюква, турнепс, сахарная и столовая свекла - 0,1; табак, томаты, огурцы, мак масличный - 0,5; кмель сухой - 1,0; мясо (в пересчете на жир) - 0,01;

морковь, молоко, молочные продукты, мясо птицы, яйца – не допускается.

Область применення препарата: Диазинон – инсектицид широкого спектра действия из группы эфиров тиофосфорной кислоты, ингибиторов ацетилхолинэстеразы, с хорошо выраженной контактной и кишечной активностью. Высокоэффективен против сосущих, минирующих и грызущих насекомых, повреждающих растения, а также подвижных стадий растительноядных клещей. Препараты на основе Диазинона широко применяются для борьбы с эндопаразитами животных.

2. Методчка определения остаточных количеств Диазинона в мышечной ткани, печени, почках и жире овец.

2.1. Основные положения.

2.1.1. Принцип метода.

Методика основана на определении Диазинона методом газожидкостной хроматографии с использованием термоионного детектора после его экстракции из проб ацетонитридом, переэкстракции в метиленхлорид и очистки на колонках с Флоризилом. Количественное определение проводится методом абсолютной калибровки.

2.1.2. Метрологическая характеристика метода.

Метрологическая характеристика метода представлена в таблицах 1-2.

Таблица 1.

	Метрологические параметры, p = 0,95; n = 20					
Анализируемый объект	Предел об- наружения, мг/кг	Диапазон определяемых концентраций, мг/кг	Среднее значение определе- ния, %	Стан- дартное отклоне- ние S, %	Доверительный интервал среднего результата %, ±	
1 .	2	3	4	5	6	
мышцы	0,01	0,01-0,1	88,14	0,80	1,47	
печень	0,01	0,01-0,1	87,89	0,59	1,08	
жир	0,01	0,01-0,2	86,73	0,75	1,36	

Таблица 2.

Доверительный интервал и полнота определения Диазинона в мъщечной ткани, печени, почках и жире овцы,

Среда	Добевлено	Обнаружено	Довери- тельный ин-	Полнота
Среда	Диазинона,	Диазинона,	тервал,	определе- ния,
ļ	MI/KI	MI/KT	repaar,	ния, %
				
мышцы	0,01	0,0087	0,0004	87,4
	0,02	0,018	0,001	88,6
	0,05	0,044	0,002	87,9
	0,10	0,089	0,002	88,6
печень	0,01	0,0089	0,0002	88,7
	0,02	0,018	0,0003	89,4
	0,05	0,044	0,001	88,6
	0,10	0,085	0,002	84,9
жир	0,01	0,0089	0,0005	88,7
	0,02	0,017	0,0008	85,2
	0,10	0,088	0,001	88,0
	0,20	0,017	0,003	85,0

2.2. Реактивы, растворы, материалы и оборудование.

2.2.1. Реактивы, материалы и растворы.

Диазинон, аналитический стандарт с содержанием д.в. 99,4%.

Азот особой чистоты, ГОСТ 9293-74.

Ацетон, ГОСТ 2603-79.

Ацетонитрил, ТУ 6-09-3534-87.

Вода дистиллированная, ГОСТ 7602-72.

н-Гексан, ч., ТУ 6-09-3375-78.

Натрий сернокислый, безводный, х.ч., ГОСТ 4166-76.

Метилен хлористый (метиленхлорид), х.ч., ГОСТ 19433-88

Флоризил для колоночной хроматографии, зернение 60/100 мещ, фирмы Флюка

2.2.2.Приборы, аппаратура, посуда.

Аппарат для встряхивания, ТУ 64-1-1081 - 73 или аналогичный.

Баня водяная, ТУ 46-22-603-75.

Банки с крышками для экстракции на 250 мл, полипропилен, кат.№3120-0250, NALGENE.

Весы аналитические ВЛА-200, ГОСТ 34104-80Е или аналогичные

Воронки делительные на 250 мл, ГОСТ 23336-82.

Воронки для фильтрования, стеклянные, ГОСТ 8613-75.

Испаритель ротационный, вакуумный ИР-1М, ТУ 25-11-917-74 или аналогичный.

Колбы мерные на 10, 25, 50, 100 мл, ГОСТ 1770-74.

Колонки пластиковые для адсорбщионной хроматографии длиной 15 см, диаметр 1,5 см.

Колонка газохроматограф: гческая капиллярная кварцевая HP-5 длиной 15 м, с внутренним диаметром 0,32 мм, толиц на пленки 0,25 мкм.

Конпентраторы грушевидные на 100 и 250 мл НШ29 КГУ-100 (250), ГОСТ 10394-72.

Микропприц на 10 мкл, ТУ Е-2.833.0.24.

Насос водоструйный, ГОСТ 10696-75.

Пипетки мерные на 1,0, 2,7 и 5,0 мл, ГОСТ 20292-74.

Стаканы химические на 100 мл. ГОСТ 25336-82 Е.

Фильтры бумажные "Красная лента" ТУ 6-09-1678-86.

Хроматограф газовый "Кристалл 2000 М" с термоионным детектором с пределом детектирования по азоту в азобензоле - $5x10^{-13}$.

Цилиндры мерные емкостью 25, 50 и 100 мл, ГОСТ 1770-74.

2.3. Подготовка к определению.

2.3.1. Подготовка и кондиционирование колонок для газожидкостной хроматографии.

Колонку устанавливают в термостате хроматографа, не подсоединяя к детектору, и стабилизируют в токе гелия при температуре на 20°C ниже предельного значения для выбранной непольижной фазы в течение 8-10 часов.

2.3.2. Приготовление стандартных растворов.

Взвешивают 50 мг Диазинона в мерной колбе на 50 мл, растворяют навеску в ацетоне и доводят объем до метки ацетоном (стандартный раствор № 1, концентрация 1 мг/мл). Стандартный раствор № 1 можно хранить в холодильнике в течение 6 месяцев.

Методом последовательного разбавления готовят стандартные растворы Диазинона в ацетоне с концентрацией 0,025; 0,05; 0,1; 0,25; 0,5 мкг/мл для построения калибровочного графика и внесения в контрольный образец.

Подобным образом готовят раствор Диазинона в гексане с концентрацией 1,0 мкг/мл для проверки хроматографического поведения аналитического стандарта на колонке с Флоризилом.

2.3.3. Подготовка колонки с Флоризилом.

В пластмассовую колонку длиной 15 см, диаметром 1,5 см помещают на дно чистую стекловату и заполняют голонку 5 г Флоризила 60/100 меш, уплотняя его путем вибрации колонки. На слой Флоризила наносят слой безводного сернокислого натрия толщиной 1 см. За день до определения Флоризил в колонке промывают последовательно 20 мл ацетона и 10 мл гексана.

2.3.4. Проверка хроматографического поведения Диазинона на колонке.

В подготовленную колонку вносят 1 мл стандартного раствора Диазинона в гексане с концентрацией 1,0 мкг/мл (раздел 2.3.2) и 9 мл гексана. Колонку промывают последовательно 10 мл гексана и 10 мл тексана ацетон — 9:1. Смывы отбрасывают. После этого пропускают через колонку 3-4 порции смеси гексан: ацетон (1:1) по 5 мл каждая, собирая их в отдельные концентраторы. Собранные фракции выпаривают досуха, сухой остаток растворяют в 2 мл ацетона и вводят в хроматограф 1 мкл пробы. Фракции, содержащие Диазинон, объединяют, выпаривают досуха, сухой остаток растворяют в 2 мл ацетона и вводят в хроматограф 1 мкл пробы. Рассчитывают содержание вещества в элюате, определяют полноту смыва с колонки и необходимый для очистки объем элюата.

2.4. Отбор проб.

Отбор проб производится в соответствии с "Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов" (№ 2051-79 от 21.08.79). Пробы биологического материала хранят в запаянных пластиковых пакетах в замороженном виде в холодильнике. Перед анализом пробы размораживают и измельчают на мясорубке.

2.5. Описание определения.

2.5.1. Мышечная ткань, печень, почки.

Навеску измельченного материала — 10 г помещают в пластиковую банку с крышкой емкостью 250 мл и заливают 50 мл ацетонитрила. Встряхивают 10 минут. Экстракт фильтруют через бумажный фильтр в делительную воронку емкостью 250 мл. Экстракцию повторяют еще раз, заливая пробу 50 мл ацетонитрила, и, встряхивая 10 минут. Экстракт отфильтровывают в ту же делительную воронку.

К фильтрату в воронке добавляют 20 мл гексана* и встряхивают содержимое воронки в течение 1 минуты. После разделения фаз нижнюю ацетонитрильную фазу сливают в стаканчик, гексан отбрасывают. Переносят экстракт из стаканчика в делительную воронку и промывают его еще раз 20 мл гексана. Ацетонитрильную фазу сливают в концентратор емкостью 250 мл через безведный сульфат натрия и упаривают до объема 5-10 мл при температуре не выше 35°C.

Остаток в концентраторе разводят 80 мл 2,5% водного раствора Na₂SO₄, обмывают стенки концентратора еще 20 мл этого же раствора и переносят его содержимое в делительную воронку емкостью 250 мл. Добавляют в делительную воронку 30 мл метиленхлорида и экстрагируют Диазинон, встряхивая воронку 1-2 минуты. После разделения слоев нижний слой метиленхлорида собирают в чистый концентратор, пропуская через безводный сульфат натрия. Экстракцию повторяют еще два раза, используя каждый раз 30 мл метиленхлорида, и собирая его в тот же концентратор. Объединенные экстракты выпаривают на ротационном вакуумном испарителе досуха при температуре не выше 35°C. Сухой остаток в концентраторе растворяют в 10 мл гексана и проводят очистку пробы на колонке с Флоризилом.

2.5.1.1. Очистка на колонках с Флоризилом.

В подготовленную (как указано в разделе 2.3.3) колонку с Флоризилом переносят содержимое концентратора. Концентратор ополаскивают 10 мл гексана и пропускают гексан через колонку. Колонку промывают 10 мл смеси гексан: ацетон — 9:1. Смывы отбрасывают. Диазинон элюируют 15 мл смеси гексан:ацетон — 1:1, смыв собирают в чистый концентратор и выпаривают его содержимое досуха на ротационном вакуумном испарителе. Сухой остаток разводят в 2 мл ацетона (пробы печени — в 4 мл) и вводят в хроматограф 1 мкл пробы.

2.5.2. Жир.

Навеску жира 5 г помещают в пластиковую банку с крышкой емкостью 250 мл и заливают 50 мл гексана*. Встряхивают 10 минут. Экстракт фильтруют через бумажный фильтр в концентратор емкостью 250 мл. Экстракцию повторяют еще раз, заливая пробу 50 мл гексана, и, встряхивая 10 минут. Экстракт отфильтровывают в тот же концентратор. Объединенный фильтрат упаривают до объема 5-10 мл при температуре не выше 35°C.

Остаток пробы из концентратора помещают в делительную воронку емкостью 250 мл. Концентратор ополаскивают 50 мл ацетонитрила* и переносят ацетонитрил в делительную воронку. Проводят переэкстракцию Диазинона из гексана в ацетонитрил, встряхивая делительную воронку в течение 2 минут. После разделения слоев нижний слой ацетонитрила сливают в концентратор через безводный сульфат натрия. Повторяют экстракцию еще два раза, используя каждый раз по 50 мл ацетонитрила. Экстракты собирают в тот же концентратор. Объединенный экстракт упаривают до объема 5-10 мл при температуре не выше 35°С.

Остаток в концентраторе разводят 100 мл 2,5% раствора Na₂SO₄, обмывают стенки концентратора и переносят его содержимое в делительную воронку емкостью 250 мл. Добавляют в делительную воронку 30 мл метиленхлорида, экстрагируют Диазинон, как указано в разделе 2.5.1.и очищают пробу на колонке с Флоризилом, как указано в разделе 2.5.1.1.

Очищенную пробу растворяют в 2 мл ацетона и вводят в хроматограф 1 мкл пробы.

*В анализе используют гексан, насыщенный ацетонитрилом, и ацетонитрил, насыщенный гексаном.

2.6. Условия хроматографирования и обработка результатов,

2.6.1. Условия хроматографирования.

Хроматограф «Кристалл 2000 м» с термоионным детектором (ТИД) с пределом детектирования по азоту в азобензоле $5\cdot10^{-13}$ г/см³.

Колонка капиллярная кварцевая HP-5; длиной 15 м с внутренним диаметром 0,32 мм; толшина пленки 0.25 мкм.

Режим работы.

Температура термостата колонки программированная. Начальная температура — 150°C, выдержка 2 минуты; нагрев колонки по 25 градусов в минуту до температуры 230°C, выдержка 5 минут; нагрев колонки по 25 градусов в минуту до температуры 260°C.

Газовый режим - Splitless.

Газ-носитель – гелий (Г1). Тип регулятора расхода гелия – РРГ 11, линейная скорость – 20 см/сек, давление на входе 27,29 кПа.

Газ 2 (Г2) — гелий (продувка испарителя), расход 1,0 мл/мин, сброс 1:50, начало сброса — 5 сек, длительность сброса — 2 мин.

Газ 3 (Г3) – азот (поддув в детектор), расход во время анализа – 20 мл/мин.

Продувка детектора азотом после анализа при температуре 260°C в течение 2 минут − 65 мл/мин.

Абсолютное время удерживания Диазинона – 4 мин 45 сек. - 4 мин. 47 сек.

Температура испарителя - 250°C, детектора - 350°C.

Расход водорода - 16 мл/мин; расход воздуха - 180 мл/мин.

Объем вводимой пробы - 1 мкл.

Линейность детектирования сохраняется в пределах 0,025-0,5 нг.

2.6.2. Обработка результатов анализов.

Содержание Диазинона в пробах рассчитывают методом абсолютной калибровки по формуле:

$$X = \frac{S_1 \cdot A \cdot V}{S_0 \cdot m \cdot 100} \cdot P$$

Х - содержание Диазинона в пробе, мг/кг;

S₁ - площадь пика образца, мВ;

So - площадь пика стандарта, мВ;

А - концентрация стандартного раствора, мкг/мл;

V - объем экстракта, подготовленного для хроматографирования (мл);

m - масса или объем анализируемого образца, г или мл.

Р - содержание Диазинона в аналитическом стандарте.

3. Требования техники безопасности.

Необходимо соблюдать требования безопасности при работе в химических лабораториях в соответствии с "Правилами устройства, техники безопасности, производственной санитарии, противоэпидемиологического режима и личной гитиены при работе в лечебных и санитарно-эпидемиологических учреждениях системы МЗ СССР" (№ 2455-81 от 20.10.81 г.), а также требования, изложенные в документации на поиборы.

4. Разработчики.

Калинин В.А., профессор, канд. с-х. наук, Калинина Т.С., ст.н. сотр., канд. с-х. наук, Фролова Н.С., ст. инж.

Московская сельскохозяйственная академия имени К.А. Тимирязева.

Учебно-научный консультационный центр «Агроэкология пестицидов и агрохимикатов». 127550, Москва, Тимирязевская ул., д. 53/1. Телефон: (095) 976-37-68, факс: (095) 976-43-26.