ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО-КОНСТРУКТОРСКИЙ Котлотурбинный институт им. И. Ползунова

РУКОВОДЯЩИЕ ТЕХНИЧЕСКИЕ МАТЕРИАЛЫ

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ РАСЧЕТ НА ПРОЧНОСТЬ СПИРАЛЬНЫХ КАМЕР

PTM 24.022.04-72

ЛЕНИНГРАД

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО-КОНСТРУКТСРСКИЙ КОТЛОТУРБИННЫЙ ИНСТИТУТ им. И. ПОЛЗУНОВА

РУКОВОДЯЩИЕ ТЕХНИЧЕСКИЕ МАТЕРИАЛЫ

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ РАСЧЕТ НА ПРОЧНОСТЬ СПИРАЛЬНЫХ КАМЕР

PTM 24.022.04-72

ЛЕНИНГРАД

РАЗРАБОТАНЫ Центральным научно-исследовательским и проектно-конструкторским котлотурбинным институтом им. И. И. Ползунова

Директор	МАРКОВ	H.	M.
Начальник отдела гидротурбин	ГРИГОРЬЕВ	B.	И.
Руководитель темы	постоев	B.	C.
Исполнитель	зиндман	А.	п.
Заведующий базовым отраслевым отделом стандартизации	БАРАНОВ	A.	П.
Заведующий сектором турбин и турбовспомогательного оборудования	суконкин	П.	И.

Харьковским турбинным заводом им. С. М. Кирова

Главный конструктор гидротурбин	РОБУК	H.	H.
Исполнители:	пупко	T.	E .,
	ФРИДМАН	Л.	И.

Ленинградским металлическим заводом им. XXII съезда КПСС

Главный конструктор гидротурбин Исполнители:

- ЩЕГОЛЕВ Г. С.
- АРОНСОН А. Я.,
- ФРАНК-КАМЕНЕЦКИЙ Г. Х.,
 - БЕРХОВ Н. Ф.,
 - ДМИТРИЕВА Л. Д.,

ИВАНОВ С. В.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтурбопромом Министерства тяжелого, энергетического и транспортного машиностроения

Главный инженер

полищук в. л.

УТВЕРЖДЕНЫ Министерством тяжелого, энергетического и транспортного машиностроения

Заместитель министра

СИРЫЙ П. О.

УДК 621.224.-225.12:539.4.001.24(083.75)

РУКОВОДЯЩИЕ ТЕХНИЧЕСКИЕ МАТЕРИАЛЫ

ТУРБИНЫ ГИДРАВЛИЧЕСКИЕ

расчет на прочность спиральных РТМ 24.022.04—72 камер

Указанием Министерства тяжелого, энергетического и транспортного машиностроения от 6 апреля 1972 г. № ПС-002/6019 введены как рекомендуемые.

Настоящие руководящие технические материалы устанавливают методы расчета на прочность спиральных камер и статоров гидротурбин, не подкрепленных железобетонным блоком и подкрепленных со стороны статора железобетонным поясом.

В настоящее время существует несколько методов расчета на прочность спиральных камер. Из них наиболее полно разработаны метод ЦКТИ—ХТГЗ и метод ЛМЗ. Поэтому в руководящих технических материалах приведены оба этих метода. По мере накопления опытных и расчетных данных предполагается создать единый метод расчета, который будет отражен в следующих изданиях РТМ.

Разделы 1—4 разработаны ЦКТИ и ХТГЗ, разделы 5—14—ЛМЗ.

1. РАСЧЕТНАЯ СХЕМА СТАТОРА И СПИРАЛЬНОЙ КАМЕРЫ, НЕ ПОДКРЕПЛЕННЫХ ЖЕЛЕЗОБЕТОННЫМ БЛОКОМ

1.1. Разработанный алгоритм запрограммирован на АЛГОЛЕ и реализован на ЭЦВМ «М-220» с использованием транслятора ТА—1М.

1.2. Конструктивно спиральная камера состоит из трех элементов: оболочки (гладкая или оребренная), колец статора и колонн. Решается задача определения усилий в элементах статорного узла при воздействии на торообразную оболочку внутреннего гидростатического давления.

1.3. Задача о сопряжении оболочки спиральной камеры со статорным кольцом и колоннами представляется в виде симметричной расчетной схемы: предполагается, что со стороны спиральной камеры на кольцо статора действуют усилия, равномерно распреде-

Черт. 1

ленные по окружности сопряжения. Эти усилия принимаются равными усилиям, возникающим во входном сечении спиральной камеры.

1.4. Конструкция спиральной камеры со статором представляет собой статически неопределимую систему, состоящую из трех взаимно связанных элементов: оболочки, кольца и колонны.

Степень статической неопределимости будет определяться восемью неизвестными связями — тремя между кольцом и оболочкой и пятью между кольцом и колонной (черт. 1). 1.5. Если принять положительные направления усилий, перемещений и углов поворота такими, как показано на черт. 1, то условия сопряжения оболочки, кольца и колонны будут следующими: кольцо — колонна:

$$\begin{array}{c}
 \beta_t + \theta_t = 0; \\
 \beta_n = 0; \\
 \xi_n + \Delta_n + \theta_t y_{\kappa} = 0; \\
 \xi_t + V_{ob} = 0;
\end{array}$$
(1)

r

кольцо — оболочка:

$$\begin{array}{c}
\theta_{t} - \vartheta_{o6} = 0; \\
\Delta_{n} - \theta_{t}(h_{\kappa} - y_{\kappa}) + \Delta_{x_{o6}} = 0; \\
\Delta_{z_{o6}} + \frac{N_{\kappa}sh_{\kappa}}{Ef_{\kappa}} - \theta_{t}(r_{u} - r_{\kappa}) = 0.
\end{array}$$
(1')

Уравнения статики кольца:

$$\begin{array}{c} x_5 r_{\kappa} + x_8 r_H - N_{\kappa} r_{\kappa} = 0; \\ - x_4 r_{\kappa} + x_9 r_H = 0. \end{array} \right\}$$
(1")

1.6. Условия (1) выражаются через неизвестные усилия после нахождения коэффициентов податливости колонны, кольца и оболочки.

1.7. Приводятся формулы для коэффициентов податливости и перемещений колонны.

Колонны испытывают косой изгиб от сил x_1 , x_2 , x_3 и x_4 и осевое растяжение от силы x_5 .

Коэффициенты податливости колонны, которые определяются по формулам косого изгиба, будут следующими:

$$\begin{aligned} k_{11} &= \frac{h_{\kappa}}{E} \left(\frac{\cos^2 \varphi}{J_x} + \frac{\sin^2 \varphi}{J_y} \right); \quad k_{21} &= \frac{h_{\kappa}}{2E} \sin 2\varphi \left(\frac{1}{J_y} - \frac{1}{J_x} \right); \\ k_{31} &= \frac{h_{\kappa}^2}{2} \left(\frac{\sin^2 \varphi}{J_y} + \frac{\cos^2 \varphi}{J_x} \right); \quad k_{41} &= \frac{h_{\kappa}^2}{4E} \sin^2 \varphi \left(\frac{1}{J_x} - \frac{1}{J_y} \right); \\ k_{22} &= \frac{h_{\kappa}}{E} \left(\frac{\sin^2 \varphi}{J_x} + \frac{\cos^2 \varphi}{J_y} \right); \quad k_{32} &= \frac{h_{\kappa}^2}{4} \sin 2\varphi \left(\frac{1}{J_y} - \frac{1}{J_x} \right); \\ k_{42} &= -\frac{h^2_{\kappa}}{2E} \left(\frac{\cos^2 \varphi}{J_y} + \frac{\sin^2 \varphi}{J_x} \right); \quad k_{33} &= \frac{h_{\kappa}^3}{3E} \sin 2\varphi \left(\frac{\cos^2 \varphi}{J_x} + \frac{\sin^2 \varphi}{J_y} \right); \\ k_{43} &= \frac{h_{\kappa}^3}{6E} \sin^2 \varphi \left(\frac{1}{J_y} - \frac{1}{J_x} \right); \quad k_{44} &= \frac{h^3_{\kappa}}{3E} \left(\frac{\sin^2 \varphi}{J_x} + \frac{\cos^2 \varphi}{J_y} \right); \\ k_{23} &= k_{32}; \quad k_{24} &= k_{42}; \quad k_{12} &= k_{21}; \quad k_{34} &= k_{43}; \quad k_{55} &= \frac{h_{\kappa}}{EF}. \end{aligned}$$

Перемещения и поворот колонн определяются через коэффициенты податливости и неизвестные усилия по формулам:

$$\beta_{t} = \frac{2\pi r_{\kappa}}{n} (k_{11}x_{1} + k_{12}x_{2} + k_{13}x_{3} + k_{14}x_{4});$$

$$\beta_{n} = \frac{2\pi r_{\kappa}}{n} (k_{21}x_{1} + k_{22}x_{2} + k_{23}x_{3} + k_{24}x_{4});$$

$$\xi_{t} = \frac{2\pi r_{\kappa}}{n} (k_{31}x_{1} + k_{32}x_{2} + k_{33}x_{3} + k_{34}x_{4});$$

$$\xi_{n} = \frac{2\pi r_{\kappa}}{n} (k_{41}x_{1} + k_{42}x_{2} + k_{43}x_{3} + k_{44}x_{4});$$

$$\xi_{3} = \frac{2\pi r_{\kappa}}{n} k_{55}x_{5}.$$
(2)

1.8. Приводятся формулы для коэффициентов податливости и перемещений кольца.

Все известные нагрузки приводятся к эквивалентным нагрузкам, приложенным к дуге окружности радиуса $r_{\rm K}$, который определяется как пересечение нейтральной оси кольца с осью колонны, и могут быть приведены к моменту $M_{\rm K}$ и растягивающей силе Q_H (черт. 2):

$$M_{\kappa} = \frac{1}{r_{\kappa}} \left[P_{v}(r_{v} - r_{\kappa}) + P_{a}(r_{\kappa} - r_{a})r_{a} - P_{H}(y_{\kappa} - h_{\kappa} + h_{u})r_{u} + V_{6}(r_{6} - r_{\kappa})r_{6} - H_{6}h_{6}r_{6} \right];$$

$$Q_{H} = \frac{1}{r_{\kappa}} (H_{6}r_{6} - P_{H}r_{H}).$$

Поворот кольца a_1 от единичного момента, равномерно распределенного по кольцу, и радиальное смещение кольца a_3 от единичной силы определяются по формулам:

$$a_1 = \frac{r_{\kappa}}{EJ_c}; \quad a_3 = \frac{r_{\kappa}}{EF_c}.$$

Поворот и перемещение кольца будут равны:

$$\theta_{t} = a_{1}x_{1} + a_{1}y_{\kappa}x_{3} + a_{1}\frac{r_{n}}{r_{\kappa}}x_{6} - a_{1}\frac{r_{n}}{r_{\kappa}}(y_{\kappa} - h_{\kappa})x_{7} + a_{1}\frac{r_{H}}{r_{\kappa}}(r_{H} - r_{\kappa})x_{8} - a_{1}M_{\kappa};$$

$$\Delta n = a_{3}x_{3} - \frac{r_{n}}{r_{\kappa}}x_{7} - a_{3}Q_{H}.$$
(3)

1.9. Формулы коэффициентов податливости и перемещений оболочки

1.9.1. Задача расчета оболочки решается численно — методом конечных разностей.

Для численного расчета изгиба произвольных оболочек вращения на осесимметричную нагрузку разрешающие дифференциальные уравнения задачи записываются в виде [1]:

$$\frac{1}{R_1} \cdot \frac{dM_1}{d\theta} + \frac{\cos\theta}{A_2} (M_1 - M_2) - N = 0;$$

$$A_2 \frac{1}{R_1} \cdot \frac{d\varepsilon_2}{d\theta} + \cos\theta (\varepsilon_2 - \varepsilon_1) + \sin\theta = 0.$$
(4)

Изгибающие моменты M_1 и M_2 выражаются через деформации из соотношений упругости для оребренной оболочки:

$$M_1 = D_1 \mathbf{x}_1 + \nu D \mathbf{x}_2 + k \varepsilon_1;$$

$$M_2 = D (\mathbf{x}_2 + \nu \mathbf{x}_1).$$

Из тех же соотношений упругости следует:

$$\varepsilon_1 = \frac{1}{B_1 - \nu^2 B} (T_1 - \nu T_2) - \frac{\Phi}{B_1 - \nu^2 B} x;$$
$$\varepsilon_2 = \frac{1}{B} T_2 - \nu \varepsilon_1.$$

1.9.2. Если ввести две функции: V и ϑ , которые известны как переменные Майсснера, то все величины, входящие в уравнения (4), можно представить в виде:

$$T_2 = \frac{1}{R_1} \cdot \frac{dV}{d\theta}; \quad T_1 = \frac{\cos\theta}{A_2} V + F_1(\theta);$$
$$N = \frac{\sin\theta}{A_2} V + F_2(\theta).$$

Здесь $F_1(\theta)$ и $F_2(\theta)$ зависят от внешних нагрузок следующим образом:

$$F_{1}(\theta) = \frac{1}{A_{2}} \left[\sin \theta \left(\int_{\theta_{0}}^{\theta} A_{2} E_{z} R_{1} d\theta + \frac{P_{z}}{2\pi} \right) - \cos \theta \int_{\theta_{0}}^{\theta} A_{2} E_{x} R_{1} d\theta \right];$$

$$F_{2}(\theta) = \frac{1}{A_{2}} \left[\cos \theta \left(\int_{\theta_{0}}^{\theta} A_{2} E_{z} R_{1} d\theta + \frac{P_{z}}{2\pi} \right) - \sin \theta \int_{\theta_{0}}^{\theta} A_{2} E_{x} R_{1} d\theta \right],$$

где $E_z = \cos \theta q_n - \sin \theta q_1$; $E_x = \cos \theta q_1 + \sin \theta q_n$;

Pz — значения главного вектора внешних сил, приложенных к границе оболочки.

Компоненты изменения кривизны ×1 и ×2 выражаются через угол поворота ϑ :

Выражая усилия и деформации через переменные Майсснера и подставляя их в уравнения (4), получим систему двух дифференциальных уравнений второго порядка для решения задачи расчета оболочки.

1.9.3. При решении задачи конечно-разностным методом нет необходимости выводить исходные дифференциальные уравнения. Получение разностных уравнений осуществляется по заданной программе на ЭЦВМ. Для этого связь усилий и моментов с переменными Майсснера представляется в конечно-разностном виде и дальнейший вывод уравнений производится на ЭЦВМ. Полученная система алгебраических уравнений решается по формулам матричной прогонки [4].

Найдя неизвестные системы алгебраических уравнений, в каждой точке разбиения находят усилия, деформации и перемещения.

1.9.4. Расчет оболочки производится для четырех видов единичных нагрузок: распределенного меридионального момента на краю оболочки M_1 , распределенного распорного усилия на краю оболочки Q_x , осевого усилия на краю оболочки P_z , равномерного гидростатического давления на оболочку p.

Перемещения и поворт края оболочки спирали при указанных выше нагрузках определяются по формулам:

$$\begin{aligned} \Delta_{x_{06}} &= c_{76}x_6 + c_{77}x_7 + c_{78}x_8 - \Delta_{x_p}; \\ \Delta_{z_{06}} &= c_{86}x_6 + c_{87}x_7 + c_{88}x_8 - \Delta_{z_p}; \\ \vartheta_{06} &= c_{66}x_6 + c_{67}x_7 + c_{68}x_8 - \vartheta_p. \end{aligned}$$

1.10. Подставляя формулы (2) и (3) в уравнения совместности деформаций (1), получаем систему восьми алгебраических уравнений. Решая эту систему уравнений, получим все неизвестные усилия, а затем по известным формулам — напряжения в колоннах, кольце и оболочке.

2. РАСЧЕТНАЯ СХЕМА СТАТОРА И СПИРАЛЬНОЙ КАМЕРЫ, Подкрепленных со стороны статора железобетонным поясом

2.1. Излагается метод расчета спиральной камеры, работающей совместно с железобетонным блоком агрегата, когда оболочка отделена от блока войлочной прокладкой. Расчет смешанных конструкций, в которых оболочка работает совместно с железобетонным блоком агрегата, не рассматривается.

2.2. Часть оболочки, расположенная выше горизонтального диаметра сечения, отделена от бетонного массива войлочной прокладкой. Таким образом, нагрузка на железобетонный пояс передается через кольцо и забетонированную часть оболочки.

2.3. Рассматривается такое состояние блока, при котором могут образоваться трещины по вертикальному и горизонтальному сечениям как по наиболее слабым сечениям пояса (черт. 3). При-

Черт. 3

нимается, что железобетонный пояс по сечению, где расположены трещины, на изгиб в этой же плоскости не работает. Кольцевые железобетонные элементы, образованные этими трещинами, связаны между собой и нижней частью массива условными шарнирами, максимально удаленными от растянутой меридиональной арматуры блока.

2.4. Предполагается, что в упругом состоянии находится вся конструкция, элементами которой являются: а) оболочка, отделенная прокладкой от бетона, б) колонна статора, в) внутреннее железобетонное кольцо, включающее статорное кольцо и часть забетонированой оболочки, г) наружное бетонное кольцо.

2.5. При выборе расчетной схемы учитывается наличие изложенного в разд. 1 метода расчета статора и спиральной камеры, не подкрепленных железобетонным поясом.

Основная система состоит из двух групп элементов: a) оболочки, колонны, внутреннего железобетонного кольца с кольцом статора и примыкающей оболочкой и в) наружного железобетонного кольца, связанного подвижным шарниром и арматурой с внутренним кольцом и неподвижным шарниром и арматурой с нижним бетонным массивом (черт. 3).

2.6. Степень статической неопределимости будет определяться шестью неизвестными, для определения которых имеются следующие условия сопряжения:

где η_1 , η_2 , η_3 — параметры арматуры, определяемые по нормам проектирования [3].

2.7. Условия (5) записываются через неизвестные усилия после нахождения коэффициентов податливости для каждого элемента так же, как в разд. 1. Все формулы приведены в работе [2].

3. ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ ДЛЯ РАСЧЕТА НА ЭЦВМ

3.1. Для расчета напряженного состояния статора и спиральной камеры без учета железобетонного блока необходимо иметь чертежи статорного кольца, сечения колонны и плана спирали.

3.2. Для статорного кольца находятся геометрические характеристики: центр тяжести, площадь, моменты инерции, затем определяются коэффициенты податливости от усилий, приложенных со стороны оболочки и колонны. Для получения геометрических характеристик на чертеже сечения кольца выбирается система отсчета (обычно по кромкам кольца) таким образом, чтобы все координаты были положительны. Сечение кольца разбивается на произвольное количество прямоугольников n_c, и для каждого прямоугольника задаются ширина b_i , высота c_i , расстояние от центра тяжести прямоугольника до горизонтальной оси y_i , расстояние от центра тяжести прямоугольника до оси турбины x_i .

Снимаются с чертежа следующие величины: r_n , r_g , r_f , r_a , h_{κ} , r_m , y_m (см. черт. 2).

3.3. Для колонн статора находятся геометрические характеристики: координаты центра тяжести, площадь, момент инерции, затем по формулам косого изгиба стержней определяются коэффициенты податливости.

Для получения геометрических характеристик предусмотрена разбивка колонны на k трапеций, причем высоты трапеций, кроме первой и последней, одинаковы. Обычно так выполняются чертежи поперечного сечения колонны. Для каждой трапеции задаются координаты y_{n_i} и y_{v_i} (см. черт. 2), затем высоты первой трапеции f_1 , последней f_n , промежуточной f_i . Кроме того, в исходных данных задаются высота колонны h_{κ} , ширина f, угол установки φ , число колонн n_{κ} .

3.4. Для оболочки с чертежа снимаются следующие данные (см. черт. 2):

- *а* расстояние от оси турбины до вертикального диаметра оболочки, *см*;
- r радиус кругового сечения спиральной камеры, см;
- θ_{H} угол от вертикального диаметра до места сопряжения со статором, *pad*;
- θ_{κ} угол, характеризующий конец отсчета; обычно берется угол до оси симметрии $(\theta_{\kappa} = \frac{\pi}{2})$, *рад*;

t — толщина оболочки, *см*;

п — число разбиений меридиана оболочки.

3.5. Если оболочка оребрена, то задаются параметры оребрения.

Оребрение принимается несимметричным относительно срединной поверхности оболочки. Можно задавать высоту ребра, изменяющуюся по меридиану по линейному закону либо по полиному третьей степени.

Задаются следующие геометрические характеристики ребер:

- *b* ширина ребра;
- $n_{\rm p}$ число ребер;

t_{р. н} — высота ребра в начале отсчета;

t_{р: к} — высота ребра в конце отсчета;

 $k_{\rm p}$ — число разбиений угла охвата ребра; обычно $k_{\rm p} = \frac{v_{\rm p}}{\hbar}$, где h — шаг разбиения оболочки.

3.6. Если оболочка обжата бандажами, дополнительно необходимо задать:

 h_6 — расстояние от нейтральной оси кольца до бандажа;

 θ_{5} — угол охвата бандажа до горизонтального диаметра;

σ_{пр} — напряжение предварительного затяга бандажа;

s0 — длину бандажа до горизонтального диаметра;

₆ — число бандажей.

3.7. Для расчета спиральной камеры с учетом подкрепления бетоном необходимо иметь чертеж блока спиральной камеры и арматурный чертеж.

На первом этапе расчета должна быть сосчитана оболочка. Согласно расчетной схеме угол заделки оболочки в статор отсчитывается от начала войлочной прокладки, аналогично отсчитывается начало оребрения.

Кроме исходных данных, которые задаются для спиральной камеры без железобетонного блока, необходимо снять с чертежа геометрические характеристики бетонного массива. Бетонный массив вертикальным и горизонтальным диаметрами разбивается на два кольцевых элемента. Каждое кольцо разбиваем на произвольное количество частей $(n_1 u n_2)$. Для каждой части задается ширина b, высота c, расстояние от центра тяжести до оси турбины и до горизонтальной оси r и y. Для всего железобетонного блока задаются следующие исходные данные: h_1 , h_2 , h_3 , rbt, rp (см. черт. 3).

4. ПРИМЕРЫ РАСЧЕТА

4.1. В качестве примера расчета статора и спиральной камеры без учета железобетонного блока рассматривается спираль на параметры Красноярской ГЭС.

Черт. 4

Прежде всего подготавливаются исходные данные для расчета торообразной оболочки, затем снимаются с чертежа геометрические размеры и подготавливаются исходные данные для колонны и кольца статора (черт. 4, 5).

4.2. Исходные данные для расчета оболочки спиральной камеры Красноярской ГЭС без учета железобетонного блока приведены в табл. 1.

Черт. 5

Таблица 1

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
1	+	+	02	800	n	Число разбиений оболочки
2	+	÷	00	0	<i>n</i> ₁	Заполняется при сопряжении оболочек
3	+	+	01	100	e	Модуль упругости, кгс/см ²
4	+	+	00	300	nu	Коэффициент Пуассона
5	-†-	+	03	425	r	Радиус тора, см
6	+	+	04	1007	a	Расстояние от оси оболочки до оси турбины, см
7	+	+	00	0	cel	Радиус эллиптического сечения, см
8	-	+	01	1204	θ _n	Угол сопряжения оболочки со статором, <i>рад</i>
9	+	+	01	15708	θκ	Угол до горизонтальной оси симметрии, рад

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
10		+	01	700	k _p	Число разбиений ребра
11	+	+	00	0	nrp	Заполняется при законе оребрения по полиному
12	1	+	01	350	t_0	Толщина оболочки, см
13		+	02	48	np	Число оболочечных ребер
14	+	+	01	32	δ	Ширина ребра, см
15	+	+	02	50	trn	Высота ребра в начале от- счета, см
16	+	+	00	0	trk	Высота ребра в конце отсчета, см

4.3. Исходные данные для расчета спиральной камеры Красноярской ГЭС без учета железобетонного блока приведены в табл. 2.

Таблица 2

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
.1	+	+	02	100	k	Число разбиений поперечного сечения колонны
2	+	+	01	800	nc	Число разбиений кольца без учета бетона
3	+	+	02	110	nc ₁	Число разбиений кольца с уче- том бетона
4	+	+	01	600	<i>n</i> ₁	Число разбиений первого бе- тонного кольца
5	+	+	02	800 [.]	n	Число разбиений оболочки
6	+	+	03	530	r _m	Координаты точки кольца, в которой находятся напряже-
7	+	+	02	900	Ут	ния, см
8	+	+	03	425	r_1	Радиус оболочки, см
9	+	+	04	1007	a	Расстояние от оси оболочки до оси турбины, см
10	+	+	00	300	nu	Коэффициент Пуассона
11	+	+	01	350	t	Толщина оболочки, см
12	-	+	01	1204	θη	Угол сопряжения оболочки со статором, рад
13	+	-	02	135	р	Гидростатическое давление, кгс/см ²
						-

Номер перфо- карты	Знак числа	Знак порядка	По р я- док	Число	Иден- тифи- катор	Пояснение
14	+	+	03	610	r _n	Расстояние от оси турбины до места сопряжения оболочки со статором, <i>см</i>
15	+	+	03	570	r _g	Черт. 2 (в см)
16	+	+	03	475	r _f	Расстояние от оси турбины до внутренней кромки кольца, <i>см</i>
17	+	+	00	0	r _a	Расстояние от оси турбины до суммарной осевой нагрузки, см
18	+	-	02	580	h _K	Высота кольца, см
19	+	+	00	0	pa	Суммарная осевая нагрузка, <i>кгс</i>
20	÷	<u>+</u>	00	1143	e ₁	Отношение модулей упругости бетона и стали
21	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	02 01 02 01 01 01 01 01 01 01	490 800 500 200 900 900 900 400 410 425 445	b [1 : nc ₁]	Геометрические характеристики сечения стального кольца, <i>см</i> То же, с учетом железобетон- ного блока
22	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	01 02 01 01 01 01 01 02	900 730 700 700 700 700 800 400	<i>ck</i> [1 : <i>nc</i> ₁]	Геометрические характеристики сечения стального кольца, <i>см</i>

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
22	+ + +	+ + +	02 02 02	430 410 410	$ck [1: nc_1]$	То же, с учетом железобетон- ного блока
23	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	03 03 03 03 03 03 03 03 03	505 505 500 535 552 564 573 593	r [1 : no ₁]	Геометрические характеристики сечения стального кольца, <i>см</i>
	+ + +	+++++++++++++++++++++++++++++++++++++++	03 03 03	615 637 668		То же, с учетом железобетон- ного блока
24	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + +	02 02 01 01 01 02 02 02 02	850 440 350 350 600 100 150 390	y [1 : nc1]	Геометрические характеристики сечения стального кольца, <i>см</i>
	+ + +	+++++++++++++++++++++++++++++++++++++++	02 03 03	800 122 165		То же, с учетом железобетон- ного блока
25 26 27 28	+ + + +	+ + + +	02 02 02 03	170 170 170 170	l ₁ l l _K b	Черт. 2 (в <i>см</i>) То же Ширина колонны, <i>см</i>

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
29	+	+	03	190	h _{kl}	Высота колонны, см
30	+	-+-	02	120	n _{kl}	Число колонн
31	+	-+-	01	11695	3	Угол установки колонны, рад
32	+	+	03	500	r _x	Радиус выходной кромки ко- лонны, <i>см</i>
33	+	+	01	500	r _{bx}	Радиус входной кромки колон- ны, <i>см</i>
34	+	+	01	10472	θь	Угол охвата бандажа до гори- зонтального диаметра, <i>рад</i>
35	+	+	03	119	s _b	Длина бандажа до горизон- тального диаметра, см
36	+	+	04	2500	np _b	Напряжение предварительного затяга бандажа, <i>см</i>
37	-+-	+	03	216	n _b	Число бандажей
38	+	+	00	700	d_b	Диаметр сечения бандажа, см
	+	+	01	700		
	+	+		100		
:		+	02	220		
	+	+	02	200		
20	+	-+-	02	200	6	Геометрические характеристики
39	+	-+	02	100	2	колонны, см
	+		02	192		
	+	+	02	110		
	+	+	02	600		
	+	+	01	090		
	·+	+	01	300		
40	+ + + + + + + + + + + + + + + + + + +		01 01 01 01 01 01 01 01 01 01 00	100 100 320 480 560 550 500 400 260 120 000	uk	То же

4.4. Для расчета статора и спиральной камеры с учетом железобетонного блока необходимо, кроме исходных данных п. 4.3, задать геометрические характеристики бетонного блока, длину рабочей арматуры и площади поперечных сечений арматуры. Разбиение бетонного блока Красноярской ГЭС на два кольцевых элемента приведено на черт. 6. Бетонные кольца разбиваются соответственно на шесть и пять прямоугольников.

Черт. 6

4.5. Исходные данные для расчета оболочки спиральной камеры Красноярской ГЭС с учетом железобетонного блока приведены в табл. 3.

Габлица	3
---------	---

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
1	+	+	02	700	n	Число разбиений оболочки
2	+	+	00	0	<i>n</i> ₁	Заполняется при сопряжении оболочек
3	+	+	01	1 0 0	e	Модуль упругости, кес/см ²
4	+	+	00	3 0 0	nu	Коэффициент Пуассона

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
5	+	+	03	425	r	Радиус тора, <i>см</i>
6	+	+	04	1007	a	Расстояние от оси оболочки до оси турбины, см
7	+	÷	00	0	cel	Радиус эллиптического сечения, см
8	—	+	00	8552	θη	Угол сопряжения оболочки со статором, рад
9	+	+	01	15708	θκ	Угол до горизонтальной оси симметрии, <i>рад</i>
10	+	+	00	0	k _p	Число разбиений ребра
11	+	÷	00	0	nrp	Заполняется при законе оребрения по полиному
12	+	+	01	35	t_0	Толщина оболочки, см

4.6. Дополнительные исходные данные для расчета спиральной камеры Красноярской ГЭС с учетом железобетонного блока приведены в табл. 4.

Таблица 4

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
1	+	+	03	685	r _n	Расстояние от оси турбины до места сопряжения оболочки со статором, <i>см</i>
2	+	+	03	182	h _κ	Высота кольца, см
3		+	00	855	θn	Угол сопряжения оболочки со статором, <i>рад</i>
4	+	+	02	700	n	Число разбиения оболочки
	-+-	+	03	450		
	+	+	03	110		
5	+	+	02	900	L .	Геометрические характеристики
5	+	+	03	150	<i>o</i> ₁	сечения первого остонного кольца, см
	+	+	02	600		
	+	+	02	700		

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	·Число	Иден- тифи- катор	Пояснение
6	+ + + + +	+ + + + +	03 03 02 02 02 02 02	260 170 700 500 700 700	<i>c</i> ₁	То же
7	+ + + + +	+++++++++++++++++++++++++++++++++++++++	03 03 03 03 03 03 03	770 610 560 750 710 600	<i>r</i> ₁	Геометрические характеристики сечения первого бетонного кольца, <i>см</i>
8	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	03 03 02 03 03 08	470 240 400 300 230 120	у ₁	То же
		<u> </u>	01	500		
9	+	+	01	500	n_2	Число разбиений второго бе- тонного кольца
10	+	+	03	600	h_1	Черт. 3 (в см)
11	+	+	02	900	h_2	-
12	+	÷	03	330	h_3	7
13	- <u>1</u>	+	04	145	rbt	,
14	+	+	04	175	<u>rp</u>	, »
15	+	+	00	650	рси	
16	+	+	03	225	l.,	
17	+ .		03	360	$l_{\rm w}^{21}$	_
18	-+-	-+	03	320		Параметры арматуры, см
19	+	.+	03	225	l ₂	
20	+	-+	03	700	l	
-			-		У4	l

Стр. 20 РТМ 24.022.04-72

Номер перфо- карты	Знак числа	Знак порядка	Поря- док	Число	Иден- тифи- катор	Пояснение
01	+	+	03	740	l _v ,	
21 22	+	+	00	250	f _a	
23	+	+	00	250	f_a	Параметры арматуры, <i>см</i> ²
24	4	+	00	250	f_{a}	
25	+	+	00	$\begin{array}{c c} 00 \\ 250 \\ f_{a_6} \end{array}$		
	+	+	03	110		
	+	+	03	620		P
2 6	+	+	03	160	b_2	сечения второго бетонного
	+		03	100		кольца, см
	+	+	03	300		
	+	+	03	240		
	+	+	03	380		
27	- <u></u>	+	02	800	<i>c</i> ₂	То же
	+	+	03	230		
	÷	+	03	430		
	+	+	04	107		
	+	+	04	142		
28	+	+	04	126	r_2	9
	+	+	04	140		
	+	+	04	160		
	+	+	03	550		
	+	+	03	620		
29	÷	+	03	390	У ₂	,
	+	+	03	320		
	+	+	03	220		

4.7. Графики напряжений, полученные на печатающем устройстве ЭЦВМ «М-220»

4.7.1. Напряжения в колонне у верхнего и нижнего кольца статора без учета железобетонного блока приведены на черт. 7.

Напряжения в колонне с учетом железобетонного блока приведены на черт. 8.

4.7.2. График напряжений в оболочке спирали с учетом и без учета железобетонного блока приведены на черт. 9 и 10.

5. ОСНОВНЫЕ ПРЕДПОСЫЛКИ СХЕМЫ РАСЧЕТА ЛМЗ И ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ

5.1. В применяемых в гидротурбостроении конструкциях спиральных камер и статоров жесткость статора существенно превышает жесткость спиральной камеры, поэтому расчет статора и спиральной камеры производится раздельно: не учитывается влияние жесткости оболочки камеры на перемещения поясов статора.

При наличии дискретно установленных статорных колонн в спиральной камере возникает циклически симметричное напряженное состояние — напряжения в оболочке непосредственно за колоннами существенно выше напряжений между колоннами.

Предлагается производить расчет спиральной камеры на осесимметричную нагрузку, а расчет циклической составляющей напряжений — с помощью поправочных коэффициентов, полученных экспериментально.

5.2. При проектировании спиральных камер принимаются следующие величины допускаемых напряжений, апробированные опытом надежной работы ряда спиральных камер:

— для высокопрочной стали с пределом текучести

 $\sigma_s = 5200 \div 5500 \ \kappa c/cm^2$ [σ] = 2100 $\kappa c/cm^2$;

— для высокопрочной стали с пределом текучести

$$\sigma_s = 4200 \div 4500 \ \kappa c/cm^2 \ [\sigma] = 1800 \ \kappa c/cm^2;$$

- для углеродистой стали МСт3 с пределом текучести

 $\sigma_s = 2400 \ \kappa c/cm^2 \ [\sigma] = 1200 \ \kappa c/cm^2.$

Указанные величины допускаемых напряжений лимитируют суммарные напряжения растяжения и изгиба (без учета цикличности), возникающие в спиральной камере.

6. ПРЕДВАРИТЕЛЬНЫЙ ВЫБОР ТОЛЩИН И МАРОК МАТЕРИАЛОВ ЛИСТОВ СПИРАЛЬНОЙ КАМЕРЫ

6.1. Выбор толщин и марок материалов листов спиральной камеры производится следующим образом.

По формулам безмоментной теории торообразной оболочки определяются усилия в трех характерных точках каждого сечения (черт. 11):

Черт. 7

Обозначения см. на черт. 7 Черт. 8

1800

2400

1200

912

845

600

-200 - 70 B

- 60-

-40

-20

Ø

ħ

3000 5, Kec/CM2

PTM 24.022.04-72

• — меридиопальные напряжения на наружной поверхности оболочки; Х — меридиональные напряжения на внутренней поверхности оболочки; + — окружные напряжения на наружной поверхности оболочки; А — окружные напряжения на внутренней поверхности оболочки; Б — напряжения у основания ребра; В — напряжения на наружной поверхности ребра

— для круговых сечений

$$T_{1}^{(1)} = \rho p;$$

$$T_{1}^{(2)} = \frac{1}{2} \left(1 + \frac{R}{R_{0}} \right) \rho p;$$

$$T_{1}^{(3)} = \frac{1}{2} \left(1 + \frac{R}{r_{1}} \right) p \rho;$$
(6)

Черт. 11

— для овальных сечений

$$T_{1}^{(1)} = p\rho_{2};$$

$$T_{1}^{(2)} = \frac{1}{2} p\rho_{1} \left(\frac{R_{0} - a}{R_{0} - b}\right);$$

$$T_{1}^{(3)} = \frac{1}{2} p\rho_{2} \left(1 + \frac{a}{r_{1}}\right);$$

$$b = R_{0} - \rho_{1}; \quad a = b + (\rho_{1} - \rho_{2}) \cos \alpha.$$

$$(7)$$

6.2. По формулам (6) и (7) строятся графики зависимости $T = f(\theta)$ в интервале $\theta_1 < \theta < \frac{\pi}{2}$.

Нанеся на графики зависимостей $T = f(\theta)$ горизонтальные прямые, соответствующие предельным значениям усилий для различных толщин, получим возможность наиболее рационально выбрать марки стали и толщину листов для каждого сечения спиральной камеры, а следовательно, для всей ее поверхности. Впоследствии это уточняется согласно технологическим требованиям.

При определении толщин листов учитывается, что в зоне сопряжения со статором и в зоне заделки в бетон будут действовать дополнительно изгибающие моменты, определяемые специальным расчетом (разд. 7).

7. РАСЧЕТ КРУГОВЫХ СЕЧЕНИЙ СПИРАЛЬНОЙ КАМЕРЫ

7.1. Уравнение симметрично нагруженной торообразной оболочки имеет следующий вид [1]:

$$-\frac{i}{l^3}\cdot\frac{d}{d\theta}\left(\frac{1}{1+\alpha\sin\theta}\cdot\frac{dV}{d\theta}\right)+\frac{\sin\theta}{(1-\alpha\sin\theta)^2}V=-f_0\frac{\cos\theta}{(1+\alpha\sin\theta)^2},$$

где $f_{\bullet} = -il^3A + \frac{a}{2}\rho p;$

*l*³, α, ρ, θ — геометрические параметры тора;

А — постоянная, определяемая из условий статики;

$$\alpha = \frac{\rho}{R}; \quad l^3 = \sqrt{12(1-\nu^2)} \cdot \frac{\rho^2}{Rh};$$

- v коэффициент Пуассона;
- *h* толщина оболочки;
- θ₁ угол места сопряжения спиральной камеры со статором.

Все усилия, моменты и перемещения оболочки выражаются через вещественную и мнимую части функции V и ее производных.

Для решения уравнения торообразной оболочки применим асимптотический метод.

7.2. Для учета влияния податливости статора на напряженное состояние спиральной камеры расчет производится при трех граничных условиях на краю $\theta = \theta_1$ (черт. 11):

— оболочка нагружена равномерным внутренним давлением *р* и жестко защемлена в месте сопряжения со статором;

-- оболочка свободна от внешней нагрузки при заданных в месте сопряжения со статором значениях угла поворота $\vartheta = 1$ и радиального перемещения w = 0;

— оболочка свободна от внешней нагрузки при заданных в месте сопряжения со статором значениях угла поворота $\vartheta = 0$ и радиального перемещения w = 1.

На краю $\theta = \frac{\pi}{2}$ используется условие симметрии: $\vartheta = 0$, N = 0.

Напряженное состояние спиральной камеры представляет собой сумму напряженных состояний для этих трех расчетных условий при действительных значениях угла поворота и радиального перемещения верхнего пояса статора. При определении указанных перемещений не учитывается жесткость спиральной камеры.

7.3. Величины, характеризующие напряженно-деформированное состояние спиральной камеры, определяются по следующим формулам [5, 6]:

$$T_{1} = -\frac{a\cos\theta}{l^{3}\varphi^{2}} \operatorname{Im} V + \frac{1+\varphi}{\varphi} \cdot \frac{p\rho}{2} - \frac{a+\sin\theta}{\varphi^{2}} aA;$$

$$T_{2} = \frac{a\cos\theta}{l^{3}\varphi^{2}} \operatorname{Im} V - \frac{1}{l^{3}\varphi} \operatorname{Im} \frac{dV}{d\theta} + \frac{p\rho}{2} + \frac{a+\sin\theta}{\varphi^{2}} aA;$$

$$G_{1} = \frac{a\rho}{l^{5}} \left[(1-\mu) \frac{a\cos\theta}{\varphi^{2}} \operatorname{Re} V - \frac{1}{\varphi} \operatorname{Re} \frac{dV}{d\theta} \right];$$

$$G_{2} = vG_{1};$$

$$N = -\frac{a\sin\theta}{l^{3}\varphi^{2}} \operatorname{Im} V + \frac{\cos\theta}{\varphi^{2}} aA;$$

$$w = \frac{\varphi R}{Eh} (T_{2} - vT_{1});$$

$$\vartheta = -\frac{1}{a\varphi Eh} \operatorname{Re} V;$$

$$\Delta_{z} = \rho \int_{\theta}^{\theta} \vartheta \cos \vartheta d\vartheta;$$

$$\varphi = 1 + \alpha \sin \theta$$
,

- где T₁ и T₂ меридиональные и тангенциальные растягивающие усилия;
 - G₁ и G₂ меридиональный и тангенциальный изгибающие моменты;
 - N перерезывающая сила;
 - w радиальное перемещение;
 - угол поворота касательной к меридиану;
 - ∆_z осевое перемещение.

7.4. Изложенный алгоритм реализован в программе, составленной в кодах для ЭЦВМ «Минск-22». Исходные данные записываются на специальных бланках для каждого случая граничных условий раздельно. Количество одновременно рассчитываемых вариантов не должно быть более 25. Исходные данные для расчета задаются в табл. 5.

Таблица 5

Вари-	Е.		ρ.	<i>R</i> .	h.	<i>p</i> ,	θ,	θ.,	θ3.	
анты	кгс/с м 2	<u>У</u> ,	с́м	см	см	кгс/см²	påð	рад	рад	n

В табл. 5 обозначено:

Е — модуль упругости;

v — коэффициент Пуассона;

ρ, *R* — радиусы тора;

h — толщина оболочки;

- θ₁ угол, соответствующий месту сопряжения спирали и статора;
- p внутреннее давление;

 $\theta_2, \ \theta_3$ — промежуток значений угла θ , в котором строится решение; n — число участков, на которое делится расчетный промежуток.

n — число участков, на которое делится расчетным промежуток. Значениями угла θ, в которых печатаются искомые величины, являются

$$\theta_k = \theta_2 + k \frac{\theta_3 - \theta_2}{n},$$

где *k*=0, 1, 2, ..., *n*.

Программа составлена в предположении, что $\theta_k \neq 0$.

Результаты печатаются в следующей последовательности для каждого варианта: T_1 , T_2 , G_1 , N, ω , ϑ , G_2 (повторяется n+1 раз), Δ_z (повторяется n+1 раз).

7.5. Инструкция к программе

7.5.1. Включить ключ 100, если не нужно выводить на печать исходные данные. При выключенном ключе исходные данные печатаются.

Включить ключ 0002, если решается задача с первым граничным условием. Включить ключи 0002 и 0004, если решается задача с третьим граничным условием. При выключенных ключах 0002 и 0004 будет выполняться первое граничное условие.

7.5.2. Подключить лентопротяжный механизм НМЛ с библиотекой стандартных программ.

7.5.3. Вставить на устройство ввода перфоленту с рабочей программой.

7.5.4. Ввести программу.

7.5.5. Передать управление в ячейку 1040. Останов в ячейке 0015.

7.5.6. Передать управление в ячейку 1045, включить печать. Останов в ячейке 0047.

7.5.7. Поставить на устройство ввода перфоленту с исходными данными.

7.5.8. Включить ввод перфоленты в печать. Передать управление в ячейку 1053.

7.5.9. Останов в ячейке 1127 — конец решения.

8. РАСЧЕТ КРУГОВЫХ СЕЧЕНИЙ СПИРАЛЬНОЙ КАМЕРЫ С УЧЕТОМ РЕБЕР

8.1. В случае, когда на краю спиральной камеры у верхнего пояса установлены ужесточающие ребра, расчет производится по разработанной на заводе схеме расчета конструктивно-ортотропных оболочек [8]. Упругие характеристики ребер равномерно распределяются по параллельному кругу оболочки, увеличивая ее жесткость в меридиональном направлении. Предполагается, что жесткость оболочки в окружном направлении не изменяется.

8.2. Геометрические характеристики:

 площадь поперечного сечения ребра

$$F_{\rm p} = h_{\rm p} \delta$$
,

где h_p — высота, а δ — толщина ребра (черт. 12);

— шаг установки ребер

$$t = \frac{2\pi r_1}{n}$$

где r₁ — радиус сечения защемления спирали;

n — число ребер; — жесткости на растя-

--- жесткости на растяжение:

оболочки

$$B_0 = \frac{Eh}{1-v^2};$$

ребра

$$B_{\rm p} = \frac{EF_{\rm p}}{t};$$

суммарная

$$B_1 = B_0 + B_p,$$

где *h* — толщина оболочки; — приведенная толщина

Черт. 12

$$h_1 = h + \frac{F_p}{t};$$

 момент инерции ребра относительно нейтральной оси сечения оболочки с ребром

$$J_{\rm p} = F_{\rm p} \Big[\frac{h_{\rm p}^2}{12} + \frac{h^2}{h_{\rm l}^2} \Big(\frac{h_{\rm p} + h}{2} \Big)^2 \Big];$$

— жесткость ребра, отнесенная к единице длины параллельного круга,

$$D_{\rm p}=\frac{EJ_{\rm p}}{t};$$

- цилиндрическая жесткость оболочки

$$D_0 = \frac{B_0 \hbar^2}{12};$$

- жесткость оболочки с учетом смещения нейтральной оси

$$D_0' = B_0 \left[\frac{h^2}{12} + \left(1 - \frac{h}{h_1} \right)^2 \left(\frac{h_p + h}{2} \right)^2 \right];$$

- суммарная жесткость оболочки на изгиб

$$D_1 = D_0' + D_p;$$

— приведенные величны:

$$h_2 = \frac{B_0}{B_1} h_1;$$
$$h_3 = h \sqrt{\frac{D_1 h}{D_0 h_2}};$$

приведенный момент инерции сечения

$$J = \frac{h^3}{12} + (h_1 - h) \left[\frac{h_p^2}{12} + \frac{h}{h_1} \left(\frac{h_p + h}{2} \right)^2 \right];$$

 — расстояние от центра тяжести сечения ребра до нейтральной оси сечения

$$c=\frac{h}{h_1}\cdot\frac{h_p+h}{2};$$

 — расстояние от срединной поверхности оболочки до нейтральной оси сечения

$$c_1 = \left(1 - \frac{h}{h_1}\right) - \frac{h_p + h}{2}.$$

8.3. Усилия, моменты и напряжения

8.3.1. Меридиональное усилие и момент в сечении заделки спиральной камеры:

$$T_1 = \frac{p\rho}{2} \left(1 + \frac{R}{r_1}\right);$$
$$M_1 = -\frac{p\rho h_3}{4\lambda} \left[1 - \nu \frac{h_2}{h_1} \left(1 + \frac{R}{r_1}\right)\right],$$

где $\lambda = \sqrt{3(1-\nu^2)} = 1,652.$

8.3.2. Напряжения в оболочке

$$\sigma_{06} = \frac{T_1}{h_1} + \frac{M_1}{J} \left(\frac{h}{2} + c_1 \right).$$

8.3.3. Напряжения в ребре

$$\sigma_{\mathbf{p}} = \frac{T_1}{h_1} - \frac{M_1}{I} \left(\frac{h_{\mathbf{p}}}{2} + c \right).$$

8.3.4. Когда необходимо учесть податливость статора, подсчитывается дополнительный изгибающий момент в сечении сопряжения оболочки со статором:

$$M_{1\text{aon}} = -2\gamma_1 D_1 \left(\vartheta_1 - \frac{\gamma_1 w_1}{\sin \theta_1}\right),$$

где ϑ_1 — угол поворота пояса статора;

 w_1 — радиальное перемещение точки сопряжения. Величина γ_1 подсчитывается по формуле

$$\gamma_1 = \sqrt{\frac{\lambda \sin \theta_1}{r_1 h_3}}.$$

8.4. Изложенный алгоритм реализован на ЭЦВМ «Наири». Программа расчета ребристой оболочки на ЭЦВМ «Наири» an

- 1. Введем и е с b m p х о
- 2. Интервал 2
- 3. Вычислим $x = xmp/2u\pi$
- 4. Вычислим *p*=*b*/0,91
- 5. Вычислим e = p + x
- 6. Вычислим $\delta = (m+b)/2$
- 7. Вычислим n = b + x
- 8. Вычислим г=лр/г
- 9. Вычислим $m = \delta b / \Lambda$
- 10. Вычислим $y = x \delta / \lambda$
- 11. Вычислим *s* = *pb*²/12
- 12. Вычислим $p = s + py^2 + x(m^2/12 + m^2)$
- 13. Вычислим p = b V (pb/se)
- 14. Вычислим $x = b^3/12 + x(m^2/12 + m\delta)$
- 15. Печатаем с двумя знаками лгр
- 16. Печатаем с двумя знаками шу
- 17. Вычислим y = x/(b/2+y)
- 18. Вычислим u = x/(m/2+u)
- 19. Печатаем с двумя знаками хуш
- 20. Интервал 2
- 21. Вычислим *о*=*oc*/2
- 22. Вычислим e = (e+u)/u
- 23. Вычислим b = oe
- 24. Допустим m=1,652
- 25. Вычислим m = (op/2m) (0, 3er/n 1)
- 26. Вычислим g = b/n + m/y
- 27. Вычислим h = b/n m/m
- 28. Печатаем с двумя знаками bм
- 29. Интервал 1
- 30. Печатаем с двумя знаками д н
- 31. Интервал 4
- 32. Идти к 1

```
Исполним 1
```

Величина	Индекс в ап	Величина	Индекс в ап	Величина	Индекс в <i>ап</i>
r		Bo	p	Ι	x
, P	e .	B.	F 2	W'ob	у
<u>л</u>		h.	б	Wp	ш
h h	b	h_1	л	pρ	0
hp	m	h ₂	б	2	
ő	p	c	ш	r_0+r_1	e
n	x	c1	y	<i>r</i> ₁	
р	0	D_0	s	T_1	b
Bn	x		p	<i>M</i> ₁	м
P		h	- p	σοδ	ð
				σο	н

8.5. Обозначения:

8.6. Порядок расчета Вводим $r_1 Rohh_p \delta np$. Печатаем $h_1 h_2 h_3$; C, C_1 ; I, W_{o6}, W_p ; T_1, M_1 ; σ_{o6}, σ_p .

9. РАСЧЕТ ОВАЛЬНЫХ СЕЧЕНИЙ СПИРАЛЬНОЙ КАМЕРЫ

9.1. Каждое сечение представляется в виде двух сопряженных торообразных оболочек. Напряжения определяются в сечении заделки оболочки A и в зоне сопряжения двух оболочек, где возникает краевой эффект вследствие скачкообразного изменения радиуса кривизны меридиана оболочки. Методика расчета изложена в работе [7].

9.2. Усилия и моменты в сечении защемления оболочки:

$$T_1 = \frac{p\rho_2}{2} \left(1 + \frac{a}{r_1}\right);$$

$$T_2 = \frac{p\rho_2}{2};$$

$$M_1 = \frac{p\rho_2 h}{4\lambda} \left[1 - \nu \left(1 + \frac{a}{r_1}\right) - \frac{a\cos\theta_1}{\gamma_1 r_1^2}\right];$$

$$M_2 = \nu M_1,$$

где *р* — давление, кгс/см²;

h — толщина оболочки, см;

θ₁ — угол, характеризующий сечение заделки (черт. 11);

$$\lambda = 1,652; \\ \nu = 0,3; \\ \gamma_1 = \sqrt{\frac{\lambda \sin \theta_1}{r_1 h}}.$$

Размеры *a*, *r*₁ и *p*₂ указаны на черт. 11. 9.3. Усилия и моменты в сечении сопряжения оболочек. Безмоментные усилия:

— для оболочки А

$$\widetilde{T}_{1}^{A} = rac{p \rho_{2}}{2} \left(1 + rac{a}{r_{0}} \right);$$

 $\widetilde{T}_{2}^{A} = rac{p \rho_{2}}{2};$

— для оболочки В

$$\widetilde{T}_1^B = \widetilde{T}_1^A;$$
 $\widetilde{T}_2^B = rac{p arphi_2}{2} \Big(1 + rac{r_0 + a}{r_0 - a} \cdot rac{a - b}{r_0 - b} \Big).$

Усилия с учетом краевого эффекта:

$$T_{1} = \tilde{T}_{1}^{A};$$

$$T_{2} = \frac{1}{2} (\tilde{T}_{2}^{A} + \tilde{T}_{2}^{B});$$

$$M_{1} = 0,049 (\tilde{T}_{2}^{B} - \tilde{T}_{2}^{A});$$

$$M_{2} = \nu M_{1}.$$

Максимальный изгибающий момент M₁ определяется в сечении оболочки, отстоящем от сечения сопряжения оболочек на расстоянии

$$s=\frac{\pi}{4\gamma_0}$$

где $\gamma_0 = \sqrt{\frac{\lambda \sin \theta_0}{r_0 \hbar}};$

θ₀ — угол, характеризующий сечение сопряжения оболочек. Расчет имеет смысл только при соблюдении условия

где s* — расстояние от сечения сопряжения оболочек до вертикальной оси овального сечения.

9.4. Напряжения вычисляются по известным формулам:

$$\sigma_1 = \frac{T_1}{h} \pm \frac{6M_1}{h^2};$$

$$\sigma_2 = \frac{T_2}{h} \pm \frac{6M_2}{h^2}.$$

9.5. Изложенный алгоритм реализован на ЭЦВМ «Наири».

Программа расчета овальных сечений на ЭЦВМ «Наири» an

- 1. Введем и е о т о х с 2. Интервал 2 3. Вычислим u = u - e4. Вычислим $s = \cos (\pi m/180)$ 5. Вычислим a = u + (e - o)s6. Вычислим ы = (a - p)/o 7. Вычислим $y = \sqrt{(1 - bt^2)}$ 8. Вычислим r = u + es9. Вычислим c = co/210. Вычислим $\lambda = (a+p)/p$ Допустим g = 1,652 12. Вычислим $\delta = V (g \omega / p x)$ 13. Вычислим $M = (cx/2g)(1 - 0.3n - ay/\delta p^2)$ 14. Вычислим $m = nc/x + 6n/x^2$ 15. Вычислим $M = c/x + 1.8m/x^2$ 16. Печатаем с двумя знаками шм 17. Интервал 2 18. Вычислим z = c(1 + (r+a)(a-u)/((r-a)(r-u)))19. Вычислим M = 0.049x(z-c)20. Вычислим $m = c(r+a)/rx + 6m/x^2$ 21. Вычислим $m = (c+c)/2x + 1.8m/x^2$ 22. Вычислим $\delta = V(gs/rx)$ 23. Вычислим $s = \pi/4\delta$
- 24. Печатаем с двумя знаками шм s
- 25. Интервал 4
- 26. Идти к 1

Исполним 1

9.6. Обозначения:

Величина	Индекс	Величина	Индекс
R ₀ , см	u	$\cos \theta_1$	y
р1, См	е	r ₀ , см	r
ρ ₂ , <i>см</i>	0	Т2, КГС/СМ	Ç
а°, град	m	λ	g
r ₁ , см	р	γ1	δ
h, cm	x	М1, кгс∙см см	м
р, кгс/см ²	С	σ ₁ , кгс/см ²	ш
b, см	u	a2, кгс/см ²	м
cos a	\$	$T_2^B, \kappa rc/cM$	г
а, см	a	70	δ
sin θ_1	ы	s, см	s

9.7. Порядок расчета

Вводим R_0 , ρ_1 , ρ_2 , α^0 , r_1 , h, p.

Пенатаем σ_1 , σ_2 в сечении заделки, σ_1' , σ_2' — в сечении сопряжения, *s*.

10. КОЭФФИЦИЕНТ ЦИКЛИЧНОСТИ

10.1. Коэффициент цикличности характеризует превышение напряжения в спиральной камере у колонн статора под напряжениями, определяемыми при расчете оболочки спиральной камеры по осесимметричной расчетной схеме.

На основании экспериментальных данных для турбин на напоры $H \simeq 100 \ \text{м}$ принимаем K = 1.7.

Для турбин на напоры $H = 200 \ \text{м} \ K = 1,4$.

Для турбин на напоры H = 300 м K = 1,25.

11. РАСЧЕТ СТАТОРА, НЕ ПОДКРЕПЛЕННОГО ЖЕЛЕЗОБЕТОНОМ, НА НЕСИММЕТРИЧНУЮ НАГРУЗКУ

11.1. В качестве расчетной схемы принимается упругая стержневая система в виде замкнутого кругового кольца.

Колонны статора считаются жестко заделанными по нижнему поясу в недеформируемое основание. Присоединение колонн к поясу эксцентричное. Эксцентриситет присоединения к-той колонны к поясу равен е_в. Стык колонн с поясом считается абсолютно жестким, т. е. горизонтальная вставка длиной ек и верхний участок колонн длиной ho имеют бесконечно большие моменты инерции.

11.2. Задача решается методом сил. Система канонических уравнений метода сил записывается следующим образом:

$$\sum_{l=1}^{n_k} \delta_{k_l l_j} x_{l_j} + \Delta_{kl} = 0 \quad (k = 1, 2, \dots, n_{\kappa}; i, j = 1, \dots,), \quad (6)$$

где δ_{k,l_i} — перемещения в *i*-том направлении k-той группы от единичного неизвестного *j*-того направления *l*-той группы; Δ_{кі} — то же, от совокупности внешних факторов.

Коэффициенты перед неизвестными и свободные члены уравнений вычисляются по формуле Мора путем перемножения соответствующих эпюр внутренних усилий от единичных неизвестных и от внешней нагрузки.

Разработанный алгоритм реализован на ЭЦВМ «М-220» с использованием транслятора ТА-1М.

11.3. Исходные данные для расчета задаются в виде массивов M₁, M₂, M₃, T, V, W.

Массив M_1 включает величины n_{κ} , R_{π} , H, h_0 , β , J_1 , J_2 , J_3 , J_4 . Здесь *n*_к — количество колонн;

- R_п расстояние от оси статора до оси пояса;
- Н высота колонны;
- h_0 расстояние от центра тяжести участка пояса до нижней кромки сечения;
- β угол между верхними осями и главной осью момента инерции и колонны;
- J₁, J₂ главные моменты инерции верхнего пояса;
 - J₃ геометрический фактор крутильной жесткости пояса;
 - J₄ площадь верхнего кольца.

Массив **М**₂ состоит из семи компонентов для каждой колонны и включает величины α_k , e_k , θ_k , J_1 , J_2 , J_3 , J_4 .

- Здесь а_k угол в плане, который занимает k-тый участок пояса;
 - *е_k* эксцентриситет между центром тяжести *k*-той колонны и центрами тяжести *k*-того участка пояса;
 - θ_k угол между главными центральными осями инерции k-той колонны и осью W;
- *J*₁, *J*₂, *J*₃, *J*₄ соответственно моменты инерции, фактор крутильной жесткости и площадь *k*-той колонны.

Массив Т включает координаты точек в главных осях для определения нормальных напряжений в сечениях пояса. Массивы V и W включают координаты точек для определения нормальных напряжений в колоннах.

11.4. В качестве нагрузок принимаются нагрузки, действующие на поясе, отнесенные к его геометрической оси.

Вертикальные, горизонтальные нагрузки и скручивающие моменты распределяются равномерно в пределах каждого k-того участка пояса и ступенчато по длине всего пояса. Тангенциальные усилия T_k представлены в виде сосредоточенных сил, приложенных к узлам.

Нагрузка на колонну от взаимодействия ее с водяным потоком считается равномерной по высоте колонны и действует под углом λ_k к меридиональной плоскости, проведенной через ось колонны. Нагрузки формируются массивом **M**₃, который состоит для каждого участка пояса из шести компонентов внешней нагрузки: $q_{1k}, q_{2k}, q_{3k}, q_{4k}, q_{5k}$ и λ_k .

- Здесь q_{1k} радиальная распределенная нагрузка на k-том участке;
 - *q_{2k}* вертикальная распределенная нагрузка на *k*-том участке;
 - *q_{3k} —* скручивающий распределенный момент на *k*-том участке;
 - *q_{4k}* тангенциальная сосредоточенная нагрузка на *k*-том участке;
 - *q*_{5k} распределенная нагрузка на *k*-той колонне;
 - λ_k угол между линией действия силы q_{5k} и радиусом, проходящим через центр тяжести колонны.

11.5. После выполнения расчета производится вывод на печать результатов, необходимых для проектирования статора:

a) внутренних усилий — изгибающих и крутящих моментов поперечных и продольных сил в трех сечениях каждого участка верхнего пояса и каждой колонны;

б) изгибающих моментов, отнесенных к главным центральным осям инерции тех же сечений;

- в) деформационных (кинематических) проверок решений;
- г) перемещений узловых точек на поясе статора;

д) нормальных напряжений в шести точках каждого сечения на всех участках пояса и в колоннах.

12. РАСЧЕТ ЗАБЕТОНИРОВАННОГО СТАТОРА

12.1. Принимается расчетная схема, в которой бетон, расположенный выше спиральной камеры, рассматривается как некоторая цилиндрическая оболочка, которая воспринимает радиальные усилия и моменты, и пластина, воспринимающая осевую нагрузку.

Бетон, примыкающий к нижнему поясу, представляется как

Черт. 13

цилиндр, нагруженный наружным давлением (черт. 13).

Верхний и нижний пояса и колонны рассматриваются соответственно как кольцевые и прямые стержни.

12.2. Усилия и моменты взаимодействия бетона, поясов и колонны определяются из условий неразрывности системы, которые могут быть сформулированы в следующем виде:

а) равенство углов поворота бетонного цилиндра и верхнего пояса статора:

$$\varphi_{6}' + \varphi_{1} = 0;$$

б) равенство радиальных перемещений бетонного цилиндра и верхней полки верхнего пояса статора:

$$\Delta_6'' + \Delta_1' = 0;$$

в) равенство углов поворота верхнего пояса и колонны:

$$\varphi_1 + \varphi_\kappa = 0;$$

г) равенство радиального перемещения нижней полки верхнего пояса и колонны:

$$\Delta_1'' + \Delta_{\kappa} = 0;$$

д) равенство углов поворота нижнего пояса и бетонного цилиндра:

$$\varphi_2 + \varphi_6^* = 0;$$

е) равенство радиальных перемещений нижнего пояса и бетонного цилиндра:

$$\Delta_2 + \Delta_6^r = 0;$$

$$\Lambda l + w_6 = 0.$$

Приведенные условия дают семь уравнений, в которых содержится семь неизвестных величин: три момента x₁, x₃, x₇, три перерезывающие силы x₂, x₄, x₆ и вертикальное усилие x₅ (черт. 14). 12.3. Усилия и моменты, действующие на верхний и

12.3. Усилия И моменты. нижний пояса, определяются по методике, изложенной в работе [8]. Схема действия внешних сил и все обозначения приведены на черт. 14. Раскрытие статической неопределимости производится методом сил. Алгоритм реализован на **ЭШВМ «M-220»**.

12.4. После выполнения расчета выводятся на печать следующие результаты:

a) значения неизвестных усилий и моментов;

б) напряжения в верхнем и нижнем поясах;

в) напряжения в сечении колонны (в шести точках) в местах сопряжения колонны с верхним и нижним поясами.

Черт. 14

13. ПРИМЕРЫ РАСЧЕТА СПИРАЛЬНОЙ КАМЕРЫ

13.1. Исходные данные для неоребренной оболочки (круглые сечения): теоретический чертеж спиральной камеры (ЛМЗ, Ay-2110644), чертеж спиральной камеры (ЛМЗ, A-2110645), максимальное давление в спиральной камере при гидроударе $p = = 7,15 \ \kappa zc/cm^2$, максимальное давление в спиральной камере при испытаниях $p = 9,4 \ \kappa zc/cm^2$.

13.2. Для приближенного выбора толщин и марок материалов рассчитываются усилия в сечениях спиральной камеры по табл. 6. По полученным значениям усилий выбираются материалы (черт. 15).

13.3. Для расчета на ЭЦВМ круглых сечений задаются исходные данные по табл. 7.

Результаты расчета для защемленной оболочки приведены в табл. 8.

Результаты расчета изгибающего момента в месте сопряжения спиральной камеры со статором с учетом податливости статора приведены в табл. 9.

Напряжения в оболочке спиральной камеры в месте сопряжения с верхним кольцом статора приведены в табл. 10.

13.4. Для расчета ребристой оболочки исходные данные приведены в табл. 11. Результаты расчета приведены в табл. 12.

Т	аблица	6
-		•

Номер	β	R_0	R	R	$1 \langle R \rangle$	T_2	T_1	<i>r</i> .	R	$\left 1 \left(, R \right) \right $	T ₃ ,	
сече- ния		СМ		$\overline{R_0}$	$\left \frac{1}{2}\left(1+\frac{1}{R_{0}}\right)\right $	кгс	см	СМ	$\overline{r_1} \overline{2 \begin{pmatrix} 1 & - & - & - \\ & & & r_1 \end{pmatrix}} \kappa c/c M$		θ ₃	
1-4	420,0	1313,8	893,8	0,6 80	0,840	2697	3213	507,4	1,762	1,380	4437	67°
5	410,5	1293,9	883,4	0,683	0,841	2642	3140	507,1	1,742	1,371	4305	66
6	400,4	1272,8	872,4	0,685	0,842	2580	3063	506,7	1,722	1,361	4168	66
7	390,3	1251,6	861,3	0,688	0,844	2520	2986	506,4	1,700	1,350	4031	66
8	380,3	1230,5	850,2	0,691	0,845	2460	2909	506,0	1,680	1,340	3898	65
9	369,7	1208,2	838,5	0,694	0,847	2315	2828	505,6	1,658	1,329	3758	65
10	358,6	1184,8	826,2	0,697	0,848	2327	2743	505,1	1,636	1,318	3615	64
11	346,5	1159,1	812,6	0,701	0,850	2254	2650	504,5	1,610	1,305	3458	63
12	334,4	1133,3	798,9	0,705	0,852	2180	2558	503,8	1,586	1,293	3307	62
13	321,2	1105,2	784,0	0,709	0,854	2099	2457	503,1	1,558	1,279	3142	61
14	307,7	1076,0	768,3	0,714	0,857	2017	2354	502,2	1,530	1,265	2978	60
15	293,3	1045,0	751,7	0,719	0,860	1929	2244	501,1	1,500	1,250	2805	59
16	278,2	1012,0	733,8	0,725	0,862	1835	2128	499,9	1,468	1,234	2626	58
17	261,5	975,2	713,7	0,732	0,866	1732	2000	498,3	1,432	1,216	2432	56
18	242,4	932,7	690,3	0,740	0,870	1613	1854	496,1	1,391	1,196	2216	53
19	221,8	885,8	664,0	0,750	0,875	1485	1697	493,2	1,346	1,173	1990	50
20	199,7	834,3	634,6	0,760	0,880	1345	1528	489,2	1,297	1,148	1755	47
21	171,4	765,0	593,6	0,776	0,888	1164	1311	481,9	1,232	1,116	1463	41
22	138,3	675,1	536,8	0,795	0,898	950	1058	467,5	1,148	1,074	1136	30
							1	ļ		l l	1	

Черт. 15

Таблица	7
---------	---

Номер сечения	E · 10 ⁶ , кгс/см ²	ν	р, см	R, см	ћ, см	р, кгс см²	θ ₁ , pad	θ ₂ , рад	θ ₃ , рад	n
1-4	2,1	0,3	420,0	893,8	3,2	7,65	_1,260	1,260	1,571	15
5	2,1	0,3	410,5	883,4	3,2	7,65	-1,249	-1,249	1,571	15
6	2,1	0,3	400,4	872,4	3,2	7,65	1,238	—1,238	1,571	15
7	2,1	0,3	390,3	861,3	3,2	7,65	—1,226	1,226	1,571	15
8	2,1	0,3	380,3	850,2	3,2	7,65	-1,213	-1,213	1,571	15
9	2,1	0,3	369,7	838,5	3,2	7,65	—1,199	—1,199	1,571	15
10	2,1	0,3	358,6	826,2	3,2	7,65	1,184	-1,184	1,571	15
11	2,1	0,3	346,5	812,6	2,8	7,65	1,167	-1,167	1,571	15
12	2,1	0,3	334,4	798,9	2,8	7,65	-1,148	1,148	1,571	15
13	2,1	0,3	321,2	784,0	2,8	7,65	-1,125	-1,125	1,571	15
14	2,1	0,3	307,7	768,3	2,4	7,65	-1,100	-1,100	1,571	15
15	2,1	0.3	293,3	751,7	2,4	7,65	-1,073	-1,073	1,571	15
16	2,1	0,3	278,2	733,8	2,4	7,65	-1,039	1,039	1,571	15
17	2,1	0,3	261,5	713,7	2,4	7,65	-0,998	0,998	1,571	15
18	2,1	0,3	242,4	690,3	2,4	7,65	0,944	-0,944	1,571	15
19	2,1	0.3	221.8	664,0	2,4	7,65	-0,873	-0,873	1,571	15
20	2,1	0,3	199,7	634,6	2,4	7,65	-0,781	-0,781	1,571	15
21	2,1	0.3	171,4	593.6	2,4	7,65	-0,620	-0,620	1,571	15
22	_, 2.1	0.3	138.3	536.8	2.4	7.65	-0.315	-0.315	1,571	15

Стр. 44 РТМ 24.022.04-72

Таблица 8

Номер сечения	Т ₁ ,	Т ₂ ,	G ₁ , кгс•см/см	G2, кгс•см/см	h, см	^а р, кгс/см²	⁵ р2' кгс/см ²	⁰ нзг1 , KZC/CM ²	⁰ изг2, Кгс/с м 2	Σσ ₁ , κεc/cm²	Σσ ₂ , кгс/см²
1 4	4518	1355	181	55	3.2	1412	425	106	32	1518	457
5	4383	1315	185	56	3.2	1370	410	108	32	1478	452
6	4000	1979	190	57	3.2	1338	398	109	33	1447	430
7	4100	1230	193	58	3.2	1280	385	113	34	1393	420
4 8-	3964	1190	196	59	3.2	1240	370	115	35	1355	405
0	3820	1146	199	60	3.2	1195	358	117	35	1312	393
10	3671	1100	201	60	3.2	1147	345	118	35	1265	380
10	3511	1053	182	55	2.8	1254	376	139	42	1393	1337
12	3354	1010	183	55	2.8	1198	360	139	42	1337	402
13	3184	955	184	55	2.8	1137	340	140	42	1277	382
14	3014	904	161	48	2.4	1255	377	167	50	1422	427
15	2835	850	160	48	2.4	1181	355	166	50	1347	405
16	2600	780	155	46	2.4	1083	325	161	48	1244	373
17	2467	740	155	45	2.4	1030	308	161	47	1190	355
18	2230	670	150	48	2.4	929	279	156	48	1085	327
19	1998	600	152	45	2.4	832	250	158	47	990	300
20	1775	526	137	41	2.4	731	219	142	43	873	260
21	1454	436	107	32	2.4	606	182	111	33	720	215
22	1127	338	96	28	2,4	469	141	100	29	600	170
	1			1							

Таблица	9
---------	---

								Таблица 9		
Номер	$G_{1}' \cdot 10^{3}$	$8 \cdot 10^{-3}$,	G_1^{ϑ} ,	$G_1^{''}$	ω,	G_1^{ω}	G_1^p	ΣG		
сечения	при в=1 рад	рад	кгс•см/см	см при ω==1 см см		м кгс.см/см				
1-4	-395,0	0,43	170	-13120	0,065		181	502		
5		-0,43	170		0,065	853	185	-498		
6		0,43	169	—13119	0,065	- 853	190			
7	-393,0	-0,43	169	-13120	0,065		193	-491		
8		-0,43	169	-13120	0,065	-853	196	-488		
9		0,43	168	-13120	0,065		199			
10		-0,43	167		0,065		201			
11	-278,0	0,43	120		0,065	654	182			
12	-277,0	-0,43	119	10056	0,065	654	183	352		
13	-275,0	-0,43	118		0,065	653	184			
14	-186,0	0,43	80	7394	0,065	481	161	240		
15	-184,5	0,43	79	7399	0,065	-480	160			
16	-182,0	-0,43	78	7388	0,065		155	247		
17		0,43	77	7418	0,065	-482	155	250		
18	178,0	-0,43	77	7653	0,065	497	150	270		
19	172,0	-0,43	74		0,065	-487	152	261		
20	160,4	-0,43	69	7530	0,065	- 489	137			
21	159,7	0,43	69	7293	0,065	-774	107			
22	53,5	-0,43	23	6437	0,065	-418	96	- 299		

Примечание. Перемещения оболочки задаются из расчета статора. $G_1', G_1^{''}$ изгибающие моменты при единичном угле поворота и единичном радиальном перемещении соответственно: $G_1^{\theta}, G_1^{\omega}, G_1^{p'}$ — изгибающие моменты при действительном угле. поворота статора, радиальном перемещении и давлении соответственно.

таолица п	Таблица 10	ŋ
-----------	------------	---

Номер сече-	Т ₁ , кгсісм	^а р, <i>кгс/с м</i> ²	G, кас.смісн	³ изгі	σŗ	$\sigma_{\mathrm{Makc}} = k \sigma_{\Sigma}$
ния			1000 030/030		кгс/с м 2	
1_4	4518	1419	502	294	1706	2900
5	4383	1370	498	291	1662	2820
ő	4241	1338	494	289	1627	2760
7	4100	1280	491	288	1568	2660
8	3964	1240	488	286	1526	2600
9	3820	1195	486	285	1480	2500
10	3671	1147	485	284	1431	2420
ii l	3511	1254	352	269	1523	2580
12	3354	1198	352	269	1468	2500
13	3184	1137	351	268	1405	2380
14	3014	1255	240	250	1506	2550
15	2835	1181	240	250	1431	2420
16	2600	1083	247	257	1340	2280
17	2467	1030	250	260	1290	2180
18	2230	929	270	281	1210	2060
19	1998	832	261	271	1103	1870
20	1755	731	283	294	1025	1740
21 j	1454	606	289	300	906	1540
22	1127	469	299	311	780	1320

Таблица 11

Размеры в см

r ₁	<i>r</i> 0	P	h	hp	õ	n	р, кгс/см ²
434	656,1	256,1	3,5	30	3,2	60	23

Таблица 12

<i>h</i> ₁	h_2	h ₃	с	<i>c</i> ₁	Ј, см ³	W 06, CM ²	W _р , см ²	Т ₁ , кгс/см	М ₁ , кгс•см/см	^а об, кгс/см ²	^о р, кгс/см²
5,61	3,62	40,55	10,45	6,30	531,6	66,0	20,9	7397	-18570	1037	2210

См

13.5. Исходные данные и результаты расчета овальных сечений приведены в табл. 13. Таблица 13

			Исхо	дные	данн	ые		Han	ряжен	ие, кгс	см2	Расстояние
омер чения	R,	Ρ1,	Ρ2,	a, 2nad	<i>r</i> ₁ ,	δ,	р, касіс и ²	Сечение заделки		Сечение сопряжения		от точки сопряже- ния s,
± ೮	0.54			epuo	сл	См КСС/См-		σ1	σ2	σ1	σ2	СМ
15	230,1	40,7	36,4	55	163	3,6	45	600	260	570	500	22,3

4 Заказ 642

14. ПРИМЕРЫ РАСЧЕТА СТАТОРОВ

14.1. Исходные данные для расчета незабетонированного статора на несимметричную нагрузку приводятся в табл. 14, 15, 16, 17, обозначения — в разд. 11. Сечения верхнего пояса и колонн приведены на черт. 16.

Таблица	1	4
---------	---	---

h _K	R _n ,	Н,	ћ ₀ ,	β,	I ₁ ,	I ₂ ,	I ₃ ,	I ₄ ,
	см	см	см	град	см ⁴	см ⁴	см4	см ²
24	451,43	236	57,6	43	1,48.106	1,43.106	1,73.106	1510,7

Таблица 15	,
------------	---

Номер колонны <i>k</i>	q _{1k} , кгс с м	92k, КГС/СМ	9 _{3k} , кгс•см/см	q _{4k} , Кгс	q _{5k} , Кгс см	λ _k
1	1661	6522	291 400	0	0	0
2	1661	6522	291 400	0	0	Ō
3	1661	6522	291 400	0	0	Ō
4	1661	6522	291 400	0	0	Ŏ
5	1661	6522	291 400	0	0	Ő
6	1652	6324	282 000	0	0	Ó
7	1666	6126	273 000	0	0	Ō
8	1675	5929	264 000	0	0	Ō
9	1683	5731	254 900	0	0	Ð
10	1664	5523	244 600	0	0	Õ
11	1670	5315	234 700	0	0	Ó
12	1660	5076	224 000	0	0	Ŏ
13	1644	4847	212 600	0	0	0
14	1640	4608	201 900	0	0	Ó
15	1636	4348	189 700	0	0	Ō
16	1533	4088	175 800	0	0	Ó
17	1597	3807	163 900	0	0	0
18	1578	3506	149 500	0	0	Ó
19	1543	3162	132 900	0	0	Ō
20	1511	2798	115 400	0	0	0
21	1458	2403	96 100	0	0	Ŏ
22	1354	1873	69 700	0	0	- Ö
23	1171	1202	35 500	0	0	Ō
24	1100	600	5 500	0	0	Ō

Таблица 16

Массив	Группа колонны	а _к , град	e=R _n -r _k , см	ө _{,k} град	$\frac{J_{1k}=J_{v,k}}{c_{wk}} \int_{2k} J_{2k}=J_{w,k} \int_{3k}$		$J_{3k} = J_{z,k}$	J _{4k} =F _k , см
		<u> </u>			 	<u> </u>	1	
	A	15	-12,57	40	11 757	793 394	29 169	981,3
M_2	B	15	-12,07	40	9 550	727 855	24 976	923,0
	C	15	-11,57	40	6 346	665 432	18 128	832,7
	C	15	—11,57	40	6 346	665 432	18 128	832,7

Таблица 17

				СМ	I.		-		
	Верхни	й пояс		4		B	С		
номер	Macc	ив Т	К массивам V и W						
точки	t	u	U	W	U	W	υ	W	
1 2 3 4 5 6	-67 5 58 20 -22 34	15 -50 9 45 43 28	45 40 35 30 40 61,9	0 2 4 5 0 7,97	$ \begin{array}{ } -45 \\ -39 \\ -34 \\ -28 \\ 43 \\ 61,5 \end{array} $	0 2 3,5 4,5 0 7,33		0 2 3 4 0 -5,78	

Черт. 16

14.2. В результате расчета определены напряжения в трех сечениях трех групп колонн и в 72 сечениях верхнего пояса. В табл. 18 приведены напряжения в первой группе колонн, а в табл. 19 против этой группы колонн — напряжения в поясе.

Таблица	18
---------	----

Harrag		Координаты точек, см					
колонны	сечения	v=-45; w=0	v = -40; w = 2	v=-35; w=4	v=30; w=5	v=40; w=0	v=61,9; w=-7,97
	1	1730	2028	2325	2419	130	-2230
1	2	1604	1566	1528	1461		666
	3	1477	1104	730	503	94	900
	1	1933	2237	2540	2630	—197	
2	2	1760	1713	1667	1590	-43	748
	3	1587	1190	794	552	110	962
	1	1940	2265	2590	2690	203	2556
3	2	1800	1752	1700	1620	81	-812
	3	1664	1240	815	556	40	931
	1	1920	2268	2616	2728		2632
4	2	1813	1760	1710	1630		
	3	1710	1256	807	530	10	936
	1	1890	2254	2620	2740		
5	2	1798	1746	1695	1610	-121	
	3	1710	1240	770	485	40	964
	1	1832	2210	2592	2722	200	-2715
6	2	1756	1700	1654	1573	-132	860
	3	1679	1198	717	425	64	994
	1	1772	2162	2551	2688	196	-2718
7	2	1700	1654	1605	1526	134	
	3	1633	1146	658	364	—72	1030
	1	1726	2121	2517	2658	-181	-2698
8	2	1657	1610	1562	1487	-120	
	3	158 8	1098	608	315	—59	1080
		!					

Таблица 19

Номер Номер		Координаты точек, см					
колонны	колонны сечения		t = -5; u = -50	t=58; u=9	t=20; u=45	$\begin{array}{c} t = 22; \\ u = 43 \end{array}$	$t=34; \\ u=28$
	1	1428	-214	156	730	682	35 9
1	2	1184	-53	-10	658	621	378
	3	1931	545	458	879	806	319
	1	1436	212	170	719	670	348
2	2	1307	—135		690	648	364
	3	2167	-711	600	953	869	302
	1	1585		270	760	705	330
3	2	1408	228	—154	730	682	360
	3	2220	785	634	989	900	308
	1	1650	398		804	744	340
4	2	1430	—279	-160	764	714	375
	3	220 0	808	615	1011	923	328
	1	1650	-434	240	83 8	777	363
5	2	1413	297	-138	787	736	396
	3	2164	800		1023	936	347
,	1	1632	444	265	857	707	384
6	2	1396		-117	802	752	413
	3	2118	790	547	1025	940	362
	1	1610	440	240	869	809	400
7	2	1379	299	98	810	761	425
	3	2078	762	516	1020	937	372
	1	1590	-427		870	812	410
8	2	1370		87	809	760	429
	3	2050	729	-496	1006	925	373

14.3 Исходные данные для расчета забетонированного статора сведены в табл. 20. Обозначения даны на черт. 17. 14.4. Результаты расчета приведены в табл. 21, 22.

Стр. 52 РТМ 24.022.04-72

Таблица 20

Номер перфо- карт	Обозна- чение	Значение	Номер перфо- карт	Обозна- чение	Значение
1	r _K n ₁ n ₂ c r _c r ₄ r ₆	464 3327 3667 81 494 415,25 415,25	5	$l_3 l_4 h_{\mathfrak{u}_1} h_{\mathfrak{u}_2} R_{\mathfrak{u}_2}$	46 33 90 495 170 440
	l r _H	415,25 413 236	6	$\begin{array}{c} P_1 \\ H_1 \\ p \\ P_5 \end{array}$	1,333·10 ⁸ 1410 7,65 1,68·10 ⁵
2	2 F ₁ F ₂ J _x J _y a F _{кол}	24 1510 1839,4 11 800 7,934.10 ⁵ 0,89 981		G _{стат} Р ₇ h _п а b	0,6·10° 8,461·10 ⁵ 250 1313 545
			7	n	6
3	$a_{ m cn}$ $a_{ m ahk}$ $a_{ m boar}$ $a_{ m mba}$ $d_{ m cn}$	$50 \\59,5 \\92 \\97 \\ 3,2 \\ 0,15 \\ 0,016 \\ 1,5 \\ 494 \\ 415 \\ 476 \\ 17 \\ -33,53 \\ 12,03 \\ 46,03 \\ 32,97 \\ \end{bmatrix}$	8		57,03 413 33 392,5
	и _{анк} d _{болт} d _{шва}		0		45 40 35
	r ₁ r ₅ r ₃		3	*	30 40 60
4	$a_1 \\ a_7 \\ a_5 \\ l_1 \\ l_2$		10	у	0 2 4 5 0
5	5 $\begin{array}{c c} h_3 & 37 \\ h_5 & 90 \end{array}$				8

Черт. 17

Таблица 21

х ₁ ,	х ₂ ,	х ₃ ,	х4,	х ₅ ,	х _в ,	х ₇ ,
кгс•см/см	кгс/см	кгс•см/см	кгс/см	кгс/см	кгс/см	кгс•см/см
1,63.104	220	8.104	538	444	238	7,4.104

Продолжение

Напряжения с, кгс/см ²						
в верхнем	н нижнем	в колоннах	(растяжение)			
поясе	поясе	без учета бетона	с учетом бетона			
464	266	646	591			

Таблица 22

Координаты точек, см		Напряжения в колоннах, кгс/см ²				
	Уі	у верхне	его пояса	у нижнего пояса		
x _i		^σ изг	^σ нзг+ ^σ раст	б _{изг}	σ _{нэг} +σ _р	
—45	0	862	1453	-495	95	
—40	2	813	1405	467	123	
—5	4	765	1356		150	
30	5	693	1284	—398	193	
—40	0	766	1357	-440	150	
60	8	-1338	747	769	1360	

ЛИТЕРАТУРА

1. Новожилов В. В. Теория тонких оболочек. Л. — М., Судпромгиз, 1962.

2. Постоев В. С., Зиндман А. П. Расчет спиральных камер гидротурбин совместно с железобетонным блоком агрегата. -- Труды ЦКТИ. Вып. 109. Л., 1971.

3. Строительные нормы и правила. Ч. II, разд. В, гл. I, «Бетонные и железобетонные конструкции. Нормы проектирования». Госстройиздат, 1963.

4. Шаманский В. Е. Методы численного решения краевых задач на ЭЦВМ. АН УССР, 1963.

5. Носова П. Н., Тумаркин С. А. Таблицы обобщенных функций Эйри для асимптотического решения дифференциальных уравнений. Вычислительный центр АН СССР, 1961.

6. Осипова А. Н., Тумаркин С. А. Таблицы для расчета торооб-разных оболочек. Вычислительный центр АН СССР, 1963.

7. Франк-Каменецкий Г. Х. Расчет на прочность овальных сечений

спиральной камеры гидротурбины. — «Энергомашиностроение», 1969, № 6. 8. Аронсон А. Я. [и др.]. Расчет на прочность деталей гидротурбин. Изд-во «Машиностроение», 1965.

СОДЕРЖАНИЕ

1. Расчетная схема статора и спиральной камеры, не подкрепленных
железобетонным блоком
2. Расчетная схема статора и спиральной камеры, подкрепленных со
стороны статора железобетонным поясом
3. Подготовка исходных данных для расчета на ЭЦВМ
4. Примеры расчета
5. Основные предпосылки схемы расчета ЛМЗ и допускаемые на-
пряжения
6. Предварительный выбор толщин и марок материалов листов спи-
ральной камеры
7. Расчет круговых сечений спиральной камеры
8. Расчет круговых сечений спиральной камеры с учетом ребер
9. Расчет овальных сечений спиральной камеры
10. Коэффициент цикличности
11. Расчет статора, не подкрепленного железобетоном, на несимметрич-
ную нагрузку
12. Расчет забетонированного статора
13. Примеры расчета спиральной камеры
14. Примеры расчета статоров
Литература

Ответственный за выпуск В. С. Розанова.

Редактор З. Т. Потапова.

Техн. ред. Н. П. Белянина.

Корректор Г. Х. Макарова.

Сдано в набор 25/IX 1972 г. Подп. к неч. 18/V 1973 г. Форм. бум. 60×90¹/₁₆. Объем 3⁵/₈ псч. л. Тираж 500. Зак. 642. Цена 73 коп.

Группа полиграфических работ ОНТИ ЦКТИ им. И. И. Ползунова. 194021, Ленинград, Политехническая ул., д. 24.