РУКОВОДСТВО

ПО ОРГАНИЗАЦИИ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА В УСЛОВИЯХ СЕВЕРНОЙ ЗОНЫ

СОДЕРЖАНИЕ

	Стр
Предисловие 1. Организационно-техническая подготовка строительства	4
Особенности организации подготовки строительства рассредоточенных объектов	4
Определение потребности в строительных механизмах,	7
рабочих и жилье	•
определение степени рассредоточенности малооовемного	12
строительства	^-
ников получения материалов и конструкций	14
Порядок расчета оптимального срока начала строитель-	
ства	37
Расчет объемов строительства временного и постоянно-	
го поселков при освоении новых площадок строительства	40
2. Организация специальной инженерной подготовки терри-	
тории	41
Вертикальная планировка территории	41 42
Осущение территории и защита от затопления	42
Борьба с мерзлотно-геоморфологическими образовани-	44
ями 3. Организация возведения зданий и сооружений на подсыпках	46
Выбор материала для подсыпки	49
Основные требования к организации карьеров	49
Рекомендации по освоению новых площадок	51
Особенности организации и производства работ	54
Устройство и уплотнение подсыпок	55
Устройство фундаментов	57
Устройство инженерных сетей и их вводов в здания	59
Приемка работ	61 62
Использование пневмооболочек	ΟZ
1. Эксплуатация зданий, сооружений и инженерных коммуни-	62
каций в период строительства	52
Эксплуатация инженерных коммуникаций	64
Строительство и содержание снеговых и ледовых аэрод-	٠.
DOMOB	66
Особенности зимних аэродромов	66
Снеговые и грунтовые аэродромы	67
Ледовые аэродромы	74
Приложение. Метолология расчета параметров воздействия	
природно-климатических факторов на производ-	
ство строительных работ (На примере Мурман-	00
ской области)	82

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ ИНСТИТУТ ОРГАНИЗАЦИИ, МЕХАНИЗАЦИИ И ТЕХНИЧЕСКОЙ ПОМОЩИ СТРОИТЕЛЬСТВУ ГОССТРОЯ СССР (ЦНИИОМТП)

РУКОВОДСТВО

ПО ОРГАНИЗАЦИИ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА В УСЛОВИЯХ СЕВЕРНОЙ ЗОНЫ

Рекомендовано к изданию решением секции организации и управления строительным производством НТС ЦНИИОМТП.

Руководство содержит рекомендации по апробированным практикой методам совершенствования организации строительного производства в условиях Северной зоны страны. В его составе — методология технико-экономического анализа затрат на единицу продукции при различных вариантах размещения баз строительной индустрии и транспортирования этой продукции в пункты строительства; рекомендации по организации специальной инженерной подготовки территорий стройплощадок и организации возведения зданий и сооружений на подсыпках; методология учета воздействия природноклиматических факторов Севера на процесс организации строительного производства; рекомендации по организации эксплуатации зданий и сооружений в процессе строительства в условиях вечномерзлых грунтов и по устройству и эксплуатации временных ледовых и снеговых аэродромов.

цнииомтп госстроя ссср

РУКОВОДСТВО ПО ОРГАНИЗАЦИИ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА В УСЛОВИЯХ СЕВЕРНОЙ ЗОНЫ

Редакция инструктивно-нормативной литературы Зав. редакцией Г. А. Жигачева Редактор Л. П. Шатнева Мл. редактор М. А. Жарикова Технический редактор Т. В. Кузнецова Корректоры Л. С. Лелягина, Н. О. Родионова

Сдано в набор 2.02.78
Т-10975 Формат 84×103½2 д. л.
Гарнитура «Литературная»
5,88 усл. печ. л.
Тираж 13 000 экз.

Сдано в набор 2.02.78
Подписано к печати 20.06.78
Бумага типографская № 3
Печать высокая
Печать высокая
Образование предоставления правования предоставления пре

Стройиздат 103006, Москва, Каляевская, 23а

Подольский филнал ПО «Периодика» Союзполиграфпрома при Государственном комитете Совета Министров СССР по делам издательств, полнграфии и книжной торговли г. Подольск, ул. Кирова, 25

Р 30213-491 Инструкт.-нормат., I вып. - 70-78

© Стройиздат, 1978

ПРЕДИСЛОВИЕ

Руководство содержит рекомендации по организационно-технической подготовке строительства в условиях Крайнего Севера по организации специальной инженерной подготовки застраиваемой территории, по организации возведения зданий, сооружений и коммуникаций на искусственном основании, по организации эксплуатации зданий и сооружений в период строительства, по организации строительства и содержания временных (на период строительства) снеговых и ледовых аэродромов, по учету природно-климатических факторов на стадиях проектирования и осуществления строительного производства.

Учитывая ближайшие перспективы развития неосвоенных районов Севера и складывающийся характер и методы их освоения, Руководство в части организационно-технической подготовки строительства, сооружения и содержания снеговых и ледовых аэродромов содержит рекомендации по организации строительного производства в условиях рассредоточенного строительства. Эти рекомендации могут быть распространены и на пионерный период строительства проектируемых промышленных узлов с коррективами на

развитие района и производственной базы.

Цель Руководства — на основе исследований ЦНИИОМТП и привлечения передового, апробированного практикой опыта строителей Севера — дать рекомендации по организации упомянутых работ и мероприятий, выполнение которых будет способствовать сокращению сроков строительства, снижению стоимости строительномонтажных работ и, в конечном счете, повышению производительности труда строителей в условиях Северной зоны страны.

Руководство предназначено для работников научно-исследова-

тельских, проектных и строительных организаций.

Руководство разработано лабораторней организации строительства в условиях Крайнего Севера отдела организации строительного производства (кандидаты техн. наук В. В. Шахпаронов, В. З. Додин, Л. П. Аблязов), отделом механовооружения в строительстве (канд. техн. наук В. И. Поляков), отделом бетонных и железобетонных работ (канд. техн. наук Б. И. Березовский) ЦНИИОМТП Госстроя СССР.

В работе над Руководством принимали участие: и. о. ст. научного сотрудника В. К. Лужецкий, ст. научный сотрудник Л. А. Телингатер, ст. инженер В. П. Захарченко — сотрудники лаборатории организации строительства в условиях Крайнего Севера, канд. техн. наук И. Г. Цалюк, канд. экон. наук И. А. Либерман — трест Арктикстрой Минморфлота СССР, канд. техн. наук Л. П. Маркизов — отдел ЦНИИЛОУС МИСИ, канд. техн. наук Т. Д. Баранова — Дальневосточный Промстройниипроект Минстроя СССР.

Раздел 4 — «Эксплуатация зданий, сооружений и инженерных коммуникаций в период строительства» — разработан Академией

коммунального хозяйства РСФСР.

1. ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКАЯ ПОДГОТОВКА СТРОИТЕЛЬСТВА

Особенности организации подготовки строительства рассредоточенных объектов

1.1. Основным условием, определяющим выбор организации подготовки строительства, является технико-экономический эффект, выявленный путем соизмерения совокупных затрат, рассчитанных на единицу продукции, по вариантам, предусматривающим различные территориальные размещения производства:

 $3=Q(Z_{i}-Z_{i+...n})$ при условии, что $Z_{i}>Z_{i+...n}$

- где Э общий годовой эффект от применения организации строительства по і-му варианту;
 - Q годовая потребность пункта строительства в продукции;
- Z_i и $Z_{i+...n}$ приведенные суммарные затраты для пункта потребления соответственно по *i-му* и i+...n-му вариантам.
- 1,2. Организация рассредоточенного строительства должна рассматриваться в ПОС по следующим основным методам:

I — создание предприятий строительной индустрии непосредст-

венно в районе строительства;

II — создание предприятий строительной индустрии только в районных центрах I строительно-климатической зоны и определение радиуса экономически оправданного распространения продукции;

III — завоз конструктивных элементов из экономически развитых районов, расположенных вне I строительно-климатической зоны.

Варианты использования мобильных или инвентарных заводов строительной индустрии в пунктах строительства следует рассматривать как частный случай I метода.

1.3. Выбор оптимального метода использования баз материально-технического снабжения для строительства рассредоточенных объектов производится на стадии разработки проекта организации

строительства.

Размещение и развитие в районе строительства рассредоточенных объектов строительной базы осуществляется с учетом технико-экономической эффективности создания базы, степени освоения территории и удаленности района строительства от ближайших пунктов регулярно действующих транспортных коммуникаций и баз материально-технического снабжения.

1.4. Выбор опособов перевозки и транспортных средств определяется проектом организации строительства с учетом технико-эко-

номической целесообразности.

- 1.5. Дата начала работ назначается с учетом мерэлотно-грунтовых, климатических, транспортных и экономических условий района строительства, а также сроков завершения работ.
- 1.6. Время подготовительных работ по сохранению грунтов оснований в твердомерэлом состоянии, предпостроечному их оттаиванию, осущению, уплотнению и закреплению не входит в срок строительства и определяется проектами организации строительства и производства работ. Затраты на подготовительные работы выделяются в отдельный раздел сметной документации.
- 1.7. Подготовка строительства промышленных и жилищно-гражданских объектов в малоосвоенных и отдаленных районах Северной

зоны должна осуществляться на основе учета всех воздействующих природно-климатических, мерэлотно-грунтовых и экономических факторов конкретного района строительства:

наличие и свойства вечномерэлых грунтов;

количество и период выпадания осадков, в том числе толщина, характер и время установления снежного покрова, роза ветров;

продолжительность летнего периода, светлого времени суток и температурных условий;

отдаленность района строительства от промышленных центров, баз снабжения, источников энергии и постоянно действующих транспортных коммуникаций, а также продолжительность навигационного периода близрасположенных морских и речных путей сообщения и сроков действия временных (в том числе и зимних) транспортных коммуникаций и посадочных площадок;

состояние развития строительной промышленности и промышленности строительных материалов в районе строительства, в близрасположенных центрах Севера и в ближайших экономически развитых районах страны;

намечаемые сроки ввода объектов в эксплуатацию, перспективность развития возводимого объекта, продолжительность его эксплуатации.

1.8. Порядок устройства временных автомобильных (в том числе зимних) дорог, а также временных аэродромов (взлетно-посадочных полос) и сооружений на них устанавливается проектами организации строительства и проектами производства работ с учетом:

проектируемой и строящейся сети капитальных транспортных коммуникаций и сооружений;

увязки сроков окончания строительства отдельных этапов и участков временных и капитальных сооружений для создания к началу строительно-монтажных работ надежной транспортной связи;

использования временных дорог и посадочных площадок для последующего сооружения на их основе капитальных дорог и аэродромов.

1.9. При определении экономической эффективности транспортной схемы должны быть учтены наиболее выгодные и экономичные варианты;

стоитмость основного авиационного и автодорожного (в том числе по зимнику) тарифа, перевалочных и складских операций;

дополнительные капитальные затраты на авиа-и автотранспорт, береговые обходы речных порогов и другие сооружения на трассе зимника:

возможность уменьшения срока хранения запасов товарно-материальных ценностей;

экономия от перевозки по зимнику крупногабаритного оборудования и металлоконструкций в полном заводском комплекте, без демонтажа.

1.10. В проекте организации строительства в новом районе освоения выделяются два этапа подготовительного периода: пионерный — на месте строительства возводятся инвентарные здания и сооружения строительной базы и жилого поселка и основной — возводятся основные объекты жилого и производственного назначения при подготовке к капитальному строительству объекта. Если объемы работ подготовительного периода превышают возможности пионерного отряда, привлежаются подразделения и ресурсы основного периода строительства.

1.11. В задачи пионерного отряда входит: подготовка временных складов и подъездов к ним; расчистка территории;

оборудование базы для работ подготовительного периода.

- 1.12. При строительстве по I принципу использования грунтов основания вокруг строительных площадок, отдельно стоящих зданий и сооружений, а также вдоль полос отвода линейных и прочих транспортных сооружений и инженерных коммуникаций организуются защитные зоны, в пределах которых все работы производятся по указаниям проектов организации строительства и производства работ.
- 1.13. При строительстве по II принципу по специальному проекту устраивается дренажная система; водоотводящие жанавы располагаются не ближе 10 м от проектируемых фундаментов зданий и сооружений. Отвод поверхностных вод со стройплощадки осуществляется вне зависимости от принципа строительства.
- 1.14. Защита строительных площадок и полос отвода сооружений и коммуникаций от снежных заносов, уборка или задержание снега осуществляются по указаниям проекта производства работ на основании данных розы ветров и розы пурги с учетом принятого принципа использования вечномерзлых грунтов, а также по возможности проявления динамических мерзлотных процессов (наледей, термокарстов, солифлюкций и т. п.).
- 1.15. Организация и ведение складского хозяйства осуществляются по указаниям проекта производства работ, учитывающего принятый принцип использования вечномерзлых грунтов.
- 1.16. На неосвоенных территориях в районах крупного строительства рассредоточенных объектов в цервую очередь осуществляется сооружение объектов складского хозяйства, постоянных жилых и культурно-бытовых зданий, производственно-технических баз, проектируемых капитальных железных и автомобильных дорог, аэродромов, портов и причальных сооружений, линий связи и электропередач, нефте- и газопроводов и специально оговоренных в проектах организации строительства и производства работ временных зданий, автомобильных дорог и аэродромов.
- 1.17. При строительстве в районах с периодической доставкой материалов объемы складов определяются годовой потребностью в строительных материалах.
- 1.18. На участках от портов назначения до стройплощадок протяженностью более 100 км, когда нет постоянно действующих дорог, целесообразно использовать прямой авиационный транспорт от порта отправления до стройплощадки, на которой устроены снежноледовые аэродромы.
- 1.19. Подготовка строительства капитальных и временных дорог для возводимых рассредоточенных объектов, в том числе согласование и утверждение проектно-сметной документации, осуществляется с учетом настоящего Руководства.

Указанные мероприятия и работы финансируются по сметнофинансовым расчетам и утвержденному техно-рабочему проекту с последующим пересчетом стоимости работ по омете к рабочим чертежам.

1.20. Для дальнего (глубинного) завоза материалов и конструкций на неосвоенной территории в таежных и тундровых зонах Севера сооружаются автозимники. В первую очередь их сооружают на переувлажненных и заболоченных участках, где невозможно или

экономически нецелесообразно производить устройство постоянных или временных автодорог в летний период; в качестве основания для автозимника используется устойчивый ледяной покров рек и морей.

При этом предусматривается обеспечение непрерывной работы автозимника и максимальной продолжительности сроков его экс-

плуатации.

1.21. Расстояния между пунктами обогрева и отдыха и ремонтно-профилактических служб по трассе и число обслуживающего персонала на этих пунктах устанавливаются в зависимости от степени рассредоточенности объектов строительства, особенностей ландшафта вдоль трассы и согласовываются с местными Советами депутатов трудящихся.

1.22. Подготовка строительных площадок рассредоточенного строительства и организации хозяйства строительных подразделений осуществляется на основе «Рекомендаций по подготовке строительных площадок к производству строительно-монтажных работ в условиях Крайнего Севера» и положений настоящего Руководства.

1.23. Освоение района крупного рассредоточенного строительства предопределяет необходимость привлечения значительного числа

строителей и соответствующего их размещения.

В зависимости от сроков и принципа строительства поселки строителей могут быть временного, стационарного и смешанного типов, а их сооружение должно осуществляться стационарными, мобильными и экопедиционными методами.

1.24. При освоении района рассредоточенного строительства численность строителей может быть меньше, чем численность эксплуатационного персонала будущего предприятия. Период строительства в этом случае совмещается с этапом введения в эксплуатацию объекта по очередям.

1.25. В подготовительный период должны быть введены в эксплуатацию производственные объекты строительной индустрии, выпускающие индустриальные конструктивные элементы, эффективные утеплители, ограждающие конструкции для сооружения объектов рассредоточенного строительства.

Определение потребности в строительных механизмах, рабочих и жилье

1.26. При составлении проектов организации строительства и проектов производства работ продуктивность работы людей и строительных машин определяется с учетом специфики Севера и времени года. При проектировании организации строительства разрабатываются методы учета природных условий Севера, определяются оптимальные календарные даты начала строительства объектов, выбираются экономически выгодные способы производства работ, определяются потребности в машинах и рабочих кадрах.

1.27. При возведении небольших объектов в труднодоступной местности комплекс машин для производства работ выбирается с

учетом;

стоимости их транспортировки, включая затраты на возведение автозимника (или авиаперевозок), демонтажа машин на транспортируемые узлы с последующей сборкой на месте фабот:

многоцелевого использования машин, что связано с транспортными условиями района строительства;

возможности использования машин в зависимости от времени

года;

числа обслуживающего персонала, что связано с затратами на содержание и обустройство людей.

1.28. Стоимость эксплуатации машины, руб., на объекте опре-

деляется по формуле

$$P = \frac{T}{\tau} + \Pi C + t z m, \tag{1}$$

где T — стоимость доставки машин в оба конца, включая удельные затраты на транопорт, руб.;

т — общее время работы машины на объекте, дни;

П — число дней работы машины на 1, 2, . . . видах работ;

 С — суточная стоимость эксплуатации машины на объекте, руб.;

t — число членов экипажа, чел.;

т — число дней проживания членов экипажа на объекте:

стоимость обустройства и содержания работающего на объекте, руб.

1.29. При организации строительно-монтажных работ должны предусматриваться потери рабочего времени. Коэффициент уменьшения продуктивности работы людей и механизмов $K_{\rm пр}$ из-за кли-

матических и мерзлотно-грунтовых условий в пределах каждого месяца выражается в долях единицы и является произведением $K_{\pi}K_{y}$, где K_{π} — коэффициент простоя рабочих или машин из-за неблаго-

приятных метеорологических условий, который определяет-

$$\frac{\Pi - \Pi_{\Pi}}{n}$$

где п — число календарных дней в месяце;

 $\Pi_{\rm n}$ — число дней метеорологически прогнозируемых простоев;

Ку — коэффициент снижения производительности труда при выполнении работ на открытом воздухе или в неотапливаемых помещениях, являющийся обратной величиной усредненного коэффициента для работ в зимних условиях.

1.30. Общий (годовой) коэффициент уменьшения продуктивности работы K_{np}^{r} специализированной организации равен

$$K_{\Pi}^{r} K_{\nu}^{r}$$
.

1.31. Общее (годовое) влияние потерь рабочего времени из-за неблагоприятных климатических условий на продуктивность работы специализированной строительно-монтажной организации учитывается годовым коэффициентом простоя рабочих или машин:

$$K_{\Pi}^{\Gamma} = \frac{T_{\pi} K_{\pi} + T_3 K_3}{T} , \qquad (2)$$

где T_n , T_a — продолжительность данного вида работ в летних и зимних условиях;

Т — общий период времени, принимаемый за расчетный гол:

$$K_{\pi} = \frac{T_{\pi} - T_{\pi,n}}{T_{\pi}}, \qquad (3)$$

$$K_3 = \frac{T_3 - T_{\text{H.3}}}{T_3} \,, \tag{4}$$

где K_{π} , K_3 — коэффициенты, учитывающие потери рабочего времени из-за неблагоприятных погодных условий в летний и зимний периоды;

Ти.л, Ти.э — прогнозируемое число дней летом и зимой с неблагоприятными климатическими условиями для данного вида строительно-монтажных работ.

1.32. Общее (годовое) влияние потерь рабочего времени из-за уменьшения производительности труда в зимнее время на продуктивность работы специализированной строительно-монтажной организации определяется коэффициентом влияния летних и зимних условий работы:

$$K_{y}^{\Gamma} = \frac{T_{\pi} + T_{B} K_{y,3}}{T} , \qquad (5)$$

где $K_{y,s}$ — средний коэффициент снижения производительности труда в зимние месяцы.

1.33. При организации строительства рассредоточенных объектов в теплый период года учитываются затраты на перебазирование резервных строительных подразделений в район строительства с максимальным использованием трудовых и материальных ресурсов.

1.34. Организация строительства с максимальной концентрацией людей и механизмов и выполнением работ в минимальные сроки

осуществляется, когда:

директивные сроки сдачи объекта в эксплуатацию предельно ограничены;

стоимость продукции, выпущенной за время сокращения продолжительности строительства, окупает затраты на перебазирование и обустройство дополнительных рабочих и механизмов;

затраты на производство работ в минимальные сроки, а также перебазирование и обустройство дополнительных рабочих и механизмов меньше затрат на производство работ и содержание организации, ведущей строительство ограниченными ресурсами.

1.35. Работы, которые не могут быть выполнены в сжатые сроки теплого периода года, могут быть распределены по наиболее благоприятным для осуществления периодам, например, строительство участков линейных трубопроводов — в весенние и осенне-зимние месяцы.

1.36. Строительство объектов со сроками сдачи не позднее одного года следует начинать с марта-апреля, благодаря чему возведение подземной части сооружений будет закончено до весеннего оттаивания грунтов; монтажные и надземные работы — в теплое время года; отделочные и монтаж технологического оборудования внутри возведенных зданий — в осенне-зимний период.

1.37. Определение оптимального срока начала строительства объекта осуществляется при продолжительности его возведения свыше 1,5 лет.

1.38. Выбор оптимального способа организации строительного производства осуществляется на основе технико-экономического анализа по уравнению удельной стоимости работ:

$$S = H_{p} \left[\frac{\varphi}{K_{v}} + \left(\frac{1}{K_{\pi}} - 1 \right) \right] 0.375 + M +$$

$$+\tau \left[\frac{C^{M}}{K_{y}^{M}}+C_{\Pi}^{M}\left(\frac{1-K_{\Pi}^{M}}{K_{\Pi p}}\right)\right]+\frac{\Sigma P}{V}, \qquad (6)$$

где

S — удельная стоимость строительной продукции, руб.;

 Нр — расценка работы по нормам ЕНиР;
 М — удельная стоимость материалов (франко-приобъектный оклад), руб.;

ф — поясной коэффициент к заработной плате рабо-

 ΣP — сумма разовых затрат на подготовку рабочих мест, руб. (находится путем составления калькуляции);

т — нормативное время на единицу объема работ. маш.-ч:

V — объем работ в единицах, принятых для данного вида работ:

См — стоимость машино-часов, руб.;

 C_{n}^{M} — стоимость машино-часов простоя строительных мащин, руб.;

Ку - коэффициент снижения производительности рабочих из-за неблагоприятных метеорологических условий $(K_y = \frac{1}{K_e}, \text{где } K_e - \text{коэффициент к нор-}$ мам ЕНиР на работы, производимые в зимних условиях);

K_п — коэффициент простоя рабочих из-за неблагоприятных метеорологических условий;

 K_{n}^{M} — коэффициент простоя строительных машин из-за

неблагоприятных метеорологических условий; K_y^{M} — коэффициент снижения производительности стронтельных машин из-за неблагоприятных метеорологических условий;

 $K_n^{\mathbf{M}} K_{\mathbf{v}}^{\mathbf{M}} = K_{n\mathbf{y}} -$ коэффициент продуктивности работы строительных машин;

 $K_{\rm m},\ K_{\rm m}^{\rm M},\ K_{\rm y}^{\rm M}$ — находятся путем обработки многолетних метеорологических данных и условий работы людей и строительных машин на наружных работах.

1.39. При составлении проекта организации строительства в про-мышленно развитых районах число рабочих для выполнения годового объема работ может рассчитываться по формуле

$$N = \frac{P_{\rm co6}}{\Pi_{\rm pa6}} \ 1,06,\tag{7}$$

где P_{coo} — годовой объем работ, выполняемый собственными силами, млн. руб.;

 $\Pi_{\text{раб}}$ — среднегодовая выработка на одного рабочего (с учетом северных надбавок), принимаемая по данным аналогичного строительства.

1 40. Потребность в дополнительной рабочей силе определяется по формуле

$$N_{\text{доп}} = (N - N_{\phi a \kappa}) K_{\tau}, \tag{8}$$

где $N_{\Phi^{a\kappa}}$ — фактическое число рабочих на 1 января планируемого гола:

K_т — коэффициент текучести рабочей силы¹.

1.41. При составлении проекта организации строительства во вновь осваиваемых районах число рабочих, необходимое для выполнения отдельных видов работ, принимается по формуле

$$N_{\ell} = \frac{N_{\rm H}}{K_{\rm B} K_{\rm B} K_{\rm C} K_{\rm S}}, \qquad (9)$$

где $N_{\rm H}$ — число рабочих для выполнения i-го вида работ по нормам ЕНиР;

 $K_{\rm B}$ — планируемое перевыполнение норм выработки ($K_{\rm B}$ = 1,1); $K_{\rm np}$ — коэффициент продуктивности за период выполнения ра-

К_с — коэффициент потерь рабочего времени на снегоочистку и снегоборьбу при наружных работах в конкретном районе строительства:

К₃ — коэффициент повышения уровня заболеваемости рабочих в неблагоприятные климатические сезоны (по данным местных органов здравоохранения).

1.42. Потребное число землеройных механизмов для выполнения заданного объема работ в течение определенного месяца находим по формуле

$$N = \frac{Q}{t \Pi_0 K_{\rm PR}} \,, \tag{10}$$

где Q - объем работ в течение месяца;

t — число смен;

Па — нормативная эксплуатационная производительность механиэма;

 $K_{\rm п.р.}$ — месячный коэффициент продуктивности использования ме-

1.43. При выполнении работ в течение нескольких месяцев расчет ведется по формуле

$$N = \frac{Q}{\Pi_{3}} \left(\frac{1}{t_{1} K_{np_{1}}} + \frac{1}{t_{2} K_{np_{2}}} + \dots + \frac{1}{t_{n} K_{np_{n}}} \right) =$$

$$= \frac{Q}{\Pi_{3}} \sum_{1}^{n} \frac{1}{t_{1-n} K_{np_{1-n}}}, \qquad (11)$$

где t_{1-n} — проектируемое число смен работы механизмов на каждый месяц;

дыи месяц; $K_{\text{пр}} = - \text{месячные коэффициенты продуктивности работы меха-$

1.44. Поселок строителей (с учетом инвентарных сборно-разбор-

¹ Значение коэффициента текучести принимается по официальным данным конкретной области (края).

ных зданий) должен рассчитываться на поселение минимального числа рабочих первоначального периода освоения. Основная часть строителей должна быть размещена в капитальных домах постоянного жилого комплекса.

1.45. Подбор и применение типовых временных инвентарных зданий и сооружений для вновь осванваемых районов осуществляется по «Перечню действующих типовых проектов временных зданий и сооружений для строительства».

Определение степени рассредоточенности малообъемного строительства

1.46. Рассредоточенные пункты строительства характеризуются относительно малыми объемами работ (для Арктики эта величина находится в пределах от 15 тыс. до 1 млн. руб., что по трудоемкости соответствует 3—200 тыс. руб. строительно-монтажных работ в Центральной полосе СССР) и вследствие этого кратковременностью загрузки рабочих и машин. Однако эти работы весьма разнообразны, и в сооружении объектов должны участвовать рабочие разных специальностей.

Для последовательного выполнения работ в рассредоточенных пунктах требуется организационный перерыв для перемещения рабочих, машин и составляющих материально-технического хозяйства с исхолного пункта на пункт назначения.

1.47. Подразделения, осуществляющие строительство малообъемных рассредоточенных объектов в отдаленных районах из конструкций, изготовляемых передвижными заводами сборного железобетона, местными районными стационарными материально-техническими (производственными) базами или завозимых из центральных районов страны, представляют собой передвижные механизированные строительно-монтажные организации (ПМСМО). Основной принцип ПМСМО заключается в перенесении трудоемких процессов изготовления элементов зданий и сооружений в заводские условия.

1.48. Характерными особенностями деятельности ПМСМО являются:

частые перемещения подразделений ПМСМО и ее основной базы в сложных природно-климатических и транспортных условиях; ведение работ подразделениями в значительном удалении от основной базы:

оснащение ПМСМО мобильными машинами, установками, складскими помещениями, вагонами-общежитиями и другими передвижными средствами специальной модификации;

строительство объектов методом круглогодичного непрерывного потока.

1.49. Для характеристики степени рассредоточенности малообъемного строительства рассчитывается «коэффициент рассредоточенности строительства» (К) в тыс. руб/км², как отношение суммы строительно-монтажных работ на каждом объекте (с учетом потерь из-за неблагоприятных природно-климатических условий и трудно-доступности) к размеру территории, на которой работает ПМСМО:

$$K = \frac{\sum_{l=1}^{n} \xi_{l} Q_{l} \varphi_{l}}{F}$$
 (12)

Таблица 1 Форма расчета числа нерабочих дней из-за неблагоприятных климатических условий

	Температура —45°С		Ветер свыше			Туманы с ви тью менее	цимос- 20 м	Снегоочистка строи- тельной площадки после пурги		06
Месяц	среднеме- сячные данные	c K = 0,7	среднеме- сячные данные	c K = 0,7	Перерывы на обогрев	среднеме- сячные данные	c K = 0.7	среднеме- сячные данные	c K = 0,7	Общее число нерабочих дней ¹
1		3	4	5	6	7	8	9	10	11
сего										

¹ Число нерабочих дней дано с K=22:30=0,7, где 22 — среднее число рабочих дней в месяце, 30 — средняя продолжительность календарного месяца.

Примечание. При заполнении граф 2,4 и 7 пользуются «Справочниками по климату СССР», справочником «Комплексные характеристики климата Арктики» и данными местных метеослужб; граф 6 и 9 — данными натурных наблюдений и постановлениями исполкомов Советов депутатов трудящихся по ограничениям работы на открытом воздухе. Совокупное влияние температуры и ветра учитывается в графе 2.

где

т и п — минимальное и максимальное число объектов с общим объемом работ, равным мощности строительной организации;

$$\xi_i = \frac{t_{\text{см}} \, V_I}{2 \, L_I}$$
 — показатель доступности объекта (где $t_{\text{см}}$ — продолжительность рабочей смены, ч; V_i — допустимая скорость передвижения, зависящая от вида транспорта и дорожных условий, км/ч; L_i — расстояние до строящегося объекта, км);

$$\mathbf{Q}_i$$
 — стоимость работ на одном объекте, тыс. руб.;
$$\mathbf{T}_{ps6} = \frac{T_{ps6} - T_{npoct}}{T_{ps6}} -$$
коэффициент, учитывающий влияние природно-исловний (где T_{ps6} — число рабочих дней в планируемом периоде; T_{npoct} — расчетное число нерабочих дней из-

 $T_{\text{прост}}$ — расчетное число нерабочих дней изза неблагоприятных природно-климатических условий); F — территория, на которой работает ПМСМО,

км².
150. Число нерабочих дней из-за неблатоприятных природно-

Технико-экономическая оценка вариантов выбора источников получения материалов и конструкций¹

климатических условий следует рассчитывать по форме табл. 1

1.51. Основным условием выбора источников получения материалов и конструкций является технико-экономический эффект от результатов использования выбранного варианта размещения источника. Эффект определяется путем соизмерения совокупных затрат, рассчитанных на единицу продукции, по вариантам различного территориального размещения источников снабжения согласно выражению

$$eta=Q\;(Z_l-Z_{l+\dots n})$$
 при условии, что
$$Z_l>Z_{l+\dots n}, \eqno(13)$$

где

 Э — общий годовой эффект от применения организации строительства по *i*-му варианту;

 Q — годовая потребность пункта (узла) строительства в продукции;

 Z_i и $Z_{i+...n}$ — приведенные суммарные затраты для пункта потребления соответственно по i-му и i+...n-му вариантам.

152. Предприятия строительной индустрии для выбранного пункта строительства могут быть размещены: в каждом пункте строительства (I метод); в ряде районных центров I строительно-климатической зоны с определением радиуса экономически оправданного распределения продукции (II метод). Конструктивные эле-

Частоимостные показатели настоящей главы даны в условных цифрах.

менты могут быть завезены из экономически развитых районов, находящихся вне I строительно-климатической зоны (III метод).

Варианты использования мобильных или инвентарных заводов строительной индустрии в пунктах строительства следует рассматривать как частный случай I метода. Приведенные заграты в этом случае также рассчитываются по рассмотренному выше методу, за исключением величины удельных жапитальных вложений, которые зависят от конкретных проектных проработок.

Вариант использования плавучих заводов подробно исследован в работе Красноярского Промстройниипроекта Минтяжстроя СССР «Исследование эффективности применения плавучих баз Стройин-

дустрии в районах сибирского Севера».

1.53. В качестве критерия экономической эффективности производства строительной индустрии принимаются совокупные затраты на единицу продукции, определяемые по формуле

$$Z = C + E K + T \dots, \tag{14}$$

где Z — приведенные суммарные затраты на единицу продукции;

С — себестоимость изготовления единицы продукции;

Е — нормативный коэффициент эффективности капитальных вложений:

К — удельные капиталовложения в расоматриваемом предприятив:

Т — затраты на перевозку единицы продукции из пункта производства в пункт потребления.

1.54. Учитывая, что сметные нормы, действующие оптовые цены и транспортные тарифы усредненно отражают затраты на единицу продукции в конкретном районе сосредоточенного строительства, все расчеты выполняются только на основе фактических отчетных данных, проектных и нормативных материалов организаций, участвующих в процессе изготовления, транспортировки и строительства, на единицу строительной конструкции.

1.55. Для определения технико-экономической эффективности оптимального размещения предприятий и баз строительной индустрии для отдаленных районов должны быть проанализированы проектные проработки или технико-экономические параметры действу-

ющих предприятий.

В качестве отправных параметров принимаются:

планируемый объем строительно-монтажных работ для каждого из пунктов строительства;

потребность в конструктивных элементах в проектируемых пунктах;

местоположение действующих производств и районы возможного размещения предприятий строительной индустрии;

мощность действующих производств, себестоимость продукции, численность работающих;

схема действующих транспортных связей;

себестоимость перевозок и переработки грузов.

1.56. Определение себестоимости продукции предприятий строительной индустрии. Себестоимость продукции строительной индустрии определяется по плановым калькуляциям, составляемым по методике, разработанной в тресте Арктикстрой и одобренной НИИЭС Госстроя СССР.

Показатели определяются на основании рабочих чертежей кон-

струкций и пояснительных записок, разрабатываемых проектными и

конструкторскими организациями.

1.57. Для определения расчетной стоимости и трудоемкости изготовления конструкций из тяжелых, легких и яченстых бетонов принимается номенклатура следующих показателей:

объем бетона конструкций в плотном теле $E_{\rm K}$, м³;

масса конструкций B_{κ} , кг;

проектная (расчетная) марка Р, кг/см2;

объемная масса бетона в сухом состоянии у, кг/см3;

расход цемента $P_{\mathbf{u}}$, кг;

расход извести $P_{\mathbf{z}}$, кг;

общий расход стали, включая отходы P_{ox} , кг;

расчетная стоимость изготовления 1 м^3 конструкции (франкозавод) $C_{\text{н}}$, руб.

Чтобы определить указанные показатели, необходимы следую-

щие исходные данные:

мощность производства в физическом измерении по всей номенклатуре и его производственная характеристика;

состав вопомогательного производства (котельные, электростан-

ции и т. п.), мощность и производственная характеристика;

характеристика карьерного хозяйства, запасы материалов, технология заготовки нерудных строительных материалов и их физическая характеристика;

транспортная схема доставки нерудных строительных материалов, а также привозных строительных материалов (франко-склад); технология приготовления бетона и раствора;

расход материалов на 1 м³ раствора и бетона в зависимости от его марки по данным лабораторного подбора;

нормативное время и стоимость трудовых затрат на приготовление 1 м³ раствора и бетона;

технология изготовления сборных изделий, характеристика опалубки, ее размеры и масса, балансовая стоимость металлической опалубки и размер начисляемой амортизации;

нормативное время и стоимость трудовых затрат на изготовле-

ние сборных изделий;

потребность в топливе, воде и электроэнергии для определения стоимости содержания котельной; амортизационные отчисления от балансовой стоимости зданий и оборудования котельной; размер основной и дополнительной заработной платы обслуживающего персонала котельной; размер начислений на заработную плату.

1.58. При получении пара от сторонних организаций указыва-

ется только отпускная цена 1 т товарного пара:

потребность пара на технологические нужды и отопление;

перечень машин и оборудования по цехам производственной базы с указанием марки машин, их балансовой стоимости, установленной мощности двигателей; расчет стоимости годовой потребности электроэнергии на технологические нужды;

расход по содержанию и эксплуатации машин и производственного оборудования: сумма основной и дополнительной заработной платы рабочих; сумма расходов на топливо, вспомотательные и смазочные материалы; стоимость работ по техническому обслуживанию и текущему ремонту производственного оборудования и транспортных оредств; сумма амортизационных отчислений; сумма расходов на возмещение износа малоценных и быстроизнашивающихся инструментов;

административно-хозяйственные расходы цехового персонала

(основная и дополнительная заработная плата):

размер дополнительной заработной платы производственных рабочих в процентах от общего фонда основной зарплаты по отчетным данным за один год:

размер отчислений от основной и дополнительной заработной платы (отчисления соцстраху, вышестоящей организации, местному

размер северных льгот к сумме основной заработной платы.

1.59. Стоимость заполнителя предусматривается калькуляциями на добычу 1 м³ с учетом затрат на уборку в карьере снежного покрова, на разработку породы, погрузку, выгрузку, просенвание и промывку песка, щебня или гравия. Транспортные расходы принимаются в зависимости от принятой транопортной схемы перевозки материалов. Расход цемента принимается с K=1.2 к лабораторному подбору (по данным Арктикстроя).
1.60. Стоимость воды, пара, электроэнергии принимается по от-

пускным ценам предприятий-поставшиков или производственным калькуляциям, если их источники - собственное производство.

1.61. Расчетная стоимость изготовления 1 м3 сборной железобетонной конструкции, руб., определяется по формуле

$$C_{\kappa} = C_{6} + C_{cr} + C_{\mu,a} + C_{\mu,a,H} + C_{\mu,r} + C_{\phi}, \tag{15}$$

где C_6 — стоимость бетонной смеси франко-раздаточный бункер бетоносмесительной установки на предприятии сборного железобетона:

 C_{cr} — стоимость стали всех видов на изготовление арматуры и закладных деталей франко-склад металла предприятия сборного железобетона:

 $C_{\text{м. a}}$ — стоимость изготовления ненапряженной арматуры;

 $C_{\text{н.в.н.}}$ — стоимость изготовления напряженной арматуры;

 $C_{\rm H, H}$ — стоимость изготовления закладных деталей; C_{Φ} — сумма затрат на формование и термообработку.

1.62. Полная расчетная стоимость 1 м3 конструкции франко-завод принимается с учетом заготовительно-складских расходов по формуле

$$C_{\rm R} = 1,04 C_{\rm K},$$
 (16)

где 1.04 — коэффициент, учитывающий заготовительно-складские расходы строительства (по отчетным данным треста Арктикстрой).

1.63. Планируемое изменение себестоимости в связи с изменением мощности предприятия определяется по формуле

$$C_{\ell_j} = C_{\ell_{\text{pacq}}} K_{c_j} , \qquad (17)$$

где C_{I_i} — себестоимость единицы продукции в l-м пункте размещения предприятия j-й мощности, тыс. м³ (j=10, 20, 30, ...,

 C_{i} расчетная себестоимость единицы продукции с учетом факторов і-го пункта, влияющих на себестоимость;

Кс, — коэффициент, учитывающий влияние концентрации мощности предприятий сборного железобетона на себестоимость продукции.

1.64. Функциональная зависимость между себестоимостью и мощностью для каждого подразделения предприятий строительной индустрии определяется по данным Красноярского Промстройнии-проекта:

Мощность предриятия, тыс. м 3 . . . 50 40 30 20 10 Коэффициент, ўчитывающий влияние концентрации мощности предприятия на себестоимость продукции K_c . . 1 1,03 1,09 1,20 1,54

1.65. Себестоимость единицы продукции действующих предприятий строительной индустрии, расположенных вне Северной зоны, принимается по отчетным данным соответствующих министерств и веломств.

1.66. Определение транспортных составляющих. Транспортные составляющие рассчитываются по формуле

$$T = \sum_{l=1}^{n} (3_{n,p}^{l} + t^{l} l_{l}) + 3_{r,p} + 3_{n,\phi},$$
 (18)

- где T себестоимость перевозки 1 т конструктивных элементов соответственно железнодорожным, речным, морским, авиационным, автомобильным и тракторным транспортом;
 - $\mathcal{J}_{\mathfrak{n},\,\mathfrak{p}}^l$ себестонмость погрузочно-разгрузочных работ на данном виде транспорта в начальных, промежуточных и конечных пунктах переработки грузов;
 - себестоимость перевозок по видам транспорта: железнодорожного, речного, морского, авиационного, автомобильного и тракторного;
 - l_i расстояние между пунктами доставки отдельными видами транопорта;
 - $3_{\text{т.р}}$ себестоимость тары и реквизита;
 - $3_{n, \Phi}$ себестоимость проводки ледокольным флотом и авиационной ледовой разведки;
 - п число видов транспорта, необходимого для перевозки конструктивного элемента из пункта производства в пункт потребления по принятой схеме завоза;
 - і вид транспорта.
- 1.67. Себестоимость железнодорожных перевозок рассчитывается на основе анализа фактических данных, приведенных Государственным институтом технико-экономических изысканий и проектирования железнодорожного транспорта Гипротранстэп Минтрансстроя СССР.

1.68. Себестоимость морских и речных перевозок и переработки грузов в портах принимается по отчетным данным пароходства и портов соответственно министерств Морского и Речного флота.

Из-за отсутствия отчетных данных по себестоимости морских перевозок по видам грузов транспортные составляющие определяются по отчетным данным в целом на 1 т груза с учетом поправочного коэффициента, учитывающего вид груза и определяемого по соотношению ставок в прейскурантах по классам грузов движенческих операций в условных единицах:

Дальневосточное пароходство — $K_{1}^{'}$ = 0,647;

Северное пароходство — $K_1'' = 0,694$.

При расчете себестоимости перевозки грузов морским транспортом в Арктическом бассейне необходимо дополнительно учитывать затраты на ледокольную проводку судов и ледовую авиационную разведку.

1.69. Определение удельной стоимости перевозки грузов по автозимникам. Удельная стоимость автоперевозок определяется по фор-

муле

$$C = \frac{C_{\pi}}{V} + C_{\tau}, \tag{19}$$

где C_{π} — дорожная составляющая себестоимости перевозок автомобильным транспортом (стоимость постройки автозимника);

$$C_{\pi} = L K + \vartheta, \tag{20}$$

где L — длина автозимника, км;

Э — затраты по текущему содержанию дороги за сезон, руб.;

V — объем грузоперевозок, т/км;

Ст — транопортная составляющая себестоимости (единичная средняя расценка стоимости 1 т/км при перевозке грузов на автомобилях различной грузоподъемности), руб.;

$$C_{\mathsf{T}} = \frac{\sum C_{\mathsf{T}_{\ell}}}{n} \,, \tag{21}$$

где $C_{\tau_{I}}$ — единичные расценки стоимости 1 т/км каждой марки автомобиля, руб.;

п — число автомобилей.

Дорожная составляющая находится путем расчета основных затрат на постройку и эксплуатацию 1 км автозимника.

После нахождения величин основных статей затрат по уравнению удельной стоимости находится удельная стоимость строительства и эксплуатации автоэимника.

1.70. Затраты ледокольного флота и авиационной ледовой разведки на 1 т перевезенных конструктивных элементов рассчитываются по формуле

$$3_{\mathbf{n}.\dot{\Phi}} = \frac{\sum P}{V} \,, \tag{22}$$

где $3_{\text{п.ф}}$ — себестоимость проводки ледокольным флотом и авиационной ледовой разведки на 1 т груза, руб.;

 Р — расходы ледокольного флота и авиации ледовой разведки, руб.;

V = объем арктических перевозок, т, груза.

1.71. Себестоимость тары и реквизита принимается по отчетным данным на 1 м³ изделий, при этом необходимо учитывать, что заготовительно-складские расходы составляют в среднем 4% вместо предусмотренных в сметных нормах 2,1%.

Таким образом, себестоимость привозных конструкций определяется как сумма заводской стоимости, транспортных расходов и заготовительно-складских расходов.

1.72. Затраты на возмещение прямых потерь, вызываемых строительством, учитываются:

в случае ликвидации производственных и непроизводственных основных фондов, которые экономически неэффективно и практически невозможно перенести на другую территорию, — по восстанови-

тельной стоимости с вычетом стоимости используемых в дальней-шем материальных ценностей;

при необходимости переноса основных фондов — по сметной сто-имости:

при устройстве защитных сооружений для предотвращения загрязнения воды, воздуха и почв в районе строительства — по сметной стоимости.

1.73. Общий размер капитальных вложений, определяемый с учетом особенностей условий строительства, степени хозяйственного освоения и территориальной организации хозяйства, исчисляется по следующим видам затрат:

на создание, основных промышленно-производственных фондов— $K_{0,\Phi}$ (прямые затраты);

на образование постоянно находящихся в обороте оборотных средств — $K_{0,c}$:

в сопряженные отрасли — Ксопр;

на развитие транспорта, в том числе ледокольного флота и авиации. — K_{TD} :

на обеспечение рабочей силой — $K_{p.c}$;

на создание непроизводственных основных фондов — $K_{\text{вепр}}$;

на возмещение народнохозяйственных потерь, вызываемых строительством в отдаленных районах, — $K_{\text{пот}}$.

1.74. Таким образом, общие размеры планируемых капитальных вложений в разных районах рассчитываются по формуле

$$K = K_{\text{o.o}} + K_{\text{o.c}} + K_{\text{comp}} + K_{\text{Tp}} + K_{\text{p.c}} + K_{\text{Henp}} + K_{\text{not}}.$$
 (23)

Нормативами не предусматриваются затраты на обустройство и проживание работающих и затраты на сопряженные отрасли; предполагается подключение цехов и заводов в существующие системы и иопользование действующих карьеров нерудных материалов.

1.75. Затраты на сопряженные отрасли определяются прямыми расчетами для каждой стройки, а стоимость обустройства и проживания рассчитывается по формуле

$$K_{00} = \frac{A Y K}{N} , \qquad (24)$$

где A — дополнительные приведенные затраты, руб., на обустройство и проживание одного человека на Севере (по данным Совета по изучению производительных сил при Госплане СССР и Межведомственной комиссии по проблемам Севера):

овропейский Север — 500;

азиатский Север — 1000—1500;

особо отдаленные районы Севера (Арктика) — 3000—4000;

Ч — численность работающих;

K — коэффициент семейности, равный 2,5;

N — годовая производительность предприятия, тыс. M^3 .

1.76. Расчет поправок по укрупненным индексам выполняется в соответствии с указаниями Госстроя СССР.

1.77. Индексы разрабатываются по отраслям (подотраслям) на-

родного хозяйства и промышленности.

Для строительной индустрии I=1,14; для предприятий и баз по обслуживанию строительных организаций I=1,13; для предприятий по производству строительных конструкций, деталей и изделий I=1.15.

1.78. Индекс изменения сметной стоимости определяется путем умножения отраслевого (подотраслевого) индекса на соответствующий коэффициент для области (края, республики) К, на территории которой находится стройка:

$$C_1 = C_2 I K, \qquad (25)$$

где C_1 — новая сметная стоимость строительно-монтажных работ;

 C_2 — сметная стоимость.

1.79. Удельные капитальные вложения по промышленности строительных материалов определяются по формуле

$$K = K_0 + K_{\text{comp}} + K_{\text{of}}, \tag{26}$$

где K — общие удельные капитальные вложения на 1 м³ продукции; Ко — удельные капитальные вложения по нормативам МПСМ СССР и НИИЭС Госстроя СССР;

 K_{conp} — удельные капитальные вложения на 1 м³ продукции в со-

пряженные отрасли промышленности и транопорта;

K₀₆ — удельные дополнительные затраты на 1 м³ продукции на обустройство и прожинвание работающего в 1 климатической зоне.

1.80. От характера размещения предприятий стройиндустрии зависят:

себестоимость единицы продукции на заводе;

уровень удельных капитальных вложений в основную и сопряженные отрасли;

транспортные затраты;

время на подготовительный период;

численность рабочих, занятых на неосвоенном производстве в строительстве;

технология комплектации строящихся объектов конструктивными элементами:

потребности в складских площадях.

Для решения поставленной задачи:

производится проработка возможного размещения производства во всех характерных пунктах сложившихся транспортных путей;

определяются технико-экономические параметры предприятий, участвующих в сопоставительном анализе (в І строительно-климатической зоне и вне ее);

производятся расчеты и сопоставления капитально-производственных и транспортных затрат на единицу продукции.

1.81. Для выбора оптимального размещения баз строительной индустрии, обеспечивающих Северную зону сборными конструкциями, рассматриваются конкурирующие варианты производства конструктивных элементов на предприятиях стройиндустрии.

Выбор вариантов размещения баз стройиндустрии осуществляется на основе фактически сложившихся транспортных путей и наличия заводов железобетонных конструкций как в экономически развитых районах, так и в І стройтельно-климатической зоне.

1.82. Для сопоставительного технико-экономического выбора номенклатуры изделий приняты конструкции из железобетона как наиболее сложный в транспортном отношении вариант.

1.83. В экономически развитых районах выбираются заводы, максимально приближенные к транспортным коммуникациям (Архангельск, Мурманск, Красноярск, Хабаровск, Владивосток). Тот же принцип закладывается и при выборе баз в І строительно-климатической зоне.

Блоки фундаментные, м³ 105,02 96,39 134,4 209 119,62 118,5 Сваи железобетонные, м³ 158,4 138,3 232,14 310,5 195,73 194,68 Рандбалки железобетонные, м³ 155,53 163,67 204,48 360 187,87 182,67 182,67 Дестничные марши, м³ 133,81 118,66 199,9 207 130,62 129,98 Дестничные площадки, м³ 217,87 208,46 290,12 269 212,65 211,4 Колонны железобетонные, м³ 162,4 147,28 209,67 324 173,8 170,4 162,4 147,28 209,67 324 173,8 170,4 170,4 170,56 170,56	Изделия	О-в Диксон	Бухта Тикси	Пос. Черский	Певек	Бухта Провидения	Анадырь
Сваи железобетонные, м³ 158,4 138,3 232,14 310,5 195,73 194,68 Рандбалки железобетонные, м³ 155,53 163,67 204,48 360 187,87 182,67 Лестничные марши, шт. 51,92 46,04 77,56 80 50,68 48,92 129,98	Блоки стеновые, м ³	116,31	105,66	146,08	199,5	128,98	126,56
Рандбалки железобетонные, м³ 155,53 163,67 204,48 360 187,87 182,67 Лестничные марши, шт. 51,92 46,04 199,9 207 130,62 129,98 Лестничные площадки, м³ 217,87 208,46 290,12 269 212,65 211,4 Колонны железобетонные, м³ 162,4 147,28 209,67 324 173,8 170,4 Плиты перекрытий (пустотные), м³ 28,92 30,73 30,9 34,5 39,6 39,54 170,4 180,24 170,14 180,24 170,15 170,15 180,44 180,24 170,15	Блоки фундаментные, м ³	105,02	96,39	134,4	209	119,62	118,5
Лестничные марши, шт. 133,81 118,66 199,9 207 130,62 129,98 лестничные площадки, шт. 55,12 52,74 73,4 68 53,8 53,6 217,87 208,46 290,12 269 212,65 211,4 Колонны железобетонные, м³ 162,4 147,28 209,67 324 173,8 170,4 173,8 173,8 170,4 173,8 173,8 173,4 173,8 173,5	Сваи железобетонные, м ³	158,4	138,3	232,14	310,5	195,73	194,68
Лестничные марши, м³ 133,81 118,66 199,9 207 130,62 129,98 Лестничные площадки, м³ 217,87 208,46 290,12 269 212,65 211,4 Колонны железобетонные, м³ 162,4 147,28 209,67 324 173,8 170,4 Плиты перекрытий (пустотные), м³ 28,92 30,73 30,9 34,5 39,6 39,54 Плиты плоские, м³ 130,13 139,78 140,58 157,3 180,44 180,24 Плиты плоские, м³ 20,9 21,12 36,63 18 20,82 19,98	Рандбалки железобетонные, м ³	155,53	163,67	204,48	360	187,87	182,67
Исстничные площадки, м³ 217,87 208,46 290,12 269 212,65 211,4 Колонны железобетонные, м³ 162,4 147,28 209,67 324 173,8 170,4 Плиты перекрытий (пустотные), м³ 28,92 30,73 30,9 34,5 39,6 39,54 Плиты плоские. 130,13 139,78 140,58 157,3 180,44 180,24 Плиты плоские. 20,9 21,12 36,63 18 20,82 19,98	Tectumula Manura						48,92 129,98
Плиты перекрытий (пустотные), м³ 28,92 30,73 30,9 34,5 39,6 39,54 180,2	Пестничные плошалки ——		\) 	
Плиты перекрытий (пустотные), м³ 130,13 139,78 140,58 157,3 180,44 180,24 20,9 21,12 36,63 18 20,82 19,98	Колонны железобетонные, м ³	162,4	147,28	209,67	324	173,8	170,4
Плиты плоские.							$\frac{39,54}{180,24}$
	Плиты плоские, м ³ м ³						19,98 249,93

Таблица 3 Себестоимость производства железобетонных изделий франкозавод в промышленных центрах, руб.

Изделия	Москва	Владиво- сток	Хабаровск	Архан- гельск	Мурманск	Красно- ярск	Воркута	Петропав- ловск- Камчат- ский	Норильск	Якутск
Блоки стеновые, м ³ Блоки фундаментные, м ³ Сваи железобетонные, м ³ Рандбалки железобетонные, м ³ Лестничные марши, шт. м ³ Лестничные площадки, шт. м ³ Колонны железобетонные, м ³ Плиты перекрытий (пустотные), м ²	30 26,26 48,59 52 25,82 66,51 20,11 80,03 75 3,73 16,95	58,91 33,2 58,59 81,25 22,55 61,1 21,19 83,79 74,09 7,78 36,04	40,33 49,92 76,15 84,35 28,78 74,17 25,05 99,01 80,14 11,12 50,53	40,74 38,89 58,34 74,71 22,46 57,88 19,26 76,13 74,05 6,81 30,78	41,09 44,41 58,48 116,92 26,01 67,12 22,16 88,11 106,12 8,66 39,36	31,74 29,7 44,73 61,37 18,09 46,62 15,57 61,54 59,11 5 22,59	37,74 52,5 61,78 33,01 26,14 67,13 22,31 87,92 75,95 10,61 48,25	65,9 81,57 124,43 137,83 47,03 121,19 40,93 161,78 130,95 18,17 82,57	92,92 115,01 228,46 253,06 86,35 222,51 75,15 297,03 240,42 25,61 116,42	79,08 97,88 149,32 165,4 56,44 145,43 49,12 194,14 157,14 21,8 99,08
_м з Плиты плоские, ^{м²}	4,8	3,9 84,12	4,81	3,87 83,53	3,99 85,76	5,22 66,78	4,85	$\frac{7,86}{169,14}$	$\frac{11,08}{238,49}$	$\frac{9,43}{202,97}$

1.84. Авиационные перевозки в сопоставительный включались, поскольку себестоимость авиаперевозок до пунктов, расположенных на водных путях, явно неконкурентоспособна с пе-

певозкой по воле.

1.85. Расчеты себестоимости производства конструктивных элементов. Себестоимость производства продукции на заводах строительной индустрии, расположенных в Северной зоне, определяется по формулам пп. 1.53-1.65.

Результаты расчетов себестоимости производства железобетонных изделий по ряду предприятий Северной зоны сведены в табл. 2.

Себестоимость железобетонных изделий франко-завод в промышленных центрах принимается по отчетным данным министерств и ведомств.

Отчетные данные по себестоимости производства конструктивных элементов франко-завод на ряде пунктов, участвующих в анализе, приведены в табл. 3.

Таблица 4 Себестоимость железнодорожных перевозок, руб., на 1 т груза

Пункты	Перевозка 1 т груза R _П	Начально-ко- нечные и гру- зовые опера- ции на 1 т R_2
Москва — Владивосток	12,679	0,301
Москва — Архангельск	1,643	0,325
Москва — Мурманск	4,07	0,275
Хабаровск — Владивосток	1,253	0,25
Красноярск — Осетрово	1,789	0,318
Воркута — Лабытнанги	15,37	1,994

Таблина 5 Себестоимость морских и речных перевозок сухих грузов, коп.

Пароходство	Себестонмость перевозки
Северное, 10 т/милю Мурманское, 10 » Балтийское, 10 » Дальневосточное, 10 т/милю Сахалинское, 10 » Камчатское, 10 » Северо-восточная часть Тикси, т/милю Ленское, 10 т/км	6,257 13,603 8,477 8,852 9,53 8 38,35 5,351
Енисейское, 10 »	4,308

Примечание. Себестоимость морских перевозок принята с K=0.694 для Северного бассейна и с K=0.647 для Дальневосточного бассейна за счет класса груза по движенческим операциям (табл. 5а):

	Классы по движенчес-	Группы по	Ставки, коп, движенчески: операций, т/милю, для				
Грузы	ским опе- рациям	стояночным операциям	Дальневосточного бас- сейна Северно				
Лесные грузы Сборные же- лезобетонные конструкции	VII X	3 3	0,8593 0,5561	0,7406 0,5144			

Таблица 6

Порт	Себестон- мость	Порт	Себестои- мость	Порт	Себестон- мость
Архан-	111,4	Бухта Провидения	349,1	Петропав- ловск-Кам-	245,7
Нарьян- Мар А мдерма	641,6 364,5	(Чукотка) Угольная (Чукотка)	717,4	чатский Усть-Кам- чатск	677,4
Мурманск Диксон	75,3 423,6	Эгвикинот (Чукотка)	\	Бухта Тикси Хатанга	434,7
Владивос-	147,1	Нагаево Анадырь	343,8 530,4	Лабытнанги Дудинка	648,1 433,1
Находка	151,4	Певек Ванино	310,7 257,1	На р. Ени- сей	43,26
		(Совгавань)		Нар. Лена	106,3

Примечание. Особо учитываются затраты ледокольного флота и авиационной ледовой разведки, которые принимаются по отчетным данным и анализу фактически отработанного времени ледоколов и службы ледовой разведки в арктической навигации.

1.86. Расчет транспортных затрат. Общему расчету транспортных затрат должно предшествовать определение:

эксплуатационных расходов на перевозку 1 т груза по железной дороге от начального до конечного пункта R_n (табл. 4);

экоплуатационных расходов на начально-конечные и грузовые

операции на 1 т груза по железной дороге R_2 ;

себестоимости морских и речных перевозок на 10 т/миль и 10 т/км соответственно для морского и речного транспорта, с поправками на класс груза (табл. 5);

себестоимости переработки 1 т груза в морских и речных пор-

тах (табл. 6).

Затраты ледокольного флота и авиационной ледовой разведки на 1 т перевезенного груза приняты в размере 13,63 руб. по данным треста Арктикстрой.

На основании расчетных данных составляются калькуляции себестоимости транспортных расходов на 1 т массы конструкций для

Основание для принятия рас- ценки	Операции	Пункты	Расстояние	Стонмость единицы, руб.	Цена, руб.
Отчет Гипро- транстэп	Начально-конечные и грузо- вые Перевозка по железной доро- ге	Москва — Архангельск То же	1174 км 1174 км	0,325 1,643	0,325 1,643
Отчет ММФ	Погрузка на морские суда Перевозка груза морем Разгрузка в порту Ледокольная проводка судов	Архангельск Архангельск — Тикси Бухта Тикси Архангельск — Тикси	2166 милей —	1,114 0,00434 3,668 13,63	1,114 9,4 3,668 13,630
Отчет Арк- тикстроя	Автомобильные перевозки 85% Тракторные перевозки 15% Автомобильные перевозки 50% Тракторные перевозки 50% Погрузочно-разгрузочные ра-	Порт — склад То же Склад — объект То же —	3 KM 3 KM 1 KM	1,111 0,327 1,42 1,968 1,58	3,333 0,982 1,42 1,968 1,58
Отчет ММФ	Сепарация			0,7	0,7
	Итого себестоимость перевозки:	из Москвы из Архангельска	_	=	39,763 37,795

Местораспо- пожение пред- приятия	K ₁	K,	К3	K4	Kĸ	K _o	К _{сопр}	K _{o6}	K	Отрасле- вые индексы	Районные коэффи- циенты	E	E K
Москва Владивос- ток	1 1,26	1 1,1	_	0,25 0,25	=	114 132,7	_	=	114 132,7	1,15	0,96 1,01	0,15 0,15	21,4 26,2
Хабаровск Красно- ярск	1,26 1,1	1,1 1,1	=	0,25 0,25	_	132,7 123,7		_	132,7 123,7	1,15 1,15	1,02 1,04	0,15 7,15	26,5 25,1
Воркута Петропав- ловск	1,38 1,5	1,1	1,05	0,25 0,25	1,82	139,5 258,1	_	4,75 42	144,3 300,1	1,15 1,15	1,07 1,01	0,15 0,15	30,1 52,2
Мурманск Норильск Якутск Архан-	1,15 1,38 1,4 1,15	1 1,1 1,1	 - - -	0,25 0,25 0,25 0,25 0,25	1,22 1,82	120,6 170,5 255,3 120,6		4,75 21 42 4,75	125,4 191,5 297,3 125,4	1,15	1,07 1,04 1,09 1,02	0,15 0,15 0,15 0,15	26,2 34,3 72,7 25
гельск Диксон Тикси Черский Певек Анадырь Провиде- ния	1,38 1,68 1,68 1,8 1,5 1,5	1,1 1,1 1,1 1,1 1,1 1,1	- - - -	0,25 0,25 0,25 0,25 0,25 0,25	4,23 1,82 2,84 1,82 2,84 2,84	590 284,3 440,3 296,4 415 415	42 29 31 36 34 52	175 98 140 98 140 140	807 411,3 611,3 430,4 589 607	1,15 1,15 1,15 1,15 1,15 1,15	1,04 1,09 1,09 1,11 1,11 1,11	0,15 0,15 0,15 0,15 0,15 0,15	145,1 77,2 115,1 82,5 113,2 116,2

каждой транспортной схемы. Автомобильные и транспортные перевозки — расстояние и себестоимость 1 т/км — приняты по данным треста Арктикстрой.

Пример расчета калькуляции себестоимости транспортных расхолов на 1 т строительных конструкций при перевозке их в Тикси

приводится в табл. 7.

1.87. Расчеты удельных капитальных вложений, Результаты расче-

тов удельных капитальных вложений даны в табл. 8.

Базисные параметры принимаются по данным Министерства промышленности строительных материалов СССР и НИИЭС строя СССР.

Поправки на мощность $K_{\kappa,i}$ принимаются по табл. 9.

При расчете удельных капитальных вложений базисные параметры принимаются по заводу железобетонных конструкций ностью 50 000 м³:

удельные капитальные вложения, приходящиеся на строительномонтажные работы. - 48%:

удельные капитальные вложения по оборудованию и прочим затратам — 62%:

удельные затраты на привязку проекта — 12%. 1.88. Технико-экономический анализ совокупных затрат на единицу продукции по пунктам строительства. Расчет выполнен по действующей номенклатуре конструкций, изготавливаемых в цехах бетонных и железобетонных изделий Арктикстроя, для каждого транспортного варианта доставки конструкций в пункты строительства.

Таблина 9 Зависимости между мощностью производства и удельными капитальными вложениями

Мощность предприятий сборного железобетона, тыс. м ³	100	50	40	30	20	10	5
Удельные капи- тальные вложения, руб.	30,8	34,3	36,05	38,97	44,8	62,3	97,3
Отношение удельных капитальных вложений предприятия определенной мощности к мощности к мощностих 100 т/м	30,8	34,3 30,8	36,05 30,8	38,97 30,8	44,8 30,8	62,3 30,8	97,3 30,8
K _K ,	1	1,11	1,17	1,27	1,45	2,02	3,16

Пример расчета совокупных затрат на единицу продукции дан в табл. 10 (завоз конструкций из Москвы через Архангельск).

Западный сектор Арктики: о-в Диксон. Минимальные совокупные затраты на единицу продукции получены при завозе жонструкций, изготовленных в Красноярске (табл. 11). Это объясняется следующими факторами:

			_		Ha	единицу из	мерения		-
Материалы, изделия и полуфабрикаты	Macca,	Транспорт- ные расходы на 1 т (брутто)	себестоимость франко-завод	себестоимость тары и рек- визита	транспорт- ные расходы	итого себестои- мость франко- объект	заготови- тельно- складские расходы	E K	совокуп- ные затраты
Блоки стеновые, м ³ Блоки фундаментные, м ³ Сваи железобетонные, м ³ Рандбалки железобетонные, м ³ Лестничные марши размером 1,05×	1,31 2,42 2,42 2,42 2,42 0,98	39,76 39,76 39,76 39,76 39,76	30 26,86 48,59 52 25,82	4,36 4,36 8,07 4,36 1,7	52,1 96,3 96,3 96,3 39	84,46 127,52 152,96 150,66 66,52	3,46 5,1 6,12 6,04 2,66	21,4 21,4 21,4 21,4 8,28	111,32 154,02 180,48 178,1 77,46
3,26 м, шт. Объем, м³, одного марша 0,388 м³ Площадка лестничная размером 14×2,44 м, шт.		39,76 39,76	66,51 20,11	4,36 1,11	100,5 25,4	171,37 46,62	6,86 1,86	21,4 5,58	199,63 54,06
¹⁴ Х., ¹⁴ м, шт. Объем, м³, одной площадки 0,253 м³ Колонны железобетонные, м³ Плиты перекрытий (пустотные), м² Плиты перекрытиий (пустотные) змером 5,26≿0,79≿0,22 м, м³	2,52 0,3	39,76 39,76 39,76 39,76	80,03 75 3,73 16,95	4,36 4,36 0,52 2,36	100,5 100,5 11,9 54,1	184,89 179,86 16,15 73,41	7,4 7,2 0,65 2,94	21,4 21,4 4,71 21,4	213,69 208,46 21,51 97,75
змером 3,20 0,79 0,22 м, м° Плиты плоские, м² Плиты плоские размером 3,2 × 0,495 × 0,08 м, м³	0,21 2,52	39,76 39,76	4,8 60	0,35 4,36	8,02 100,5	13,17 164,86	0,56 6,59	1,7 21,4	15,43 192,85

Таблица 11

Изделия	Москвы	Мурманска	Архан- гельска	/ Воркуты	Норильск а	Краснояр- ска	Бухты Тикси	Изготовлено на месте
Блоки стеновые, м ³ Блоки фундаментные, м ³ Сваи железобетонные, м ³ Рандбалки железобетонные	101,85 136,24 162,7 162,38	112,17 148,36 166,86 223,78	111,62 143,42 167,5 180,67	117,67 169,83 183,34 201,56	173,43 228,65 350,49 372,22	91,05 113,22 132,71 146,16	163,44 182,19 216,98 221,45	261,44 250,12 303,58 300,63
Лестничные марши, $\frac{\text{шт.}}{\text{м}^3}$	$\frac{70,19}{180,91}$	$\frac{67,87}{174,92}$	$\frac{64,49}{166,22}$	$\frac{73,13}{188,48}$	$\frac{133,16}{343,36}$	$\frac{51,61}{133,01}$	$\frac{77,36}{199,65}$	108,11 278,91
Лестничные площадки, $\frac{\mathbf{m} \mathbf{\tau}}{\mathbf{m}^3}$	$\frac{49,33}{194,97}$	$\frac{49,78}{196,75}$	$\frac{46,86}{185,23}$	$\frac{53,16}{210,1}$	$\frac{106,21}{419,86}$	$\frac{37,58}{148,53}$	$\frac{67,81}{267,56}$	90,38 362,97
Колонны железобетонные, м ³ Плиты перекрытий (пустот-	189,73	215,48	183,04	197,55	316,98	146	232,38	317,5
Плиты перекрытий (пустотные), $\frac{M^2}{M^3}$	19,33 87,87	$\frac{24,14}{109,75}$	$\frac{22,18}{100,81}$	$\frac{28,21}{128,23}$	$\frac{43,41}{197,85}$	17,97	$\frac{41,41}{187,66}$	$\frac{60,5}{275,23}$
Плиты плоские, $\frac{M^2}{M^3}$	$\frac{13,93}{174,14}$	$\frac{15,54}{194,3}$	$\frac{15,43}{192,9}$	$\frac{17,12}{214,03}$	$\frac{28,77}{359,97}$	$\frac{12,32}{153,98}$	$\frac{30,09}{308,01}$	32,61 406,7
							II.	
	1	J i			1			ļ

себестоимость изготовления конструкций и удельные капитальные вложения в Красноярске ниже, чем во всех остальных рассматриваемых пунктах, кроме Москвы. Более низкий уровень себестоимости и удельных капитальных вложений в Москве компенсируется разностью в транспортных затратах;

относительно невысокий уровень транспортных затрат за счет речных перевозок.

Совокупные затраты при изготовлении конструктивных элементов на заводах, расположенных в I строительно-климатической зоне (Тикси, Воркута, Норильск), выше, чем при завозе из экономически развитых районов (Москва, Архангельск, Мурманск, Красноярск),

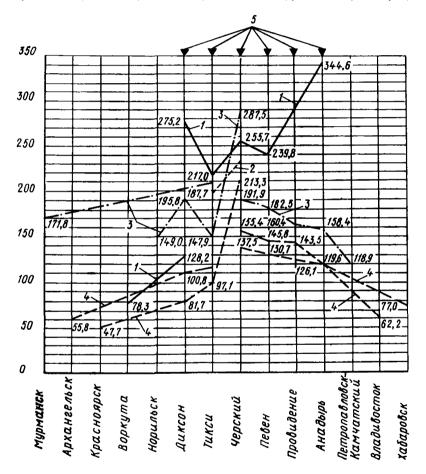


Рис. 1. Динамика совожупных затрат, руб., на 1 м³ железобетонного пустотного настила

I — изготовление на месте строительства; 2 — изготовление на плавучих стройбазах; 3 — изготовление на районных стройбазах в I строительно-климатической зоне; 4 — авоз из экономически развитых районов; 6 — пункты строительства

Таблица 12

	Завоз из						Изготовлемо на местном заводе мощностью, м ³	
Изделия	Москвы через Мурманск	Москвы через Архан- гельск	Аржан- гельска	Краснояр- ска через Дудинку	Краснояр- ска через Усть-Кут	Якутска	10 000	30 000
Блоки стеновые, м ³ Блоки фундаментные, м ³ Сваи железобетонные, м ³ Рандбалки железобетонные,	123,9 177 203,46 203,15	111,32 154,02 180,48 178,1	123,47 165,14 189,23 202,39	127,29 180,12 199,61 213,06	111,48 151,31 170,8 184,25	188,18 231,83 289,19 302,05	182,86 173,53 215,5 306,55	123,7 117 146,8 154,8
Лестничные марши, $\frac{\text{шт.}}{\text{м}^3}$	$\frac{86,65}{223,33}$	$\frac{77,46}{199,63}$	$\frac{73,35}{189,05}$	$\frac{102,34}{201,4}$	$\frac{67,03}{172,76}$	$\frac{109,96}{283,43}$	76,05 195,86	$\frac{51}{131,7}$
Лестничные площадки, <u>шт.</u>	$\frac{60,06}{237,4}$	$\frac{54,06}{213,69}$	$\frac{52,61}{207,93}$	$\frac{55,13}{217,92}$	$\frac{47,63}{188,28}$	$\frac{84,5}{384,09}$	$\frac{72,36}{285,66}$	$\frac{50}{197,2}$
Колонны железобетонные, м ³	232,17	208,46	205,76	215,39	185,75	295,61	224,48	163,2
Плиты перекрытий (пустот- ные), $\frac{M^2}{M^3}$	24,43 111,06	<u>21,51</u> <u>97,75</u>	$\frac{24,87}{113,03}$	$\frac{26,06}{118,44}$	21,36 97,11	$\frac{45,76}{207,94}$	$\frac{48,74}{216,98}$	$\frac{32,7}{147,9}$
Плиты плоские, ^{м²}	$\frac{17,33}{216,57}$	$\frac{15,43}{192,85}$	$\frac{17,25}{215,62}$	$\frac{17,87}{223,37}$	$\frac{15,5}{193,73}$	$\frac{27,64}{343,27}$	$\frac{27,28}{341,2}$	$\frac{18,85}{235,9}$

2 3ak 200

Совокупность затраты на 1 м³ сборных конструкций для пос. Черский, руб.

	Завоз из							
Изделня	Москвы	Хабаровска	Владивостока	Петропавлов- ска-Камчат- ского	Красноярска через Усть- Кут	Бухты Тикси	Изготовлено на месте	
Блоки стеновые, м ³ Блоки фундамент-	149,87 213,82	144,02 213,89	161 192,66	190 260,86	218,45 348,96	259,86 360,16	261,18 249,5	
ные, м ³ Сваи железобетон-	240,28	245,02	222,92	309,3	368,5	395,07	347,24	
ные, м ³ Рандбалки железо- бетонные, м ³	239,96	249,67	242,63	319,38	381,95	399,46	320,58	
Лестничные марши,	101,51	94,91	88,03	119,12	146,91	149,14	122,22	
<u>шт.</u> м ³	261,63	244,62	226,88	307,24	378,63	384,86	315,05	
Лестничные пло-	69,75	68,42	63,38	88,3	99,73	144,71	124,49	
щадки, <u>шт.</u> м ³	275,69	270,45	250,5	349,45	394,2	452,96	413,22	
Колонны железобе- тонные, м ³	270,46	250,83	240,39	317,39	391,73	417,57	324,77	
Плиты перекрытий	28,92	34,2	_30,25	45,76	46,92	_63,42	_56,32	
(пустотные), $\frac{\dot{M}^2}{M^3}$	131,45	155,45	137,49	207,79	213,29	287,48	255,68	
м²	20,39	22,01	20,07	28,56	31,98	39,42	45,28	
Плиты плоские, — м ³	254,86	275,13	259,82	357,11	399,74	493,16	565,72	

за счет высокой себестоимости и удельных капитальных вложений на заводах-изготовителях (рис. 1).

Максимальные совокупные затраты получены при изготовлении конструктивных элементов на месте строительства. Несмотря на минимальную транспортную составляющую, себестоимость и удельные капитальные вложения значительно выше уровня транспортных затрат всех остальных вариантов.

Бухта Тикси. Минимальные совокупные затраты на единицу продукции получены при изготовлении конструкций в Красноярске и завозе их по р. Лене через Усть-Кут (табл. 12). Транспортная составляющая при завозе по р. Лене ниже, чем при завозе по Енисею, поскольку участки морского пути с сопутствующими затратами на ледовую проводку судов и ледовую разведку значительно удорожают перевозку груза.

Совокупные затраты при изготовлении конструкций в Якутске, несмотря на более пизкий уровень транспортной составляющей, выше остальных рассматриваемых вариантов за счет высокой себесто-имости и удельных капитальных вложений.

Таблица 14

Изделия	Москвы	Хабаров- ска			Изготовле- но на месте	
Блоки стеновые,	137,01	137,21	154,38	182,98	282	
м ³ Блоки фундамен-	201,34	201,72	179,87	248,06	291,5	
тные, м ³ Сван железобе-	227,8	232,86	210,13	296,5	392,48	
тонные, м ³ Рандбалки желе- зобетонные, м ³	227,49	237,53	229,84	306,57	442,48	
Лестничные мар-	96,46	89,99	78,95	114,2	112,21	
ши, <u>шт.</u>	248,61	231,93	203,47	293,74	289,48	
Лестничные пло-	66,45	65,21	60,08	85	88,97	
щадки, шт. м ³	262,67	257,76	237,48	335,95	351,48	
Колонны желе- зобетонные, м ⁸	257,44	238,14	227,39	303,89	406,48	
Плиты перекры-	27,37	32,07	28,76	44,98	52,74	
тий (пустотные),	124,43	145,78	130,72	200,43	239,8	
M ³		}			}	
Плиты плоские, м ³	$\frac{19,35}{241,84}$	$\frac{21}{262,45}$	$\frac{19,03}{237,82}$	$\frac{27,46}{343,61}$	$\frac{24,58}{307,48}$	

Таблица 15 Совокупные затраты на 1 м³ сборных конструкций

для Бухты Провидения, руб.

		Завоз из				
Иэделня	Москвы	Хабаров- ска	Владивос- тока	Петропав- ловска- Камчат- ского	Изготов- лено на месте	
Блоки стеновые, м ³	132,64	132,8	149,86	158,74	245,18	
Блоки фундамен-	193,33	193,35	171,86	205,28	235,82	
тные, м ³ Сваи железобе-	219,79	224,48	212,13	253,71	311,93	
тонные, м ³ Рандбалки же-	219,48	229,15	221,76	263,79	304,07	
лезобетонные, м ³ Лестничные мар- ши, — шт. м ³	$\frac{93,27}{240,39}$	$\frac{86,64}{223,32}$	$\frac{79,67}{205,35}$	$\frac{96,5}{249,17}$	$\frac{95,98}{246,82}$	
Лестничные пло- щадки, <u>шт.</u>	$\frac{64,37}{254,45}$	$\frac{63,03}{249,15}$	$\frac{57,92}{228,95}$	$\frac{73,71}{291,38}$	$\frac{83,31}{328,85}$	
Колонны желе- зобетонные, м ³	249,22	229,53	218,86	259,32	290	
Плиты перекрытий (пустотные), м ²	$\frac{26,41}{120,07}$	$\frac{31,52}{143,29}$	$\frac{27,75}{126,14}$	$\frac{38,8}{176,34}$	$\frac{65,24}{296,17}$	
м ³ Плиты плоские, м ² м ³	18,69 233,62	$\frac{20,31}{253,83}$	18,34 229,29	$\frac{23,92}{299,03}$	$\frac{30,12}{376,8}$	

Уровень совокупных затрат при изготовлении конструкций на месте ниже, чем при завозе из Якутска, и в 1,5 раза выше, чем при завозе из экономически развитых районов.

Восточный сектор Арктики: пос. Черский, г. Певек, бухта Провидения, г. Анадырь. Минимальные совокупные затраты на единицу производства конструктивных элементов получены при завозе изделий из Владивостока (табл. 13—16).

Изготовление и завоз изделий экономически более целесообразен из Владивостока, чем из Хабаровска за счет более низкой себестоимости франко-завод-иэготовитель; при завозе конструкций из Москвы себестоимость снижается, но непропорционально возрастают транопортные затраты.

Завоз конструкций из Петропавловска-Камчатского экономически себя не оправдал, несмотря на сокращение транспортных затрат в сравнении с вариантом завоза из Владивостока, поскольку резко возрастает приведенная заводская стоимость изделий за счет

		Завоз из			
Изделня	Владивос тока	Петропав- ловска- Камчат- ского	Бухты Провиде- ния	Изготов- лено на месте	
Блоки стеновые, м ³ Блоки фундаментные, м ³ Сваи железобетонные, м ³ Рандбалки железобетонные, м ³ Лестничные марши, шт. М ³ Лестничные площадки,	143,48	167,78	292,46	242,08	
	160,42	220,82	310,66	232,82	
	190,69	229,26	393,65	308,93	
	210,4	279,33	381,62	301,07	
	75	102,91	126,15	94,7	
	193,29	265,35	324,64	243,91	
	54,87	77,62	103,41	82,4	
	216,88	307,56	409,96	325,85	
$\frac{M^3}{M^3}$ Колонны железобетонные, M^3 Плиты перекрытий (пустотные), $\frac{M^2}{M^3}$ Плиты плоские, $\frac{M^2}{M^3}$	206,8	275,5	369,56	287	
	26,31	40,71	75,94	64,5	
	119,59	185,14	344,62	293,64	
	17,38	25,21	36,75	29,9	
	217,23	315,22	459,85	373,8	

высокого уровня заработной платы, стоимости энергии, материалов и удельных капитальных вложений. Так, например, приведенные затраты франко-завод на 1 м³ железобетонного пустотного настила во Владивостоке составляют 68,59 руб., а в Петропавловске-Камчатском — 143,11 руб. (разница 74,52 руб.). Сокращение транспортных расходов при доставке конструкций из Петропавловска-Камчатского в пос. Черский составляет всего 4,22 руб. (68,9 руб. — 64,68 руб.).

Поскольку для западного сектора Арктики завоз конструкций з Красноярска является экономически наиболее выгодным; подобный вариант расоматривался для строительства в пос. Черском. Он оказался неконкурентоспособным, так как завоз конструкций в Езсточный сектор Арктики из Красноярска через Тикси резко повышает транспортную составляющую за счет услуг Северо-восточного пароходства, у которого себестоимость перовозок на 1 т/милю значительно выше себестоимости у всех остальных пароходств, обслуживающих Арктический бассейн.

Приведенные затраты на 1 м³ конструкций при размещении производства в бухте Провидения для строек Анадыря выше, чем при изготовлении продукции непосредственно в самом Анадыре за счет транспортной составляющей.

Учитывая, что с увеличением мощности производства снижаются себестоимость и удельные капитальные вложения на единицу продукции, предуомотрено увеличение мощности завода железобетонных изделий в бухте Тикси с 10 000 до 30 000 м³. При этом учитыва-

лись потребности в железобетонных конструкциях кроме бухты Тикси также острова Диксон и пос. Черский.

Результаты расчета показали, что совокупные затраты значительно снижаются непосредственно в пункте расположения заводапоставщика (бухты Тикси), но остаются неконкурентоспособными
затратами при завозе конструкций из экономически развитых районов во всех трех пунктах (бухта Тикси, Диксон, пос. Черский).

Расчет при завозе конструктивных элементов в арктические пункты строительства с заводов, расположенных в I строительно-климатической зоне, показал целесообразность создания районных баз строительной индустрии.

При выборе методов организации рассредоточенного строительства необходим дифференцированный подход для отдельных строек и районов.

Создание предприятий стройиндустрии в каждом узле рассредоточенного строительства и районных баз в Арктике экономически неоправдано.

Минимальные совокупные затраты на единицу продукции получены при завозе готовых конструкций из экономически развитых районов.

1.89. Определение коэффициентов уменьшения продуктивности работ и увеличения сроков их выполнения. Продуктивность работы зависит от времени года; так, например, если выполняются каменные работы (П группа работ по нормам ЕНиР) в январе, то зимний коэффициент увеличения трудоемкости работ равен 1,45 (коэффициенту уменьшения производительности труда 0,69). Если среднемесячное время неблагоприятных для работы погодных условий составляет 19% (коэффициент уменьшения времени работы из-ва неблагоприятных погодных условий 0,81), то продуктивность работы в январе по сравнению с летними условиями составит только 0,56, т. е. на 44% будет ниже, чем летом.

Подсчет трудозатрат и стоимости работ, согласно их объемам, производится по IV части СНиП, УСН и местным усредненным нормам. Сетевой график строительства составляется без привязки к конкретному времени начала работ. Выполняется сметно-финансовый расчет. Этот вариант принимается за эталонный для сравнения с другими вариантами строительства и выбора оптимального.

Составленный сетевой график привязывается к определенным месяцам начала работы с корректировкой способов производства работ, изменением времени выполнения некоторых видов работ или изменением числа людей и механизмов в зависимости от времени года.

Порядок расчета оптимального срока начала строительства

1.90. Колебание сроков производства работ в зависимости от месяца их выполнения равно nK, где n — число дней выполнения работы для условий по трафику-эталону; K — коэффициент увеличения продолжительности работы (величина, обратная коэффициенту уменьшения продуктивности).

Продолжительность при выполнении работы в смежных месяцах равна:

$$t^{c} = \left(t^{H} - \sum_{i=1}^{n} \frac{\mathcal{I}_{i}}{K_{i}}\right) K_{n+1} + \sum_{i=1}^{n} \mathcal{I}_{i}, \tag{27}$$

где

t^c — продолжительность работы с учетом неблагоприятных метеорологических факторов Севера;

t^н — нормативная продолжительность при условии выполнения работы в нормальных метеорологических условиях в зависимости от физических объемов, состава звена и требований ЕНиР;

Д_I
 — сумма отношений рабочих дней месяцев, в которые работа выполняется с корректирующим коэффициентом каждого из них. Эта сумма составляющих нормативной продолжительности ΣД, распределяемых по месяцам, в которые работа выполняется, но без последнего;

 $\sum_{i=1}^{n} \mathcal{A}_{i}$ — сумма рабочих дней месяцев, в которые работа выполняется, без учета последнего месяца, на который переходит конечная часть нормативной продолжитель-

HOCTH
$$\left(t^{H}-\sum_{\ell=1}^{n}\frac{\mathcal{A}_{\ell}}{K_{\ell}}\right);$$

п — число календарных месяцев выполнения работы.

Для соблюдения сроков выполнения отдельных видов работ, устанавливаемых графиком-эталоном, необходимо соответствующее увеличение числа людей и машин.

Результаты расчета сетевых графиков при различных датах начала работ позволяют выявить общую продолжительность строительства объектов, а также продолжительность отдельных видов работ в зависимости от времени года.

1.91. Для облегчения подсчетов стоимости и трудоемкости работ составляются трафики изменения трудозатрат и стоимости единицы каждого вида основных работ для конкретного района строительства в зависимости от времени тода. В графиках на единицу работы учитываются стоимость рабочей силы по нормам ЕНиР, поясные и зимние коэффициенты, оплата проектов из-за неблагоприятных погодных условий, стоимость материалов, электроэнертии, увеличение количества цемента для получения требуемых марок бетона в зимнее время.

В трудозатраты включаются нормативы и зимние коэффициенты к нормам времени ЕНиР, а также на дополнительные работы.

Графики составляются по всем видам основных строительномонтажных работ, включая изменения стоимости и трудозатрат на обогрев и сушку единицы строящегося здания в зависимости от временя года.

На рис. 2 представлены графики изменения трудозатрат и стоимости по видам работ. Для удобства анализа и расчета виды работ обозначаются индексами A, B, C.

По сетевому графику с датой начала строительства 1 января

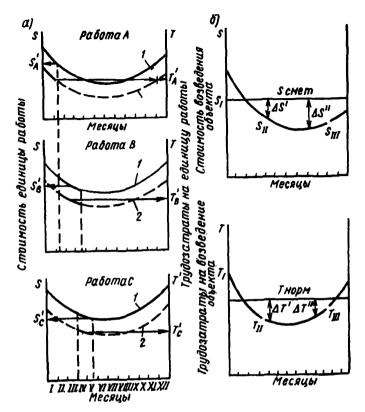


Рис. 2. Изменение стоимости и трудовых затрат в зависимости от времени начала работ

работа А начинается 2 января и заканчивается 10 февраля. Средняя стоимость единицы работы А за этот период определяется по кривой 1 и будет равна 5 4.

Работа В выполняется с 10 февраля по 15 марта.

Средняя стоимость единицы работы B равна S_B , работы C — S'. . Соответственно, трудозатраты на единицу работы будут равны T_A , T_B , T_C . Объемы работ в соответствующих единицах изме-

рения будут равны V_1 , V_2 , V_3 . 1.92. Расчет общей стоимости и трудозатрат ведется по форму-

при начале работ 1 января: стоимость

 $S_1 = S'_A V_1 + S'_B V_2 + S'_C V_3 + \dots + S'_n V_n + H + \Pi;$

$$T_1 = T'_A V_1 + T'_B V_2 + T'_C V_3 + \ldots + T'_n V_n;$$

при начале работ 3 мая: стоимость

$$S_{II} = S_A^r V_1 + S_B^r V_2 + S_C^r V_3 + \ldots + S_n^r V_n + H + \Pi;$$

трудозатраты

$$T_{11} = T''_A V_1 + T''_B V_2 + T''_C V_3 + \ldots + T'_n V_n$$

H — су ма накладных расходов;

 Π — плановые накопления.

Аналогично определяются S_{III} и T_{III} .

На рис. 2 показаны условные времения стоимости и трудозатрат при возведении объекта в зависимости от времени начала работ. Оптимальное время начала работ строительства по стоимости определяется пересечением кривой $S_{\rm I}$, $S_{\rm II}$ и $S_{\rm III}$ с прямой $S_{\rm CMOTH}$ стоимости строительства, учитывающей зимние удорожания; по трудозатратам — пересечением кривой $T_{\rm I}$, $T_{\rm III}$, $T_{\rm III}$ с прямой нормируемых трудозатрат $T_{\rm HODM}$.

Экономия по сравнению со сметной стоимостью при начале строительства, например, 10 июня составит $\Delta S'$, по трудозатратам $\Delta T'$; при начале строительства 1 сентября—соответственно $\Delta S''$ и $\Delta T''$;

при этом может оказаться, что $\Delta S' < \Delta S''$, а $\Delta T' > T''$.

Оптимальность избираемого варианта должна подсчитываться как $\Delta S + \Delta T Z$, где Z— комплекс факторов, влияющих на сметную стоимость ствоительства на Севере.

В Приложении изложен один из методов расчета коэффициентов снижения темпов производства строительных работ, используемых при корректировке сроков начала строительства на стадии планирования.

Расчет объемов строительства временного и постоянного поселков при освоении новых площадок строительства

1.93. Чтобы рассчитать объемы строительства временного и постоянного поселков, необходимо определить:

их оптимальные соотношения, а также объемы завозимого жилого фонда пионерного отряда;

сроки начала и окончания ликвидации поселка пионерного отряда, демонтажа сборно-разборных зданий временного поселка:

сроки начала и окончания строительства временного и постоянного поселков и темпы их возведения, что позволит определить структуру и мощность строительных подразделений.

На рис. З видно, что общая численность населения превышает максимальную численность эксплуатационного персонала, которая характеризует целесообразный объем жилой площади временного поселка.

¹ Область, расположенная ниже линии сметной стоимости $S_{\text{сметн}}$ и нормируемых усредненных трудозатрат $T_{\text{норм}}$, принимается более экономичной, а расположенная выше — менее экономичной по сравнению с указанными линиями $S_{\text{сметн}}$ и $T_{\text{норм}}$.

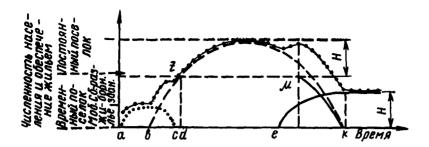


Рис. З. Объемы строительства временного поселка время возведения: ad — временного поселка; be — постоянного; ek — демонтаж временных зданий

Окончание строительства временного поселка целесообразно в момент d. В это же время должна начинаться подготовка к сдаче домов постоянного поселка и можно приступать к перебазировке жилого фонда временного поселка в другой район, к разборке домов. Сроки ликвидации поселка характеризуются временем, соответствующим точке e.

При строительстве нефтегазопроводов и электростанций численность строителей, как правило, значительно превышает численность эксплуатационного персонала.

Расчет объемов строительства временного и постоянного посел-ков ведется аналогично предыдущему.

При комплексном освоении района со строительством ряда предприятий и населенных мест метод расчета на начальный период остается тем же.

2. ОРГАНИЗАЦИЯ СПЕЦИАЛЬНОЙ ИНЖЕНЕРНОЙ ПОДГОТОВКИ ТЕРРИТОРИИ

Вертикальная планировка территории

2.1. Вертикальную планировку территории производят различными способами, сохраняя или изменяя верхнюю границу вечномерзлых грунтов:

поднятие верхней поверхности вечномерэлых грунтов до уровня подошвы насыпи; этот способ применяется преимущественно на участках, где въблизи верхней границы вечномерэлых грунтов (ВГВМ) залегают значительные линзы и включения льда, а деятельный слой маломощен (0,4—0,6 м) и сложен просадочными пучинистыми грунтами:

частичное поднятие верхней поверхности вечномерзлых грунтов; данный способ применяется при залегании вблизи ВГВМ пещерно-жильных или погребенных льдов, при просадочных грунтах нижней зоны деятельного слоя и малопросадочных верхней его воны. Этот способ может быть применен и при наличии просадочных грунтов верхней зоны деятельного слоя, но в этом случае обязателен расчет величины возможной их просадки;

сохранение естественного положения ВГВМ; рекомендуется на территориях с температурой вечномерэлой толщи в зоне нулевых годовых амплитуд не выше — 3°С, а также при отсутствии вблизи ВГВМ подземных льдов; при этом предполагается, что грунты деятельного слоя непросадочные или малопросадочные;

понижение естественного положения верхней поверхности вечномерэлых грунтов допускается и при непросадочных или малопросадочных грунтах в пределах деятельного слоя и ниже его, когда нет ледяных включений, линз. Как правило, этот способ применяют на территориях с выемками и насылями высотой менее 0,5—0,6 м.

Ожидаемые изменения положения ВГВМ при любом из приведенных способов должны быть обоснованы соответствующими теплотехническими расчетами.

В целях сокращения высоты подсыпки при вертикальной планировке инотда целесообразно улучшение свойств естественных грунтов путем предварительного протаивания и осущения верхнего слоя. Последнее возможно при однородных грунтах с достаточно хорошей фильтрационной способностью. При этом прикрывающие небольшие слои торфа или связанные сильно водонасыщенные грунты полностью заменяют крупноскелетными.

2.2. Вертикальная планировка территории может быть решена или в виде сплошной насыпи по всей территории, или в виде островного решения, когда насыпи устраиваются только под зданиями, сооружениями и подземными путями.

При сплошной насыпи более эффективно и просто устройство системы водоотлива; при этом значительно благоустраивается территория и улучшаются условия проживания, однако в ряде случаев она менее экономична, чем островное решение.

К недостаткам островного решения наряду со сложностью прокладки инженерных сетей относятся трудность организации производства работ, возникновение так называемых карманов — пониженных мест между насыпями, где откладывается и собирается мусор, а также сложность организации водоотвода в целом.

Осушение территории и защита от затопления

- 2.3. Отвод поверхностных атмосферных вод от населенных пунктов осуществляется или общесплавной системой канализации, принимающей в себя и хозяйственно-фекальные воды, или раздельной системой ливневой канализации в виде открытых лотков, дорожных кюветов, водоотводных канав, мерэлотных валиков. При неусовершенствоватных дорожных покрытиях отвод воды осуществляется, как правило, по придорожным кюветам или лоткам до ближайших водоспускных сооружений. Расстояние между поперечными перепусками воды принимается в пределах 50—150 м.
- 2.4. Отвод вод с усовершенствованных покрытий в случае насыпи осуществляется главным образом за счет поперечных уклонов проезжей части; при устройстве улицы без кюветов отвод воды производится ливневой или общесплавной канализацией сброса воды через дождеприемные колодцы.
- 2.5. Расположение водоотводящей сети в плане, ее тип и конструкция назначаются с учетом рельефа местности, характера застройки, мерэлотно-грунтовых условий, наличия местных строительных материалов.

2.6. При размещении населенного места на склоне или у его подошвы в целях защиты территории от подтопления водами с верховой стороны устраиваются нагорные канавы и мерэлотные нагорные валики. Нагорные канавы устраиваются на участках с непросадочными грунтами; при залегании подземных льдов непосредственно под деятельным слоем рекомендуется устраивать мерэлотные нагорные валики. Сечения канав и размеры нагорных валиков опрелеляются гидоавлическими и теплотехническими расчетами.

Расстояние открытых водостоков от фундаментов зданий должно быть не менее 5 м; при неблагоприятных мерэлотно-грунтовых условиях (просадочные и сильнопросадочные грунты) его следует

увеличить до 10 м и более.

2.7. Выбор и организация места сброса поверхностных вод с территории населенного пункта производятся с учетом направления их в естественные тальвети и пониженные участки. Не допускается сброс в водоемы, являющиеся источниками водоснабжения, в места общественного пользования, а также в размываемые овраги и замкнутые котлованы в пределах застроенной территории. Следует также помнить о вредном действии сосредоточенного потока поверхностных вод на вечномерзлые грунты, особенно, если основанием сооружений являются вечномерзлые грунты.

Иногда в качестве водоотводящих сооружений при непросадочных или малопросадочных грунтах оснований могут быть рекомендованы щелевые дренажи. Однако в период промерзания деятельно-

го слоя в нем образуются наледи, забивающие щели.

Для отвода грунтовых (надмерэлотных) вод от зданий и сооружений в зависимости от мерэлотно-грунтовых условий и значения объекта могут быть устроены кольцевой, пластовый и смешанный типы дренажей.

Понижение уровня грунтовых вод может быть произведено как для отдельных зданий и сооружений, так и на всей застраиваемой

территории.

2.8. При осущении территории в первую очередь отводят поверхностные воды по нагорным или отводимым канавам. Затем устраивают постоянный дренаж в виде системы открытых и закрытых коллекторов, в которые поступает вода из дренажных канав. Последние устраивают через каждые 20—30 м друг от друга, чтобы всю заболоченную территорию разбить на отдельные участки.

Многие реки районов Арктики и Крайнего Севера многоводны не только во время весенних паводков, но и в периоды летне-осенних дождей. Территории речных и морских портов, расположенные по их берегам и в устьях, требуют защиты от воды и мощных глыб льда, от затопления при временных катастрофических паводках и

постоянных подтоплений морскими приливами.

2.9. Отметки застраиваемой территории должны превышать расчетный горизонт высоких вод не менее чем на 0,5 м. При этом за расчетный горизонт принимается уровень воды с вероятностью повторения для предприятий крупного народнохозяйственного значения — один раз в 100 лет, для прочих предприятий — один раз в 50 лет. Допустимость кратковременного затопления отдельных участков и, соответственно, понижения отметки их территории должна быть обоонована проектом.

Для защиты от затопления вокруг территории устраивается вал или производится сплошное или островное поднятие территории, ре-

гулируется русло рек.

Обвалование территории может быть по условиям рельефа двух-

сторонним, односторонним и кольцевым. Профиль дамб назначается в зависимости от свойств грунтов насыпи, мерэлотно-грунтовых условий (мерэлотные дамбы) и возможности пропуска по гребню автомобильного транспорта. Концы дамб должны примыкать к участкам, возвышающимся над расчетным горизонтом воды.

2.10. При сравнительно небольших затапливаемых площадках островное или сплошное поднятие территории регулированием грун-

тов, как правило, экономичнее устройства дамб.

Выбор того или иного решения по защите территории от затопления должен производиться для каждого населенного места в едином комплексе с другими инженерными мероприятиями по благоустройству.

Борьба с мерзлотно-геоморфологическими образованиями

- 2.11. В практике строительства имеют место мерэлотно-геоморфологические явления, вызывающие деформации сооружений (бугры пучения, морозобойные трещины, солифлюкционные термокарстовые и провальные образования и наледи).
- 2.12. Термокарстовые, просадочные и провальные формы рельефа возникают в результате вытаивания в толще вечномерэлых пород подземного льда и последующей просадки верхних оттаявших слоев. Возникают провалы, воронки, просадочные озера глубиной 1,5—3 м; отличительной особенностью является их интенсивное увеличение, сопровождающееся сползанием грунта у берегов. Иногда они распространяются на общирные территории, образуя заболоченые низменности аласы. Образованию термокарста способствуют нарушения термического режима грунтов, которые происходят при застройке и заселении территорий. Возникновение и развитие их в пределах поселков представляет серьезную утрозу для сооружений.

Для предупреждения термокарстовых явлений на осваиваемой территории необходимо (особенно при мелкозернистых с ледяными включениями грунтах) стремиться к сохранению положения верхней границы вечномерэлых грунтов. Поэтому не рекомендуется нарушать растительный покров территории, корчевать пни и вырывать корни при вырубке деревьев и кустарника; на временно оголен-

ных местах не допускается проезд транспорта.

2.13. Оврагообразованию на застраиваемой территории предшествуют эрозионные процессы, вызванные главным образом размывом льдистых мерэлых грунтов проточными водами. Особенно значительному разрушению подвергаются склоны и откосы. Образование оврагов усугубляется неправильной эксплуатацией площадок, уничтожением растительного покрова, а также отсутствием водоотводов, когда поток грунтовых вод не регулируется.

Чтобы прекратить развитие оврага или ликвидировать его, необходимо перехватить ливневые воды с близлежащих склонов, уда-

лить из оврага воду, осушить его и укрепить откосы и ложе.

Засыпать затухающие овраги следует грунтом, не имеющим ледяных включений; верхний слой засыпки устраивают из нефильтрующих грунтов с небольшим возвышением над прилегающей поверхностью с полотими откосами для лучшего стока воды.

2.14. На Крайнем Севере широкое распространение имеют солифлюкционные явления. Известны случаи перехода солифлюкционного сплывания в оползни катастрофического характера. Солифлюкционные явления приносят значительный ущерб строительству и дорожному хозяйству, разрушая покрытия и уничтожая почвенный слой иногда на больших территориях. Чтобы предупредить эти явления, в первую очередь необходимо перехватить поверхностные и грунтовые воды нагорными канавами, мерзлотными валиками и отвести их от склона, обращенного к застраиваемой территории.

При разработке гентлана строительства сооружений рекомендуется точно определить границы, отделяющие зону солифлюкции и оползней от устойчивой части территории и по возможности из-

бегать раоположения зданий и сооружений в указанной воне.

2.15. Наледи образуются в результате выхода речной или подземной воды на поверхность ледяного покрова или грунта. Образование многолетних наледей, в отличие от однолетних, происходит в том случас, когда наледный лед не успевает оттаивать в течение летнего сезона и сохраняется до возникновения новой наледи.

Площадь, занимаемая речной наледью, может достигать нескольких квадратных километров. Мощность льда речных наледей вследствие неоднократного их нарастания при выходе воды иногда достигает 4 м; на северо-востоке Якутской АССР наблюдались наледи мощностью до 10 м и длиной до 27 км. Речные наледи деформируют мосты, трубы, водозаборные сооружения и препятствуют движению по зимним дорогам, проложенным по льду рек.

Грунтовые наледи вызываются действием подземных потожов и образуются под напором, возникающим при уменьшении сечения этих потоков. Они нередко сопровождаются образованием наледных бугров при замерзании грунтовой воды в толще деятельного слоя. Грунтовая наледь может образоваться под отсыпанным в летний пе-

риод слоем грунта, под штабелем угля, шлака, золы.

Вследствие прекращения отопления зданий и уменьшения размеров талика под ними трунтовые воды в основании могут приобрести напор. Прорыв их через незамерзшие толщи грунтов явится следствием образования наледей в домах, банях и других сооружениях, экоплуатация которых прекращена. Нередко наледи возникают в результате устройства выемок, водоотводных канав, отсыпки кавальеров и при разработке карьеров.

Не следует располагать сооружения на участках, где могут образоваться наледи, а в случае неизбежности такого строительства необходимы противоналедные устройства. В качестве противоналедных устройств наиболее часто используются мерэлотные пояса и мерэлотные валики. Мерэлотный пояс представляет собой полосу, с которой в течение зимы убирается снег; вследствие этого под ней увеличивается промерзание, что преграждает поток грунтовых вод. Мерэлотный валик отсыпается из местного нефильтрующего грунта. В результате ВГВМ повышается и тем самым создается препятствие для потока грунтовых вод.

2.16. Не следует располагать сооружения на местности, где распространены бугры пучения — внешние поднятия почвы под действием подземных вод, в ядре которых находятся ледяные залежи.

Бугры пучения, как правило, недолговечны—с изменением теплового режима они разрушаются. Срезка бугров пучения при планировке не рекомендуется, лоскольку влечет за собой быстрое оттаивание грунтов основания и просадку поверхности.

2.17. Морозобойные трещины возникают в результате неравномерного охлаждения грунтов, вызывающего развитие в них растягивающих напряжений, превышающих предел прочности на разрыв мерзлых грунтов. Образование морозобойных трещин чаще всего происходит на оголенных от снега участках во время сильных холодов и сопровождается иногда содроганием земли и гулом. В результате образуется сеть трещин. Глубина растрескивания достигает 5—10 м. При повторном растрескивании трещины расширяются и углубляются, а затем заполняются снегом и водой, превращающимися в лед.

Широкое распространение растущих морозобойных трещин наблюдается в настоящее время в северных широтах, на побережье морей и среди малоснежных влажных тундровых пространств.

Морозобойные трещины, возникающие на застроенных площадках, опасны для подземных сооружений и коммуникаций, которые при образовании и росте трещин, как правило, разрываются. При строительстве на участках, подверженных мороэному растреокиванию, необходимо, сообразуясь с условиями местности, предусмотреть мероприятия по изменению теплового и гидрогеологического режима площадки. К таким мероприятиям относятся подсыпка территории, осущение ее, устройства для задержания снегового покрова.

3. ОРГАНИЗАЦИЯ ВОЗВЕДЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ НА ПОД€ЫПКАХ

- 3.1. Районы Северной зоны различаются между собой наличием твердомерэлых или пластично-мерэлых грунтов. При наличии твердомерэлых грунтов строительство ведется только с использованием грунтов по принципу I, в районах с пластично-мерэлыми грунтами по принципам I II. Эти условия требуют обязательного проведения тщательных предпостроечных изысканий до начала проектирования всех видов зданий и сооружений и в том числе возводимых на подсыпках.
- 3.2. Большое число зданий на севере и в более южных районах СССР можно возводить на подсыпках из местных дренирующих

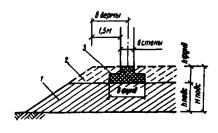


Рис. 4. Фундамент на подсытке 1— часть подсыпки, выполняемая до устройства фундамента; 2— верхний слой подсыпки, который отсыпается после бетонирования фундамента; 3 фундамент

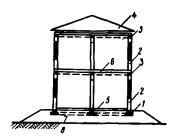


Рис. 5. Схема двухэтажного крупнопанельного здания на подсыпке

1 — железобетонный ленточный фундамент;
 2 — стеновая панель;
 3 — железобетонный пояс по периметру здания;
 4 — кровля;
 5 — нол на подсыпке;
 6 — междуэтажное железобетонное перекрытие;
 7 — подсыпка;
 8 — грунт

материалов. Подсыпка устраивается на предварительно подготовленной поверхности площадки. На подсыпке возводятся фундаменты без заглубления в естественный грунт (рис. 4). Такой способ устройства фундаментов и выполнения работ нулевого цикла целесообразен:

при большом льдосодержании вечномерэлых грунтов, что вы-

зывает при оттаивании их просадочность;

при возведении одно- и двухэтажных каменных, деревянных, крупнопанельных построек (рис. 5) в поселковом, городском, сельскохозяйственном и промышленном строительстве, а также на строительстве газо- и нефтепроводов, на разведке полезных исколаемых.

Для одно- и двухэтажных зданий стоимость заглубленных фундаментов составляет до 20% сметной стоимости; стоимость фундаментов на подсыпке для таких же зданий на 5—6% ниже. В перспективе возможно бесфундаментное строительство более высоких зданий,

3.3. Фундаменты зданий и сооружений, устраиваемые на подсыпках, в зависимости от конструкций и материала, примененных для их возведений, выполняются в виде:

деревянных лежней с нижней обвязкой (табл. 17);

Таблица 17 Рекомендуемые размеры деревянных лежневых фундаментов

Число Яэжате	Давление	Сечение нижно под	Лежн	и, уклады подсып	іваемые на ку	
	на осно- вание, кгс/см ²	наружные	внутренние	Ø, cm	длина, см	расстояние между лежнями, см
1 1 2 2	1 1,5 1 1,5	20×15 20×15 20×15 20×15	15×10 15×10 15×10 15×10	24 24 26 26	60 60 80 100	100 80 100 80

железобетонных монолитных обвязочных фундаментных балок прямоугольного, а лучше тавровото сечения с полкой понизу (для увеличения площади опирания фундамента на подсыпку);

фундаментных балок из сборного железобетона.

3.4. При проектировании фундаментов из монолитного железобетона под здания со сроком эксплуатации до 20 лет можно пользоваться данными опыта строительных организаций (табл. 18); под здания со сроком службы более 20 лет размеры фундаментов рекомендуется рассчитывать.

3.5. При устройстве сборных ленточных фундаментов следует применять железобетонные элементы прямоугольного или трапецеидального сечения, руководствуясь каталогами строительных изделий (в зависимости от нагрузки по подошве фундамента).

3.6. Часть построенных на подсыпке зданий подверталась деформациям, которые явились следствием ощибок, допущенных при разработке ПОС, ППР и производстве строительно-монтажных ра-

Рекомендуемые размеры ленточных фундаментов из монолитного железобетона

Число этажей	Давление на осно-	Ширина по- дошвы фун- дамента, см	Высота фун-	Площадь поперечного сечения арматуры ${F}_{m{d}}$, см 2		
	вание, кгс/см ²		дамента, см	в нижнем сечении	в верхнем сечении	
ı	1	100	60	7,7*	0,5F _d	
1	1,5	80	60	6,9 8,9	-0,5F _d	
2	1	150	80	10,8	0,5F _d	
2	1,5	120	30	15,6	0,5F _d	

^{*} В числителе — площадь арматуры из стали класса A-II периодического профиля, в знаменателе — из стали класса A-I.

бот. Следовательно, при разработке ПОС и ППР необходимо не только руководствоваться «Инструкцией о порядке составления и утверждения проектов организации строительства и проектов производства работ» (СН 47-74), но и принимать во внимание естественно-исторические условия Северной зоны.

3.7. Здания и сооружения на подсыпках возводятся согласно СНиП 11-Б.6-66 с сохранением мерэлого состояния грунтов и на

талых и оттаивающих грунтах.

3.8. При устройстве зданий и сооружений на подсыпке за пределами зоны распространения вечномерэлых грунтов применяются проектные и организационно-технические решения; аналогичные тем, которые предусмотрены при использовании грунтов по 11 принципу СНиП II-Б.6-66.

На подсыпках строятся следующие типы малоэтажных объектов (высотой 1—2 отажа):

временные (со сроком эксплуатации до 20 лет) промышленные, жилые и гражданские здания и сооружения:

постоянные промышленные, жилые и гражданские здания и сооружения;

магистральные трубопроводы (сети водоснабжения, теплофика-

ции) с комплексом вспомогательных сооружений.

При решении конструктивных вопросов надо учитывать мобильность и транспортабельность зданий. С этой целью для устройства фундаментов предпочтительно использовать оборные элементы, а стены выполнять из легких крупных панелей или объемных бло-

Примечания: 1. Марка бетона 200 кгс/см².

^{2.} Диаметр хомутов, расположенных через 25 см, 8-10 мм.

ков. При строительстве деревянных зданий это условие может быть достигнуто благодаря использованию каркасно-щитовых заводских деталей или брусчатых рубленых.

Выбор материала для подсыпки

3.9. Материалы подсыпки должны удовлетворять следующим требованиям:

обеспечивать восприятие нагруэки не менее 1 кг/см² на уровне низа фундамента;

иметь модуль общей деформации в уплотненном состоянии не менее 800 кг/см²;

хорошо дренировать воду в уплотненном состоянии: коэффициент фильтрации должен быть не менее 1 м/сут;

быть морозостойкими; допускается не менее 20 циклов замораживания-оттаивания;

быть непучинистыми; не допускается более 10% (по массе) пылевато-глинистых примесей; относительная деформация при замораживании-оттаивании под нагрузкой 1 кг/см² не должна превышать 0.01;

быть неразмокаемыми;

не содержать горючих примесей (торфа, угля).

3.10. В соответствии с вышеперечисленными требованиями для подсыпок могут применяться естественные грунты (гравийно-песчаные природные смеси, гравелистые пески, галечники, щебень) и отходы промышленного производства (горелые породы шахтных терриконов, шлаки). Негорелые породы шахтных терриконов в отличие от горелых быстро разрушаются от влаги и как строительный материал для возведения подсыпок непригодны.

3.11. По зерновому составу материал подсыпки должен удов-

летворять следующим требованиям:

Диаметр отверстий сит, мм . . . 70 5 0,14 0,05 0,005 Количество частиц, % по массе, про-

ходящих через сито, не менее . . . 90

20 25 10 2

Основные требования к организации карьеров

3.12. При составлении проекта организации строительства определяются наиболее рациональные схемы разработки карьера и организации карьерного хозяйства. Для наилучшого использования средств механизации следует применять машины и механизмы большой мощности, такие, например, как:

гидравлические экскаваторы Э-2516 с телескопическим оборудованием Андижанского машиностроительного завода, поэволяющие достичь продолжительности цикла 20 с, глубины копачия 3 м, радиуса копания 6,8 м;

большепрузные автомобили-самосвалы КрАЗ Кременчукского автомобильного завода, имеющие кузова емкостью 8 м³, или МАЗ Минского автозавода с емкостью кузова 3,7 м³.

Для повышения оборачиваемости автомобильного транспорта и достижения наиболее оптимальной стоимости материала следует сокращать расстояния перевозки, используя более близкие карьеры (не далее 3—5 км от места строительства на подсыпках).

3.13. Чтобы определить экономически целесообразный вариант заготовки материала, чеобходимо сопоставить элементы затрат при разработке каждого из возможных карьеров по следующей форме:

Стон	мость матер	онала франк	Скарьер			
заработ- ная плата рабочнх	необхо- димые матерна- лы для работ в карьере	аморти- зационные отчисле- ния	расходы карьера	расходы управления, в ведении которого находится карьер	териала нз карьера до	
3/7	М	A	К	У	Странсп	

Таким образом, полная стоимость материала

$$C_{\text{полная}} = C_{\text{карьер}} + C_{\text{трансп}} \tag{28}$$

или

$$C_{\text{полная}} = 3\Pi + M + A + K + Y + C_{\text{трансп}}.$$
 (29)

3.14. Проектом производства карьерных работ должна предусматриваться технологическая последовательность разработки карьера: проект должен содержать решение следующих основных вопросов:

организация въезда в карьер и выезда для транспорта;

определение высоты (глубины) разрабатываемого яруса;

определение схемы разработки карьера (например, челноковая, кольцевая);

расчет потребного числа машин и механизмов в карьере;

водоснабжение (включая орошение) и энергоснабжение карьера; мероприятия по технике безопасности:

противопожарные мероприятия.

3.15. Если в качестве карьера используется террикон горелой шахтной породы, то необходима термометрическая съемка, потому что эксплуатация горящих терриконов запрещена. Перед разработкой они подлежат обязательному тушению.

К негорящим относятся породные отвалы, поверхностный слой которых не имеет признаков горения (нет дыма, пара, открытого

огня, раскаленной породы).

К горящим относятся породные обвалы, на поверхности которых имеются видимые очаги горения или температура породы на

глубине 0.5-3 м от поверхности ≥ 150 °C.

К интенсивно горящим относятся породные отвалы, от горения которых загазованность воздуха на расстоянии 300 м от террикона превышает предельно допустимые нормы (разовые концентрации окиси углерода 6 мг на 1 м3, сернистого газа 0,5 мг на 1 м3 атмооферного воздуха).

3.16. Не допускается грузить в автосамосвалы породу, имеющую температуру более 100°С. Если температура породы более 100°C, то перед потручуй ее необходимо охладить некомпактными струями воды (в летнее время) или холодным воздухом путем

создания более длинного забоя (в зимнее время).

3.17. Для безопасности работ в забоях устанавливается зашитная зона:

Высота отвала, м	< 60	6080	>80
Ширина защитной зоны, м, в голов-			
ной части отвала	100	150	200

В хвостовой части террикона и для хребтовых отвалов ширина зашитной зоны 20 м.

Ближайшие здания, не входящие в комплекс, связанный с эксплуатацией террикона, могут находиться на расстоянии не менее 100 м от траниц отвала, а в хвостовой части террикона— не менее 20 м.

Примерная технологическая схема карьерных работ на терриконе приведена на рис. 6.

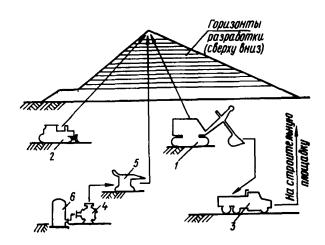


Рис. 6. Технологическая схема организации карьерных работ на терриконе

1 — экскаватор; 2 — бульдозер; 3 — автосамосвал; 4 — насос; 5 — гидромонитор; 6 — емкость для воды

Рекомендации по освоению новых площадок

3.18. Проектами организации строительства и производства работ нулевого цикла на подсыпке должны быть предусмотрены подготовительные работы, предшествующие устройству подсыпки:

планировка площадки со срезкой отдельных неровностей и выравнивание поверхности;

срезка и удаление с площадки непригодных для строительных целей грунтов (торфа, озерно-болотистых отложений), засыпка образовавшихся при этом котлованов, выемок, каверн;

осушение площадки путем устройства водоотводных и нагорных жанав, кюветов, лотков с отводом воды в пониженные места; устройство подъездных (магистральных и внутриплощадочных)

автомобильных дорог с искусственными сооружениями на них;

строительство сетей водопровода, канализации, теплофикации до колодцев ввода их в здания, линий энерго и электропередач,

устройство заглубленных конструктивных элементов, предусмотренных проектом.

- 3.19. Подготовительные работы наиболее целесообразно выполнять в летнее время (табл. 9, показатели стоимости условны).
- 3.20. Суммарная величина затрат ресурсов при выполнении подготовительных работ в зимнее время возрастет в связи с необходимостью прекращать работы при низких температурах воздуха, с потерями рабочего времени на очистку территории от снега и льда, на обогрев и т. д.

Следовательно, при организации строительства зданий и сооружений на подсыпках надо учитывать экономические и технологические преимущества при таком распределении работ на протяжении года, когда подготовительные работы будут выполняться в летние месяцы.

3.21. С целью рационального использования природных и климатических условий и учета результатов исследований об особенностях сезонного промерзания грунтов на открытых площадках и под насыпным слоем рекомендуется:

при использовании грунтов по I принципу подсытку выполнять в тот период года, когда поверхностный слой грунта находится в сезонномерэлом состоянии (рис. 7, a);

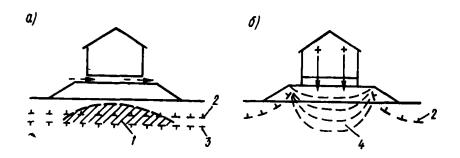


Рис. 7. Использование грунтов по I принципу (a) и по II принципу (f)

I — накопление мерзлоты под подсыпкой; 2 — глубина сезонного промерзания; 3 — верхняя граница вечной мерзлоты; 4 — теплопередача от здания в подсыпку и грунт

ло II принципу (и за пределами зоны распространения вечномерзлых грунтов), когда сезонномерэлый слой грунта оттаял (рис. 7, 6).

3.22. Строительство надземной части зданий и сооружений может выполняться круглогодично в зависимости от площади подготовленных фундаментов. Следовательно, наиболее оптимальна такая организация поточного строительства, когда подготовительные работы выполняются только в летние месяцы, устройство подсымки и фундаментов производится в различное время года (в зависимости от принципа использования грунтов), а надземные конструкции возводятся по окончании работ нулевого цикла или в другие сроки по графику потока (табл. 20). Такая последовательность работ не

Подготовка площадки размером 1000 м² при комплексной механизации работ

мехапизации расот							
			В летний В зимний по период			период	
Вид работ	Объем работ	работ,	труд и маг и маг затр		работ,	трудовые и машинные затраты	
		стоимость работ руб.	челдень	машсм	стониость работ руб.	чел день	машсм
1	2	3	4	5	6	7	8
Планировка площадки бульдозером	1000 м²	57	_	1	63	_	1
Разработка мерэлого грунта на глубину 50 см с применением рыхлите-	500 м ³	-	_	-	98	_	1
ля Срезка талого торфа и оттаявших озерно-болотных отложениий слоем 50 см на 50% площадки экскаватором	250 м ^з	43	_	1	54	_	1
Рыхление мерэлого торфа и оттаявших озерно-болотных отложений рыхлителем РМГ-3	250 м ³	_		-	62	-	1
Засыпка горелой поро- дой котлованов и каверн после срезки торфа и озерно-болотных отложе- ний, с уплотнением	250 м ³	438	1	1	438	1	1
Устройство кюветов, канав, лотков при разра- ботке грунта экскавато- ром	500 м ³	97	10	2	_	_	_
То же, с помощью траншейного цепного экскаватора ЭТЦ-205С	500 м ^з	-	-		450	15	6
Устройство автодорог Устройство заглублен- ных магистральных сетей с разработкой талого	300 м ³ 1000 м ³	565 197	3 50	3	622	3 -	3 —
грунта экскаватором То же, мерэлого грунта рыхлителем РМГ-3 или траншейным цепным экскаватором ЭТЦ-205С	1000 м ³			-	900	75	11
Итого		1397	64	9	2730	94	25

отразится на общей продолжительности строительства и будет целесообразной, так как позволит наилучшим образом использовать весь комплекс естественно-исторических условий Северной зоны.

Таблица 20 Примерная схема потока строящихся зданий с использованием грунтов по I и II принципам

		Месяцы							
ул. Эдания	VII	VIII	ı ıx x		χı				
1, 2	Подгото- вительные работы. Ин- женерные сети. Под- сыпка фун- дамента	Начало строитель- ства надзем- ной части	_	_	_				
3, 4	_	Подгото- вительные работы. Ин- женерные сети. Под- сыпка. Фун- дамент	Начало строитель- ства надзем- ной части	_	_				
5, 6		Adment -	Подгото- вительные работы. Ин- женерные сети	Подсытка фундамента Начало строитель- ства надземной части	-				
7	_	-		Подгото- вительные работы. Ин- женерные сети	Подсып- ка. Фун- дамент. Начало строи- тельства надзем- ной части				

Особенности организации и производства работ

3.23. При организации и производстве строительных работ следует учитывать возможность частых сильных ветров, низких температур и снежных заносов. Поэтому при возведении подсыпки в зимние месящы строительные работы необходимо выполнять круглосуточно, подсыпку уплотнять небольшими слоями, не допуская замерзания неуплотненного массива. В случае перерыва в устройстве подсыпки образуются прослойки снога и льда; при их оттаивании созда-

ются каверны и пустые полости, являющиеся причиной деформации сначала подсыпок, а затем и зданий.

3.24. При использовании в зимний период горелых пород шахтных терриконов рекомендуется в дополнение к указаниям настоящего параграфа использовать породу, имеющую температуру ≤ 100°C.

3.25. В ПОС и ППР для зданий на подсыпках должны предусматриваться всемерная сборность конструкций и выполнение строительно-монтажных работ механизированными или комплексно-ме-(ВТР-67). К ПОС и ППР следует ханизированными способами предъявлять повышенные требования:

предусматривать строительство фундаментов и надземных кон-

структивных элементов из крупноразмерных деталей;

при освоении новых площадок первоочередными в ПОС должны быть вопросы изыскания местных материалов, пригодных для устройства подсыпок, а также организация транопорта от карьера до места строительства.

3.26. Суровые специфические условия Северной зоны, в особенности влияние низких температур и воздействие сильных ветров, вызывают необходимость тщательного выполнения строительно-монтажных работ в целом и в том числе работ нулевого цикла:

подъездные дороги должны быть выполнены в полном объеме, предусмотренном рабочим проектом, чтобы земляное полотно продувалось при сильных ветрах, а не являлось снегозадерживающим устройством. В необходимых случаях устраивают снегозадерживающие заборы из передвижных щитов;

мелиорация площадок должна выполняться прежде чем начнется устройство подсылок; это будет способствовать снижению влажности поверхностного слоя грунта на тлубину 0,5—1 м до значений, практически неопасных в отношении пучения.

Устройство и уплотнение подсыпок

- 3.27. Крупнообломочные грунты, примененные для устройства подсыпок под здания и сооружения, практически не изменяют своего объема при замерзании в зимнее время, если обеспечен водоотвод, подсыпка уложена горизонтальными слоями из однородного материала, без включения пучинистых примесей, и хорошо уплотнена.
- 3.28. Глинистые грунты могут служить подстилающими для подсыпки при значениях коэффициента пористости \$<1, коэффициента консистенции $0 < B \le 0.75$. Текучепластичные $(0.75 < B \le 1)$ и текучие (B>1) грунты могут использоваться в качестве подстилающих для подсыпок только в тех случаях, когда рабочим проектом предусматриваются мероприятия, способствующие улучшению их консистенции, т. е. приведению значения коэффициента консистенции B в пределы $0 < B \le 0.75$.

Вопрос о возможности использования глинистых грунтов с коэффициентом пористости $\xi > 1$ и, в частности, назначения нормативного давления должен решаться для каждого конкретного случая отдельно по материалам, полученным при комплексном исследовании грунтов площадки.

3.29. Коэффициент сжимаемости с дает оценку грунта как основания в зависимости от характера изменения компрессионной кривой. Грунты характеризуются как малосжимаемые надежные основания, если коэффициент сжимаемости с имеет величину порядка одной или нескольких тысячных см²/кг, среднесжимаемые — при величинс α около одной или нескольких сотых см²/кг (также могут служить постелью для возведения подсыпки). Чрезмерно сжимаемые грунты при значении α, равном одной или нескольким десятым см²/кг, не могут служить постелью для подсыпки без предварительной их подготовки.

3.30. Если для подсыпки под один и тот же объект применяются различные материалы (например, горелая порода, гравийно-песчаная природная смесь, щебень), то каждый вид материала следует укладывать отдельными горизонтальными слоями и послойно уплотнять.

3.31. В зимнее время необходимо организовать круглосуточное устройство подсыпки и уплотнять ее небольшими слоями до 20—30 см с помощью:

катков прицепных и самоходных (моторных) — легких (массой до 5 т), средних (массой до 8 т) или тяжелых (10 т и более);

трамбующих машин (трамбующих плит, подвешиваемых к стрелам экскаваторов или кранов; прицепных или самоходных машин с падающими грузами или ударно-молотковых механизмов);

вибрационных машин (самоходных вибротрамбующих машин,

прицепных виброкатков, вибраторов).

3.32. Выбор механизма определяется при составлении проекта производства работ; в зависимости от этого назначается толщина уплотняемых слоев подсыпки.

Необходимо получить плотное основание с коэффициентом пористости $\xi = 0,4-0,5$. По величине относительной плотности необходимо иметь основание со вначением $I_D = 0,8-0,9$. Значения ξ и I_D определяются по известным закономерностям механики грунтов.

3.33. Коэффициент пористости уплотненной подсыпки можно определить по формуле механики грунтов:

$$\xi_{\text{подс}} = \frac{\gamma_{\text{ч}} - \gamma_{\text{ск. подс}}}{\gamma_{\text{ск. подс}}},$$
(30)

где у - удельная масса материала, г/см3:

усклоде — объемная масса скелета уплотненного материала, г/см³; определяется путем взвешивания некоторого количества материала, взятого из уплотненной подсыпки; объем шурфа, образовавшегося в подсыпке при отборе пробы; определяется замером или таким образом: предварительно измеренную и тарированную емкость заполнить песком; затем из этой емкости пересыпать песок в шурф до его заполнения; после замера оставшегося в емкости песка можно вычислить объем вынутой из подсыпки породы. Сторона шурфа должна быть не менее 7—8 диаметров средневзвешенного гранулометрического элемента, применяемого для подсыпки материала.

3.34. Относительная плотность материала в подсылке определяется по формуле

$$I_D = \frac{\xi_{\text{Makc}} - \xi_{\text{HOJC}}}{\xi_{\text{Makc}} - \xi_{\text{MRH}}},$$
 (31)

где $\xi_{\text{мако}}$ и $\xi_{\text{мян}}$ — коэффициент пористости материала (в первом случае в неуплотиен ом состоянии, во втором — в уплотнениом);

 $I_D = 0$, когда материал подсыпки находится в самом рыхлом остоянии; $I_D = 1$, когда материал в самом плотном состоянии.

3.35. При использовании трамбующих и вибрационных машин и механизмов наибольшая плотность подсыпки образуется на глубине 10—15 см от ловерхности, так как самый верхний слой несколько разрыхляется от действия этих машин и механизмов. Разрыхленный слой необходимо удалить из-под подошвы фундаментов, устраиваемых на данной подсыпке.

В летнее время эффективность плотнения увеличивается, если материал увлажнять водой.

При устройстве подсылки допускается использование автосамосвалов для дополнительного уплотнения подсыпаемого ими же крупнообломочного материала под здание или сооружение. Наибольшая эффективность уплотнения достигается при первых проездах автосамосвалов, если материал отсыпан слоями не более 20—25 см; однако отраничиваться этим способом уплотнения нельзя.

3.36. Крутизна откосов подсыпки из крупнообломочных материалов должна быть не более 1:1,5 (откос подсыпки из несвязанного материала будет находиться в равновесии лишь в том случае, если его угол с горизонтальной поверхностью грунта не будет превосходить угол внутренного трения того материала, из которого выполнена полсыпка).

3.37. При высоте подсыпки более 6 м (если отсыпается значительная по размеру площадь с большим перепадом рельефа или в других случаях) откосам следует придавать ломаный профиль: верхним частям подсыпки 1:1,5, нижним — от 1:1,75 до 1:2.

- 3.38. Чтобы сохранить откосы подсыпки от разрушения при вымывании мелкой фракции дождевыми водами и при таянии снега, а также от случайных механических повреждений, их следует укреплять дерном или декоративной плиткой. Применяемый способ крепления откосов не должен препятствовать дренированию влаги, которая может оказаться в массиве подсыпки.
- 3.39. Вместо устройства откосов подсытку можно опраничивать подпорными стенками из дерева, бетона или железобетона. Конструкция их определяется рабочим проектом. Подпорные стенки следует устраивать около выгребов, приямков и других заглубленных конструктивных элементов, чтобы предотвратить местные просадки подсытки.

Устройство фундаментов

- 3.40. При устройстве деревянных лежневых фундаментов с нижней обвязкой все заготовительные работы необходимо выполнять в заводских условиях, а на строительной площадке производить только сборку из готовых элементов; для этого понадобятся простейшие машины и механизмы.
- 3.41. При возведении монолитных железобетонных ленточных фундаментов следует применять деревометаллическую (или металлическую) сборную щитовую опалубку, например «Монолит-72», разработанную ЦНИИОМТП Госстроя СССР. Для укладки бетона рекомендуются бетоноукладчики на базе тракторов, оборудованные бадьями или ковшами, а также вращающимися в горизонтальном направлении транспортерами, с ломощью которых бетонная смесь

подается к месту укладки. При значительном объеме бетонных (железобетонных) работ бункера (бадьи) от приемной площадки к месту бетонирования перемещаются башенными кранами.

В осенне-зимний период и ранней весной рекомендуется элект:

роподогрев бетонной смеси перед укладкой в конструкцию.

3.42. Сборные железобетонные фундаменты рекомендуется собирать из простейших элементов заводского изготовления с замоноличиванием стыков и электросваркой узловых соединений. Зимой в условиях сурового климата наиболее рационально устройство сварных стыков с металлическими закладными элементами, так как исключается трудная в таких условиях операция — термообработка бетона в стыках.

Металлические детали стыков необходимо защищать от коррозии путем металлизации или покрытия специальными лакокрасочными материалами, если стык не бетонируется. В зимнее время перед выполнением этих работ требуется обогрев стыков.

3.43. Если проектом предусмотрено заглубление фундамента под крупное оборудование в естественный грунт (для больших машин, компрессоров, лебедок, а также под брандмауэрные стены), а здание запроектировано на подсышке, то рекомендуется следующая очередность производства работ:

подготовка и осушение строительной площадки;

разработка котлована и выполнение бетонного (железобетонного) фундамента под оборудование или иной заглубленный конструктивный элемент (излишнее количество грунта удаляется за пре-

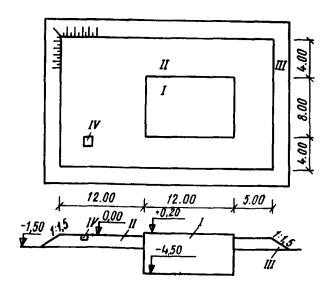


Рис. 8. Очередность производства работ при возведении фундаментов на подсыпке

I — устройство заглубленного фундамента под крупногабаритное оборудование; II — устройство массива подсыпки; III — оформление откосов подсыпки; IV — устройство бетонного фундамента в теле подсыпки под малогабаритное оборудование

делы площадки); засыпка грунтом пазух вокруг фундамента и хорошее послойное уплотнение;

установка тяжеловесного оборудования на возведенный фундамент и начало монтажных работ;

устройство подсыпки под здание или сооружение с послойным уплотнением;

устройство фундамента здания на подсыпке согласно проекту;

возведение здания или сооружения.

При такой последовательности работ (рис. 8) подсыпка сохранится в хорошем состоянии: она не будет нарушена при разработке грунта под заглубленные конструктивные элементы, материал ее не смешается с грунтом от разработки котлована внутри здания и благодаря этому сохранятся непучащиеся свойства подсыпки.

3.44. Фундаменты под легкое оборудование (небольшие электродвитатели, насосы) можно устраивать в теле подсыпки. Такие фундаменты могут быть бетонные или деревянные ряжевые без за-

глубления в естественный грунт.

- 3.45. Если проектом предусмотрено, что заглубляемый фундамент под оборудование будет опираться на вечномерэлые грунты, то до бетонирования фундамента следует выполнить предусмотренные проектом заглубленные охлаждающие устройства, чтобы в процессе эксплуатации избежать деформации здания или сооружения при оттаивании мерэлых грунтов основания. В отдельных случаях, если это предусмотрено проектом, ниже подошвы фундамента можно забить оваи в вечномерэлую толщу, глубже чаши протаивания.
- 3.46. При возведении ватлубленных фундаментов под оборудование в талых грунтах допускается бетонирование фундамента враспор со стенками котлована, что обеспечивает необходимый контроль за укладкой, уплотнением и набором прочности бетона. В таком случае не требуется обратная засышка пазух котлована, что исключает опасность просадки грунта в пазухах.

Устройство инженерных сетей и их вводов в здания

3.47. Наружные инженерные сети (водопровод, теплофикация, канализация и др.) также можно проектировать на подсыпках. Призмы из крупнообломочных материалов под опоры трубопроводов разрешается отсыпать на поверхность грунта, не снимая моховой покров (растительный слой). Поверхность призм следует выполнять до высотных отметок с таким расчетом, чтобы после уплотнения подсыпки и укладки на нее опор в виде бетонных (железобетонных) подушек или деревянных антисептированных пакетов (в зависимости от срока службы инженерных сетей) можно было монтировать трубопроводы с соблюдением проектных уклонов, не нарушая выполненных призм. Высота подсыпки для устройства призм определяется только по статическому расчету. Проверочный теплотехнический расчет не требуется, так как пространство под трубами будет постоянно проветриваться и поэтому теплопередачи в грунт не будет.

3.48. Термоизоляцию трубопроводов, устраиваемых на подсыпках без заглубления в естественный грунт, необходимо выполнять особенно тщательно по всей трассе, а также в местах укладки труб на скользящие (или на заглубленные неподвижные) опоры, чтобы исключить поступление тепла в подсыпку и передачу его через призмы в грунт, во избежание местных протаиваний вечномерэлых грунтов, если они окажутся под подсыпкой.

- 3.49. Для размещения фасовной арматуры, пожарных гидрантов, водораэборных колонок при устройстве трубопроводов на подсыпках можно проектировать деревянные или сборные крупнопанельные колодцы (будки) на подсыпках. В пониженных точках магистральных сетей необходимо проектировать канавы для отвода воды при необходимости сброса ее в сторону от трубопровода. Сброс воды без надлежащего отвода в пониженные участки приведет к опасным деформациям сооружения.
- 3.50. Чтобы предотвратить просадку на заболоченных участках трассы, отсыпаемые под опоры призмы рекомендуется заключать в деревянные рубленые ряжи из леса-тонкомера. В ряже устраиваются днища из досок или пластин или же делаются тонкостенные железобетонные «стаканы», которые заполняются крупнообломочным материалом.
- 3.51. В подготовительный период по данным изысканий следует хорошо изучить рельеф местности и вдоль трассы надземного трубопровода устроить кюветы, канавы, проложить трубы, лотки для удаления поверхностных вод.
- 3.52. Устройство вводов инженерных сетей в здания и сооружения на подсыпках следует выполнять в соответствии с проектом. Заглубленные трубопроводы полагается выводить на поверхность земли за пределами здания, чтобы ореол оттаивания вокруг них не вызвал нарушения мерзлотного состояния грунтов под подсыпкой. Переход трубопроводов с подземной прокладки на надземную надлежит выполнять в заглубленном колодце, расстояние которого от здания определяется проектной организацией. На участке между колодцем и зданием трубопроводы следует прокладывать в надземных коробах, укрепляемых на свайках или высоких эстакадах; расстояние от днища короба до поверхности эемли назначается по расчету в пределах 1—1,2 м.
- 3.53. В случае прокладки трубопровода без короба необходима термоизоляция труб. Пространство между трубопроводами и поверхностью земли проветривается; это исключает протаивание грунта в непосредственной близости к зданию или к сооружению, а следовательно, предотвращает опасные деформации здания или сооружения на участках, где проходят трубопроводы.

Трубопроводы, находящиеся в подпольном пространстве, следует располагать в непосредственной близости к цокольному перекрытию, закрепляя их на подвесках. Заглубление трубопроводов в подсыпку не рекомендуется, так как это будет способствовать изменению мерзлотного состояния подстилающих грунтов. Трубопроводы, расположенные в подполье, должны быть хорошо заизолированы в соответствии с проектом.

- 3.54. Ближайший заглубленный колодец около здания надо располагать так, чтобы он не мешал устройству отмостки и откосов подсыпки.
- 3.55. При устройстве вводов инженерных сетей в здания на подсытках необходимо предусматривать возможность сброса теплоносителя из труб в ближайший колодец канализации в случае аварии или спуска воды из системы по окончании отопительного сезона.

Приемка работ

3.56. Работы по подготовке площадки и устройству подсыпки подлежат приемке по мере их выполнения комиссией в составе:

исполнителей работ — прораба (старшего прораба, начальника участка) и мастеров;

инженера производственно-технического отдела строительного управления;

инженера — представителя дирекции строящегося предприятия (отдела капитального строительства);

геолога и геодезиста (для приемки специальных работ).

3.57. При выполнении работ нулевого цикла должны составляться акты скрытых работ на нижеследующие конструктивные элементы и технологические процессы:

срезка торфа, насыпных, пучинистых, озерно-болотных и других слабонесущих грунтов, если эти работы предусмотрены проектом или если необходимость их выполнения установлена натурным осмотром площадки перед началом работ; акт составляется с участием геолота;

работы по устройству системы водоотвода и осущения, а также другие подготовительные работы; к акту должны быть приложены исполнительные планы, продольные и поперечные профили канав по съемке геодезиста;

работы по устройству предусмотренных проектом инженерных сетей и заглубленных фундаментов под оборудование, под брандмауэрные стены;

осмотр естественных покровных грунтов, на которых будет устраиваться наземная подсыпка; акт составляется с участием геолога; данные осмотра в натуре следует сверить с данными предпостроечных изысканий; на основании этого акта главным инженером строительства (или лицом, уполномоченным им) дается разрешение на устройство подсыпки;

устройство подсыпки; акт составляется с участием теолога; осмотр в натуре надо подкреплять проверкой плотности подсыпки в натуре, выполняемой лабораторией; к акту должны быть приложены геодезические съемки, произведенные перед началом и по окончании устройства подсыпки; на основании этих материалов тлавным инженером строительства (или лицом, уполномоченным им) дается разрешение на производство работ по устройству фундаментов на полсыпке.

Остальные акты на скрытые работы и другая исполнительная техническая цокументация составляются согласно требованиям соответствующих глав и разделов СНиП.

3.58. Принимая работы по устройству подсытки, необходимо проверять документы лабораторных исследований материала, использованного для подсытки. Обязательным является определение пучинистых примесей, количество которых не должно превышать 10%. Достаточным является предъявление паспорта, выданного карьером-поставщиком.

3.59. Если материал для подсыпки берется с одного постоянно действующего карьера, то лабораторные испытания достаточно проводить 1—2 раза в год. Если же карьер не является постоянно действующим или используется материал различных карьеров, то периодичность лабораторных испытаний можно определять совместным решением заказчика и подрядчика в зависимости от ковкретных условий.

Использование пневмооболочек

3.60. В районах Северной зоны в осенне-зимнее время необходима защита рабочих и мест производства работ от холодного дож-

дя, снега, ветра и низких температур.

3.61. В ЭКБ и лаборатории пневматических конструкций ЦНИИСКа по заданию Главсевзаптяжстроя Министерства строительства предприятий тяжелой индустрии СССР была разработана для районов Севера конструкция пневматического укрытия в виде воздухоопорной оболочки (рис. 9). Применение воздухоопорной

Рис. 9. Воздухоопорная оболочка

1 — цилиндрические торцы;
 2 — средние цилиндрические части;
 3 — устройство для крепления оболочки к поверхности основания;
 4 — шлюз с воротами для входа и въезда внутрь пневмооболочки

оболочки при устройстве подсыпки и фундаментов дает возможность создания круглогодичных оптимальных условий для выполнения строительно-монтажных работ.

3.62. Установка пневмооболочки на поверхности площадки производится путем крепления конструкции из швеллера к анкерам, установленным в грунте. При открытых дверях шлюза оболочка наполняется воздухом. Периодически помещение вентилируется; для этого фартук опорного контура поднимается с подветренной стороны. Рабочее место под пневмооболочкой освещается прожек-

торами.

3.63. Ориентировочная стоимость изготовления пневматических оболочек колеблется в пределах от 18 до 10—12 руб/м² перекрываемой площади. В дальнейшем их стоимость может быть снижена ва счет удешевления стоимости материала (без снижения качества) и уменьшения трудоемкости изготовления (за счет усовершенствования технологии).

4. ЭКСПЛУАТАЦИЯ ЗДАНИЙ, СООРУЖЕНИЙ И ИНЖЕНЕРНЫХ КОММУНИКАЦИЙ В ПЕРИОД СТРОИТЕЛЬСТВА

Эксплуатация зданий

4.1. При приемке объекта заказчик передает службе эксплуатации всю иополнительную документацию, а также:

акты приемки окрытых работ нулевого цикла;

реперную сеть, сеть высотных марок на сооружениях и данные по нивелировке здания в период строительства;

материалы мерзлотно-грунтовых и пидрогеологических изысканий и исследований.

- 4.2. На каждый законченный строительный объект на основании вышеперечисленных материалов службой эксплуатации должен быть заведен журнал мерэлотного надзора за сооружением. В нем должны быть зафиксированы все выявленные нарушения режима эксплуатации и немедленно устранены.
- 4.3. Скважины, пробуренные для наблюдения за температурой грунта, нивелировочные марки и реперы при сдаче-приемке объекта принимаются службой эксплуатации; в дальнейшем ответственность за полную их сохранность возлагается на эксплуатирующую организацию.
- 4.4. Основой правильной эксплуатации зданий и сооружений является соблюдение комплекса мероприятий, направленных на сохранение проектного температурного режима вечномерзлых грунтов основания.

Выполнение требований, изложенных в настоящем разделе, возлагается на организации, возводящие и эксплуатирующие здания и сооружения. Лица, ответственные за эксплуатацию объектов, назначаются приказом по учреждению или предприятию.

- 4.5. Не реже одного раза в тод должен проводиться инструктаж обслуживающего персонала о соблюдении правил эксплуатации зданий и сооружений. На эпструктаже каждый ответственный руководитель службы эксплуатации делает информацию о проведенной работе по эксплуатации зданий и инженерных коммуникаций. При этом должны быть отмечены все, даже незначительные, случаи деформации зданий с подробным анализом причин деформаций и нарушений температурного режима грунтов оснований.
- 4.6. Частота контрольных обследований зданий и сооружений назначается:

для зданий с сантехническими коммуникациями в подполье — не реже одного раза в месяц:

для зданий, не оборудованных сантехническими коммуникациями. — два раза в тол (в середине зимы и в конце лета).

Контроль за выполнением требований настоящего Руководства организациями, эксплуатирующими здания и сооружения, осуществляется мерэлотной инспекцией.

- 4.7. Для сохранения вечномерзлых грунтов основания при эксплуатации в подполье должна быть обеспечена постоянная циркуляция наружного воздуха в энмний период; категорически вапрещается закрывать вентиляционные отверстия. Контроль за температурным режимом в подполье ведется путем замера температуры воздуха в уровне поверхности трунта на участках подполья, наименее доступных проветриванию. В зимний период среднемесячная температура не должна быть выше среднемесячной температуры наружного воздуха более чем на 3—5°С при среднегодовой температуре —5°С.
 - 4.8. Персонал службы эксплуатации обязан:

содержать в чистоте проветриваемое подполье, не допускать устройства в нем складоких и подсобных помещений;

держать открытыми все отверстия, предназначенные для вентиляции подполья в течение года;

очищать вентиляционные отверстия проветриваемого подполья от снега, грунта и строительного мусора; следить за систематической очисткой снега от цоколей зданий на расстоянии не менее 2 м. При образовании провалов отмостки (тротуара) необходимо засыпать

образовавшуюся выемку талым гручтом и тщательно утрамбовать, после чего уложить отмостку в соответствии с проектом;

не допускать скопления снега на поверхности прунта в самом подполье, для этого после каждой пурги и поземки подполье необходимо осматривать и своевременно очищать от снега;

поддерживать проектную планировку поверхности грунта в подполье в течение всего периода эксплуатации здания или соору-

жения;

в случае просадок трунта производить подсыпку грунта и тщательно его трамбовать.

- 4.9. Наблюдения за температурным фежимом грунтов основа ния систематически ведутся в сюважинах, установленных и обору дованных согласно проекту. Не реже одного раза в три тода служб эксплуатации обязана проводить контрольные обследования положения верхней поверхности вечномерэлых грунтов в основаниях зданий и вдоль линий коммуникаций канальных и поверхностных прокладок методом зондировочного бурения в период максимального оттанвания грунтов деятельного слоя.
- 4.10. При обнаружении первых признаков деформации зданий или сооружений (осадка фундаментов, появление трещин в конструкциях, перекосы оконных и дверных проемов) служба эксплуатации обязана немедленно выявлять причины и принять меры, предотвращающие дальнейшее их развитие.

Для выявления причин и разработки мероприятий по устранению деформаций организуются инструментальные наблюдения, а также наблюдения за развитием трещин во времени при помощи установки маяков, мессур. Результаты наблюдения за состоянием маяков заносятся в таблицу, данные нивелировки — в нивелировочный журнал.

- 4.11. При побудительной вентиляции каналов под зданием или сооружением служба эксплуатации должна обеспечить ее исправную работу по заданному в проекте режиму. Вентиляционную систему необходимо систематически осматривать и очищать от мусора, скапливающихся снега и льда.
- 4.12. Перед началом снеготаяния проезжие части улиц и водостоков необходимо очищать от снега для пропуска весенних вод. Нельзя допускать скопления талых вод вокруг зданий и под ними.
- 4.13. Поверхностные водоотводы (канавы, кюветы и др.) полагается содержать в полной исправности с соблюдением указанных в проекте сечений и уклонов. Канавы и кюветы надо регулярно очищать от наносов, грязи, мусора. Крепления откосов и дна канав и кюветов должны содержаться в надлежащем состоянии.
- 4.14. На застроенной территории на расстоянии менее 25 м от зданий запрещается складировать тепловыделяющие отходы (шлак котельных, отходы производства, навоз).
- 4.15. Все земляные работы вблизи эксплуатируемых вданий и сооружений можно производить только с ведома и по письменному разрешению ответственных представителей службы эксплуатации.

Эксплуатация инженерных коммуникаций

4.16. Эксплуатация инженерных коммуникаций должна осуществляться с учетом необходимости сохранения мерэлотных условий на всей застраиваемой территории и проектного температурного режима в основаниях зданий и сооружений.

Для всех коммуникаций особо важно, чтобы в грунты оснований не попадала вода. Утечка из водопровода, теплосети и канализации должна рассматриваться как авария и устраняться в кратчайший срок.

4.17. Эксплуатация санитарно-технических коммуникаций, проложенных в проветриваемых подпольях зданий. Работники службы эксплуатации обязаны ежедневно обходить и проверять подпольные и наружные трубопроводы теплосети, канализации и водопровода. Сведения о неисправностях коммуникаций и их устранении должны заноситься в специальный журнал по надзору за трубопроводами в подпольях, вводами и выпусками инженерных сетей.

4.18. Сброс воды из трубопроводов разрешается только в местах, предусмотренных проектом. Водоотводящие устройства должны быть исправны. В аварийных случаях возможен сброс в любом месте, но должны быть приняты меры, исключающие попадание во-

ды в основание зданий или сооружений.

4.19. Особое внимание должно уделяться исправности канализационных трубопроводов:

раструбы канализационных труб необходимо ремонтировать систематически и заделывать по правилам и требованиям для водопроводных труб;

ревизии должны быть закрыты крышками с упругими прокладками и затянуты болтами или важимами;

замерзшие участки труб отогревают электропрогревом или горячей водой.

Дефекты теплоизолящии на трубопроводах должны быть ликвидированы в кратчайший срок.

4.20. Эксплуатация инженерных коммуникаций, проложенных в проходных каналах. Работники службы эксплуатации обязаны проводить периодические осмотры всех инженерных коммуникаций, проложенных в проходных каналах. Результаты осмотра и текущего ремонта заносятся в специальный журнал. Эксплуатационный обход производится не реже одного раза в пятидневку, контрольный обход с ответственным представителем службы эксплуатации — не реже одного раза в квартал.

Проходные каналы инженерных коммуникаций должны содержаться в чистоте и очищаться от накапливающегося в них ила и мусора. Промывать каналы разрешается только водой из водопро-

вода.

Образующийся в каналах и на трубопроводах лед необходимо систематически скалывать.

Теплоизоляция на трубопроводах, проложенных в каналах, должна поддерживаться в исправном состоянии. Нарушенная теплоизоляция должна быть восстановлена в кратчайший срок.

Не допускается утечка из канализационных трубопроводов, проложенных в каналах.

Штурвалы вадвижек на магистральных сетях устанавливаются в определенном положении и закрепляются через целочку замком.

Вентиляционные отверстия в каналах надо систематически очищать от снега и мусора. Категорически запрещается скопление снега над каналами и засыпка вентиляционных отверстий каналов снегом при очистке улиц.

Не допускается оттаивание грунта в основании каналов на величину, превышающую мощность подготовленного основания.

При укладке каналов на естественных основаниях (мерзлые пе-

ски, правелисто-галечные грунты без обособленных ледяных включений) глубина оттаивания под каналом не должна превышать мощности слоя, предусмотренного проектом.

Оттаявший в течение лета грунт под каналом должен полностью промораживаться при вентиляции каналов в зимний период.

Режим проветривания каналов устанавливается в проектах и корректируется натурными наблюдениями. В необходимых случаях требуемый температурный режим обеспечивается применением принудительной вентиляции каналов.

Не реже одного раза в декаду работники службы эксплуатации должны замерять температуру воздуха в постоянно установленных местах канала для ее сравнения с температурой, заданной про-

ектом.

В случае необходимости принимаются меры по усилению вентиляции канала.

4.21. Эксплуатация подземных и поверхностных прокладок инженерных коммуникаций. Все смотровые колодцы, водопроводные и канализационные линии полатается осматривать не реже одного раза в неделю, а колодцы, расположенные не дальше 10 м от зданий, — через день. Результаты осмотров должны заноситься в специальный журнал.

В закрытой системе канализации все ревизии должны быть закрыты крышками с резиновыми прокладками и заболчены. Колодны полагается систематически очищать. Гидроизоляцию колодца надо солержать в исправном состоянии.

При самотечной канализационной системе трубы заделывают в

стенках колодца; лотки должны быть исправны.

Сальниковые компрессоры поверхностных трубопроводов должны обеспечивать отвод воды от трассы в направлении, безопасном для соседних вданий.

Категорически запрещается свалка снега, грунта и мусора на полосе трубопроводов поверхностной прокладки шириной не менее 5 м.

Расположение труб поверхностной прокладки должно проверяться службой эксплуатации ежегодно (летом), и на основании этих данных производится их выравнивание в профиле и плане в соответствии с проектным положением.

На линиях поверхностной прокладки труб работники службы эксплуатации должны систематически осматривать арматуру, результаты осмотра и ремонта отмечать в специальном журнале. Особое внимание следует обращать на состояние стыков труб, заглушек и винтелей — через них не допускается утечка воды и пара.

Поврежденную теплоизоляцию на линиях поверхностной прокладки каждое лето надо восстанавливать. Для перехода через трубы в местах пересечения их с проходами и проездами должны быть установлены мостики.

5. СТРОИТЕЛЬСТВО И СОДЕРЖАНИЕ СНЕГОВЫХ И ЛЕДОВЫХ АЭРОДРОМОВ

Особенности зимних аэродромов

5.1. При устройстве в тундре временных зимних аэродромов необходимо выбирать участки, где нет провальных и сильно заболоченных мест (воронок, впадин, блюдец, проседаний) и мест с близким залеганием погребенных льдов.

Участки под грунтовые аэрод омы следует готовить весной с началом оттаивания деятельного слоя и осенью после промерзания грунта.

Неровности промераших грунтов необходимо исправить, заделав снегом и уплотняя в чоливая водой. Для окончательной их ликвидации устраивается защитный слой из уплотненного снета толщиной 6 Э см путем постепенной укатки свежевылавшего снета.

- 5.2. На временных груптовых аэродромах, расположенных в воне тундры, допускается эксплуатация самолетов при промерзании грунта на глубину:
 - 15-20 см для самолетов типа Ан-2;

25-30 см для самолетов типа Ли-2, Як-40, Ил-14, Ан-24, Ан-26;

40-50 см для самолетов типа Ан-12, Ан-22, Ил-18.

5.3. В северных районах в холодный период года основным методом подготовки и эксплуатационного содержания аэродромов является уплотнение снега. Аэродромы, расположенные в районах с малоснежной зимой и преобладанием продолжительных и сильных ветров, должны очищаться от снега.

Во время метелей при скорости ветра 5 м/с работы на летном поле не допускаются, так как образующиеся неровности при проходе снегоочистительной техники способствуют образованию надувов и застругов. Для предотвращения образования надувов и застругов на поверхности взлетно-посадочной полосы необходимо:

тщательно заглаживать неровности снегового покрытия;

устраивать плавные сопряжения покрытий с местами выкладки снега;

не оставлять на длительное время машины, механизмы, оборудование вблизи взлетно-лосадочной полосы (ВПП);

устраивать канавы и валы из снега для уменьшения снегозаносов;

на месте стоянки самолеты устанавливать носовой частью в сторону господствующих зимой ветров.

Если для устроиства защитного слоя из уплотненного снега последнего недостаточно, его задержку следует производить на ВПП.

- 5.4. При скорости ветра более 25 м/с и воздействии воздушногазовой струи авиадвигателей происходит выдувание частиц снега из покрытия. На оголенных участках грунта во избежание слякоти в ранневесенний период снеговое покрытие восстанавливают путем переброски снега с боковой полосы безопасности, его планировки и укатки.
- 5.5. Для продления сроков службы покрытий из уплотненного снега необходимо обеспечить достаточную его толщину и следить за тем, чтобы на поверхности не было трунта, песка и розлива горюче-смазочных материалов (ГСМ).

Снеговые и грунтовые аэродромы

- 5.6. В качестве исходных данных для строительства и эксплуатации снеговых аэродромов следует принимать продолжительность лежания снега, толщину снегового локрова, среднемесячную температуру воздуха, характеристики подстилающих грунтов, нагрузку от колес самолета, влажность снега и воздуха, интенсивность взлетнопосадочных операций.
- 5.7. При строительстве и содержании снеговых и грунтовых аэродромов выполняют следующие работы:

выбор и обследование площадки — предварительный выбор по

карте, реколносцировочный осмотр с воздуха и обследование площадки на местности;

разбивочные работы — определение размеров летного поля, после чего они выносятся в натуру и закрепляются на местности; очистка территории; уплотнение онега.

5.8. Наиболее эффективно уплотнение снега при температуре, близкой к 0°С. По мере понижения температуры снега эффект от приложения нагрузки уменьшается, так как прочность и упругость снежинок увеличиваются. Повышать давление при уплотнении снега затруднительно и не всегда рентабельно, например, при укатке снежного покрова; чрезмерное увеличение массы катка может ухудшить эффект уплотнения. Поэтому в инженерной практике широкое применение нашел комбинированный способ уплотнения — сочетание нескольких последовательных цижлов разрушения с перемешиванием и сжатием снежной массы.

5.9. Процесс последовательного разрушения и уплотнения снежного покрова производится комплексом машин, включающим бороны, культиваторы и другие орудия для разрушения и перемешивания снега, катки и гладилки для его уплотнения.

Уплотнение снега на летной полосе производится от ее оси к боковым полосам безопасности по круговой схеме. Каждый последующий проход должен перекрывать предыдущий не менее чем на 30 см.

5.10. Нарастание прочности уплотненного снега происходит за счет перекристаллизации и смерзания частиц снега и продолжается в течение 7 ч и более после укатки. На рис. 10 дан график нараста-

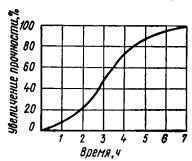


Рис. 10. График нарастания прочности уплотненного снега

ния прочности уплотненного снега, из которого видно, что увеличение прочности от первоначальной наиболее быстро возрастает за первые 4 ч. В связи с этим контрольное измерение прочности уплотненного снега следует производить спустя 3—4 ч после уплотнения.

5.11. Плотность покрытия из уплотненного снега зависит от количества уплотняющих средств и интервала движения между ними.

Число проходов по одному следу устанавливается для:

сугроборезов — 1—2;

гладилок — 1, а при наличии наддувов и застругов — 2—3;

деревянных и металлических катков — 2—3;

катков на пневматических и резинобетонных шинах — 1-2.

Число проходов гладилок и катков по одному следу определяется на месте в зависимости от характеристик средств уплотнения и физико-механических свойств снега.

Интервал по времени между проходами уплотняющих средств по одному и тому же следу рекомендуется устанавливать при температуре воздуха:

ниже —5°C — 20 мин; выше —5°C — 30 мин. 5.12. При уплотнении целинного снега глубиной более 20 см необходимо:

взрыхлить и перемешать снег зубовой или дисковой бороной, с помощью которых помимо рыхления и перетирания кристаллов снега производятся его осадка и равномерное уплотнение по всей толщине; по одному следу должно быть не менее двух проходов;

уплотнить снег гладилками и катками — 2—3 прохода по одному

следу.

Интервал по времени между перемешиванием бороной (вторым ее проходом) и проходами гладилок и катков должен быть минимальным, поэтому тракторы с гладилками целесообразно пускать сразу же за бороной.

- 5.13. После подготовки ВПП на участках с целинным снегом прочность уплотненного снега необходимо проверять не только в верхнем, но и в нижнем слое. Если контрольная проверка покажет, что плотность и прочность недостаточны для эксплуатации требуемого типа самолета, то работы необходимо произвести повторно (в той же последовательности).
- 5.14. Применяются гладилки различной конструкции (типа НИАС, ГВФ, широкозахватные с двумя наклонными днищами). С помощью гладилок создается переменное удельное давление на снег до 0,8 кгс/см². Для получения максимального удельного давления от каждого последующего прохода гладилок необходимо по мере нарастачия прочности увеличить их нагрузку балластом. Если перед гладилкой образуется снежный вал, мешающий нормальному ходу, нагрузку гладилки следует уменьшить.
- 5.15. Деревянные и металлические катки надо нагружать сухим песком или гравием. Чтобы предотвратить прилипание снега к деревянным каткам при температурах, близких к 0°С, и к металлическим каткам при температурах воздуха выше +0,5°С и ниже —7°С, последние должны быть обиты или обтянуты листовой резиной толщины 3—5 мм. Деревянные и металлические катки создают удельное давление до 2 кгс/см². Наилучшая степень уплотнения достигается при укатке снета пневморезиновыми и резинобетонными катками. Рекомендуются пневморезиновые катки массой 25 т с удельным давлением 4—6 кгс/см² в зависимости от количества балласта.

Прицепные резинобетонные катки могут быть изготовлены на местах. Эти катки представляют собой одноосную конструкцию из восьми старых покрышек от самолетов типа Ли-2, Ту-104. Покрышки залиты бетоном.

5.16. После укатки снегового покрытия на поверхности уплотненного снега остаются следы от ходовой части машин; их заглаживают гладилками.

В зависимости от тяговых усилий тракторов применяют снегоуплотняющие механизмы в сцепе: 2—3 гладилки; 3—5 деревянных и металлических катков.

5.17. Неровности на ВПП (колеи, выбоины, борозды и снежные надувы — косы) необходимо систематически разравнивать гладилками и укатывать катками. Колеи глубиной до 3 см заравнивают в продольном направлении; одновременно устраняются исбольшие неровности на поверхности ВПП. Участки с глубокими колеями (более 3 см) обрабатывают сначала в поперечном, а затем в продольном направлении.

5.18. Ледяную корку верхнего слоя уплотненного снега разрушают шиповыми или ребристыми катками, зубовыми, дисковыми боронами и другими простейшими механизмами. Вслед за этим немедленно поверхность снегового покрытия должна быть восстановлена путем интенсивного уплотнения гладилками и катками.

5.19. Содержание аэродромов. На грунтовых аэродромах в зимнее время допускается эксплуатация самолетов при установившихся отрицательных температурах воздуха и промерзании верх-

них слоев грунта на тлубину:

5-6 см для самолетов типа Ан-2;

8—10 см для самолетов типа Ли-2, Як-40, Ил-14, Ан-24, Ан-26;

15-30 см для самолетов типа Ан-12, Ан-22, Ил-18.

При меньшей глубине промерзания грунта необходимо определить прочность под слоем мерзлого грунта. Если прочность грунта удовлетворяет требованиям для конкретного типа самолета, то разрешается его эксплуатация.

5.20. Способ содержания грунтовых аэродромов методом очистки или уплотнения снега устанавливается с учетом эксплуатируемых типов воздушных судов, климатических особенностей района и места его расположения.

Наиболее надежным способом содержания аэродромов является очистка от снега, так как она предотвращает выход его из строя при зимних оттепелях и неустойчивых отрицательных температурах.

5.21. В районах с устойчивыми отрицательными температурами и продолжительными зимними периодами времени грунтовые аэродромы для самолетов типа Ан-2, Ли-2, Як-40, Ил-14, Ан-24, Ан-26 можно подготавливать методом уплотнения снега. Для самолетов типа Ан-12, Ил-18 грунтовые аэродромы, как правило, подготавливают методом очистки от снега. На аэродромах, подготавливаемых методом очистки от снега, в первый период зимы снег укатывают для создания уплотненного слоя толщиной 6—8 см, служащего для выравнивания поверхности и защиты дернового покрова от вымерзания и повреждения при работе снегоочистительной техники. После создания уплотненного слоя дальнейшее содержание аэродрома заключается в очистке. Периодически, не реже одного раза в две недели, необходимо замерять толщину уплотненного снега, и там, где толщина его менее 6 см, вместо очистки следует провести уплотнение снега.

На аэродромах, подготавливаемых методом уплотнения, свежевыпавший онег следует уплотнять, как только толщина снега достигает 5 см, и продолжать до тех пор, пока не прекратится снегопад. Для повышения плотности и прочности снега укатка летной полосы должна производиться и при повышении температуры независимо от снегопада или наличия на ней свежевыпавшего спега.

5.22. Одним из основных пожазателей, оказывающих большое влияние на эксплуатацию аэродромов, является прочность (несущая способность) уплотненного снега. При эксплуатационной прочности уплотненного снега разрешаются регулярные полеты самолетов, при этом тлубина колен колес не должна превышать 2 см. При минимально допустимой прочности уплотненного снега разрешаются разовые полеты самолетов, при этом тлубина колен от колес самолета не должна быть более 6 см. Требуемая прочность уплотненного снега, кг/см², для различных типов самолетов приведена в табл. 21.

Тип самолета	Масса самолета, т	Для регулярных полетов (эксплу- атационная проч- ность)	Для разовых по- летов (минималь- ная прочность)
Як-40 Ан-2 Ан-12 Ан-24 Ан-26 Ли-2 Ил-14 Ил-18	14,6 5,26 61 21 21 11,5 17,5 61,1	7 4 9 7 7 5 6	4 3 7 5 5 4 5 7

5.23. Прочность, или несущая способность, уплотненного снегового покрытия, зависит от плотности снега, его температуры и времени формирования его в покрытии. Несущая способность снегового покрытия о тем больше, чем выше его плотность р и ниже температура (рис. 11).

5.24. Прочность и плотность снегового покрытия определяют перед началом полетов и после каждого уплотнения снега при по-

вышении температуры воздуха.

5.25. За божовыми границами ВПП, РД и МС следует устраивать пологие (не более 1:20) откосы, которые должны быть спланированы и иметь ровную, обтекаемую для ветро-снегового потока поверхность (рис. 12).

5.26. Ровность поверхности снеговых ВПП должна удовлетворять требованиям, предъявляемым к грунтовым ВПП в летнее

время.

- 5.27. Колею от колес самолета необходимо устранять сразу же после прекращения полетов до понижения температуры воздуха. После заделки колеи снеговое покрытие должно иметь тщательно выглаженную поверхность, так как неровности способствуют образованию застругов и надувов, препятствующих взлету и посадке самолетов. Эксплуатация самолетов с колесными шасси на грунтовых и ледовых аэродромах, подготавливаемых методом очистки и уплотнения снега, допускается и при наличии свежевыпавшего снега толщиной, до:
 - 25 см для самолетов типа Ан-2;
 - 30 см для самолетов типа Ли-2;
- 18 см для самолетов типа Як-40, Ил-14, Ан-24, Ан-26, Ан-12, Ан-22, Ил-18.
- 5.28. В предвесенний период для сокращения «нелетного периода» уплотненный снег на ВПП рекомендуется срезать небольшими слоями с помощью автогрейдера и удалять роторными снего-очистителями; поверхность ВПП уплотнять гладилками или катками. К началу интенсивного снеготаяния толщина уплотненного снега должна быть минимальной. Образующуюся слякоть необходимо убирать. Если имеется вторая ВПП, то в этот период на ней надо уплотнять снег.
- 5.29. Для отвода воды с летных полос и предупреждения их подтопления талыми водами в снегу полагается своевременно устраивать водоотводящие канавы.

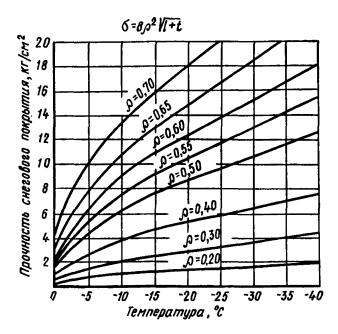


Рис. 11. Зависимость несущей опособности снеговых покрытий от плотности онега и температуры воздуха

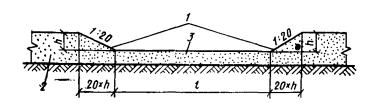


Рис. 12. Поперечный профиль летной полосы со снеговым покрытием 1— переходные полосы (полосы сопряжения); 2— снеговой покров; 3— покрытие из уплотненного снега; 1— ширина ГВПП

5.30. Временные грунтовые аэродромы, используемые только в зимнее время, должны располагаться на лугах, выгонах, пашнях, косах и отмелях. До наступления зимних заморозков участок под аэродром должен быть тщательно осбледован, закреплен на местности с помощью вешек или других ориентиров, хорошо видимых в зимнее время, очищен от посторонних предметов (пней, корней, веток деревьев, валунов).

5.31. В районах, характеризующихся выпадением большого количества снега и сильными ветрами, необходимо предусматривать мероприятия по снегозащите. Для защиты элементов аэродрома от снежных заносов необходимо учитывать конкретные особен-

ности образования заносов на основе многолетнего опыта экоплуатации, а также данные по:

направлению и скорости действующих ветров:

характеру метелей и количеству переносимого метелями снега; характеру снежных отложений (рис. 13):

температуре и влажности воздуха.

Рис. 13. Образование снежных отложений

a - y снегового края вала ВПП; 6 - в снежных выемнах, устраиваемых в снежном покрове на подходах ВПП; $\delta - y$ щитовой снегозащиты; I— снеговой вал; 2 - поверхность ВПП; линия щитовой снегозащиты

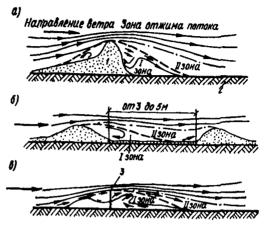



Рис. 14. Схема устройства снеговых выемок и валов

I зона — область завихрений и сниженных скоростей ветроснегового потока, где накопление снежных отложений происходит наиболее быстро по высоте, достигая верха препятствия с пологим уклоном в сторону от препятствия;

II зона — область снежных отложений, распространяемых главным образом по длине при замедленном нарастании по высоте.

5.32. Устройство снегозащиты должно производиться по заранее разработанным схемам в соответствии с заносимостью отдельных элементов аэродрома. Основными снегозащитными ограждениями являются снеговые выемки, валы (рис. 14), устраиваемые параллельно ВПП, РД и МС секциями с одной или с двух сторон в зависимости от характера заносимости.

5.38. Начало устройства снеговых выемок и валов целесообразно при толщине снегового покрова не более 20 ом; для работы применяются угольник, снегоочистители, прицепные грейдеры и автогрейдеры.

Ледовые аэродромы

- 5.34. При выборе площадок на льду предпочтение отдают мелководным озерам, отмелям рек, тде скорость течения и колебания уровня воды минимальны, вследствие чего лед образуется более равномерно, а поэтому имеет ровную поверхность; прочность ледопото покрытия выше, чем на глубоководных реках и озерах. На морских водоемах наиболее удобны для этой цели места, расположенные в бухтах и лагунах, защищенных от течений и ветров.
- 5.35. Лед, используемый для аэродромов, должен иметь достаточную несущую способность, ровную поверхность, без трещин, полыней, торосов, наледей. Несущая способность ледового покрова зависит от толщины льда, его структуры, плотности, солености, гидрогеологического режима водного бассейна, температуры воздуха и наличия снега на льду. Один из самых важных факторовствень солености воды. При температурах, близких к 0°С, прочность соленого льда меньше пресноводного в 3—4 раза.

5.36. Ледяной покров по толщине может быть разделен на три основных слоя:

нижний — из прозрачного льда голубоватого или зеленоватого оттенка, имеющий раковинистый излом и наибольшую прочность;

оредний — из мутного непроэрачного льда, имеющий большую пористость по сравнению с прозрачным льдом и более низкую прочность (в 1,5—2 раза) по сравнению с нижним слоем;

верхний — из замерэшего слоя снега, пропитанного талой водой во время оттепелей или дождей, обладающего небольшой прочностью; этот слой при расчете ледового покрытия не учитывается.

5.37. За расчетную толщину льда принимается приведенная толщина $H_{\rm пp}$, в которую входит полная толщина прозрачного льда h_1 и половина толщины слоя мутного льда h_2 :

$$H_{\rm np} = h_1 + 0.5 h_2. \tag{32}$$

5.38. Для определения расчетной толщины льда H_p в зависимости от массы самолета пользуются следующими формулами: пресноводные водоемы:

в дни со средней температурой воздуха ниже —10°C:

для самолетов на колесах $H_p = 16 \sqrt{G}$;

для самолетов на лыжах $H_p = 12\sqrt{G}$;

в дни со средней температурой воздуха —10°С—0°С:

для самолетов на колесах $H_p = 22\sqrt{G}$;

для самолетов на лыжах $H_p = 17 \sqrt{G}$;

морские водоемы: $H_p = K(20\sqrt{G} - 0.25G)$,

где K— коэффициент, учитывающий период и воэраст льда, равный для зимы K=1, для лета (многолетний лед) K=1,5 и K=2 (летний период, однолетний лед);

G — масса самолета, т.

5.39. Места стоянки самолетов, автотранспорта, аэродромных средств механизации, а также складских сооружений следует располагать на берегу или на льду, если его толщина на этих участках в полтора раза больше рассчитанной для ледовой ВПП. Места стоянки должны быть удалены на 50 м от берета, а допустимое расстояние между самолетами — не менее трех размахов крыльев.

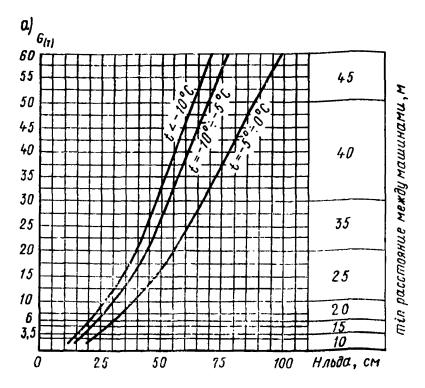
5.40. Для контроля за состоянием ледового аэродрома следует систематически замерять толщину льда и сопоставлять ее с расчетной величиной. Толщина льда замеряется ледомерными рейками: на стартовых участках ледовой ВПП, РД, МС через 100 м и на среднем участке ледовой ВПП через 200 м по ее оси.

5.41. Как правило, в лунке вода поднимается на 0,8—0,9 толщины льда. Отсутствие воды в лунке указывает на зависание льда, и в этом случае эксплуатация аэродрома должна быть прекращена.

5.42. Требуемая толщина льда зависит от массы самолета (рис. 15).



Рис. 15. Требуемая толщина льда в зависимости от массы самолета a — на колесах: I — льды пресноводные, t — пресноводные, t — пресноводные, t — морские, летом (многолетний лед); t — морские, летом (однолетний лед); t — на лыжах: t — льды пресноводные, t —


5.43. При строительстве ледовых аэродромов выполняются следующие работы:

1. Выбор и обследование площадки — предварительный выбор по карте, рекогносцировочный осмотр с воздуха и обследование площадки на местности; определение толщины льда и ориентирование ВПП.

2. Разбивочные работы — определение размеров летного поля и вынесение их в натуру.

3. Устройство спусков и съездов — места съездов машин и специального транспорта выбирают, где наибольшая прочность льда и пологие берега (уклон не более 10%). Если таких мест нет, то устраивают искусственные; конструкция их будет зависеть от высоты берега и толщины берегового льда.

4. Очистка, засыпка неровностей, заделка трещин на площадке.

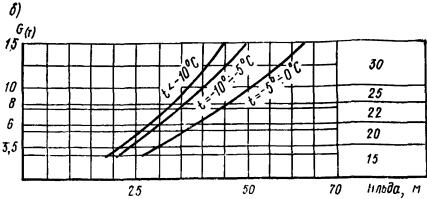


Рис. 16. Требуемая толщина льда в зависимости от массы автотранспортных машин на гусеничном ходу (a) и пневмоколесном (b)

Прежде чем приступить к очистке, необходимо проверить безопасность движения по льду автотранспорта и строительных машин. На графиках (рис. 16) указаны необходимые толщины льда и минимально допустимое расстояние между машинами в зависимости от их массы. Способы очистки от снега зависят от типа снегоочистительных машин и силы бокового ветра. Когда фактическая толщина льда превышает требуемую, допускается уплотнение снега.

Торосы удаляют вручную (ломом, киркой, топором), если их объем незначителен. Торосы из тонких льдин можно срезать бульдозерами. Большие торосы удаляют льдоскалывателями или небольшими зарядами взрывчатки. Образовавшиеся кучи льда и снета перемещают бульдозером или автогрейдером на расстояние не менее 50 м от ВПП (равномерно, без куч). Неровности засыпают снегом с добавками битого мелкого льда и заливают водой (вода подается насосами из прорубей). Увлажненную смесь уплотняют катками, трамбовками, ручными средствами.

Трещины во льду, образующиеся в результате температурных колебаний, следует немедленно заделывать. Сухие несквозные трещины с шириной раскрытия поверху до 4 см заливают водой, поступающей по скважинам, просверленным в самой трещине через 4—5 м. Сквозные мокрые трещины шириной до 300 см заделывают с помощью бревен или досок, которые крепят мяткой проволокой или веревками за анкеры, вмороженные в край льда. Трещину заполняют доверху ледяным щебнем, слегка трамбуют и для ускорения промерзания поливают водой (рис. 17).

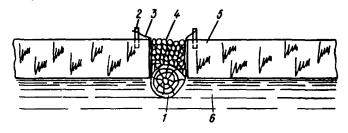


Рис. 17. Заделка сквозных трещин с помощью подвода под лед бревен

1 — бревно; 2 — анкеры; 3 — проволока; 4 — ледяной щебень; 5 — ледяной покров; 6 — вода

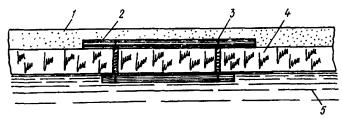


Рис. 18. Заделка сквозных трещин закреплением ледяных плит бревнами

1 — наливной лед; 2 — бревно; 3 — проволока: 4 — естественный лед; 5 — вода

Трещины шириной до 3 м заделывают кусками льда, ширина которых должна быть примерно равна ширине трещины. Льдины вырубают или выпиливают в ледяном покрове за пределами границ летного поля. Под трещину, поперек ее направления, подводят три бревна длиной по 4 м (рис. 18). Затем в трещину на бревно укладывают подготовленные льдины, сверху которых укладывают

Таблица 22 Ориентировочные значения скорости намерзания льда снизу, см/сут.

	-											
ачальная тол-	Средняя температура воздуха за сутки, °С											
щина льда, см	-10	-15	-20	—25	30	-35						
0	7 6,3	9 8,3	10,4 9,5	11,8 11,1	13 12	14 13						
10	4,3 3,6	<u>6</u> 5,2	7,6 6,5	8,6 8,1	9,8	$\frac{10,7}{10,1}$						
20	$\frac{3,4}{2,8}$	4,9 3,9	<u>6</u> 5	<u>7</u> 5,9	7,6 6,8	8,1 7,3						
30	$\frac{2.6}{2.2}$	3,6 2,8	3,6	5,2 4,2	6 4,8	<u>6,4</u> 5,2						
40	1,9 1,5	$\frac{2,8}{2}$	3,5 2,5	$\frac{4,1}{2,9}$	4,5	<u>4,7</u> 3,7						
50	1,5 1,1	$\frac{2}{1,4}$	2,6	2,8 1,8	3 2,1	$\frac{3,2}{2,3}$						
60	1,3 0,7	1,7	1,2	2,3	2,7	2,9						

 Π р и м е ч а н и е . Над чертой приведены значения для озер, под чертой — для рек со скоростью течения до 0.5 м/с.

три бревна в ряд длиной по 6 м так, чтобы они находились бревнами подо льдом. Верхние и нижние бревна прочно стягивают тросом или проволокой, оставшиеся зазоры в трещине льдинами, бревнами и льдом забивают снегом или ледяным щебнем и заливают водой, после чего верхние бревна снимают. Заделка трещин ледяными плитами возможна при температуре воздуха -5°C и ниже.

5. Намораживание льда. Если толщина ледяного меньше расчетной, то снежный покров сжимается и лед усиливают путем искусственного намораживания. Усиление льда может производиться также за счет естественного его наращивания снизу путем расчистки льда от снега при устойчивых отрицательных температурах воздуха. Ориентировочные значения скорости намерзания льда снизу за сутки (при отсутствии снега на поверхности льда)

приведены в табл. 22.

Искусственный процесс намораживания ведется послойно по 0.5-1 см, что необходимо для однородности льда. Наиболее эффективно намораживание при температурах воздуха от -8°С до -20°C. Площадку, на которой будут проводить намораживание, очищают и ограждают валиками из снега, высота которых после поливки водой и замерзания должна быть в полтора раза больше принятого слоя намораживания льда. Намораживаемый слой льда не должен превышать половины средней толщины естественного льда данного водоема. Прочность намороженного льда на 30% слабее естественного. Расчетная толщина льда $H_{p,n}$ при искусственном намораживании будет:

$$H_{\text{p.n}} = H_{\text{np}} + 0.7 h_{\text{H.n}};$$
 (33)
 $H_{\text{np}} = h_1 + h_2,$

где $H_{\text{п.п.}}$ — расчетная толщина льда; $H_{\text{п.р.}}$ — приведенная толщина льда;

 $h_{
m H.\, extbf{ iny H}}$ — намораживаемая толщина льда.

Продолжительность намораживания можно выразить упрощенной формулой

$$\tau = \frac{790 h_{\rm B}}{T_{\rm O}} , \qquad (34)$$

где т — продолжительность образования наливного льда, мин;

 $h_{\rm B}$ — слой воды, см;

 T_0 — абсолютная температура воздуха, град.

Для усиления ледяного покрова наиболее эффективно в намораживаемый слой укладывать арматуру, что повышает способность в 2-3 раза. Для этого в растянутой зоне укладывают хворост, жерди, тонкомерные бревна, трос, стальную проволоку (рис. 19). Процесс армирования ледяного покрова заключается следующем: очищают от снега ледяной покров, кладут арматуру двух направлениях и намораживают лед. Площадь сечения арматуры

$$f_a = \mu \cdot 100 \, h_{\text{H.A}}$$

где f_a — площадь сечения арматуры;

 и — коэффициент армирования (для деревянной арматуры 0.005--0.035);

 $h_{\rm H, II}$ — толщина намораживания льда,

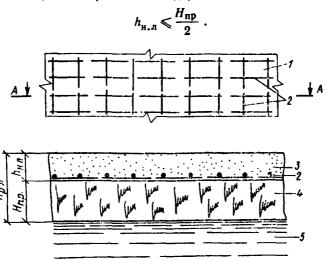


Рис. 19. Схема армирования ледяного покрова 1 — участок ледяного покрова; 2 — арматура; 3 — наливной лед; 4 — естественный лед; 5 — вода

6. Устройство снежных валов. Для преграждения наледной воды к аэродрому устраивают снежные валы высотой не менее 0,5 м и не ближе чем 100 м от границ летной полосы. В случае большого количества наледной воды устраивают несколько параллельных валов и между ними пробивают лунки для сброса воды.

5.44. Содержание аэродромов:

обеспечение достаточной несущей способности ледяного покрова на летном поле, дорогах и спусках с берега на лед;

поддержание требуемой ровности поверхности ледяного покрова и защитного слоя уплотненного снега;

обеспечение безопасности работы аэродромно-эксплуатационной техники, специальных и транспортных автомобилей;

проведение мероприятий по продлению сроков эксплуатации в

предвесенний период.

Чтобы предотвратить возникновение трещин на ледовых ВПП, РД и МС, рекомендуется заблаговременно устранвать температурные швы параллельно продольным границам на расстоянии 25 м от ВПП, РД, МС. Температурные швы пропиливают мото- или электропилами так, чтобы до поверхности воды оставалось 5—8 ом. После пропиливания швы очищают от снега и ледяной крошки, а затем заливают отработанным маслом, керосином или соляровым маслом заподлицо с ледяной поверхностью.

На участках летного поля, имеющих зеркальную поверхность ледяного покрова, следует создать шероховатую поверхность, обеспечивающую достаточный коэффициент оцепления с пневматиками колес самолетов. Для этого необходимо устроить валы вдоль боковых границ отдельных участков летного поля, увлажнить ледяную поверхность и затем роторными снетоочистителями разбросать снег из валиков на зеркальную ледяную поверхность. Если нет снега, зеркальной поверхности льда необходимо придать шероховатость специальными тяжелыми зубовыми боронами на транспортной тяге, пневмокатками или гусеницами тракторов.

Эксплуатация ледового аэродрома прекращается с началом таяния снега и появлением на ледяном покрове талой воды.

5.45. В качестве исходных данных для строительства и эксплуатации ледовых аэродромов следует принимать средние даты замерзания и вскрытия рек, озер и морских акваторий. Также необходимо учитывать среднемесячные температуры воздуха, чтобы определить несущую способность льда и время, требуемое для усиления льда намораживанием.

МЕТОДОЛОГИЯ РАСЧЕТА ПАРАМЕТРОВ ВОЗДЕЙСТВИЯ ПРИРОДНО-КЛИМАТИЧЕСКИХ ФАКТОРОВ НА ПРОИЗВОДСТВО СТРОИТЕЛЬНЫХ РАБОТ (НА ПРИМЕРЕ МУРМАНСКОЙ ОБЛАСТИ)

1. КЛАССИФИКАЦИЯ АГРЕССИВНЫХ ПРИРОДНО-КЛИМАТИЧЕСКИХ ФАКТОРОВ

К характерным агрессивным природно-климатическим факторам, отрицательно влияющим на производство строительных работ на открытом воздухе в Мурманской области, относятся: низкая температура наружного воздуха в зимний период года; сильный ветер; интенсивные атмосферные осадки, туман, пурга, повышенная влажность, резкие перепады атмосферного давления, полярная ночь. Одним из наиболее агрессивных факторов является низкая температура наружного воздуха в зимний период года, сопровождаемая, как правило, ветром.

Прекращение работ при температуре наружного воздуха — 30°С раопространяется на всю Мурманскую область независимо от при-

родно-климатических условий ее районов.

Вторым природно-климатическим фактором, отрицательно влияющим на ход строительных работ, является сильный ветер. Котда скорость ветра достигает 10 м/с и более, что соответствует силе ветра 6 баллов и более, прекращаются работы на башенных кранах и некоторых других строительных машинах.

Неблагоприятное воздействие непосредственно на организм человека оказывает совокупность ветра и низкой температуры — «жесткость погоды». Этот фактор может быть выражен следующим образом:

$$C = t + 2V, \tag{1}$$

гле С — степень жесткости погоды, балл:

t — оредняя отрицательная температура воздуха за рассматриваемый период (день, декада, месяц, квартал);

V — средняя окорость ветра за тот же период, м/с;

 жоэффициент влияния скорости ветра более 5 м/с при отрицательной температуре на организм человека.

Атмосферные осадки в виде дождя и мокрого снега не только снижают производительность труда рабочих, но и вызывают необходимость прекращения работ.

Критическая интенсивность указанных явлений 10 мм/сут., при этом должны быть прекращены работы на открытом воздухе.

Туман и верховая метель значительно снижают видимость на строительной площадке, что отрицательно сказывается на производительности, в основном, при выполнении механизированных работ. Правилами охраны труда и техники безопасности установлено: при видимости менее 20 м строительно-монтажные и транспортные работы должны быть прекращены.

Мурманская область характеризуется повышенной относительной влажностью воздуха, которая отрицательно сказывается на производстве сварочных, кровельных, изоляционных, отделочных и других работ. Нормативно-инструктивной документацией по производ-

Классификация строительно-монтажных работ по группам с учетом влияния природно-климатических факторов

Номер группы	Вид строительно монтажных работ	Природно-климатические факторы					
1	2	3					
I	Железобетонные, арматурные работы, выполняемые на открытом воздухе и в необогреваемых помещениях, в том числе: установка и вязка арматуры; приготовление и укладка бетонной смеси; изготовление полуфабрикатов, деталей, конструкций; монтаж строительных конструкций— сборка, подъем и установка железобетонных, бетонных, крупноблочных и стальных конструкций; установка и передвижение кранов; механизированные земляные работы и буроварывные— разработка немерэлых и скальных грунтов; транспортные работы, выполняемые на открытом воздухе, и погрузочно-разгрузочные	Температура воздух: ниже —30°С; пурга (метель); видимость мене 20 м; атмосферные осадки интенсивностью боле 10 мм/сут; ветер свыш 11 м/с					
111	Отделочные, сварочные и ка- менные работы, в том числе: клад- ка бутовых и бетонных колодцев; устройство оснований и сборка го- товых частей бетонных и железо- бетонных колодцев; устройство кирпичных, бетонных и набивных коллекторов; кирпичная, блочная и бутовая кладка; облицовка ко- лонн, балок; установка карнизных плит; выполняемые на открытом воздухе и в неотапливаемых поме- щениях кровельные работы (вклю- чая навеску труб)	Температура воздуха ниже — 30°С; пурга (метель); видимость менее 20 м; атмосферные осадки интенсивностью более 10 мм/сут; влажность воздуха более 80%; ветер свыше 11 м/с					
	Монтаж внутренних санитарно- технических устройств и оборудо- вания; стекольные работы, выпол- няемые на открытом воздухе и в необогреваемых помещениях	Температура воздуха ниже — 30°C					

Номер группы	Вид строительно-монтажных работ	Природно-климатические факторы						
	2	3						
IV	Плотничные работы, в том числе: устройство и разборка наружных лесов; сборка деревянных зданий из готовых деталей и конструктивных элементов; рубка стен из бревен и пластин; устройство и разборка опалубки; устройство перемычек; столярные работы, выполняемые на открытом воздухе и в необогреваемых помещениях; ручные земляные, в том числе дренажные, выполняемые на открытом воздухе	Температура воздуха ниже — 30°С; пурга (метель); атмосферные осалки интенсивностью более 10 мм/сут; ветер свыше 11 м/с						

ству, приемке работ и технике безопасности в строительстве установлено, что при влажности воздуха выше 80% сварочные, отделочные, кровельные и изоляционные работы должны быть прекращены.

Фактор «полярной ночи» снижает производительность труда до 3% в год из-за недостаточной освещенности строительной площадки и воздействия отрицательных психофизиологических факторов. Для Мурманской области годовой коэффициент увеличения трудоемкости строительно-монтажных работ из-за полярной ночи $K_{\pi,\pi} = 1,03$.

Во время пурги (осадки в виде снега с ветром повышенных скоростей — более 8 м/с) все строительно-монтажные работы на открытых площадках прекращаются. Сильные ветры вызывают непрерывный перенос снега, в результате он распределяется неравномерно и местами создаются заносы высотой до нескольких метров. На интенсивность снеговетрового потока влияют скорость ветра, запасы снега, характер растительного покрова и рельеф местности. Исходя из количества переносимого ветром снега, принимаемого по розе переноса (данные метеостанции), выбираются средства снегозащиты.

Рельеф местности влияет почти на все виды строительства. В зависимости от крутизны склонов строительные площадки можно подразделить на непригодные, малопритодные, менее пригодные и наиболее пригодные для производства земляных работ бульдозерами и одноковшовыми экскаваторами. Усредненный коэффициент увеличения трудоемкости механизированных строительно-монтажных работ для Ковдорского района строительства $K_{\rm penbe} = |1,1$.

Резкие перепады атмосферного давления отрицательно влияют на производительность труда рабочих-строителей. Анализ динамики атмосферного давления в Ковдорском районе строительства по многолетним данным местных метеостанций и «Справочника по климату СССР» показал, что на протяжении всего года имеют место частые и значительные по величине барические перепады. Однако этот фактор в Мурманской области изучен еще недостаточно для то-

го, чтобы дать количественную оценку вызываемых ими потерь рабочего времени.

Строительные работы в зависимости от характера воздействия на них агрессивных природно-климатических факторов подразделяются на четыре группы (табл. 1).

2. МЕТОДЫ КОЛИЧЕСТВЕННОЙ ОЦЕНКИ ВОЗДЕЙСТВИЯ ПРИРОДНО-КЛИМАТИЧЕСКИХ ФАКТОРОВ НА ТЕМПЫ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА

Настоящие методы предназначены для оценки влияния агрессивных природно-климатических факторов (отрицательная температура воздуха, ветер, метель, пурга, интенсивные атмосферные осадки, повышенная влажность воздуха, туман) на темпы производства строительно-монтажных работ.

Агрессивные природно-климатические факторы увеличивают продолжительность работ, а в зимний период, жроме того, вызывают изменения в технологии строительных процессов и условиях труда рабочих, приводящие к увеличению трудовых затрат на единицу тотовой продукции. Размер увеличения продолжительности основных видов работ определяется путем сравнения фактически затраченного времени с временем, предусматриваемым ЕНиР на строительные, монтажные и ремонтно-строительные работы.

Степень уменьшения фактического времени работы следует определять для конкретного района строительства на основании данных многолетних наблюдений. Эти данные должны отражать: число дней с ветром свыше 10 м/с (более 6 баллов), число дней с температурой воздуха от —10°С до —25°С, а также с температурой воздуха, при которой полностью прекращаются работы на открытом воздухе (от —25°С и ниже), число дней с метелями (пургами) видимостью менее 20 м, атмосферными осадками интенсивностью более 10 мм/сут и относительной влажностью воздуха более 80%.

Характеристики агрессивных природно-климатических факторов для района строительства принимаются по соответствующим таблицам «Справочника по климату СССР» и по данным многолетних наблюдений ближайших к району строительства метеорологических станций.

При предварительной обработке полученных статистических данных природно-климатические факторы группируются, при этом выделяются факторы, которые влияют на выполнение намеченного перечня строительно-монтажных работ, проверяется надежность по-казателей для дальнейшего расчета.

Показатели каждого природно-климатического фактора являются вероятностными, а большая часть факторов характеризуется межгодовой изменчивостью. Кроме того, нередко встречаются аномальные периоды продолжительностью в несколько лет, когда показатели отдельных природно-климатических факторов резко отличаются от длительного ряда предшествующих и последующих лет. В связи с этим возникает необходимость статистического анализа и проверки достоверности (надежности) показателей природно-климатических факторов, рассчитанных по комплексу метеофакторов не менее чем за 5 лет. Проверка достоверности заключается в оценке надежности каждого природно-климатического фактора и на этой основе суждения о надежности комплекса. Следует считать, что

если показатели отдельных факторов надежны, то и показатели ком-

плекса можно принимать как достоверные.

Статистический анализ данных, характеризующих рассматриваемые природно-жлиматические явления, производится с применением ЭВМ (например, типа «Наири»). Программа расчета статистических зависимостей характеристик природно-климатических факторов составляется в универсальном режиме. Исходные данные (статистика) и результаты обсчета записываются в табл. 3.

Полученные результаты обсчета подвергаются дальнейшему

анализу.

При $v \leqslant 35\%$ и $P \leqslant 15\%$ определяется доверительный интервал μ , в котором возможны значения средней и генеральной совокупности. При этих значениях v и P дальнейший расчет не выполняется и данные для рассматриваемого фактора принимаются как достоверные.

Доверительный интервал µ определяется по формуле

$$\overline{X} - t \, \sigma_{\overline{X}} < \mu < \overline{X} + t \, \sigma_{\overline{X}},$$
 (2)

где t — критерий Стьюдента, который находится в зависимости от уровня значимости.

При v>35 и P>15% выполняется анализ величин X и μ . Если $\overline{X}\leqslant 2$ и $\mu\leqslant 0$ (по нижнему пределу и при $\rho=0,05$), данные за расчетный период рассматриваемого агрессивного природно-климатического фактора в дальнейший расчет не включать, так как фактор в этом периоде изменчив и имеет малую повторяемость. Например, в табл. 3 такими периодами будут месяцы II, III, IV, XI и XII.

Если v>35 и P>15%, но не соблюдается условие $\overline{X}\leqslant 2$ и $\mu\leqslant 0$, дальнейший расчет не выполняется и данные для рассматриваемого агрессивного природно-климатического фактора включаются в расчет как достоверные.

В результате анализа получаем достоверные данные по характеристикам природно-климатических факторов, подлежащие дальней-

шему обочету.

Ввиду того что метеоданные отражаются в календарных днях, необходимо ввести поправочные коэффициенты для установления вероятности данного природно-климатического фактора в рабочие лни.

Такими поправочными коэффициентами будут: при шести рабочих днях в неделю:

$$K_{\rm np} = \frac{365 - 59}{365} = 0.84;$$
 (3)

при/пяти рабочих днях в неделю:

$$K_{\rm np} = \frac{365 - 104}{365} = 0.72.$$
 (4)

Здесь 59 и 104 — числа воскресных и праздничных дней в году. Вероятность попадания природно-климатических факторов в рабочую смену при односменной работе определяется через коэффициент K_B = 0.33.

Основу увеличения продолжительности выполнения работ составляют потери ресурсов рабочего времени в результате:

целодневных простоев в дни с критическими значениями природно-климатических факторов;

снижения трудоотдачи в дни с неблагоприятными природно-кли-

матическими факторами;

перерывов для обогрева работающих на открытом воздухе при отрицательных температурах;

всеобщей занятости рабочих на очистке территории от снега после метелей и снегопадов;

значительного сокращения светового времени (полярная ночь); технологических перерывов на обогрев помещений перед началом отделочных работ.

Значения характеристик атрессивных природно-климатических явлений, при которых не могут производиться никакие работы на открытом воздухе, устанавливаются местными исполнительными комитетами. При отсутствии утвержденного решением местного исполкома документа, определяющего критические характеристики природно-климатических факторов, учитываются следующие факторы:

метель (пурга);

осадки более 10 мм в сутки;

гроза.

Потери ресурсов рабочего времени в результате целодневных простоев рассчитываются по всем видам работ умножением числа дней с критическими значениями погодных явлений на коэффициент потери продуктивности, равный 1.

Потери ресурсов рабочего времени под влиянием агрессивных природно-климатических факторов определяются по формуле

$$N_{\rm Kp} = \sum_{i=1}^{n} N_{\rm Kp_{i}} + K_{\rm Kp} K_{\rm B_{i}} K_{\rm np}, \qquad (5)$$

где $N_{\rm кp}$ — число дней с *i-*м агрессивным природно-климатическим фактором в расчетный период времени;

Кир — коэффициент снижения трудоотдачи из-за агрессивных природно-климатических факторов, равный 1;

Кв. — коэффициент вероятности попадания i-то агрессивного природно-климатического фактора на рабочий период суток, фавный 0,33;

Кпр — коэффициент, учитывающий природно-климатические факторы в праздничные и выходные дни.

Коэффициент лотери ресурсов рабочего времени под воздействием агрессивных природно-климатических факторов равен:

$$K_{\mathbf{n}\cdot\mathbf{k}\mathbf{p}} = \frac{N_{\mathbf{k}\mathbf{p}}}{N_{\mathbf{p}}} , \qquad (6)$$

где **N**p — расчетный рабочий шериод времени (год, квартал, месяц), дни;

 $N_{\rm p} = N_{\rm K} K_{\rm np}, \tag{7}$

где N_{κ} — расчетный календарный период, дни.

Қоэффициент увеличения продолжительности выполнения работ под воздействием агрессивных природно-климатических факторов равен:

$$K_{ykp} = \frac{N_p + N_{kp}}{N_p} .$$
(8)

Неблагоприятные природно-климатические факторы снижают трудоотдачу в результате:

стесненности движений рабочего теплой одеждой, неудобства

работы в рукавицах;

понижения видимости в зимнее время на рабочем месте;

затруднения в работе, обусловленного наличием на рабочем месте льда, снега, обледенения обуви, материалов, конструкций, инструментов, необходимости в процессе работы периодической очистки рабочего места, материалов от снега и льда;

усложнения в технологических процессах, вызываемого низкой

температурой.

Неблагоприятными природно-климатическими факторами, вызывающими дополнительные затраты времени, следует считать погоду при температуре:

ниже 0 до —10°С, при ветре до 10 м/с от —11 до —20°С » » » 5 » от —21 до —30°С » » » 5 » от —31 до —40°С » » » 5 » от —41 до —50°С » » » 5 »

Потери ресурсов рабочего времени под воздействием неблагоприятных природно-климатических факторов рассчитываются по формуле

$$N_{H6} = \sum_{\ell=1}^{n} N_{H6_{\ell}} K_{H6_{\ell}} K_{B_{\ell}} K_{\pi p}, \qquad (9)$$

где $N_{{\bf H6}}$ — число дней с *i*-м неблагоприятным природно-климатическим фактором в расчетный период времени;

Киб, — коэффициент снижения трудоотдачи под воздействием неблатоприятного *i*-то природно-климатического фактора;

$$K_{\mathsf{H}\delta_{\ell}} = \left(1 - \frac{1}{K_{\mathsf{\Pi}_{\ell}}}\right),\tag{10}$$

где $K_{\text{п}i}$ — поправочный коэффициент к нормам времени и расценкам на строительные, монтажные и ремонтно-строительные работы, выполняемые в зимних условиях, принимается по ЕНиР, Общая часть.

Коэффициент потери ресурсов рабочего времени под воздействием неблагоприятных природно-климатических факторов равен:

$$K_{\text{п.н6}} = \frac{N_{\text{H6}}}{N_{\text{p}}} . \tag{11}$$

Коэффициент увеличения продолжительности выполнения работ

под воздействием неблагоприятных природно-климатических факторов равен:

$$K_{y.H6} = \frac{N_p + N_{H6}}{N_p}. \tag{12}$$

Режим обогрева работающих при отрицательной температуре воздуха устанавливается решением местных исполнительных комитетов, например для условий г. Ковдора этот режим характеризуется показателями, приведенными в табл. 2.

Таблица 2

	Тихая погода 0—2 бал.	Crafuß Berep 2—5 бал.	Сильный ветер 5—8 бал.	Шторы 8—9 бал.	Буря 10 бал.
Перерывы для обогрева рабочих через каждый час на 10 мин при температуре, не выше	—20°C	—15°C	—10°C	Прекра- щение работ при тем- пературе не выше 0°C	Прекра- щение работ незави- симо от темпе- ратуры воз духа
Прекращение работ (кроме работ на лесоучастках)	—30°C	—25°C	20°C		_
при Перерывы для обогрева рабочих через каждый час на 10 мин и сокращение рабочего дня на 1 ч при	—25°C	—20°C	—15°C	-	-
Прекращение работ на ле- соучастках по заготовке и вывозу леса при	—32°C	–28°C	—25°C		-

Потери ресурсов рабочего времени, связанные с необходимостью обогрева рабочих, расочитываются по формуле

$$N_{\text{of}} = \sum_{l=1}^{n} [N_{\text{H}6_{l}} (1 + K_{\text{H}6_{l}})] K_{\text{of}_{l}} K_{\text{np}}, \qquad (13)$$

где Коб, - коэффициент снижения трудоотдачи вследствие перерывов для обогрева работающих при і-м неблатоприятном природно-климатическом факторе.

Величины $K_{o\, 0}$, равны:

температура от -41° С до -50° С, ветер до 5 м/с -0.25 при семичасовом рабочем дне: температура от -10° С до -20° С, ветер до 5 м/с -0.07 » от -21° С до -30° С, » » 5 » -0.120 » от -31° С до -40° С, » » 5 » -0.180 » от -41° С до -50° С, » » 5 » -0.24

Коэффициент потери ресурсов рабочего времени в связи с дополнительным перерывом на обогрев рабочих равен:

$$K_{\mathbf{n}\cdot\mathbf{o}\mathbf{6}} = \frac{N_{\mathbf{o}\mathbf{6}}}{N_{\mathbf{p}}} \ . \tag{14}$$

Коэффициент увеличения продолжительности выполнения работ в связи с дополнительным перерывом на обогров рабочих равен:

$$K_{\mathbf{y} \cdot \mathbf{o}\mathbf{\delta}} = \frac{N_{\mathbf{p}} + N_{\mathbf{o}\mathbf{\delta}}}{N_{\mathbf{p}}}.$$
 (15)

Потери ресурсов рабочего времени в результате всеобщей занятости рабочих на расчистке строительной площадки от снега составляют 50% числа дней с метелями.

Коэффициенты потери продуктивности и увеличения продолжительности выполнения работ в связи с занятостью рабочих на расчистке строительной площадки от снега соответственно рассчитываются по формулам:

$$K_{\mathbf{n}\cdot\mathbf{c}\mathbf{H}} = \frac{0.5\ N_{\mathbf{H}}}{N_{\mathbf{p}}}\,;\tag{16}$$

$$K_{y \cdot cH} = \frac{N_{p} + 0.5 N_{M}}{N_{p}} , \qquad (17)$$

где $N_{\rm M}$ — число дней с метелями в расчетный период времени.

Потери рабочего времени, % . .

Технологический перерыв на прогрев помещений перед началом отделочных работ составляет 15—17 рабочих дней, что увеличивает продолжительность выполнения этого вида работ и на такой же период времени удлиняет срок возведения объекта.

При разработке календарных или сетевых графиков продолжительность выполнения работ необходимо рассчитывать с учетом коэффициентов степени снижения темпов производства строительномонтажных работ под влиянием суровости климата, определяемых по формуле

$$\dot{K}_{TC_{I}} = 1 + K_{\Pi,KP} + K_{\Pi,HS} + K_{\Pi,OS} + K_{\Pi,CH} + K_{\Pi,CB}$$
 (18)

Продолжительность любого вида строительно-монтажных работ, производимых в суровых климатических условиях, определяется по формуле

 $T_{c_i} = T_{e_i} K_{T c_i} N_{JH} T_{oc} = T_{oe} K_{orc} + t_{TX},$ (19)

где T_{c} — продолжительность выполнения i-го вида работ в суровых климатических условиях;

 $T_{e_{i}}$ — продолжительность выполнения i-го вида работ в условиях, предусмотренных ЕНиР на строительные, монтажные и ремонтно-строительные работы; $K_{\tau e_{i}}$ — коэффициент снижения темпов производства строительно-монтажных работ под влиянием суровости влимата:

 T_{oc} ; T_{oe} ; K_{orc} — то же, отделочных работ;

 $t_{\text{тx}}$ — продолжительность технологического перерыва перед началом отделочных работ.

Качественная оценка характера влияния агрессивных природноклиматических факторов на производство каждой трушты строительно-монтажных работ производится методом трафической интерпретации метеорологических данных (рис. 1—4). Графические зависимости действительны для района г. Ковдора Мурманской области. Для других районов страны аналогичные зависимости строятся на основании данных местных метеостанций.

График среднемесячной продолжительности воздействия природно-климатических факторов на производство строительно-монтажных работ служит методологической основой при разработке календарного плана производства работ (на месяц, квартал, год). Он позволяет заранее предусмотреть и учесть простой рабочих и механизмов, которые могут возникнуть из-за климатических явлений на протяжении всего строительного периода.

График строится путем отложения на оси ординат среднемесячного числа дней с фактором за каждый месящ года, на оси абсциос — месяца года.

График должен представлять собой совокупность кривых, каждая из которых соответствует природно-климатическому фактору, влияющему на данный вид работ.

Расчет коэффициентов снижения темпов производства строительно-монтажных работ под влиянием суровости климата производится в следующем порядке.

1. Устанавливаются ближайшие к району строительства метеорологические станции и посты и по данным многолетних наблюдений (не менее 5 лет) или по «Справочнику по климату СССР» анализируются природно-климатические условия района.

2. Первичные метеорологические данные и результаты их статистической обработки записываются в табл. 3. Статистическая обработка может производиться с помощью ЭВМ, в частности «Наири».

Основой программы расчета статистических зависимостей является определение среднего арифметического числа значений, среднего квадратического отклонения, коэффициента вариации, ошибки средней арифметической, показателя точности опыта.

Формулы расчета:

$$v = -\frac{\sigma}{\overline{X}} 100\%$$
 — коэффициент вариации; $\sigma_{\overline{x}} = -\frac{\sigma}{V \overline{N}}$ — ошибка средней арифметической; $P = -\frac{\sigma_{\overline{x}}}{\overline{X}} 100\%$ — показатель точности опыта.

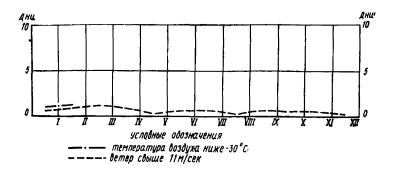


Рис. 1. График ореднемесячной продолжительности воздействия природно-климатических факторов на производство III группы строительно-монтажных работ

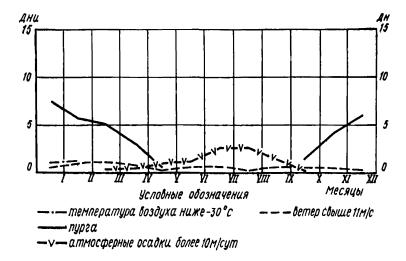


Рис. 2. График среднемесячной продолжительности воздействия природно-климатических факторов на производство IV группы строительно-монтажных работ

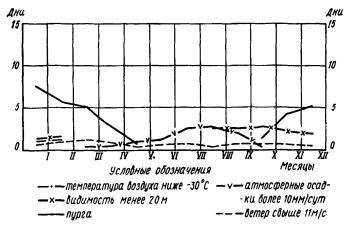


Рис. 3. График среднемесячной продолжительности воздействия природно-климатических факторов на производство I группы строительно-монтажных работ

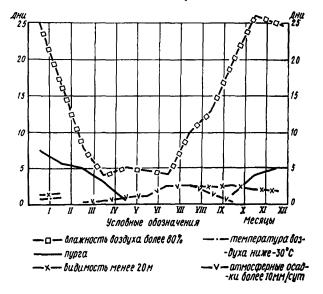


Рис. 4. График ореднемесячной продолжительности воздействия природно-климатических факторов на производство II сруппы строительно-монтажных работ

```
Распределение памяти: длина рабочей программы
```

рабочие ячейки массив А

массив А массив В

Исходные данные (массив А).

Исходные данные вводятся в машину поочередно как числа с плавающей запятой в десятичной системе счисления.

Состав массива констант В:

показатель точности опыта.

число с плавающей запятой в десятичной системе счисления — 1; порядок масонва $A \leftarrow N;$

-- 56:

- 86-107:

-115-117.

-600-(600+N):

число с плавающей запятой в десятичной системе счисления—100.

Результаты:

среднее арифметическое число значений; среднее квадратическое отклонение; коэффициент вариации; ошибка средней арифметичеокой;

Замечание

Элементы массива констант B сохраняются при различных вариантах обсчета, кроме порядка массива A. Порядок N массива A набирается всякий раз, как меняется число исходных данных. Результаты анализа обобщаются и сводятся в табл. 4.

ПРОГРАММА РАСЧЕТА СТАТИСТИЧЕСКИХ ЗАВИСИМОСТЕИ ХАРАКТЕРИСТИК МЕТЕОРОЛОГИЧЕСКИХ ЯВЛЕНИР НА ЭВМ «НАИРИ»

3451		15 0	п106н15
115n3		151	ов95н15
115	1,00000000000	152	и140п<√15
116	8.00000000000	153	п95н101
117	100,000000000000	154	п115н107
120ĸ57	,	155	вп101н107
120	п1,16н95	156	дп98н107
121	п0п86	157	п107н105
122	п0к981	158	кп1∕05н105
123	п981н1	159	пп105н4
124	п0п106	160	о2274н
125	п600н94+	161	п92н93
126	c2048n1	162	дп105н93
127	n1H981	163	vn117н93
128	сп94н86	164	пп93н4
129	cn115H106	165	о2274н
130	п106н15	166	п95н107
131	св95н15	167	кп101н107
132	и1/24n < 15	168	дп105н107
	•	169	пп107н4
133	п95н92	600n	mitorna
134	дп86н92		4 9 12 6
135	nn92H4	120и	
136	с2274н	6.7500	
137	n0n98	2,7645	
138	п0п106	40,9566	
139	п0к981	40,9000	

140	п981н1	0,977	
141	п600н94+	14,480	3
142	с2048п1	170	о2274 н
143	ก1ห981	171	дп107н92
144	п92н20	172	уп117н92
145	вп94н20	173	пп92н4
146	п20н96	174	о2274н
147	уп96н20	175	кОн
148	сп20н98	176	х0н176
149	сп1 115 н 106		

- 3. Обобщающие коэффициенты потери продуктивности в суровых климатических условиях рассчитываются, как указано в табл. 6. В таблицу заносятся следующие коэффициенты, дифференцированные по климатическим характеристикам:
- Ккр коэффициент снижения трудоотдачи из-за критических природно-климатических факторов, равный 1;
- Кв коэффициент вероятности попадания природно-климатических факторов на рабочую смену, который при односменной работе равен 0.33:
- Коб коэффициент онижения трудоотдачи вследствие предоставления рабочим перерывов для обогрева; значения коэффициента определяются по формуле (13);
- Кпр коэффициент, учитывающий попадание природно-климатических факторов на праздничные и выходные дни (при шести рабочих днях в неделю:
- Кно коэффициент снижения трудоотдачи под воздействием неблагоприятных природно-климатических факторов, определяемый по формуле (10) и табл. 5. По формулам (3), (4), (11) рассчитываются коэффициенты по-
- тери продуктивности:
- К₁ из-за критических природно-климатических факторов, определяется по формуле

$$K_1 = K_{KD} K_B, K_{HD},$$
;

неблагоприятных природно-климатических K_2 — под воздействием факторов, определяется по формуле

$$K_2 = K_{HO_i} K_{B_i} K_{\Pi p}$$
;

К₃ — вследствие предоставления рабочим перерывов для обогрева, определяется по формуле

$$K_8 = (1 + K_{HO_1}) K_{OO_1} K_{HP};$$

К₄ — в связи с занятостью рабочих на расчистке строительной площадки от снега, равен 0,5.

Обобщающий коэффициент потери продуктивности определяется как сумма коэффициентов

$$K_1 + K_2 + K_3 + K_4 = K_0$$

Коэффициенты снижения темпов производства строительно-монтажных работ рассчитываются для каждой группы работ (табл. 7-10).

Статистический анализ характеристик природно-климатического фактора

Фактор — атмосферные осадки > 10 мм/сут. Период — 1961—1971 гг. Станция — Ковдор

		х,																	$\mu = \overline{X}$	± 1·σ _Ā
Месяц	Х,	<i>x</i> ,	X.	X4	х.	X.	х,	X.	х,	X	X11		N	\overline{x}	σ	ν	$\sigma_{\overline{X}}$	P		
		Продолжительность действия фактора, дни																	от	go.
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
I	0	0	0	0	0	0	0	0	0	0	0		11	0	0	0	0	0	0	0
11	0	0	0	0	1	0	0	0	0	0	0		11	0,09	0,30	331,66	0,09	99,99	-0,11	0,29
III	1	0	0	0	0	0	1	0	0	1	0		11	0,27	0,47	171,27	0,14	51,64	0,04	0,58
IV	0	0	0	1	-	0	0	0	1	1	1		11	0,36	0,50	138,74	0,15	41,83	0,03	0,69
v	1	3	0	0	2	2	0	0	1	1	0		11	0,91	1,04	114,89	0,31	34,64	0,22	1,60
VI	2	0	4	0	1	4	0	0	0	1	0		11	1,09	1,58	144,67	-0,48	43,62	0,02	2,16

Продолжение табл. 3

_		<i>x</i> ,															$\mu = X \pm t \cdot \sigma$			
Месяц	X ₁	X_{\bullet}	X.	X4	X.	х.	х,	X.	х,	X ₁₀	X11		N	\overline{X}	σ	•	$\sigma_{\overline{X}}$	P		
			Прод	ижкол	тельн	ость д	цейств	зия фа	актора	а, дни								İ	OT	до
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
VII VIII IX X XI XII	3 3 0 0 0	1 2 0 1 0 0	3 1 3 1 0 0	1 3 3 0 0	1 6 0 1 0 0	3 3 3 1 0	0 1 1 1 0 0	1 5 1 6 0	5 2 4 0 0 0	5 2 10 2 0 0	5 1 3 0 1 0		11 11 11 11 11 11	2,54 2,64 2,54 1,36 0,18 0,09	1,86 1,63 2,88 1,80 0,40 0,30	73,21 61,80 112,99 132,30 222,49 331,66	0,49 0,87 0,54 0,12	18,63 34,07 39,89 67,08	1,55 0,60	

Таблица 4

	Исходн	ые х	арактерис	тики кл	иматич	еских	норм р	айона С	троите	льства	(г. К	овдор 1	Ч урман	іской о	бласти	<u>)</u>
	актеристики			l			ч	исло дн	ей с фат	ктором і	з месяц	=				30 707
пр	иродно-клим факто		ских	1_1_	2	3	4	5	6	7	8	9	10	111	12	За год
	ниже 0		до 5	9.2	9,75	13,23	14,65	5,6	0,93	0,05	0,5	2,78	12,38	15,63	12,19	96,89
	до —10		6—10	4,13	9,65	3,48	3 _	1,08	0,23	0,03	<u> </u>	0,05	1,2	2,38	2,85	28,08
			11—15	0,28	0,15	0,18	0,1	0,03		_			0,03	0,1	0,23	1,1
			16-20	0.03	0,03	0,05		I				<u> </u>	0,05	l		0,16
	<u>έ</u> οτ −11		до 5	12,15	10,23	9,1	3,2	0,1			<u> </u>	<u> </u>	1,6	5,78	9,5	51,66
ဂွ	до —21	м/с	6—10	1,48	0,98	0,6	0,03	<u> </u>				<u> </u>	<u> </u>	0,3	0,48	3,87
ура		ветре,	11-20	0,05	0,03		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		0,08
Температура,	от —21		до 5	4,1	4,4	3,33	1,18	<u>L – </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0,05	2,45	4,3	19,81
емп	до —30	нди	6—20	0,05	0,03	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		0,08
1	от —31		до 5	1,43	2,13	0,9	0,05	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	0,38	1,7	6,59
	до —40		6—20	1] _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
	от —41		до 5	0,13	0,1			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		0,23
	до50	,	620	<u> </u>			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	ниже —50	<u> </u>		1]			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Вет	ep >10 m/c			0,6	0,9	1,1	0,8	0,2	0,5	0,6	0,2	0.6	0,5	0,5	0,3	6,8
Мет	ель			7,64	5,73	5,09	3	0	0	0	0	0	1,36	4,09	5	31,91
	дки >10 мм,) O) 0	ι 0	1 0	0,91	1,09	2,54	2,64	2,54	1 1,36	1 0	1 0	11,08	
	осительная цуха >80%	жность	25	17,27	8,27	4,18	4,82	4,73	4,36	10,09	12,91	19,91	26,45	25,4	163,39	
Вид	имость мене	e 20 M	(1,27	1,45	1 0	0	0	0	0	2,55	2,27	2,63	1 2,0	1,82	13,99

Таблица 7 построена по форме табл. 4 с добавлением строк

20, 21, 22, 23.

Строки с 1 по 19 содержат показатели табл. 4, умноженные на обобщающие коэффициенты потерь продуктивности под воздействием природно-климатических факторов, принимаемые из табл. 6.

В строке 20 приводятся суммарные потери по месяцам и году. Число рабочих дней по периодам (строка 21) рассчитывают исходя из конкретных условий организации строительства (пятиили шестидневная рабочая неделя) и календарного времени.

Строка 22 содержит коэффициенты увеличения продолжительности выполнения работ вследствие сокращения светового дня.

Коэффициенты снижения темпов производства строительномонтажных работ, приведенные в строке 23, получены следующим расчетом: (строки 20+21+22): строку 21.

Таблица 5
Коэффициенты снижения трудоотдачи под воздействием неблагоприятных природно-климатических факторов

				Темпер	атура, °(3			
Распределение строительных и монтажных работ по группам		'до —10 е силой,		-20°C	-11° до при вет- юй, м/с	от —21° до —30°С при ветре си- лой, м/с	от —31° до —40°С при ветре си- лой, м/с	от —41° до —50°С при ветре си- лой, м/с	
	до 5	6—10	11—15	до 5	6—10	до 5	до 5	до 5	
I	0,09	0,21	0,24	0,15	0,26	0,2	0,26	0,33	
II	0,13	0,24	0,28	0,23	0,33	0,31	0,38	0,43	
III	0,17	0,28	0,31	0,29	0,38	0,38	0,44	0,5	
Мерзлые	_	0,13	0,17	_	0,13	0,09	0,17	0,17	
грунты									

Расчет обобщающих коэффициентов потери продуктивности под воздействием природно-климатических факторов

								Коэффі	итненты	потери про	дуктивно работ	сти при	выполне-	
X	арактеристики природно-клим	атическ		K _{KP}	K _B	K _o 6	К _{пр}	І группы						
	фактор	ов						Kno	K ₁	K ₂	К,	Κ.	Ko	
	1			2	3	4	5	6	7	8_	9	10	11	
	ниже 0 до —10		до 5		0,33	_	0,85	0,09		0,025	-	_	0,025	
			6—10		0,33		0,85	0,21	_	0,058	_		0,058	
			11—16		0,33		0,85	0,24		0,067	<u> </u>	_	0,067	
			16-20	1	0,33		0,85		0,28	<u> </u>			0,28	
	от —11		до 5		0,33	0,075	0,85	0,15		0,042	0,073	_	0,115	
	до —20		6—10	_	0,33	_	0,85	0,26	_	0,072	-	_	0,072	
ွ ့		м/с	11-20	1	0,33	_	0,85	-	0,28	_	-	-	0,28	
тура,	от —21 до —30	pe, h	до 5	_	0,33	0,125	0,85	0,2	_	0,056	0,127	-	0,183	

	1 1	· .	6—20	1	0,33		0,85		0,28	1	_	_	0,28
Темпера	от —31	при вет	до 5	<u> </u>	0,33	0,19	0,85	0,26	-	0,072	0,203	_	0,275
Te	до —40	dи	6—20	1	0,33	_	0,85		0,28		-	_	0,28
	от —41 до —50		до 5	_	0,33	0,25	0,85	0,33	-	0,092	0,282	_	0,374
	A 0 00		6—20	1	0,33		0,85	-	0,28	_	-	_	0,28
	ниже —50*			1	0,33	_	0,85	_	0,28	_	-	-	0,28
Ветер	ниже —50* — етер > 10 м/с			1	0,33		0,85	_	0,28		_	_	0,28
Метелі	<u> </u>			1	0,33		0,85	-	0,28	_	-	0,5	0,78
Осадкі	садки > 10 мм/сут				0,33	_	0,85	_	0,28		_		0,28
Относи	гадки > 10 мм/сут гносительная влажность возду г > 80%				0,33		0,85		0,28	_		-	0,28
	ость менее 20	М	_	1	0,33		0,85	_	0,28	_	-		0,28

v					Коэс	ффициенты	потери прод	дуктивно	ости при вы	полнении	работ	
A	арактеристики природно-клима	атическі	ных Ах	İ		II груг	របក		_		III групі	161
	фактор	юв		KHO	Kı	K ₂	K _a	K4	Ko	Кнб	K ₁	K ₂
		1		12	13	14	15	16	17	18	19	20
	ниже 0 до —10		до 5	0,13	<u> </u>	0,036		_	0,036	0,17		0,04
			6-10	0,24		0,067		<u> </u>	0,067	0,28		0,07
			11—16	0,28		0,078	_	_	0,078	0,31		0,08
			16—20	-	0,28			_	0,28	-	0,28	
	от —11 до —20		до 5	0,23	_	0,064	0,783	_	0,847	0,29		0,08
			6—10	0,33		0,092	_	_	0,092	0,38		0,10
,	01	M/c	11—20	-	0,28	_		-	0,28	-	0,28	
'ndf:	от —21 до —30	pe, N	до 5	0,31		0,086	0,141	_	0,227	0,38		0,10

гера		вет	6—20	_	0,28	-	_	-	0,28	_	0,28	_
Темпера	от —31 до —40	нфи	до 5	0,38	_	0,106	0,222	-	0,328	0,44	_	0,123
	AG 10		620	-	0,28	_	_	-	0,28	_	0,28	~
	от —41 до —50		до 5	0,43	_	0,12	0,303		0,423	0,5	_	0,14
	до50		620	-	0,28	_		_	0,28	_	0,28	
	ниже —50*		_		0,28	_			0,28		0,28	
Ветер	> 10 м/c			_	0,28			_	0,28	_	0,28	_
Метел	b				0,28	_		0,5	0,78	_	0,28	_
Осадк	садки > 10 мм/сут				0,28	_	-		0,28		0,28	
	садки > 10 мм/сут носительная влажность возду- > 80%			-	0,28	_	-		0,28	-	0,28	
	ость менее 20		_	0,28	_		_	0,28	_	0,28		

					Коэфф	энциенты по	тери про	д у ктивност	и при выпо	лнении раб	от	
	рактеристики а гриродно-клима факторо	тически		II	І группы	n		Pa	зработка м	ерзлых грун	нтов	
	ψακτομο	18		К,	K ₄	Ko	Кнб	K ₁	K,	K,	K.	Ko
	1			21	22	23	24	25	26	27	28	29
	ниже 0 до —10		до 5			0,047	_			_ _	-	<u></u>
			6—10	-	_	0,078	0,13		0,035			0,035
			11—16	-	-	0,086	0,17	-	0,047	_	-	0,047
ļ			1620		-	0,28		0,28	_	_	_	0,28
	от —11 до —20		до 5	0,081		0,161			_	_	_	
			610	_	_	0,106	0,13	_	0,035	_		0,035
ပွ			11—20		_	0,28	_	0,28	_		_	0,28
rypa, °	от —21 до —30), M/C	до 5	0,146		0,252	0,09	-	0,024	0,115		0,139
[••'	ДО 50	pe,	6-20		_	0,28		0,28	_			0,280

ed:	от —31 до —40	вет	до 5	0,232		0,355	0,17		0,047	0,188	_	0,235
Темпера		ифи в	620			0,28	_	0,28	_		_	0,28
	от —41 до —50		до 5	0,318	_	0,458	0,27		0,075	0,269	_	0,344
	, , ,		6—20	_	_	0,28	-	0,28				0,28
	ниже —50*				0,28	_	0,28			-	0,28	
Ветер	> 10 м/с		_		0,28	-	0,28	_		_	0,28	
Метел	Ь			_	0,5	0,78	-	0,28		_	0,5	0,78
Осадк	и > 10 мм/су	r			_	0,28	-	0,28		_		0,28
Относі ха >	ительная влаг 80%	возду-	_	-	0,28	-	0,28		_	_	0,28	
	ость менее 20	М		_	-	0,28	-	0,28	_	_	_	0,28

^{*} Здесь и далее при температуре — 50°C сила ветра не является определяющим фактором.

Расчет коэффициентов снижения темпов производства строительно-монтажных работ І группы под воздействием природно-климатических факторов

Xanai	ктеристика :	arnecci	ивных						Med	яц						38	строки
	іродно-клим фактор	атичес		I	11	111	IV	v	vi	VII	VIII	ıx	х	хı	XII	Всего год	№ cтp
	ниже		до 5	0,23	0,244	0,331	0,366	0,14	0,023	0,001	0,013	0,070	0,31	0,391	0,305	2,424	1
	0 до —10		610	0,239	0,56	0,202	0,174	0,063	0.013	0,002		0,003	0,07	0,138	0,165	1,629	2
			11-16	0,018	0,01	0,012	0,007	0,002		_	<u> </u>		0,002	0,007	0,015	0,073	3
	 		1620	0,008	0,008	0,014		_	_		[0,014		_	0,044	4
	от —11		до 5	1,4	1,176	1,047	0,368	0,012		_	_	_	0,184	0,665	1,093	5,945	5
ပ္	до —20	m/c	6—10	0,11	0,071	0,043	0,002	-					_	0,022	0.035	0,283	6
гура			11-20	0.014	0,008	_			_]		0,022	7
Температура	от —21	ветре,	до 5	0,75	0,805	0,609	0,216		_	_			0,009	0,448	0,787	3,625	8
Темг	до —30	при	6—20	0,014	0,008	_	_	_	_	_		_	_	_	_	0,022	9
	от —31	ı	до 5	0,39	0,586	0,248	0,014		_		_		_	0,105	0,468	1,811	10
	до —40		620	_	_	_	_	_	_	_			_				11
	от —41		до 5	0,049	0,037	_		_	_	_		_	_			0,085	12
	до —50		6-20		_	_	_		_			_		_		_	13
	ниже50) }		_		_			_			_	_	_			11

Ветер >10 м/с	0,168	0,252	0,308	0,224	0,056	0,14	0,168	0,056	0,168	0,14	0,14	0,084	1,904	15
Метель	5,96	4,469	3,97	2,34	_	_	-		_	1,061	3,19	3,9	24,89	16
Осадки >10 мм/сут	_	_	_	_	0,255	0,305	0,711	0,739	0,711	0,381	_	_	3,102	17
Относительная влажность воздуха >80%	-	_	_			_	_		-			-	-	18
Видимость менее 20 м	0,36	0,406	-	-	_	_		0,714	0,636	0,736	0,56	0,51	3,922	19
Итого потерь	9,71	8,64	6,784	3,711	0,528	0,481	0,882	1,522	1,588	2,907	5,666	7,362	49,781	20
Число рабочих дней	26	24	25	26	24	25	27	26	26	27	23	26	305	21
Коэффициенты потери ресурсов в результате сокращения светового дня	1,07	1,05	1,03	1,02	1	1	1	1	1	1,03	1,05	1,08	1,03	22
Коэффициенты снижения темпов производства строительно-монтажных работ	1,443	1,41	1,301	1,162	1,022	1,019	1,032	1,058	1,061	1,137	1,296	1,363	1,19	23

Расчет коэффициентов снижения темпов производства строительно-монтажных работ 11 группы под воздействием климатических факторов

Xapa	ктеристика :	агрессь	івных						Med	яц						33	строки
	иродно-клим фактор	атичес		I	11	111	IV	v	vı	VII	VIII	ıx	х	ΧI	XII	Всего год	№ стр
	1			2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ниже		до 5	0,331	0,351	0,476	0,527	0,202	0,035	0,002	0,018	0,1	0,446	0,563	0,457	3,507	<u> 1</u>
	0 до —10		6—10	0,277	0,647	0,233	0,201	0,072	0,015	0,002		0,003	0,08	0,159	0,191	1,881	2
			11—16	0,022	0,012	0,014	0,008	0,002	_		_	_	0,002	0,008	0,018	0,086	3
			16—20	0,008	0,008	0,014		_			_		0,014	_	-	0,044	4
O	от —11	ນ	до 5	10,291	8,665	7,708	2,71	0,085		_	_		1,355	4,896	8,047	43,757	5
9 до —	до —20	, M/c	610	0,136	0.09	0,055	0,003	_	_		_	_	_	0,028	0,044	0,356	6
Гемпература,		ветре,	11-20	0,014	0,008	_		_		_	_	_	_	_	_	0,022	7
шер	от —21	в нфп	до 5	0.931	0,999	0,756	0,268		<u> </u>	_	_	_	0,011	0,556	0,976	4,497	8
Tes	до —30		6—20	0,016	0,008	_		_		_					-	0,022	9
	от —31	ŀ	до 5	0,469	0,699	0,295	0,016		<u> </u>		_	_	_	0,125	0,558	2,162	10
	от —31 до —40		6—20		_	_			_		_			-	_		111
	от —41		до 5	0,055	0,042		_		_	_	_	_	_	_	-	0,097	12
	до —50	_	6-20		_				_		_		_		_	_	13

ниже —50	-	-	_	-	-	_	_	-	_	-	-	_	_	14
Ветер>10 м/с	0,168	0,252	0,308	0,224	0,056	0,14	0,168	0,056	0,168	0,14	0,14	0,084	1,904	15
Метель	5,959	4,469	3,97	2,34	_	-		-		1,061	3,19	3,9	24,889	16
Осадки>10 мм/сут	-			_	0,255	0,305	0,711	0,739	0,711	0,381	-	_	3,102	17
Относительная влажность воздуха > 80%	7	4,836	2,316	1,17	1,350	1,324	1,221	2,825	3,615	5,575	7,406	7,112	46,03	18
Видимость менее 20 м	0.356	0,406	_	-	_	_	-	9,714	0,636	0,736	0,56	0,51	3,918	19
Итого потерь	26,033	21,492	16,145	7,467	2,022	1,819	2,104	4,352	5,233	9,801	17,631	21,897	136,274	20
Число рабочих дней	26	24	25	26	24	25	27	26	26	27	23	26	305	21
Коэффициенты потери ре- сурсов в результате сокра- щения светового дня	1,07	1,05	1,03	1,02	1	1	1	1	1	1,03	1,05	1,08	1,03	22
Коэффициенты снижения темпов производства строи- тельно-монтажных работ	2,07	1,95	1,675	1,307	1,084	1,072	1,077	1,167	1,201	1,393	1,816	1,922	1,475	23

=

Расчет коэффициентов снижения темпов производства строительно-монтажных работ III группы под воздействием природно-климатических факторов

Харак	стеристика а	arpecch	вных						Mec	яц						38	строки
	родно-клима факторо	атичес		ı	11	111	IV	v	VI	VII	VIII	ıx	x	xı	XII	Всего год	№ cтp
	<u> </u>			2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ниже		до 5	0,432	0,458	0,622	0,689	0,263	0,044	0,002	0,024	0,131	0,582	0,735	0,573	4,555	1
	0 до —10		6—10	0,322	0,753	0,271	0,234	0,084	0,018	0,002	1	0,004	0,094	0.186	0,222	2,19	2
/pa, °C			11—16	0,024	0,013	0,016	0,009	0,003		_]	_		0,003	0,009	0,02	0,097	3
		!	16-20	0,008	0,008	0,014				_	_		0,014	_	_	0,044	4
	от —11	ပ	до 5	1,956	1,647	1,465	0,515	0,016		_	_	_	0,258	0,931	1,53	8,318	5
	до —20	, M/c	6—10	0,157	0,104	0,064			_					0,032	0,051	0,408	6
Температура.		ветре,	11—20	0,014	0,008		0,298			_	_	_	_			0,32	7
емпе	от —21	при в	до 5	1,033	1,109	0,839		_		_		_	0,013	0,617	1,084	4,695	8
H	до —30	 	6—20	0,014	0,008		0,018	_			_		_			0,04	9
	от —31		до 5	0,508	0,756	0,32	<u>-</u>					_		0,135	0,604	2,323	10
	до —40		6—20		_				_					_			111
	от —41		до 5	0,060	0,046			_		_				_		0,106	12
	до —50	!	6—20				<u> </u>									—	1

ниже —50		-	-	-	~	-	-	-	_	-	_	-	-	14
Ветер>10 м/с	-	_	_	_	-	-	-	-	-	_	- [_	_	15
Метель	-	-	-	-	-	_	-	-	-	-	-		_	16
Осадки>10 мм/сут	-	_	-	-		-	-	_	~	-	_		-	17
Относительная влажность воздуха > 80 %	_	_	-	_		_	-	-	~	-	-			18
Видимость менее 20 м	_	-	-	_		_	_	_			-	_	_	19
Итого потерь	4,528	4,910	3,611	1,763	0,366	0,062	0,004	0,024	0,135	0,964	2,645	4,084	23,096	20
Число рабочих дней	26	24	25	26	24	25	27	26	26	27	23	26	305	21
Коэффициенты потери ре- сурсов в результате сокра- щения светового дня	1,07	1,05	1,03	1,02	1	1	1	1	1	1,03	1,05	1,08	1,03	22
Коэффициенты снижения темпов производства строи- тельно-монтажных работ	1,244	1,254	1,174	1,087	1,015	1,002	1,0	1,001	1,005	1,065	1,160	1,240	1.105	23

Расчет коэффициентов снижения темпов производства работ при разработке вечномерзлых грунтов под воздействием природно-климатических факторов

Харак	теристика а	гресси	вных						Med	яц						38	строки
	родно-клим факторо	атичесь		1	11	111	ıv	v	VI	VII	VIII	ΙX	х	ХI	XII	Bcero rog	Ne crp
	1			2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ниже 0		до 5	_					_		<u> </u>	_		_	_	_	1
	до —10		6—10	0,145	0,338	0,122	0,105	0,037	0,008	0,001		100,0	0,042	0,083	0,099	0,981	2
			11—15	0,013	0,007	0,008	0,005	0,001		_		_	100,0	0,004	10,0	0,049	3
			16—20	0,008	0,008	0,014	_				_	_	0,014	_	_	0,044	4
၁	от —11	မ	до 5	_	_	_				_	_		_	_		_	5
	до —20	, w/c	6—10	0,052	0,034	0,021	0,001	<u>-</u>		_		_		0,01	0,016	0,134	6
Гемпература,		ветре,	11—20	0,014	0,008					_			_	_		0,022	7
мпе	от —21	и и п	до 5	0,57	0,612	0,463	0,194		_	_	_		0,069	0,34	0,597	2,845	8
Ĭ,	до —30	-	6—20	0,014	0,008		-		_		_	-	_		_	0,022	9
	or —31		до 5	0,336	0,501	0,212	0,012	_	_	_	_	_	_	0,089	0,399	1,549	10
	до —40		620			_	_	_	_	_		_	_	_		_	111
	от —41		до 5	0,045	0,034	_	<u> </u>	_	_	1 _			_		_	0,079	12
	до —50] .	6-20													_	<u></u>

янже —50 —	_	_	_	-	-	_	_	_	-	_	-	_	-	14
Бетер >10 м/с	0,168	0,252	0,308	0,224	0,056	0,14	0,168	0,056	0,168	0,14	0,14	0,084	1,904	15
Метель	5,9 59	4,469	3,97	2,34	-	-	_	-	-	1,06	3,19	3,9	24,888	16
Осадки >10 мм/сут	_	_	_	-	0,254	0,305	0,711	0,739	0,711	0,38	_	_	3,1	17
Относительная влажность воздуха >80%	-	-	-	-	_	-	-	_	-	_	_	_		18
Вядямость менее 20 м	0,356	0,406	-	_	-	-		0,714	0,685	0,736	0,560	0,509	3,916	19
Итого дотерь	7,68	6,677	5,118	2,881	0,348	0,453	0,880	1,509	1,515	2,442	4,416	5,614	39,533	20
Число рабочих дней	26	24	25	26	24	25	27	26	26	27	23	26	305	21
Коэффициенты потери ре- сурсов рабочего времени в результате сокращения све- тозого дня	1,07	1,05	1,03	1,02	1	1	1	1	1	1,03	1,05	1,08	1,03	22
Коэффициенты снижения темпов производства строи- телья э-монтажных работ	1,365	1,328	1,234	1,130	1,014	1,018	1,032	1,058	1,058	1,120	1,242	1,295	1,160	23