МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

ПО ОПРЕДЕЛЕНИЮ ВИРУЛИЦИДНОЙ АКТИВНОСТИ ПРЕПАРАТОВ Методические рекомендации разработаны во Всесоюзном научно-исследовательском институте дезинфекции и стерилизации Министерства здравоохранения СССР.

«УТВЕРЖДАЮ»

Начальник Главного санитарно-эпидемиологического управления Министерства здравоохранения СССР, А.В. Павлов

№ 1119-73 6 сентября 1973 г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по определению вирулицидной активности препаратов

І. ОБЩИЕ ПОЛОЖЕНИЯ

- 1. Методические рекомендации предназначены для вирусологических лабораторий, занимающихся отбором препаратов, обладающих вирулицидными свойствами и предназначаемых для дезинфекции в очагах вирусных инфекций, а также для обработки лабораторного инвентаря, инфицированного вирусами, в медицинских учреждениях.
- 2. Вирусы имеют различную устойчивость к химическим средствам. Резистентность вирусов определяется их размером, структурой, химическим составом, содержанием нуклеиновых кислот.
- 3. Оценка вирулицидной активности химических средств зависит от типа и титра вируса, характера используемого вируссодержащего материала для определения активности предарата, метода культивирования вируса, степени адаптации вируса к биологическому объекту, методов выявления вируса и определения вирулицидной активности вещества, а также от его химических свойств.
- 4. При изучении вирулицидных свойств нового дезинфицирующего средства необходимо иметь подробную химическую характеристику препарата с указанием физико-химических свойств, нейтрализующих веществ и условий хранения.
- 5. Химические вещества, применяемые для дезинфекции, должны отвечать следующим требованиям: обладать хорошей растворимостью в воде, вызывать инактивацию вирусов в короткие сроки, не резко снижать свою активность в присутствии органических веществ, быть нетоксичными или мало токсичными для людей и животных, не иметь резкого неприятного запаха, не обладать маркостью и не портить обеззараживаемых

предметов. Препараты не должны терять свою активность при хранении как в сухом виде, так и в виде растворов, быть дешевыми и удобными для транспортировки.

6. Определение вирулицидной активности дезинфектантов

состоит из следующих этапов:

1) Подбор тест-вирусов для определения вирулицидной активности дезинфицирующих средств.

- 2) Изучение вирулицидной активности растворов дезинфектантов методом тест-объектов.
- 3) Изучение вирулицидной активности дезинфицирующих средств при обеззараживании посуды.
- 4) Изучение вирулицидной активности дезинфицирующих средств при обеззараживании белья.
- 5) Изучение вирулицидной активности дезинфицирующих средств при обеззараживании поверхностей.
- 6) Изучение вирулицидной активности дезинфицирующих средств при обеззараживании выделений человека (кал, моча, мокрота и др.).
- 7) Изучение вирулицидной активности аэрозолей препаратов.

II. ПОДБОР ТЕСТ-ВИРУСОВ ДЛЯ ОПРЕДЕЛЕНИЯ ВИРУЛИЦИДНОЙ АКТИВНОСТИ ДЕЗИНФИЦИРУЮЩИХ СРЕДСТВ

- 7. Определение вирулицидной активности препаратов проводят на вирусах различной устойчивости: слабо- и высокорезистентных. В качестве тест-вирусов выбирают те, которые легко культивируются в лабораторных условиях и относительно безопасны для работающих. Исходя из этого, в качестве тест-вирусов используют:
 - а) слаборезистентные:

— вирус гриппа, тип A, штамм PR₃ — представитель РНК-содержащей группы вирусов;

вирус осповакцины, штамм ЭМ-683 — представитель

ДНК-содержащей труппы вирусов;

б) высокорезистентные:

— вирус полиомиелита II типа, вакцинный штамм — представитель РНК-содержащей группы вирусов;

-- вирус инфекционного гепатита собак, штамм Рекс --

представитель ДНК-содержащей группы вирусов.

8. Тест-вирусы должны иметь типичные свойства и высокий инфекционный титр, в пределах 7—8 $\lg \Pi_{50}$ (ТЦД₅₀)/мл.

1. Культивирование вирусов

9. Вирусы гриппа и инфекционного гепатита собак (ИГС) культивируют на белых мышах весом соответственно 7—8 г и 14—16, заражая первых интраназально 0,1 мл вируссодержащей жидкости, вторых — интрацеребрально 0,03 мл вируссодержащей жидкости. При этом наступает характерная картина заболевания: у мышей, зараженных вирусом гриппа, на 2—3 сутки развивается воспаление легких. Для характеристики степени поражения легких вирусом гриппа используют четырехбалльную систему, юбозначая степень поражения крестами (+).

У мышей, зараженных вирусом инфекционного гепатита собак, на 3—5 сутки развивается паралич конечностей.

Для накопления вируса производят несколько пассажей. Больных животных забивают эфиром, трупы смачивают 3% раствором хлорамина или 5% раствором фенола, а затем вскрывают в асептических условиях, используя для вскрытия поверхностных тканей один набор стерильных инструментов, а для глубоких — второй. Извлеченные соответственно легкие или мозг промывают в стерильном физиологическом растворе с антибиотиками (100 ЕД стрептомицина — хлоркальциевый комплекс и 200 ЕД пенициллина на 1 мл раствора), берут кусочек ткани для посева на стерильность, а пораженные органы используют для работы или хранят в стерильном консерванте (50% глицерина +50% физиологического раствора) при —4°С.

10. Вирусы осповакцины и полиомиелита II типа (вакцинный штамм) культивируют на клетках культуры ткани Нер-2 или НеLa. В качестве ростовой среды используют 199 среду с добавлением 10% бычьей сыворотки и антибиотиков. В качестве поддерживающей среды применяют среду 199 с 2—5% инактивированной лошадиной или бычьей сыворотки. На 4—5 и 4—7 сутки соответственно происходит максимальное накопление вирусов, сопровождающееся цитопатическим действием и накоплением агглютининов в культуральной жидкости.

Для вируса осповакцины характерно округление клеток, появление в клетках культуры ткани цитоплазматических включений, нарушение плазменно-ядерного соотношения, наличие многоядерных клеток.

При заражении клеток культуры ткани вирусом полиомиелита II типа (вакцинного штамма) появляется равномерная мелкозернистая деструкция клеток с последующим отслоением от стенки пробирки всего монослоя клеток.

Для повышения титра вирусов осповакцины и полиомиелита производят несколько пассажей на свежую ткань.

5

2. Приготовление вируссодержащей жидкости и заражение батистовых тест-объектов

- 11. Для приготовления вируссодержащей жидкости используют органы больных забитых животных или культуральную вируссодержащую жидкость культуры ткани со специфической полной дегенерацией клеточного монослоя.
- 12. Пораженные вирусом гриппа легкие белых мышей или мозг больных ИГС животных помещают в чашку Петри со стерильным физиологическим раствором, содержащим антибиотики, и отмывают от крови и консерванта.
- 13. Органы животных тщательно растирают в стерильной ступке с песком (стеклянный или промытый речной) и добавляют стерильный физиологический раствор для получения 10% суспензии (из расчета: на одно легкое 0.9 мл физиологического раствора, на один мозг—4.5 мл физиологического раствора). Полученную взвесь центрифугируют при 2500—3000 об/мин в течение 10 минут. Надосадочную жидкость отсасывают и используют в опытах. Надосадочную вируссодержащую жидкость можно использовать в течение 10—15 суток при условии хранения ее при 4° — 10° С. Инфекционный титр вируссодержащей жидкости должен быть не ниже 71g ЛД $_{50}$ /мл, вычисление его проводят методом Рида и Менча.
- 14. Клетки культуры ткани с полным цитопатическим эффектом, вызванным вирусом осповакцины или полиомиелита II типа, с культуральной жидкостью переносят в стерильные пробирки, замораживают, оттаивают. Затем центрифугируют при 2500—3000 об/мин в течение 10 минут. Надосадочную жидкость отсасывают и используют в опыт или хранят при —10°С до использования в опытах. Перед использованием определяют титр вируссодержащей жидкости, который должен быть не ниже 7 lg ТЦД50/мл. Вычисление инфекционного титра вируса проводят методом Рида и Менча.
- 15. В качестве тестов используют кусочки батиста 1 × ×0,5 см, предварительно простиранного и проглаженного, т. е. освобожденного от крахмала. Батистовые тест-объекты помещают в стерильную чашку Петри и заливают 10 % вируссодержащей жидкостью из расчета 0,05—0,1 мл жидкости на, тест. При этом все тесты хорошо смачиваются. Через 20 минут тест-объекты высушивают стерильной фильтровальной бумагой, а затем подсушивают в термостате при 37°С или в эксикаторе с хлористым кальцием в течение 30 минут. После этого тесты используют в опыт. Тест-объекты могут быть использованы в опыт в течение 3 суток при условии хранения их в рефрижераторе при —4°С.

III. Изучение вирулицидных свойств дезинфицирующих средств

16. Устойчивость к дезинфектантам определяют на тествирусах, фиксированных на батистовых тест-объектах. При этом методе происходит некоторая потеря вирусных частиц во время погружения инфицированных тест-объектов в дезинфицирующий раствор, нейтрализатор и при последующем отмывании остатков дезинфектанта. Потеря вирусных частиц составляет 1—2 $\lg \Pi \Pi_{50} (\Pi \Pi_{50})/\text{мл}$. Однако этот метод имеет ряд преимуществ перед суспензионным методом, т. к. дает более однородные результаты, позволяет проводить работу с равным количеством вирусных частиц, а также приемлем для изучения препаратов из любой группы химических веществ, продукты нейтрализации которых токсичны для биологических объектов (животные, клетки культуры ткани) и вызывают в них неспецифические дегенеративные изменения.

17. При определении вирулицидных свойств препарата готовят 3—5 концентраций раствора на дистиллированной или дехлорированной водопроводной воде из расчета 1,0 мл

раствора на каждый тест-объект.

18. В рабочие растворы погружают инфицированные тестобъекты из расчета 5 штук на каждую экспозицию. Легким покачиванием колбы с раствором достигают полного смачивания всех тест-объектов. Колбу оставляют при комнатной температуре (18—20°С). Смачивание тест-объектов считают началом опыта и с этого момента отсчитывают экспозицию. Через 5-15-30-45-60 минут стерильным охлажденным пинцетом или петлей извлекают по 5 тест-объектов, помещают их в пробирку с 5 мл стерильного раствора нейтрализатора на 5 минут (для галоидсодержащих препаратов. перекисных соединений в качестве нейтрализатора используют 0.5-1% раствор гипосульфита натрия; для альдегидов — 0.5—1% раствор аммиака или бисульфита натрия: для кислот — 0,5% раствор едкого натрия или калия, либо 0,5% раствор бикарбоната натрия; для шелочей — 0.5—1% раствор уксусной кислоты; для четвертично-аммониевых соединений, амфолитов — 0,2% раствор сульфонола в 10% растворе молока: для препаратов, для которых нейтрализатор неизвестен. а также для препаратов, хорошо растворяющихся в воде (фенольного ряда), используют двухкратное промывание в воде или органическом растворителе (эфире). После этого стерильной петлей тесты переносят в пробирку со стеклянными бусами с 5 мл стерильного физиологического раствора или стерильной водопроводной воды либо раствор Хенкса или поддерживающей среды. В этой пробирке встряхивают тест-объекты в

течение 10 минут. Затем в случае заражения тест-объектов вирусами осповакцины или полиомиелита II типа в каждую из 4 пробирок с клетками культуры ткани добавляют 1 мл поддерживающей среды, 0,2 мл жидкости, отмытой с тестов, помещают в термостат, где выдерживают при 36,5°C в течение срока наблюдения.

Через 24 часа меняют поддерживающую среду, в дальнейшем смену среды проводят в зависимости от изменения рН, которое обнаруживают по изменению окраски среды (обычно через 5 дней).

В течение срока наблюдения пробирки просматривают под микроскопом. Если в клетках культуры ткани не наступает типичной цитопатической дегенерации, то производят 2 пассажа. При отсутствии специфического изменения в клетках культуры ткани вирус считают инактивированным, опыт повторяют с меньшими концентрациями препарата и экспозициями; при наличии ЦПД опыт повторяют с большими концентрациями препарата и экспозициями.

При работе с вирусами гриппа или ИГС для заражения берут по 4 белых мыши и вводят им соответственно по 0,1 мл или 0,03 мл жидкости, отмытой с тест-объектов. На 2—3 сутки здоровых мышей, зараженных вирусом гриппа, забивают и делают 2 пассажа. За мышами, зараженными вирусом ИГС, ведут наблюдение в течение 10—12 суток. Если животные не заболевают, их забивают и делают 2 пассажа. Если животные после этого остаются здоровыми, вирус считают инактивированным, и опыт повторяют с меньшими концентрациями препарата и экспозициями. Если животные заболевают в течение срока наблюдения за ними, опыт повторяют с большими концентрациями препарата и экспозициями.

19. К каждому опыту ставят четыре контроля:

- 1) контроль на зараженность тест-объектов 5 штук зараженных тест-объектов помещают в пробирку с бусами с 5 мл физиологического раствора, отбивают в течение 10 минут и соответствующей дозой жидкости, отмытой с тестов, заражают животных или клетки культуры ткани. Для выяснения плотности заражения проводят титрование.
- 2) Контроль сохранения жизнеспособности вируса 5 штук зараженных тест-объектов помещают в пробирку с 5 мл физиологического раствора (в случае заражения тест-объектов вирусами гриппа и ИГС) или раствора Хенкса (в случае заражения тест-объектов вирусами осповакцины и по-

лиомиелита II типа), выдерживают максимальную экспозицию, после чего переносят на 5 минут в 5 мл нейтрализатора, а затем в 5 мл физиологического раствора или раствора Хенкса, где встряхивают с бусами и заражают соответствующей дозой жидкости, отмытой с тестов, клетки культуры ткани или белых мышей. Для выяснения количества сохранившегося вируса проводят титрование.

- 3) Контроль полноты нейтрализации дезинфектанта 5 штук незараженных тест-объектов помещают на максимальную экспозицию в 5 мл раствора дезинфектанта максимальной концентрации, после этого переносят тесты на 5 минут в 5 мл раствора нейтрализатора, затем — в 5 мл физиологического раствора или раствора Хенкса, отбивают с бусами в течение 10 минут и вводят соответствующие количества жидкости животным или в пробирки в клетками культуры ткани. Полноту нейтрализации проверяют также путем постановки специфической реакции, а именно: галоидсодержащие и окислители нейтрализуют гипосульфитом и контролируют иодо-крахмальной пробой; щелочи — кислотами, а кислоты — щелочами и контролируют лакмусом; формальдегид — аммиаком, контролируют специальной пробой; амфолиты и четвертичные аммониевые соединения - 0,2% раствором сульфонола в 10% молоке.
- 4) Контроль за животными и клетками культуры ткани оставляют незараженными по 4 мыши (пробирки) и наблюдают максимальный срок опыта. При работе с культурой ткани через 24 часа как в опытных, так и в контрольных пробирках меняют поддерживающую среду. В последующие сроки наблюдения поддерживающую среду меняют в зависимости от изменения рН.
- 20. После установления наличия вирулицидных свойств у дезинфицирующего средства изучают зависимость эффективности от концентрации действующего начала, времени воздействия, температуры, реакции среды. Каждый опыт повторяют не менее трех раз.
- 21. Влияние температуры на активность дезинфицирующего средства изучают при обеззараживании инфицированных батистовых тест-объектов, помещая колбу с исследуемым раствором в водяную баню и поддерживая температуру раствора на заданном уровне. Инфицированные тест-объекты погружают в раствор по достижении заданной температуры.

Далее порядок опыта такой же, как описано в п.п. 18—19.

22. При изучении влияния рН среды на активность препарата готовят ряд разведений с различным значением рН

путем подкисления децинормальным раствором уксусной или другой кислоты или подщелачивания децинормальным раствором щелочи. Порядок проведения опытов такой же, как с инфицированными тест-объектами (п.п. 18—19).

IV. ИЗУЧЕНИЕ ВИРУЛИЦИДНЫХ СВОЙСТВ ИСПЫТУЕМЫХ ДЕЗИНФИЦИРУЮЩИХ СРЕДСТВ ПРИ ОБЕЗЗАРАЖИВАНИИ РАЗЛИЧНЫХ ОБЪЕКТОВ

23. Изучение эффективности дезинфицирующих средств при обеззараживании различных объектов (посуда, белье, поверхности, выделения), имеющих наибольшее эпидемиологическое значение в распространении инфекционных заболеваний вирусной этиологии, проводят на тест-объектах с целью разработки эффективных режимов обеззараживания в зависимости от концентрации действующего начала, времени обработки. Полученные положительные результаты в опытах на тест-вирусах уточняют на вирусах — возбудителях той инфекции, при которой они будут использованы, учитывая их индивидуальную специфику и механизм передачи инфекции.

I. Изучение вирулицидной активности дезинфектантов при обеззараживании посуды

24. При обеззараживании посуды в качестве тест-объектов используют тарелки, стаканы, эмалированные кружки, вилки, ложки. Чистую посуду (тарелки, стаканы) заражают 10% вируссодержащей жидкостью, которую наносят пипеткой из расчета 0,5 мл на 100 см² и равномерно распределяют по поверхности стерильным стеклянным шпателем. Вилки и ложки погружают в вируссодержащую жидкость на 1-2 минуты так, чтобы ручки оставались незараженными. Зараженную посуду подсушивают при комнатных условиях. После полного высыхания посуду погружают в дезинфицирующий раствор, который должен полностью покрывать всю посуду (расход раствора составляет примерно $\hat{2}$ л на комплект посуды: чашка, блюдце, 2 тарелки, ложка, вилка, нож). Через определенные интервалы времени (15, 30, 60 минут) извлекают из дезинфицирующего раствора и проверяют эффективность обеззараживания. Для этого стерильными марлевыми салфетками 3×3 см (вначале увлажненной, затем сухой) тщательно протирают зараженную часть каждого предмета. Салфетки помещают в стерильную широкую пробирку с бусами и отмывают 5 мл стерильного раствора нейтрализатора или водопроводной воды либо раствора Хенкса

с антибиотиками путем встряхивания в течение 10 минут. Этой жидкостью заражают животных или клетки культуры ткани, за которыми наблюдают, как указано в п.п. 18 и 19.

25. Контролем служит аналогично зараженная посуда, погруженная на максимальную экспозицию в стерильную или кипяченую водопроводную воду. С посуды после этого берут пробу, как и в опыте. Плотность заражения определяют титрованием.

- 26. При получении 100% обеззараживания чистой посуды переходят к обеззараживанию посуды, загрязненной остатками пищи. Для этого манную кашу, сваренную на молоке и заправленную сливочным маслом, смешивают с 10% вируссодержащей жидкостью из расчета 9 г каши на 1 мл суспензии и наносят равномерно на предметы посуды. Методика обеззараживания посуды, забор проб аналогичны указанным для чистой посуды в п. 24. Жидкость после отмыва салфеток центрифугируют при 2500—3000 об/мин в течение 10 минут, после чего надосадочную жидкость используют для заражения животных и клеток культуры ткани.
- 27. Контролем служит аналогично зараженная посуда, погруженная на максимальную экспозицию в стерильную или кипяченую воду. С посуды после этого берут пробу, как и в опыте. Для выяснения плотности заражения пробы титруют.

28. Эффективным считают средство, обеспечивающее 100% инактивацию вируса.

2. Изучение вирулицидной активности дезинфектантов при обеззараживании белья

- 29. При обеззараживании белья учитывают норму расхода раствора на 1 кг сухого белья (при особо опасных инфекциях расход раствора составляет $5 \, \text{л/кг}$, при прочих $4 \, \text{л/кг}$), температуру раствора, степень и характер загрязнения белья, влияние дезинфицирующего раствора на прочность и окраску белья.
- 30. Контроль эффективности обеззараживания белья дезинфицирующим раствором проводят с помощью батистовых тест-объектов. Зараженные и подсушенные тест-объекты (смъраздел 2 п. 15) закладывают в бязевые стерильные мешочки размером 5×8 см по 5 шт в каждый. Мешочки закрывают в виде конверта, к углу пришивают нитку длиной около 0,5 м.
- 31. Дезинфицирующий раствор готовят на стерильной или кипяченой водопроводной воде перед опытом в эмалированной или стеклянной посуде.

32. Белье (старые бязевые халаты и полотенца) погружают в бак или ведро с раствором последовательно, одну вещь за другой, следя за тем, чтобы между вещами не образовалось воздушных прослоек, препятствующих процессу дезинфекции. Одновременно между слоями белья распределяют (сверху, в середине и внизу) мешочки с зараженными тест-объектами. Через определенные промежутки времени (15—30—60 минут) мешочки с тест-объектами извлекают одновременно из трех слоев. Тест-объекты вынимают из мешочка стерильным пинцетом, нейтрализуют, промывают, как указано в п. 18, и жидкостью, отмытой с тестов, заражают животных или клетки культуры ткани.

В контрольных опытах белье погружают в стерильную или кипяченую водопроводную воду. Мешочки с тест-объектами закладывают так же, как в опыте.

33. При получении положительных результатов (100% гибель тест-вирусов) в опытах по обеззараживанию белья, зараженного чистыми культурами вирусов, переходят к опытам по обеззараживанию загрязненного белья. С этой целью при работе с вирусами капельной группы (грипп, осповакцина, полиомиелит II типа) к 6 мл 10% вируссодержащей жидкости прибавляют 4 мл инактивированной бычьей или лошадиной сыворотки, смешивают и заливают 50 шт тест-объектов. При работе с вирусом ИГС к 6 мл 10% вируссодержащей жидкости добавляют 4 мл 40% эмульсии кала (8 г предварительно простерилизованного автоклавированием при 1,5 ати в течение 30 минут кала растирают в ступке с 20 мл воды). Полученной взвесью заражают тест-объекты, подсушивают и используют в опыт.

Далее, как указано в п. 32.

34. Эффективным считают средство, обеспечивающее 100% инактивацию вируса в обеззараживаемом белье.

3. Изучение вирулицидной активности дезинфектантов при обеззараживании поверхностей

- 35. В качестве тест-объектов используют поверхности размером 10×10 см из различных материалов: деревянные, оштукатуренные, поверхности, окрашенные масляной или клеевой краской, оклеенные обоями, а также поверхности из линолеума и др.
- 36. Перед заражением поверхности подвергают механической очистке моют водой с мылом и щеткой, за исключением поверхностей, оклеенных обоями и окрашенных клеевой краской. Последние протирают несколько раз стерильной сал-

феткой, увлажненной стерильной водопроводной водой. После подсыхания поверхности стерилизуют, располагают горизонтально и пипеткой наносят $10\,\%$ вируссодержащую жидкость из расчета 0,5 мл на площадь в $100\,\mathrm{cm}^2$, равномерно распределяют по поверхности стеклянным шпателем. Поверхности подсушивают при комнатных условиях (температура $18-20\,^\circ\mathrm{C}$ и относительная влажность воздуха $50-60\,\%$).

- 36. При обеззараживании инфицированных поверхностей (оштукатуренные, окрашенные клеевой краской, оклеенные обоями и тест-объекты из кафеля) их располагают вертикально и проводят обработку в этом положении, остальные поверхности обрабатывают как в горизонтальном, так и в вертикальном положениях. Дезинфицирующий раствор наносят на поверхность путем орошения из пульверизатора, точно следя за количеством израсходованной жидкости. Норма расхода 300—500 мл раствора на м² обрабатываемой площади.
- 37. Контроль эффективности обеззараживания осуществляют через 15—30—60 минут следующим образом: забор проб производят путем тщательного протирания орошенных поверхностей слегка увлажненной стерильной марлевой салфеткой, а затем сухой (салфетки увлажняют физиологическим раствором или раствором Хенкса с антибиотиками). Марлевые салфетки (3×3 см) отмывают в 5 мл нейтрализатора или в стерильной водопроводной воде в течение 10 минут, встряхивая с бусами. Отмывной жидкостью заражают животных или клетки культуры ткани (п. 18, 19).
- 38.~B контрольных опытах аналогично зараженные поверхности орошают стерильной или кипяченой водопроводной водой из того же расчета ($300-500~\mathrm{m}\mathrm{m}/\mathrm{m}^2$ поверхности), что и опытные. Забор проб и их обработку проводят аналогично опытным. Для выяснения плотности заражения проводят титрование.

4. Изучение вирулицидной активности дезинфицирующих средств при обеззараживании мочи

- 40. При изучении вирулицидной активности дезинфицирующих средств в опытах с мочей учитывают соотношение дезраствора и мочи, концентрацию действующего начала, время обработки, температуру.
- 41. Опыты по обеззараживанию мочи проводят следующим образом: берут несколько колб или пробирок, наливают в них по 9 мл прокипяченой мочи, прибавляют по 1 мл 10% вируссодержащей жидкости. Растворы испытуемого дезинфи-

цирующего средства готовят в концентрациях, которые обеспечивают вирулицидный эффект при испытании на тест-объектах после 10—15 минут воздействия. Растворы дезинфицирующего средства добавляют к моче в равном или двойном с ней количестве. Отмечают время контакта и через интервалы (например, 15, 30, 60 минут) пипеткой берут указанную смесь в количестве 1 мл и переносят в пробирки с 5 мл нейтрализатора. После тщательного смешивания заражают животных или клетки культуры ткани, за которыми наблюдают, как указано в п. 18, 19.

- 42. Контролем служат аналогично поставленные опыты только с добавлением к моче не дезинфицирующего раствора, а воды. Результаты опытов учитывают по отношению к контролю. Плотность заражения мочи в контроле определяют титрованием. Окончательное суждение об эффективности действия дезинфицирующего средства делают на основании не менее трех опытов с совпадающими результатами.
- 43. Эффективными считают средства, обеспечивающие $100\,\%$ инактивацию вируса.

5. Изучение вирулицидных свойств дезинфицирующего средства при обеззараживании кала

- 44. При разработке режимов обеззараживания кала учитывают соотношение дезинцирующего средства к обеззараживаемой массе, время обработки, температуру, консистенцию обеззараживаемых выделений, степень гомогенизации в процессе обеззараживания.
- 45. Опыты проводят следующим образом: 20 г простерилизованного кала растирают в ступке и добавляют 80 мл воды; полученную эмульсию разливают пипеткой в пробирки по 9 мл и добавляют по 1 мл 10% вируссодержащей жидкости. Опыты начинают ставить с концентрацией препарата, вызывающей инактивацию вируса в моче через 30 минут.
- 46. Приготовленную эмульсию фекалий заливают равным или двойным количеством дезинфицирующего раствора и в дальнейшем берут пробы так же, как и при обеззараживании мочи. Взятые пробы центрифугируют при 2500—3000 об/мин в течение 20 минут, после чего заражают животных или клетки культуры ткани.
- 47. Контролем служат аналогично поставленные опыты с добавлением вместо дезинфицирующего раствора воды. Результаты опытов учитывают по отношению к контролю. Эффективность исследуемого вещества оценивают на основа-

нии не менее трех опытов с совпадающими результатами. Проводят титрование для определения плотности заражения.

48. Эффективным считают средство, обеспечивающее 100% инактивацию вируса в обеззараживаемом материале.

6. Изучение вирулицидной активности аэрозолей препаратов

- 49. Для получения вирусного аэрозоля используют вируссодержащую жидкость, приготовленную, как указано в пп. 11-13.
- 50. Изучение вирулицидной активности аэрозолей препаратов проводят в экспериментальной камере, в которую при помощи распылителя (системы Смородинцева или др.) диспергируют вируссодержащую жидкость. При производительности распылителя 0,25 мл/мин. диспергирование жидкости проводят в течение 5 минут. При этом в воздухе камеры содержится 1 мл/м³ вируссодержащей жидкости. Плотность заражения меняют в зависимости от разведения вируссодержащей жидкости. Для заражения воздуха при изучении вирулицидной активности препаратов используют вируссодержащую жидкость в разведениях от 10-1 до 10-3.
- 51. Для определения содержания инфекционного агента в воздухе в камеру подсаживают белых мышей весом 7—9 г (не менее 6 штук) в разные промежутки времени от момента распыления вируссодержащей жидкости (тотчас же через 10—20—30—40—60 минут). Животных выдерживают в камере 5—60 минут. На 2—3 сутки животных забивают и вскрывают.

По картине состояния легких у мышей судят о наличии вируса в воздухе (контроль), которое оценивают по четырехбалльной системе (+++;+).

52. При работе с вирусами, культивируемыми на клетках культуры ткани или куриных эмбрионах, для определения содержания вируса в воздухе камеры проводят забор проб воздуха с помощью аспиратора любой системы (например, модель 822, насос и др.). Воздух просасывают со скоростью 2—5 л/мин, пропускают через прибор Дьяконова или др., в который наливают 5 мл физиологического раствора или стерильного раствора Хенкса с антибиотиками. После этого жидкостью заражают биологические модели. Количество вируса в пробах определяют титрованием.

После инфицирования воздуха в камере диспергируют растворы препаратов с помощью различной распыливающей аппаратуры.

53. Для определения эффективности аэрозоля препарата исследования проводят при трех показателях относитель-

ной влажности воздуха: 20—25%, 50—55% и 80—85% и температуре воздуха в пределах от 19 до 22°С. Во время исследований в камере постоянно работает вентилятор для перемещения воздуха.

54. Об инактивации вируса в воздухе судят по утрате им инфекционной активости, т. е. по поражениям легких мышей, которых подсаживают в камеру через 15, 20, 30, 40, 60 минут после распыления аэрозоля препарата. На каждую экспозицию берут не менее 6 штук белых мышей, которых выдерживают в камере в течение 30 минут.

Отсутствие поражений легких у мышей в опыте свидегельствует о полной инактивации вируса.

При выявлении вирусов на клетках культуры ткани или куриных эмбрионах о наличии или отсутствии вируса судят по специфическим изменениям на указанных биологических объектах.

Пробы воздуха забирают в те же интервалы времени по методике, указанной в п. 52.

- 55. Вирулицидная активность препарата в форме аэрозоля зависит от плотности заражения воздуха, расхода смеси аэрозоля на единицу объема, концентрации активно-действующего вещества в аэрозольной смеси, экспозиции, относительной влажности воздуха и температуры в камере.
- 56. В качестве контроля используют аэрозольные смеси, не содержащие активно-действующего препарата, которые распыляют в камеру в тех же количествах. При этом размер аэрозольных частиц должен быть одинаковым с размером частиц аэрозоля препарата.
- 57. Контрольные аэрозольные смеси, не содержащие АДВ; не оказывают действия на вирус независимо от концентрации последнего в воздухе.