ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 50779.21— 2004

Статистические методы

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1

Нормальное распределение

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
 - 2 ВНЕСЕН Научно-техническим управлением Госстандарта России
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 12 января 2004 г. № 3-ст
- 4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 2854:1976 «Статистическое представление данных. Методы оценки и проверки гипотез о средних значениях и дисперсиях» (ISO 2854:76 «Statistical interpretation of data Techniques of estimation and tests relating to means and variance», NEQ)

5 B3AMEH ΓΟCT P 50779.21—96

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст этих изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Обозначения	2
5	Общие требования	3
6	Точечное и интервальное оценивание математического ожидания генеральной совокупности	4
7	Точечное и интервальное оценивание дисперсии генеральной совокупности	13
8	Точечное и интервальное оценивание доли распределения случайной величины в заданном	
	интервале	16
П	риложение А (справочное) Таблица значений функции стандартного нормального закона рас-	
	пределения	25
П	риложение Б (справочное) Таблица значений квантилей распределения Стьюдента	27
П	риложение В (справочное) Таблица значений квантилей χ^2_{lpha} распределения \dots	28
П	риложение Г (справочное) Таблицы значений квантилей распределения Фишера	30

Введение

Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону.

- В стандарте изложены методы решения следующих задач:
- а) точечного оценивания параметров нормального распределения случайной величины;
- б) точечного оценивания вероятности попадания (доли распределения) случайной величины в заданный интервал и вне его;
- в) интервального (доверительного) оценивания параметров нормального распределения и доли распределения:
 - г) проверки гипотез об этих же величинах.

Все процедуры, приведенные в стандарте, используют ограниченный ряд статистически независимых наблюдений, полученных в производстве, в лабораторных условиях, при контроле, измерении, оценке и т. п.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

ПРАВИЛА ОПРЕДЕЛЕНИЯ И МЕТОДЫ РАСЧЕТА СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПО ВЫБОРОЧНЫМ ДАННЫМ

Часть 1

Нормальное распределение

Statistical methods. Determination rules and methods for calculation of statistical characteristics based on sample data.

Part 1. Normal distribution

Дата введения — 2004—06—01

1 Область применения

Настоящий стандарт устанавливает методы, применяемые для:

- оценки математического ожидания и дисперсии генеральной совокупности;
- проверки гипотез относительно значений этих параметров;
- оценки вероятности попадания (доли распределения) случайной величины в заданный интервал.

Примечание — Вероятность попадания случайной величины в интервал равна доле распределения случайной величины в этом интервале. В большинстве практических задач физический смысл имеет понятие «доля распределения случайной величины в интервале», которое далее применено в настоящем стандарте.

Методы, изложенные в настоящем стандарте, применимы в том случае, если выполнены следуюшие условия:

- элементы выборки получены путем независимых повторений эксперимента. В случае конечной генеральной совокупности объем выборки должен составлять не более 10 % объема генеральной совокупности;
- наблюдаемые переменные распределены по нормальному закону. Однако если распределение вероятностей несильно отличается от нормального, то описанные в стандарте методы остаются применимыми для большинства практических приложений. В этом случае объем выборки должен быть не менее 10 единиц, причем достоверность получаемых статистических выводов возрастает при увеличении объемов выборок.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 50779.10—2000 (ИСО 3534-1—93) Статистические методы. Вероятность и основы статистики. Термины и определения

ГОСТ Р 50779.11—2000 (ИСО 3534-2—93) Статистические методы. Статистическое управление качеством. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 50779.10 и ГОСТ Р 50779.11, а также следующие термины с соответствующими определениями:

- 3.1 **точечное оценивание параметра:** Получение оценки параметра в виде одного численного значения:
- 3.2 **интервальное (доверительное) оценивание параметра:** Получение оценки параметра в виде доверительного интервала;
- 3.3 **доверительный интервал:** Интервал, границы которого являются функциями от выборочных данных и который накрывает истинное значение оцениваемого параметра с вероятностью не менее $1-\alpha$ (где $1-\alpha$ доверительная вероятность).

Примечание — Доверительный интервал может быть двусторонним или односторонним;

3.4 **нулевая гипотеза:** Предположение о распределении генеральной совокупности, которое проверяют по статистическим данным.

 Π р и м е ч а н и е — В частности, в настоящем стандарте рассмотрены предположения о значениях параметров распределения.

4 Обозначения

В настоящем стандарте применены следующие обозначения:

```
    — математическое ожидание нормального закона распределения (среднее значение генеральной совокупности, далее — среднее значение);
```

 μ_0 — известное значение параметра μ ;

 $\mu_1,\,\mu_2$ — математические ожидания для двух различных генеральных совокупностей:

 $\widehat{\mu}$ — точечная оценка параметра μ ; $\widehat{\mu} = \overline{x}$;

 $\mu_{M},\,\mu_{L}$ — верхняя и нижняя доверительные границы параметра μ_{i} ;

 $(\mu_1 - \mu_2)^{\Lambda}$ — точечная оценка разности значений параметров μ_1 и μ_2 ;

о — стандартное (среднеквадратичное) отклонение нормально распределенной случайной величины;

D — дисперсия генеральной совокупности; D = σ ²;

 D_0 — известное значение дисперсии генеральной совокупности, $D_0 = \sigma_0^2$;

 σ_0 — известное численное значение параметра σ ;

 σ_{01} , σ_{02} — известные значения параметров σ_1 и σ_2 для двух генеральных совокупностей:

 $\widehat{\sigma}$ — точечная оценка параметра σ , $\widehat{\sigma}$ = S;

 σ_M , σ_L — верхняя и нижняя доверительные границы параметра σ_R ;

D — точечная оценка дисперсии;

х — выборочное значение наблюдаемой случайной величины;

 x_1 — выборочное значение случайной величины из первой генеральной совокупности;

 x_2 — то же, из второй генеральной совокупности;

 $\underline{n}, \underline{n}_1, \underline{n}_2$ — объемы выборок;

 $\overline{x}, \overline{x}_1, \overline{x}_2$ — среднеарифметические значения (выборочные средние);

 $S = \sqrt{\frac{(x-\bar{x})^2}{(n-1)}}$ — выборочное стандартное (среднеквадратичное) отклонение;

 S_1 , S_2 — то же для двух выборок соответственно;

 α — риск первого рода (вероятность отвергнуть гипотезу, когда она верна);

 $(1-\alpha)$ — уровень значимости при проверке гипотез, а также доверительная вероятность $0 < \alpha < 1$;

v — число степеней свободы;

 $u_{1-\alpha}, u_{1-\alpha/2}$ — квантили стандартного нормального закона распределения уровней $1-\alpha$ и $1-\alpha/2$ соответственно;

 $t_{1 - \alpha}(v), t_{1 - \alpha/2}(v)$ — квантили распределения Стьюдента с v степенями свободы уровней $1 - \alpha$ и $1 - \alpha/2$ соответственно;

 $F_{1-\alpha}(v_1, v_2)$ — квантиль распределения Фишера с v_1 и v_2 степенями свободы уровня $1-\alpha;$

 χ^2_{1-lpha} (v), $\chi^2_{1-lpha/2}$ (v), $\chi^2_{lpha/2}$ (v) — квантили χ^2 распределения с v степенями свободы уровней 1 — lpha, 1 — lpha/2 и lpha/2 соответственно;

L, M — нижняя и верхняя границы интервала соответственно;

p — доля распределения (вероятность попадания) случайной величины в заданный интервал [L, M];

q — доля распределения (вероятность попадания) случайной величины вне интервала [L, M], причем q + p = 1;

 \widehat{p} , \widehat{q} — точечные оценки p и q;

 p_L, q_L — нижние односторонние доверительные границы для p и q;

 p_{M}, q_{M} — верхние односторонние доверительные границы для p и q;

С — случайное событие: например, попадание случайной величины в заданный интервал;

 $Prob\{C\}$ — вероятность случайного события C;

 Σx — сумма выборочных значений.

5 Общие требования

- 5.1 Настоящий стандарт содержит описание типовых статистических задач, а также процедур, при помощи которых они решаются. Представленные задачи могут быть разбиты на три класса:
 - точечное и интервальное оценивание среднего значения генеральной совокупности;
 - точечное и интервальное оценивание дисперсии генеральной совокупности;
- точечное и интервальное оценивание доли распределения (вероятность попадания) случайной величины в заданном интервале и вне его.
- 5.2 Для решения каждой из перечисленных задач по 5.1 приведены процедуры их решения (разделы 6, 7, 8), включающие в себя:
 - 1) статистические и исходные данные;
- 2) определение стандартных табличных данных, которые необходимы для проведения вычислений (приложения А, Б, В, Г), а также проведение вычислений параметров и коэффициентов по приведенным формулам;
 - 3) результаты, полученные в итоге проведенных вычислений.
- 5.3 Для задач каждого класса приведены примеры их применения на практике (в производстве, медицине, химии). Спектр возможных применений этих задач не ограничивается приведенными в разделах 6, 7, 8 примерами.
- 5.4 Во всех приведенных задачах предполагается, что статистические и исходные данные подчиняются нормальному закону распределения. В тех случаях, когда изначально в этом нет достаточной уверенности, должны быть проведены предварительные исследования соответствия исходных данных нормальному закону.
- 5.5 Процедуры решения перечисленных в 5.1 задач представлены в таблицах, соответствующих этим задачам (разделы 6, 7, 8).

Номера таблиц разделов 6, 7, 8 для решения соответствующих задач перечислены в обобщенных таблицах 5.1, 5.2, 5.3, 5.4.

Т а б л и ц а 5.1 — Номера таблиц для решения задач по оценке среднего значения (раздел 6)

Запана ополии сполного анапония	Номер	таблицы	
Задача оценки среднего значения	D известна	D неизвестна	
Оценка среднего Сравнение среднего значения с заданным значением Сравнение двух средних Оценка разности двух средних	6.1 6.3 6.5 6.7	6.2 6.4 6.6 6.8	

Таблица 5.2 — Номера таблиц для решения задач по оценке дисперсии (раздел 7)

Задача оценки дисперсии	Номер таблицы
Оценка дисперсии	7.1
Сравнение дисперсии или стандартного отклонения с заданным значением	7.2
Сравнение двух дисперсий или двух стандартных отклонений	7.3

Таблица 5.3 — Номера таблицдля решения задач по точечной оценке доли распределения случайной величины в заданном интервале (раздел 8)

Номер таблицы			
<i>D</i> известна	D неизвестна		
8.2	8.3		

Т а б л и ц а 5.4 — Номера таблиц для решения задач по интервальной оценке доли распределения случайной величины при неизвестной дисперсии в заданном интервале (раздел 8)

Заданные границы интервала	Искомая величина	Номер таблицы
L M L, M L M L, M	$egin{array}{l} \mathbf{p}_L, q_M \\ p_L, q_M \\ p_L, q_M \\ p_M, q_L \\ p_M, q_L \\ p_M, q_L \end{array}$	8.4 8.5 8.6 8.7 8.8 8.9

5.6 Процедуры интервального оценивания доли распределения случайной величины в заданном интервале, изложенные в разделе 8 настоящего стандарта, являются простыми для применения, но не самыми эффективными. Более эффективными являются процедуры с использованием таблиц нецентрального распределения Стьюдента или таблиц толерантных множителей, которые в настоящем стандарте не приведены.

6 Точечное и интервальное оценивание математического ожидания генеральной совокупности

6.1 Алгоритм точечного и интервального оценивания среднего значения при известной дисперсии приведен в таблице 6.1.

Таблица 6.1 — Оценка среднего значения при известной дисперсии

Статистические и исходные данные	Табличные данные и вычисления		
1 Объем выборки: n =	1 Квантиль стандартного нормального закона распределения уровня (1 — $lpha$):		
2 Сумма значений наблюдаемых величин:	$u_{1-\alpha} =$		
$\Sigma x =$	2 Квантиль стандартного нормального закона распределения уровня (1 — α /2):		
3 Известное значение дисперсии:	$u_{1-\alpha/2} =$		
$\sigma_0^2 =$	3 Вычисляем:		
4 Выбранная доверительная вероятность:	$\overline{x} = \frac{1}{n} \sum x =$		
1 — α =	4 Вычисляем:		
	$K_1 = \frac{U_{1-\alpha}}{\sqrt{n}} =$		
	5 Вычисляем:		
	$K_2 = \frac{U_{1-\alpha/2}}{\sqrt{n}} =$		
Результаты	\\ \tag{\tau}		

Результаты

1 Точечная оценка параметра µ:

$$\widehat{\mu} = x =$$

2 Двусторонний симметричный доверительный интервал для µ:

$$x-K_2\;\sigma_0\leq\mu\leq x+K_2\;\sigma_0\;.$$

3 Односторонние доверительные интервалы для µ:

$$\mu \leq \overline{x} + K_1 \sigma_0$$
 или $\mu \geq \overline{x} - K_1 \sigma_0$.

П р и м е ч а н и е — Квантили стандартного нормального закона распределения определяют по таблице A.1 приложения A.

Примеры

- 1 Определение настроенности станка-автомата при механической обработке (например, токарного, шлифовального). Точность станка, определяемая разбросом получаемых размеров деталей без изменения настройки, считается известной, а центр настройки μ требуется определить. Возможны оценки в виде точечного значения μ или в виде интервала, который с известной степенью доверия (доверительной вероятностью) включает неизвестное значение μ . Интервал может быть:
- двусторонним, если необходима уверенность с заданной доверительной вероятностью, в каких пределах может лежать µ;
- односторонним с верхней границей, если необходима уверенность, что µ не выше какого-то значения;
- односторонним с нижней границей, если необходима уверенность, что µ не ниже какого-то значения.
- 2 Оценка настройки автоматического оборудования для розлива жидкости в тару. Условие и возможные типы оценок как в примере 1.
- 3 Многие другие технологические процессы с известной или оцененной заранее точностью (т. е. известным параметром σ_0^2), в которых выходной контролируемый параметр имеет равновозможные отклонения в большую или меньшую стороны от центра настройки μ . Условие и возможные типы оценок как в примере 1.
- 6.2 Алгоритм точечного и интервального оценивания среднего значения при неизвестной дисперсии приведен в таблице 6.2.

Таблица 6.2 — Оценка среднего значения при неизвестной дисперсии

Статистические и исходные данные	Табличные данные и вычисления
1 Объем выборки: n =	1 Квантиль распределения Стьюдента уровня (1 — α) с ν степенями свободы:
2 Сумма значений наблю- даемых величин: $\Sigma x =$	$t_{1-\alpha}({ m v})$ = 2 Квантиль распределения Стьюдента уровня (1 — $lpha$ /2) с ${ m v}$ степенями свободы:
3 Сумма квадратов значений наблюдаемых величин: $\sum x^2 =$	$t_{1-\alpha/2}(\mathbf{v})=$ 3 Вычисляем: $\overline{x}=\frac{1}{n}\sum x=$
2 x² = 4 Степени свободы: v = n — 1 =	$x = \frac{1}{n} \angle x = \frac{1}{n} = \frac{1}{n} = \frac{\sum (x - x)^2}{n - 1} = \frac{\sum (x - x)^2}{n - 1} = \frac{\sum (x - x)^2}{n - 1} = \frac{1}{n} = 1$
5 Выбранная доверительная вероятность:	5 Вычисляем:
1 — α =	$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} =$ 6 Вычисляем:
	$I_1 = \frac{t_{1-\alpha}(v)}{\sqrt{n}} =$ 7 Вычисляем:
	$I_2 = \frac{t_{1-\alpha/2}(v)}{\sqrt{n}} =$

Результаты

1 Точечная оценка параметра µ:

$$\widehat{\mu} = \overline{x} =$$

2 Точечная оценка параметра D:

$$D = S^2 =$$

3 Двусторонний симметричный доверительный интервал для параметра µ:

$$\overline{x} - l_2 S \le \mu \le \overline{x} + l_2 S$$
.

4 Односторонние доверительные интервалы для параметра μ :

$$\mu \leq \overline{x} + l_1 S$$
 или (1)

$$\mu \geq \overline{x} - l_1 S. \tag{2}$$

П р и м е ч а н и е — Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б.

Примеры — Примеры те же, что в 6.1, но точность, определяемая разбросом контролируемых значений, заранее неизвестна.

6.3 Алгоритм решения задачи сравнения неизвестного среднего значения с заданным значением μ_0 при известной дисперсии приведен в таблице 6.3.

Т а б л и ц а 6.3 — Сравнение неизвестного среднего значения с заданным значением μ_0 при известной дисперсии

Статистические и исходные данные	Табличные данные и вычисления
1 Объем выборки: n =	1 Квантиль стандартного нормального закона распределения уровня (1 — α):
2 Сумма значений наблюдаемых величин:	$u_{1-\alpha} =$
$\sum x =$	2 Квантиль стандартного нормального закона распределения уровня (1 — $lpha/2$):
3 Заданное значение:	$u_{1-\alpha/2} =$
μ ₀ =	3 Вычисляем:
4 Известное значение дисперсии генеральной совокупности:	$-\frac{1}{x} = \frac{1}{n} \sum x =$
$\sigma_0^2 =$	
или стандартного отклонения:	
$\sigma_0 =$	
5 Выбранный уровень значимости:	
α =	

Результаты

Сравнение выборочного среднего значения \bar{x} с заданным значением μ_0 :

1 В двустороннем случае:

Предположение равенства выборочного среднего и заданного значений (нулевая гипотеза) отклоняется, если:

$$|x - \mu_0| > [u_{1-\alpha/2}/\sqrt{n}] \sigma_0$$

- 2 В одностороннем случае:
- а) предположение о том, что выборочное среднее не менее чем μ_0 (нулевая гипотеза) отклоняется, если:

$$\bar{x} < \mu_0 - [u_{1-\alpha}/\sqrt{n}] \sigma_0$$
;

б) предположение о том, что выборочное среднее не более чем μ_0 (нулевая гипотеза) отклоняется, если:

$$\bar{x} > \mu_0 + [u_{1-\alpha}/\sqrt{n}] \sigma_0$$
.

П р и м е ч а н и е — Квантили стандартного нормального закона распределения определяют по таблице А.1 приложения А.

Пример — Проверка правильности настройки технологического процесса на середину поля допуска или на заданное оптимальное значение. Точность технологического процесса предполагается известной или заранее оцененной, т. е. значение σ_0^2 известно.

Возможные технологические процессы: механическая обработка, расфасовка и другие, где равновозможны отклонения контролируемого параметра в большую и меньшую сторону от центра настройки.

6.4 Алгоритм решения задачи сравнения неизвестного среднего значения с заданным значением μ_0 при неизвестной дисперсии приведен в таблице 6.4.

ГОСТ P 50779.21-2004

Таблица 6.4 — Сравнение неизвестного среднего значения с заданным значением μ_0 при неизвестной дисперсии

Статистические и исходные данные	Табличные данные и вычисления		
1 Объем выборки: n =	1 Квантиль распределения Стьюдента уровня (1 — α) с v степенями свободы:		
2 Сумма значений наблюдаемых величин: $\Sigma x =$	$t_{1 - \alpha} (v) =$ 2 Квантиль распределения Стьюдента уровня (1 — α)/2 с v степенями свободы:		
3 Сумма квадратов значений наблюдаемых величин: $\Sigma x^{ 2} =$	t _{1—α/2} (v) = 3 Вычисляем:		
4 Заданное значение: μ ₀ =	$\overline{x} = \frac{1}{n} \Sigma x =$		
5 Степени свободы: v = n — 1 =	4 Вычисляем: $\frac{\sum (x-x)^2}{n-1} = \frac{\sum x^2 - (\sum x)^2/n}{n-1} =$		
6 Выбранный уровень значимости: α =	$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} =$		

Результаты

Сравнение выборочного среднего значения \bar{x} с заданным значением μ_0 :

1 В двустороннем случае:

Предположение равенства выборочного среднего и заданного значений (нулевая гипотеза) отклоняется, если:

$$|x - \mu_0| > [t_{1-\alpha/2} (v)/\sqrt{n}] S.$$

- 2 В одностороннем случае:
- а) предположение о том, что выборочное среднее не менее чем μ_0 (нулевая гипотеза) отклоняется, если:

$$x < \mu_0 - [t_{1-\alpha}(v)/\sqrt{n}] S;$$

б) предположение о том, что выборочное среднее не более чем μ_0 (нулевая гипотеза) отклоняется, если:

$$x > \mu_0 + [t_{1-\alpha}(v)/\sqrt{n}] S.$$

Примечание — Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б.

Примеры

- 1 То же, что в примере 6.3, но точность технологического процесса заранее неизвестна.
- 2 Контрольные проверки в розничной торговле и сфере обслуживания.

Например, у пяти человек, купивших по 1 кг сливочного масла, проводят повторное взвешивание товара на контрольных, более точных весах. При этом должен быть получен ответ на вопрос: являются ли отклонения от точного веса случайными или имеется систематическое обвешивание покупателей.

То же— при отпуске бензина и масел на автозаправочных станциях, то же— при продаже тканей в магазинах и т. п.

6.5 Алгоритм решения задачи сравнения двух неизвестных средних значений при известных дисперсиях приведен в таблице 6.5.

Таблица 6.5 — Сравнение двух неизвестных средних значений при известных дисперсиях

Статистические и исходные данные		e	Табличные данные и вычисления
	Первая выборка	Вторая выборка	1 Квантиль стандартного нормального закона распределения уровня (1 — α):
1 Объем выборки:	<i>n</i> ₁ =	<i>n</i> ₂ =	$u_{1-\alpha} =$
2 Сумма значений наб- людаемых величин:	$\Sigma x_1 =$	$\Sigma x_2 =$	2 Квантиль стандартного нормального закона распределения уровня (1— α/2):
3 Известные значения дисперсий генеральных совокупностей:	$\sigma_{01}^2 =$	$\sigma_{02}^{2} =$	$u_{1\alpha/2}=$ 3 Вычисляем:
4 Выбранный уровень значимости:	c	χ =	4 Вычисляем: $\sigma_d = \sqrt{\frac{\sigma_{01}^2}{n_1} + \frac{\sigma_{02}^2}{n_2}} =$

Результаты

Сравнение средних значений двух совокупностей:

1 В двустороннем случае:

Предположение равенства средних значений (нулевая гипотеза) отклоняется, если:

$$|x_1 - x_2| > u_{1-\alpha/2} \sigma_d$$
.

- 2 В одностороннем случае:
- а) предположение о том, что первое среднее не менее второго (нулевая гипотеза) отклоняется, если:

$$X_1 < X_2 - U_{1-\alpha} \sigma_d$$
;

б) предположение о том, что первое среднее не более второго (нулевая гипотеза) отклоняется, если:

$$x_1 > x_2 + u_{1-\alpha} \sigma_d$$
.

П р и м е ч а н и е — Квантили стандартного нормального закона распределения определяют по таблице A.1 приложения A.

Примеры

- 1 Технологический процесс механической обработки проводят параллельно на двух станках, точность каждого из них известна, т. е. известны параметры σ_{01} и σ_{02} . Можно ли считать, что оба станка настроены одинаково? Можно ли смешивать детали, произведенные на этих двух станках? Это бывает существенно, если дальнейшие технологические процессы подстраивают под среднее значение параметр данного технологического процесса.
- 2 Требуется определить, одинаково ли среднее значение параметр содержания кофеина в двух партиях таблеток аскофена, выпущенных разными фармацевтическими заводами. При этом заранее известны характеристики разброса этого содержания (т. е. дисперсии) для каждого из двух заводов.
- 6.6 Алгоритм решения задачи сравнения двух средних значений при неизвестных, но равных дисперсиях приведен в таблице 6.6.

Т а б л и ц а 6.6 — Сравнение двух средних значений при неизвестных дисперсиях

Статистические и исхо	дные данны	е	Табличные данные и вычисления
	Первая выборка	Вторая выборка	1 Квантиль распределения Стьюдента уровня (1 — $lpha$) с $ ho$ с степенями свободы:
1 Объем выборки:	<i>n</i> ₁ =	n ₂ =	$t_{1-\alpha}(v) =$
2 Сумма значений наб- людаемых величин:	$\sum x_1 =$	$\Sigma x_2 =$	2 Квантиль распределения Стьюдента уровня (1 — α/2) с ν степенями свободы:
3 Сумма квадратов значений наблюдаемых величин:	$\sum x_1^2 =$	$\sum x_2^2 =$	$t_{1cl/2} \ (\text{v}) =$ 3 Вычисляем:
4 Степени свободы:	$v = n_1 +$	n ₂ — 2 =	4 Вычисляем:
5 Выбранный уровень значимости:	0	<i>t</i> =	$\Sigma (x_1 - x_1)^2 + \Sigma (x_2 - x_2)^2 =$
			$= \sum x_1^2 + \sum x_2^2 - \frac{1}{n_1} (\sum x_1)^2 - \frac{1}{n_2} (\sum x_2)^2 =$
			$S_d = \sqrt{rac{(n_1+n_2)}{n_1n_2}} \cdot rac{\Sigma(x_1-x_1)^2 + \Sigma(x_2-x_2)^2}{n_1+n_2-2}} =$

Результаты

Сравнение средних значений двух совокупностей:

- 1 В двустороннем случае:
- а) предположение о том, что средние μ_1 и μ_2 совпадают (нулевая гипотеза) отклоняется, если:

$$|x_1 - x_2| > t_{1-\alpha/2}(v) S_d$$
.

- 2 В одностороннем случае:
- а) предположение о том, что $\mu_1 \ge \mu_2$ (нулевая гипотеза) отклоняется, если:

$$\bar{x}_1 < \bar{x}_2 - t_{1-\alpha} (v) S_d;$$

б) предположение о том, что $\mu_1 \le \mu_2$ (нулевая гипотеза) отклоняется, если:

$$\bar{x}_1 > \bar{x}_2 + t_{1-\alpha} (v) S_d$$
.

Примечание — Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б.

 Π р и м е ч а н и е — Дисперсии неизвестны, но в предположении могут быть равными.

Примеры

- 1 Примеры те же, что для 6.5, но дисперсии неизвестны. Применение этих задач может встречаться чаще, чем применение задач по 6.5, т. к. в большинстве случаев в двух сравниваемых процессах или совокупностях дисперсии неизвестны.
- 2 Пример 2 по 6.5 может быть распространен на сравнение содержания различных химических веществ или примесей в двух совокупностях.

6.7 Алгоритм точечного и интервального оценивания разности двух средних значений при известных дисперсиях приведен в таблице 6.7.

Таблица 6.7 — Оценка разности двух средних значений при известных дисперсиях

Статистические и исхо	дные данны	e	Табличные данные и вычисления
	Первая выборка	Вторая выборка	1 Квантиль стандартного нормального закона распределения уровня (1 — α):
1 Объем выборки:	n ₁ =	n ₂ =	$u_{1-\alpha} =$
2 Сумма значений наб- людаемых величин:	$\Sigma x_1 =$	$\Sigma x_2 =$	2 Квантиль стандартного нормального закона распределения уровня (1 — α/2):
3 Известное значение дисперсий генеральной совокупности:	$\sigma_{01}^{2} =$	$\sigma_{02}^{2} =$	$u_{1-\omega/2}$ = 3 Вычисляем:
4 Выбранный уровень значимости:	α =	,	4 Вычисляем:
тогда доверительная вероятность равна 1 — α =			$\sigma_{d} = \sqrt{\frac{\sigma_{01}^{2}}{n_{1}} + \frac{\sigma_{02}^{2}}{n_{2}}} =$

Результаты

1 Точечная оценка равности между средними значениями параметров μ_1 и μ_2 для двух сов**окупносте**й:

$$(\mu_1 - \mu_2)^{\Lambda} = x_1 - x_2$$
.

2 Односторонний доверительный интервал для разности ($\mu_1 - \mu_2$):

$$(\mu_1 - \mu_2) < (x_1 - x_2) + u_{1-\alpha} \sigma_d$$
 или $(\mu_1 - \mu_2) > (x_1 - x_2) - u_{1-\alpha} \sigma_d$.

3 Двусторонний доверительный интервал для разности ($\mu_1 - \mu_2$):

$$(x_1 - x_2) - u_{1 - \alpha/2} \sigma_d < (\mu_1 - \mu_2) < (x_1 - x_2) + u_{1 - \alpha/2} \sigma_d.$$

4 Предположение равенства средних значений (нулевая гипотеза) отклоняется, если:

$$|x_1 - x_2| > u_{1 - \alpha/2} \sigma_d$$
.

П р и м е ч а н и е — Квантили стандартного нормального закона распределения определяют по таблице А.1 приложения А.

Пример — Сопоставление однотипных средних значений показателя качества для двух технологических процессов или двух совокупностей изделий. Считается, что дисперсии для обоих технологических процессов или совокупностей известны.

Например, оценка разности средней толщины гальванического покрытия двух партий одинаковых изделий; оценка разности среднего содержания вредных примесей в двух партиях химикатов и т. п.

6.8 Алгоритм точечного и интервального оценивания разности двух средних значений при неизвестных, но равных дисперсиях приведен в таблице 6.8.

Т а б л и ц а 6.8 — Оценка разности двух средних значений при неизвестных, но равных* дисперсиях

Статистические и исходные данные		е	Табличные данные и вычисления
	Первая выборка	Вторая выборка	1 Квантиль распределения Стьюдента уровня (1 — $lpha$) с $ ho$ степенями свободы:
1 Объем выборки:	<i>n</i> ₁ =	<i>n</i> ₂ =	$t_{1\alpha}(v) =$
2 Сумма значений наб- людаемых величин:	$\Sigma x_1 =$	$\Sigma x_2 =$	2 Квантиль распределения Стьюдента уровня (1 — $lpha$ /2) с ν степенями свободы:
3 Сумма квадратов значений наблюдаемых величин:	$\sum x_1^2 =$	$\sum x_2^2 =$	$t_{1-\alpha/2} \ (v) =$ 3 Вычисляем:
4 Степени свободы:	$v = n_1 +$	n ₂ — 2 =	4 Вычисляем:
5 Выбранная довери- тельная вероятность:	1 —	- α=	$\sum_{1}^{1} (x_1 - x_1)^2 + \sum_{1}^{1} (x_2 - x_2)^2 =$
			$= \sum x_1^2 + \sum x_2^2 - \frac{1}{n_1} (\sum x_1)^2 - \frac{1}{n_2} (\sum x_2)^2 =$
			$S_d = \sqrt{rac{(n_1+n_2)}{n_1n_2}\cdotrac{\Sigma(x_1-x_1)^2+\Sigma(x_2-x_2)^2}{n_1+n_2-2}}=$

Результаты

1 Точечная оценка равности между средними значениями параметров μ₁ и μ₂ для двух совокупностей:

$$(\mu_1 - \mu_2)^{\Lambda} = x_1 - x_2$$
.

2 Двусторонний доверительный интервал для разности ($\mu_1 - \mu_2$):

$$(x_1 - x_2) - t_{1-\alpha/2}(v) S_d < (\mu_1 - \mu_2) < (x_1 - x_2) + t_{1-\alpha/2}(v) S_d.$$

3 Односторонний доверительный интервал для разности ($\mu_1 - \mu_2$):

$$(\mu_1 - \mu_2) < (x_1 - x_2) + t_{1-\alpha} (v) S_d$$
или
$$(\mu_1 - \mu_2) > (x_1 - x_2) - t_{1-\alpha} (v) S_d .$$

Примечани е — Квантили распределения Стьюдента определяют по таблице Б.1 приложения Б.

Пример — Пример тот же, что в 6.7, но дисперсии неизвестны. Применение этих оценок может встречаться чаще, чем применение оценок по 6.7, т. к. в большинстве случаев в двух сравниваемых совокупностях дисперсии неизвестны.

^{*} Гипотезы равенства дисперсий двух генеральных совокупностей могут быть проверены по таблице 7.3 раздела 7.

7 Точечное и интервальное оценивание дисперсии генеральной совокупности

7.1 Алгоритм точечного и интервального оценивания дисперсии или стандартного отклонения приведен в таблице 7.1.

Т а б л и ц а 7.1 — Точечная и интервальная оценки дисперсии или стандартного отклонения

Статистические и исходные данные	Табличные данные и вычисления
 1 Объем выборки:	1 Квантили χ^2 распределения с v степенями свободы уровней α , $(1-\alpha)$, $\alpha/2$ и $(1-\alpha/2)$ соответственно: $\chi^2_{\alpha}(v) = \\ \chi^2_{1-\alpha}(v) = \\ \chi^2_{1-\alpha}(v) = \\ \chi^2_{1-\alpha/2}(v) = \\ \chi^2_{1-\alpha/2}(v) = \\ 3$ Вычисляем: $\Sigma (x-x)^2 = \Sigma x^2 - (\Sigma x)^2/n = \\ 4$ Вычисляем: $S^2 = \frac{\Sigma (x-x)^2}{n-1} = $

Результаты

1 Точечные оценки дисперсии D и стандартного отклонения σ генеральной совокупности:

$$D = S^2 : \widehat{\sigma} = \sqrt{S^2}$$
.

2 Двусторонний доверительный интервал* для дисперсии
$$D$$
:
$$\frac{\sum (x-x)^2}{\chi^2_{1-\alpha/2}(\nu)} < D < \frac{\sum (x-x)^2}{\chi^2_{\alpha/2}(\nu)} \; .$$

3 Односторонний доверительный интервал* для дисперсии D:

$$D > \frac{\sum (x - x)^2}{\chi_{1 - \alpha}^2 (v)} = \sigma_L^2$$
 или (3)

$$D < \frac{\sum (x - x)^2}{\chi_{\alpha}^2(v)} = \sigma_M^2.$$
 (4)

П р и м е ч а н и е — Квантили χ^2 распределения определяют по таблице В.1 приложения В.

Примеры

- 1 Оценка точности (среднее значение величины разброса) показателей качества на выходе технологического процесса.
- 2 Оценка точности поддержания заданного значения параметра в системах автоматического регулирования (например, температура в печи).

Если необходимо знать просто среднее значение показателя точности, то определяется точечная оценка σ^2 или σ , а если необходима уверенность в том, что точность не хуже (разброс не выше) определенного значения, то определяют интервальную оценку σ^2 или σ с верхней доверительной границей.

^{*} Значения границ доверительного интервала стандартного отклонения о являются корнем квадратным из значений границ доверительного интервала дисперсии D.

7.2 Алгоритм решения задачи сравнения дисперсии или стандартного отклонения с заданной величиной приведен в таблице 7.2.

Таблица 7.2 — Сравнение дисперсии или стандартного отклонения с заданным значением

Статистические и исходные данные	Табличные данные и вычисления	
1 Объем выборки:n =2 Сумма значений наблюдаемых величин:	1 Квантили χ^2 распределения с ν степенями свободы уровней α , $(1-\alpha)$, $\alpha/2$ и $(1-\alpha/2)$ соответственно:	
$\Sigma x =$	$\chi^2_{\alpha}(v) =$	
3 Сумма квадратов значений наблюдаемых величин:	$\chi^{2}_{1-\alpha}(v) =$	
$\Sigma x^2 =$	$\chi^2_{\alpha/2}(v) =$	
4 Заданное значение:	$\chi^{2}_{1-\alpha/2}(v) =$	
$\sigma_0^2 = D_0 =$	2 Вычисляем:	
5 Степени свободы:	$\sum_{x} (x - x)^2 = \sum_{x} x^2 - (\sum_{x} x)^2 / n =$	
v = n 1 =	3 Вычисляем:	
6 Выбранная доверительная вероятность: α =	$\frac{\sum (x-x)^2}{\sigma_0^2} =$	

Результаты

Сравнение дисперсии D с заданным значением σ_0^2 или сравнение стандартного отклонения σ с заданным значением σ_0 :

1 Двусторонний случай:

Предположение равенства дисперсии (стандартного отклонения) и заданного значения (нулевая гипотеза) отклоняется, если:

$$\frac{\sum (x-x)^2}{\sigma_0^2} < \chi_{\alpha/2}^2 \, (\nu) \; \; \text{или} \; \frac{\sum (x-x)^2}{\sigma_0^2} > \chi_{1-\alpha/2}^2 \, (\nu).$$

- 2 Односторонний случай:
- а) предположение о том, что дисперсия (стандартное отклонение) не более заданного значения (нулевая гипотеза) отклоняется, если:

$$\frac{\sum (x-x)^2}{\sigma_0^2} > \chi_{1-\alpha}^2$$
 (v);

б) предположение о том, что дисперсия (стандартное отклонение) не менее заданного значения (нулевая гипотеза) отклоняется, если:

$$\frac{\sum (x-x)^2}{\sigma_0^2} < \chi_\alpha^2 (v) .$$

 Π р и м е ч а н и е — Квантили χ^2 распределения определяют по таблице В.1 приложения В.

Примеры

- 1 Оценка точности одного оборудования или технологического процесса в сравнении с известной точностью (т. е. известным параметром σ_0) другого оборудования или технологического процесса.
- 2 Сравнение степени однородности одной совокупности изделий (т. е. величины разброса показателя качества) с известной заранее степенью однородности, характеризуемой стандартным отклонением σ_0 .

7.3 Алгоритм решения задачи сравнения дисперсий или стандартных отклонений двух генеральных совокупностей приведен в таблице 7.3.

Таблица 7.3 — Сравнение дисперсий или стандартных отклонений двух генеральных совокупностей

Статистические и исходные данные		e	Табличные данные и вычисления
	Первая выборка	Вторая выборка	1 Вычисляем:
1 Объем выборки:	n ₁ =	<i>n</i> ₂ =	$\sum (x_1 - \bar{x}_1)^2 = \sum x_1^2 - \frac{1}{n_1} (\sum x_1)^2 =$
2 Сумма значений наб- людаемых величин:	$\sum x_1 =$	$\sum x_2 =$	$\sum (x_2 - \bar{x}_2)^2 = \sum x_2^2 - \frac{1}{n_2} (\sum x_2)^2 =$
3 Сумма квадратов зна-			2 Вычисляем:
чений наблюдаемых величин:	$\sum x_1^2 =$	$\sum x_2^2 =$	$S_{1}^{2} = \frac{\sum (x_{1} - x_{1})^{2}}{n_{1} - 1} =$
4 Степени свободы: $v_1 = n_1 - 1 = $; $v_2 = n_2$	– 1 =		$S_{2}^{2} = \frac{\sum (x_{2} - x_{2})^{2}}{n_{2} - 1} =$
5 Выбранный уровень			3 Квантили распределения Фишера:
значимости:	o	ι =	$F_{1-\alpha/2}(v_1, v_2) =$
			$F_{1-\alpha}(v_1, v_2) =$

Результаты

Сравнение дисперсий двух совокупностей:

1 Двусторонний случай:

Предположение равенства дисперсии или равенства двух стандартных отклонений (нулевая гипотеза) отвергается, если:

$$\frac{S_{\,1}^{\,2}}{S_{\,2}^{\,2}}\!<\!\frac{1}{F_{1\,-\alpha/2}\left(\mathbf{v}_{2},\,\mathbf{v}_{1}\right)}\;\;\mathsf{или}\;\;\frac{S_{\,1}^{\,2}}{S_{\,2}^{\,2}}\,>\,F_{1\,-\alpha/2}\left(\mathbf{v}_{1},\,\mathbf{v}_{2}\right)\,.$$

- 2 Односторонний случай:
- а) предположение о том, что $D_1 \le D_2$ ($\sigma_1 \le \sigma_2$) (нулевая гипотеза) отклоняется, если:

$$\frac{S_1^2}{S_2^2} > \frac{1}{F_{1-\alpha}(v_1, v_2)}$$
;

б) предположение о том, что $D_1 \ge D_2$ ($\sigma_1 \ge \sigma_2$) (нулевая гипотеза) отклоняется, если:

$$\frac{S_1^2}{S_2^2} < \frac{1}{F_{1-\alpha}(v_2, v_1)}$$
.

Примечание — Квантили распределения Фишера определяют по таблицам Г.1—Г.9 приложения Г.

Примеры

- 1 Сравнение точности двух станков-автоматов по результатам контроля геометрических размеров деталей.
- 2 Соотношение стабильности двух технологий, например отечественного и зарубежного предприятий, на основе сравнения результатов контроля двух выборок из двух соответствующих совокупностей изделий.

8 Точечное и интервальное оценивание доли распределения случайной величины в заданном интервале*

8.1 Алгоритм вычисления доли распределения случайной величины в заданном интервале [*L*, *M*] и вне его при известных параметрах нормального распределения приведен в таблице 8.1.

Т а б л и ц а 8.1 — Вычисление доли распределения случайной величины в заданном интервале [*L*, *M*] и вне его при известных параметрах нормального распределения (вспомогательный алгоритм)

Статистические и исходные данные	Табличные данные и вычисления
1 Среднее значение (математическое ожидание): $\mu_0 = \\ 2 \ \text{Стандартное отклонение:} \\ \sigma_0 = \\ \text{или дисперсия: } D_0 = \sigma_0^2 = \\ 3 \ \text{Границы интервала:} \\ \text{нижняя } L = \\ \text{верхняя } M = \\ \\$	1 Пересчитанная для стандартного нормального закона эквивалентная нижняя граница интервала: $u^L = \frac{\mu_0 - L}{\sigma_0} =$ 2 Пересчитанная для стандартного нормального закона эквивалентная верхняя граница интервала: $u^M = \frac{M - \mu_0}{\sigma_0} =$ 3 Доля распределения случайной величины, лежащая ниже границы L : $q_L = 1 - \Phi (u^L) =$ Если значение L не задано, то $q_L = 0$ 4 Доля распределения случайной величины, лежащая выше границы M : $q_M = 1 - \Phi (u^M) =$ Если значение M не задано, то $q_M = 0$

Результаты

1 Доля распределения случайной величины вне интервала [L, M]:

$$q = q_L + q_{M}.$$

2 Доля распределения случайной величины в интервале [L, M]:

$$p = 1 - q$$
.

П р и м е ч а н и е — Величины Φ (u^L) и Φ (— u^M) представляют собой значение функции стандартного нормального закона распределения, которые определяют по таблице A.1 приложения A.

Для решения данной задачи не используют выборочные данные, а значения параметров μ и σ^2 считают известными. Таблица 8.1 содержит вспомогательный алгоритм для решения задач по 8.2—8.9.

Пример — Оценка ожидаемого уровня несоответствий показателя качества продукции (уровня несоответствий) при настройке станка на середину поля допуска или на номинальное значение и известную точность σ_0^2 .

^{*} Доля распределения случайной величины в заданном интервале равна вероятности попадания случайной величины в этот интервал. В большинстве практических задач физический смысл, используемый в данном стандарте, имеет понятие — «доля распределения случайной величины в интервале», хотя все приведенные статистические выводы справедливы и для понятия «вероятность попадания случайной величины в интервал».

8.2 Алгоритм точечного оценивания доли распределения случайной величины в заданном интервале [*L*, *M*] и вне его при известном стандартном отклонении или дисперсии приведен в таблице 8.2.

Т а б л и ц а 8.2 — Точечное оценивание доли распределения случайной величины в заданном интервале [L, M] и вне его при известном стандартном отклонении или дисперсии

Статистические и исходные данные	Табличные данные и вычисления
1 Объем выборки: n = 2 Стандартное отклонение: σ ₀ =	1 Точечная оценка среднего значения: $\widehat{\mu} = \frac{1}{n} \Sigma x =$ 2 Пересчитанные для стандартного нормального закона эквивалентные границы интервала:
или дисперсия $D_0 = \sigma_0^2 =$ 3 Сумма значений наблюдаемых величин: $\Sigma x =$	нижняя $u^L = \frac{\widehat{\mu} - L}{\sigma_0} =$ верхняя $u^M = \frac{M - \widehat{\mu}}{\sigma_0} =$
4 Границы интервала: нижняя <i>L</i> = верхняя <i>M</i> =	3 Точечная оценка доли распределения случайной величины, лежащей ниже границы L (см. таблицу 8.1): $\widehat{q}_L = 1 - \Phi \left(\begin{array}{c} u^L \right) = \\ \\ \text{Если значение } L \text{ не задано, то } \widehat{q}_L = 0 \\ \\ 4 \text{ Точечная оценка доли распределения случайной величины, лежащей выше границы } M \text{ (см. таблицу 8.1):} \\ \widehat{q}_M = 1 - \Phi \left(u^M \right) = \\ \\ \text{Если значение } M \text{ не задано, то } \widehat{q}_M = 0$

Результаты

1 Точечная оценка доли распределения случайной величины вне интервала [L, M]:

$$\widehat{q} = \widehat{q_I} + \widehat{q_M}$$

2 Точечная оценка доли распределения случайной величины в интервале [L, M]:

$$\widehat{p} = 1 - \widehat{q}$$
.

П р и м е ч а н и е — Величины Φ (u^L) и Φ (u^M) представляют собой значение функции стандартного нормального закона распределения, которые определяют по таблице А.1 приложения А.

Пример — Оценка уровня несоответствия показателя качества продукции, который следует ожидать при работе станка или технологического процесса при установленном допуске и неизвестном уровне настройки. При этом считают, что точность станка или технологического процесса известна или достаточно точно оценена заранее.

8.3 Алгоритм точечного оценивания доли распределения случайной величины в заданном интервале [*L*, *M*] и вне его при неизвестной дисперсии приведен в таблице 8.3.

ГОСТ P 50779.21-2004

Т а б л и ц а 8.3 — Точечная оценка доли распределения случайной величины в заданном интервале [L, M] и вне его при неизвестной дисперсии

Статистические и исходные данные	Табличные данные и вычисления
1 Объем выборки:	1 Точечная оценка среднего значения: $\widehat{\mu} = x - \frac{1}{n} \Sigma x =$ 2 Вычисляем: $\frac{\Sigma (x-x)^2}{n-1} = \frac{\Sigma x^2 - (\Sigma x)^2/n}{n-1} =$ 3 Точечная оценка стандартного отклонения: $S = \sqrt{\frac{\Sigma (x-x)^2}{n-1}} =$ 4 Пересчитанные для стандартного нормального закона эквивалентные границы интервала: нижняя $u^L = \frac{\widehat{\mu} - L}{S} =$ верхняя $u^M = \frac{M - \widehat{\mu}}{S} =$ 5 Точечная оценка доли распределения случайной величины, лежащей ниже границы L (см. таблицу 8.1): $\widehat{q}_L = 1 - \Phi (u^L) =$ Если значение L не задано, то $\widehat{q}_L = 0$ 6 Точечная оценка доли распределения случайной величины, лежащей выше границы M (см. таблицу 8.1): $\widehat{q}_M = 1 - \Phi (u^M) =$ Если значение M не задано, то $\widehat{q}_M = 0$

Результаты

1 Точечная оценка доли распределения случайной величины вне интервала [L, M]:

$$\widehat{q} = \widehat{q_L} + \widehat{q_M}$$

2 Точечная оценка доли распределения случайной величины в интервале [L, M]:

$$\widehat{p} = 1 - \widehat{q}$$
.

П р и м е ч а н и е — Величины $\Phi(u^L)$ и $\Phi(u^M)$ представляют собой значение функции стандартного нормального закона распределения, которые определяют по таблице А.1 приложения А.

Пример тот же, что в 8.2, но точность станка или технологического процесса неизвестна.

 $8.4\,$ Алгоритм определения верхней и нижней доверительных границ для доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале и вне его с заданной нижней границей L приведен в таблице 8.4.

Указанным в таблице 8.4 способом определяют верхнюю доверительную границу q_M для доли распределения вне одностороннего интервала с нижней границей L, а также нижнюю доверительную границу p_I для доли распределения случайной величины в указанном интервале.

Примечание — Здесь и далее следует различать заданный изначально односторонний или двусторонний интервал (допуск) с известной границей (границами) для случайной величины X и доверительный интервал для доли распределения случайной величины в этом допуске и вне его. Границы заданного интервала (допуска) L и M для случайной величины измеряют в тех же единицах величин, какие имеет случайная величина, например: в миллиметрах, граммах и т. п. Границы получаемого доверительного интервала являются безразмерными, как и сама вероятность.

Примеры

- 1 Определение уровня несоответствий для показателя «толщина гальванопокрытия». Случай, когда необходимо иметь определенную уверенность в том, что уровень несоответствий не превышает установленного предельного процента.
- 2 Оценка доли годных и несоответствующих деталей по показателю качества «твердость после термической обработки». Требование (допуск) одностороннее: L=45 ед. Роквелла. Оценка получается в виде верхней доверительной границы q_M на долю несоответствующей продукции с твердостью ниже 45 ед. Кроме того, получается нижняя доверительная граница p_L на долю продукции, соответствующей требованию, т. е. на долю деталей с твердостью не ниже 45 ед. Доверительные оценки p_L и q_M в отличие от точечных имеют характеристики достоверности утверждений (с вероятностью $1-\alpha$):

истинная доля годной продукции — не менее p_L ; истинная доля несоответствующей продукции — не более q_M .

Т а б л и ц а 8.4 — Определение верхней q_M и нижней p_L доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной нижней границей L (дисперсия неизвестна)

Необходимые условия: Prob $\{q \leq q_{M}\} \geq 1$ — α , Prob $\{p \geq p_{L}\} \geq 1$ — α			
Статистические и исходные данные	Табличные данные и вычисления		
1 Объем выборки: n =	1 Устанавливаем соответственно три пары доверительных вероятностей:		
2 Сумма значений наблюдаемых величин: $\Sigma \ \ x =$	$(1-\alpha_{\ \mu}^{\ j})$ — для μ и $(1-\alpha_{\ \sigma}^{\ j})$ — для σ , причем		
3 Сумма квадратов значений наб- людаемых величин:	$(1 - \alpha_{\mu}^{j})(1 - \alpha_{\sigma}^{j}) = 1 - \alpha,$ где $j = 1, 2, 3$, тогда		
$\Sigma x^2 =$	$\alpha_{\mu}^{1} = \frac{1}{4} \alpha;$		
4 Степени свободы:	$\alpha_{\mu}^{2} = \frac{1}{2} \alpha;$		
v = n - 1 =	$\alpha_{\mu}^{3} = \frac{3}{4} \alpha;$		
5 Выбранная доверительная вероятность:	$\alpha_{\sigma}^{j} = (\alpha - \alpha_{\mu}^{j})/(1 - \alpha_{\mu}^{j}).$		
1 — α =	2 Процедура доверительного оценивания среднего значения и стандартного отклонения:		
6 Нижняя граница одностороннего интервала:	2.1 Интервальная оценка параметра μ с доверительной вероятностью 1 — α_{μ} :		
L =	$\mu_L = x - l_1 S$		
	(см. формулу (2) таблицы 6.2). 2.2 Интервальная оценка параметра σ с доверительной вероят-		
	ностью 1 — α_{σ} :		
	$\sigma_{M} = \sqrt{\sigma_{M}^{2}}$		
	(см. формулу (4) таблицы 7.1).		
	Примечание— Указанную процедуру повторяют три раза. 3 Интервальная оценка величины <i>q</i> при полученных значениях параметров μ и σ— (см. таблицу 8.1):		
	$q_M^{\ j} =$		
	4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:		
	$q_M^{-1}, q_M^{-2}, q_M^{-3}$.		
Результаты 1 Верхная поверительная граница для	а. соответствующая доверительной вероятности 1 — α:		

1 Верхняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

$$q_M = \min \{q_M^{-1}, q_M^{-2}, q_M^{-3}\}.$$

2 Нижняя доверительная граница для *р*:

$$p_{L} = 1 - q_{M}$$

8.5 Алгоритм определения верхней и нижней доверительных границ для доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале и вне его с заданной верхней границей M приведен в таблице 8.5.

Указанным в таблице 8.5 способом определяют верхнюю доверительную границу q_M для доли распределения вне одностороннего интервала с верхней границей M, а также нижнюю доверительную границу p_I для доли распределения случайной величины в указанном интервале.

Т а б л и ц а 8.5 — Определение верхней q_M и нижней p_L доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной верхней границей M (дисперсия неизвестна)

Необходимые условия: Prob	$p \{q \le q_M\} \ge 1 - \alpha, \text{ Prob } \{p \ge p_L\} \ge 1 - \alpha$
Статистические и исходные данные	Табличные данные и вычисления
	Табличные данные и вычисления 1 Устанавливаем соответственно три пары доверительных вероятностей: $(1-\alpha_{\ \mu}^{j}) - \text{для } \mu \; ;$ $(1-\alpha_{\ \sigma}^{j}) - \text{для } \sigma, \text{причем}$ $(1-\alpha_{\ \mu}^{j}) (1-\alpha_{\ \sigma}^{j}) = 1-\alpha,$ $\text{где } j = 1, 2, 3, \text{ тогда:}$ $\alpha_{\ \mu}^{1} = {}^{1}\!/_{4} \alpha;$ $\alpha_{\ \mu}^{2} = {}^{1}\!/_{2} \alpha;$ $\alpha_{\ \mu}^{3} = {}^{3}\!/_{4} \alpha;$ $\alpha_{\ \sigma}^{j} = (\alpha - \alpha_{\ \mu}^{j})/(1-\alpha_{\ \mu}^{j}).$ 2 Процедура доверительного оценивания среднего значения и стандартного отклонения: $2.1 \text{ Интервальная оценка параметра } \mu \text{ с доверительной вероятностью } 1-\alpha_{\mu}:$ $\mu_{M} = x + l_{1} S$ (см. формулу (1) таблицы 6.2). $2.2 \text{ Интервальная оценка параметра } \sigma \text{ с доверительной вероятностью } 1-\alpha_{\sigma}:$ $\sigma_{M} = \sqrt{\sigma_{M}^{2}}$ (см. формулу (4) таблицы 7.1).
	(см. формулу (4) таблицы 7.1). Примечание — Данную процедуру повторяют три раза. З Интервальная оценка величины <i>q</i> при полученных
	значениях параметров μ и σ — (см. таблицу 8.1): $q_{M}^{\ j} =$ 4 После повторения процедуры по пунктам 2 и 3 для j = 1, 2, 3 имеем:
Результаты	$q_{M}^{1}, q_{M}^{2}, q_{M}^{3}.$

Пример — Определение уровня несоответствий для показателя «процент примесей» в металлургии или в фармакологии. Случай, когда необходимо иметь определенную уверенность в том, что уровень несоответствий не превышает установленного предельного процента.

 $q_M = \min \{q_M^{-1}, q_M^{-2}, q_M^{-3}\}.$

 $p_L = 1 - q_M$

1 Верхняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

2 Нижняя доверительная граница для р:

8.6 Алгоритм интервального оценивания доли распределения случайной величины с неизвестной дисперсией в заданном интервале [L,M] и вне его приведен в таблице 8.6.

Указанным в таблице 8.5 способом определяют верхнюю доверительную границу q_M для доли распределения вне интервала [L,M], а также нижнюю доверительную границу p_L для доли распределения случайной величины в данном интервале.

Т а б л и ц а 8.6 — Определение верхней q_M и нижней p_L доверительных границ для доли распределения случайной величины в заданном интервале [L,M] и вне его (дисперсия неизвестна)

Необходимые условия: Prob $\{q \leq q_M\} \geq 1$ — α , Prob $\{p \geq p_L\} \geq 1$ — α		
Статистические и исходные данные	Табличные данные и вычисления	
1 Объем выборки:	1 Устанавливаем соответственно три пары доверительных вероятностей: $(1-\alpha_{\mu}^{j})-\mu_{\alpha} \mu_{\alpha} \mu_{\alpha}$	
$n=$ 2 Сумма значений наблюдаемых величин: $\Sigma x=$ 3 Сумма квадратов значений наблюдаемых величин: $\Sigma x^2=$ 4 Степени свободы: $v=n-1=$ 5 Выбранная доверительная вероятность: $1-\alpha=$ 6 Границы интервала: $L=$	тельных вероятностей: $(1-\alpha_{\mu}^{j})-\text{для }\mu \text{ и}$ $(1-\alpha_{\sigma}^{j})-\text{для }\sigma, \text{ причем}$ $(1-\alpha_{\mu}^{j})(1-\alpha_{\sigma}^{j})=1-\alpha,$ $\text{где }j=1,2,3,\text{ тогда:}$ $\alpha_{\mu}^{1}={}^{1}\!/_{4}\alpha;$ $\alpha_{\mu}^{2}={}^{1}\!/_{2}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{4}\alpha;$ $\alpha_{\sigma}^{3}=(\alpha-\alpha_{\mu}^{j})\!/(1-\alpha_{\mu}^{j}).$ 2 Процедура доверительного оценивания среднего значения и стандартного отклонения: 2.1 Интервальная оценка параметра μ с доверительной вероятностью $1-\alpha_{\mu}$: $\mu_{L}=x-l_{1}\text{ S}; \mu_{M}=x+l_{2}\text{ S}.$ (см. формулы (1), (2) таблицы 6.2). 2.2 Наихудшая точка μ' : $\mu'=\mu_{L}, \text{ если }\mu_{L}-A\geq B-\mu_{M},$ $\mu'=\mu_{M}, \text{ если }\mu_{L}-A\geq B-\mu_{M}.$ 2.3 Интервальная оценка параметра σ , соответствующая доверительной вероятности $1-\alpha_{\sigma}$: $\sigma_{M}=\sqrt{\sigma_{M}^{2}}$ (см. формулу (4) таблицы 7.1). Π р и м е ч а н и е — Данную процедуру повторяют три раза. 3 Интервальная оценка величины σ при полученных значениях параметров σ 0 и σ 0 (см. таблицу 8.1): $\sigma_{M}^{j}=1,2,3$ имеем:	

Результаты

1 Верхняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

$$q_M = \min \{q_M^{-1}, q_M^{-2}, q_M^{-3}\}.$$

2 Нижняя доверительная граница для р:

$$p_L = 1 - q_M$$

Пример — тот же, что в 8.2, но точность станка заранее неизвестна. Случай, когда необходимо иметь определенную уверенность в том, что уровень несоответствий не превышает установленного предельного значения.

FOCT P 50779.21—2004

8.7 Алгоритм определения нижней и верхней доверительных границ для доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале и вне его с заданной нижней границей L приведен в таблице 8.7.

Указанным в таблице 8.7 способом определяют нижнюю доверительную границу q_L для доли распределения вне одностороннего интервала с нижней границей L, а также верхнюю доверительную границу p_M для доли распределения случайной величины в указанном интервале.

Т а б л и ц а 8.7 — Определение нижней q_L и верхней p_M доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной нижней границей L (дисперсия неизвестна)

Heoбходимые условия: Prob	$p \{q \ge q_L\} \ge 1 - \alpha$, Prob $\{p \le p_M\} \ge 1 - \alpha$
Статистические и исходные данные	Табличные данные и вычисления
1 Объем выборки: $n=$ 2 Сумма значений наблюдаемых величин: $\Sigma x=$ 3 Сумма квадратов значений наблюдаемых величин: $\Sigma x^2=$ 4 Степени свободы: $v=n-1=$ 5 Выбранная доверительная вероятность: $1-\alpha=$ 6 Нижняя граница одностороннего интервала: $L=$	1 Устанавливаем соответственно три пары доверительных вероятностей: $(1-\alpha_{\ \sigma}^{j})-\text{для}\ \mu\ \text{и}$ $(1-\alpha_{\ \sigma}^{j})-\text{для}\ \sigma, \text{причем}$ $(1-\alpha_{\ \mu}^{j})(1-\alpha_{\ \sigma}^{j})=1-\alpha,$ $\text{где}\ j=1,2,3,\text{ тогда:}$ $\alpha_{\ \mu}^{1}={}^{1}/{}_{4}\alpha;$ $\alpha_{\ \mu}^{2}={}^{1}/{}_{2}\alpha;$ $\alpha_{\ \mu}^{3}={}^{3}/{}_{4}\alpha;$ $\alpha_{\ \sigma}^{j}=(\alpha-\alpha_{\ \mu}^{j})/(1-\alpha_{\ \mu}^{j}).$ 2 Процедура доверительного оценивания среднего значения и стандартного отклонения: 2.1 Интервальная оценка параметра μ с доверительной вероятностью $1-\alpha_{\mu}$: $\mu_{M}=x+l_{1}S$ (см. формулу (2) таблицы 6.2). 2.2 Интервальная оценка параметра σ с доверительной вероятностью $1-\alpha_{\sigma}$: $\sigma_{L}=\sqrt{\sigma_{L}^{2}}$ (см. формулу (3) таблицы 7.1). Примечания и е на и е — Данную процедуру повторяют три раза. 3 Интервальная оценка величины σ при полученных значениях параметров σ и σ (см. таблицу 8.1): $\sigma_{L}^{j}=4$ После повторения процедуры по пунктам 2 и 3 для σ
Результаты	

Результаты

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

$$q_L = \max \{q_L^{\ 1}, q_L^{\ 2}, q_L^{\ 3}\}.$$

2 Верхняя доверительная граница для р:

$$p_M = 1 - q_L$$

Пример — Доказательство (с заданной вероятностью) того, что уровень несоответствий по данному показателю качества превышает установленное в нормативной документации предельное значение. Случай предъявления рекламаций на серийную или массовую продукцию по определенному показателю качества.

8.8 Алгоритм определения нижней и верхней доверительных границ для доли распределения случайной величины с неизвестной дисперсией в одностороннем интервале и вне его с заданной верхней границей M приведен в таблице 8.8.

Указанным в таблице 8.8 способом определяют нижнюю доверительную границу q_L для доли распределения вне одностороннего интервала с верхней границей M, а также верхнюю доверительную границу p_M для доли распределения случайной величины в указанном интервале.

Т а б л и ц а 8.8 — Определение нижней q_L и верхней p_M доверительных границ для доли распределения случайной величины в одностороннем интервале и вне его с заданной верхней границей M (дисперсия неизвестна)

Статистические и исходные данные	T. 6
	Табличные данные и вычисления
2 Сумма значений наблюдаемых величин: $\Sigma x = 3$ Сумма квадратов значений наблюдаемых величин: $\Sigma x^2 = 4$ Степени свободы: $v = n - 1 = 5$ Выбранная доверительная вероятность: $1 - \alpha = 6$ Верхняя граница одностороннего интервала: $M = $ В	1 Устанавливаем соответственно три пары доверительных вероятностей: $(1-\alpha_{\mu}^{j})-для\ \mu\ u$ $(1-\alpha_{\sigma}^{j})-для\ \alpha,\ причем$ $(1-\alpha_{\mu}^{j})(1-\alpha_{\sigma}^{j})=1-\alpha,$ где $j=1,2,3,$ тогда: $\alpha_{\mu}^{1}={}^{1}\!/_{\!4}\alpha;$ $\alpha_{\mu}^{2}={}^{1}\!/_{\!2}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{\!4}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{\!4}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{\!4}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{\!4}\alpha;$ $\alpha_{\mu}^{3}={}^{3}\!/_{\!4}\alpha;$ 2 Процедура доверительного оценивания среднего вначения и стандартного отклонения: 2.1 Интервальная оценка параметра μ с доверительной вероятностью $1-\alpha_{\mu}$: $\mu_{L}=x-l_{1}S$ (см. формулу (2) таблицы 6.2). 2.2 Интервальная оценка параметра σ с доверительной вероятностью $1-\alpha_{\sigma}$: $\sigma_{L}=\sqrt{\sigma_{L}^{2}}$ (см. формулу (3) таблицы 7.1). Примечания с начениях параметров μ и σ — (см. таблицу 8.1): $q_{L}^{j}=4$ После повторения процедуры по пунктам 2 и 3 для = 1, 2, 3 имеем: $q_{L}^{1}, q_{L}^{2}, q_{L}^{3}.$

Результаты

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

$$q_L = \max \{q_L^{-1}, q_L^{-2}, q_L^{-3}\}.$$

2 Верхняя доверительная граница для р:

$$p_M = 1 - q_L$$

FOCT P 50779.21—2004

8.9 Алгоритм определения нижней и верхней доверительных границ для доли распределения случайной величины с неизвестной дисперсией в заданном интервале [L, M] и вне его приведен в таблице 8.9.

Указанным в таблице 8.9 способом определяют нижнюю доверительную границу q_L для доли распределения вне интервала [L, M], а также верхнюю доверительную границу p_M для доли распределения случайной величины в заданном интервале.

Т а б л и ц а 8.9 — Определение нижней q_L и верхней p_M доверительных границ для доли распределения случайной величины в заданном интервале [L, M] и вне его (дисперсия неизвестна)

Табличные данные и вычисления
1 Устанавливаем соответственно три пары доверительных вероятностей: $(1-\alpha _{\ \mu }^{j})-\text{для }\mu \text{ и} \\ (1-\alpha _{\ \mu }^{j})-\text{для }\sigma ,\text{ причем} \\ (1-\alpha _{\ \mu }^{j})(1-\alpha _{\ \sigma }^{j})=1-\alpha ,$ где $j=1,2,3,$ тогда: $\alpha _{\ \mu }^{1}={}^{1}/_{4}\alpha ;$ $\alpha _{\ \mu }^{2}={}^{1}/_{2}\alpha ;$
$lpha_{\ \mu}^{3}={}^{3}/_{4}$ $lpha_{;}$ $lpha_{\ \sigma}^{j}=(lpha-lpha_{\ \mu}^{j})/(1-lpha_{\ \mu}^{j}).$ 2 Процедура доверительного оценивания среднего значения и стандартного отклонения: 2.1 Интервальная оценка параметра μ с доверительной вероятностью $1-lpha_{\mu}:$ $\mu_{L}=x-l_{1}$ $S;$ $\mu_{M}=x+l_{2}$ S (см. формулы (1), (2) таблицы 6.2). 2.2 Наихудшая точка μ' : $\mu'=\mu_{M},$ если $\mu_{M}>\frac{A+B}{2};$ (2.2.1) $\mu'=\mu_{L},$ если $\mu_{L}<\frac{A+B}{2};$ (2.2.2) $\mu'=\frac{A+B}{2},$ если формулы (2.2.1) и (2.2.2) не выполняются. 2.3 Интервальная оценка параметра σ с доверительной вероятностью $1-lpha_{\sigma}:$ $\sigma_{L}=\sqrt{\sigma_{L}^{2}}$ (см. формулу (3) таблицы 7.1). Γ
5 E

Результаты

1 Нижняя доверительная граница для q, соответствующая доверительной вероятности 1 — α :

$$q_L = \max \{q_L^{\ 1}, q_L^{\ 2}, q_L^{\ 3}\}.$$

2 Верхняя доверительная граница для *p*:

$$p_M = 1 - q_L$$
.

Приложение A (справочное)

Таблица значений функции стандартного нормального закона распределения

A.1 В таблице A.1 приведены значения функции стандартного нормального закона распределения $\Phi (u)$, рассчитываемой по формуле

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} I^{-\frac{1}{2}t^2} dt,$$
 (A.1)

т. е. значения площади у под кривой, рассчитываемой по формуле:

$$y = \frac{1}{\sqrt{2\pi}} I^{-\frac{1}{2}t^2}, \tag{A.2}$$

лежащей левее точки u.

А.2 В первой колонке таблицы А.1 приведены значения аргумента u от 0,00 до 0,49, обозначенные буквой z. Во второй колонке приведены значения функции Φ (u) для этих значений аргумента. В последующих колонках таблицы даны значения функции Φ (u) для значений аргумента u от 0,5 и выше. При этом значение аргумента u находят как сумму z и значений: 0,5; 1,0; 1,5; 2,0; 2,5; 3,0.

Пример — Для u = 1,86 = (1,5 + 0,36) находим Φ (1,86) = 0,96856.

А.3 Значения функции $\Phi(u)$ для отрицательных значений аргумента u рассчитывают по формуле:

$$\Phi\left(--u\right) = 1 - \Phi\left(u\right). \tag{A.3}$$

A.4 Значение квантили u_{α} уровня α находят как значение аргумента u, соответствующего значению функции $\Phi(u)$ = α .

Пример — Значению α = 0,99 соответствует ближайшее табличное значение Φ = 0,99010. По таблице А.1 для этого значения функции находят значение аргумента и:

$$u = 2.0 + 0.33 = 2.33$$

Т а б л и ц а А.1 — Значения функции стандартного нормального закона распределения

z	Φ (z)	$\Phi (0,5+z)$	Φ (1,0 + z)	$\Phi (1,5+z)$	Φ (2,0 + z)	Φ (2,5 + z)	Φ (3,0 + z)
0,00	0,50000	0,69146	0,84134	0,93319	0,97725	0,99379	0,99865
0,01	0,50399	0,69497	0,84375	0,93448	0,97778	0,99396	0,99869
0,02	0,50798	0,69847	0,84614	0,93574	0,97831	0,99413	0,99874
0,03	0,51197	0,70194	0,84850	0,93699	0,97882	0,99430	0,99878
0,04	0,5 1595	0,70540	0,85083	0,93822	0,97932	0,99446	0,99882
0,05	0,51994	0,70884	0,85314	0,93943	0,97982	0,99461	0,99886
0,06	0,5 2392	0,71226	0,85543	0,94062	0,98030	0,99477	0,99889
0,07	0,5 2790	0,71566	0,85769	0,94179	0,98077	0,99492	0,99893
0,08	0,5 3188	0,71904	0,85993	0,94295	0,98124	0,99506	0,99896
0,09	0,5 3586	0,72240	0,86214	0,94408	0,98169	0,99520	0,99900
0,10	0,53983	0.72575	0,86433	0,94520	0,98214	0.99534	0.99903
0,11	0,54380	0,72907	0,86650	0,94630	0,98257	0,99547	0,99906
0,12	0,54776	0,73237	0,86864	0,94738	0,98300	0,99560	0,99910
0,13	0,55172	0,73565	0,87076	0,94845	0,98341	0,99573	0,99913
0,14	0,55567	0,73 891	0,87286	0,94950	0,98382	0,99585	0,99916
0,15	0,55962	0,74215	0,87493	0,95053	0,98422	0,99598	0,99918
0,16	0,56356	0,74537	0,87698	0,95154	0,98461	0,99609	0,99921
0,17	0,56750	0,74 857	0,87900	0,95254	0,98500	0,99621	0,99924
0,18	0,57142	0,75 175	0,88100	0,95352	0,98537	0,99632	0,99926
0,19	0,57535	0,75490	0,88298	0,95449	0,98574	0,99643	0,99929

Окончание таблицы А.1

z	Φ (z)	$\Phi (0,5+z)$	$\Phi (1,0+z)$	$\Phi\left(1,5+z\right)$	$\Phi\left(2,0+z\right)$	$\Phi\left(2,5+z\right)$	Φ (3,0 + z)
0,20	0,57926	0,75804	0,88493	0,95543	0,98610	0,99653	0,99931
0,21	0,58317	0,76115	0,88686	0,95637	0,98645	0,99664	0,99934
0,22	0,58706	0,76424	0,88877	0,95728	0,98679	0,99674	0,99936
0,23	0,59095	0,76731	0,89065	0,95818	0,98713	0,99683	0,99938
0,24	0,59483	0,77035	0,89251	0,95907	0,98745	0,99693	0,99940
0,25	0,59871	0,77337	0,89435	0,95994	0,98778	0,99702	0,99942
0,26	0,60257	0,77637	0,89617	0,96080	0,98809	0,99711	0,99944
0,27	0,60642	0,77935	0,89796	0,96164	0,98840	0,99720	0,99946
0,28	0,61026	0,78230	0,89973	0,96246	0,98870	0,99728	0,99948
0,29	0,61409	0,78524	0,90147	0,96327	0,98899	0,99736	0,99950
0,30	0,61791	0,78814	0,90320	0,96407	0,98928	0,99744	0,99952
0,31	0,62172	0,79103	0,90490	0,96485	0,98956	0,99752	0,99953
0,32	0,62552	0,79389	0,90658	0,96562	0,98983	0,99760	0,99955
0,33	0,62930	0,79673	0,90824	0,96638	0,99010	0,99767	0,99957
0,34	0,63307	0,79955	0,90988	0,96712	0,99036	0,99774	0,99958
0,35	0,63683	0,80234	0,91149	0,96784	0,99061	0,99781	0,99960
0,36	0,64058	0,80511	0,91308	0,96856	0,99086	0,99788	0,99961
0,37	0,64431	0,80785	0,91466	0,96926	0,99111	0,99795	0,99962
0,38	0,64803	0,81057	0,91621	0,96995	0,99134	0,99801	0,99964
0,39	0,65173	0,81327	0,91774	0,97062	0,99158	0,99807	0,99965
0,40	0,65542	0,81594	0,91924	0,97128	0,99180	0,99813	0,99966
0,41	0,65910	0,81859	0,92073	0,97193	0,99202	0,99819	0,99968
0,42	0,66276	0,82121	0,92220	0,97257	0,99224	0,99825	0,99969
0,43	0,66640	0,82381	0,92364	0,97320	0,99245	0,99831	0,99970
0,44	0,67003	0,82639	0,92507	0,97381	0,99266	0,99836	0,99971
0,45	0,67364	0,82894	0,92647	0,97441	0,99286	0,99841	0,99972
0,46	0,67724	0,83147	0,92785	0,97500	0,99305	0,99846	0,99973
0,47	0,68082	0,83398	0,92922	0,97558	0,99324	0,99851	0,99974
0,48	0,68439	0,83646	0,93056	0,97615	0,99343	0,99856	0,99975
0,49	0,68793	0,83891	0,93189	0,97670	0,99361	0,99861	0,99976
	1					1	1

П р и м е ч а н и е — z — значение аргумента u от 0,00 до 0,49. Значение аргумента u от 0,50 и выше находят как сумму z и значений 0,5; 1,0; 1,5 и т. д. (см. обозначения граф таблицы).

Приложение Б (справочное)

Таблица значений квантилей распределения Стьюдента

Б.1 В таблице Б.1 приведены значения квантилей распределения Стьюдента t_{α} (v) уровня α с v степенями свободы.

Пример — Для v=9 квантиль уровня $\alpha=0,99$ имеет значение 2,821.

- Б.2 Квантили уровня α = 0,5 при любом ν равны нулю.
- Б.3 Квантили уровня α < 0,5 находят по формуле

$$t_{\alpha} (v) = -t_{1-\alpha} (v).$$

Б.4 Для промежуточных значений α , лежащих между двумя соседними табличными значениями α_1 и α_2 :

$$\alpha_1 < \alpha < \alpha_2$$

значение квантиля $t_{\alpha}(v)$ может быть вычислено приближенно по формуле (метод линейной интерполяции):

$$t_{\alpha} = (\alpha - \alpha_1) \left(\frac{t_{\alpha 2} - t_{\alpha 1}}{\alpha_2 - \alpha_1} \right) + t_{\alpha 1}.$$

Пример — Для v=9 требуется найти квантиль уровня $\alpha=0,992$. Полагаем, что $\alpha_1=0,99,\ \alpha_2=0,995;$ находим по таблице Б.1 $t_{0,99}=2,821,\ t_{0,995}=3,250$ и вычисляем для степеней свободы v=9.

$$t_{0,992} = (0,992 - 0,99) \left(\frac{3,250 - 2,821}{0,995 - 0,99} \right) + 2,821 = 2,9926.$$

Т а б л и ц а Б.1 — Значения квантилей распределения Стьюдента $t_{\alpha}(v)$

ν		Зна	ачения ква	антилей р	распреде	пения Ст	ьюдента і	t _α (ν) c ν c	степенямі	и свободь	ы для уро	вня α	
	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9995
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,657	636,619
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	31,598
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	12,924
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	8,610
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	6,869
6	0,131	0,265	0,404	0,543	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,959
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,173
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,128	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850

Окончание таблицы Б.1

v	Значения квантилей распределения Стьюдента $t_{lpha}({ m v})$ с ${ m v}$ степенями свободы для уровня ${ m \alpha}$													
·	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9995	
21	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819	
22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2,508	2,819	3,792	
23	0,127	0,256	0,390	0,532	0,685	0,858	1,060	1,319	1,714	2,069	2,500	2,807	3,767	
24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	2,064	2,492	2,797	3,745	
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,485	2,787	3,725	
26	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,707	
27	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703	2,052	2473	2,771	3,690	
28	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	2,048	2,467	2,763	3,674	
29	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659	
30	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646	
40	0,126	0,255	0,388	0,529	0,681	0,851	0,050	1,303	1,684	2,021	2,423	2,704	3,551	
60	0,126	0,254	0,387	0,527	0,679	0,848	0,046	1,296	1,671	2,000	2,390	2,660	3,460	
120	0,126	0,254	0,386	0,526	0,677	0,845	0,041	1,289	1,658	1,980	2,358	2,617	3,373	
∞	0,126	0,253	0,385	0,524	0,674	0,842	0,036	1,282	1,645	1,960	2,326	2,576	3,291	

Приложение В (справочное)

Таблица значений квантилей $\chi^2_{\ \alpha}$ распределения

В.1 В таблице В.1 приведены значения квантилей χ^2_{α} (v), т. е. квантилей χ^2 распределения уровня α с ν степенями свободы.

Пример — Для v=9 и $\alpha=0.98$ квантиль $\chi^2_{0.98}=19.679$.

В.2 Для промежуточных значений α , лежащих между двумя соседними табличными значениями α_1 и α_2 :

$$\alpha_1 < \alpha < \alpha_2$$

значение квантиля χ^2_{α} может быть вычислено приближенно по формуле (метод линейной интерполяции):

$$\chi_{\alpha}^{2} = (\alpha - \alpha_{1}) \left(\frac{\chi_{\alpha 2}^{2} - \chi_{\alpha 1}^{2}}{\alpha_{2} - \alpha_{1}} \right) + \chi_{\alpha 1}^{2}.$$

Пример — Для v=14 требуется найти квантиль уровня $\alpha=0,988$. Полагаем $\alpha_1=0,98,\ \alpha_2=0,99;$ находим по таблице В.1 $\chi_{0,98}^2=26,873;$ $\chi_{0,99}^2=29,141$ и вычисляем для степеней свободы v=14.

$$\chi^2_{0,988} = (0,988 - 0,98) \left(\frac{29,141 - 26,873}{0,99 - 0,98} \right) + 26,873 = 28,6874.$$

T а б л и ц а $\,$ B.1 — Значения квантилей χ $_{\alpha}^{2}$ распределения

ν	Значения квантилей χ^{2}_{α} распределения с ν степенями свободы для уровня α												
	0,01	0,02	0,05	0,1	0,2	0,3	0,5	0,7	0,8	0,9	0,95	0,98	0,99
1	0,0157	0,0628	0,0393	0,0158	0,0642	0,148	0,455	1,074	1,642	2,706	3,841	5,412	6,635
2	0,0201	0,0404	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	7,824	9,210
3	0,115	0,185	0,352	0,584	1,005	1,424	2,366	3,665	4,642	6,251	7,815	9,837	11,345
4	0,297	0,429	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	11,668	13,277
5	0,554	0,752	1,145	1,160	2,343	3,000	4,351	6,064	7,289	9,233	11,070	13,388	15,086
6	0,872	1,134	1,635	2,204	3,070	3,828	5,348	7,231	8,558	10,645	12,592	15,033	16,812
7	1,239	1,564	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	16,622	18,475
8	1,646	2,032	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	15,507	18,168	20,090
9	2,088	2,532	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	19,679	21,666
10	2,358	3,059	3,940	4,865	6,179	7,267	9,342	11,781	13,442	15,987	18,307	21,161	23,209
11	3,053	3,609	4,575	5,578	6,989	8,148	10,341	12,899	14,631	17,275	19,675	22,618	24,725
12	3,571	4,178	5,226	6,304	7,807	9,034	11,340	14,011	15,821	18,549	21,026	24,054	26,217
13	4,107	4,765	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	22,362	25,472	27,688
14	5,660	5,368	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	23,996	26,873	29,141
15	5,229	5,985	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	28,259	30,578
16	5,812	6,614	7,962	9,312	11,152	12,624	15,333	18,418	20,465	23,542	26,296	29,633	32,000
17	6,408	7,255	8,672	10,035	12,002	13,531	16,338	19,511	21,615	24,769	27,587	30,995	33,409
18	7,015	7,906	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	32,346	34,805
19	7,633	8,567	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,144	33,687	36,191
20	8,260	9,237	10,851	12,443	14,578	16,266	19,337	22,775	25,038	28,412	31,410	35,020	37,566
21	8,897	9,915	11,591	13,240	15,445	17,182	20,337	23,858	26,171	29,615	32,671	36,343	38,932
22	9,542	10,600	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	37,659	40,289
23	10,196	11,293	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	38,968	41,638
24	10,856	11,992	13,848	15,659	18,062	19,943	23,337	27,096	29,553	33,196	36,415	40,270	42,980
25	11,524	12,697	14,611	16,473	18,940	20,867	24,337	28,172	30,675	34,382	37,652	41,566	44,314
26	12,198	13,409	15,379	17,292	19,820	21,792	25,336	29,246	31,795	35,563	38,885	42,856	45,642
27	12,879	14,125	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	44,140	46,963
28	13,565	14,847	16,928	18,939	21,588	23,647	27,336	31,391	34,027	37,916	41,337	45,419	48,278
29	14,256	15,574	17,708	19,768	22,475	24,577	28,336	32,461	35,139	39,087	42,557	46,693	49,588
30	14,953	16,306	18,493	20,599	23,364	25,508	29,336	33,530	36,250	40,256	43,773	47,962	50,892

Приложение Г (справочное)

Таблицы значений квантилей распределения Фишера

- Г.1 В таблицах Г.1—Г.9 содержатся значения квантилей F_{α} (v_1 , v_2) при заданных уровнях α для различных сочетаний степеней свободы v_1 и v_2 . Каждая таблица соответствует одному уровню α , значение которого указано в заголовке таблицы, и различным значениям v_1 и v_2 .
 - Г.1.1 Для определения квантилей уровня α менее 0,5 следует использовать соотношение:

$$F_{\alpha}(v_1, v_2) = \frac{1}{F_{1-\alpha}(v_2, v_1)}$$
.

Г.1.2 Для промежуточных значений α , лежащих между двумя соседними табличными значениями α_1 и α_2 :

$$\alpha_1 < \alpha < \alpha_2$$

значение квантиля F_{lpha} может быть вычислено приближенно по формуле (метод линейной интерполяции):

$$F_{\alpha} = (\alpha - \alpha_1) \left(\frac{F_{\alpha 2} - F_{\alpha 1}}{\alpha_2 - \alpha_1} \right) + F_{\alpha 1}.$$

Г.1.3 Для промежуточных значений v_1 и v_2 , лежащих между двумя соседними табличными значениями v_1' и v_1'' или v_2' и v_2'' , т. е.

$$v_1' < v_1 < v_1''$$
 или $v_2' < v_2 < v_2''$,

значения квантилей F_{α} (v₁), F_{α} (v₂) могут быть приближенно вычислены по формулам:

$$F_{\alpha}\left(v_{1}\right)=\left(v_{1}-v_{1}'\right)\frac{F_{\alpha}\left(v_{1}''\right)-F_{\alpha}\left(v_{1}'\right)}{v_{1}''-v_{1}'}+F_{\alpha}\left(v_{1}'\right);$$

$$F_{\alpha} (v_2) = (v_2 - v_2') \frac{F_{\alpha} (v_2'') - F_{\alpha} (v_2')}{v_2'' - v_2'} + F_{\alpha} (v_2') .$$

Т а б л и ц а Г.1 — Значения квантилей *F*-распределения уровня lpha = 0,5

1 2 3 4 5 6 6 7 8 9 10 12 15 20 21 21 21 21 21 21 21			- > 0 0	0.0	10 5 01 10 10	10 01 =	8 6 - > +	~ ~ ~ ~ -	0 0 0 0
1 2 3 4 6 6 6 7 7 8 9 9 10 12 15 15 15 20 24 30 40 00 00 00 00 00 00 00 00 00 00 00 00		8	2,1981 1,4427 1,2680 1,1916	1,1490 1,1219 1,1031 1,0893 1,0788	1,0705 1,0637 1,0582 1,0535 1,0495	1,0461 1,0431 1,0405 1,0382 1,0361	1,0343 1,0326 1,0311 1,0297 1,0284	1,0273 1,0262 1,0252 1,0243 1,0234	1,0226 1,0169 1,0112 1,0056 1,0000
1 2 3 3 4 5 6 7 7 8 9 10 12 15 15 15 20 24 30 40 10.000 1.5000 1.7002 1.5259 1.2254 1.9274 2.0541 2.0253 2.1491 2.0574 2.0591 2.1191 2.252 1.1592 1.1492 1.1572 1.1592 1.1592 1.1592 1.1592 1.1592 1.1592 1.1592 1.1593 1.1492 1.1592 1.1592 1.1593 1.1492 1.1592 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1592 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1492 1.1593 1.1493 1.1		120	2,1848 1,4344 1,2608 1,1849	1,1426 1,1156 1,0969 1,0832 1,0727	1,0645 1,0578 1,0523 1,0476 1,0437	1,0403 1,0373 1,0347 1,0324 1,0304	1,0285 1,0268 1,0253 1,0240 1,0227	1,0215 1,0205 1,0195 1,0186 1,0177	1,0170 1,0113 1,0056 1,0000 0,99445
1 2 3 4 5 6 7 7 8 9 10 12 15 150 12 13 14 15 15 15 15 15 15 15		60	2,1716 1,4261 1,2536 1,1782	1,1361 1,1093 1,0908 1,0771 1,0667	1,0585 1,0519 1,0464 1,0418 1,0379	1,0345 1,0315 1,0289 1,0267 1,0246	1,0228 1,0211 1,0196 1,0183 1,0170	1,0159 1,0148 1,0138 1,0129 1,0121	1,0113 1,0056 1,0000 0,99443 0,98891
1 2 3 4 5 6 7 7 8 9 10 12 15 15 15 20 24 10000 15000 17020 17321 18371 13422 13774 20041 20250 20419 20751 13231 13422 13774 13234 13422 13774 13234 13422 13774 13234 13422 13774 13234 13422 13774 13234 13422 13774 13234 13422 13424		40	2,1584 1,4178 1,2464 1,1716	1,1297 1,1031 1,0846 1,0711 1,0608	1,0526 1,0460 1,0405 1,0321	1,0287 1,0258 1,0232 1,0209 1,0189	1,0171 1,0154 1,0139 1,0126 1,0113	1,0102 1,0091 1,0082 1,0073 1,0064	1,0056 1,0000 0,99411 0,98887 0,98339
1 1 2 3 3 4 5 5 6 7 7 8 7 1942 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 2 1947 1 1948 2 1947 1 1948 2 1947 1 1948 2 1947 1 1948 2 1948 2 1948 1 1948 2 1948		30	2,1452 1,4096 1,2393 1,1649	1,1234 1,0969 1,0785 1,0651 1,0548	1,0467 1,0401 1,0347 1,0301 1,0263	1,0229 1,0200 1,0174 1,0152 1,0132	1,0114 1,0097 1,0082 1,0069 1,0057	1,0045 1,0035 1,0025 1,0016 1,0008	1,0000 0,99440 0,98383 0,98333
1 2 3 4 5 6 7 7 8 8 9 10 10 12 12 10000 1.1392 1.8227 1.9327 1.9322 1.9774 2.0041 2.0250 2.0419 2.050 1.360 0.1394 1.2071 1.2519 1.2277 1.2519 1.2344 1.3450 1.341 1.1823 1.191 0.58826 0.8283 0.82843 0.90243 1.0000 1.0367 1.0368 1.0367 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.036	боды v ₁	24	2,1321 1,4014 1,2322 1,1583	1,1170 1,0907 1,0724 1,0591 1,0489	1,0408 1,0343 1,0289 1,0243 1,0205	1,0172 1,0143 1,0117 1,0095 1,0075	1,0057 1,0040 1,0026 1,0012 1,0000	0,99887 0,99783 0,99598 0,99598 0,99515	0,99438 0,98880 0,98328 0,97780 0,97236
1 2 3 4 5 6 7 7 8 8 9 10 10 12 12 10000 1.1392 1.8227 1.9327 1.9322 1.9774 2.0041 2.0250 2.0419 2.050 1.360 0.1394 1.2071 1.2519 1.2277 1.2519 1.2344 1.3450 1.341 1.1823 1.191 0.58826 0.8283 0.82843 0.90243 1.0000 1.0367 1.0368 1.0367 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.036	еней сво	20	2,1190 1,3933 1,2252 1,1517	1,1106 1,0845 1,0664 1,0531 1,0429	1,0349 1,0284 1,0231 1,0186 1,0147	1,0114 1,0086 1,0060 1,0038 1,0018	1,0000 0,99838 0,99692 0,99558 0,99436	0,99324 0,99220 0,99125 0,99036 0,98954	0,98877 0,98323 0,97773 0,97228 0,96687
1 2 3 4 5 6 7 7 8 8 9 10 10 12 12 10000 1.1392 1.8227 1.9327 1.9322 1.9774 2.0041 2.0250 2.0419 2.050 1.360 0.1394 1.2071 1.2519 1.2277 1.2519 1.2344 1.3450 1.341 1.1823 1.191 0.58826 0.8283 0.82843 0.90243 1.0000 1.0367 1.0368 1.0367 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.0367 1.0368 1.036	для степ	15	2,0931 1,3771 1,2111 1,1386	1,0980 1,0722 1,0543 1,0412 1,0311	1,0232 1,0168 1,0115 1,0071 1,0033	1,0000 0,99716 0,99466 0,99245 0,99047	0,98870 0,98710 0,98565 0,98433 0,98312	0,98201 0,98099 0,98004 0,97917 0,97835	0,97759 0,97211 0,96667 0,96128 0,95593
1 2 3 4 5 1,0000 1,5000 1,7092 1,8227 1,8937 0,666667 1,0000 1,1349 1,2071 1,2519 0,58506 0,88110 1,0000 1,0367 0,58506 0,88110 1,0000 1,0367 0,54866 0,8810 0,96456 1,0000 0,54860 0,8810 0,96456 1,0000 0,54860 0,7987 0,90745 0,96456 1,0000 0,54860 0,7987 0,90746 0,96456 1,0000 0,54890 0,77976 0,88578 0,94191 0,97654 0,49892 0,74439 0,84508 0,93193 0,48644 0,91644 0,48973 0,744349 0,84508 0,88848 0,93193 0,44844 0,73474 0,83340 0,94178 0,48944 0,73474 0,82842 0,88449 0,91747 0,47385 0,82844 0,91771 0,47728 0,72219 0,822842 0,81757 <td< td=""><td>- II</td><td>12</td><td>2,0674 1,3610 1,1972 1,1255</td><td>1,0855 1,0600 1,0423 1,0293 1,0194</td><td>1,0116 1,0052 1,0000 0,99560 0,99186</td><td>0,98863 0,98582 0,98334 0,98116 0,97920</td><td>0,97746 0,97587 0,97444 0,97313 0,97194</td><td>0,97084 0,96983 0,96889 0,96802 0,96722</td><td>0,96647 0,96104 0,9566 0,95032 0,94503</td></td<>	- II	12	2,0674 1,3610 1,1972 1,1255	1,0855 1,0600 1,0423 1,0293 1,0194	1,0116 1,0052 1,0000 0,99560 0,99186	0,98863 0,98582 0,98334 0,98116 0,97920	0,97746 0,97587 0,97444 0,97313 0,97194	0,97084 0,96983 0,96889 0,96802 0,96722	0,96647 0,96104 0,9566 0,95032 0,94503
1 2 3 4 5 1,0000 1,5000 1,7092 1,8227 1,8937 0,666667 1,0000 1,1349 1,2071 1,2519 0,58506 0,88110 1,0000 1,0367 0,58506 0,88110 1,0000 1,0367 0,54866 0,8810 0,96456 1,0000 0,54860 0,8810 0,96456 1,0000 0,54860 0,7987 0,90745 0,96456 1,0000 0,54860 0,7987 0,90746 0,96456 1,0000 0,54890 0,77976 0,88578 0,94191 0,97654 0,49892 0,74439 0,84508 0,93193 0,48644 0,91644 0,48973 0,744349 0,84508 0,88848 0,93193 0,44844 0,73474 0,83340 0,94178 0,48944 0,73474 0,82842 0,88449 0,91747 0,47385 0,82844 0,91771 0,47728 0,72219 0,822842 0,81757 <td< td=""><td>ния уровн</td><td>10</td><td>2,0419 1,3450 1,1833 1,1126</td><td>1,0730 1,0478 1,0304 1,0175 1,0077</td><td>1,0000 0,99373 0,98856 0,98421 0,98051</td><td>0,97732 0,97454 0,97203 0,96993 0,96800</td><td>0,96626 0,96470 0,96328 0,96199 0,96081</td><td>0,95972 0,95872 0,95779 0,95694 0,95614</td><td>0,95540 0,95003 0,94471 0,93943 0,93418</td></td<>	ния уровн	10	2,0419 1,3450 1,1833 1,1126	1,0730 1,0478 1,0304 1,0175 1,0077	1,0000 0,99373 0,98856 0,98421 0,98051	0,97732 0,97454 0,97203 0,96993 0,96800	0,96626 0,96470 0,96328 0,96199 0,96081	0,95972 0,95872 0,95779 0,95694 0,95614	0,95540 0,95003 0,94471 0,93943 0,93418
1 2 3 4 5 1,0000 1,5000 1,7092 1,8227 1,8937 0,666667 1,0000 1,1349 1,2071 1,2519 0,58506 0,88110 1,0000 1,0367 0,58506 0,88110 1,0000 1,0367 0,54866 0,8810 0,96456 1,0000 0,54860 0,8810 0,96456 1,0000 0,54860 0,7987 0,90745 0,96456 1,0000 0,54860 0,7987 0,90746 0,96456 1,0000 0,54890 0,77976 0,88578 0,94191 0,97654 0,49892 0,74439 0,84508 0,93193 0,48644 0,91644 0,48973 0,744349 0,84508 0,88848 0,93193 0,44844 0,73474 0,83340 0,94178 0,48944 0,73474 0,82842 0,88449 0,91747 0,47385 0,82844 0,91771 0,47728 0,72219 0,822842 0,81757 <td< td=""><td>пределен</td><td>6</td><td>2,0250 1,3344 1,1741 1,1040</td><td>1,0648 1,0398 1,0224 1,0097 1,0000</td><td>0,99232 0,98610 0,97665 0,97665</td><td>0,96981 0,96705 0,96247 0,96247 0,96056</td><td>0,95884 0,95728 0,95588 0,95459 0,95342</td><td>0,95234 0,95135 0,95044 0,94958 0,94879</td><td>0,94805 0,94272 0,93743 0,93218 0,92698</td></td<>	пределен	6	2,0250 1,3344 1,1741 1,1040	1,0648 1,0398 1,0224 1,0097 1,0000	0,99232 0,98610 0,97665 0,97665	0,96981 0,96705 0,96247 0,96247 0,96056	0,95884 0,95728 0,95588 0,95459 0,95342	0,95234 0,95135 0,95044 0,94958 0,94879	0,94805 0,94272 0,93743 0,93218 0,92698
1 2 3 4 5 1,0000 1,5000 1,7092 1,8227 1,8937 0,666667 1,0000 1,1349 1,2071 1,2519 0,58506 0,88110 1,0000 1,0367 0,58506 0,88110 1,0000 1,0367 0,54866 0,8810 0,96456 1,0000 0,54860 0,8810 0,96456 1,0000 0,54860 0,7987 0,90745 0,96456 1,0000 0,54860 0,7987 0,90746 0,96456 1,0000 0,54890 0,77976 0,88578 0,94191 0,97654 0,49892 0,74439 0,84508 0,93193 0,48644 0,91644 0,48973 0,744349 0,84508 0,88848 0,93193 0,44844 0,73474 0,83340 0,94178 0,48944 0,73474 0,82842 0,88449 0,91747 0,47385 0,82844 0,91771 0,47728 0,72219 0,822842 0,81757 <td< td=""><td>пей <i>F</i>-рас</td><td>8</td><td>2,0041 1,3213 1,1627 1,0933</td><td>1,0545 1,0298 1,0126 1,0000 0,99037</td><td>0,98276 0,97661 0,97152 0,96724 0,96360</td><td>0,96046 0,95773 0,95532 0,95319 0,95129</td><td>0,94959 0,94805 0,94665 0,94538 0,94422</td><td>0,94315 0,94217 0,94126 0,94041 0,93963</td><td>0,93889 0,93361 0,92838 0,92318 0,91802</td></td<>	пей <i>F</i> -рас	8	2,0041 1,3213 1,1627 1,0933	1,0545 1,0298 1,0126 1,0000 0,99037	0,98276 0,97661 0,97152 0,96724 0,96360	0,96046 0,95773 0,95532 0,95319 0,95129	0,94959 0,94805 0,94665 0,94538 0,94422	0,94315 0,94217 0,94126 0,94041 0,93963	0,93889 0,93361 0,92838 0,92318 0,91802
1 2 3 4 5 1,0000 1,5000 1,7092 1,8227 1,8937 0,666667 1,0000 1,1349 1,2071 1,2519 0,58506 0,88110 1,0000 1,0367 0,58506 0,88110 1,0000 1,0367 0,54866 0,8810 0,96456 1,0000 0,54860 0,8810 0,96456 1,0000 0,54860 0,7987 0,90745 0,96456 1,0000 0,54860 0,7987 0,90746 0,96456 1,0000 0,54890 0,77976 0,88578 0,94191 0,97654 0,49892 0,74439 0,84508 0,93193 0,48644 0,91644 0,48973 0,744349 0,84508 0,88848 0,93193 0,44844 0,73474 0,83340 0,94178 0,48944 0,73474 0,82842 0,88449 0,91747 0,47385 0,82844 0,91771 0,47728 0,72219 0,822842 0,81757 <td< td=""><td>ія кванти</td><td>7</td><td>1,9774 1,3045 1,1482 1,0797</td><td>1,0414 1,0169 1,0000 0,98757 0,97805</td><td>0,97054 0,96445 0,95943 0,95520 0,95161</td><td>0,94850 0,94580 0,94342 0,94132 0,93944</td><td>0,93776 0,93624 0,93486 0,93360 0,93245</td><td>0,93140 0,93042 0,92952 0,92869 0,92791</td><td>0,92719 0,92197 0,91679 0,91164 0,90654</td></td<>	ія кванти	7	1,9774 1,3045 1,1482 1,0797	1,0414 1,0169 1,0000 0,98757 0,97805	0,97054 0,96445 0,95943 0,95520 0,95161	0,94850 0,94580 0,94342 0,94132 0,93944	0,93776 0,93624 0,93486 0,93360 0,93245	0,93140 0,93042 0,92952 0,92869 0,92791	0,92719 0,92197 0,91679 0,91164 0,90654
1,0000 1,5000 1,7092 1,8227 0,66667 1,0000 1,1349 1,2071 0,58506 0,88110 1,0000 1,0632 0,54863 0,82843 0,94054 1,0000 0,54863 0,52843 0,94054 1,0000 0,54863 0,57976 0,88578 0,94191 0,50572 0,76655 0,87095 0,92619 0,49382 0,74938 0,73477 0,83530 0,88848 0,47344 0,73872 0,83530 0,87357 0,48369 0,72406 0,82330 0,87578 0,48369 0,72406 0,82569 0,87830 0,47749 0,72219 0,82569 0,87357 0,47385 0,72219 0,82569 0,87357 0,47385 0,72219 0,82569 0,87357 0,47385 0,72219 0,82569 0,87357 0,47286 0,77446 0,82569 0,81467 0,47285 0,71453 0,81467 0,47385 0,71456 0,81365 0,86589 0,4708 0,7146 0,81255 0,86442 0,71124 0,80820 0,85983 0,46844 0,71272 0,81153 0,86536 0,46695 0,71454 0,80820 0,85983 0,46695 0,70999 0,80753 0,80820 0,85983 0,46695 0,70999 0,80753 0,80820 0,85983 0,46695 0,70999 0,80753 0,80820 0,85983 0,46695 0,70999 0,80753 0,84893 0,46695 0,70999 0,80753 0,80830 0,45574 0,69717 0,79314 0,84873 0,46695 0,7093 0,709314 0,80831 0,46574 0,69717 0,70931 0,84893 0,77931 0,46695 0,70931 0,80833 0,46695 0,70931 0,80830 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,80620 0,85983 0,46695 0,70939 0,70939 0,80639 0,80639 0,80639 0,46695 0,70939 0,70939 0,80639 0,80839 0,8	Значени	9	1,9422 1,2824 1,1289 1,0617	1,0240 1,0000 0,98334 0,97111 0,96175	0,95436 0,94837 0,94342 0,93926 0,93573	0,93627 0,93001 0,92767 0,92560 0,92375	0,92210 0,92060 0,91924 0,91800 0,91687	0,91583 0,91487 0,91399 0,91317 0,91241	0,91169 0,90654 0,90144 0,89637 0,89135
1,0000 1,5000 1,7092 0,66667 1,0000 1,1349 0,58506 0,88110 1,0000 0,54863 0,52807 0,77976 0,8878 0,51489 0,77976 0,8878 0,50572 0,70655 0,87095 0,4884 0,77976 0,88578 0,48944 0,72862 0,82842 0,4798 0,77976 0,8250 0,48944 0,72862 0,82842 0,47284 0,72862 0,82842 0,47284 0,71272 0,81061 0,4664 0,71374 0,81255 0,4708 0,71496 0,81255 0,46992 0,71195 0,8094 0,4695 0,71195 0,8094 0,4695 0,71195 0,80928 0,46697 0,71099 0,80753 0,46616 0,70931 0,80028 0,46697 0,71099 0,80753 0,46697 0,70931 0,80689 0,46697 0,70931 0,80689 0,46693 0,70122 0,79314 0,6951 0,46931 0,69315 0,79314 0,69315 0,79314 0,69315 0,78866		5	1,8937 1,2519 1,1024 1,0367	1,0000 0,97654 0,96026 0,93831 0,93916	0,93193 0,92608 0,92124 0,91718 0,91371	0,91073 0,90812 0,90584 0,90381 0,90200	0,90038 0,89891 0,89759 0,89638 0,89527	0,89425 0,89331 0,89244 0,89164 0,89089	0,89019 0,88516 0,88017 0,87521 0,87029
1,0000 1,5000 0,66667 1,0000 0,58506 0,88110 0,54863 0,82843 0,52807 0,54863 0,5489 0,77976 0,48943 0,77976 0,48944 0,73872 0,48944 0,73872 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,772406 0,4798 0,77153 0,47108 0,71653 0,4694 0,71155 0,46965 0,71059 0,46697 0,70999 0,46691 0,70931 0,46616 0,70991 0,46616 0,70991 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931 0,46616 0,70931		4	1,8227 1,2071 1,0632 1,0000	0,96456 0,94191 0,92619 0,91464 0,90580	0,89882 0,89316 0,88848 0,88454 0,88119	0,87830 0,87578 0,87357 0,87161 0,86987	0,86830 0,86688 0,86559 0,86442 0,86335	0,86236 0,86145 0,86061 0,85983 0,85911	0,85844 0,85357 0,84873 0,84392 0,83918
1,0000 0,66667 0,58506 0,54863 0,54863 0,49898 0,48944 0,47745 0,47749 0,47792 0,47792 0,47793 0,47793 0,47793 0,47793 0,47793 0,47793 0,47665 0,46665		3	1,7092 1,1349 1,0000 0,94054	0,90715 0,88578 0,87095 0,86004 0,85168	0,84508 0,83973 0,83530 0,83159 0,82842	0,82569 0,82330 0,82121 0,81936 0,81771	0,81621 0,81487 0,81365 0,81255 0,81153	0,81061 0,80975 0,80894 0,80820 0,80753	0,80689 0,80228 0,79770 0,79314 0,78866
		2	1,5000 1,0000 0,88110 0,82843	0,79877 0,77976 0,76655 0,75683 0,74938	0,74349 0,73872 0,73477 0,73145 0,72862		0,71773 0,71653 0,71545 0,71446 0,71356	0,71272 0,71195 0,71124 0,71059 0,70999	0,70941 0,70531 0,70122 0,69717 0,69315
\$\bigg \bigg \		~	1,0000 0,66667 0,58506 0,54863	0,52807 0,51489 0,50572 0,49898 0,49382	0,48973 0,48644 0,48369 0,48141 0,47944	0,47775 0,47628 0,47499 0,47385 0,47284	0,47192 0,47108 0,47033 0,46965 0,46902	0,46844 0,46793 0,46744 0,46697 0,46654	0,46616 0,46330 0,46053 0,45774 0,45494
	>	N .	- 2 m 4	0 8 7 6 5	0	15 16 18 19	22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	25 26 27 28 29	30 40 60 120

Т а б л и ц а Г.2 — Значения квантилей *F*-распределения уровня α = 0,75

	8	9,8492 3,4761 2,4742 2,0806	1,8694 1,7368 1,6452 1,5777 1,5257	1,4843 1,4504 1,4221 1,3980 1,3772	1,3591 1,3432 1,3290 1,3162 1,3048	1,2943 1,2848 1,2761 1,2681 1,2607	1,2538 1,2474 1,2414 1,2358 1,2306	1,2256 1,1883 1,1474 1,0987 1,0000
	120	9,8041 3,4677 2,4720 2,0812	1,8719 1,7407 1,6502 1,5836 1,5325	1,4919 1,4587 1,4310 1,4075 1,3874	1,3698 1,3543 1,3406 1,3284 1,3174	1,3074 1,2983 1,2900 1,2824 1,2754	1,2689 1,2628 1,2572 1,2519 1,2470	1,2424 1,2080 1,1715 1,1314 1,0838
	09	9,7591 3,4594 2,4697 2,0817	1,8742 1,7443 1,6548 1,5892 1,5389	1,4990 1,4664 1,4393 1,4164 1,3967	1,3796 1,3646 1,3514 1,3395 1,3289	1,3193 1,3105 1,3025 1,2952 1,2885	1,2823 1,2765 1,2712 1,2662 1,2615	1,2571 1,2249 1,1912 1,1555 1,1164
	40	9,7144 3,4511 2,4674 2,0821	1,8763 1,7477 1,6593 1,5945 1,5450	1,5056 1,4737 1,4471 1,4247 1,4055	1,3888 1,3742 1,3613 1,3497 1,3394	1,3301 1,3217 1,3140 1,3069 1,3004	1,2945 1,2889 1,2838 1,2790 1,2745	1,2703 1,2397 1,2081 1,1752 1,1404
	30	9,6698 3,4428 2,4650 2,0825	1,8784 1,7510 1,6635 1,5996 1,5506	1,5119 1,4805 1,4544 1,4324 1,4136	1,3973 1,3830 1,3704 1,3592 1,3492	1,3401 1,3319 1,3245 1,3176 1,3113	1,3056 1,3002 1,2953 1,2906 1,2863	1,2823 1,2529 1,2229 1,1921 1,1600
боды v ₁	24	9,6255 3,4345 2,4626 2,0827	1,8802 1,7540 1,6675 1,6043 1,5560	1,5179 1,4869 1,4613 1,4397 1,4212	1,4052 1,3913 1,3790 1,3680 1,3582	1,3494 1,3414 1,3341 1,3275 1,3214	1,3158 1,3106 1,3058 1,3013 1,2971	1,2933 1,2649 1,2361 1,2068 1,1767
= 0,75 для степеней свободы v ₁	20	9,5813 3,4263 2,4602 2,0828	1,8820 1,7569 1,6712 1,6088 1,5611	1,5235 1,4930 1,4678 1,4465 1,4284	1,4127 1,3990 1,3869 1,3762 1,3666	1,3580 1,3502 1,3431 1,3366 1,3307	1,3252 1,3202 1,3155 1,3112 1,3071	1,3033 1,2758 1,2481 1,2200 1,1914
для стег	15	9,4934 3,4098 2,4552 2,0829	1,8851 1,7621 1,6781 1,6170 1,5705	1,5338 1,5041 1,4796 1,4590 1,4414	1,4263 1,4130 1,4014 1,3911 1,3819	1,3763 1,3661 1,3593 1,3531 1,3474	1,3422 1,3374 1,3329 1,3288 1,3249	1,3213 1,2952 1,2691 1,2428 1,2163
ıα = 0,75	12	9,4064 3,3934 2,4500 2,0826	1,8877 1,7668 1,6843 1,6244 1,5788	1,5430 1,5140 1,4902 1,4701 1,4530	1,4383 1,4255 1,4142 1,4042 1,3953	1,3873 1,3801 1,3735 1,3675 1,3621	1,3570 1,3524 1,3481 1,3441 1,3404	1,3369 1,3119 1,2780 1,2621 1,2371
Значения квантилей F -распределения уровня $lpha$	10	9,3202 3,3770 2,4447 2,0820	1,8899 1,7708 1,6898 1,6310 1,5863	1,5513 1,5230 1,4996 1,4801 1,4634	1,4491 1,4366 1,4256 1,4159 1,4073	1,3995 1,3925 1,3861 1,3803 1,3750	1,3701 1,3656 1,3615 1,3576 1,3541	1,3507 1,3266 1,3026 1,2787 1,2549
ределен	6	9,2631 3,3661 2,4410 2,0814	1,8911 1,7733 1,6931 1,6350 1,5909	1,5563 1,5284 1,5054 1,4861 1,4697	1,4556 1,4433 1,4325 1,4230 1,4145	1,4069 1,4000 1,3937 1,3880 1,3828	1,3780 1,3737 1,3696 1,3658 1,3623	1,3590 1,3354 1,3119 1,2886 1,2654
ей <i>F</i> -расг	8	9,1922 3,3526 2,4364 2,0805	1,8923 1,7760 1,6969 1,6396 1,5961	1,5621 1,5346 1,5120 1,4931 1,4770	1,4631 1,4511 1,4405 1,4312 1,4228	1,4153 1,4086 1,4025 1,3969 1,3918	1,3871 1,3828 1,3788 1,3752 1,3717	1,3685 1,3455 1,3226 1,2999 1,2774
н квантил	7	9,1021 3,3352 2,4302 2,0790	1,8935 1,7789 1,7011 1,6448 1,6022	1,5688 1,5418 1,5197 1,5011 1,4854	1,4718 1,4601 1,4497 1,4406 1,4325	1,4252 1,4186 1,4126 1,4072 1,4022	1,3976 1,3935 1,3896 1,3860 1,3826	1,3795 1,3571 1,3349 1,3128 1,2910
Значения	9	8,9833 3,3121 2,4218 2,0766	1,8945 1,7821 1,7059 1,6508 1,6091	1,5765 1,5502 1,5286 1,5105 1,4952	1,4820 1,4705 1,4605 1,4516 1,4437	1,4366 1,4302 1,4244 1,4191 1,4143	1,4099 1,4058 1,4021 1,3986 1,3953	1,3923 1,3706 1,3491 1,3278 1,3068
	5	8,8198 3,2799 2,4095 2,0723	1,8947 1,7852 1,7111 1,6575 1,6170	1,5863 1,5598 1,5389 1,5214 1,5066	1,4938 1,4827 1,4730 1,4644 1,4568	1,4500 1,4438 1,4382 1,4331 1,4285	1,4242 1,4203 1,4166 1,4133 1,4102	1,4073 1,3863 1,3657 1,3251
	4	8,5810 3,2320 2,3901 2,0642	1,8927 1,7872 1,7157 1,6642 1,6253	1,5949 1,5794 1,5503 1,5336 1,5194	1,5071 1,4965 1,4873 1,4790 1,4717	1,4652 1,4593 1,4540 1,4491 1,4447	1,4406 1,4368 1,4334 1,4302 1,4272	1,4244 1,4045 1,3848 1,3654 1,3463
	3	8,1999 3,1534 2,3555 2,0467	1,8843 1,7844 1,7169 1,6683 1,6315	1,6028 1,5798 1,5609 1,5451 1,5317	1,5202 1,5103 1,5015 1,4938 1,4870	1,4808 1,4573 1,4703 1,4657 1,4615	1,4577 1,4542 1,4510 1,4480 1,4452	1,4426 1,4239 1,4055 1,3873 1,3694
	2	7,5000 3,0000 2,2798 2,0000	1,8528 1,7622 1,7010 1,6569 1,6236	1,5975 1,5767 1,5595 1,5452 1,5331	1,5227 1,5137 1,5057 1,4988 1,4925	1,4870 1,4820 1,4774 1,4733 1,4695	1,4661 1,4629 1,4600 1,4573 1,4547	1,4524 1,4355 1,4024 1,3863
	-	5,8285 2,5714 2,0239 1,8074	1,6925 1,6214 1,5732 1,5384 1,5121	1,4915 1,4749 1,4613 1,4500 1,4403	1,4321 1,4249 1,4186 1,4130 1,4081	1,4037 1,3997 1,3961 1,3928 1,3898	1,3870 1,3845 1,3822 1,3800 1,3780	1,3761 1,3626 1,3493 1,3362 1,3233
ζ,	7	T 2 8 4	0 8 4 6 5	11 12 13 41	15 16 17 18 19	22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	25 27 28 29	30 40 60 120

Т а б л и ц а Г.3 — Значения квантилей *F*-распределения уровня lpha=0,999

	8	636600 999,5 123,5 44,05	23,79 15,75 11,70 9,33 7,81	6,76 6,00 5,42 4,97 4,60	4,31 4,06 3,85 3,67 3,51	3,38 3,26 3,15 3,05 2,97	2,89 2,82 2,75 2,69 2,64	2,59 2,23 1,89 1,54 1,00
	120	634000 999,5 124,0 44,40	24,06 15,99 11,91 9,53 8,00	6,94 6,17 5,59 5,14 4,77	4,47 4,23 4,02 3,84 3,68	3,54 3,42 3,32 3,22 3,14	3,06 2,99 2,92 2,86 2,81	2,76 2,41 2,08 1,76 1,45
	09	631300 999,5 124,5 44,75	24,33 16,21 12,12 9,73 8,19	7,12 6,35 5,76 5,30 4,94	4,64 4,39 4,18 4,00 3,84	3,70 3,58 3,48 3,38 3,29	3,22 3,15 3,08 3,02 2,97	2,92 2,57 2,25 1,95 1,66
	40	628700 999,5 125,0 45,09	26,40 16,44 12,33 9,92 8,37	7,30 6,52 5,93 5,47 5,10	4,80 4,54 4,33 4,15 3,99	3,86 3,74 3,63 3,53 3,45	3,37 3,30 3,23 3,18 3,12	3,07 2,73 2,41 2,11 1,84
	30	626100 999,5 125,4 45,43	24,87 16,67 12,53 10,11 8,55	7,47 6,68 6,09 5,63	4,95 4,70 4,48 4,30 4,14	4,00 3,88 3,78 3,68 3,59	3,52 3,44 3,38 3,32 3,27	3,22 2,87 2,55 2,26 1,99
ободы v ₁	24	623500 999,5 125,9 45,77	25,14 16,89 12,73 10,30 8,72	7,64 6,85 6,25 5,78 5,41	5,10 4,85 4,63 4,45 4,29	4,15 4,03 3,92 3,82 3,74	3,66 3,59 3,52 3,46 3,41	3,36 3,01 2,69 2,40 2,13
= 0,999 для степеней свободы v ₁	20	620900 999,4 126,4 46,10	25,39 17,12 12,93 10,48 8,90	7,80 7,01 6,40 5,93 5,56	5,25 4,99 4,78 4,59 4,43	4,29 4,17 4,06 4,23 3,87	3,79 3,72 3,66 3,60 3,54	3,49 3,15 2,83 2,53 2,27
9 для сте	15	615800 999,4 127,4 46,76	25,91 17,56 13,32 10,84 9,24	8,13 7,32 6,71 6,23 5,85	5,54 5,27 5,05 4,87 4,70	4,56 4,44 4,33 4,23 4,14	4,06 3,99 3,92 3,86 3,80	3,75 3,40 3,08 2,78 2,51
	12	610700 999,4 128,3 47,41	26,42 17,99 13,71 11,19 9,57	8,45 7,63 7,00 6,52 6,13	5,81 5,55 5,32 5,13 4,97	4,82 4,70 4,58 4,48 4,39	4,31 4,24 4,17 4,11 4,05	4,00 3,64 3,31 3,02 2,74
я уровня	10	605600 999,4 129,2 48,05	26,92 18,41 14,08 11,54 9,89	8,75 7,92 7,29 6,80 6,40	6,08 5,81 5,58 5,39 5,22	5,08 4,95 4,83 4,73 4,64	4,56 4,48 4,41 4,35 4,29	4,24 3,87 3,54 3,24 2,96
Значения квантилей F -распределения уровня $lpha$	6	602300 999,4 129,9 48,47	27,24 18,69 14,33 11,77	8,96 8,12 7,48 6,98 6,58	6,26 5,98 5,75 5,56 5,39	5,24 5,11 4,99 4,89 4,80	4,71 4,64 4,57 4,50 4,45	4,39 4,02 3,69 3,38 3,10
ей <i>F</i> -расп	8	598100 999,4 130,6 49,00	27,64 19,03 14,63 12,04 10,37	9,20 8,35 7,71 7,21 6,80	6,47 6,19 5,96 5,76 5,76	5,44 5,31 5,19 5,09 4,99	4,91 4,83 4,76 4,69 4,64	4,58 4,21 3,87 3,55 3,27
квантиле	7	592900 999,4 131,6 49,66	28,16 19,46 15,02 12,40 10,70	9,52 8,66 8,00 7,49 7,08	6,74 6,46 6,22 6,02 5,85	5,69 5,56 5,44 5,33 5,23	5,15 5,07 5,00 4,93 4,87	4,82 4,44 4,09 3,77 3,47
Значения	9	585900 999,3 132,8 50,53	28,84 20,03 15,52 12,86 11,13	9,92 9,05 8,38 7,86 7,43	7,09 6,81 6,56 6,35 6,18	6,02 5,88 5,76 5,65 5,55	5,46 5,38 5,31 5,24 5,18	5,12 4,73 4,37 4,04 3,74
	5	576400 999,3 134,6 51,71	29,75 20,81 16,21 13,49 11,71	10,48 9,58 8,89 8,35 7,92	7,57 7,27 7,02 6,81 6,62	6,46 6,32 6,19 6,08 5,98	5,88 5,80 5,73 5,66 5,59	5,53 5,13 4,76 4,42 4,10
	4	562500 999,2 137,1 53,44	31,09 21,92 17,19 14,39 12,56	11,28 10,35 9,63 9,07 8,62	8,25 7,94 7,68 7,46 7,26	7,10 6,95 6,81 6,69 6,59	6,49 6,41 6,33 6,25 6,19	6,12 5,70 5,31 4,95 4,62
	е	540400 999,2 141,1 56,18	33,20 23,70 18,77 15,83 13,90	12,55 11,56 10,80 10,21 9,73	9,34 9,00 8,73 8,49 8,28	8,10 7,94 7,80 7,67 7,55	7,45 7,36 7,27 7,19 7,12	7,05 6,60 6,17 5,79 5,42
	2	500000 999,0 148,5 61,25	37,12 27,00 21,69 18,49 16,39	14,91 13,81 12,97 12,31 11,78	11,34 10,97 10,66 10,39 10,16	9,95 9,77 9,61 9,47 9,34	9,22 9,12 9,02 8,93 8,85	8,77 8,25 7,76 7,32 6,91
	~	405300 998,5 167,0 74,14	47,18 35,51 29,25 25,42 22,86	21,04 19,69 18,64 17,81 17,14	16,59 16,12 15,72 15,38 15,08	14,82 14,59 14,38 14,19 14,03	13,88 13,74 13,61 13,50 13,39	13,29 12,61 11,97 11,38 10,83
;	27	- U & 4	20 / 80	0 T C E T	51 77 78 19	8 2 2 8 4	25 26 27 28 29	30 40 60 120

Т а б л и ц а Г.4 — Значения квантилей *F*-распределения уровня α = 0,9995

ν ₂								Кван	тили <i>F</i> -ра	спределе	ния уровн:	a α = 0,9995
	1	2	3	4	5	6	7	8	9	10	11	12
1	1620000	2000000	2160000	2250000	2310000	2340000	2370000	2390000	2410000	2420000	2430000	2440000
2	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
3	266	237	225	218	214	211	209	208	207	206	204	204
4	106	87,4	80,1	76,1	73,6	71,9	70,6	69,7	68,9	68,3	67,8	67,4
5	63,6	49,8	44,4	41,5	39,7	38,5	37,6	36,9	36,4	35,9	35,6	35,2
6	46,1	34,8	30,4	28,1	26,6	25,6	24,9	24,3	23,9	23,5	23,2	23,0
7	37,0	27,2	23,5	21,4	20,2	19,3	18,7	18,2	17,8	17,5	17,2	17,0
8	31,6	22,8	19,4	17,6	16,4	15,7	15,1	14,6	14,3	14,0	13,8	13,6
9 10 11 12	28,0 25,5 23,6 22,2	19,9 17,9 16,4 15,3	16,8 15,0 13,6 12,7	15,1 13,4 12,2 11,2	14,1 12,4 11,2 10,4	13,3 11,8 10,6 9,74	12,8 11,3 10,1 9,28	12,4 10,9 9,76 8,94	12,1 10,6 9,48 8,66	11,8 10,3 9,24 8,43	11,6 10,1 9,04 8,24	9,93 8,88 8,08
15	19,5	13,2	10,8	9,48	8,66	8,10	7,68	7,36	7,11	6,91	6,75	6,60
20	17,2	11,4	9,20	8,02	7,28	6,76	6,38	6,08	5,85	5,66	5,51	5,38
24	16,2	10,6	8,52	7,39	6,68	6,18	5,82	5,54	5,31	5,13	4,98	4,85
30	15,2	9,90	7,90	6,82	6,14	5,66	5,31	5,04	4,82	4,65	4,51	4,38
40	14,4	9,25	7,33	6,30	5,64	5,19	4,85	4,59	4,38	4,21	4,07	3,95
60	13,6	8,65	6,81	5,82	5,20	4,76	4,44	4,18	3,98	3,82	3,69	3,57
120	12,8	8,10	6,34	5,39	4,79	4,37	4,07	3,82	3,63	3,47	3,34	3,22
∞	12,1	7,60	5,91	5,00	4,42	4,02	3,72	3,48	3,30	3,14	3,02	2,90

Т а б л и ц а Г.5 — Значения квантилей *F*-распределения уровня α = 0,995

v ₂		Квантили \emph{F} -распределения уровня α = 0,995												
- 2	1	2	3	4	5	6	7	8	9					
1	16211	20000	21615	22500	23056	23437	23715	23925	24091					
2	198,50	199,00	199,17	199,25	199,30	199,33	199,36	199,37	199,39					
3	55,552	49,799	47,467	46,195	45,392	44,838	44,434	44,126	43,882					
4	31,333	26,284	24,259	23,155	22,456	21,975	21,622	21,352	21,139					
5	22,785	18,314	16,530	15,556	14,940	14,513	14,200	13,961	13,772					
6	18,635	14,544	12,917	12,028	11,464	11,073	10,786	10,566	10,391					
7	16,236	12,404	10,882	10,050	9,5221	9,1554	8,8854	8,6781	8,5138					
8	14,688	11,042	9,5965	8,8051	8,3018	7,9520	7,6942	7,4960	7,3386					
9	13,614	10,107	8,7171	7,9559	7,4711	7,1338	6,8849	6,6933	6,5411					
10	12,826	9,4270	8,0807	7,3428	6,8723	6,5446	6,3025	6,1159	5,9676					
11	12,226	8,9122	7,6004	6,8809	6,4217	6,1015	5,8648	5,6821	5,5368					
12	11,754	8,5096	7,2258	6,5211	6,0711	5,7570	5,5245	5,3451	5,2021					
13	11,374	8,1865	6,9257	6,2335	5,7910	5,4819	5,2529	5,0761	4,9351					
14	11,060	7,9216	6,6803	5,9984	5,5623	5,2574	5,0313	4,8566	4,7173					
15	10,798	7,7008	6,4760	5,8029	5,3721	5,0708	4,8473	4,6743	4,5364					
16	10,575	7,5138	6,3034	5,6378	5,2117	4,9134	4,6920	4,5207	4,3838					
17	10,384	7,3536	6,1556	5,4967	5,0746	4,7789	4,5594	4,3893	4,2535					
18	10,218	7,2148	6,0277	5,3746	4,9560	4,6627	4,4448	4,2759	4,1410					
19	10,073	7,0935	5,9161	5,2181	4,8526	4,5614	4,3448	4,1770	4,0428					
20	9,9439	6,9865	5,8177	5,1743	4,7616	4,4721	4,2569	4,0900	3,9564					
21	9,8295	6,8914	5,7304	5,0911	4,6808	4,3931	4,1789	4,0128	3,8799					
22	9,7271	6,8064	5,6524	5,0168	4,6088	4,3225	4,1094	3,9440	3,8116					
23	9,6348	6,7300	5,5823	4,9500	4,5441	4,2591	4,0469	3,8822	3,7502					
24	9,5513	6,6609	5,5190	4,8898	4,4857	4,2019	3,9905	3,8264	3,6949					

дл	я степенеі	й свободы	v ₁									
	15	20	24	30	40	50	60	100	120	200	500	∞
	2460000	2480000	2490000	2500000	2510000	2520000	2520000	2530000	2530000	2530000	2540000	2540000
	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
	203	201	200	199	199	198	198	197	197	197	196	196
	66,5	65,5	65,1	64,6	64,1	63,8	63,6	63,2	63,1	62,9	62,7	62,6
	34,6	33,9	33,5	33,1	32,7	32,5	32,3	32,1	32,0	31,8	31,7	31,6
	22,4	21,9	21,7	21,4	21,1	20,9	20,7	20,5	20,4	20,3	20,2	20,1
	16,5	16,0	15,7	15,5	15,2	15,1	15,0	14,7	14,7	14,6	14,5	14,4
	13,1	12,7	12,5	12,2	12,0	11,8	11,8	11,6	11,5	11,4	11,4	11,3
	11,0	10,6	10,4	10,2	9,94	9,80	9,1	9,53	9,49	9,40	9,32	9,26
	9,56	9,16	8,96	8,75	8,54	8,42	8,33	8,16	8,12	8,04	7,96	7,90
	8,52	8,14	7,94	7,75	7,55	7,43	7,35	7,18	7,14	7,06	6,98	6,93
	7,74	7,37	7,18	7,00	6,80	6,68	6,61	6,45	6,41	6,33	6,25	6,20
	6,27	5,93	5,75	5,58	5,40	5,29	5,21	5,06	5,02	4,94	4,87	4,83
	5,07	4,75	4,58	4,42	4,24	4,15	4,07	3,93	3,90	3,82	3,75	3,70
	4,55	4,25	4,09	3,93	3,76	3,66	3,59	3,44	3,41	3,33	3,27	3,22
	4,10	3,80	3,65	3,48	3,32	3,22	3,15	3,00	2,97	2,89	2,82	2,78
	3,68	3,39	3,24	3,08	2,92	2,82	2,74	2,60	2,57	2,49	2,41	2,37
	3,30	3,02	2,87	2,71	2,55	2,45	2,38	2,23	2,19	2,11	2,03	1,98
	3,96	2,67	2,53	2,38	2,21	2,11	2,01	1,88	1,84	1,75	1,67	1,60
	2,65	2,37	2,22	2,07	1,91	1,79	1,71	1,53	1,48	1,36	1,22	1,00

я степеней (свободы v ₁								
10	12	15	20	24	30	40	60	120	~
24224	24426	24630	24836	24940	25044	25148	25253	25339	254
199,40	199,42	199,43	199,45	199,46	199,47	199,47	199,48	199,49	199
43,686	43,387	43,085	42,778	42,622	42,466	42,308	42,149	41,989	41,8
20,967	20,705	20,438	20,167	20,030	19,892	19,752	19,611	19,468	19,3
13,618	13,384	13,146	12,903	12,780	12,656	12,530	12,402	12,274	12,1
10,250	10,034	9,8140	9,5888	9,4741	9,3583	9,2408	9,1219	9,0015	8,87
8,3803	8,1764	7,9678	7,7540	7,6450	7,5345	7,4225	7,3088	7,1933	7,07
7,2107	7,0149	6,8143	6,6082	6,5029	6,3961	6,2875	6,1772	6,0649	5,95
6,4171	6,2274	6,0325	5,8318	5,7292	5,6248	5,5186	5,4104	5,3001	5,18
5,8467	5,6613	5,4707	5,2740	5,1732	5,0705	4,9659	4,8592	4,7501	4,63
5,4182	5,2363	5,0489	4,8552	4,7557	4,6543	4,5508	4,4450	4,3367	4,22
5,0855	4,9063	4,7214	4,5299	4,4315	4,3309	4,2282	4,1229	4,0149	3,90
4,8199	4,6429	4,4600	4,2703	4,1726	4,0727	3,9704	3,8665	3,7577	3,64
4,6034	4,4281	4,2468	4,0585	3,9614	3,8619	3,7600	3,6553	3,5473	3,43
4,4236	4,2498	4,0698	3,8826	3,7859	3,6867	3,5850	3,4803	3,3722	3,26
4,2719	4,0994	3,9205	3,7342	3,6378	3,5388	3,4372	3,3324	3,2240	3,11
4,1423	3,9709	3,7929	3,6073	3,5112	3,4124	3,3107	3,2058	3,0971	2,98
4,0305	3,8599	3,6827	3,4977	3,4017	3,3030	3,2014	3,0962	2,9871	2,87
3,9329	3,7631	3,5866	3,4020	3,3062	3,2075	3,1058	3,0004	2,8908	2,77
3,8470	3,6779	3,5020	3,3178	3,2220	3,1234	3,0215	2,9159	2,8058	2,69
3,7709	3,6024	3,4270	3,2431	3,1474	3,0488	2,9467	2,8408	2,7302	2,61
3,7030	3,5350	3,3600	3,1764	3,0807	2,9821	2,8799	2,7736	2,6625	2,54
3,6420	3,4745	3,2999	3,1165	3,0208	2,9221	2,8198	2,7132	2,6016	2,48
3,5870	3,4199	3,2456	3,0624	2,9667	2,8679	2,7654	2,6585	2,5463	2,42

Окончание таблицы Г.5

ν ₂						Кванті	или <i>F</i> -распре	деления уро	вня α = 0,995
2	1	2	3	4	5	6	7	8	9
25	9,4753	6,5982	5,4615	4,8351	4,4327	4,1500	3,9394	3,7758	3,6447
26	9,4059	6,5409	5,4091	4,7852	4,3844	4,1027	3,8928	3,7297	3,5989
27	9,3423	6,4885	5,3611	4,7396	4,3402	4,0594	3,8501	3,6875	3,5571
28	9,2838	6,4403	5,3170	4,6977	4,2996	4,0197	3,8110	3,6487	3,5186
29	9,2297	6,3958	5,2764	4,6591	4,2622	3,9830	3,7749	3,6130	3,4832
30	9,1797	6,3547	5,2388	4,6233	4,2276	3,9492	3,7416	3,5801	3,4505
40	8,8278	6,0664	4,9759	4,3738	3,9860	3,7129	3,5088	3,3498	3,2220
60	8,4946	5,7950	4,7290	4,1399	3,7600	3,4918	3,2911	3,1344	3,0083
120	8,1790	5,5393	4,4973	3,9207	3,5482	3,2849	3,0874	2,9330	2,8083
∞	7,8794	5,2983	4,2794	3,7151	3,3499	3,0913	2,8968	2,7444	2,6210

Т а б л и ц а Г.6 — Значения квантилей *F*-распределения уровня α = 0,9

v_2						Кван	тили <i>F-</i> распр	еделения ур	овня α = 0,9
12	1	2	3	4	5	6	7	8	9
1	39,864	49,500	53,593	55,833	57,241	58,204	58,906	59,439	59,858
2	8,5263	9,0000	9,1618	9,2434	9,2926	9,3255	9,3491	9,3668	9,3805
3	5,5383	5,4624	5,3908	5,3427	5,3092	5,2847	5,2662	5,2517	5,2400
4	4,5448	4,3246	4,1908	4,1073	4,0506	4,0098	3,9790	3,9549	3,9357
5	4,0604	3,7797	3,6195	3,5202	3,4530	3,4045	3,3679	3,3393	3,3163
6	3,7760	3,4633	3,2888	3,1808	3,1075	3,0546	3,0145	2,9830	2,9577
7	3,5894	3,2574	3,0741	2,9605	2,8833	2,8274	2,7849	2,7516	2,7247
8	3,4597	3,1131	2,9238	2,8064	2,7265	2,6683	2,6241	2,5893	2,5612
9	3,3603	3,0065	2,8129	2,6927	2,6106	2,5509	2,5053	2,4694	2,4403
10	3,2850	2,9245	2,7277	2,6053	2,5216	2,4606	2,4140	2,3772	2,3473
11	3,2252	2,8595	2,6602	2,5362	2,4512	2,3891	2,3416	2,3040	2,2735
12	3,1765	2,8068	2,6055	2,4801	2,3940	2,3310	2,2828	2,2446	2,2135
13	3,1362	2,7632	2,5603	2,4337	2,3467	2,2830	2,2341	2,1953	2,1638
14	3,1022	2,7265	2,5222	2,3947	2,3069	2,2426	2,1931	2,1539	2,1220
15	3,0732	2,6952	2,4898	2,3614	2,2730	2,2081	2,1582	2,1185	2,0862
16	3,0481	2,6682	2,4618	2,3327	2,2438	2,1783	2,1280	2,0880	2,0553
17	3,0262	2,6446	2,4374	2,3077	2,2183	2,1524	2,1017	2,0613	2,0284
18	3,0070	2,6239	2,4160	2,2858	2,1958	2,1296	2,0785	2,0379	2,0047
19	2,9899	2,6056	2,3970	2,2663	2,1760	2,1094	2,0580	2,0171	1,9836
20	2,9747	2,5893	2,3801	2,2489	2,1582	2,0913	2,0397	1,9985	1,9649
21	2,9609	2,5746	2,3649	2,2333	2,1423	2,0751	2,0232	1,9819	1,9480
22	2,9486	2,5613	2,3512	2,2193	2,1279	2,0605	2,0084	1,9668	1,9327
23	2,9374	2,5493	2,3387	2,2065	2,1149	2,0472	1,9949	1,9531	1,9189
24	2,9271	2,5383	2,3274	2,1949	2,1030	2,0351	1,9826	1,9407	1,9063
25	2,9177	2,5283	2,3170	2,1843	2,0922	2,0241	1,9714	1,9292	1,8947
26	2,9091	2,5191	2,3075	2,1745	2,0822	2,0139	1,9610	1,9188	1,8841
27	2,9012	2,5106	2,2987	2,1655	2,0730	2,0045	1,9515	1,9091	1,8743
28	2,8939	2,5028	2,2906	2,1571	2,0645	1,9959	1,9427	1,9001	1,8652
29	2,8871	2,4955	2,2831	2,1494	2,0566	1,9878	1,9345	1,8918	1,8568
30	2,8807	2,4887	2,2761	2,1422	2,0492	1,9803	1,9269	1,8841	1,8490
40	2,8354	2,4404	2,2261	2,0909	1,9968	1,9269	1,8725	1,8289	1,7929
60	2,7914	2,3933	2,1774	2,0410	1,9457	1,8747	1,8194	1,7748	1,7380
120	2,7478	2,3473	2,1300	1,9923	1,8959	1,8238	1,7675	1,7220	1,6843
∞	2,7055	2,3026	2,0838	1,9449	1,8473	1,7741	1,7167	1,6702	1,6315

дг	я степеней с	свободы v ₁								
	10	12	15	20	24	30	40	60	120	∞
	3,5370	3,3704	3,1963	3,0133	2,9176	2,8187	2,7160	2,6088	2,4960	2,3765
	3,4916	3,3252	3,1515	2,9685	2,8728	2,7738	2,6709	2,5633	2,4501	2,3297
	3,4499	3,2839	3,1104	2,9275	2,8318	2,7327	2,6296	2,5217	2,4079	2,2867
	3,4117	3,2460	3,0727	2,8899	2,7941	2,6949	2,5916	2,4834	2,3690	2,2469
	3,3765	3,2111	3,0379	2,8551	2,7594	2,6601	2,5565	2,4479	2,3331	2,2102
	3,3440	3,1787	3,0057	2,8230	2,7272	2,6278	2,5241	2,4151	2,2998	2,1760
	3,1167	2,9531	2,7811	2,5984	2,5020	2,4015	2,2958	2,1838	2,0635	1,9318
	2,9042	2,7419	2,5705	2,3872	2,2898	2,1874	2,0789	1,9622	1,8341	1,6885
	2,7052	2,5439	2,3727	2,1881	2,0890	1,9839	1,8709	1,7469	1,6055	1,4311
	2,5188	2,3583	2,1868	1,9998	1,8983	1,7891	1,6691	1,5325	1,3637	1,0000

	тепеней с	· ·		ı	ı	ı		1	I	
	10	12	15	20	24	30	40	60	120	∞
(60,195	60,705	61,220	61,740	62,002	62,265	62,529	62,794	63,061	63,32
	9,3916	9,4081	9,4247	9,4413	9,4496	9,4579	9,4663	9,4746	9,4829	9,491
	5,2304	5,2156	5,2003	5,1845	5,1764	5,1681	5,1597	5,1512	5,1425	5,133
;	3,9199	3,8955	3,8703	3,8443	3,8310	3,8174	3,8036	3,7896	3,7753	3,760
;	3,2974	3,2682	3,2380	3,2067	3,1905	3,1741	3,1573	3,1402	3,1228	3,105
:	2,9369	2,9047	2,8712	2,8363	2,8183	2,8000	2,7812	2,7620	2,7423	2,722
:	2,7025	2,6681	2,6322	2,5947	2,5753	2,5555	2,5351	2,5142	2,4928	2,470
	2,5380	2,5020	2,4642	2,4246	2,4041	2,3830	2,3614	2,3391	2,3162	2,292
	2,4163	2,3789	2,3396	2,2983	2,2768	2,2547	2,2320	2,2085	2,1843	2,159
:	2,3226	2,2841	2,2435	2,2007	2,1784	2,1554	2,1317	2,1072	2,0818	2,055
:	2,2482	2,2087	2,1671	2,1230	2,1000	2,0762	2,0516	2,0261	1,9997	1,972
	2,1878	2,1474	2,1049	2,0597	2,0360	2,0115	1,9861	1,9597	1,9323	1,903
	2,1376	2,0966	2,0532	2,0070	1,9827	1,9576	1,9315	1,9043	1,8759	1,846
:	2,0954	2,0537	2,0095	1,9625	1,9377	1,9119	1,8852	1,8572	1,8280	1,797
:	2,0593	2,0171	1,9722	1,9243	1,8990	1,8728	1,8454	1,8168	1,7867	1,755
:	2,0281	1,9854	1,9399	1,8913	1,8656	1,8388	1,8108	1,7816	1,7507	1,718
	2,0009	1,9577	1,9117	1,8624	1,8362	1,8090	1,7805	1,7506	1,7191	1,685
	1,9770	1,9333	1,8868	1,8368	1,8103	1,7827	1,7537	1,7232	1,6910	1,656
	1,9557	1,9117	1,8647	1,8142	1,7873	1,7592	1,7298	1,6988	1,6659	1,630
	1,9367	1,8924	1,8449	1,7938	1,7667	1,7382	1,7083	1,6768	1,6433	1,607
	1,9197	1,8750	1,8272	1,7756	1,7481	1,7193	1,6890	1,6569	1,6228	1,586
	1,9043	1,8593	1,8111	1,7590	1,7312	1,7021	1,6714	1,6389	1,6042	1,566
	1,8903	1,8450	1,7964	1,7439	1,7159	1,6864	1,6554	1,6224	1,5871	1,549
	1,8775	1,8319	1,7831	1,7302	1,7019	1,6721	1,6407	1,6073	1,5715	1,532
.	1,8658	1,8200	1,7708	1,7175	1,6890	1,6589	1,6272	1,5934	1,5570	1,517
	1,8550	1,8090	1,7596	1,7059	1,6771	1,6468	1,6147	1,5805	1,5437	1,503
	1,8451	1,7989	1,7492	1,6951	1,6662	1,6356	1,6032	1,5686	1,5313	1,490
	1,8359	1,7895	1,7395	1,6852	1,6560	1,6252	1,5925	1,5575	1,5198	1,478
	1,8274	1,7808	1,7306	1,6759	1,6465	1,6155	1,5825	1,5472	1,5090	1,467
	1,8195	1,7727	1,7223	1,6673	1,6377	1,6065	1,5732	1,5376	1,4989	1,456
	1,7627	1,7146	1,6624	1,6052	1,5741	1,5411	1,5056	1,4672	1,4248	1,376
	1,7070	1,6574	1,6034	1,5435	1,5107	1,4755	1,4373	1,3952	1,3476	1,291
	1,6524	1,6012	1,5450	1,4821	1,4472	1,4094	1,3676	1,3203	1,2646	1,192
'	1,5987	1,5458	1,4871	1,4206	1,3832	1,3419	1,2951	1,2400	1,1686	1,000

Т а б л и ц а Г.7 — Значения квантилей *F*-распределения уровня α = 0,95

ν ₂						Квант	или <i>F</i> -распре	еделения уро	овня α = 0,95
`2	1	2	3	4	5	6	7	8	9
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	238,88	240,54
2	18,513	19,000	19,164	19,247	19,296	19,330	19,353	19,371	19,385
3	10,128	9,5521	9,2766	9,1172	9,0135	8,9406	8,8868	8,8452	8,8123
4	7,7086	6,9443	6,5914	6,3883	6,2560	6,1631	6,0942	6,0410	5,9988
5	6,6079	5,7861	5,4095	5,1922	5,0503	4,9503	4,8759	4,8183	4,7725
6	5,9874	5,1433	4,7571	4,5337	4,3874	4,2839	4,2066	4,1468	4,0990
7	5,5914	4,7374	4,3468	4,1203	3,9715	3,8660	3,7870	3,7257	3,6767
8	5,3177	4,4590	4,0662	3,8378	3,6875	3,5806	3,5005	3,4381	3,3881
9	5,1174	4,2565	3,8626	3,6331	3,4817	3,3738	3,2927	3,2296	3,1789
10	4,9646	4,1028	3,7083	3,4780	3,3258	3,2172	3,1355	3,0717	3,0204
11	4,8443	3,9823	3,5874	3,3567	3,2039	3,0946	3,0123	2,9480	2,8962
12	4,7472	3,8853	3,4903	3,2592	3,1059	2,9961	2,9134	2,8486	2,7964
13	4,6672	3,8056	3,4105	3,1791	3,0254	2,9153	2,8321	2,7669	2,7144
14	4,6001	3,7389	3,3439	3,1122	2,9582	2,8477	2,7642	2,6987	2,6458
15	4,5431	3,6823	3,2874	3,0556	2,9013	2,7905	2,7066	2,6408	2,5876
16	4,4940	3,6337	3,2389	3,0069	2,8524	2,7413	2,6572	2,5911	2,5377
17	4,4513	3,5915	3,1968	2,9647	2,8100	2,6987	2,6143	2,5480	2,4943
18	4,4139	3,5546	3,1599	2,9277	2,7729	2,6613	2,5767	2,5102	2,4563
19	4,3808	3,5219	3,1274	2,8951	2,7401	2,6283	2,5435	2,4768	2,4227
20	4,3513	3,4928	3,0984	2,8661	2,7109	2,5990	2,5140	2,4471	2,3928
21	4,3248	3,4668	3,0725	2,8401	2,6848	2,5727	2,4876	2,4205	2,3661
22	4,3009	3,4434	3,0491	2,8167	2,6613	2,5491	2,4638	2,3965	3,3419
23	4,2793	3,4221	3,0280	2,7955	2,6400	2,5277	2,4422	2,3748	2,3201
24	4,2597	3,4028	3,0088	2,7763	2,6207	2,5082	2,4226	2,3551	2,3002
25	4,2417	3,3852	2,9912	2,7587	2,6030	2,4904	2,4047	2,3371	2,2821
26	4,2252	3,3690	2,9751	2,7426	2,5868	2,4741	2,3883	2,3205	2,2655
27	4,2100	3,3541	2,9604	2,7278	2,5719	2,4591	2,3732	2,3053	2,2501
28	4,1960	3,3404	2,9467	2,7141	2,5581	2,4453	2,3593	2,2913	2,2360
29	4,1830	3,3277	2,9340	2,7014	2,5454	2,4324	2,3463	2,2782	2,2229
30	4,1709	3,3158	2,9223	2,6896	2,5336	2,4205	2,3343	2,2662	2,2107
40	4,0848	3,2317	2,8387	2,6060	2,4459	2,3359	2,2400	2,1802	2,1240
60	4,0012	3,1504	2,7581	2,5252	2,3683	2,2540	2,1665	2,0970	2,0401
120	3,9201	3,0718	2,6802	2,4472	2,2900	2,1750	2,0867	2,0164	1,9588
∞	3,8415	2,9957	2,6049	2,3719	2,2141	2,0986	2,0096	1,9384	1,8799

V ₂						Кванти	или <i>F</i> -распре	деления урс	вня α = 0,97
2	1	2	3	4	5	6	7	8	9
1	647,79	799,50	864,16	899,58	921,85	937,11	948,22	956,66	963,28
2	38,506	39,000	39,165	39,248	39,298	39,331	39,355	39,373	39,387
3	17,443	16,044	15,439	15,101	14,885	14,735	14,624	14,540	14,473
4	12,218	10,649	9,9792	9,6045	9,3645	9,1973	9,0741	8,9796	8,9047
5	10,007	8,4336	7,7636	7,3879	7,1464	6,9777	6,8531	6,7572	6,6810
6	8,8131	7,2598	6,5988	6,2272	5,9876	5,8197	5,6955	5,5996	5,5234
7	8,0727	6,5415	5,8898	5,5226	5,2852	5,1186	4,9949	4,8994	4,8232
8	7,5709	6,0595	5,4160	5,0526	4,8173	4,6517	4,5286	4,4332	4,3572
9	7,2093	5,7147	5,0781	4,7181	4,4844	4,3197	4,1971	4,1020	4,0260

для степен	ей свободы v ₁								
10	12	15	20	24	30	40	60	120	∞
241,8 19,39 8,785 5,964	6 19,413 5 8,7446	245,95 19,429 8,7029 5,8578	248,01 19,446 8,6602 5,8025	249,05 19,454 8,6385 5,7744	250,09 19,462 8,6166 5,7459	251,14 19,471 8,5944 5,7170	252,20 19,479 8,5720 5,6878	253,25 19,487 8,5494 5,6581	254,32 19,496 8,5265 5,6281
4,735 4,060 3,636 3,347 3,137	3,9999 5 3,5747 2 3,2840	4,6188 3,9381 3,5108 3,2184 3,0061	4,5581 3,8742 3,4445 3,1503 2,9365	4,5272 3,8415 3,4105 3,1152 2,9005	4,4957 3,8082 3,3758 3,0794 2,8637	4,4638 3,7743 3,3404 3,0428 2,8259	4,4314 3,7398 3,3043 3,0053 2,7872	4,3984 3,7047 3,2674 2,9669 2,7475	4,3650 3,6688 3,2298 2,9276 2,7067
2,978. 2,853. 2,753. 2,671. 2,602	6 2,7876 4 2,6866 0 2,6037	2,8450 2,7186 2,6169 2,5331 2,4630	2,7740 2,6464 2,5436 2,4589 2,3879	2,7372 2,6090 2,5055 2,4202 2,3487	2,6996 2,5705 2,4663 2,3803 2,3082	2,6609 2,5309 2,4259 2,3392 2,2664	2,6211 2,4901 2,3842 2,2966 2,2230	2,5801 2,4480 2,3410 2,2524 2,1778	2,5379 2,4045 2,2962 2,2064 2,1307
2,543 2,493 2,449 2,411 2,377	5 2,4247 9 2,3807 7 2,3421	2,4035 2,3522 2,3077 2,2686 2,2341	2,3275 2,2756 2,2304 2,1906 2,1555	2,2878 2,2354 2,1898 2,1497 2,1141	2,2468 2,1938 2,1477 2,1071 2,0712	2,2043 2,1507 2,1040 2,0629 2,0264	2,1601 2,1058 2,0584 2,0166 1,9796	2,1141 2,0589 2,0107 1,9681 1,9302	2,0658 2,0096 1,9604 1,9168 1,8780
2,347 2,321 2,296 2,274 2,254	2,2504 7 2,2258 7 2,2036	2,2033 2,1757 2,1508 2,1282 2,1077	2,1242 2,0960 2,0707 2,0476 2,0267	2,0825 2,0540 2,0283 2,0050 1,9838	2,0391 2,0102 1,9842 1,9605 1,9390	1,9938 1,9645 1,9380 1,9139 1,8920	1,9464 1,9165 1,8895 1,8649 1,8424	1,8963 1,8657 1,8380 1,8128 1,7897	1,8432 1,8117 1,7831 1,7570 1,7331
2,236 2,219 2,204 2,190 2,176	7 2,1479 3 2,1323 0 2,1179	2,0889 2,0716 2,0558 2,0411 2,0275	2,0075 1,9898 1,9736 1,9586 1,9446	1,9643 1,9464 1,9299 1,9147 1,9005	1,9192 1,9010 1,8842 1,8687 1,8543	1,8718 1,8533 1,8361 1,8203 1,8055	1,8217 1,8027 1,7851 1,7689 1,7537	1,7684 1,7488 1,7307 1,7138 1,6981	1,7110 1,6906 1,6717 1,6541 1,6377
2,164 2,077 1,992 1,910 1,830	2 2,0035 6 1,9174 5 1,8337	2,0148 1,9245 1,8364 1,7505 1,6664	1,9317 1,8389 1,7480 1,6587 1,5705	1,8874 1,7929 1,7001 1,6084 1,5173	1,8409 1,7444 1,6491 1,5543 1,4591	1,7918 1,6928 1,5943 1,4952 1,3940	1,7396 1,6373 1,5343 1,4290 1,3180	1,6835 1,5766 1,4673 1,3519 1,2214	1,6223 1,5089 1,3893 1,2539 1,0000

дг	ля степеней с	свободы v ₁								
	10	12	15	20	24	30	40	60	120	∞
	968,63	976,71	984,87	993,10	997,25	1001,4	1005,6	1009,8	1014,0	1018,3
	39,398	39,415	39,431	39,448	39,456	39,465	39,473	39,481	39,490	39,498
	14,419	14,337	14,253	14,167	14,124	14,081	14,037	13,992	13,947	13,902
	8,8439	8,7512	8,6565	8,5599	8,5109	8,4613	8,4111	8,3604	8,3092	8,2573
	6,6192	6,5246	6,4227	6,3285	6,2780	6,2269	6,1752	6,1225	6,0693	6,0153
	5,4613	5,3662	5,2687	5,1684	5,1172	5,0652	5,0125	4,9587	4,9045	4,8491
	4,7611	4,6658	4,5678	4,4667	4,4150	4,3624	4,3089	4,2544	4,1989	4,1423
	4,2951	4,1997	4,1012	3,9995	3,9472	3,8940	3,8398	3,7844	3,7279	3,6702
	3,9639	3,8682	3,7694	3,6669	3,6142	3,5604	3,5055	3,4493	3,3918	3,3329

Окончание таблицы Г.8

v_2						Кванті	или <i>F</i> -распре	деления уро	вня α = 0,97	5
.2	1	2	3	4	5	6	7	8	9	
10	6,9367	5,4564	4,8256	4,4683	4,2361	4,0721	3,9498	3,8549	3,7790	
11	6,7241	5,2559	4,6300	4,2751	4,0440	3,8807	3,7586	3,6638	3,5879	
12	6,5538	5,0959	4,4742	4,1212	3,8911	3,7283	3,6065	3,5118	3,4358	
13	6,4143	4,9653	4,3472	3,9959	3,7667	3,6043	3,4827	3,3880	3,3120	
14	6,2979	4,8567	4,2417	3,8919	3,6634	3,5014	3,3799	3,2853	3,2093	
15	6,1995	4,7650	4,1528	3,8043	3,5764	3,4147	3,2934	3,1987	3,1227	
16	6,1151	4,6867	4,0768	3,7294	3,5021	3,3406	3,2194	3,1248	3,0488	
17	6,0420	4,6189	4,0112	3,6648	3,4379	3,2767	3,1556	3,0610	2,9849	
18	5,9781	4,5597	3,9539	3,6083	3,3820	3,2209	3,0999	3,0053	2,9291	
19	5,9216	4,5075	3,9034	3,5587	3,3327	3,1718	3,0509	2,9563	2,8800	
20	5,8715	4,4613	5,8587	3,5147	3,2891	3,1283	3,0074	2,9128	2,8365	
21	5,8266	4,4199	3,8188	3,4754	3,2501	3,0895	2,9686	2,8740	2,7977	
22	5,7863	4,3828	3,7829	3,4401	3,2151	3,0546	2,9338	2,8392	2,7628	
23	5,7498	4,3492	3,7505	3,4083	3,1835	3,0232	2,9024	2,8077	2,7313	
24	5,7167	4,3187	3,7211	3,3794	3,1548	3,9946	2,8738	2,7791	2,7027	
25	5,6864	4,2909	3,6943	3,3530	3,1287	2,9685	2,8478	2,7531	2,6766	
26	5,6586	4,2655	3,6697	3,3289	3,1048	2,9447	2,8240	2,7293	2,6528	
27	5,6331	4,2421	3,6472	3,3067	3,0828	2,9228	2,8021	2,7074	2,6309	
28	5,6096	4,2205	3,6264	3,2863	3,0625	2,9027	2,7820	2,6872	2,6106	
29	5,5878	4,2006	3,6072	3,2674	3,0438	2,8840	2,7633	2,6686	2,5919	
30	5,5675	4,1821	3,5894	3,2499	3,0265	2,8667	2,7460	2,6513	2,5746	
40	5,4239	4,0510	3,4633	3,1261	2,9037	2,7444	2,6238	2,5289	2,4519	
60	5,2857	3,9253	3,3425	3,0077	2,7863	2,6274	2,5068	2,4117	2,3344	
120	5,1524	3,8046	3,2270	2,8943	2,6740	2,5154	2,3948	2,2994	2,2217	
∞	5,0239	3,6889	3,1161	2,7858	2,5665	2,4082	2,2875	2,1918	2,1136	

Т а б л и ц а Г.9 — Значения квантилей *F*-распределения уровня α = 0,099

v_2						Кванти	ли <i>F</i> -распре,	деления уро	вня α = 0,09	9
2	1	2	3	4	5	6	7	8	9	
1	4052,2	4999,5	5403,3	5624,6	5763,7	5859,0	5928,3	5981,1	6022,5	
2	98,503	99,000	99,166	99,249	99,299	99,332	99,356	99,374	99,388	
3	34,116	30,817	29,457	28,710	28,237	27,911	27,672	27,489	27,345	
4	21,198	18,000	16,694	15,977	15,522	15,207	14,976	14,799	14,659	
5	16,258	13,274	12,060	11,392	10,967	10,672	10,672	10,289	10,158	
6	13,745	10,925	9,7795	9,1483	8,7459	8,4661	8,2600	8,1016	7,9761	
7	12,246	9,5466	8,4513	7,8467	7,4604	7,1914	6,9928	6,8401	6,7188	
8	11,259	8,6491	7,5910	7,0060	6,6318	6,3707	6,1776	6,0289	5,9106	
9	10,561	8,0215	6,9919	6,4221	6,0569	5,8018	5,6129	5,4671	5,3511	
10	10,044	7,5594	6,5523	5,9943	5,6363	5,3858	5,2001	5,0567	4,9424	
11	9,6460	7,2057	6,2167	5,6683	5,3160	5,0692	4,8861	4,7445	4,6315	
12	9,3302	6,9266	5,9526	5,4119	5,0643	4,8206	4,6395	4,4994	4,3875	
13	9,0738	6,7010	5,7394	5,2053	4,8616	4,6204	4,4410	4,3021	4,1911	
14	8,8616	6,5149	5,5639	5,0354	4,6950	4,4558	4,2779	4,1399	4,0297	
15	8,6831	6,3589	5,4170	4,8932	4,5556	4,3183	4,1415	4,0045	3,8948	
16	8,5310	6,2262	5,2922	4,7726	4,4374	4,2016	4,0259	3,8896	3,7804	
17	8,3997	6,1121	5,1850	4,6690	4,3359	4,1015	3,9267	3,7910	3,6822	
18	8,2854	6,0129	5,0919	4,5790	4,2479	4,0146	3,8406	3,7054	3,5971	
19	8,1850	5,9259	5,0103	4,5003	4,1708	3,9386	3,7653	3,6305	3,5225	

для	з степеней с	свободы v ₁								
	10	12	15	20	24	30	40	60	120	∞
	3,7168	3,6209	3,5217	3,4186	3,3654	3,3110	3,2554	3,1984	3,1399	3,0798
	3,5257	3,4296	3,3299	3,2261	3,1725	3,1176	3,0613	3,0035	2,9441	2,8828
	3,3736	3,2773	3,1772	3,0728	3,0187	2,9633	2,9063	2,8478	2,7874	2,7249
	3,2497	3,1532	3,0527	2,9477	2,8932	2,8373	2,7797	2,7204	2,6590	2,5955
	3,1469	3,0501	2,9493	2,8437	2,7888	2,7324	2,6742	2,6142	2,5519	2,4872
	3,0602	2,9633	2,8621	2,7559	2,7006	2,6437	2,5850	2,5242	2,4611	2,3953
	2,9862	2,8890	2,7875	2,6808	2,6252	2,5678	2,5085	2,4471	2,3831	2,3163
	2,9222	2,8249	2,7230	2,6158	2,5598	2,5021	2,4422	2,3801	2,3154	2,2474
	2,8664	2,7689	2,6667	2,5590	2,5027	2,4445	2,3842	2,3214	2,2558	2,1869
	2,8173	2,7196	2,6171	2,5089	2,4523	2,3937	2,3329	2,2695	2,2032	2,1333
	2,7737	2,6758	2,5731	2,4645	2,4076	2,3486	2,2873	2,2234	2,1562	2,0853
	2,7348	2,6368	2,5338	2,4247	2,3675	2,3082	2,2465	2,1819	2,1141	2,0422
	2,6998	2,6017	2,4984	2,3890	2,3315	2,2718	2,2097	2,1446	2,0760	2,0032
	2,6682	2,5699	2,4665	2,3567	2,2989	2,2389	2,1767	2,1107	2,0415	1,9677
	2,6396	2,5412	2,4374	2,3273	2,2693	2,2090	2,1460	2,0799	2,0099	1,9353
	2,6135	2,5149	2,4110	2,3005	2,2422	2,1816	2,1183	2,0517	1,9811	1,9055
	2,5895	2,4909	2,3867	2,2759	2,2174	2,1565	2,0928	2,0257	1,9545	1,8781
	2,5676	2,4688	2,3644	2,2533	2,1946	2,1334	2,0693	2,0018	1,9299	1,8527
	2,5473	2,4484	2,3438	2,2324	2,1735	2,1121	2,0477	1,9796	1,9072	1,8291
	2,5286	2,4295	2,3248	2,2131	2,1540	2,0923	2,0276	1,9591	1,8861	1,8072
	2,5112	2,4120	2,3072	2,1952	2,1359	2,0739	2,0089	1,9400	1,8664	1,7867
	2,3882	2,2882	2,1819	2,0677	2,0069	1,9429	1,8752	1,8028	1,7242	1,6371
	2,2702	2,1692	2,0613	1,9445	1,8817	1,8152	1,7440	1,6668	1,5810	1,4822
	2,1570	2,0548	1,9450	1,8249	1,7597	1,6899	1,6141	1,5299	1,4327	1,3104
	2,0483	1,9447	1,8326	1,7085	1,6402	1,5660	1,4835	1,3883	1,2684	1,0000

для степеней свободы ${ m v_1}$										
	10	11	12	15	20	30	40	60	120	∞
	6055,8	6106,3	6157,3	6208,7	6234,6	6260,7	6286,8	6313,0	6339,4	6366,0
	99,399	99,416	99,432	99,449	99,458	99,466	99,474	99,483	99,491	99,499
	27,229	27,052	26,872	26,690	26,598	26,505	26,411	26,316	26,221	26,125
	14,546	14,374	14,198	14,020	13,929	13,838	13,745	13,652	13,558	13,463
	10,051	9,8883	9,7222	9,5527	9,4665	9,3793	9,2912	9,2020	9,1118	9,0204
	7,8741	7,7183	7,5590	7,3958	7,3127	7,2285	7,1432	7,0568	6,9690	6,8861
	6,6201	6,4691	6,3143	6,1554	6,0743	5,9921	5,9084	5,8236	5,7372	5,6495
	5,8143	5,6668	5,5151	5,3591	5,2793	5,1981	5,1156	5,0316	4,9460	4,8588
	5,2565	5,1114	4,9621	4,8080	4,7290	4,6486	4,5667	4,4831	4,3978	4,3105
	4,8492	4,7059	4,5582	4,4054	4,3269	4,2469	4,1653	4,0819	3,9965	3,9090
	4,5393	4,3974	4,2509	4,0990	4,0209	3,9411	3,8596	3,7761	3,6904	3,6025
	4,2961	4,1553	4,0096	3,8584	3,7805	3,7008	3,6192	3,5355	3,4494	3,3608
	4,1003	3,9603	3,8154	3,6646	3,5868	3,5070	3,4253	3,3413	3,2548	3,1654
	3,9394	3,8001	3,6557	3,5052	3,4274	3,3476	3,2656	3,1813	3,0942	3,0040
	3,8049	3,6662	3,5222	3,3719	3,2940	3,2141	3,1319	3,0471	3,2995	2,8684
	3,6909	3,5527	3,4089	3,2588	3,1808	3,1007	3,0182	2,9330	3,8447	2,7528
	3,5931	3,4552	3,3117	3,1615	3,0835	3,0032	2,9205	2,8348	2,7459	2,6530
	3,5082	3,3706	3,2273	3,0771	2,9990	2,9185	2,8354	2,7493	2,6597	2,5660
	3,4338	3,2965	3,1533	3,0031	2,9249	2,8442	2,7608	2,6742	2,5839	2,4893

Окончание таблицы Г.9

v ₂	Квантили <i>F</i> -распределения уровня $lpha$ = 0,099										
2	1	2	3	4	5	6	7	8	9		
20	8,0960	5,8489	4,9382	4,4307	4,1027	3,8714	3,6987	3,5644	3,4567		
21	8,0166	5,7804	4,8740	4,3688	4,0421	3,8117	3,6396	3,5056	3,3981		
22	7,9454	5,7190	4,8166	4,3134	3,9880	3,7583	3,5867	3,4530	3,3458		
23	7,8811	5,6637	4,7649	4,2635	3,9392	3,7102	3,5390	3,4057	3,2986		
24	7,8229	5,6136	4,7181	4,2184	3,8951	3,6667	3,4959	3,3629	3,2560		
25	7,7698	5,5680	4,6755	4,1774	3,8550	3,6272	3,4568	3,3239	3,2172		
26	7,7213	5,5263	4,6366	4,1400	3,8183	3,5911	3,4210	3,2884	3,1818		
27	7,6767	5,4881	4,6009	4,1056	3,7848	3,5580	3,3882	3,2558	3,1494		
28	7,6356	5,4529	4,5681	4,0740	3,7539	3,5276	3,3581	3,2259	3,1195		
29	7,5976	5,4205	4,5378	4,0449	3,7254	3,4995	3,3302	3,1982	3,0920		
30	7,5625	5,3903	4,5097	4,0179	3,6990	3,4735	3,3045	3,1726	3,0665		
40	7,3141	5,1785	4,3126	3,8283	3,5138	4,2910	3,1238	2,9930	2,8876		
60	7,0771	4,9774	4,1259	3,6491	3,3387	3,1187	2,9530	2,8233	2,7185		
120	6,8510	4,7865	3,9491	3,4796	3,1735	2,9559	2,7918	2,6629	2,5586		
∞	6,6349	4,6052	3,7816	3,3192	3,0173	2,8020	2,6393	2,5113	2,4073		

дг	для степеней свободы v ₁										
	10	11	12	15	20	30	40	60	120	∞	
	3,3682	3,2311	3,0880	2,9377	2,8594	2,7785	2,6947	2,6077	2,5168	2,4212	
	3,3098	3,1729	3,0299	2,8796	2,8011	2,7200	2,6359	2,5484	2,4568	2,3603	
	3,2576	3,1209	2,9780	2,8274	2,7488	2,6675	2,5831	2,4951	2,4029	2,3055	
	3,2106	3,0740	2,9311	2,7805	2,7017	2,6202	2,5355	2,4471	2,3542	2,2559	
	3,1681	3,0316	2,8887	2,7380	2,6591	2,5773	2,4923	2,4035	2,3099	2,2107	
	3,1294	2,9931	2,8502	2,6993	2,6203	2,5383	2,4530	2,3637	2,2695	2,1694	
	3,0941	2,9579	2,8150	2,6640	2,5848	2,5026	2,4170	2,3273	2,2325	2,1315	
	3,0618	2,9256	2,7827	2,6316	2,5522	2,4699	2,3840	2,2938	2,1984	2,0965	
	3,0320	2,8959	2,7530	2,6017	2,5223	2,4397	2,3535	2,2629	2,1670	2,0642	
	3,0045	2,8685	2,7256	2,5742	2,4946	2,4118	2,3253	2,2344	2,1378	2,0342	
	2,9791	2,8431	2,7002	2,5487	2,4689	2,3860	2,2992	2,2079	2,1107	2,0062	
	2,8005	2,6648	2,5216	2,3689	2,2880	2,2034	2,1142	2,0194	1,9172	1,8047	
	2,6318	2,4961	2,3523	2,1978	2,1154	2,0285	1,9360	1,8363	1,7263	1,6006	
	2,4721	2,3363	2,1915	2,0346	1,9500	1,8600	1,7628	1,6557	1,5330	1,3805	
	2,3209	2,1848	2,0385	1,8783	1,7908	1,6964	1,5923	1,4730	1,3246	1,0000	

УДК 658.562.012.7:65.012.122:006.354

OKC 03.120.30

T59

Ключевые слова: статистические методы, прикладная статистика, точечное и интервальное оценивание, проверка гипотез, нормальное распределение

Редактор *Т.С. Шеко*Технический редактор *Н.С. Гришанова*Корректор *Т.И. Кононенко*Компьютерная верстка *Е.Н. Мартемьяновой*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 20.01.2004. Подписано в печать 16.03.2004. Усл. печ. л. 5,12. Уч.-изд. л. 4,50. Тираж 670 экз. С 1126. Зак. 291.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102