ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЖИРЫ И МАСЛА ЖИВОТНЫЕ И РАСТИТЕЛЬНЫЕ

Определение бутилоксианизола (БОА) и бутилокситолуола (БОТ) методом газожидкостной хроматографии

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

жиры и масла животные и растительные

Определение бутилоксианизола (БОА) и бутилокситолуола (БОТ) методом газожидкостной хроматографии

ГОСТ Р 50206—92 (ИСО 6463—82)

Animal and vegetable fats and oils.

Determination of butylhyrdoxyanisol (EHA) and Butylhydroxytoluene (EHT). Gas-liquid chromatographic method

ОКС 67.120.1 ОКСТУ 9209

Дата введения 1994—01—01

1 Назначение и область применения

Настоящий стандарт устанавливает метод определения массовой доли бутилоксианизола (*трет*-бутил-4-метоксифенол) (БОА) и бутилокситолуола (2,6-ди-*трет*-бутил-4-метоксифенол) (БОТ), используемых в качестве антиокислителей в животных и растительных жирах и маслах, с помощью газожидкостной хроматографии.

 Π р и м е ч а н и е — Настоящий метод позволяет также выполнять количественное определение содержания третбутилгидрохинона (ТБГХ).

2 Ссылка

ГОСТ 11254.

3 Сущность метода

Растворение жира или масла в соответствующем растворителе, прямое введение в газовый хроматограф и использование метода калибрования с внутренним стандартным раствором.

4 Реактивы

- 4.1 Газ-носитель; инертный газ (такой как азот, гелий или аргон), тщательно высушенный и содержащий менее 10 мг кислорода на 1 кг.
 - 4.2 Вспомогательные газы:

водород, минимальная степень чистоты 99,9 %, без органических примесей; воздух или кислород без органических примесей.

4.3 Дихлорметан или, в случае его отсутствия, сероуглерод, не содержащий примесей, которые могут повлиять на результаты при определении БОА и БОТ методом газожидкостной хроматографии.

Предупреждение. Дихлорметан и дисульфид углерода — токсичны. Кроме того, сероуглерод очень летуч и взрывоопасен. Необходимо соблюдать осторожность при работе с ними.

- 4.4 Метил ундеканоат, минимальная степень чистоты 99 %.
- 4.5 Бутилоксианизол, минимальная степень чистоты 98 %.
- 4.6 Бутилокситолуол, минимальная степень чистоты 98 %.

Издание официальное

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

5 Аппаратура

Обычное лабораторное оборудование, а также указанное в 5.1—5.4.

- 5.1 Газовый хроматограф с пламенно-ионизационным детектором и записывающим устройством, включающий:
- 5.1.1 Инжектор вместе с одной из нижеописанных систем для удерживания нелетучих жиров и масел:
 - а) форколонка, заполненная сиданизированной стеклянной ватой или стеклянными шариками;
- б) трубка, заполненная силанизированной стеклянной ватой, помещенная в инжектор (только в случае горизонтального инжектора).
- 5.1.2 Колонку из нержавеющей стали или стекла, позволяющую разделять БОА и БОТ, длиной приблизительно 2 м, с внутренним диаметром 2—4 мм, заполненную, например, промытой в кислоте силилированной кирпичной пылью 1, обработанной 10 %-ным раствором метилполисилоксана 2.
 - 5.2 Колбы мерные вместимостью 10, 20 и 100 см³.
 - 5.3 Пипетки градуированные вместимостью 1 и 2 см³.
 - 5.4 Весы аналитические.

6 Обнаружение

См. ГОСТ 11254³.

7 Методика определения

7.1 Подготовка прибора

7.1.1 Инжектор

Температура — 250 °C

Трубка или форколонка должна извлекаться после каждого рабочего дня и подготовляться накануне при температуре испытания.

 Π р и м е ч а н и е — Проверять время от времени работу форколонки, пропуская через хроматограф жир или масло известного состава.

7.1.2 Печь и колонка

Температура при изотермических условиях: 160 °C.

Скорость потока газа-носителя: оптимальное значение устанавливает оператор.

Перед первым использованием через заполненную колонку пропускают газ-носитель в течение $24\,\mathrm{y}$ при температуре $220\,\mathrm{^{\circ}C}$.

7.1.3 Детектор

Температура — 250 °C.

Скорость потока вспомогательных газов:

водорода — приблизительно 20 см³/мин;

воздуха или кислорода — в соответствии с инструкцией изготовителя.

7.2 Калибрование

7.2.1 Сущность метода

Используют метод внутреннего калибрования, при котором известное количество известного вещества, соответствующий пик которого не сближается с другими пиками, вводится в образец и проводится измерение пиков различных составляющих, которые корректируются с использованием соответствующих им калибровочных коэффициентов и сравниваются с полученным результатом измерения пика известного вещества.

7.2.2 Стандартные смеси

7.2.2.1 Внутренний стандартный раствор

Использовать в качестве внутреннего стандартного раствора раствор 30 мкг/см³ метил ундеканоата, приготовленный следующим образом.

¹ Gas/Chrom с размером частиц 150—180 мкм (80—100 меш) также пригоден.

 $^{^{2}}$ ДС 200 [Кинематическая вязкость 1,25 м 2 /с (12500 cst)] также пригоден.

³ Допускается применение ГОСТ 11254 до введения ИСО 5558 в качестве государственного стандарта.

Отвесить с точностью $0.1~\rm Mr$ $30~\rm Mr$ метил ундеканоата в мерную колбу вместимостью $100~\rm cm^3$, разбавить растворителем до метки. Перенести $2~\rm cm^3$ этого раствора с помощью пипетки в мерную колбу вместимостью $20~\rm cm^3$ и довести объем растворителем до метки.

7.2.2.2 Стандартные растворы антиокислителей

Отвесить с точностью 0,1 мг точно 100 г антиокислителя БОА или БОТ в мерную колбу вместимостью 100 см³. Довести объем растворителем до метки. Перенести 1 см³ этого раствора с помощью пипетки в мерную колбу вместимостью 10 см³ и довести объем растворителем до метки.

В пять мерных колб вместимостью по 10 см^3 каждая перенести с помощью пипетки 0,2-0,5-0,8-1 и $1,2 \text{ см}^3$ раствора антиокислителя. Добавить с помощью пипетки в каждую колбу 2 см^3 внутреннего стандартного раствора и довести объем растворителем до метки.

Эти пять растворов содержат соответственно 2, 5, 8, 10, 12 мкг антиокислителя на 1 см³.

 Π р и м е π а н и е — Проверить с помощью контрольного метода отсугствие интерференции с метил ундеканоатом. Если она имеет место, следует использовать в качестве внутреннего стандартного раствора метилмиристат.

7.2.3 Определение калибровочного коэффициента и построение калибровочного графика Ввести каждый раствор в хроматограф и вычислить коэффициент (K) по формуле

$$K = \frac{A_a}{A_s} \cdot \frac{m_s}{m_a} \,,$$

где A_a — площадь пика, соответствующего антиокислителю;

 $A_{\rm s}$ — площадь пика, соответствующего внутреннему стандартному раствору;

 m_a — масса стандартного раствора антиокислителя, г;

 $m_{\rm s}$ — масса внутреннего стандартного раствора, г.

Если требуется, то построить график, откладывая на оси ординат отношения площадей пиков, соответствующих антиокислителю, к площади пика, соответствующего внутреннему стандартному раствору, а на оси абсцисс — концентрации антиокислителя во введенных растворах.

7.3 Определение

Отвесить с точностью до 1 мг 1 г жира или масла и перенести его в мерную колбу вместимостью 10 см^3 . Добавить 2 см^3 внутреннего стандартного раствора и довести объем растворителем до метки.

Убедиться, что мерная колба каждый раз закрыта пробкой. Ввести $1\cdot \hat{1}0^{-3} - \hat{7}\cdot 10^{-3}$ см 3 смеси в хроматограф.

8 Выражение результатов

Массовую долю БОА или БОТ (X), мг/кг, вычисляют по формуле

$$X = \frac{m_{s} \cdot A_{a}}{m \cdot A_{s} \cdot K},$$

где m — масса навески, г;

 $m_{\rm s}$ — масса добавленного внутреннего стандартного раствора (приблизительно 60 мкг), мкг;

 A_a — площадь пика, соответствующего антиокислителю;

 $A_{\rm s}$ — площадь пика, соответствующего внутреннему стандартному раствору;

 \ddot{K} — коэффициент пропорциональности, учитывающий внутренний стандартный раствор.

9 Протокол испытания

В протоколе испытания должны быть указаны:

используемый метод и полученные результаты;

все условия испытания, не оговоренные в настоящем стандарте;

другие факторы, которые могут повлиять на результаты.

Протокол испытания должен содержать необходимую информацию для полной идентификации образца.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1 ПОДГОТОВЛЕН И ВНЕСЕН Всесоюзным научно-исследовательским и конструкторским институтом мясной промышленности
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28.08.92 № 1062

Настоящий стандарт подготовлен методом прямого применения международного стандарта ИСО 6463—82 «Жиры и масла животные и растительные. Определение бутилоксианизола (БОА) и бутилокситолуола (БОТ). Метод газожидкостной хроматографии» и полностью соответствует ему

3 ВВЕДЕН ВПЕРВЫЕ

4 ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела
ΓΟCT 11254—85	2; 6

5 ПЕРЕИЗДАНИЕ

190