

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГРУНТЫ

МЕТОДЫ ЛАБОРАТОРНОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ПРОЧНОСТИ И ДЕФОРМИРУЕМОСТИ МЕРЗЛЫХ ГРУНТОВ

ΓΟCT 24586-90

Издание официальное

ГОСУДАРСТВЕННЫИ СТАНДАРТ СОЮЗА ССР

ГРУНТЫ

Методы лабораторного определения характеристик прочности и деформируемости мерзлых грунтов

LOCI

Soils Laboratory methods for determining strength and strain characteristics of frozen soils

24586 - 90

OKCTУ 2009

Дата введения

01.09.90

Настоящий стандарт распространяется на песчаные (кроме песков гравелистых и крупных), пылевато-глинистые грунгы мерзлом состоянии и устанавливает методы лабороторчого определения характеристик прочности и деформируемости при исследованиях грунтов для строительства

Стандарт не распространяется на заторфованные, засоленные и сыпучемерзлые групты, а при определении предельно длительного значения эквивалентного сцепления - также на пески средней крупности.

Основные термины и их пояснения приведены в приложении 1.

1. ОБЩИГ ПОЛОЖЕНИЯ

1.1. Настоящий стандарт устанавливает следующие методы лабораторных испытании мерзлых груптов

компрессионного сжатия;

одноосного сжатия;

испытания шариковым штампом.

одноплоскостного сдвига образцов дручта, сморожения разцами материала фундамента.

12. Лабораторные испытания указанными методами проводят в соответствии с программой исследований для определения следующих характеристик прочности и деформируемости мерзлых LDAHLOB.

коэффициента сжимаемости пластичномерэлых трунтор δ ; коэффициента оттаи ания A_{th} и сжимаемости δ ион от гивании

мерзлых груптов;

модуля линейной те рормации E;

Издание официальное

Перепечатка воспрещена

Издательство станд пртом, т 30

прочности на одноосное сжатие (условно-мгновенного и предельно длительного значений $R_{\rm oc}$ и $R_{\rm c}$);

коэффициента поперечного расширения v; коэффициента нелинейной деформации A;

коэффициента вязкости сильнольдистых грунтов η;

предельно длительного значения эквивалентного сцепления мерзлых грунтов C_{eq} ;

сопротивления мерзлых грунтов сдвигу по поверхности смерзания с материалом фундамента R_{af} .

- 1.3. Испытания (за исключением испытаний для определения сопротивления мерзлых грунтов сдвигу по поверхности смерзания с материалом фундамента) следует проводить на образцах грунта ненарушенного сложения с природной влажностью и льдистостью.
- 1.4. Сопротивление мерзлых грунтов сдвигу по поверхности смерзания с материалом фундамента определяют на образцах грунта нарушенного сложения с заданными значениями плотности и влажности.
- 1.5. Для определения основных прочностных и деформационных характеристик мерзлых грунтов используют образцы грунта с прослойками льда толщиной не более 2 мм и льдистостью $i_i \leq 0.4$, для определения коэффициента вязкости сильнольдистых грунтов образцы грунта с прослойками льда толщиной не более 10 мм. При определении предельно длительного значения эквивалентного сцепления размеры ледяных шлиров в образце не должны превышать 0.5 мм.
- 1.6. Для испытаний методом компрессионного сжатия шариковым штампом и методом одноплоскостного сдвига размеры образцов грунта должны соответствовать размерам рабочего кольца прибора, в которое помещается грунт при испытании: днаметр $(71,4\pm0,1)$ мм, высота $(35\pm0,1)$ мм. Для испытаний методом односного сжатия изготавливают образцы днаметром $(71,4\pm0,1)$ мм и высотой $(140\pm0,1)$ мм или днаметром $(49\pm0,1)$ мм и высотой $(100\pm0,1)$ мм.
- 1.7. Все операции по изготовлению и испытанию образцов мерзлых грунтов следует выполнять в помещениях с регулируемой отрицательной температурой, холодильных камерах, а также шурфах или подземных лабораториях, расположенных в толще вечномерзлых грунтов.
- 1.8. Отклонения от заданной программой испытаний температуры воздуха в помещении не должны превышать значений, указанных в табл. 1.
- 1.9. Измерения температуры воздуха в процессе испытаний следует выполнять одновременно с измерением деформаций образца грунта по двум лабораторным термометрам (или другим тер-

моизмерительным устройствам), расположенным по обе стороны установки для испытаний таким образом, чтобы их ртутный резервуар или датчик находились на уровне образца групта на расстоянии не более 0,5 м от него.

°(3
Температура	Допускаемые отвлонения
испытаний Т	от заланной температуры воздуха
От 0 до —1	±0.1
Ниже —1 до —5	÷0.2
Ниже —5	±0.5

- 1.10. Термоизмерительные устройства должны обеспечивать измерение температуры воздуха в помещении с погрешностью не более 0,1 °C.
- 1.11. Технология изготовления образцов и проведения испыганий должна обеспечивать сохранность мерзлого состояния грунта, недопущение сколов и других нарушений поверхности образца. Все операции по подготовке образцов грунта к испытаниям необходимо проводить в утепленных перчатках.
- 1.12. В период подготовки и проведения испытаний необходимо предусматривать специальные меры по предохранению образцов грунта от иссущения (создание защитных оболочек, прокладка снегом или льдом, помещение установок для испытаний под чехлы).
- 1.13. Мехапизмы для нагружения образца грунта (рычажные, гидравлические, пневматические, электромеханические и др. прессы) должны обеспечивать:

центрированную передачу нагрузки на образец грунта;

возможность нагружения образца групта ступенями или пепрерывно при заданной постоянной скорости деформирования образца;

постоянство давления на каждой ступени нагружения.

- 1.14. Устройства для измерения деформаций образца групта в процессе испытаний (приборы для автоматической записи деформаций, индикаторы часового типа и т. п.) должны обеспечивать погрешность измерений не более 0,01 мм.
- 1.15. Измерительные приборы, применяемые для испытаний, должны периодически подвергаться метрологическим поверкам и иметь ведомость поправок в пределах рабочего диапазона каждого прибора.
- 1.16. Испытания для определения характеристик прочности и деформируемости мерзлых грунтов проводят не менее чем для трех параллельных образцов исследуемого грунта.

1.17. Значения характеристик вычисляют как среднее арифме-

тическое результатов параллельных определений.

1.18. Результаты испытаний должны сопровождаться данными о виде испытываемого грунта, типе его криогенной текстуры, а также льдистости, влажности, плотности, полученными до и после испытаний образцов. Эти характеристики записывают в журнале, форма которого приведена в приложении 2.

В процессе испытаний ведут журналы по формам, приведен-

ным в приложениях 3-6.

2. ПОДГОТОВКА ОБРАЗЦОВ МЕРЗЛОГО ГРУНТА К ИСПЫТАНИЯМ

- 2.1. Отбор, упаковка, транспортирование и хранение монолитов мерзлого грунта, из которых изготавливают испытываемые образцы грунта, должны производиться в соответствии с требованиями ГОСТ 12071.
- 2.2. Для подготовки образцов мерзлого грунта к испытаниям применяют:

• цилиндрические формы (кольца-пробоотборники) из нержавеющей стали с режущим краем, заостренным снаружи под углом 45°, внутренним диаметром, соответствующим диаметру образца грунта (п. 1.6) и высотой, на 0,5—1 мм превышающей высоту образца, предназначенного для испытаний.

Для образцов грунта, предназначенных для испытания методом компрессионного сжатия и шариковым штампом, а также методом одноплоскостного сдвига, кольцом-пробоотборником, должно служить рабочее кольцо прибора, имеющее режущий край;

весы лабораторные по ГОСТ 24104 с гирями по ГОСТ 7328; приспособление для выдавливания образца из цилиндрической формы:

штангенциркуль по ГОСТ 166;

пилу (по дереву и металлу);

нож из нержавеющей стали с прямым лезвием;

пресс винтовой;

плиту с полированной твердой поверхностью;

уровень;

эксикатор по ГОСТ 23932 (со льдом или снегом на дне); технический вазелин:

материал для герметизации образца грунта (лавсановая, полиэтиленовая и т. п. пленки).

2.3. Измерительные приборы должны обеспечивать:

измерение размеров колец и самих образцов групта с погрешностью не более 0,1 мм;

определение массы образца с кольцом или одного образца с погрешностью не более 0,1 г.

2.4. При изготовлении образцов мерзлого групта непарущенного сложения предварительно выпиливают из монолита заготовки в виде призм, размеры основания и высота которых должны превышать требуемые размеры образцов. Нарезанные заготовки водбирают в группы с идентичной криогенной текстурой.

2.5. Образец мерзлого грунта надлежит вырезать при помощи кольца-пробоотборника (рабочего кольца прибора) из заготовки так, чтобы при испытании он имел по отношению к нагрузке

ориентацию, соответствующую природному залеганию.

2.6. Перед изготовлением образцов кольца-пробоотборники (рабочие кольца приборов) нумеруют, измеряют их высоту и внутренний диаметр и взвешивают.

2.7. Образцы мерзлого грунта непарушенного сложения изготавливают в следующем порядке:

кольцо-пробоотборник (рабочее кольцо прибора) смазывают с внутрешней стороны тонким слоем технического вазелина и устанавливают режущим краем на зачищенную поверхность грунта;

при помощи винтового пресса кольцо слегка (не допуская перекосов) вдавливают в групт, обозначая границы будущего образца;

с наружной стороны кольца (у режущего края) для нзбежания скола острым ножом начинают срезать групт;

при постеленном легком надавливании пресса и срезании грунта кольцо надвигают на образующийся грунтовый цилиндр до нолного его заполнения;

после заполнения кольца грунт подрезают на 8—10 мм ниже режущего края кольца и отделяют его;

торцы образца зачищают вровень с краями кольца ножом с прямым лезвием и притирают на плите с полпрованной поверхностью:

образец грунта, предназначенный для испытания методом компрессионного сжатия или шариковым штампом, взвешивают вместе с рабочим кольцом прибора;

образец грунта, предназначенный для испытания методом одноосного сжатия, извлекают из кольца-пробоотборника с помощью приспособления для выдавливания образца и проводят следующие операции:

измеряют высоту образца не менее чем в четырех различных точках, расположенных на концах двух взаимно перпендикулярных диаметров. При этом высота образца во всех измерениях не должна отличаться более чем на ± 0.2 мм, а отклонение образующей боковой поверхности от нормали к его основаниям не должно превышать ± 1 мм;

определяют диаметр образца по концам двух взаимно перпендикулярных диаметров в трех поперечных сечениях (всего

- 6 измерений): на расстоянии 2 см от торцов и в среднем сечении; взвешивают образец грунта.
- 2.8. Образцы грунта нарушенного сложения с заданными значениями плотности и влажности, предназначенные для определения сспротивления мерзлых грунтов сдвигу по поверхности смерзания с материалом фундамента, приготавливают в рабочем кольце срезного прибора в соответствии с методикой, изложенной в ГОСТ 12248.
- 2.9. Подготовленные образцы грунта герметизируют (например, полиэтиленовой пленкой) и помещают в эксикатор, находящийся в помещении с отрицательной температурой воздуха. Дно эксикатора должно быть покрыто льдом или снегом.

Образцы грунта допускается хранить не более 10 сут.

2.10. Непосредственно перед испытанием образцы грунта выдерживают не менее 12 ч в установке для испытаний при отрицательной температуре, установленной для испытаний.

3. МЕТОЛ КОМПРЕССИОННОГО СЖАТИЯ

3.1. По результатам компрессионных испытаний мерэлого грунта определяют:

коэффициент сжимаемости δ_f пластичномерэлых грунтов;

коэффициент оттаивания A_{th} и сжимаемости δ при оттаивании мерэлых грунтов.

- 3.2. Условия проведения испытаний
- 3.2.1. Испытания грунта следует выполнять в компрессионных приборах (одометрах) под нагрузкой, последовательно увеличиваемой равными ступенями нагружения, общее число которых не должно быть менее пяти. При этом значение давления в образце грунта на первой ступени должно быть равным напряжению от собственного веса грунта на горизонте отбора образца. Приращение же давления на последующих ступенях для определения бурассчитывают, исходя из условия, что давление на последней ступени нагружения должно быть равным расчетному сопротивлению грунта под подошвой фундамента R, задаваемому программой испытаний.

Примечание. При отсутствии данных значение R допускается принимать по указаниям приложения 7.

Для определения A_{th} и δ после приложения первой ступени нагружения производят оттаивание образца грунта при этом давлении и продолжают испытание грунта в оттаявшем состоянии. Приращение давления при этом на последующих ступенях принимают 0,05 МПа (0,5 кгс/см²) для пылевато-глинистых грунтов и 0,75 МПа (0,75 кгс/см²) для песчаных грунтов.

- 3.2.2. Каждую ступень нагружения следует прыкладывать после условной стабылизацыи вертикальной деформации образца грунта на предшествующей ступени, за критерий которой принимают приращение вертикальной деформации, не превышающее 0.01 мм за 12 ч.
 - 3.3. Приборы и оборудование
- 3.3.1. Для проведения испытаний методом компрессионного сжатия применяют:

компрессионный прибор (одометр);

механизм для вертикального нагружения образца групта (п. 1.13);

устройства для измерения вертикальных деформаций образца грунта (п. 1.14).

3.4. Проведение испытаний

3.4.1. Компрессионные испытания проводят в едедующем порядке:

подготовленный в соответствии с требованиями разд. 2 образец грунта в рабочем кольце помещают в направляющий инлиндродометра;

на образец грунта ставят штамп и центрируют его;

закрепляют устройства для измерения вертикальных дефермаций образца грунта симметрично относительно оси питампа;

одометр устанавливают на станину под пресс и центрируют; размещают термометры в соответствии с требованиями п. 1.9; выдерживают образец при температуре испытаний по указаниям п. 2.10.

записывают начальные показания приборов, фиксируют темпе-

ратуру и время начала испытаний.

- 3.4.2. К образцу грунта плавно, не допуская ударов, прикладывают нагрузку первой ступени нагружения, создавая давление, отвечающее требованиям п. 3.2.1.
- 3.4.3. После стабилизации деформаций (в соответствии с п. 3.2.2) увеличивают нагрузку на образец ступенями нагружения в соответствии с указаниями пп. 3.2.1.
- 3.4.4. При испытаниях для определения A_{th} и в после условной стабилизации деформаций на первой ступени нагружения производят оттаивание образца грунта, повышая температуру воздуха в помещении для испытаний и фиксируя при этом деформации образца грунта также до достижения условной стабилизации деформаций. Далее испытания проводят по указаниям пп. 3.4.3 и 3.4.5.
- 3.4.5. На каждой ступени нагружения записывают показания приборов (устройств) для измерения вертикальной деформации образца грунта через 5, 10, 20, 30 и 60 мин от момента приложения нагрузки на данной ступени, далее через 2 ч в течение пре-

бочего дня, а затем 2 раза в сутки (в начале и конце рабочего дня) до достижения условной стабилизации деформаций.

3.5. Обработка результатов

3.5.1. По результатам испытаний для каждой ступени нагружения вычисляют:

абсолютную стабилизированную вертикальную деформацию образца грунта S, мм, с точностью 0,01 мм как среднее арифметическое показаний приборов (устройств) для измерения вертикальных деформаций образца грунта;

относительную стабилизированную вертикальную деформацию образца грунта ε_f или ε_{th} с точностью 0,001 по формулам:

при испытании для определения б:

$$\varepsilon_f = \frac{S}{h},\tag{1}$$

где h — начальная высота образца грунта, мм; при испытании для определения A_{th} и δ :

$$\varepsilon_{th} = \frac{S_t - S_{\pi}}{h_t}, \qquad (2)$$

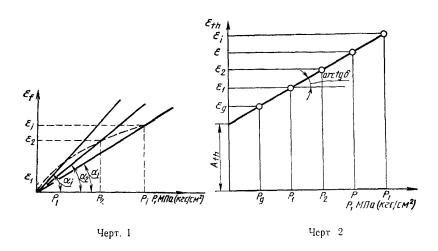
где S_i — абсолютная стабилизированная деформация образца грунта после оттаивания, мм;

 $S_{\rm q}$ — абсолютная стабилизированная деформация образца грунта на первой ступени нагружения (при давлении, равном напряжению от собственного веса грунта на горизонте отбора образца, и до его оттаивания), мм;

 h_1 — высота образца грунта после обжатия (до его оттаивания), мм.

3.5.2. По вычисленным значениям строят график зависимости

$$\varepsilon_f = f(p)$$
 (черт. 1) или $\varepsilon_{th} = f(p)$ (черт. 2),


где ρ — давление в образце на каждой ступени нагружения, МПа (кгс/см²).

3.5.3. Коэффициенты сжимаемости пластичномерэлого грунта $\delta_{f, i}$, МПа $^{-1}$ (см 2 /кгс), определяют как величины, численно равные тангенсам углов наклона α_i прямых, проведенных из начала координат чєрез точки p_i и ε_f , i, с точностью 0,001 МПа $^{-1}$ по формуле

$$\delta_{f,t} = \operatorname{tg} \alpha_t = \frac{\epsilon_{f,t}}{p_t}.$$
 (3)

Примечание. По значению коэффициента ожимаемости $\delta_{f;\ t}$ допускается вычислять модуль деформации $E_t = \frac{\beta}{\delta_{f,\ t}}$, где β — коэффициент, равный 0,8.

3.5.4. Коэффициент оттаивания A_{th} и сжимаемости δ при оттаивании мерзлого грунта определяют по прямой наилучшего приближения к экспериментальным точкам (черт. 2), посгроенной графически или методом наименьших квадратов как отрезок, отсекаемый этой прямой на оси ϵ_{th} и тангенс угла ее наклона к оси p.

4. МЕТОД ОДНООСНОГО СЖАТИЯ

4.1. По результатам испытаний мерэлого грунта методом одно-осного сжатия определяют:

прочность на одноосное сжатие R_c , R_{oc} ; модуль линейной деформации E; коэффициент поперечного расширения v; коэффициент нелинейной деформации A; коэффициент вязкости сильнольдистых грунтов η .

- 4.2. Условия проведения испытаний
- 4.2.1. Для получения характеристики $R_{\rm oc}$ испытания проводят при непрерывном возрастании нагрузки с доведением образца до хрупкого разрушения или до значения относительной продольной деформации $\epsilon \ge 20\%$ за время 20—30 с.

Для получения характеристик R_c , E, A, v, η проводят испытания в условиях ползучести при ступенчато возрастающей нагрузке до достижения незатухающей ползучести.

4.3. Приборы и оборудование

4.3.1. В состав установки для испытаний мерзлого грунта на одноосное сжатие должны входить:

платформы (подвижная и неподвижная) с набором штампов для установки и крепления образца грунта;

механизм для вертикального нагружения образца (п. 1.13);

устройства для измерения продольных и поперечных деформаций (п. 1.14).

Принципиальная схема установки приведена в приложении 8. 4.3.2. Конструкция установки и механизма для вертикального нагружения образца грунта должна обеспечивать:

центрированную передачу нагрузки на образец грунта;

возможность нагружения образца грунта ступенями или непрерывно при постоянной скорости деформирования образца не менее 1 мм/с:

постоянство давления на каждой ступени нагружения; общую нагрузку на образец грунта не менее 30 кН (3 тс); возможность деформации образца не менее 30 мм.

4.4. Подготовка к испытаниям

4.4.1. Подготовленный в соответствии с требованиями разд. 2 образец грунта, извлеченный из кольца пробоотборника, помещают между нижним и верхним штампами и производят следующие операции;

закрепляют паровлагонепроницаемую оболочку на боковых поверхностях штампов:

на образец устанавливают устройства для измерения поперечных деформаций;

образец со штампами помещают на нижнюю неподвижную нлатформу установки и центрируют;

закрепляют устройства для измерения продольных деформаций образца;

- размещают термометры в соответствии с требованиями п. 1.9.
- 4.4.2. После выдерживания образца грунта в установке в соответствии с требованиями п. 2.10 производят предварительное обжатие образца давлением, равным напряжению от собственното веса грунта на горизонте отбора образца (но не более половины условномгновенного значения прочности на одноосное сжатие), в течение 15 с. Затем образец разгружают, записывают показания приборов и фиксируют время начала испытаний.
- 4.5. Проведение испытаний при непрерывном быстром возрастании нагрузки
- 4.5.1. К образцу грунта плавно, не допуская ударов, прикладывают нагрузку, увеличивая ее непрерывно и обеспечивая постоянную скорость деформирования образца не менее 1 мм/с (п. 4.2.1).

4.5.2. Испытания должны продолжаться до момента разрушения образца, если разрушение носит хрупкий характер, или до момента, когда продольная деформация достигнет значения, равного 20% его начальной высоты, если образец деформируется вязко. без видимых признаков разрушения.

4,5.3. В процессе испытаний производят автоматическую запись нагрузки на образец и его деформаций. При отсутствии системы автоматической записи фиксируют нагрузку и высоту образца грунта в момент его разрушения или вязкого деформиро-

вания.

4.6. Проведение испытаний на ползучесть для определения предельно длительного значения прочности на одноосное сжатие и характеристик деформируемости

4.6.1. K образцу грунта плавно, не допуская ударов, прикладывают нагрузку, увеличивая ее равными ступенями нагружения. Время приложения нагрузки на каждой ступени должно быть не более 30 с. На каждой ступени осевое напряжение в образце должно быть постоянным ($\sigma_{z,i}$ =const).

4.6.2. Нагрузку на образец грунта F_i , кН (кгс), на каждой

ступени нагружения определяют по формуле

$$F_i = \pi \sigma_{z,i} d_i^2 / 4, \tag{4}$$

где d_i — средний диаметр образца грунта в момент приложения очередной ступени нагружения, см.

4.6.3. Напряжение $\sigma_{z,\,i}$ МПа (кгс/см²), на каждой ступени нагружения определяют по формуле

$$\sigma_{\mathbf{z},i} = R_{\mathbf{oc}} \, n_i / 10, \tag{5}$$

где R_{oc} — условно-мгновенное значение прочности грунта на одноосное сжатие, определяемое по результатам испытаний при непрерывном быстром возрастании нагрузки, МПа (кгс/см²) (п. 4.8.2);

 n_i — множитель, принимаемый равным порядковому номеру ступени нагружения.

4.6.4. Допускается $\sigma_{z,i}$ определять по формуле

$$\sigma_{z,i} = Rn/5, \tag{6}$$

где R — расчетное сопротивление грунта под подошвой фундамента, определяемое по указаниям приложения 7.

4.6.5. Для обеспечения постоянства осевого напряжения в образце на каждой ступени нагружения дополнительно увеличивают нагрузку F_i на $\Delta F_{i,j}$ при увеличении диаметра образца на 3% (2 мм для образцов диаметром 71,4 мм) с момента начала испытания или предшествующего догружения.

Значение $\Delta F_{i,j}$, МПа (кгс/см²), определяют по формуле

$$\Delta F_{t,l} = \frac{\pi}{4} \sigma_{z,t} (d_{t,l}^2 - d_{t,j-1}^2), \tag{7}$$

где $d_{i,j}$ — диаметр образца в момент догружения, см; $d_{i,j-1}$ — диаметр образца в момент приложения ступо

а_{1, 3-1} — диаметр ооразца в момент приложения ступени нагружения или предшествующего догружения, см.

- 4.6.6. Продолжительность действия каждой ступени нагружения должна составлять 24 ч, после чего нагрузку увеличивают в соответствии с указаниями пп. 4.6.2—4.6.4.
- 4.6.7. На каждой ступени нагружения записывают показания устройств для измерения деформаций через интервалы времени, принимаемые по указаниям п. 3.4.5, и строят график зависимости продольной деформации образца грунта от времени кривую ползучести (черт. 3).
- 4.6.8. Испытание продолжают до тех пор, пока процесс деформирования образца не перейдет в стадию незатухающей ползучести (стадия незатухающей ползучести считается достигнутой, когда деформации образца будут развиваться с постоянной или увеличивающейся скоростью) или продольная деформация образца не превысит 20% его первоначальной высоты.

Скорость деформации считают постоянной, если в трех последовательных интервалах измерений деформация изменяется не более чем на 0,02 мм за 2 ч.

4.7. Проведение испытаний на ползучесть для определения коэффициента вязкости сильнольдистых грунтов

4.7.1. К образцу грунта прикладывают нагрузку в соответствии

с требованиями п. 4.6.1.

4.7.2. Давление на образец на первой ступени нагружения и его приращение на каждой последующей ступени должны быть приняты одинаковыми в пределах:

0,02—0,03 МПа (0,2—0,3 кгс/см²) при температуре испытаний

минус 1°С и выше;

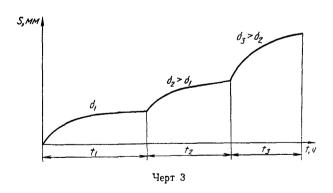
- 0,04—0,05 МПа (0,4—0,5 кгс/см²) при температуре испытаний ниже минус 1°C.
- 4.7.3. Для обеспечения постоянства осевого напряжения в образце на каждой ступени нагружения выполняют требования п. 4.6.5.
- 4.7.4. Каждую ступень нагружения выдерживают до условной стабилизации продольной деформации образца грунта, принимаемой по указаниям п. 3.2.2, или до достижения стадии незатухающей ползучести.
- 4.7.5. На каждой ступени нагружения записывают показания приборов для измерения деформаций образца грунта через интервалы времени, принимаемые по указаниям п. 3.4.5.

4.7.6. В процессе испытания для каждой ступени нагружения: строят кривую ползучести (черт. 3);

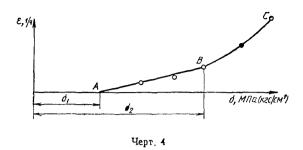
па кривой ползучести выделяют линейные участки, отражающие деформирование грунта с постоянной скоростью, если оно имело место при данном значении напряжения;

для выделенных линейных участков определяют значение скорости деформирования образца v_i , мм/ч, по формуле

$$v_i = \Delta S_i / \Delta t_i, \tag{8}$$


где ΔS_i — разность продольных деформаций образца групга в конце и начале периода деформирования грунта с постоянной скоростью на i-й ступени нагружения, мм;

 Δt_i — продолжительность периода деформирования групта с постоянной скоростью на i-й ступени нагружения, ч; по вычисленным значениям v_i определяют значения скорости относительного деформирования образца грунта ε , 1/ч, на i-й ступени нагружения по формуле


$$\varepsilon_i = v_i/h,$$
 (9)

где h — начальная высота образца грунта, мм.

4.7.7. На основании полученных значений ε_i строят реологическую кривую, отражающую зависимость $\varepsilon_i = f(\sigma_i)$ (черт. 4).

Реологическую кривую на начальном участке аппроксимируют прямой наилучшего приближения к экспериментальным точкам графически или методом наименьших квадратов.

4.7.8. Испытания заканчивают, когда на начальном линейном участке реологической кривой получено не менее трех экспериментальных точек и столько же за его пределами после перехода рассматриваемой зависимости в нелинейную.

Если указанное условие не выполняется, то необходимо увеличить число ступеней нагружения.

- 4.8. Обработка результатов
- 4.8.1. Обработку результатов испытаний выполняют одновременно с проведением самих испытаний и переход к следующему этапу испытаний (ступени нагружения, догружению и т. д.) осуществляют после обработки результатов на предыдущем этапе.
- 4.8.2. По результатам испытаний при непрерывном быстром возрастании нагрузки (п. 4.5) определяют условно-мгновенное значение сопротивления грунта одноосному сжатию $R_{\rm oc}$, МПа (кгс/см²), по формулам:

$$R_{\rm oc} = F/A_0$$
 — при хрупком разрушении образца; (10)

$$R_{\text{oc}} = F/A_m$$
 — при пластическом разрушении образца, (11)

- где A_0 и A_m соответственно начальная и конечная (после проведения испытания) площади поперечного сечения образца, определяемые в соответствии с п. 2.7, см²;
 - F разруніающая нагрузка, определяемая по указанням в. 4.5.2, кН (кгс).
- 4.8.3. Предельно длительное значение прочности грунта на одноосное сжатие R_c , МПa (кгс/см 2), определяют по результатам

испытаний на ползучесть, проведенных в соответствии с п. 4.6, по формуле

$$R_{c} = 0.6 \, \sigma_{k-1}, \tag{12}$$

где σ_{k-1} — напряжение в образце грунта на ступени нагружения, предшествующей k-й ступени, на которой процесс деформирования образца переходит в стадию незатухающей ползучести (п. 4.6.8), МПа (кгс/см²).

4.8.4. По результатам этих же испытаний (п. 4.6) определяют также характеристики деформируемости мерзлого групта E, A и у

в соответствии с указаниями приложения 9.

4.8.5. По результатам испытаний, проведенных в соответствии с п. 4.7, определяют коэффициент вязкости сильнольдистых грунтов η , МПа·ч [кгс/(см²·ч)] с точностью 10 МПа·ч [кгс/(см²·ч)] по формуле

$$\eta = \frac{\sigma_1 - \sigma_2}{3}, \tag{1}$$

где σ₁ — напряженне, соответствующее точке .1 пересечення динейного участка реологической кривой (п. 1.7.7) с осью абсцисс (черт. 4), МПа (кгс/см²);

 σ_2 — напряжение, соответствующее конечной точке B линейного участка реологической кривой, МПа (кгс/см²):

ε -- то же, что и в п. 4.7.6.

5. МЕТОД ИСПЫТАНИЯ ШАРИКОВЫМ ШТАМПОМ

5.1. По результатам испытаний шариковым штампом определяют предельно длительное значение эквивалентного сцепления мерзлого грунта.

5.2. Условия проведения испытаний

5.2.1. Предельно длительное значение эквивалентного сценления мерзлого грунта C_{eq} следует определять по глубине погружения шарикового штампа в образец грунта при температуре испытаний не ниже минус 5°C.

5.2.2. Нагрузку F, кН (кгс), на шариковый штамп следует на-

значать по формуле

$$F = 0.18 \, d_b^2 R, \tag{14}$$

где d_b — диаметр шаринового штампа, мм;

R — расчетное сопротивление грунта под подошвон фунжамента, принимаемое по указаниям и 3.2.1, МПа (кгс/см²). При назначении нагрузки должно соблюдаться условие

$$0.005 d_b < S_{15} < 0.05 d_b, \tag{15}$$

где S_{15} — глубина погружения шарикового штампа в образец грунта через 15 мин после приложения нагрузки.

При несоблюдении условия (15) следует произвести корректи-

ровку нагрузки.

5.2.3. Испытания проводят до условной стабилизации деформаций образца грунта под шариковым штампом (п. 3.2.2). В обоснованных случаях допускается проводить испытания в ускоренном режиме, ограничив продолжительность испытаний 8 ч.

5.3. Приборы и оборудование

5.3.1. В состав установки для проведения испытаний образца грунта методом шарикового штампа должны входить:

шариковый штамп с опорной плитой и подвижным столиком; плоский штамп для предварительного обжатия образца грунта; механизм для вертикального нагружения образца грунта (п. 1.13);

устройство для измерения глубины погружения шарикового штампа.

Принципиальная схема установки приведена в приложении 10. 5.3.2. Диаметр шарикового штампа должен быть (22±2) мм.

- 5.3.3. Измерительные устройства должны обеспечивать измерение глубины погружения шарикового штампа в грунт с погрешностью не более 0.01 мм.
 - 5.4. Проведение испытаний
- 5.4.1. Образец грунта в кольце-пробоотборнике, подготовленный в соответствии с требованиями разд. 2, обжимают через плоский штамп давлением, равным напряжению от собственного веса грунта на горизонте отбора образца, по указаниям п. 4.4.2. После обжатия образец разгружают.
- 5.4.2. Далее образец устанавливают на подвижный столик установки и производят следующие операции:

покрывают образец защитным кружком из глянцевой или парафинированной бумаги, в котором должно быть вырезано отверстие диаметром, на 2—3 мм превышающим диаметр шарикового щтампа;

устанавливают на образец грунта шариковый штамп и центрируют его, фиксируя момент касания шариком поверхности грунта по показаниям приборов для измерения деформаций образца грунта;

закрепляют стержень штампа стопорным винтом;

фиксируют начальные показания приборов;

передают нагрузку на образец и фиксируют время начала ислытаний.

5.4.3. Отсчеты по индикатору деформаций производят через

промежутки времени по указаниям п. 3.4.5.

5.4.4. Испытания заканчивают после достижения условной стабилизации глубины погружения шарикового штампа или, осли испытание проводят в ускоренном режиме, через 8 ч после пачала испытаний.

- 5.4.5. Допускается проводить повторное испытание на том же образце при соблюдении условия: центр следующего погружения шарикового штампа должен отстоять от границ предыдущих отпечатков шарика и от края образца не менее чем наполовину диаметра шарика.
 - 5.5. Обработка результатов
- 5.5.1. По показаниям устройств для измерения деформаций определяют глубину погружения шарикового штампа в групт з конце испытания (по достижении условной стабилизации деформаций или через 8 ч при ускоренном режиме испытания).
- 5.5.2. Предельно длительное значение эквивалентного сцепления мерэлого грунта C_{eq} МПа (кгс/см²), определяют с точностью 0,01 МПа (0,1 кгс/см²) по формуле

$$C_{eq} = 0.06k \cdot \frac{F}{d_b \cdot S_b}, \tag{16}$$

где F — нагрузка на шариковый штамп, кH (кгс);

 d_b — диаметр шарикового штампа, мм (см);

- S_b глубина погружения шарикового штампа в грунт в конце испытаний, мм:
- k безразмерный коэффициент, равный 1 при испытапиях до условной стабилизации деформаций и 0,8 при ускоренном режиме.

6. МЕТОД ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ МЕРЗЛОГО ГРУНТА СДВИГУ ПО ПОВЕРХНОСТИ СМЕРЗАНИЯ С МАТЕРИАЛОМ ФУНДАМЕНТА

- 6.1. Условия проведения испытаний
- 6.1.1. Испытания мерзлого грунта на сдвиг по поверхности смерзания с материалом фундамента проводят в одноплоскостных срезных приборах с фиксированной поверхностью сдвига.
- 6.1.2. Для испытаний используют образцы групта нарушенного сложения с заданными значениями плотности и влажности.
- 6.1.3. Образец материала фундамента изготавливают с учетом требований приложения 11 диаметром, равным диаметру образна групта, и высотой, определяемой конструкцией срезного прибора.

- 6.1.4. Испытания выполняют путем приложения к образцу грунта, смороженному с образцом материала фундамента, касательной нагрузки, увеличиваемой ступенями нагружения при одновременном воздействии на образец грунта постоянной нагрузки, нормальной к плоскости сдвига.
- 6.1.5. Каждую ступень нагрузки прикладывают после условной стабилизации деформаций сдвига образца грунта на предшествующей ступени, принимаемой по указаниям п. 3.2.3.
 - 6.2. Приборы и оборудование
- 6.2.1. Для проведения испытаний мерзлого грунта на сдвиг по поверхности смерзания с материалом фундамента применяют:

одноплоскостной срезной прибор с фиксированной плоскостью сдвига;

механизмы для создания нормального и сдвигающего усилий (п. 1.13);

устройства для измерения деформаций сдвига образца грунта (п. 1.14);

формы для смораживания образца грунта с образцом материала фундамента.

6.2.2. Конструкция срезного прибора должна удовлетворять требованиям ГОСТ 12248 и обеспечивать усилие 10⁴ H (10³ кгс).

6.2.3. Формы для смораживания образца грунта с образцом материала фундамента изготавливают из материала низкой теплопроводности (например, органического стекла). Толщина стенок формы должиа быть не менее 20 мм.

Конструкция формы должна обеспечивать возможность промораживания образца грунта через его торцевые поверхности и исключать отжатие и отток воды из грунта во время промораживания.

Принципиальная схема конструкции формы приведена в приложении 12.

- 6.3. Подготовка к испытаниям
- 6.3.1. В форму для смораживания помещают образец материала фундамента и образец грунта в рабочем кольце срезного прибора. В зависимости от заданных программой испытаний условий промораживания крышку формы устанавливают: при промерзании через грунт снизу, при промерзании через материал фундамента сверху. При отсутствии данных промораживание производят через образец материала фундамента.
- 6.3.2. Форму устанавливают в помещение с заданной отрицательной температурой воздуха.
- 6.3.3. В процессе промораживания измеряют температуру контрольного образца грунта, в котором помещают термоизмерительное устройство.

Промораживание заканчивают, когда температура контрольного образца грунта достигнет значения температуры воздуха.

6.3.4. Образец групта, смороженный с образцом материала фундамента, извлекают из формы, герметизируют и сохраняют до испытаний в соответствии с требованиями пп. 2.9 и 2.10.

6.4. Проведение испытаний

6.4.1. Подготовленный к испытаниям образец помещают в срезную коробку прибора и производят следующие операции:

закрепляют образец так, чтобы плоскость смерзания групта и материала располагалась в зазоре между подвижной и пеподвижной частями прибора, составляющим 1-2 мм;

устанавливают на образец грунта штамп для передачи пог

мального давления и центрируют его;

закрепляют устройства для измерения деформации сдвига образца грунта;

срезной прибор устанавливают на станину под пресс и цент-

рируют;

размещают термометры в соответствии с требованиями п. 1.9; к образцу плавно прикладывают вертикальную пагрузку, со-

здавая нормальное давление;

освобождают подвижную и неподвижную части срезной коробки, присоединяют к подвижной части механизм для создания касательной нагрузки, записывают начальные показания устройств для измерения деформаций сдвига и фиксируют время начала испытаний;

на образец плавно передают первую ступень касательной на-

грузки.

6.4.2. Значение нормального давления, при котором проводят испытание, определяют программой испытаний. При отсутствии данных это давление принимают равным 0,1 МПа (1,0 кгс/см²).

6.4.3. Значение первой ступени касательной нагрузки T_1 , кH (кгс), определяют по формуле

$$T_1 = \tau_1 / A_{af} \tag{17}$$

где τ_1 — касательное напряжение, принимаемое по табл. 2, МПа (кгс/см²);

 A_{at} — площадь смерзания образца грунта с образцом материала фундамента, см².

6.4.4. Далее увеличивают касательную пагрузку ступенями нагружения ΔT , к \mathbf{H} (кгс), значения которых определяют по формуле

$$\Delta T = \Delta \tau A_{at}, \tag{18}$$

где $\Delta \tau$ — приращение касательного напряжения на каждой ступени, принимаемое по табл. 3, МПа (кгс/см²).

Таблица 2

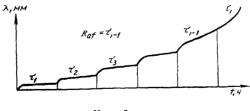

Значение касательного напряжения au_1 , МПа (кгс/см²), на первой ступени нагружения при температуре грунта T, °C Грунты -0.3-0,5 --2 --3 -3.5--6 -8 --10 -1 -1,5-2,5-4 Песчаные 0.04 0,20 0.23 0 26 0,31 0,3 0.06 0,09 0.11 0,14 0,16 81.0 (0,9)(2,6)(3 1)(0.4)(0,6)(1,1)(1,4)(1,6)(1,8)(2,0)(23)(3,5)0,2 Пылевато-глина-0,24 0,03 0.04 0,07 0.09 6^{11} 0,13 0.14 0,16 0,18 0,21 стые (1,1) (0,7)(1,8)(2.1)(2,4)(2,7)(0,3)(0,4)(0,9)(1,3)(1,4)(1,6)

Таблица 3-

Темлература <i>Т</i> испытываемого грунта, °С	Приращение стуленей касательного напряжения Ат МПа (кгс/см²)
От 0 до —1	0,01 (0,1)
Ниже —1 до —3	0 02(0,2)
Ниже —3 до —6	0,03 (0,3)
Ниже —6	0,04 (0 4)

При определении $\Delta \tau$ учитывают уменьшение площади сдвиг в течение испытания.

- 6.4.5. На каждои ступени нагружения записывают показания приборов (устройств) для измерения деформаций сдвига через интервалы времени, принимаемые по указаниям п. 3.4.5 до достижения условной стабилизации деформации сдвига.
- 6.4.6. Если на очередной ступени нагружения стабилизация деформации сдвига не наблюдается, то нагрузку выдерживают до возникновения деформирования с постоянной скоростью, которое считают достигнутым, когда скорость деформирования в течение двух следующих друг за другом 12-часовых интервалов сохраняется постоянной.
- 6.4.7. Испытание заканчивают, когда деформирование с постоянной скоростью установлено не менее чем для двух ступеней касательной нагрузки.
- 6.4.8. Пробы для определения влажности грунта после испытания отбирают из зоны сдвига.
 - 6.5. Обработка результатов
- 6.5.1. В процессе испытания строят график зависимости деформаций сдвига образца грунта во времени при различных значениях касательного напряжения (черт. 5).

Черт. 5

C. 22 FOCT 24586-90

- 6.5.2. Предельно длительное значение сопротивления мерзлого грунта сдвигу по поверхности смерзания с материалом фундамента R_{af} определяют как наибольшее касательное напряжение, при котором произошла стабилизация деформации сдвига при заданном нормальном давлении.
- $6.5.\overline{3}$. При определении R_{af} вводят поправку на трение в срезном приборе по заранее построенной тарировочной кривой.

ПРИЛОЖЕНИЕ 1 Справочное

пояснения терминов, применяемых в настоящем стандарте

Коэффициент сжимасмости б— показатель деформируемости, характеризующий осадку пластичномерзлого или оттанвающего грунта под нагрузкой.

Коэффициент оттаивания A_{th} — показатель деформируемости, характеризу-

ющий осадку мерзлого грунта при его оттанвании без нагрузки.

Модуль линейной деформации E — показатель линейной деформируемости мерзлого грунта, отражающий отношение напряжений к вызванным относительным продольным деформациям.

Коэффициент нелинейной деформации A — показатель, характеризующий вависимость деформаций ползучести мерзлого грунта от напряжений и вре-

мени.

Коэффициент поперечного расширения v — показатель деформируемости, характеризующий отнощение продольных и поперечных деформаций грунта.

Коэффициент вязкости у — показатель деформируемости, характеризующий скорость пластичновязкого течения (в стадии незатухающей ползучести), сильнольдистого мерзлого грунта, зависящий от времени действия нагрузки и значения отрицательной температуры грунта.

Эквивалентное сцепление C_{eq} — комплексная характеристика прочности мерзлого грунта, учитывающая как собственно сцепление, так и наличие внут-

реннего трения.

Сопротивление мерзлого грунта сдвигу по поверхности смерзания с материалом фундамента R_{af} — характеристика прочности мерзлого грунта, определяемая значением касательного напряжения, при котором происходит разрушение (сдвиг).

Ползучесть — развитие деформаций грунта во времени при неизменном на-

пряжении.

Стадия незатухающей ползучести — процесс деформирования грунта с по-

стоянной или увеличивающейся скоростью при неизменном напряжении.

Параметр E_0 — параметр $f(\sigma)$, определяемый отношением постоянных напряжений, действовавших в течение 1 ч, к высванным относительным продольным деформациям. Единица измерения — МПа ч [кгс/(см²-ч)].

Параметр A_0 — параметр $f(\sigma)$, численно равный относительной деформации в степени m при времени действия постоянных напряжений в течение 1 ч.

Единица измерения — $M\Pi a \cdot q [krc/(cm^2 \cdot q)].$

Коэффициент нелинейности по напряжениям m — показатель степени в

степенной зависимости напряжений о от деформаций в.

Коэффициент нелинейности по времени α — показатель ползучести грунга, отражающий характер развития деформаций $\varepsilon(t)$ во времени в виде степенной функции, в которой он является показателем степени

$$[\varepsilon(t_1)]/[\varepsilon(t_2)]=(t_1't_2).$$

Организация	(лаборатория)	
-------------	---------------	--

Объект _____

Сооружение _____

ЖУРНАЛ

характеристик исследуемого грунта

Вид и	спытан	ия _									-						
Дата	испыта	ния на	вчало _				окончан	ние _									
	_				}	Каракте	ристик	и обра:	зца гру	нта до	испыт	аний					
д (шур	၁့	монолнта,				текстуры			началь вы образ			*	Влажность, доли еди- чицы		Льдьстость, доли еди- ницы		
Ночер выработки фа скважичы)	Температура грунта на глубине 10 м T ,	Глубина отбора мон м	Дата отбора	Ночер образца	Вид грунта	Тип криогенной тек грунта	Высота ћ, мм	Диаметр <i>d</i> , мм	Илощадь поперсч- ного сечения А, см?	Объем V, см³	Масса образца т, г	Плотность природная р, г/см³	суммарная W	за счет ледяных включений $W_{_{1}}$	сучмарная 1,	за счет ледяных включсний $W_{\rm rc}$	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	V7	18

ЖУР НАЛ испытаний мерэлых грунтов методом компрессионного сжатия

											·		How	ер обр	азца	
	-	-13	азец			датч	еты по чикам омаций	Д	бсолютн еформац бразца S мм	ия	деформа- ДЅ, мм	деформа- с учетом мм	8 N	-фоф-		
ер опыта	и испытаний	Температура испы таний <i>T</i> , °C	ер ступени ужения	вление на обра МПа (кгс/см²)	я снятия та, <i>t</i> , ч	ія от начала at_L , ч	1	2		атчи- IM	ния	равка на деф прибора ΔS,	лютная образца лвки S,	ота образца в злом состоянии м	сительна я д е ія образца в _і	сечанис
Номер	Дата	Темп	Номер (Давл р, М	Время	Время			1	2	средняя	Попр	Абсо ция попра	Высот мерэлс h, мм	Относи	Прим
11	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Руководитель л	абораторин				
,		подпись, иниц	циалы, фамилия		
Ответственный	исполнитель				
		полжность по	лпись инициалы.	фамилия	

ЖУРНАЛ

испытаний мерзлых грунтов на одноосное сжатие

1. Испытания при непрерывном быстром возрастании нагрузки

												Номер с	бразца	
			188 188	эка			Диаметр образца после испытания d, мм				eye.		≈ Γ/A,	
Howep ownra	Дата испытаний	Температура испытаний <i>Г</i> , °C	Характер деформирова ния образца	Разрушающая нагрузка F, кН (кгс)	Время снят ия отсчета <i>t,</i> ч	Время от начала опыта t_1 , я	t	2	3	средний	Средняя площадь се ния образца после испытания A, см²	Высота образца в мочент разрушения $h_{i}, \text{мм}$	Усдовно мгновенное сопротивление одно-осполу сжатию R_{oc}	Примечание
1	2	3_	4	5	6	7	.8	9	10	11	12	13	14	15

Руководитель	лаооратории
	подпись, инициалы, фамилия
Ответственный	исполнитель
	ДОЛЖНОСТЬ ПОЛЦИСЬ НЕИЦИЯЛЫ ФЕМИЛИЯ

ЖУРНАЛ испытаний мерзлых грунтов на одноосное сжатие

2. Испытания на ползучест

											F	Томер	образца	1	
								Отсчеты	по при	борам д	ля изме	рения д	еформац	ин	
	}		13e1			nı	одольн	ЯХ				попереч	ных		
Дата испытаний	Температура испытаний Г, •С	Номер ступени нагруженяя	Давленис на обр р, МПа (кгс/см²)	Время снятия отсчета t, ч	Время от началя опыта $t_{t'}$ ч	1	2	средисе значение	1	2	3	4	5	6	среднее значение
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Дата испытани	Дата испытани Температура испытаний Г,	Дата испытани Температура испытаний Г, • Номер ступени нагружения	Дата испытани Температура испытаний Г, • Номер ступени нагружения Давление на о	Дата испытан Температура испытаний Г, Номер ступен нагружения р, МПа (кгс/р, МПа (кгс/	Дата испытан Г. Температура испытаний Г. Номер ступен нагружения Давление на р. МПа (кгс) Время снятия отсчета t, ч	Дата испытаний Температура испытаний Г, •С Номер ступени нагружения Давление на обра р, МПа (кгс/см²) Время снятия отсчета t, ч	Дата испытаний Г. «С Пемпература пспытаний Г. «С Номер ступени нагруженяя Давление на обрызец р. МПа (кгс/см²) Время снятия отсчета г. ч время от началя опыта г. ч	Дата испытаний Г, •С Температура в пспытаний Г, •С Номер ступени нагружения в образец р, МПа (кгс/см²) Время снятия от началя отсчета t, ч Время от началя опыта t _t , ч	Дата испытаний Г, «С Пемпература пспытаний Г, «С Номер ступени нагружения Давление на обрызец р, МПа (кгс/см²) Время снятия Отсчета f, ч Время от началя опыта f, ч пента бороворовороворовороворовороворовороворо	Дата испытаний Г, •С Температура попытаний Г, •С Номер ступени нагружения Время снятия от началя опыта t, ч Время от началя опыта t, ч Время от началя опыта t, ч	Дата испытаний Температура пспытаний Г, •С Номер ступени нагруженяя Давление на образец р, МПа (ктс/см²) Время от началя отсчета t, ч время от началя отсчета t, ч Время от началя отсчета t, ч Температура Павление Время ступени Время от началя отсчета t, ч Температура Павление Значение Значение Среднее Сред	Дата испытаний Г. •С Температура испытаний Г. •С Номер ступени нагружения Время стятия отчета t, ч опыта tt, ч	Дата испытаний Температура испытаний Г, •С Номер ступени нагружения Время стятия Отсчета f, ч Время от начала опыта f, ч Средние значение с с с с с с с с с с с с с с с с с с с	Дата испытаний Температура испытаний Г, •С Номер ступени нагружения Время снятия отсчета t, ч Время от начала опыта tt, ч время от начала опыта tt, ч среднее значение среднее значение среднее значение

	····		<u> </u>						Про	должен ие
Продольная деформация. S, мм	Поперечная деформация S _x , мм	Относительная продоль- ная деформация в	Относительная поперечная деформация $e_{\mathbf{x}}$	Средняя площадь поперечного сечения образца A^{\prime}_{r} см 2	Приращение площадя поперечного сечения образца ΔA, см²	Время, между отсчетами t,t,1, ч	Приращение продольной деформации $S_i \longrightarrow S_{i-1}$, мм	Скорость продольной деформации v, мм/ч	Скорость относительной продольной деформа- ции е, 1/ч	Примечание
18	19	20	21	22	23	24	25	26	27	28

Руководитель	лаооратории	подпись, и	нициалы,	фамилия		-	
Ответственный	нсполнитель	лол жиость	поличеь	NOMILUS TEL	фанилия		<u> </u>

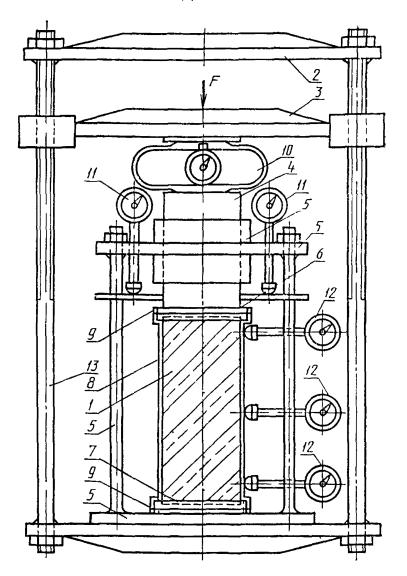
						Н	омер образиз]
Номер опыта	Дата испытаний	Температура испытаний 7, °C	Время снятия отсчета f, ч	Время от начила опыта t_i , ч	Отсчет по датчику деформаций	Глубина погружения шарикового штампа S_b , мм	Предельно длительное значение эквивалент- ного сцепления $C_{e1},\ M\Pi a\ ({\rm krc/cm}^2)$	Примечание
1	2	3	4	5	6	7	8	9
								,

Руководитель	лаборатории	подпись, инициалы, фамилия	
Ответственный	исполнитель	должность, подпись, инициалы, фамилия	

ЖУРНАЛ

испытаний для определения сопротивления мералого грунта сдвигу
по поверхности смерзания с материалом фундамента

иал об	разца	фундамент	ra								Номер	образця_	·
Дата испытаний	Температура испыта- ний T, °C	Давление на образец грунта р, МПа (кгс/см²)	Номер ступени каса- тельной нагрузки	Касательное напряжение т, МПа (кгс/см²)	Время снятия отсчета f, ч	Время от начала опыта 👣 ч	Время между отсче- тами t ₁ —t ₁₋₁ , ч	Отсчет по дат інку деформаций	Абсолютная деформа- ция образца S, мм	Приращение деформа- ций S _t S _{t-1} , мм	Скорость деформации э, мм/сут	Температура контроль- ного образца T_{c} , °C	Примечание
2	3	4	5	6	7_	8	9	10	11	12	'13	14	15
										l			
	Дата испытаний	Дата испытаний Температура испыта- ний T, °C	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см*)	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см Номер ступени каса- тельной нагрузки	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см²) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (кгс/см²)	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см²) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (кгс/см²) Время снятия огсчета t, ч	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см²) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (кгс/см²) Время снятия оссчета t, ч	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см²) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (кгс/см²) Время снятия оссчета t, ч Время от начала опыта t, ч	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см ⁴) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (кгс/см ²) Время снятия отсчета f, ч Время пежду отсче- тами f ₁ —f ₁₋₁ , ч	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (ктс/см!) Номер ступени каса- тельной нагрузки Касательное напряжение т, МПа (ктс/см!) Время снятия оссчета f, ч Время между отсче- тами ti-ti-1, ч Отсчет по дат ику деформаций деформаций Абсолютная деформа- ция образца S, мм	Дата испытаний Температура испыта- ний Т, оС Давление на образец грунта р, МПа (кгс/см!) Номер ступени каса- гельной нагрузки Касательное напряжение т, МПа (кгс/см!) Время снятия оссчета f, ч Время от начала опыта f!, ч Отсчет по дат ику деформаций деформаций Лриращение деформа- ция образца S, мм приращение деформа-	Дата испытаний Температура испыта- ний Т, °C Давление на образец грунта р, МПа (кгс/см²) Номер ступени каса- гельной нагрузки Касательное напряжение т, МПа (кгс/см²) Время снятия отсчета f, ч Время от начала опыта f, ч Отсчет по дат ику деформаций Абсолютная деформа- ция образца S, мм Приращение деформа- пния образца S, мм Скорость деформации	Дата испытаний Температура испыта- ний Т, °C Павление на образец грунта р, МПа (кгс/см²) Номер ступени каса- тельной нагрузки Время снятия опечета t, ч Время от начала опыта t₁, ч Отсчет по дат инку деформаций Приращение деформа- ция образца S, мм Скорость деформа- пий S₁-S₁-1, мм Скорость деформа- пий S₁-S₁-1, мм Температура контроль- ного образца Те, ч Скорость деформации образца


Руководитель лаборатории	подпись, инициалы, фамилия
Ответственный исполнитель	должность, подпись, инициалы, фамилия

ЗНАЧЕНИЯ R, МПа (кгс/см2)

Таблица 4

												пца			
	Температура испытаний <i>T</i> , °C														
Грунты	0,3	← 0,5	<u>-1</u>	-1,5	-2	⊢2,5	-3	-3,5	-4	6	8	—10			
При льдистости грунтов $i_1 < 0,2$ 1. Пески средней крупности 2. Пески мелкие и ылеватые 3. Супеси 4 Суглинки и глины При льдистости грунтов $i_1 \ge 0,2$ Все виды грунтов, указанные в пп. 1—4	0,55 (5,5) 0,45 (4,5) 0,3 (3) 0,25 (2,5)	0,95 (9,5) 0,7 (7) 0,5 (5) 0,45 (4,5)	1,25 (12,5) 0,9 (9) 0,7 (7) 0,55 (5,5)	1.45 (14,5) 1,1 (11) 0,8 (8) 0 65 (6,5) 0,5 (5)	1,6 (16) 1,3 (13) 1,05 (10.5) 0,8 (8) 0,6 (6)	1,8 (18) 1,4 (14) 1,15 (11,5) 0,9 (9)	1,95 (19,5) 1,6 (16) 1,30 (13) 1,0 (10) 0,75 (7,5)	2,0 (20) 1,7 (17) 1,40 (14) 1,1 (11) 0,85 (8,5)	2,2 (22) 1,8 (18) 1,5 (15) 1,2 (12) 0,95 (9,5)	2,6 (26) 2,2 (22) 1,9 (19) 1,55 (15,5) 1,25 (12,5)	2,95 (29,5) 2,55 (25,5) 2,25 (22,5) 1,9 (19) 1,55 (15,6)	3,3 (33) 2,86 (23,5) 2,5 (25) 2,2 (22) 1,75 (17,5)			

принципиальная схема, установки для испытания ОБРАЗЦА ГРУНТА НА ОДНООСНОЕ СЖАТИЕ

1 — образец грунта, 2 — неподвижная платформа, 3 — под вижная платформа, 4 — шток 5 — направляющее устрой ство, 6 — верхний штамп, 7 — нижний штамп, 8 — паровла гонепроницаемая оболочка, 9 — резиновое прижимное коль цо, 10 — динамометр, 11 — измеритель продольных деформаций, 12 — измеритель поперечных деформаций 13 — про дольная тяга

ПРИЛОЖЕНИЕ 9 **Рекомендиемое**

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ДЕФОРМИРУЕМОСТИ МЕРЗЛОГО ГРУНТА ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ на одноосное сжатие

1. Модуль линейной деформации Е и коэффициент нелинейной деформании А определяют из зависимости. Устанавливающей связь между относительными продольными деформациями є, напряжениями о и временем действия паrрузки t

$$\varepsilon(\sigma, t) = f(\sigma) t^{\alpha},$$
 (19)

где $f(\sigma)$ — функция напряжений σ для времени t их действия, равного 1 ч, которую принимают в виде: равного 1 ч, которую принимают в виде: $f(\sigma) = \sigma/E_0$ — для модели линейно деформируемого основания;

 $f(\sigma) = (\sigma/A_0)^{-1/m}$ —для модели нелинейно деформируемого основания,

здесь E_0 и A_0 — параметры функции $f(\sigma)$;

т — коэффициент нелинейности по напряжениям.

2. Предельно длительные значения E и A вычисляют по формулам:

$$E = E_0 t_u^{\alpha}; \qquad A = A_0 t_u^{\alpha}, \tag{20}$$

где t_u — время, равное сроку службы здания или сооружения и принимаемое $t_u = 50$ лет = 4,38 · 10⁵ ч; а -- коэффициент нелинейности во времени.

3. Для установления зависимости (19) исходные данные испытаний (п. 4.6) обрабатывают в соответствии с теорией наследственной ползучести. Используя кривую ползучести (п. 4.6.7), последовательно вычисляют ряд значений $\epsilon_{i,j}$, имеющих смысл деформаций, которые развились бы под действием постоянного напряжения $(i=1, 2, \ldots)$, соответствующего напряжению *i*-й ступени нагружения, за время t_i . Вычисления проводят по формуле

$$\epsilon_{i,j} = \epsilon_{i-1,j} + \Delta \epsilon_{i,j} \,, \tag{21}$$

где $\varepsilon_{i-1,j}$ — полная относительная продольная деформация на предшествующей ступени нагружения в момент времени (вычисленная по этой формуле ранее при $\varepsilon_{0,j} = 0$);

Δε_{1, j} — приращение относительной деформации, определяемое по кривой ползучести (п. 4.6.7) и представляющее собои расность между деформацией, накопленной к моменту, когдя i-я ступень нагрузки действовала в течение времени t_{i} , и деформацией, накопленной к началу действия і-й ступени нагрузки

Моменты времени t, назначают одинаковыми для каждой ступени нагружения с учетом указаний п. 3.4.5.

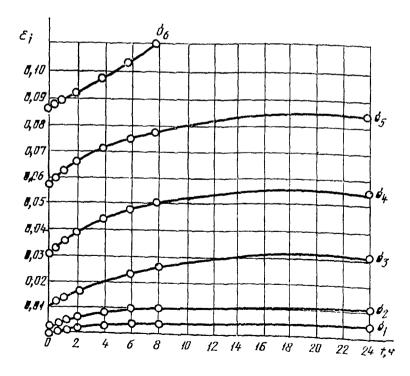
Результаты представляют в виде семейства кривых ползучести при постоянных напряжениях о (черт. 7).

C. 34 FOCT 24586-90

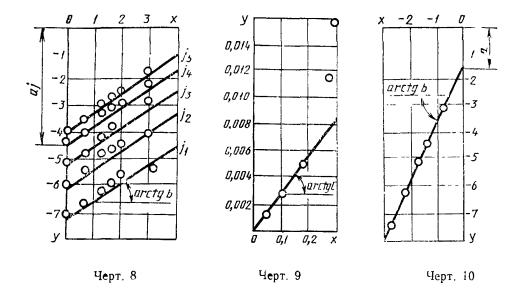
4. Для определения параметра α и набора значений $f(\sigma_1)$ полученные значения ε_i , j представляют в виде семейства параллельных прямых в неординатах $x = \ln t$, $y = \ln \sigma_i$ (черт. 8). Далее α и $f(\sigma_i)$ вычисляют по формулам:

$$\alpha = b; \qquad f(\sigma_i) = e^{a_i}, \tag{22}$$

где a_i , и b — параметры, определяемые графически или способом наименыших квадратов по указаниям п. 8.


5. Для модели линейно деформируемого основания набор значений $f(\sigma_i)$ аппроксимируют прямой в координатах $x = \sigma_i$; $y = f(\sigma_i)$ (черт. 9) и вычисляют значение E_0 по формуле

$$E_0 = 1/c$$
, (23)


где с — параметр, определяемый графически или способом наименьших квадратов по указанням п. 9.

6. Для модели нелинейно деформируемого основания набор значений $f(\sigma_i)$ аппроксимируют прямой в координатах $x = \ln \sigma_i$; $y = \ln f(\sigma_i)$ (черт. 10) и вычисляют значения A_0 и m по формулам:

$$A_0=e^{-a}; \qquad m=1/b,$$
 (24)

Черт. 7

где а и b — параметры, определяемые графически или способом наименьших квадратов по указаниям п. 10

7. Қоэффициент поперечного расширения ν определяют из зависимос и устанавливающей связь между относительными продольными ε и поперечными деформациями ε_{τ}

$$\varepsilon_{x} = v\varepsilon$$
. (25)

Для определения ν экспериментальные данные (относительные продольные и поперечные деформации в конце каждой ступени нагружения, определенные по указаниям п. 3) представляют в координатах $x=\varepsilon$; $y=\varepsilon_{\kappa}$ (черт. 9). Далее значение ν вычисляют по формуле

$$v=1/c, (26)$$

где c — параметр, определяемый графически или способом наименьжих квадратов по указаниям 9.

8. Параметры a_j и b уравнения семейства параллельных прямых $y_i = a_1 + bx$ определяют графически (черт. 8), при этом:

 a_j — в масштабе чертежа равен отрезку, отсекаемому на оси оржинат (y) j-й из семейства паражельных прямых наилучшего приближения к экспериментальным точкам;

b — в масштабе чертежа равен тангенсу угла наклона семейства парамлельных прямых к оси абсцисс (x).

Способом наименьших квадратов нараметры a, и b определяют по формулам:

$$a_{j} = \overline{y_{j}} - b.\overline{x}; \qquad b = \frac{\sum_{j=1}^{k} \sum_{l=1}^{n_{j}} x_{j,l} y_{j,l} - \sum_{j=1}^{k} n_{j} \overline{x_{j}} \overline{y_{j}}}{\sum_{j=1}^{k} \sum_{l=1}^{n_{j}} x_{j,l}^{2} - \sum_{j=1}^{k} n_{j} \overline{x_{j}}^{2}}, \qquad (27)$$

где
$$\overline{x_j} = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{j,i}$$
 и $\overline{y_j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{j,i}$ (28)

— средние значения координат экспериментальных точек соответственно x_j , и y_j , i;

 n_1 — число точек в 1-й выборке;

k — число 1-х выборок

9. Параметр c уравнения прямой, проходящей через начало координат y=cx, определяют графически (черт. 9), при этом:

с — в масштабе чертежа равен тангенсу угла наклона к оси ординат (х) прямой наилучшего приближения к экспериментальным точкам, проходящей через начало координат

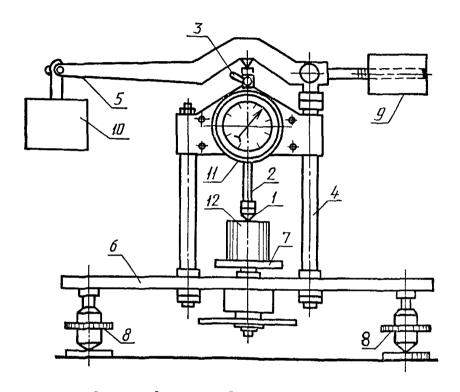
Способом наименьших квадратов параметр с определяют по формуле

$$c = \frac{\sum_{l=1}^{n} x_{l} y_{l}}{\sum_{l=1}^{n} x_{l}^{2}},$$
 (29)

где x_i и y_i — координаты экспериментальных гочек; n — число точек.

- 10. Параметры a и b уравнения прямой y=a+bx определяют графически (черт 10), при этом:
 - а в масштабе чертежа равен отрезку, отсекаемому на оси ординат (у)
 прямой наилучшего приближения к экспериментальным точкам;
 - b в масштабе чертежа равен тангенсу угла наклона прямой к оси абсцисс (x).

Способом наименьших квадратов параметры а и b определяют по формутам:


$$a = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}; \qquad b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} \left(\sum_{i=1}^{n} x_{i}\right)^{2}}; \quad (30)$$

где x_1 , y_1 и n — те же, что и в п 9.

11. Исходные данные и результаты расчетов записывают в табл 5.

·								······································	·								T	абли	ца 5
Помер ступени нагру- жения	Напряжение ој MIIa (кгс/см²)	Время отсчета деформа- ций t, ч	Относительные продоль- ные деформации є ₁	Приращение относитель- ных продольных дефор- маций де	Относительные продольные деформации $E_{i,j}$ от постояним напряжений	Относительные поперечные деформации s_{κ}, i	Приращение относительных поперечных деформаций $\Delta \epsilon_{ m v}$	Относительные поперечные деформации $\varepsilon_{x, i, j}$ от постоянчых напряжений	ϕ ункции напряжений $f(\sigma_i)$	Коэффициент нелинейно- сти во времени α	Параметр E_0 , MIa . ч $\{(\kappa rc/(c w^2 \cdot v))\}$	Параметр 40, Mila.ч [(кгс/{см².ч)]	Модуль линейной дефор мации Е, МПа (кгс/см²)	Коэффициент нелинейной деформации А, МПа (кгс/см²)	Показатель нелинейности по напражениям <i>т</i>	Коэффициент поперечного расширения у	Условно-мгновенное сопротивление R_{0c} , МПа (кгс/см²)	Прецел длительной прочности $R_{\rm c}$, МПа (кгс/см²)	Примечание
	2_	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1.7	18	19	20_
											<u> </u>								

ПРИНЦИПИАЛЬНАЯ СХЕМА УСТАНОВКИ ДЛЯ ОПРЕДЕЛЕНИЯ ЭКВИВАЛЕНТНОГО СЦЕПЛЕНИЯ МЕРЗЛЫХ ГРУНТОВ

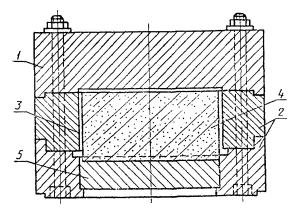
1 — шариковый штамп;
 2 — подвижной стержень с держателем шарика;
 3 → ручка стопорного винта;
 4 — стойки,
 5 — рычажный пресс (с соотношением плеч рычага 5:1);
 6 — опорная плита;
 7 — подвижной столик,
 8 — уравычтельные винты;
 9 — контргруз;
 10 — гири;
 11 — индикатор деформаций;
 12 — образец грунта

Черт. 11

ПРИЛОЖЕНИЕ 11 Рекомендиемое

РЕКОМЕНДАЦИИ ПО ИЗГОТОВЛЕНИЮ ОБРАЗЦОВ МАТЕРИАЛА ФУНДАМЕНТА

1. Изготовление образцов материала фундамента с такой же шероховатостью поверхности, как у фундамента (не подвергнутой специальной обработке), должно производиться с учетом следующих требований:


деревянные образцы должны быть изготовлены из необработанной древесины и их поверхность должна быть остругана; при замораживании образцов древесина должна быть в водонасыщенном состоянии;

стальные образцы должны иметь горячекатаную или холоднокатаную поверхность в зависимости от вида проката, используемого для изготовления образцов на токарных, фрезерных или строгальных станках без шлифования их поверхности, если образцы применяют взамен горячекатаной стали, и со шлифованием взамен холоднокатаной;

бетонные образцы должны быть изготовлены с виброуплотнением в гладкой металлической опалубке, поверхность которой перед бетомированием докрывают известковым или глинистым раствором; на поверхности образцов смерзающихся с грунтом, не должно быть раковин и зажелезненных участког

При изготовлении образцов материала фундамента, поверхности когорого подвергают специальной обработке каким-либо способом, поверхность образцов следует обрабатывать таким же способом. Применение других способов обработки поверхностей образцов для придания им такой же шероховатости, как у боковой поверхности фундамента, допускается при условии инструментальной оценки класса шероховатости в соответствии с ГОСТ 2789. Шероховатость допускается оценивать путем сравнения с эталонной поверхностью, изготовленной в соответствии с требованиями ГОСТ 9378.

ПРИНЦИПИАЛЬНАЯ СХЕМА КОНСТРУКЦИИ ФОРМЫ ДЛЯ СМОРАЖИВАНИЯ ОБРАЗЦА ГРУНТА С ОБРАЗЦОМ МАТЕРИАЛА ФУНДАМЕНТА

1 — крышка; 2 — промежуточные кольца; 3 — рабочее кольцо; 4 — образец грунта; 5 — образец материала фундамента Черт. 12

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Всесоюзным научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений (ВНИИОСП) им. Н. М. Герсеванова Госстроя СССР

РАЗРАБОТЧИКИ

- Р. В. Максимяк, канд. геол.-минер. наук (руководитель темы), Г. И. Бондаренко, канд. техн наук, С. Э. Городецкии, канд. техн. наук; С. М. Тихомиров, канд техн. наук, Ю. С. Миренбург, канд. техн. наук; В. М. Водолазкин; Ю. Г. Федосеев; В. Г. Чеверев, канд. геол.-минер наук; В. И. Аксенов, канд. техн. наук; Д. Р. Шейнкман, ганд техн раук, А. И Золотарь, канд. техн. наук, А. А. Колесов, канд техн. д. К. М. А. Минкин, канд техн наук; Н. А. Шильы; В. Г. Агофонов; А. Г. Никигин; О. Н. Сильницкая
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТБИЕ Постановлением Государственного строительного комитега СССР от 18.05.90 № 44
- 3. B3AMEH FOCT 24586-81 n FOCT 25638-83
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД,	Номер пункта,
на который дана ссылка	приложения
FOCT 166—89 FOCT 2789—73 FOCT 7328—82 FOCT 9378—75 FOCT 12071—84 FOCT 12248—78 FOCT 23932—90 FOCT 24164—	22 Приложение 11 22 Приложение 11 21 28, 622 22

Редактор В. П. Огурцов
Технический редактор О. Н. Никитина
Корректор В С Черная

Сдано в наб. 29 09.90 Подп. в печ. 30.11.90 2,75 усл и **л 2**,75 усл кр.-отт 2.26 уч -изд. л. Тир. 8000