ПОЛИСТИРОЛ И СОПОЛИМЕРЫ СТИРОЛА

ГАЗОХРОМАТОГРАФИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ МОНОМЕРОВ И НЕПОЛИМЕРИЗУЮЩИХСЯ ПРИМЕСЕЙ

Издание официальное

МЕЖГОСУЛАРСТВЕННЫЙ СТАНДАРТ

полистирол и сополимеры стирола

Газохроматографический метод определения остаточных мономеров и неполимеризующихся примесей

ΓΟCT 15820—82

Polystyrole and copolymers of styrole.

Gas chromatographic method for determination of resictual monomers and non-polymerizing impurities

ОКСТУ 2209

Дата введения 01.07.83

Настоящий стандарт распространяется на полистирол и сополимеры стирола и устанавливает газохроматографический метод определения содержания остаточных мономеров: стирола, альфаметилстирола, акрилонитрила, метилметакрилата и неполимеризующихся примесей: этилбензола и изопропилбензола.

Сущность метода заключается в хроматографировании остаточных мономеров и неполимеризующихся примесей в полистирольных пластиках на газовом хроматографе с детектором ионизации в пламени после растворения, анализируемого полимера в соответствующем растворителе.

Качественный состав смеси определяют по относительному времени удерживания каждого компонента на сорбенте по отношению к «внутреннему эталону», количественный — методом «внутреннего эталона» по площадям пиков на хроматограмме.

1. ОТБОР ПРОБ

- Пробы для анализа отбирают в соответствии с требованиями нормативно-технической документации на материалы.
- 1.2. Из объединенной пробы (порошок, гранулы, бисер, пленка, формованные изделия) отбирают 1—2 г анализируемого полимера, взвешивают с погрешностью не более 0,0002 г.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Хроматограф газовый любого типа, снабженный детектором ионизации в пламени, с пределом обнаружения контрольного вещества 0,001 % с высотой пика не менее 10 мм; устройством для ввода пробы; с регулированием температуры обогрева до 200 °С; термостатом колонок, позволяющим работать в изотермических условиях, и, в случае ускоренного анализа, программированием температуры со скоростью 20—30 °С/мин; колонкой длиной 3 м, диаметром 3—4 мм.

Приставка к хроматографу, представляющая собой трубку из нержавеющей стали, длиной 40 мм, внутренним диаметром 2—3 мм, которая имеет в нижней части резьбу для присоединения к устройству для ввода пробы, в верхней части — приспособление для ввода пробы шприцем и сбоку приспособление для подачи газа-носителя. Приставка снабжена регулируемым обогревом в диапазоне от 50 до 200 °C с точностью регулировки ±5 °C. Допускается использовать трубку-вкладыш в устройство для ввода пробы.

Термостат с обогревом до 250 °C.

Лупа ГОСТ 25706 с ценой деления шкалы 0,1 мм для измерения ширины пика; допускается использовать любой измерительный оптический прибор, с той же ценой деления шкалы.

Издание официальное

Перепечатка воспрещена

Издательство стандартов, 1982
 ИПК Издательство стандартов, 1999
 Переиздание с Изменениями

Микрошприц вместимостью 10 мм3.

Колба плоскодонная с нормальным шлифом ГОСТ 25336 вместимостью 50-100 см3.

Интегратор обработки хроматограмм.

Ацетон по ГОСТ 2603, ч.

Углерод четыреххлористый по ГОСТ 20288, х.ч.

Диметилформамил по ГОСТ 20289, х.ч.

Носитель диатомитовый, например, динохром-H, сферохром-1 и другие подходящие носители с частипами размером 0,200—0,315 мм (допускается использовать носитель и с более мелким зернением).

Неопентилгликольянтарат, ч., или полиэтиленгликольадипинат, ч.д.а.

Раствор n-бутилбензола с массовой долей 1 % в четыреххлористом углероде (раствор «внутреннего эталона») для анализа полимеров и ударопрочного полистирола, за исключением эмульсионного.

Раствор *н*-октана с массовой долей 1 % в диметилформамиде (раствор «внутреннего эталона») для анализа сополимеров стирола с метилметакрилатом и акрилонитрилом или без него.

Толуол по ГОСТ 5789, ч.д.а., раствор с массовой долей 1 % в диметилформамиде (раствор «внутреннего эталона») для анализа сополимеров стирола (за исключением сополимеров с метилметакрилатом) и эмульсионного полистирола.

Газ инертный (аргон, азот или гелий) с массовой долей основного вещества не менее 99,8 %; воды — не более $5 \cdot 10^{-3}$ % и кислорода — не более $3 \cdot 10^{-3}$ % (ГОСТ 10157, ГОСТ 9293).

Воздух сжатый по ГОСТ 24484.

Водород чистый с массовой долей основного вещества не менее 99,6 %, кислорода — не более $3 \cdot 10^{-3}$ % по ГОСТ 3022 марка A или высший сорт.

Ткани фильтровальные из стеклянных крученых комплексных нитей по ГОСТ 10146.

(Измененная редакция, Изм. № 1).

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление растворов полимеров или сополимеров

3.1.1. Анализируемый полимер растворяют в 10—20 см³ соответствующего растворителя в колбе с пришлифованной пробкой вместимостью 50—100 см³: полимеры стирола (за исключением эмульсионного) и ударопрочного полистирола — в четыреххлористом углероде; сополимеры стирола и эмульсионного полистирола — в диметилформамиде. Допускается полимеры стирола растворять в диметилформамиде. (В качестве «внутреннего эталона» в этом случае используют толуол).

Растворение полимера проводят при комнатной температуре с помощью встряхивающей машины или магнитной мешалки, или допускается без них, оставляя пробу с растворителем не менее чем на 12 ч. После растворения полимера колбу взвешивают с той же погрешностью.

3.1.2. В раствор полимера вводят растворы «внутренних эталонов»: в раствор стирола (за исключением эмульсионного полистирола) — раствор *н*-бутилбензола с массовой долей 1 % в четыреххлористом углероде; в раствор сополимера стирола (кроме сополимеров с метилметакрилатом) и эмульсионного полистирола — раствор толуола с массовой долей 1 % в диметилформамиде; в раствор сополимера стирола с метилметакрилатом и акрилонитрилом или без него — раствор *н*-октана с массовой долей 1 % в диметилформамиде.

Навески растворов соответствующих «внутренних эталонов» вводят в таком количестве, чтобы концентрация их в растворе полимера или сополимера составляла 0,001—0,3 % (в зависимости от предполагаемого содержания остаточных мономеров в полимерах и сополимерах).

(Измененная редакция, Изм. № 1).

3.1.3. Перед растворением полимера или сополимера растворители необходимо проверить на чистоту, снимая хроматограмму растворителя при указанных ниже условиях анализа. Растворители не должны содержать примесей, пики которых на хроматограмме совпадали бы с пиками определяемых компонентов. В случае присутствия в растворителях примесей, их необходимо очистить перегонкой, отбирая фракцию, не содержащую примесей, мешающих хроматографированию определяемых компонентов, и снова проверить на чистоту.

3.2. Подготовка приставки хроматографа

Приставку к хроматографу или трубку-вкладыш, заранее промытые ацетоном, заполняют фильтровальной тканью также предварительно промытой ацетоном и высушенной при 100 °C, и присоединяют к хроматографу.

После ввода 10—15 проб растворов полимеров или сополимеров фильтровальную ткань заменяют.

Приставку или устройство для ввода проб с трубкой-вкладышем нагревают до 170—180 °C. (Измененная редакция, Изм. № 1).

3.3. Приготовление насадки для колонки хроматографа

Твердый носитель высущивают в термостате при $200\,^{\circ}\text{C}$ в течение $1,5-2\,^{\circ}\text{U}$. После чего носитель пропитывают неподвижной фазой из расчета $15\,^{\circ}\text{F}$ неопентилгликольянтарата (НПГЯ) или полиэтиленгликольадипината (ПЭГА) на $85\,^{\circ}\text{F}$ твердого носителя. НПГЯ или ПЭГА растворяют в ацетоне, в полученный раствор для пропитки помещают твердый носитель и оставляют на $1,0-1,5\,^{\circ}\text{U}$. Растворитель берут в таком объеме, чтобы твердый носитель находился под слоем жидкости. После пропитки твердого носителя растворитель удаляют выпариванием при температуре $40-60\,^{\circ}\text{C}$, периодически перемешивая насадку (твердый носитель, пропитанный неподвижной фазой), или с помощью вакуума.

3.4. Заполнение колонки хроматографа насадкой

Перед заполнением колонку промывают спиртоацетоновой смесью (1:1) в количестве 200 см³. Приготовленной насадкой заполняют чистую и сухую колонку хроматографа.

После заполнения колонки насадку сверху закрывают тампоном из фильтровальной ткани и колонку для стабилизации продувают инертным газом не менее 24 ч (до полной стабилизации колонки) в термостате хроматографа, не соединяя колонку с детектором, при 120 °C в течение 5 ч, далее при 180—190 °C. После продувки колонку соединяют с детектором.

(Измененная редакция, Изм. № 1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. 2—10 мм³ приготовленного раствора полимера с «внутренним эталоном» вводят микрошприцем в приставку хроматографа или трубку-вкладыш, нагретые до 170—180 "С.

4.2. Хроматографирование проводят при следующих условиях:

температура колонки, "C — 110—120 (после выхода из колонки стирола или альфа-метилстирола можно включить программирование температуры со скоростью 20—30 "С/мин до 180 "С для ускорения удаления диметилформамида из колонки);

температура испарителя, *C - 170-180;

скорость потока газа-носителя, см³/мин — 50-60;

скорость потока водорода, см³/мин — 55;

скорость потока воздуха, см3/мин - 500-550;

скорость движения диаграммной ленты выбирается такой, чтобы ширина пика, измеренная на половине его высоты, была не менее 2 мм.

Порядок выхода компонентов из колонки показан на черт. 1-3.

Допускается корректировка условий анализа при использовании хроматографов различных марок.

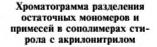
5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Количественный расчет хроматограмм производят методом «внутреннего эталона» по площадям пиков компонентов. Площадь пика каждого компонента определяют электронным интегрированием или по формуле

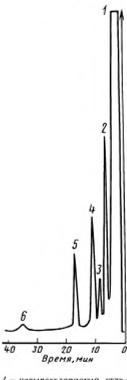
$$S = h \cdot l$$

где S — площадь пика, MM^2 ;

h — высота пика, мм;

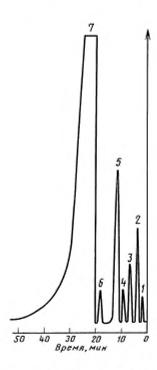

I — ширина пика, измеренная на половине его высоты, мм.

Величину площади пика умножают на соответствующие коэффициенты чувствительности K_{x} , вычисленные по формуле

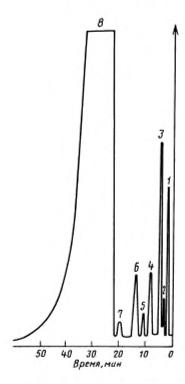

$$K_{\rm a} = {{
m Moлeкулярная} \ {
m Macca} \ {
m компонента} \over {
m Число} \ {
m aromoneyrnepoga} \times 12}$$
 .

Коэффициент чувствительности «внутреннего эталона» (K) вычисляют по этой же формуле.

Хроматограмма разделения остаточных мовомеров и примесей в полимерах стирола



Хроматограмма разделения остаточных мономеров и примесей в сополимерах стирола с акрилонитрилом и метилметакрилатом


I — четыреххлористый углерод; 2 — этилбензод; 3 — изопропилбензод; 4 — стирол; 5 — n-бутилбензод («виугренний этилон»); δ — бензильлегия

Черт. 1

 I — вкрилонитрил; 2 — толуол («внутренний эталон»); 3 эталбензол; 4 — изопропилбензол; 5 — стирол; 6 — альфа метилстирол; 7 — диметилформамид

Черт. 2

I- м-октан («внутренний эталон»); 2- акримонитрия; 3- метияметакрилат; 4- этилбения, 5- изопропиленной, 6- стирол; 7- альфа-метилстирол; 8- диметилформамид

Черт. 3

Коэффициенты чувствительности (K_x) равны: акрилонитрила — 1,47; метилметакрилата — 2,09; n-октана — 1,19. Для стирола, альфа-метилстирола, этилбензола, изопропилбензола, бензальдегида, толуола и n-бутилбензола K_x принят равным 1.

Массовую долю каждого остаточного мономера и неполимеризующейся примеси в полимере или сополимере (X) в процентах вычисляют по формуле

$$X = \frac{S_{x} \cdot X_{y} \cdot K_{x} \cdot m}{S_{y} \cdot K_{x} \cdot m_{x}},$$

где S_x — площадь пика определяемого мономера или неполимеризующейся примеси, мм²;

S₃ — площадь пика соответствующего «внутреннего эталона», мм²;

X, — концентрация соответствующего «внутреннего эталона» в растворе полимера или сополимера, %;

 K_{x} — коэффициент чувствительности на определяемый мономер или неполимеризующуюся примесь;

К, — коэффициент чувствительности на соответствующий «внутренний эталон»;

т — масса раствора полимера или сополимера с «внутренним эталоном», г;

т. — масса полимера или сополимера, г.

- 5.2. За результат анализа принимают среднее арифметическое значение двух параллельных определений, допускаемые расхождения между которыми не должны превышать: при содержании десятых долей процента каждого компонента 0,03 %, при содержании сотых долей процента 0,003 %, при содержании тысячных долей процента 0,0005 %. Средняя относительная погрешность определения при содержании сотых долей процента мономера не должна превышать 10 %.
- 5.3. Метод дает возможность определить тысячные доли процента остаточных мономеров и неполимеризующихся примесей в полимерах и сополимерах стирола.
 - Протокол испытания должен содержать: наименование продукта, его обозначение, сорт или марку и обозначение стандарта на продукт; результат испытания;

обозначение настоящего стандарта; дату испытания.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

РАЗРАБОТЧИКИ

- В.В. Консетов, Г.С. Попова, М.С. Клещева, И.В. Бардина, Н.Е. Шадрина
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 20.07.82 № 2756
- 3. Стандарт соответствует стандарту ИСО 2561-74 в части определения стирола
- 4. B3AMEH ΓΟCT 15820-70
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела	Обозначение НТД, на который дана ссылка	Номер раздела
FOCT 2603-79	Разлел 2	ΓΟCT 20288-74	Разлел 2
ГОСТ 3022—80	То же	ΓΟCT 20289-74	То же
TOCT 5789—78	*	ΓΟCT 24484—80	*
ГОСТ 9293—74	*	ΓΟCT 25336—82	*
ΓΟCT 10146-74	*	ΓΟCT 25706-83	*
ΓΟCT 1015779	*		

- Ограничение срока действия снято по протоколу № 2—92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 7. ПЕРЕИЗДАНИЕ (март 1999 г.) с Изменением № 1, утвержденным в ноябре 1987 г. (ИУС 2-88)

Редактор Р.С. Федорова Технический редактор Н.С. Гришанова Корректор О.В. Ковш Компьютерная верстка В.Н. Грищенко

Изд. лиц. №021007 от 10,08,95. Сдано в набор 08,04,99. Подписано в печать 28,04,99. Усл. печ. л. 0,93. Уч.-изд. л. 0,70. Тираж 139 экз. С2716 Зак. 369.