ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СВИНЕЦ

Методы определения висмута

FOCT 20580.4-80*

Lead
Methods for the determination of bismuth

[CT C9B 909-78]

OKCTY 1725

Взамен ГОСТ 20580.4—75

Постановлением Государственного комитета СССР по стандартам от 29 апреля 1980 г. № 1976 срок действия установлен

c 01.12.80

Проверен в 1983 г. Постановлением Госстандарта от 20.12.83 № 6396 срок действия продлен

до 01.12.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрические методы определения висмута от 0,001 до 0,2% в свинце (99,992—99,5%). Стандарт полностью соответствует СТ СЭВ 909—78.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 20580.0—80.
- 1.2. Правильность получаемых результатов анализа контролируется одновременным определением массовой доли висмута в соответствующем СО свинца № 1591—79 — 1594—79.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД С ОТДЕЛЕНИЕМ ВИСМУТА ЭКСТРАКЦИЕЙ В ВИДЕ КАРБАМИНАТА С ПРИМЕНЕНИЕМ ЦИАНИДОВ

Метод основан на экстракции висмута в виде карбамината четыреххлористым углеродом из аммиачного раствора в присутствии ЭДТА и цианистого калия. Органический экстракт выпарнвают досуха в присутствии азотной кислоты. Далее в азотнокислой среде висмут, взаимодействуя с тиомочевиной, образует желтый комплекс, который фотометрируют при длине волны 470 вм.

2.1. Аппаратура, реактивы и растворы

Издание официальное

Перепечатка воспрещена

*

Переиздание декабрь 1984 г. с Изменением № 1, утвержденным в декабре 1983 г. (ИУС 4—84).

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Кислота азотная по ГОСТ 4461-77 и разбавленная 1:1 и 2:5.

Кислота винная по ГОСТ 5817-77.

Кислота лимонная по ГОСТ 3652-69.

Смесь для растворения: 200 г винной кислоты и 200 г лимонной кислоты растворяют в воде и разбавляют до 1000 см³.

Аммиак водный по ГОСТ 3760-79 и разбавленный 2:1.

Калий цианистый, 10%-ный раствор.

Тиомочевина по ГОСТ 6344—73, 10%-ный раствор, свежеприготовленный.

Диэтилдитнокарбамат натрия по ГОСТ 8864—71, 1%-ный раствор. Раствор должен быть свежеприготовленным и отфильтрованным.

Углерод четыреххлористый по ГОСТ 20288-74.

Этилендиамин-N, N, N', N'-тетрауксусной кислоты динатриевая соль, 2-водная (ЭДТА) по ГОСТ 10652—73, 40%-ный раствор. 40 г ЭДТА растворяют при слабом нагревании в растворе аммиака (2:1), доводят этим же раствором до объема 100 мл.

Фенолфталенн по ГОСТ 5850—72, 1%-ный раствор в этиловом спирте.

Спирт этиловый по ГОСТ 18300-72.

Висмут по ГОСТ 10928-75.

Стандартный раствор висмута.

- 0,1 г висмута растворяют при нагревании в 50 см³ азотной кислоты (1:1), охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.
 - 1 см3 раствора содержит 0,1 мг висмута.
 - 2.2. Проведение анализа
- 2.2.1. В зависимости от ожидаемой массовой доли висмута берут навески свинца, масса которых указана в табл. 1.

Таблица 1

Массовия доля висмута, %	Масса навески свянца, г	
От 0,001 до 0.005	5	
Э. 0.005 > 0.01	2	
> 0,01 > 0.03	ì	
> 0.03 > 0.05	0,5 0,25	
> 0.05 » 0.2	0,25	

Навеску свинца помещают в коническую колбу вместимостью 250 см³ и растворяют в 10 см³ смеси для растворения и 10 см³ азотной кислоты (1:1). При растворении 5 г иавески используют 30 см³ смеси для растворения и 20 см³ азотной кислоты (1:1).

После растворения раствор охлаждают, прибавляют 5 капель раствора фенолфталенна и нейтрализуют аммиаком до появления розовой окраски. Раствор охлаждают, переносят в делительную воронку вместимостью 250 см3, доводят объем до 50 см3. Прибавляют 50 см³ раствора ЭДТА, 2 см³ раствора диэтилдитиокарбамата натрия, 10-20 см3 раствора цианистого калия (в соответствии с массовой долей меди, цинка, серебра) и экстрагируют 20 см3 четыреххлористого углерода в течение 2 мин. Сливают органический слой в стакан вместимостью 100 см3 и экстракцию с 2 см3 диэтилдитиокарбамата натрия и 20 см³ четыреххлористого углерода повторяют. Объединенные экстракты выпаривают досуха. К сухому остатку прибавляют 10 см³ азотной кислоты и снова выпаривают досуха. Прибавляют 10 см³ азотной кислоты (2:5) и кипятят 1—2 мин. После охлаждения прибавляют 10 см³ раствора тиомочевины, раствор переносят в мерную колбу вместимостью 50 см³, разбавляют водой до метки и перемешивают. При необходимости раствор фильтруют через плотный фильтр.

Оптическую плотность растворов измеряют при длине волны

470 нм.

Раствором сравнения служит вода.

Одновременно проводят контрольные опыты в тех же условиях со всеми, применяемыми в ходе анализа, реактивами.

Количество висмута в колориметрируемом объеме устанавли-

вают по градунровочному графику.

2.2.2. Для построения градуировочного графика в семь из восьми мерных колб вместимостью 50 см³ вносят 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 и 5,0 см² стандартного раствора висмута. Восьмая мерная колба служит для проведения контрольного опыта. Во все колбы прибавляют по 10 см² азстной кислоты (2:5), 10 см³ раствора тиомочевины, разбавляют водой до метки, перемешивают и фотометрируют, как указано в п. 2.2.1.

По полученным значениям оптических плотностей и соответствующим им содержаниям висмута строят градупровочный график.

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД С ОТДЕЛЕНИЕМ СВИНЦА В ВИДЕ СУЛЬФАТА

Метод основан на образовании тиомочевинного комплекса висмута и его фотометрировании в области длин воли 390—413 нм после отделения свинца в виде сульфата.

3.1. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1 и раст-

вор с $(HNO_3) = 1$ моль/дм³.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1.

Тиомочевина по ГОСТ 6344—73, 10%-ный раствор, свежеприготовленный.

Висмут металлический по ГОСТ 10928-75.

Стандартный раствор висмута.

Раствор А: 0,1 висмута растворяют в 20 см³ азотной кислоты (1:1). Кипятят до удаления окислов азота, Приливают 20 см³ воды и переносят раствор в мерную колбу вместимостью 1000 см³. Доливают до метки раствором азотной кислоты концентрации 1 моль/дм³ и перемешивают.

I см3 раствора А содержит 0,1 мг висмута.

(Измененная редакция, Изм. № 1).

3.2. Проведение анализа

 З.2.1. В зависимости от ожидаемой массовой доли висмута берут навески свинца, масса которых указана в табл. 2.

Табляца 2

Массовая доля висмута, %	Масса навески, г	Объем мершой колбы для разбавления, см²	Объем алактотной части растиора, си	
От 0,001 до 0,006	5	50	25 25 20	
Ca. 0,006 » 0,03	2	100	25	
> 0,03 > 0,08	1 1	100	20	
» 0,08 » 0,2	1 1	100	5	

Навеску помещают в коническую колбу вместимостью 100 см³, растворяют в 30 см³ азотной кислоты (1:1), приливают 10—20 см³ воды и кипятят до удаления окислов азота. Охлаждают, переводят в мерные колбы вместимостью 50 или 100 см³ (табл. 2), приливают 3 см³ серной кислоты (1:1), доливают до метки водой и перемешивают. Через 2 ч отфильтровывают раствор в сухую чистую колбу через плотный фильтр и аликвотную часть фильтрата (табл. 2), помещают в мерную колбу вместимостью 50 см³. Прибавляют 10 см³ раствора тиомочевины, доводят до метки водой и перемешивают.

Через 10—15 мин измеряют оптическую плотность растворов в области длин волн 390—413 нм.

Раствором сравнения служит вода.

Одновременно проводят контрольные опыты для внесения в результат соответствующей поправки.

Количество висмута в колориметрируемом объеме устанавливают по градуировочному графику.

3.2.2. Для построения градупровочного графика в шесть из семи мерных колб вместимостью 50 см³ помещают 0,25; 0,5; 1,0; 1.5; 2.0 и 2,5 см³ стандартного раствора висмута, что соответствует 25; 50; 100; 150; 200 и 250 мкг висмута (седьмая служит для проведения контрольного опыта). Раствор разбавляют до 10 см³ водой,

приливают 20 см³ азотной кислоты (1:1), 3 см³ серной кислоты (1:1), 10 см³ раствора тиомочевины. Доводят до метки водой и данее поступают, как указано в п. 3.2.1.

По найденным значениям оптических плотностей и соответствующим им массовым долям висмута строят градунровочный график.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

 Массовую долю висмута (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{V_1 \cdot m},$$

где m_1 — масса висмута, найдениая по градуировочному графику,

V — объем исходного раствора, см³;

 V_1 — объем аликвотной части раствора, см³;

т - масса навески свинца, г.

(Измененная редакция, Изм. № 1).

4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 3.

Таблица 3

Массовая доля висмута, %	Абсолютные допускаемые расхождения, %	
OT 0,001 no 0,003	0,0003	
Ca 0,003 × 0,005	0,0005	
× 0,005 × 0,01	0,001	
± 0,01 × 0,02	0,002	
× 0,02 × 0,04	0,004	
× 0,04 × 0,07	0,006	
a 0,07 × 0,1	0,008	
× 0,1 × 0,2	0,015	

Изменение № 2 ГОСТ 20580.4—80 Свинец, Методы определения висмута

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 17.07.90 № 2203

Дата введения 01.01.91

Под наименованием стандарта заменить код: ОКСТУ 17/25 на ОКСТУ 17/09. Пункт 1.1 после слова «анализа» дополнить словами: «и требования безо» пасности».

Пункт 1.2 исключить.

Пункт 2.1. Заменить слова: «10 %-ный раствор» на «раствор с массовой концентрацией 100 г/дм³» (2 раза); «1 %-ный раствор» на «раствор с массовой концентрацией 10 г/дм³»; «40 %-ный раствор» на «раствор с массовой концентрацией 400 г/дм3; «по ГОСТ 5850-72, 1 %-ный раствор» на «по ТУ 6-09-5360-87, раствор с массовой концентрацией 10 г/дм3; заменить значения: 100 мл на 100 см3; 0,1 г на 0,100 г;

заменить ссылку: ГОСТ 18300-72 на ГОСТ 18300-87.

Пункт 2.2.1. Таблица 1. Графа «Масса навески свинца, г». Заменить значе-

ния: 5 на 5,000; 2 на 2,000; 1 на 1,000; 0,5 на 0,500; 0,25 на 0,250. Пункт 3.1. Четвертый абзац. Заменить слова: «10 %-ный раствор» на «раст-

вор с массовой концентрацией 100 г/дм³»;

седьмой абзац. Заменить значение и слова: 0,1 на 0,100 г, «окислов азота» на «оксидов азота».

Пункт 3.2.1. Таблица 2. Графа «Масса навески, г». Заменить значения: 5 на 5,000; 2 на 2,000; 1 на 1,000 (2 раза);

второй абзац. Заменить слова: «окислов азота» на «оксидов азота».

Пункт 4.2 изложить в новой редакции: «4.2. Абсолютные допускаемые расхождения результатов параллельных опредемений и результатов анализа не должны превышать значений, приведенных в табл. 3.

Массвая доля висмута, %		Допускаемые расхождения параллельных определений,	Допускаемые расхож- дения результатов ана- лиза, %			
От	0,0010	до 0,0	030	включ.	0,0003	0,0004
CB.	0,0030	▶ 0.0	0050	>	0,0005	0,0006
	0,0050			>	0.0010	0,0013
	0,010			>>	0,002	0,003
	0,020	> 0.0		>>	0,004	0,005
	0,040	» 0,0		*	0,006	0,007
	0,070	» 0,1		>>	0,008	0,010
	0.10	» 0.2		>>	0,01	0.02