ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

инструкция

Государственная система обеспечения единства измерений

СИСТЕМА ИЗМЕРЕНИЯ КОЛИЧЕСТВА И ПАРАМЕТРОВ ГАЗА «УЗЕЛ КОММЕРЧЕСКОГО УЧЕТА ГАЗА ЮРХАРОВСКОГО НГКМ ООО «НОВАТЭК-ЮРХАРОВНЕФТЕГАЗ»

Методика поверки

MΠ 1018-13-2019

Начальник отделя НИО-13

А.И. Горчев Тел. отдела: 8 (843) 272-11-24 РАЗРАБОТАНА ФГУП «ВНИИР»

ИСПОЛНИТЕЛИ Исаев И.А.

УТВЕРЖДЕНА ФГУП «ВНИИР»

Настоящая инструкция распространяется на систему измерений количества и параметров газа «Узел коммерческого учета газа, Юрхаровского НГКМ, принадлежащий ООО «НОВАТЭК-ЮРХАРОВНЕФТЕГАЗ» (далее — УКУГ), и устанавливает методику первичной поверки при вводе в эксплуатацию, а также после ремонта и периодической поверки при эксплуатации.

Если очередной срок поверки СИ из состава УКУГ наступает до очередного срока поверки УКУГ, поверяется только это СИ, при этом поверку УКУГ не проводят.

Методика поверки разработана в соответствии с требованиями РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения».

Интервал между поверками – 2 года.

СИ, входящие в состав УКУГ, и имеющие иной интервал между поверками, проходят поверку в соответствии с документами на методику поверки данных СИ, представленными в приложении А.

1 Операции поверки

При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1 - Операции поверки

№ п/п	Наименование операции	Номер пункта инструкции	Проведение операции при	
			первичной поверке	периодической поверке
1	Внешний осмотр	6.1	+	+
2	Проверка выполнения функциональных возможностей УКУГ	6.2	+	+
3	Определение метрологических характеристик СИ, входящих в состав УКУГ	6.3	+	+
4	Определение относительной погрешности измерений объемного расхода и объема осущенного газа (далее – газ), приведенных к стандартным условиям	6.3.1	÷	+
5	Подтверждение соответствия программного обеспечения УКУГ	6.4	+	+
6	Оформление результатов поверки	7	+	+

2 Средства поверки

- 2.1 При проведении поверки применяют следующие эталонные и вспомогательные средства:
- рабочий эталон единицы силы постоянного электрического тока 2 разряда в диапазоне значений от 0 до 25 мА в соответствии с Приказом Росстандарта от 01.10.2018 № 2091 (далее эталон);

- измеритель влажности и температуры ИВТМ-7, пределы измерений температуры от минус 20 °C до 60 °C, пределы основной абсолютной погрешности при измерении температуры ± 0,2 °C, пределы измерений влажности от 0 до 99 %, пределы допускаемой основной абсолютной погрешности измерений относительной влажности ± 2,0%, регистрационный № 15500-07;
- барометр-анероид БАММ-1, диапазон измерений от 80 до 106 кПа, пределы основной абсолютной погрешности ± 0,2 кПа, регистрационный № 5738-76;
 - СИ в соответствии с документами на поверку СИ, входящих в состав УКУГ;
- 2.2 При проведении поверки СИ в составе УКУГ применяют средства поверки, указанные в документах на методики поверки СИ, входящих в состав УКУГ, приведенных в приложении А настоящей инструкции.
- 2.3 Применяемые при поверке СИ должны быть поверены и иметь действующие свидетельства о поверке или нести на себе знак поверки.
- 2.4 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

3 Требования безопасности

- 3.1 При проведении поверки соблюдают требования, определяемые:
- Правилами безопасности труда, действующими на объекте;
- Правилами безопасности при эксплуатации средств измерений;
- Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности сетей газораспределения и газопотребления».
- 3.2 Управление оборудованием и СИ проводится лицами, прошедшими обучение и проверку знаний и допущенными к обслуживанию применяемого оборудования и СИ.

4 Условия поверки

- 4.1 Поверка УКУГ осуществляется в условиях эксплуатации.
- 4.2 При проведении поверки соблюдают условия в соответствии с требованиями документов на методики поверки СИ, входящих в состав УКУГ.
 - 4.3 Условия проведения поверки должны соответствовать приведенным в таблице 2.

Таблица 2 - Условия проведения поверки

Наименование характеристики	Значение	
Измеряемая среда	осушенный газ	
Температура окружающего воздуха, °С	от +15 до +30	
Относительная влажность окружающего воздуха, %	от 30 до 80	
Атмосферное давление, кПа	от 96 до 104	
Напряжение питания переменного тока, В	220*22	
Частота переменного тока, Гц	50±1	
Внешнее магнитное поле (кроме земного), вибрация	Отсутствуют	

5 Подготовка к поверке

- 5.1 Подготовку к поверке проводят в соответствии с руководством по эксплуатации системы измерений (далее РЭ) и нормативными документами на поверку СИ, входящих в состав УКУГ.
- 5.2 Проверяют наличие действующих свидетельств о поверке или знаки поверки применяемых в составе УКУГ СИ.
- 5.3 Все используемые СИ должны быть приведены в рабочее положение, заземлены и включены в соответствии с руководством по их эксплуатации.

6 Проведение поверки

6.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемой УКУГ следующим требованиям:

- длины прямых участков измерительных трубопроводов до и после преобразователя расхода газа ультразвукового SeniorSonic с электронным модулем Mark III (далее расходомер) должны соответствовать требованиям, установленным изготовителем расходомера;
 - комплектность УКУГ должна соответствовать ее описанию типа и РЭ;
- на компонентах УКУГ не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах УКУГ должны быть четкими и соответствовать РЭ:
 - наличие маркировки на приборах, в том числе маркировки по взрывозащите.
 - 6.2 Проверка выполнения функциональных возможностей УКУГ.

При проверке выполнения функциональных возможностей УКУГ проверяют функционирование задействованных измерительных каналов температуры, давления, расхода. Проверку проводят путем подачи на входы контроллера измерительного FloBoss S600+ (далее – контроллер) сигналов, имитирующих сигналы от первичных преобразователей.

Результаты проверки считаются положительными, если при увеличении/уменьшении значений входных сигналов соответствующим образом изменяются значения измеряемых величин на дисплее контроллера или подключенного к контроллеру ПЭВМ.

6.3 Определение метрологических характеристик СИ, входящих в состав УКУГ.

Метрологические характеристики СИ, входящих в состав УКУГ, определяют в соответствии с документами на методики поверки соответствующих СИ, представленными в приложении А.

6.3.1 Определение относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям.

По метрологическим характеристикам применяемых средств измерений рассчитывают общую результирующую погрешность определения расхода и объема газа, приведенных к стандартным условиям.

Расчет относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям осуществляется по формулам, приведенным ниже.

Допускается проводить расчет относительной погрешности УКУГ при измерении объемного расхода (объема) газа, приведенного к стандартным условиям, с помощью

программного комплекса «Расходомер-ИСО». Пределы относительной погрешности принимаются равными относительной расширенной неопределенности, рассчитанной в диапазоне рабочих параметров.

6.3.2 Относительную погрешность измерений объемного расхода газа, приведенного к стандартным условиям δ_a , %, рассчитывают по формуле

$$\delta_{q_c} = \sqrt{\delta_q^2 + \vartheta_T^2 \delta_T^2 + \vartheta_P^2 \delta_P^2 + \delta_K^2 + \delta_{MBK}^2}, \qquad (1)$$

где δ_q — пределы допускаемой относительной погрешности при измерении объемного расхода газа в рабочих условиях, %;

 \mathcal{G}_{T} — коэффициент влияния температуры на коэффициент сжимаемости газа;

 $g_{_{P}}~-~$ коэффициент влияния давления на коэффициент сжимаемости газа;

 δ_p – пределы допускаемой относительной погрешности измерения абсолютного давления, %;

 δ_{r} — пределы допускаемой относительной погрешности измерения температуры, %;

 δ_{K} — пределы допускаемой относительной погрешности определения коэффициента сжимаемости газа, %;

 $\delta_{\it ивк}$ – пределы допускаемой относительной погрешности контроллера при вычислении объемного расхода газа, приведенного к стандартным условиям, %.

6.3.2.1 Предел допускаемой относительной погрешности при измерении объемного расхода газа в рабочих условиях по измерительной линии рассчитывают по формуле

$$\delta_q = \sqrt{\delta_{q_{IP}}^2 + \delta_{np_{IIRK}}^2} \,, \tag{2}$$

где $\delta_{q_{\Pi P}}$ — пределы допускаемой относительной погрешности расходомера при измерении объемного расхода газа в рабочих условиях, %;

 $\delta_{np_{HBK}}$ — пределы допускаемой относительной погрешности ИВК при преобразовании аналоговых сигналов расходомера в цифровой код, %.

6.3.2.2 Предел допускаемой относительной погрешности определения давления рассчитывают по формуле

$$\delta_{p} = \sqrt{\sum_{i=1}^{n} \left(\delta_{p_{i}}\right)^{2}}, \tag{3}$$

где n — число последовательно соединенных измерительных преобразователей, используемых для измерения давления;

 $\delta_{\rho i}$ — относительная погрешность, вносимая i-м измерительным преобразователем давления с учетом дополнительных погрешностей.

Абсолютную погрешность преобразования аналоговых сигналов в цифровое значение измеряемого параметра по каналу измерений давления определяют следующим образом.

Контроллер переводят в режим поверки измерительного канала. Проверяют передачу информации на участке линии связи: преобразователь давления измерительный 3051 —

искробезопасный барьер – основной контроллер. Информация также дублируется на резервный контроллер.

Для этого отключают преобразователь давления измерительный 3051 и с помощью эталона подают на вход искробезопасного барьера с учетом линии связи аналоговые сигналы. Для аналогового сигнала 4-20 мА это: 4 мА, 8 мА, 12 мА, 16 мА, 20 мА, которые соответствуют значениям абсолютного давления 0 МПа, 2,5 МПа, 5 МПа, 7,5 МПа, 10 МПа. Фиксируют значение давления с дисплея контроллера или с экрана ПЭВМ.

Значение давления P_{i} , задаваемое эталоном, рассчитывают по формуле

$$P_{i} = P_{\min} + \frac{P_{\max} - P_{\min}}{I_{\max} - I_{\min}} (I_{i} - I_{\min}), \tag{4}$$

где P_{max} , P_{min} – верхний и нижний пределы диапазона измерений давления, МПа;

 I_{\max} , I_{\min} — максимальное и минимальное значения токового сигнала, соответствующие верхнему и нижнему пределам диапазона измерений давления P_{\max} и P_{\min} , мА;

 I_i – значение подаваемого от эталона входного сигнала постоянного тока, мА.

По результатам измерений в каждой реперной точке вычисляют абсолютную погрешность по формуле

$$\Delta P_i = P_i - P_{wi},\tag{5}$$

где P_i – показание контроллера в i-той реперной точке;

 P_{yi} — заданное при помощи эталона значение давления в i-той реперной точке. Значение давления задают в виде аналогового сигнала, соответствующего значению давления в контрольной точке

6.3.2.3 Предел допускаемой относительной погрешности определения температуры вычисляют по формуле

$$\delta_T = \frac{100(t_a - t_u)}{273,15 + t} \sqrt{\sum_{i=1}^{n} \left(\frac{\Delta y_i}{y_{ai} - y_{ii}}\right)^2} , \qquad (6)$$

где n — число последовательно соединенных измерительных преобразователей, используемых для измерения температуры;

 t_a , t_n — соответственно, верхнее и нижнее значения диапазона шкалы комплекта средств измерений температуры;

температура газа;

 Δy_i — абсолютная погрешность *i*-го измерительного преобразователя температуры с учетом дополнительных погрешностей;

 y_{u} , y_{u} – соответственно, верхнее и нижнее значения диапазона шкалы или выходного сигнала *i*-го измерительного преобразователя температуры.

Абсолютную погрешность преобразования аналоговых сигналов в цифровое значение измеряемого параметра по каналу измерений температуры определяют следующим образом:

Контроллер переводят в режим поверки измерительного канала. Проверяют передачу информации на участке линии связи: преобразователь температуры 3144P — искробезопасный барьер — основной контроллер. Информация также дублируется на резервный контроллер.

Для этого отключают преобразователь температуры 3144P и с помощью эталона подают на вход искробезопасного барьера с учетом линии связи аналоговые сигналы. Для аналогового

сигнала 4-20 мА это: 4 мА, 8 мА, 12 мА, 16 мА, 20 мА, которые соответствуют значениям температуры -20 °C, -2,5 °C, 15 °C, 32,5 °C, 50 °C. Фиксируют значение давления с дисплея контроллера или с экрана ПЭВМ.

Значение температуры T_i , задаваемое эталоном, рассчитывают по формуле

$$T_{i} = T_{\min} + \frac{T_{\max} - T_{\min}}{I_{\max} - I_{\min}} (I_{i} - I_{\min}), \tag{7}$$

где T_{max} , T_{min} – верхний и нижний пределы диапазона измерений давления, °C;

 I_{max} , I_{min} — максимальное и минимальное значения токового сигнала, соответствующие верхнему и нижнему пределам диапазона измерений давления T_{max} и T_{min} , мА;

 I_i — значение подаваемого от эталона входного сигнала постоянного тока, мА.

По результатам измерений в каждой реперной точке вычисляют абсолютную погрешность по формуле

$$\Delta T_i = T_i - T_{vi}, \tag{8}$$

где T_i – показание контроллера в i-той реперной точке;

 T_{yi} – заданное при помощи эталона значение давления в i-той реперной точке. Значение давления задают в виде аналогового сигнала, соответствующего значению давления в контрольной точке

6.3.2.4 Пределы допускаемой относительной погрешности определения коэффициента сжимаемости газа определяется по формуле

$$\delta_K = \sqrt{\delta_{K_{\text{Number}}}^2 + \delta_{HII}^2} , \qquad (9)$$

где $\delta_{\textit{Кметод}}$ – методическая погрешность определения коэффициента сжимаемости газа, %;

 $\delta_{\mathit{ИД}}$ — относительная погрешность определения коэффициента сжимаемости газа, связанная с погрешностью измерения исходных данных, %.

6.3.2.5 Относительная погрешность определения коэффициента сжимаемости газа, связанная с погрешностью измерения исходных данных, определяется по формуле

$$\delta_{\mathcal{H}\mathcal{I}} = \sqrt{\sum_{i=1}^{n} \left[\left(\Im x_{i} \times \delta x_{i} \right)^{2} \right]}, \tag{10}$$

где δx_i – относительная погрешность определения *i*-го компонента в газовой смеси, %;

 \mathcal{S}_{x_i} — коэффициенты влияния *i*-го компонента в газовой смеси на коэффициент сжимаемости.

6.3.2.6 Определение коэффициентов влияния температуры, давления и і-го компонента газовой смеси.

Коэффициент влияния температуры на коэффициент сжимаемости газа определяют по формуле

$$\theta_T = \frac{\partial f}{\partial T} \times \frac{T}{f},\tag{11}$$

Коэффициент влияния давления на коэффициент сжимаемости газа определяют по формуле

$$\mathcal{G}_{P} = \frac{\partial f}{\partial P} \times \frac{P}{f},\tag{12}$$

Коэффициенты влияния i-го компонента в газовой смеси на коэффициент сжимаемости определяются по формуле

$$\mathcal{G}x_i = \frac{\Delta K}{\Delta x_i} \times \frac{x_i}{K},\tag{13}$$

где ΔK — изменение значения коэффициента сжимаемости K при изменении содержания i-го компонента в газовой смеси x_i на величину Δx_i ,%.

Пределы относительной погрешности измерений объемного расхода и объема газа, приведенных к стандартным условиям по формуле (1) не должны превышать ±0,7 %.

6.4 Подтверждение соответствия программного обеспечения УКУГ

Выполняют поверку идентификационных признаков ПО в соответствии с руководством по эксплуатации в следующей последовательности:

- 1. Включают питание контроллера;
- 2. Дожидаются завершения самодиагностики и загрузки контроллера;
- 3. Из основного меню выбирают пункт:

5* SYSTEM SETTINGS

4. Выбирают пункт меню:

7. SOFTWARE VERSION

5. Нажимают стрелку «►» на навигационной клавише до появления страницы данных

VERSION CONTROL

FILE CSUM

- 6. Считывают цифровой идентификатор ПО (SW) (операция проводится для контроллеров с номером версии ПО 06.25 и ниже);
- 7. Нажимают стрелку «►» на навигационной клавише до появления страницы ланных

VERSION CONTROL GOST CHECKSUM

- 8. Считывают цифровой идентификатор ПО (CSUM) (операция проводится для контроллеров с номером версии ПО 06.26а и ниже);
- 9. Нажимают стрелку «►» на навигационной клавише до появления страницы данных

VERSION CONTROL APPLICATION SW

10. Считывают номер версии ПО (идентификационный номер).

Результат подтверждения соответствия программного обеспечения считается положительным, если полученные идентификационные данные ПО (цифровой идентификатор ПО и номер версии ПО), соответствуют указанным в описании типа.

7 Оформление результатов поверки

7.1 При положительных результатах поверки оформляют свидетельство о поверке УКУГ в соответствии с документом «Порядок проведения поверки средств измерений, требования к

знаку поверки и содержанию свидетельства о поверке», утвержденным Приказом Минпромторга России от 02.07.2015 № 1815. Знак поверки наносится на свидетельство о поверке УКУГ. Результаты поверки оформляют протоколом произвольной формы.

7.2 При отрицательных результатах поверки УКУГ к эксплуатации не допускают и выдают извещение о непригодности по форме Приложения 2 документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденного Приказом Минпромторга России от 02.07.2015 № 1815.

ПРИЛОЖЕНИЕ А

(обязательное)

Список нормативных документов на поверку СИ, входящих в состав УКУГ

Наименование СИ	Нормативный документ
Преобразователь расхода газа ультразвуковой SeniorSonic с электронным модулем Mark III, регистрационный № 28193-04	«ГСИ. Преобразователи расхода газа моделей SeniorSonic и JuniorSonic. Методика поверки имитационным методом» или «ГСИ. Преобразователи расхода газа моделей SeniorSonic и JuniorSonic. Методика поверки с помощью поверочной установки»
Преобразователь давления измерительный 3051, регистрационный № 14061-04	МИ 1997-89 «Рекомендация. Преобразователи давления измерительные. Методика поверки»
Преобразователь давления измерительный 3051, регистрационный № 14061-10	«ГСИ. Преобразователи давления измерительные 3051. Методика поверки»
Термопреобразователь сопротивления платиновый серии 65, регистрационный № 22257-05	ГОСТ 8.461 «ГСИ. Термопреобразователи сопротивления. Методы и средства поверки».
Преобразователь измерительный 3144P, регистрационный № 14683-04	Преобразователи измерительные 248, 644, 3144P, 3244MV. Методика поверки».
Контроллер измерительный FloBoss S600+, регистрационный № 64224-16	МП 0392-13-2016 «Контроллеры измерительные FloBoss S600+. Методика поверки» с изменением №1
Преобразователь измерительный серии HiD2000, регистрационный № 18792-04	«Преобразователи измерительные серии µD300, Hid2000. Методика поверки»
Хроматограф газовый промышленный специализированный «МістоSAM», регистрационный № 44122-10	МП-242-0992-2010 «Хроматографы газовые промышленные MicroSam. Методика поверки»
Анализатор влажности «3050» модели «3050-OLV»	МП 35147-07 «Инструкция. Анализаторы влажности «3050» модели «3050-OLV», «3050-TE», «3050-DO», «3050-SLR», «3050-AP», «3050-AM», «3050-RM»
Анализатор температуры точки росы углеводородов модель 241 модификации 241 СЕ II	МП-242-0301-2006 «Анализаторы температуры точки росы углеводородов модель 241СЕ. Методика поверки»