ОТЛЕЛ І

Общие стандарты

1. Основные стандарты в машиностроении

К этой группе отнесены все те стандарты, которые являются исходными при разработке специальных стандартов для отдельных отраслей машиностроения (например ОСТ/ВКС 7652: Нормальные конусности) или же предопределяют направление развития решающих элементов машиностроения. Нормальные ряды чисел и ОСТ на отверстие ключа и размеры под ключ носят международный характер и предопределяют: первый — отбор предпочтительных величин и градаций параметров в машиностроении, например чисел оборотов и подач в металлорежущих станках и т. п., а второй устанавливает важнейший основной элемент крепежных изделий и исходного сырья для них (размер прутков для шестигранных гаек и болтов).

Ряды чисел

OCT 3530

Нормальные ряды чисел в машиностроении

Редакция 1935 г.

І. Пределы применения

Настоящий стандарт является основанием для выбора предпочтительных величин и градаций параметров в машиностроении, например — чисел оборотов, скоростей, давлений, мощностей, а также конструктивных размеров (диаметров, длин).

И. Основания построения стандарта

Нормальные ряды чисел представляют геометрические прогрессии со знаменателями $V\overline{10}$, $V\overline{10}$, $V\overline{10}$ и $V\overline{10}$ и округленными значениями чисел.

III. Обозначения рядов

Нормальные ряды чисел обозначаются:

Примечание. Показатель корня (следовательно и обозначение ряда) указывает, сколько чисел (5, 10, 20 или 40) содержит десятичный интервал 1-10 или 10^n-10^{n+1} .

IV.	Ta	блица	рял	OВ
IV.	14	THE PARTY	יבומע	u,

40-й ряд	20-й ряд	10-й ряд	5-й ряд	40-й ряд	20-й ряд	10-й ряд	5-й ряд	40-й ряд	20 -й ряд	10-й ряд	5- й ряд	Точн. знач. чисел	Ман- тиссы
1	1	1	1	10	10	10	10	100	100	100	100	10000	000
1,06			-	10,6				106				10593	025
1,12	1,12			11,2	11,2			112	112			11220	050
1,18				11,8		· · · · · ·		118				11885	075
1,25	1,25	1,25		12,5	12,5	12,5		125	125	125		12589	100
1,32				13,2				132		Ì		13335	125
1,4	1,4	•		14	14	'		140	140			14125	150
1,5	:			15				150				14962	175
	<u> </u>		1		<u> </u>	10	140	100	100	160	160	15040	200
1,6	1,6	1,6	1,6	16	16	16	16	160	160	100	100		$\frac{200}{225}$
1,7				17				170	400			16788	$\frac{225}{250}$
1,8	1,8			18	18			180	180			17783	$\frac{250}{275}$
1,9		_		19	-	-		190	200	200		18836 19953	300
2	2	2)	20	20	20		200	200	200		21135	3 25
2,12				21,2				212	224			22387	3 50
2,24	2,24			22,4	22,4			$\frac{224}{236}$	224		1	23714	375
2,36	<u> </u>			23,6				200	<u>!</u>			20111	010
2,5	2,5	2,5	2,5	25	25	25	25	250	250	250	250	25119	400
2,65	_,~	-,-	2,0	26,5				265	}			26607	425
2,8	2,8			28	28			280	280			28184	4 50
$\frac{3}{3}$	-,-			30				300				29854	4 75
3,15	3,15	3,15		31,5	31,5	31,5		315	315	315		31623	5 00
3,35				33,5				335				33497	5 25
3,55	3,55	[35,5	35,5			3 55	355			35481	5 50
3,75				37,5	1	Į		375				37584	5 75

40-й Ряд	20-й ряд	10-ñ paa	5- й ряд	40-й ряд	20-й ряд	10-й ряд	5-й ряд	40-й ряд	20-й ряд	10-й ряж	5- й ряд	Точн. знач. чисел	Ман- тиссы
4	4	4	4	40	40	40	40	400	400	400	400	39811	6 00
4,25				42,5		1		425				42170	6 25
4,5	4,5	}		45	45		İ	450	450			44668	6 50
4,75			[47,5			[475				47315	6 75
5	5	5		50	50	50		500	500	500		50119	700
5,3		j	ļ '	53				530				53088	7 25
5,6	5,6			56	56			560	560			56234	7 50
6			} ;	60	i	i		600	1			FOFCE	7 75
		1	1 :	· · ·	J			000	1	ļ	!!	59566	110
		62	6 2		co	62	69		000	620	C20		
6,3	6,3	6,3	6,3	63	63	63	63	630	630	630	630	63096	800
6,7		6,3	6,3	63 67		63	63	630 670		630	630		800 825
6,7	6,3 7,1	6,3	6,3	63	63 71	63	63	630	630	630	630	63096	800 825 850
6,7			6,3	63 67			63	630 670			630	63096 66834	800 825 850 875
6,7 7,1 7,5 8		6,3	6,3	63 67 71		63	63	630 670 710		630 800	630	63096 66834 70795	800 825 850
6,7 7,1 7,5	7,1		6,3	63 67 71 75	71		63	630 670 710 750	710		630	63096 66834 70795 74989	800 825 850 875
6,7 7,1 7,5 8 8,5 9	7,1		6,3	63 67 71 75 80	71		63	630 670 710 750 800	710		630	63096 66834 70795 74989 79433	800 825 850 875 900
6,7 7,1 7,5 8 8,5	7,1		6,3	63 67 71 75 80 85	71 80		63	630 670 710 750 800 850	710		630	63096 66834 70795 74989 79433 84140	800 825 850 875 900 925

Примечания. 1. Числа свыше 1000 получаются умножением на 10, 100 и т. д. чисел таблицы, находящихся в пределах от 100 до 1000.

2. По возможности следует предпочитать 5-й ряд 10-му, 10-й-20-му, 20-й-40-му. Допускается переход от одного ряда к другому-с ним смеж-

ному, напр. 50, 63, 80-90, 100, 112, 125.

3. Допускается составление и использование в необходимых случаях производных рядов, образованных из нормальных (напр. 40-го ряда). путем выбора части чисел нормального ряда и пропуска других, напр. ряд 132, 190, 265, 375, 530 и т. д. со знаменателем прогрессии $pprox V^{-2}pprox$ 1.41 или 1.5—3—6—11, 8—23, 6—47,5 и т. д. со знаменателем прогрессии

V. Свойства нормальных рядов

- 1. Благодаря выбору знаменателей прогрессии вида $\sqrt{10}$ ряды получаются десятичные, т. е. числа рядов любого десятичного интервала (10^n до 10^{n+1}) получаются умножением на 1022 чисел интервала от 1 до 10.
- 2. Произведение любых чисел из нормальных рядов также будет числом из нормальных рядов.
- 3. Так как $\sqrt{10}$ примерно равняется $\sqrt{2}$ (с точностью до 0,001), то при назначении линейных размеров по 10-му нормальному ряду чисел объемы будут изменяться по закону прогрессии со знаменателем 2, площади же будут меняться по закону прогрессии со знаменателем $V\overline{10}$, т. е. по 5-му нормальному ряду чисел.

Продолжение ОСТ/ВКС 3530

VI. Допускаемые округления табличных чисел

При составлении таких рядов, как чисел оборотов, скоростей, давлений, мощностей, числа должны браться по таблице без дальнейшего округления или, наоборот, уточнения и приближения к теоретическим числам, приведенным в таблице стандарта для справок с точностью до 5-значных цифр.

Для конструктивных размеров (диаметров, длин) также надо пользоваться числами нормальных рядов без дальнейших округлений во всех случаях, когда эти размеры не связаны с другими рядами, установленными общесоюзными стандартами. Так, для размеров деталей машиностроения, которые выполняются по общесоюзной системе допусков и посадок, должны назначаться ближайшие размеры по ОСТ 6270, для диаметров резьб метрических — по ОСТ 32, для размеров под ключ — по ОСТ 95 и т. п.

Примеры:

10-й нормальный ряд чисел 20	25	31.5	40	50	63	80
Нормальные диаметры по ОСТ 627020	25	32	40	50	62	80
Метрическая резьба по ОСТ 32 20			39	48	64	80
Размеры "под ключ" по ОСТ 95-а 19	24	32	41	50	65	80
Условные проходы арматуры и трубо-						
проводов по ОСТ 740	25	32	38	50	65	76

При необходимости округления цифр нормальных рядов для конструктивных размеров, не связанных с какими-либо другими общесоюзными стандартами, рекомендуется пользоваться следующими округленными цифрами:

1,1 — вместо 1,12; 1,2 — вместо 1,25; 2,2 — вместо 2,24; 3 — вместо 3,15; 3,5 — вместо 3,55; 5,5 — вместо 5,6; 6 — вместо 6,3; 7 — вместо 7,1; 11 — вместо 11,2; 12 — вместо 12,5; 22 — вместо 22,4; 32 — вместо 31,5; 36 — вместо 35,5; 70 — вместо 71; 110 — вместо 112 и 220 — вместо 224.

VII. Примеры расчетов с применением нормальных рядов

В последней графе таблицы приведены мантиссы десятичных логарифмов чисел нормальных рядов; мантиссы даны для точных значений чисел, поэтому сни получаются в круглых цифрах, над которыми легко производить (в уме) действия сложения и вычитания.

Этим можно воспользоваться для быстрых подсчетов по формулам, связывающим величины, для которых установлены стандарты по нормальным рядам чисел; в результате арифметических действий над логарифмами чисел нормальных рядов большей частью получается снова логарифм какого-либо числа из нормальных рядов, и по мантиссе это число непосредственно прочитывается в таблице.

Примеры:

1) Расчет окружной скорости ременного шкива диаметром 200 мм при числе сборотов 800 в минуту.

$$v = \frac{\pi dn}{1000}$$

v - окружная скорость в м/мин,

d — диаметр в мм,

п - число оборотов в минуту (под нагрузкой).

$$\lg v = \lg d + \lg \pi + \lg n - \lg 1000$$

$$d=200$$
 mm, $\lg d=2,3$, $\lg \pi \approx 0,5$
 $n=800$ 06/Muh, $\lg n=2,9$, $\lg 1000=3$
 $\lg v=2,3+0,5+2,9-3=2,7$,

Продолжение ОСТ/ВКС 3530

2) Расчет крутящего момента машины мощностью 40 kW при числе оборотов 315 в мин.

$$M_d = 973.4 \, \frac{N}{n} \approx 1000 \, \frac{N}{n}$$

 M_d — передаваемый крутящий момент в кгм N — мощность в kW n — число оборотов в минуту

При подсчете величины крутящего момента по формуле $M_d=973,4\,\frac{N}{n}$ получается $M_d=123,6$ кгм, т. е. меньше на 1,10/0.

В нижеприведенной таблице сопоставлены величины крутящих моментов, приближенно подсчитанные по таблице нормальных рядов чисел, с величинами, подсчитанными по формуле $M_d=973,4\,\frac{N}{n}$; для мощности N принята градация по 10-му ряду от 10 до 50 kW; для чисел оборотов принята градация по 20-му ряду от 160 до 355; мощности и числа оборотов в таблице условно расположены одновременно в возрастающем порядке для иллюстрации, что если градации двух величин установлены по нормальным рядам чисел, то и для третьей величины, связанной с первыми двумя определенной зависимостью, также может быть установлен нормальный ряд чисел.

N kW			л Мин	М _d кгм		М _ф кгм	
Числа нор- мального ряда	lg	Числа нор- мального ряда	lg	1 g	Числа нор- мального ряда	Расчетн. $973,4 \frac{N}{n}$	Отклонен. от чисел нор- мальн. ряда в %
10	1,0	160	2,2	3+1,0-2,2=1,8	63	60,8	3,5
12,5	1,1	180	2,25	3+1,1-2,25=1,85	71	67,6	4,8
16	1,2	200	2,3	3+1,2-2,3=1,9	80	77,9	2,6
20	1,3	224	2,35	3 + 1,3 - 2,35 = 1,95	90	86,9	3,4
25	1,4	250	2,4	3+1.4-2.4=2.0	100	97,34	2,6
31,5	1,5	280	2,45	3+1.5-2.45=2.05	112	109,5	2,2
40	1,6	315	2,5	3+1.6-2.5=2.1	125	123,6	1,1
50	1,7	355	2,55	3+1.7-2.55=2.15	140	137,6	2,1

Внесен Сектором машиностроения ВКС. Утвержден 20/VIII 1931 г. Идженен 11/III 1935 г. Срок въедения 1/VII 1935 г.