4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение остаточного содержания клотианидина в зеленой массе, зерне и масле кукурузы, семенах, масле и зеленой массе подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3063—13

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение остаточного содержания клотианидина в зеленой массе, зерне и масле кукурузы, семенах, масле и зеленой массе подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3063—13 ББК 51.23 И37

Изя Измерение остаточного содержания клотианидина в зеленой массе, зерне и масле кукурузы, семенах, масле и зеленой массе подсолнечника методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—16 с.

ISBN 978-5-7508-1181-6

- 1. Разработаны сотрудниками ГНУ Всероссийский НИИ фитопатологии (Т. А. Назарова, О. Д. Микитюк, А. М. Макеев).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 30 мая 2013 г. № 1).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 14 июля 2013 г.
 - 4. Введены впервые.

ББК 51.23

Редактор Л. С. Кучурова Технический редактор Е. В. Ломанова

Полписано в печать 11.09.13

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1,0 Заказ 41

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс (495)952-50-89

© Роспотребнадзор, 2013

© Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

14 июля 2013 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение остаточного содержания клотианидина в зеленой массе, зерне и масле кукурузы, семенах, масле и зеленой массе подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3063—13

Свидетельство о метрологической аттестации от 14.12.2012 № 01.00225/205-78-12.

1. Назначение и область применения

Настоящие методические указания устанавливают порядок применения метода высокоэффективной жидкостной хроматографии для определения массовых концентраций клотианидина в зерне и масле кукурузы, семенах и масле подсолнечника в диапазоне 0,02—0,20 мг/кг, в зелёной массе кукурузы и подсолнечника в диапазоне 0,05—0,50 мг/кг.

Методические указания носят рекомендательный характер.

Название действующего вещества по ИСО: клотианидин.

Название действующего вещества по ИЮПАК: (Е)-1-(2-хлор-1,3-тиазол-5-илметил)-3-метил-2-нитрогуанидин.

Структурная формула:

Эмпирическая формула: $C_6H_8ClN_5O_2S$. Молекулярная масса: 249,7.

Бесцветный порошок без запаха. Температура плавления: 176,8 °C. Давление паров при 25 °C: $1,3 \times 10^{-7}$ мПа. Коэффициент распределения в системе н-октанол/вода: $K_{OW} \log P = 0,7$ (при 25 °C). Растворимость (г/дм³) при 20 °C: ацетон — 15,2; метанол — 6,26; этилацетат — 2,03; дихлорметан — 1,32; гентан — 0,001; вода — 0,327.

В почве в аэробных условиях клотианидин разрушается очень медленно: $DT_{50} = 148 - 1155$ дней.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD_{50}) для крыс $> 5\,000$ мг/кг; острая дермальная токсичность (LD_{50}) для крыс $> 2\,000$ мг/кг; острая ингаляционная токсичность (LC_{50}) для крыс $> 6\,141$ мг/м³ воздуха. Клотианидин не оказывает раздражающего действия на кожу кролика. LC_{50} для рыб > 100 мг/дм³ (96 ч).

Инсектицид нетоксичен для птиц, дафний, земляных червей, почвенных микроорганизмов и опасен для пчел при прямом контакте.

Область применения

Клотианидин — инсектицид нервно-паралитического действия, обладает широким спектром активности против сосущих, грызущих и почвенных насекомых на овощных культурах, фруктовых и питрусовых деревьях, рисе, кукурузе, подсолнечнике и рапсе. Вещество обладает системной активностью и может использоваться как в качестве протравителя, так и для обработки почвы и надземных органов растений.

Предлагается в России в качестве составного компонента комбинированных протравителей для предпосевной обработки семян рапса и сахарной свеклы при норме расхода 5—10 кг д.в./т семян, а также для обработки вегетирующих растений картофеля с нормой расхода до 12,5 г д.в./га.

2. Метрологические характеристики

При соблюдении всех регламентированных условий и проведении анализа в точном соответствии с данной методикой значение погрешности (и ее составляющих) результатов измерений не превышает значений, приведенных в таблице.

Таблица

Анализи- руемый объект	Диапазон измерений массовой доли клотиа- нидина мг/кг	Показатель точности (границы относительной погрешности) $\pm \delta$, % при $P=0.95$	Показатель повторяемо- сти (относи- тельное среднеквад- рагическое отклонение повторяемо- сти), о, %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %	Предел повто- ряемос- ти, <i>r</i> , %, <i>P</i> = 0,95, <i>n</i> = 2
Зерно кукурузы	От 0,020 до 0,10 вкл.	33	5	9	14
	Св. 0,10 до 0,20 вкл.	20	3	4,5	8
Семена подсолнеч- ника	От 0,020 до 0,10 вкл.	34	7	11	19
	Св. 0,10 до 0,20 вкл.	18	4	6	11
Масло кукурузы	От 0,020 до 0,10 вкл.	35	9	14	25
	Св. 0,10 до 0,20 вкл.	19	5	8	14
Масло подсолиеч- ника	От 0,020 до 0,10 вкл.	32	8	12	22
	Св. 0,10 до 0,20 вкл.	20	4	6	11
Зеленая масса кукурузы	От 0,05 до 0,10 вкл.	22	6	9	17
	Св. 0,10 до 0,50 вкл.	13	3	4,5	8
Зеленая масса под- солнечника	От 0,05 до 0,10 вкл.	24	6	9	17
	Св. 0,10 до 0,50 вкл.	15	4	6	11

3. Метод измерений

Метод основан на экстракции клотианидина из зерна и зелёной массы кукурузы, семян и зелёной массы подсолнечника водным раствором ацетона, из масла кукурузы и подсолнечника водным раствором метанола, очистке экстрактов, содержащих клотианидин, от коэкстрактивных компонентов перераспределением их в системе несмешивающихся растворителей, а также на колонке с флоризилом, с последующим

измерением содержания клотианидина в очищенных экстрактах на жидкостном хроматографе с ультрафиолетовым детектированием и обработкой хроматограмм методом абсолютной градуировки.

4. Средства измерений, реактивы, вспомогательные устройства и материалы

4.1. Средства измерений

Жидкостный хроматограф с ультрафиолетовым детектором с переменной длиной волны, снабженный дегазатором и термостатом колонки Весы аналитические с пределом взвешивания до 110 г и допустимой погрешностью 0.0001 г ГОСТ Р 53228---08 Весы лабораторные с пределом взвешивания 160 г и допустимой погрешностью 0.005 г ГОСТ Р 53228---08 Колбы мерные вместимостью 2-100-2, 2-1000-2 ГОСТ 1770--74 Пипетки градуированные 1-1-2-1; 1-1-2-2; 1-2-2-5: 1-2-2-10 ГОСТ 29227—91 Пробирки градуированные с пришлифованной пробкой П-2-5-0,1; П-2-10-0,2 ΓΟCT 1770---74 Цилиндры мерные 1-25; 1-50; 1-100; 1-500; 1 - 1000ΓΟCT 1770-74 Шприц для ввода образцов для жидкостного хроматографа вместимостью 20—100 мм³

Примечание. Допускается использование средств измерения с аналогичными или лучшими характеристиками.

4.2. Реактивы

Клотианидин с содержанием основного вещества	
не менее 99,4 %, аналитический стандарт	
Ацетон, чистый для анализа	ΓΟCT 2603—79
Ацетонитрил для хроматографии, хч	ТУ 6-09-353487
Вода для лабораторного анализа	
(бидистиллированная, деионизованная)	ΓΟCT P 5250105
н-Гексан, хч	ТУ 6-09-337578
Калий углекислый, хч	ΓΟCT 4221—76
Метилен хлористый (дихлорметан), хч	ΓΟCT 12794—80
Метиловый спирт (метанол), хч	ΓΟCT 6995—77
Натрий серно-кислый, безводный, хч	ГОСТ 4166—76
Этиловый эфир уксусной кислоты	
(этилацетат), ч	ГОСТ 22300—76

Примечание. Допускается использование реактивов с более высокой квалификацией.

4.3. Вспомогательные устройства, материалы

Аппарат для встряхивания	ТУ 64-1-285178
Ванна ультразвуковая	
Вата медицинская гигроскопическая хлопко-	
вая, нестерильная	ΓOCT 555681
Воронка Бюхнера	ГОСТ 9147—80
Воронки делительные вместимостью 100 и 250 см ³	ΓΟCT 2533682
Воронки лабораторные, стеклянные	ГОСТ 25336—82
Колба Бунзена вместимостью 250 см ³	ΓΟCT 25336—82
Колбы круглодонные на шлифе вместимостью	
10,100 и 250 cм ³	ГОСТ 973793
Колбы плоскодонные вместимостью 250 см ³	ГОСТ 973793
Колонка хроматографическая стеклянная,	
длиной 25 см и внутренним диаметром 10 мм	
Колонка аналитическая хроматографическая,	
стальная (150 × 4,6 мм), заполненная сорбен-	
том с привитыми многофункциональными	
полярными группами С18 зернением 5 мкм	
Мельница лабораторная электрическая	ТУ 46-22-23684
Насос водоструйный вакуумный	ΓΟCT 10696—75
Ротационный вакуумный испаритель ИР-1М	ТУ 25-11-917-76
Флоризил для колоночной хроматографии с	
размером частиц 60—100 меш.	
Стаканы химические вместимостью 100 и 500 см ³	ГОСТ 25336—82
Стекловата	
Установка для перегонки растворителей с	
дефлегматором	ГОСТ 9737—93
	(ИСО 641—75)
Фильтры бумажные средней плотности	ТУ 6.091678—86
Фильтры мембранные, диаметром 47 мм с	
размером пор 0,45 мкм	

Примечание. Допускается применение других вспомогательных средств измерений и устройств аналогичного назначения, технические характеристики которых не уступают вышеуказанным, а также материалов, обеспечивающих нормативы точности при проведении измерений.

5. Требования безопасности, охраны окружающей среды

- 5.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.007—76, 12.1.005—88.
- 5.2. При проведении анализов горючих и вредных веществ соблюдают требования противопожарной безопасности по ГОСТ 12.1.004—91 и должны быть в наличии средства пожаротушения по ГОСТ 12.4.009— 90. Обучение работающих правилам безопасности труда проводят согласно ГОСТ 12.0.004—90.
- 5.3. При выполнении измерений с использованием хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.
- 5.4. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией. Содержание вредных веществ в воздухе рабочей зоны не должно превышать ПДК (ОБУВ), установленных ГН 2.2.5.1313—03 и ГН 2.2.5.2308—07.

6. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускается специалист, прошедший обучение, имеющий опыт работы в лаборатории и владеющий техникой проведения хроматографического анализа, освоивший данную методику и подтвердивший соответствие получаемых результатов нормативам контроля погрешности измерений.

7. Требования к условиям измерений

При выполнении измерений соблюдают следующие условия.

7.1. Условия приготовления растворов и подготовки проб к анализу

температура воздухаатмосферное давление

 (20 ± 5) °C; (84—106) кПа;

– атмосферное давление
 – относительная влажность воздуха

не более 80 %.

7.2. Условия хроматографического анализа

Температура колонки: 27 °C.

Подвижная фаза: ацетонитрил-вода (20:80, в объемных соотношениях).

Скорость потока элюента: 0,8 см³/мин.

Рабочая длина волны: 270 нм.

Чувствительность: 0,001 ед. абсорбции на шкалу.

Объем вводимой пробы: 5 мм³.

Линейный диапазон детектирования 0,1—1 нг.

8. Подготовка к вынолнению измерений

Измерениям предшествуют следующие операции: приготовление растворов, подвижной фазы для высокоэффективной жидкостной хроматографии (ВЭЖХ), градуировочных растворов, кондиционирование хроматографической колонки, установление градуировочной характеристики, приготовление колонки с флоризилом и установление объема и состава элюента, необходимого для полного вымывания клотианидина из колонки с флоризилом.

8.1. Приготовление раствора углекислого калия с молярной концентрацией 0,05 моль/дм³

В мерную колбу вместимостью 1 000 см³ помещают 6,9 г К₂СО₃, приливают 100 см³ деионизованной воды, перемешивают до растворения осадка, доводят объем водой до метки, перемешивают.

Срок хранения - 1 неделя.

8.2. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью 1 $000 \, \mathrm{cm}^3$ помещают $200 \, \mathrm{cm}^3$ ацетонитрила, $800 \, \mathrm{cm}^3$ бидистиллированной воды, перемешивают, фильтруют через мембранный фильтр.

Срок хранения – 1 неделя.

8.3. Кондиционирование хроматографической колонки

Хроматографическую колонку устанавливают в термостат хроматографа и стабилизируют при температуре 27 °C и скорости потока подвижной фазой 0.8 см^3 /мин не менее часа до установления стабильной базовой линии (дрейф базовой линии в течение 1 ч не более 5 %, а уровень шумов не более 2 % от верхнего значения шкалы).

8.4. Приготовление градуировочных растворов

8.4.1. Исходный градуировочный раствор клотианидина с массовой концентрацией 100 мкг/см³

В мерную колбу вместимостью $100~{\rm cm}^3$ помещают (0.010 ± 0.0001) г клотианидина, растворяют в $40-50~{\rm cm}^3$ ацетонитрила, доводят ацетонитрилом до метки, тщательно перемешивают.

Раствор хранят при температуре не выше -18 °C. Срок хранения -- не более 3 месяцев.

8.4.2. Градуировочный раствор клотианидина с массовой концентрацией 10 мкг/см 3 (раствор № 1)

В мерную колбу вместимостью 100 см³ помещают 10 см³ исходного раствора клотианидина с массовой концентрацией 100 мкг/см³ (п. 8.4.1), разбавляют ацетонитрилом до метки. Этот раствор используют для приготовления градуировочных растворов № 2—5.

Для приготовления проб с внесением при оценке полноты извлечения клотианидина методом «внесено—найдено» используется ацетоновый раствор вещества с концентрацией 10 мкг/см³.

Градуировочный раствор № 1 и ацетоновый раствор клотианидина хранят при температуре не выше —18 °C. Срок хранения — не более 1 месяпа.

8.4.3. Градуировочные растворы клотианидина с массовой концентрацией 0,02—0,2 мкг/см³ (растворы № 2—5)

В 4 мерные колбы вместимостью 100 см³ помещают 0,2, 0,4, 1,0 и 2,0 см³ градуировочного раствора № 1 клотианидина с массовой конпентрацией 10 мкг/см³, доводят до метки подвижной фазой, приготовленной по п. 8.2, тщательно перемешивают. Получают растворы с массовой концентрацией клотианидина 0,02, 0,04, 0,1 и 0,2 мкг/см³ соответственно.

Растворы готовят непосредственно перед использованием.

8.5. Градуировка хроматографа

Градуировочную характеристику, выражающую зависимость площади пика (мкВ · с) от концентрации клотианидина в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки.

В инжектор хроматографа вводят по 5 мм³ каждого градуировочного раствора (п. 8.4.3) и анализируют при условиях п. 7.2. Осуществляют не менее трех параллельных определений. Расхождение между параллельными определениями не должно превышать предела повторяемости *r*.

По полученным данным строят градуировочную характеристику.

8.6. Контроль стабильности градуировочной характеристики

Контроль стабильности градуировки проводят не реже 1 раза в три месяца, а также при смене реактивов или изменении условий анализа.

Для контроля стабильности используют вновь приготовленные градуировочные растворы с массовой концентрацией исследуемого вещества в начале, середине и конце диапазона измерений, которые анализируют в точном соответствии с методикой. Градуировочную характеристику считают стабильной, если для каждого контрольного образца выполняется условие:

$$\left| \frac{\left| S_{uam} - S_{zp} \right|}{S_{zp}} \cdot 100 \le K_{zp}$$
, где

 $S_{usm},\,S_{ep}$ — значение площади пика клотианидина в образце для контроля, измеренное и найденное по градуировочной характеристике соответственно, мкВ · с:

 K_{ep} — норматив контроля, K_{ep} = 0,5 · δ , где

 $\pm \delta$ – границы относительной погрешности, % (табл. 1).

Если условие стабильности не выполняется только для одного образца, то повторно анализируют этот образец для исключения результата, содержащего грубую ошибку.

Если градуировка нестабильна, выясняют причины нестабильности и повторяют контроль стабильности с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировки прибор градуируют заново.

8.7. Подготовка колонки с флоризилом для очистки экстракта

В нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 10 мм помещают тампон из стекловаты и затем в неё всыпают 10 г сухого флоризила. Колонку промывают 30 см³ этилацетата со скоростью 1—2 капли в секунду. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Через колонку пропускают 15 см³ этилацетата со скоростью 1—2 капли в секунду, после чего колонка готова к работе.

8.8. Определение объёма элюента, необходимого для полного вымывания клотианидина из колонки с флоризилом

При отработке методики или поступлении новой партии флоризила проводят определение объёма элюента, необходимого для полного вымывания клотианидина из колонки с флоризилом.

В круглодонную колбу вместимостью 10 см³ помещают 0,1 см³ градуировочного раствора № 1 клотианидина с концентрацией 10 мкг/см³ в ацетонитриле (п. 8.4.2), раствор упаривают досуха, остаток растворяют в 2 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин. Раствор наносят на колонку с флоризилом, подготовленную по п. 8.7. Колбу обмывают 3 см³ этилацетата, которые также вносят в колонку. Промывают колонку 50 см³ этилацетата со скоростью 1—2 капли в секунду, элюат отбрасывают. Затем через колонку пропускают 50 см³ смеси этилацетат—

ацетонитрил с объемным соотношением компонентов 1:1, отбирая последовательно по 5 см³ элюата. Каждую фракцию упаривают, остатки растворяют в 1 см³ ацетонитрила, помещая в ультразвуковую ванну на 1 мин., вносят 2 см³ подвижной фазы, подготовленной по п. 8.2, перемешивают и хроматографируют в соответствии с условиями п. 7.2.

По результатам обнаружения клотианидина в каждой из фракций определяют объем смеси этилацетат-ацетонитрил с объемным соотношением 1:1, необходимый для полного вымывания клотианидина из колонки.

9. Отбор и хранение проб

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» (от 21.08.79 № 2051—79) и правилами, определенными ГОСТ Р 50436—92 «Зерновые. Отбор проб зерна», ГОСТ 13634—90 «Кукуруза. Требования при заготовке и поставке», ГОСТ 10852—86 «Семена масличные. Правила приемки и методы отбора проб», ГОСТ 11291—93 «Масло подсолнечника. Требования при заготовках и поставках», ГОСТ 27262—87 «Корма растительного происхождения. Методы отбора проб» и ГОСТ 27978—88 «Корма зеленые. Технические условия».

Пробы зерна кукурузы и семян подсолнечника высушивают до стандартной влажности и хранят в бумажных или тканевых мещочках в сухом, хорошо проветриваемом шкафу, недостушном для грызунов. Пробы зелёной массы замораживают и хранят при температуре не выше –18 °С. Масло хранят в плотно закрытой стеклянной или полиэтиленовой таре в холодильнике при температуре 0—4 °С. В некоторых случаях масло получают из зерна кукурузы и семян подсолнечника экстракцией органическими неполярными растворителями (петролейный и диэтиловый эфиры) непосредственно перед проведением анализа.

10. Проведение определения

10.1. Экстракция клотианидина

10.1.1. Зерно кукурузы, семена подсолнечника. Образец размолотого зерна или семян массой 10 г помещают в плоскодонную колбу вместимостью 250 см³, добавляют 100 см³ смеси ацетон—вода с объемным соотношением компонентов 3:1, перемешивают и колбу помещают на встряхиватель на 40 мин. Суспензию фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу Бунзена вместимостью

250 см³. Остаток на фильтре промывают 50 см³ приведённой выше смеси. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора и ½ его часть, эквивалентную 5 г образца, переносят в круглодонную колбу вместимостью 250 см³. Дальнейшую очистку экстракта проводят по п. 9.2.

- 10.1.2. Зеленая масса. Образец измельченного растительного материала массой 25 г помещают в стакан гомогенизатора вместимостью 500 см³, приливают 125 см³ смеси ацетон—вода с объемным соотношением компонентов 3:1 и гомогенизируют 3 мин при 8 000 об./мин. Гомогенат фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу Бунзена вместимостью 250 см³. Осадок на фильтре промывают 50 см³ смеси ацетон—вода с объемным соотношением 3:1. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объём раствора и ¹/₅ его часть (эквивалентную 5 г образца) переносят в круглодонную колбу вместимостью 100 см³. Дальнейшую очистку экстракта проводят по п. 9.2.
- 10.1.3. Масло. Образец масла массой 5 г вносят в делительную воронку вместимостью 100 см³, добавляют 20 см³ гексана, перемешивают. К раствору добавляют 50 см³ смеси метанол—вода с объемным соотношением компонентов 8:2 и воронку интенсивно встряхивают в течение двух минут. После разделения фаз декантируют водно-метанольный слой в круглодонную колбу через слой ваты, помещённой в конусную воронку. Маслянистый остаток повторно обрабатывают 50 см³ смеси метанол—вода с объемным соотношением 8:2 и водно-метанольную фазу фильтруют через вату. Вату на фильтре промывают 10 см³ смеси метанол-вода с объемным соотношением 8:2, фильтрат объединяют с водно-метанольными экстрактами и переносят в круглодонную колбу вместимостью 250 см³. Дальнейшую очистку экстракта проводят по п. 10.2.

10.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Отобранные аликвоты экстрактов растительного материала (пл. 10.1.1, 10.1.2), а также экстракт масла (п. 10.1.3) упаривают на ротационном вакуумном испарителе до водного остатка объемом 3—5 см³ при температуре не выше 40 °C. К водному остатку приливают 20 см³ деионизованной воды, перемешивают и переносят в делительную воронку вместимостью 100 см³. В воронку вносят 30 см³ хлористого метилена, интенсивно встряхивают в течение 2 мин. После разделения фаз нижний органический слой собирают в делительную воронку вместимостью 250 см³, а водную фазу экстрагируют еще дважды, используя по

30 см³ хлористого метилена. К объединенной дихлорметановой фракции в делительной воронке вместимостью 250 см³ приливают 25 см³ водного раствора углекислого калия с молярной концентрацией 0,05 моль/дм³ (п. 8.1), содержимое интенсивно встряхивают в течение двух минут. После разделения фаз нижний органический слой, содержащий клотианидин, фильтруют через слой безводного сульфата натрия в круглодонную колбу и затем упаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °C. Дальнейшую очистку экстракта проводят по п. 10.3.

10.3. Очистка экстракта на колонке с флоризилом

Сухой остаток экстрактов зерна, семян, масла или зелёной массы, полученный по п. 10.2, растворяют в 3 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин. Раствор наносят на колонку, подготовленную по п. 8.4. Колбу обмывают 3 см³ этилацетата, который также наносят на колонку. Колонку промывают 40 см³ этилацетата со скоростью 1—2 капли в секунду, элюат отбрасывают. Клотианидин элюируют из колонки 25 см³ смеси этилацетат—ацетонитрил с объемным соотношением компонентов 1:1 непосредственно в круглодонную колбу вместимостью 100 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °С. Сухой остаток экстракта зерна, семян и масла растворяют в 5 см³, а зелёной массы в 12,5 см³ подвижной фазы для ВЭЖХ (п. 8.2), раствор помещают в ультразвуковую ванну на 1 мин и анализируют на содержание клотианидина по п. 11.

Полнота извлечения клотианидина при проведении всех операций подготовки пробы не менее 81 %.

11. Выполнение измерений

- 11.1. В инжектор хроматографа вводят 5 мм³ очищенного экстракта анализируемой пробы (пп.10.1—10.3), анализируют при условиях (п. 7.2) и регистрируют хроматограмму. Каждый экстракт хроматографируют дважды.
- 11.2. Для каждого образца повторяют операции по пп. 10.1—10.3, 11.1.

12. Обработка результатов измерений

12.1. Для обработки результатов хроматографического анализа используется программа сбора и обработки хроматографической информации.

Альтернативная обработка результатов.

По градуировочной характеристике находят значение массовой концентрации клотианидина в экстрактах, C, мкг/ см³.

Массовую долю клотианидина X, мг/кг в образцах зерна, семян, масла и зелёной массы рассчитывают по формуле

$$X = \frac{C \cdot V_{\text{экстр}}}{m \cdot 0.81}, \text{ где}$$
 (2)

C — значение массовой концентрации клотианидина в экстрактах, мкг/ см 3 :

 $V_{_{\mathfrak{R}Cmp}}$ — объем экстракта, подготовленного для хроматографирования, см³;

m — масса анализируемой части образца, соответствующая доле экстракта, использованной для очистки на колонке с флоризилом и последующего хроматографического определения, г;

- 0,81 коэффициент извлечения клотианидина, учитывающий все процедуры подготовки пробы.
- 12.2. За результат измерений принимают среднее арифметическое результатов двух параллельных определений, если выполняется условие приемлемости

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \tag{3}$$

 X_{I}, X_{2} — результаты параллельных определений массовой доли клотианидина, мг/кг;

r – значение предела повторяемости, % (табл. 1).

Если условие (3) не выполняется, выясняют причины превышения предела повторяемости, устраняют их и повторяют выполнение измерений в соответствии с требованиями МВИ.

12.3. Результат анализа в документах, предусматривающих его использование, представляют в виде:

$$\overline{X} \pm 0,01 \cdot \delta \cdot \overline{X}$$
, при $P = 0,95$,

 \overline{X} — среднее арифметическое значение результатов n определений, признанных приемлемыми, мг/кг.

 $\pm \delta$ – границы относительной погрешности измерений, % (табл. 1).

В случае, если полученный результат измерений ниже нижней границы диапазона измерений, то результат анализа представляют в виде:

«массовая доля клотианидина в зерне, семенах и масле менее 0.02~мг/кг»;

«массовая доля клотианидина в зелёной массе менее 0,05 мг/кг».

Экстракты, при хроматографировании которых получают аналитический сигнал клотианидина, превышающий аналитический сигнал, получаемый при хроматографировании градуировочного раствора с массовой концентрацией 0,2 мкг/см³, разбавляют, но не более чем в 10 раз, и анализируют в соответствии с данной методикой.

Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости

- 13.1. Проверку приемлемости результатов измерений в условиях воспроизводимости проводят:
- а) при возникновении спорных ситуаций между двумя лабораториями;
- б) при проверке совместимости результатов измерений, полученных при сличительных испытаниях (при проведении аккредитации лабораторий и инспекционного контроля).
- 13.2. Для проведения проверки приемлемости результатов измерений в условиях воспроизводимости каждая лаборатория использует пробы, оставленные на хранение.
- 13.3. Расхождение между результатами измерений, выполненных в условиях воспроизводимости (разное время, разные операторы, разные лаборатории), не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \text{ где}$$
 (4)

 X_1 , X_2 — результаты измерений массовой доли клотианидина, выполненных в условиях воспроизводимости (разное время, разные операторы, разные лаборатории), мг/кг;

R – предел воспроизводимости, % (при этом $R = 2.77 \cdot \sigma_R$).

Если предел воспроизводимости не превышен, то приемлемы все результаты измерений и в качестве окончательного результата используют их среднеарифметическое значение. Если предел воспроизводимости превышен, то выполняют процедуры, изложенные в ГОСТ Р ИСО 5725-6—2002 (п. 5.3.3).

При разногласиях руководствуются ГОСТ Р ИСО 5725-6—2002 (п. 5.3.4).

4.1.3063-1