

МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ (Росстандарт)

ПРИКАЗ

29 декабря 2018 г.

.№ 2831

Москва

Об утверждении Государственной поверочной схемы для координатно-временных измерений

B соответствии Положением об эталонах елинип используемых в сфере государственного регулирования обеспечения единства постановлением Правительства **утвержденным** Федерации от 23 сентября 2010 г. № 734 «Об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений», Временным порядком разработки (пересмотра) и утверждения государственных поверочных утвержденным схем, Федерального агентства по техническому регулированию и метрологии от 31 августа 2017 г. № 1832, на основании Плана разработки (пересмотра) и утверждения государственных поверочных схем на 2018 год, утвержденного Федерального агентства по техническому и метрологии от 29 декабря 2017 г. № 3021, а также принимая во внимание протокола научно-технической раздел комиссии по метрологии техническому измерительной технике Федерального агентства по регулированию от 2 августа 2018 № метрологии г. 91-пр. приказываю:

- 1. Утвердить прилагаемую Государственную поверочную схему для координатно-временных средств измерений (далее ГПС).
 - 2. Установить, что:

ГПС применяется для Государственного первичного специального эталона единицы длины (ГЭТ 199-2018), эталонов и средств измерений в сфере координатно-временных измерений и вводится в действие по истечении 180 дней с даты издания приказа об ее утверждении;

эталоны, аттестованные на соответствие ГОСТ Р 8.750-2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для координатно-временных средств измерений» (далее - ГОСТ Р 8.750-2011) или локальным поверочным схемам, применяются

до даты окончания срока действия свидетельства об аттестации, выданного до ввода в действие ГПС;

эталоны, аттестованные на соответствие ГОСТ Р 8.750-2011, соответствующие по своим метрологическим характеристикам указанному разряду ГПС, подлежат периодической аттестации на соответствие ГПС не позднее срока окончания действия свидетельства об аттестации, в документы на эталоны вносятся соответствующие изменения;

эталоны, аттестованные на соответствие ГОСТ Р 8.750-2011, не соответствующие по своим метрологическим характеристикам указанному разряду ГПС, подлежат первичной аттестации не позднее срока окончания действия свидетельства об аттестации и утверждению в соответствии с ГПС;

эталоны, аттестованные на соответствие локальным поверочным схемам, подлежат первичной аттестации не позднее срока окончания действия свидетельства об аттестации и утверждению в соответствии с ГПС;

информация о прекращении применения эталонов по ГОСТ Р 8.750-2011 или локальным поверочным схемам или об изменении ГПС для эталонов, не требующих переутверждения, передается держателем эталона в Федеральный информационный фонд по обеспечению единства измерений после даты окончания срока действия свидетельства об аттестации.

3. Управлению технического регулирования и стандартизации (Д.А.Тощев) совместно с ФГУП «ВНИИФТРИ» (С.И.Донченко) обеспечить:

отмену национального стандарта Российской Федерации ГОСТ Р 8.750-2011;

прекращение применения в качестве национального стандарта Российской Федерации межгосударственного стандарта ГОСТ 8.503-84 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне 24-75000 м».

- 4. Определить, что ГПС утверждается взамен РД 68-8.17-98 «Локальные поверочные схемы (ЛПС) для средств измерений (СИ) топографогеодезического и картографического назначения».
- 5. ФГУП «ВНИИФТРИ» (С.И.Донченко) внести информацию об утверждении ГПС в Федеральный информационный фонд по обеспечению единства измерений.
- 6. Управлению метрологии (Д.В.Гоголев) обеспечить размещение информации об утверждении ГПС на официальном сайте Федерального агентства по техническому регулированию и метрологии в информационно телекоммуникационной сети «Интернет».

7. Контроль за исполнение моннает описычнае поличение поличения по обой.

Федеральное агентство по техническому регулированию и

федеральное агентство по техническому регулированию и

федеральное агентство по техническому регулированию и

Заместитель Руководителя

Сертификат: 00E1036EE32711E880E9E0071BFC5DD276 Кому выдан: Голубев Сергей Сергевич Действителен: с 08.11.2018 до 08.11.2019 С.С.Голубев

УТВЕРЖДЕНА приказом Федерального агентства по техническому регулированию и метрологии от «29» декабря 2018 г. № 2831

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ КООРДИНАТНО-ВРЕМЕННЫХ СРЕДСТВ ИЗМЕРЕНИЙ

1. Область применения

Настоящая государственная поверочная схема распространяется на координатно-временные средства измерений и устанавливает назначение первичного государственного специального эталона единицы длины (далее – ГПСЭД), комплекса основных средств измерений, входящих в его состав, основные метрологические характеристики эталона и порядок передачи единицы длины, координат, времени метра, градуса, секунды рабочих эталонов помощью вышестоящих эталонов С средствам координатно-временных измерений с указанием погрешностей и основных методов поверки.

Допускается проводить поверку рабочих эталонов и средств измерений с помощью эталонов более высокой точности и государственного первичного эталона по настоящей поверочной схеме.

Графическая часть Государственной поверочной схемы для координатно-временных средств измерений представлена в приложении А.

2. Государственный первичный эталон

- 2.1. ГПСЭД предназначен для воспроизведения, хранения и передачи единицы длины – метра в области измерения больших длин.
 - 2.1.1. ГПСЭД включает в свой состав:

эталонный измерительный комплекс длины в диапазоне до 60 м;

лазерный эталон сравнения и эталонные базисы в диапазоне от 24 до 3000 м:

эталон сравнения на основе приемников КНС и опорных базисных пунктов в диапазоне от 1 до 4 000 км.

2.1.2. Метрологические характеристики ГПСЭД приведены в таблице 1:

Таблица 1

№ п/п	Наименование характеристики, единица измерения	Значение	Примечания	
	В диапазоне до 60 м			
1	Среднее отклонение измерений S (при 25 независимых мкм квадратическое результата измерения 25 измерениях),	1		
2	Неисключенная систематическая погрешность $\Theta(P)$ (при $P=0.99$), мкм	±5	для дистанции 60 м	
3	Стандартная неопределенность, оцененная по типу A, мкм	1,0		
4	Стандартная неопределенность, оцененная	2		

	по типу В, мкм					
5	Суммарная стандартная					
	неопределенность, мкм	2,2				
	Расширенная					
6	неопределенность при	4,4				
	коэффициенте охвата k=2, мкм	.,.				
	В диапазоне от 24 до 3000 м					
Среднее квадратическое на нижней границе						
_	отклонение результата	диапазона: 0,03				
7	измерений S (при 50	на верхней границе				
	независимых измерениях), мм	диапазона: 0,7				
	Неисключенная	, , , , , , , , , , , , , , , , , , , ,				
8	систематическая погрешность	±0,2				
	$\Theta(P)$ (при $P = 0.99$), мм	,				
		на нижней границе				
9	Стандартная	диапазона: 0,03				
9	неопределенность, оцененная	на верхней границе				
	по типу А, мм	диапазона: 0,7				
	Стандартная					
10	неопределенность, оцененная	0,1				
	по типу В, мм					
	Суммарная стандартная неопределенность, мм	на нижней границе				
11		диапазона: 0,1				
11		на верхней границе				
		диапазона: 0,7				
	Расширенная	на нижней границе				
12	неопределенность при	диапазона: 0,2				
12	коэффициенте охвата k=2, мм	на верхней границе				
		диапазона: 1,4				
		от 1 до 4000 км	I			
	Среднее квадратическое	на нижней границе				
13	отклонение результата измерений S (при 30	диапазона: 1				
		на верхней границе				
	независимых измерениях), мм	диапазона: 20				
1	Неисключенная		для дистанции			
14	систематическая погрешность	±26	4000 км			
	$\Theta(P)$ (при $P = 0.99$), мм					
	Стандартная неопределенность, оцененная по типу A, мм	на нижней границе				
15		диапазона: 1				
		на верхней границе				
		диапазона: 20				
16	Стандартная	11	на верхней			
	неопределенность, оцененная		границе			
	по типу В, мм		диапазона			

17	Суммарная стандартная неопределенность, мм	23	
18	Расширенная неопределенность при коэффициенте охвата k=2, мм	46	

- 2.2. Для обеспечения воспроизведения единиц величин с указанной точностью должны быть соблюдены правила содержания и применения эталонов, утвержденные в установленном порядке.
- 2.3. Государственный первичный эталон применяют для установления эквивалентности эталонов НМИ стран, подписавших СІРМ MRA, а также для передачи единиц величин рабочим эталонам и СИ методом прямых измерений
 - 3. Рабочие эталоны, заимствованные из других поверочных схем
- 3.1. В качестве рабочих эталонов, заимствованных из других поверочных схем, применяют:

рабочие эталоны единиц времени, частоты и национальной шкалы времени по ГОСТ 8.129 [1];

рабочие эталоны 4 разряда единицы плоского угла по ГПС СИ плоского угла – теодолиты точные (Приказ Росстандарта от 19 января 2016 года № 22).

3.2. Рабочие эталоны, заимствованные из других поверочных схем, применяют для:

передачи национальной шкалы времени к СИ — высокоточной НАП ГНСС, НАП ГНСС методом прямых измерений;

передачи единицы плоского угла к рабочим эталона 1 разряда — рабочим эталонам координат местоположения методом прямых измерений.

4. Рабочие эталоны

4.1. Рабочие эталоны 1-го разряда

4.1.1. В качестве рабочих эталонов 1-го разряда применяют:

В части измерения длины (приращений координат):

эталонные комплекты СИ приращений координат в диапазоне длин от 1 до 50 км — представляют собой составное изделие, состоящее из высокостабилизированных геодезических пунктов и комплекта многочастотных спутниковых фазовых геодезических приемников, которые используются как для передачи единицы длины СИ, так и для периодического контроля (не реже одного раза в месяц) метрологических характеристик базиса (базисов), спутниковых геодезических сетей и измерительных систем непрерывно действующих опорных станций;

фазовые светодальномеры, дальномеры, тахеометры в диапазоне длин до 5000 м;

эталонные базисные комплексы в диапазонах длин: до 60 м, от 60 до 5000 м, от 1 до 4000 км.

Эталонные базисные комплексы в диапазонах длин до 60 м, от 60 до 5000 м представляют собой составное изделие, состоящее из линейного базиса или нескольких линейных базисов и фазового светодальномера или дальномера или

тахеометра, который используется как для передачи единицы длины СИ, так и для периодического контроля (не реже одного раза в месяц) метрологических характеристик базиса (базисов).

Эталонные базисные комплексы в диапазоне длин от 1 до 4000 км представляют собой составное изделие, состоящее из линейного базиса или нескольких линейных базисов и комплекта многочастотных спутниковых фазовых геодезических приемников, которые используется как для передачи единицы длины СИ, так и для периодического контроля (не реже одного раза в месяц) метрологических характеристик базиса (базисов).

Базисы используются в качестве обязательного вспомогательного оборудования при передаче единиц величин. При этом базисы должны обеспечивать сохранение взаимного положения пунктов со стабильностью, необходимой при передаче единицы величины нижестоящим эталонам и средствам измерений (требования к базисам определяются в рамках аттестации эталонных комплексов в зависимости от конструкции базисов).

В части измерения координат:

рабочие эталоны координат местоположения — комплексы технических средств, включающих в состав средства формирования навигационных сигналов ГНСС — ГЛОНАСС, GPS GALILEO, BeiDou — имитаторы сигналов ГНСС; СИ координат по сигналам ГНСС — высокоточную спутниковую навигационную аппаратуру, в том числе — геодезического назначения; одну или несколько точек, закрепленных на земной поверхности одним или несколькими пунктами, с установленными значениями координат пунктов в принятых системах координат; устройства записи и воспроизведения навигационных сигналов; инерциально-спутниковые навигационные системы.

4.1.2. Рабочие эталоны 1-го разряда имеют следующие метрологические характеристики:

В части измерения длины (приращений координат):

Для эталонных комплектов СИ приращений координат:

предел допускаемой абсолютной погрешности, не более $(1+5\cdot10^{-7}\cdot L)$ мм, где L – расстояние между пунктами в мм.

Для фазовых светодальномеров, дальномеров, тахеометров:

предел допускаемой абсолютной погрешности – $(0,2+0,5\cdot 10^{-6}\cdot L)$ мм, где L – измеряемая длина в мм.

Для эталонных базисных комплексов:

- в диапазонах длин до 60 м предел допускаемой абсолютной погрешности $(20+3\cdot L)$ мкм, где L измеряемая длина в м;
- в диапазонах длин от 60 до 5000 м предел допускаемой абсолютной погрешности $(0,2+0,5\cdot10^{-6}\cdot L)$ мм, где L измеряемая длина в мм;
- в диапазонах длин от 1 до 4000 км предел допускаемой абсолютной погрешности, не более 1...100 мм.

В части измерения координат:

предел допускаемой погрешности хранения абсолютных координат Δ , не более 0,02 м;

предел допускаемой погрешности воспроизведения координат потребителя ГНСС в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не более 0,1 м;

предел допускаемой погрешности измерения приращений координат в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не более $(0.003+0.5\cdot10^{-3}\cdot L)$ м, где L – приращение координат в км;

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе дальномерного кода Δ , не более 0,05 м;

предел допускаемой погрешности измерения беззапросной дальности по фазе дальномерного кода Δ , не более 0,05 м;

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе несущей частоты Δ , не более 0,002 м;

предел допускаемой погрешности измерения беззапросной дальности по фазе несущей частоты Δ , не более 0,002 м;

предел допускаемой погрешности воспроизведения скорости изменения беззапросной дальности Δ , не более 0,01 м/с;

предел допускаемой погрешности измерения скорости изменения беззапросной дальности Δ , не более 0,01 м/с;

предел допускаемой погрешности формирования скорости потребителя ГНСС Δ , не более 0,02 м/с;

предел допускаемой погрешности измерений углов пространственной ориентации в динамике Δ , не более 1'.

4.1.3. Рабочие эталоны 1-го разряда применяют для поверки:

В части измерения длины (приращений координат):

рабочих эталонов 2-го разряда — фазовых светодальномеров, дальномеров, тахеометров методом непосредственного сличения и эталонных базисных комплексов методом прямых измерений и методом непосредственного сличения (используемый метод передачи единицы зависит от рабочего эталона 1-го разряда, от которого осуществляется передача);

рабочих эталонов 3-го разряда — эталонных базисов и эталонных пространственных полигонов методом прямых измерений и методом непосредственного сличения (используемый метод передачи единицы зависит от рабочего эталона 1-го разряда, от которого осуществляется передача);

СИ — лазерных спутниковых дальномеров методом непосредственного сличения, спутниковых геодезических сетей и измерительных систем — сетей непрерывно действующих опорных станций и средств фазовых измерений приращений координат по сигналам ГНСС методом прямых измерений.

В части измерения координат:

рабочих эталонов 2-го разряда — имитаторов сигналов ГНСС и комплексов средств измерений методом прямых измерений;

СИ – средств фазовых измерений приращений координат по сигналам ГНСС; высокоточной НАП ГНСС; НАП ГНСС, совмещённой с инерциальными системами; угломерной НАП, НАП ГНСС методом прямых измерений и

методом непосредственного сличения (используемый метод передачи единицы зависит от типа СИ, к которому осуществляется передача).

4.2. Рабочие эталоны 2-го разряда

4.2.1. В качестве рабочих эталонов 2-го разряда применяют:

В части измерения длины (приращений координат):

фазовые светодальномеры, дальномеры, тахеометры в диапазоне длин до 5000 м:

эталонные базисные комплексы в диапазонах длин до 5000 м, от 1 до 4000 км — представляют собой составное изделие, состоящее из линейного базиса или нескольких линейных базисов и фазового светодальномера или дальномера или тахеометра, который используется как для передачи единицы длины СИ, так и для периодического контроля (не реже одного раза в месяц) метрологических характеристик базиса (базисов).

Базисы используются в качестве обязательного вспомогательного оборудования при передаче единиц величин. При этом базисы должны обеспечивать сохранение взаимного положения пунктов со стабильностью, необходимой при передаче единицы величины нижестоящим эталонам и средствам измерений (требования к базисам определяются в рамках аттестации эталонных комплексов в зависимости от конструкции базисов).

В части измерения координат:

средства формирования навигационных сигналов ГНСС – ГЛОНАСС, GPS GALILEO, BeiDou — имитаторы сигналов ГНСС (применение осуществляется в случае, когда отсутствует необходимость выполнения работ по обеспечению единства измерений с использованием реальных сигналов ГНСС);

комплексы средств измерений, включающие в свой состав имитаторы сигналов ГНСС и геодезический пункт (репер) (применение осуществляется в случае, когда необходимо выполнять работы по обеспечению единства измерений с использованием реальных сигналов ГНСС).

4.2.2. Рабочие эталоны 2-го разряда имеют следующие метрологические характеристики:

В части измерения длины (приращений координат):

Для фазовых светодальномеров, дальномеров, тахеометров:

предел допускаемой абсолютной погрешности – $(0,6+1\cdot10^{-6}\cdot L)$ мм, где L – расстояние между пунктами в мм.

Для эталонных базисных комплексов:

- в диапазонах длин до 5000 м предел допускаемой абсолютной погрешности $(0.6+1\cdot10^{-6}\cdot L)$ мм, где L расстояние между пунктами в мм;
- в диапазоне длин от 1 до 4000 км предел допускаемой абсолютной погрешности не более 2...200 мм.

В части измерения координат:

Для имитаторов сигналов ГНСС:

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе дальномерного кода Δ , не более 2 м;

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе несущей частоты Δ , не более 0,01 м;

предел допускаемой погрешности воспроизведения скорости изменения беззапросной дальности Δ , не более 0.05 m/c;

предел допускаемой погрешности формирования координат местоположения потребителя ГНСС в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не более 4 м:

предел допускаемой погрешности формирования скорости потребителя ГНСС Δ , не более 0,1 м/с.

Для комплексов средств измерений:

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе дальномерного кода Δ , не более 3 м;

предел допускаемой погрешности воспроизведения беззапросной дальности по фазе несущей частоты Δ , не более 0.01 м;

предел допускаемой погрешности воспроизведения скорости изменения беззапросной дальности Δ , не более 0,1 м/с;

предел допускаемой погрешности формирования координат местоположения потребителя ГНСС в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не более 6 м;

предел допускаемой погрешности формирования скорости потребителя ГНСС Δ , не более 0,2 м/с;

предел допускаемой погрешности хранения абсолютных координат в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не более 0,3 м.

4.2.3. Рабочие эталоны 2-го разряда применяют для поверки:

В части измерения длины (приращений координат):

рабочих эталонов 3-го разряда — эталонных базисов и эталонных пространственных полигонов методом прямых измерений;

 ${
m CV}$ — фазовых светодальномеров, дальномеров, тахеометров, средств фазовых измерений приращений координат по сигналам ГНСС и лазерных спутниковых дальномеров методом непосредственного сличения.

В части измерения координат:

СИ – НАП ГНСС методом прямых измерений.

4.3. Рабочие эталоны 3-го разряда

4.3.1. В качестве рабочих эталонов 3-го разряда применяют:

В части измерения длины (приращений координат):

эталонные базисы и эталонные пространственные полигоны в диапазоне длин до $4000\ \mbox{км}.$

4.3.2. Рабочие эталоны 3-го разряда имеют следующие метрологические характеристики:

В части измерения длины (приращений координат):

предел допускаемой абсолютной погрешности эталонных базисов и эталонных пространственных полигонов Δ – от 1,5 до 300 мм.

4.3.3. Рабочие эталоны 3-го разряда применяют для поверки:

В части измерения длины (приращений координат):

 ${
m CU}$ — фазовых светодальномеров, дальномеров, тахеометров и средств фазовых измерений приращений координат по сигналам ГНСС методом прямых измерений.

5. Средства измерений

5.1. В качестве СИ применяют:

В части измерения длины (приращений координат):

лазерные спутниковые дальномеры в диапазоне от 1 до 40000 км;

спутниковые геодезические сети и измерительные системы — сети непрерывно действующих опорных станций в диапазоне от 1 до 200 км;

фазовые светодальномеры, дальномеры, тахеометры в диапазоне до 10000 м;

лазерные координатно-измерительные системы в диапазоне до 1000 м;

средства фазовых измерений приращений координат по сигналам ГНСС в диапазоне от 0.01 до 50 км.

В части измерения координат:

высокоточную НАП ГНСС;

НАП ГНСС, совмещённую с инерциальными системами;

угломерную НАП;

НАП ГНСС.

5.2. СИ имеют следующие метрологические характеристики:

В части измерения длины (приращений координат):

Лазерные спутниковые дальномеры:

предел допускаемой абсолютной погрешности Δ – от 1 до 30 мм.

Спутниковые геодезические сети и измерительные системы – сети непрерывно действующих опорных станций:

предел допускаемой абсолютной погрешности Δ – от 10 до 60 мм (постобработка);

предел допускаемой абсолютной погрешности Δ – от 20 до 90 мм (реальное время).

Фазовые светодальномеры, дальномеры, тахеометры:

предел допускаемой абсолютной погрешности

 $\Delta = (0.4 \dots 5) + (1 \dots 10) \cdot 10^{-6} \cdot L$ мм, где L — измеряемая длина в мм.

Лазерные координатно-измерительные системы:

предел допускаемой абсолютной погрешности $\Delta = (0.01...5) + (0.01...5) \cdot 10^{-6} \cdot L$ мм, где L — измеряемая длина в мм.

Средства фазовых измерений приращений координат по сигналам ГНСС: предел допускаемой абсолютной погрешности

 $\Delta = (1...10) + (0,5...10) \cdot 10^{-6} \cdot L$ мм, где L – измеряемая длина в мм.

В части измерения координат:

Высокоточная НАП ГНСС:

предел допускаемой погрешности измерения беззапросной дальности по фазе дальномерного кода Δ , не менее 0,1 м;

предел допускаемой погрешности измерения беззапросной дальности по фазе несущей частоты Δ , не менее 0,002 м;

предел допускаемой погрешности измерения скорости изменения беззапросной дальности Δ , не менее 0.02~m/c;

предел допускаемой погрешности измерения разности шкал времени с национальной шкалой времени UTC(SU) Δ , не более 200 мкс.

НАП ГНСС, совмещённая с инерциальными системами; угломерная НАП ГНСС:

предел допускаемой погрешности измерения абсолютных координат в системах координат WGS-84, ПЗ-90.11, ГСК-2011 Δ , не менее 1 м;

предел допускаемой погрешности измерения углов пространственной ориентации Δ , не менее 2 ';

предел допускаемой погрешности измерения скорости потребителя ГНСС Δ, не менее 0.05 м/с.

НАП ГНСС:

предел допускаемой погрешности измерения абсолютных координат в системах координат WGS-84, Π 3-90.11, Γ CK-2011 Δ , не менее 1 м;

предел допускаемой погрешности измерения скорости потребителя ГНСС Δ , не менее 0.05 м/с:

предел допускаемой погрешности измерения разности шкал времени с национальной шкалой времени UTC(SU) Δ , не более 2 с.

- 5.3. При передаче единиц к СИ погрешность эталонов, от которых осуществляется передача единиц, должна быть как минимум в два раза меньше, чем погрешность СИ. При передаче единиц к СИ, которые по своим метрологическим характеристикам соответствуют требованиям к рабочим эталонам, должны применяться те же эталоны, что и при передаче единиц к соответствующим рабочим эталонам. При проведении поверки СИ, диапазон измерений которых больше, чем диапазон измерений соответствующих эталонов, допускается проводить поверку только в диапазоне измерений эталонов.
- 5.4. Передача единицы величины осуществляется только от ГПСЭД к СИ со следующими метрологическими характеристиками:

Лазерные спутниковые дальномеры:

предел допускаемой абсолютной погрешности Δ – от 1 до 3 мм.

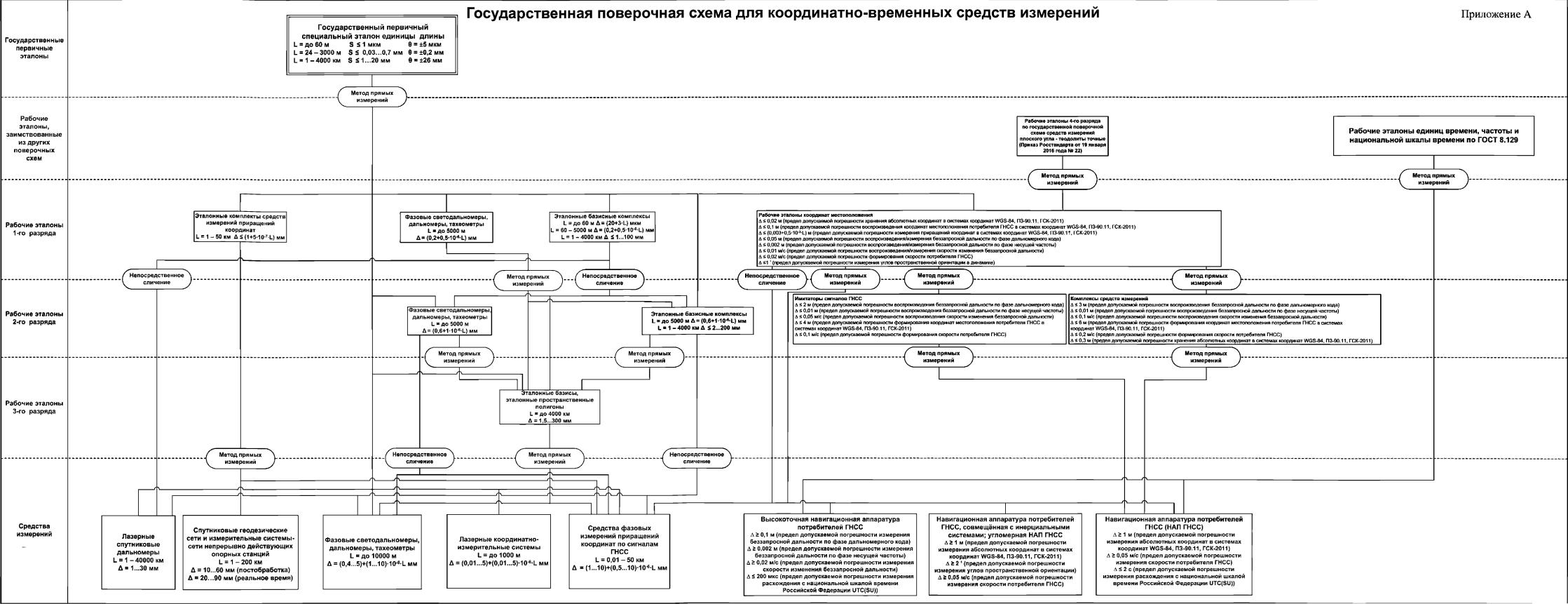
Фазовые светодальномеры, дальномеры, тахеометры:

предел допускаемой абсолютной погрешности $\Delta = (0,4\dots0,5) + 1\cdot 10^{-6} \cdot L \text{ мм, где } L - \text{измеряемая длина в мм.}$

Средства фазовых измерений приращений координат по сигналам ГНСС: предел допускаемой абсолютной погрешности

 $\Delta = (1...2) + (0,5...1) \cdot 10^{-6} \cdot L$ мм, где L – измеряемая длина в мм.

Лазерные координатно-измерительные системы:


предел допускаемой абсолютной погрешности $\Delta = (0.01...5) + (0.01...5) \cdot 10^{-6} \cdot L$ мм, где L — измеряемая длина в мм.

6. Сокращения и определения

ГПС	Государственная поверочная схема
СИ	Средство измерений
ГПСЭД	Государственный первичный специальный эталон единицы длины
ГПСЭК	Государственный первичный специальный эталон координат
ICLIC	местоположения
КНС	Космические навигационные системы
ГНСС	Глобальная навигационная спутниковая система
ГЛОНАСС	Глобальная навигационная спутниковая система Российской
	Федерации
GPS	Глобальная навигационная спутниковая система США
GALILEO	Глобальная навигационная спутниковая система Евросоюза
BeiDou	Глобальная навигационная спутниковая система Китая
WGS-84	Всемирная геодезическая система 1984 года
П3-90.11	Система координат «Параметры Земли 1990 года», утвержденная
	приказом Министра обороны Российской Федерации от
	15.01.2014 г. №11
ГСК-2011	Геодезическая система координат 2011 года
ITRF	Международная земная система отсчета
НМИ	Национальный метрологический институт
CIPM	Договорённость о взаимном признании национальных эталонов и
MRA	свидетельств о калибровке и измерениях, выдаваемых
	Национальными метрологическими институтами
НАП	Навигационная аппаратура потребителя

7. Нормативные ссылки

1. ГОСТ 8.129-2013 «Государственная система обеспечения единства измерений (ГСИ) Государственная поверочная схема для средств измерений времени и частоты».

