РЕКОМЕНДАЦИИ

ПРОЕКТИРОВАНИЕ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ УГОЛЬНЫХ ШАХТ С ОБОСОБЛЕННЫМ ПИТАНИЕМ ПОДЗЕМНЫХ ЭЛЕКТРОПРИЕМНИКОВ НАПРЯЖЕНИЕМ 6(10) кВ

P 12.26.229-90

Издание официальное

SECTION SECTIO

PEKOMEHUTALININ PASPABOTAHN

MI'A им. A.A. Скочинского

Руководитель работы

Т. D. Иванько.

D. II. Миновский,
Б. М. Лгудава,
Д. Д. Цибукидио,
А. Г. Павлович

Днепрогипрошахт 10.Т.Разумный, В.И.Загний

МакНИИ А.Г.Мнухин, р.В.Товстик, И.П.Горошко, В.А.Филоненко

Днепропетровский горный институт Ф.П. Шкребец

Минуглепром СССР А.В.Польшин, Д.В.Недокин

BHECERN

ИГД им. А.А.Скочинского А.Я.Роговым

YTBEFKIEHN

Первым заместителем министра угольной промышленности СССР

А.Г.Коркиным

Введены в действие 01.01.91 n. № 26-6-6/47 от 04.12.90. Ссылочные нормативно-технические документы:

- "Превила безопасности в угольных и сланцевых шахтах".
 М., Недра, 1986, п. 1.6.
- 2. "Схемы принимивальные, электрические респределительных устройств 6-750 кВ подстанций". Типовой проект 407-03-456.87. м.: Энергосетьпроект, 1987, разд. 2: 3.
- 3. Правила устройства электроустановок. М., Энергоатомиздат, 1986, пп. 4.2.3; 4.2.4.

Институт горного дела им. А. А. Скочинского (ИГД им. А. А. Скочинского), 1993

РЕКОМЕНДАЦИИ

ПРОЕКТИРОВАНИЕ СИСТЕМ
ЭЛІКТРОСНАБЖЕНИЯ
УГОЛЬНЫХ ШАХТ
С ОБОСОБЛЕННЫМ ПИТАНИЕМ
ПОДЗЕМНЫХ
ЭЛЕКТРОПРИЕМНИКОВ
НАПРЯЖЕНИЕМ 6(10) КВ

P I2.26.229-90 Взамен PTM I2.25.002-84

Настоящие рекомендации содержат методические указания по проектированию систем электроснабжения шахт, типовые схемы подстанций напряжением 35~220 кВ, указания по применению типовых схем подстанций, схем и оборудования для обособленного питания, конструктивному исполнению устройств обособленного питания.

В основу Рекомендаций положени разработки ИГД им.А.А.Скочинского, МакНИИ, Днепропетровского горного института, использован опыт проектирования и эксплуатации систем обособленного питания подземных электроприемников на шахтах Минуглепрома СССР, институтов Днепрогипрошахт, Ворошиловградгипрошахт, Южгипрошахт и Центрогипрошахт.

Рекомендации обязательны для использования проектными организациями при составлении проектов электроснаожения угольных шахт, а также шахтами и производственными объединениями при согласовании и реализации проектных решений.

- РЕКОМЕНДАЦИИ ПО ПОСТРОЕНИЮ СИСТЕМ ЭЛЕКТРОСНАЕЖЕНИЯ ПОДЗЕМНЫХ ЭЛЕКТРОПРИЕМИКОВ НАПРЯЖЕНИЕМ 6(I) кВ
 УТОЛЬНЫХ ШАХТ
- 1.1. Повышение безопасности применения электроэнергии в подземных выработках шахт достигается за счет обособленного питания подземных электроприемников напряжением 6(10) кВ, при котором предусматривается гальваническое отделение подземных электрических сетей от сетей, расположенных на поверхности.

- 1.2. Применение схем обособленного питания подземних электроприемников является обязательным при проектировании новых и реконструкции действующих систем электроснабжения шахт 6-220 кВ.
- 1.3. При использовании электроэнергии в особо опасных условиях на участках, разрабатывающих крутопадающие пласти шахт, опасных по внезапным выбросам, пытание высоковольтных электроприемников участка должно осуществляться от обособленной сети с применением защиты от токов утечки и замыканий на землю, действующей на отключение без выпержки времени.
- I.4. В обособлениих подземних сетях напряжением 6(IO) кВ повышение безопасности электроустановок достигается следующими мерами:

предупреждением повреждений изоляции, происходящих в результате аварий (замыкания на землю, атмосферные перенапряжения и др.) в электроустановках на поверхности шахты или в сетях других объектов электроснабжения:

автоматическим контролом и отключением токов утечки и замиканий на замлю:

ограничением потенциолов на корпусах электрооборудования; повышением надежности питания подземных электроустановок.

При использовании в системе электроснабжения шахт электроприводов, содержащих мощные тиристорные преобразователи, обособленное питание подземних электроприемников способствует улучшению качества электроэнергии.

- 1.5. Схеми обособленного питания виполняются, как правило, на базе модифицированних трехобмоточних трансформаторов ТДТНШ-110, тренсформаторов с расщепленной обмоткой низшего напряжения и разделительных трансформаторов.
- I.6. При выборе схеми обособленного питания необходимо руководствоваться следующим положениями:

обособленное питание, как правило, должно предусматриваться для всех подземных электроприемилков;

предпочтительными являются схемы обособленного питания от модифицированных трехобмоточных тренсформаторов и тренсформаторов с расщепленной обмоткой.

Для виравнивания нагрузок трансформаторов с расщепленными обмотками допускается приссединение энергоемких электроприемицков, находящихся на поверхности и получающих питание по кабельным линиям, к сборным шинам обособленной подземной нагрузки.

Разделительное трансформаторы рекомендуется устанавливать для питания обособлениих электроустановок напряжением 6(10) кв в случаях, когда целесообразность применения для этой цели на главних понизительных подстанциих (ПП) модифицированиих трахобмоточних или двухобмоточних трансформаторов с расщеплениими обмотками не подтверждается технико-экономическими расчетами, либо в случаях, предусмотренных "Правилами безопасности в угольных и сланцевых шахтах".

Питание электродригателей насосов главного водоотлива мощностью I250 кВт и более может осуществляться от шин повержностной подстанции. При этом должны бить соблюдены гробования по ограничению мощности короткого замыкания в подземных сетях.

1.7. Не допускается присоединение к секции, питающей подземние электроприемники, воздушных линий, а также линий городских сетей.

2. ОСНОВНЫЕ ТРЕБОВАНИЯ К СХЕМАМ ГЛАВІНІХ ПОНИЗИТЕЛЬНЫХ ПОДСТАНІВЫХ (ІТПІ)

- 2.1. Схемо должна обеспечивать надежное питание присоединонных потребителей в нормальном, ремонтном и послеаварийном режимах в соответствии с категоричми по бесперебойности электроснабжения.
- 2.2. Схема должна обеспечивать надежность транзита мощности через подстанцию в нормальном, ремонтном и послеаварийном режимах в соответствии с его значением для рассматриваемого участка сети.
- 2.3. В тех случаях, когда при выборе схеми на основании дашних указаний выявляются конкурирующие варианти, следует сравнивать их по безопасности, недежности и экономичности.
- 2.4. Схема распределения должие строиться так, чтобы все ее элементы постоянно находились под негрузкой, а при аверии на одном из них элементы, оставшиеся в работе, могли принять на себя его нагрузку путем перераспроделения ее можду собой с учетом допустимой перегрузки.

Должна применяться, как правило, раздельная работа линий и траноформаторов с использованием перегрузочной способности указаниих элементов в послеврарийных режимах.

Стр. 4. Р.12.26.229-90

- 2.5. Схема должне допускать поэтапное развитие распределительного устройства (РУ), а переход от одного этапа к другому должен совершаться без значительных работ по реконструкции и перерывов в питании потребителей.
- 2.6. При построении схем электроснабжения с обособленным питанием целесообразно обеспечивать мексимельный уровень токов короткого замыкания в подземных сетях напряжением 6(10) кВ, допускаемый "Превилами безоцасности в угольных и сленцевых шахтах".
- 2.7. Вывод выключателей и отделителей для ремонта и ревизии предусматривается при блочных схемах РУ непряжением IIO кВ и всех схемах РУ непряжением 35 кВ путем временного отключения присоединения, в цепи которого установлен ревизуемый аппарат.

3. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ СХЕМ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЯ ГПП

Схемы электрических соединений ПШ угольных шехт формируются: из схемы электрических соединений респределительного устройства высшего непряжения;

из схемы подключения силовых тренсформаторов к РУ 6(10) кВ; из схемы электрических соединений респределительного устройстве 6(10) кВ.

- 3.I. Схемы распределительных устройств высшего напряжения (35, IIO, ISO, 220 кВ)
- 3.1.1.Схемы электрических соединений ОРУ высшего напряжения, если они не задаются эмергоснабжающей организацией, принимаются из состава схем для двухтрансформаторных подстанций оез соорных шин с двумя питающими линиями, приведенных в типовых материалах для проектирования 407-03-456.87, разработанных институтом "Энергосетьпроект".
- 3.1.2. Схемы 220-4, 110-4 "Два блока с отделителями и неявтоматической перемычкой со стороны линий" применяются для присоединения к двум ЛЭП тупиковых или ответвительных подстанций, расположенных в 1...ш районе климатических условий (РКУ) с тренсформаторами мощностью до 25 МВ·А.

- 3.1.3. Схемы 220-5, IIO-5 "Мостик с выключателем в перемычке и отделительми в цепях трансформаторов" применяются для присоединения в рассечку линии о двухсторонним питанием, расположенных в I...Ш РКУ и трансформаторах мощностью до 25 МВ-А.
- 3.I.4. Схемы 220-4H, IIO-4H, 35-4H "Два блока с выключетелями и неавтоматической перемычкой со стороны линий" применяются для тупиковых или ответвительных подстанций:
 - с трансформаторами мощностью более 25 МВ·А:
- при климатических условиях, не допускающих применение отделителей.
- 3.1.5. Сжемы 220-5Н, 110-5Н "Мостик с выключатолими в пепях линий и перемычке и ремонтной перемычкой со стороны линий" меняется для присоединения подстанций в рассечку линии с двух-сторонним питанием в случаях, указанных в п. 3.1.4.
- 3.1.6. Схемы 220-5АН, 110-5АП, 35-АН "МОСТИК С ВЫКЛЮЧЭТЕЛЯМИ В ЦЕПЯХ ТРАНСФОРМАТОРОВ И ПЕРЕМЫЧКЕ И РЕМОНТНОЙ ПЕРЕМЫЧКОЙ СО СТОРОНЫ ТРАНСФОРМАТОРОВ" ПРИМЕНЯЮТСЯ ДЛЯ ПРИСОЕДИНЕНИЯ ПОДСТАНЦИЙ В РАССЕЧКУ ЛИНИИ С ДВУХСТОРОННИМ ПИТАНИЕМ В СЛУЧАЯХ, УКАЗАННЫХ В П.3.1.4. Схеме отдается предпочтение при необходимости секционирования сети на данной подстанции в режиме ремонта любото выключателя.
- 3.1.7. Для респределительных устройств непряжением I50 кВ следует примонять типовые схемы, рекомендованные для напряжения II0 кВ.
- 3.1.8. Схемы со сборными шинами IIO-IO, 35-9 применяются для групповых подстанций.
- 3.1.9. Схема IIO-6 применяется при необходимости присоединения к тупиковой или ответнительной подстанции одной дополнительной линии.
 - 3.2. Схемы подключения силовых трансформеторов и схемы электрических соединений распредустройств 6(10) кВ

Расшифровка обозначения схем:

— х х х - х

— вариант исполнения: 1...8

— тип силового трансформатора:

— ТР - трансформатор друхобмоточний с расщепленной обмоткой НН типа ТРДН;

— Трансформатор трехобмоточний типа ТДТНш код схеми распредустроистыя 6(10) кВ:

- I одна секционированная выключателем система шин:
- 2 две одиночных секционированных выключетелями системы шин:
- 3 три одиночных секционированных выключателями системы шин;
- 4 четире одиночных секционированных выключателя-
- 3.2.1. Схема ТР-І применяется при необходимости увеличения мощности короткого замикания, когда подъемние механизми с тиристорними преобразователями подключаются от общего РУ (с установкой силових фильтров или управляемих фильтро-компенсирующих устройств), в подземние потребители через разделительные траноформатори Таш.
- 3.2.2. Схома ITP-2 рекомендуется для виделения тиристорних прообразователей подъемных механизмов на отдельную систему шин.

Для равномерности загрузки ветвей расшепленных обмоток трансформаторов, на эту систему шин подключаются синхронные электродвигатали. Питание подземных потрабителей при этом предусматривается чораз разделительные трасформаторы. ТМШ от другой системы шин с подключением к ней "спокойной нагрузки".

- 3.2.3. Схема 2TP-2 рекомендации аналогичны схеме ITP-2. В отличие от схеми ITP-2 вводи тенсформаторов реактировани.
- 3.2.4. Схема ЗТР-2 применяется при необходимости получения максимальной мещности короткого зашикания в узлах подключения тиристорних прообразователей. Схема рекомендуется, когда система обособленного питания подземних потребителей на шахто уже есть.
- 3.2.5. Схема ITE-2 применяется при устройстве на ITE РУ повержности и общего для подземных потребителей РУ обособленного питании (при малой мощности электродвигателей водоотливних установок).

С целью ограничения мощности короткого замыкания в подземной сети до нормируемых величин, обмотка трансформатора 6,6 кВ подключается к системе шин через токоограничивающий реактор.

3.2.6.Схеми ІТШ-3, 2ТШ-3, 3ТШ-3, 4ТШ-3, 5ТШ-3, 6ТШ-3, 8ТШ-3-применяются при мощних водоотливных установках, выделяемых на отдельную секцию, подключаемую от обмотки 6,6 кВ трансформатора через индивидуальный реактор (или ветвь сдвоенного реактора) с мощностью короткого замыкания на шинах РУ_{вод} до ІОО МВ-А.

- 3.2.7. Схема 7ТШ-3 применяется, когда одновременно необходимо решать вопросы обособленного питания подземных потребителей и обособленного питания подъемных установок с тиристорными преобразователями.
- 3.2.8. Схемы ITW-4, 2TW-4 применяются для шахт, не которых для водоотливных установок используются электродвигатели большой мощности, требующие подключения к ячейкам РУ поверхности.

Схему ITШ-4 рекомендуется применять, когда в подземной сети используется электрооборудование с различной отключающей способностью в требуется установка реакторов с различной индуктивностью. При установке в подземной сети однотипного электрооборудования с отключающей способностью IOO MB-А предпочтение следует отдавать схеме 2TШ-4, как более экономичной.

4. РЕЛЕЙНАЯ ЗАШИТА И РЕЖИМЫ НЕЙТРАЛИ

4.1. Релейная защита электроустановок и сетей

- 4.I.I. Все отходящие линии электроснабжения напряжением 6 и 10 кВ, питающие 1011 и РПП шахти, должны быть оснащены устройстрами релейной защиты от междуфазных коротких замыканий и однофазных замыканий на землю, действующими на отключение.
- 4.1.2. Селективная защита от однофезных замыканий на землю должна выполняться, как превыло, двухступенчетой. Первая ступень защиты полжна устанавливаться в ячейках распределительных устройств на ЦШ, питающих шахтные электроустановки 6(ІО) кВ, и выполняться без выдержки времени. Вторая ступень защити, устанавляваемая на шинах 6(ІО) кВ главной понизительной подстанции (ПШ) шахты, должна иметь выдержку времени не более 0,5 с.
- 4.1.3. Общее время отключения поврежденного присоединения первой ступени защити от однофазных замыжений на землю должно быть не более 0,2 с, второй ступени защити не более 0,7 с.
- 4.1.4. Защиту от однофозных замыканий на землю первой и второй ступени для обеспечения поперечной селективности рекомендуется выполнять непревленной.
- 4. I.5. Для исправления продольной неселективности действия защит от междуфезных коротких замыканий и однофазных замыканий на землю рекомендуется использовать устройства однократного автометического повторного включения (AIB) при наличии автома-

тической блокировки, исключающей включение линий и электроустановок с понижением сопротивлением изоляции относительно земли и при коротких замыканиях.

Применение устройств AHB не допускается на линиях, питающих учестковие понизительные подстанции на пластах, опасных по внезенным выбросам угля и газа.

- 4.2. Рекомендации по выбору нараметров оптимального режима нейтрали электрических сетей 6(10) кВ
- 4.2.1. Для питания электроустановок шахтных электрических сетей 6(10) кв следует применять систему с изолированной нейтралью. При этом емкость сети должна бить ограничена до 30 или 10 мкф на фазу для сети 6 кВ и до 20 или 6,6 мкф на фазу для сети 10 кв.
- 4.2.2. Для повишения селективности и надежности действия релейной защити от замиканий на землю, в также для снижения уровней перенапряжений при дугових замиканиях на землю рекомендуется заземление нейтрали электрической сети через високоомний резистор, обеспечивающий создание дополнительного активного тока замикания на землю. При этом полний ток однофазного замикания на землю шахтной электрической сети 6(10) кВ с учетом емкостной и активной составляющих, не должен превишать 35 А.
- 4.2.3. При значениях емкостного тока металлического однофезного замикания на землю I_c до 20 A в сети 10 кВ и до 30 A в сети 6 кВ рекомендуется заземление нейтрали сети через активное сопротивление, создаждее дополнительний активний ток замикания на землю I_a , равний 0,5-0,6 от тока I_c . Рекомендуемые значения активних сопротивлений, включаемих в нейтраль в зависимости от тока I_c и напражения сети, приведени в Приложении 8; схема заземления нейтрали показана на рис. 6.13.
- 4.2.4. При значеных емкостного тока металлического однофазного закажания на землю сечше 20 A сети IO кВ и свише 30 A в сети 6 кВ, согласно ПУЭ, следует применять дугогасящие реакторы. При этом для осуществления рекомендаций, указанных в п.4.2.2, необходимо производить заземление нейтрали через активное сопротивление и дугогасящую катушку (ДГК), включенние между собой параллельно. В случае невозможности обоспечения тре-

буемой глубини регулирования индуктивного тока ДГК I., для

создания необходимой степени расстройки $v_{\kappa} = \frac{I_{c} - I_{L}}{I_{c}}$ при па-

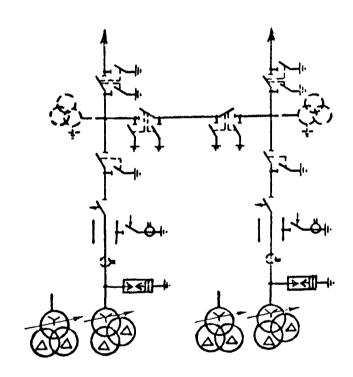
раллельном подключении ДГК с резистором, рекоменцуется режим их последовательного включения.

ДІК (отдельно или совместно с резистором) должни устанавливаться на ІПП шахти и подключаться к нейтрали сети той обмотки силового трансформатора, к которой подключена распределительная сеть шахти 6(10) кВ, через специальный трехфозний трансформатор с виведенной нулевой точкой со сторони \mathbb{R}^n и схемой соединения $\mathcal{X}/\Delta - II$.

- 4.2.5. При параллельном включении между собой ДГК и резистора коэффициент расстройки ДГК выбирается равным $v_{\kappa} = 0, 4...0, 5,$ а в случае последовательного соединения $v_{\kappa} = 0...0, 2$. Рекомендуемые значения активных сопротивлений, включаемых соответственно параллельно и последовательно ДГК, приъедены в Приложении 9.
- 4.2.6. Расчет токов замикания необходимо выполнять по удельным емкостям фазы кабелей относительно земли по выражению

$$I_c = \sqrt{3} U_A \omega \sum_{i=1}^{n_A} C_{\kappa_i} \ell_{\kappa_i} \cdot 10^{-8},$$

где U_A — номинальное линейное напряжение сети, В; ω — угловея частота, рад/с; \mathcal{C}_{κ_i} — удельная емкость фази кабеля относительно вемли соответствующего сечения, мкф/км; ℓ_{κ_i} — суммарная длина кабеля в электрически связанной сети соответствующего сечения, км; n_{κ_i} — число различных сечений кабеля.


5. КОНСТРУКЦИЯ ЭЛЕМЕНТОВ СИСТЕМ ОБОСОБЛЕННОГО ПИТАНИЯ

- 5.1. Как правило, для силовых тренсформаторов напряжением 35-220 кВ следует предусматривать их наружную установку на нормируемом для угольных шахт расстоянии от очагов пыли и источников влаги.
- 5.2. Распределительные устройства напряжением 6(10) кВ, используемие для присоединения обособления подземних сетей, должни иметь закрытую конструкцию ЗРУ 6(10) кВ и комплектные распределительные устройства (КРУ) внутренней установки.
- 5.3. Передавать электроэнергию наприжанием 6(IO) кВ от выводов силовых трансформаторов ПШ рекомендуется закрытыми токопроводами или кабелями.

CTp. IO. P 12.26.229-90

- 5.4. Наружная установка разделительных траноформаторов напряжением 6/6,3 кВ на нормируемом расстоянии от очагов пыли и источников влаги допускается с применением закрытых токопроводов для вводов и выводов, обеспечивающих кабелям и шинам защиту от атмосферных осадков.
- 5.5. Для прокладки в шахтных стволах следует применять кабели напряжением 6(IO) кВ с максимально возможными строительными длинами.

6. ТИПОВЫЕ СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДЫНЕНИЙ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ НАПРИМЕНИЕМ 6-220 кВ

Рио. 6.І. Два блока с отдолителний и неавтоматической перемычкой со стороны линий. Схемы IIO-4, 220-4

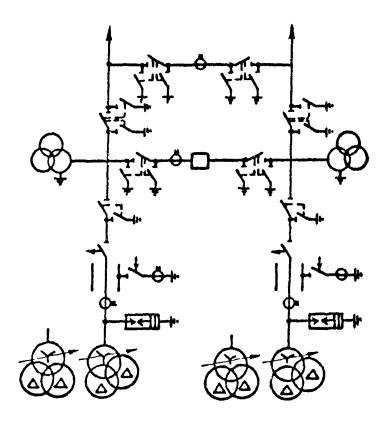


Рис. 6.2. Мостик с выключетелем в перемичке и отделителями в цепях трансформеторов. Схемы 110-5, 220-5

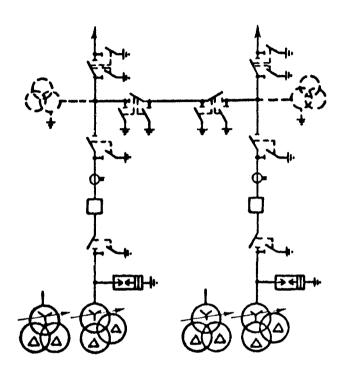


Рис. 6.3. Два блока с виключателими и неавтоматической перемычной со стороны линий. Схемы $35-4\mathrm{H}_{\odot}$ IIO-4H $_{\odot}$ 220-4H

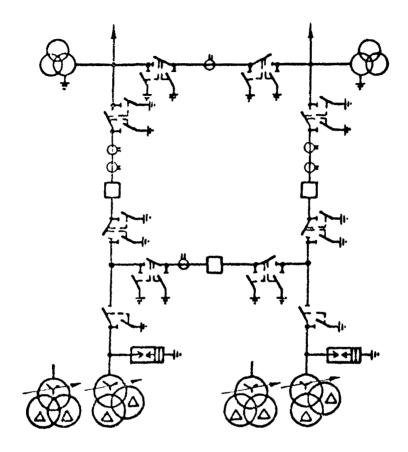


Рис. 6.4. Мостик с виключателями в цепях линий и ремонтной перемичкой со сторони линий. Схемы IIO-5H, 220-5H

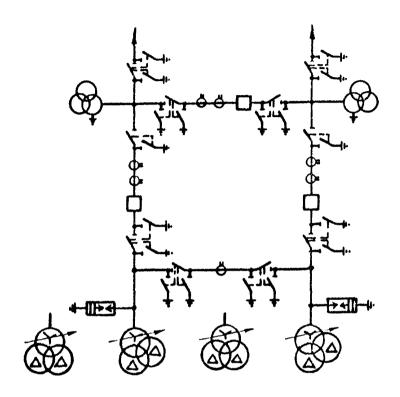


Рис. 6.5. Мостик с выключателями в цепях трансформаторов и ремонтной перемичкой со стороны трансформаторов. Схемы 35-5АН, IIO-5АН, 220-5АН

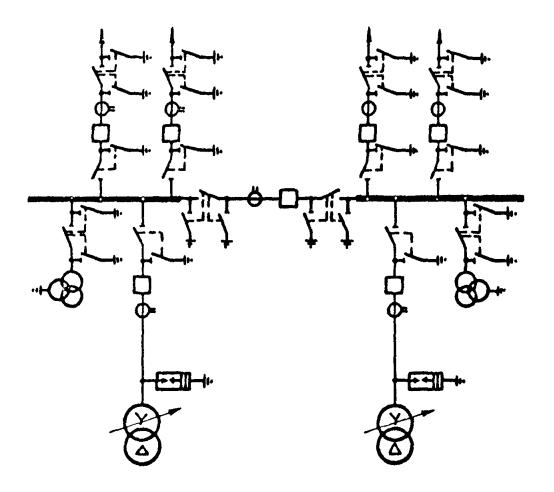


Рис. 6.6. Одна рабочая секционированная выключателем система шин (до 10 присоединений). Схема 35-9

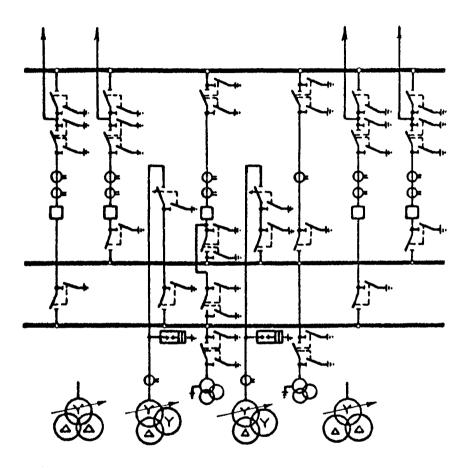


Рис. 6.7. Одна ребочая секционированная выключаталем и обходная система шин с отделителями в цепях трансформаторов с совмещенным секционным и обходным выключателем. Схема IIO-IO

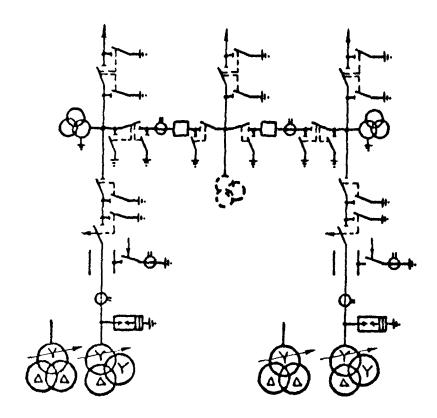
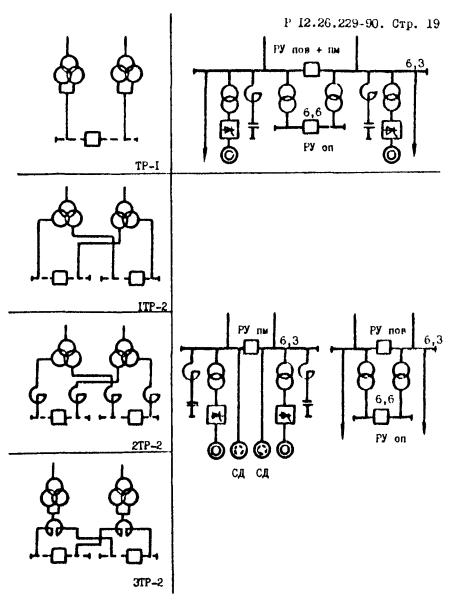



Рис. 6.8. Мостик с отделителями в цепях трансформаторов и дополнительной линией, присоединенной через две виключетеля. Схема 110-6

PMc. 6.9. CxeMM TP-I, ITP-2, 2TP-2, 3TP-2

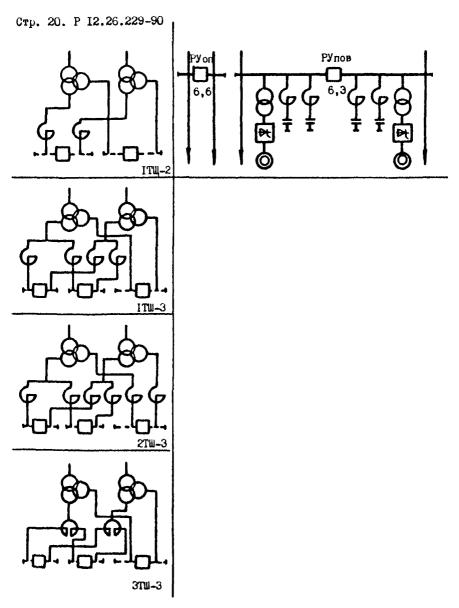


Рис. 6. 10. Сжемы 17Ш-2, 17Ш-3, 27Ш-3, 3ТШ-3

Рис. 6.II. Схемы 4ТШ-3, 5ТШ-3, 6ТШ-3, 8ТШ-3

6TW-3

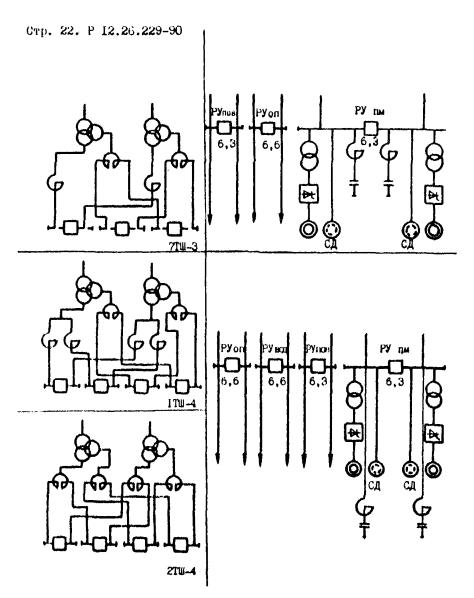


Рис. 6.12. Схемы 7TW-3, ITW-4, 2TW-4

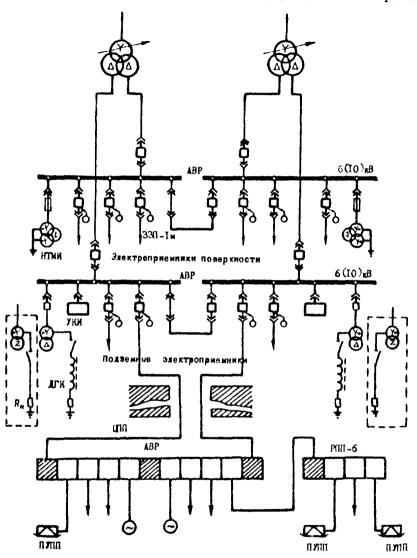


Рис. 6.13. Схома электроснабжения шахты с размещением защит: УКИ — устройство контроля изоляции; ДГК — дугогасящая катушка; R_N — высокоомный резистор; 331 - 1м — защита от однофэзных замыканий на землю

Основные технические параметры трансформаторов класса напряжения 35, 110, 220 кВ, устанавливаемых на Γ III шахт

ил транс- рориатора	Номиналь-	Сочетани	е напря В	жения,	короткого	Схема и групла соединения обмоток	Регулирование напряжения	Изготовитель
	HOCTS,	BH	СН	HH	замыкания,	GOROTOR		
ī	2	3	4	5	6	7	8	ç
TM	I,6	6.0:10.0	-	6,3	5,5	y/A-II	PIL	į
TM n TMH	2,5	10,0	-	6,3	5,5	Ун/Д-II	DEB # POH	
TMU	2,5	6,0	-	6,3	5,5	y/Д-II	ПыВ	По"Запорож- трансформа- тор"
TVI	4,0	10.0	-	6,3	6,5	y /A-II	пвв и Рпн	
TM N TMH		6,0	-	6,3	6,5	y /A-II	ПБВ	
TML	4.0	6,0	-	6,3	6,5	y/A-II	IIBB	ПО"Запорож- трансформа-
IMAL TMAH	6,3	10,0	-	6,3	6,5	y/A-II	пьа в Ран	TOP"
TMHC)		(IO,5)	-		(6)			
TML	6,3	6,0	-	6,3	6,5	五/五_0	пъв	ПО"Запорож- трансформа- тор"

Продолжение приложения І

_ I	2	3	4	5	ő	7	8	9	_
ТДТН или ТМТН	10,0	36,75	10,5(11)	6,3(6,6)	8-16,5-7,0	Ун/Д/Д-II-II	РПН на ВН+12% +8 ступеней		
тдтнш	10,0	115	6.3	6,6 11,0	10,5-17,0-6,0	У н/Д/Д-II-II	РПН на ВН+16% +9 ступеней	ПО "Запорож- грансформа- тор"	
TATH uau Tath	16,0	36,75	10,5(11)	6,3(6,6)	8-16,5-7,0	У н/Д/Д-II-II	РПН на ВН+12% +3 ступеней		
тдтны	16,0	115	ıî;ö	6,6	10,5-17,0-6,0	У н/Д/Д-II-II	РПН на ВН+16% ±9 ступенёй	Средне-Волж- ское ПО "Трансформа- тор" г.Тольятти	
ТРДНС	25,0	36,75	-	6,3-6,3	9,5-9,5-15	Ун/Д/Д-II-II	РПН на ВН+12% +8 ступеней		
				6,3-I0,5 6,3-6,3	10-10-15	Д/Д /Д-0-0 Ун/Д/Д-II-II			P 12
ТРДН ТДТН	25,0 25,0	II5 II5	11,0	6,3-I0,5 6,6	10,5-17,5-6,5	Ун/Д/Д-II-II	РПН на ВН+16% +9 ступеней		26.
TATHU	25,0	115	6,3 II,0	6,6 II,0	I0,5-I7,5-ò,5	Ун/Д/Д-ІІ-ІІ	1 - -	ПО "Запорож- трансформа- тор"	229-90
ТРДНС	32,0	36,75	_	6,3-6,3	9,5-9,5-15	Ун/Д/Д/II-II	РПН на ВН+12% +8 ступеней	1	. Crp
				6,3-10,5		д/д/д-0-0	io ordener		•
ТРДН	32,0	115		6,3-6,3 6.3-I0.5	10-10-15	Ун/Д/Д-ІІ-ІІ	РПН на ВН+ +9 ступенёй		25

							Скончание при	I RIHOMOR
I	2	3	4	5	6	7	8	 ;
трдтн	32.0	230	-	6,3-6,3 6,6-6,6 6,6-II	12	Ун/Д/Д-II-II 	РПН на ВН+12¶ +6 ступенёй	
ТДТН ТРДН	40.0	II5 II5	II	6,6 6,3-6,3 6,3-10,5	10,5-17,5-6,0	Ун/Д/Д-II-II	РПН на ВН+16% +9 ступеней	
тдтни	40,0	115	6,3 II,0	6,5 II,0	10,5-17,5-6,0	ун/Д/Д-ІІ-ІІ	Рын на Вн+16% +9 ступеней	ПО"Запорож- трансформа-
ТДТН ТРДН	63,0	115 115	11	6,6 6,3-6,6	10,5-17,5-6,0 10-10-15	У н/Д/Д-II-II		
тедтн	63,0	230	-	6,3-6,3 6,6-6,6 6,6-II	I2	У н/Д/Д-II-II	РПН на ВН+16% +9 ступеней	- paper de la constanta de la

Примечание. Напряжение короткого замыкания для трехобмоточных трансформаторов указано в режимах ВН-СН; ВН-НН; СН-НН соответственно.

Приложение 2 Габариты трансформаторов для Гіпі шахт

Мощность мВ•А	Тип трансфор- матора	Напря— жение кВ	В	L	н	Трансфор- маторная масса, кг	Полная масса, кг
2,5	TM	6;10	2260	3500	3600	5900	6800
~,0	TMU	6	2260	3500	3600	5900	6800
4,0	TM TMU TMH	10 6 35	3650 3650 3350	3900 3900 4020	3900 3900 3800	7950 7950 11200	8650 8650 12900
6,3	TMIII TM TMHC TMH	6 I0 I0 35	3700 3700 3610 3420	4300 4300 4125 4250	4050 4050 4200 4060	11400 11400 14000 12400	12200 12200 18200 16600
	тднс	35	2980	5400	5000	24800	28800
	(u _n = 14%) T/IHC (u _n =8%)	35	3150	4500	4880	21000	23000
10,0	ТДН	110	3500	5800	5300	27000	31000
	ТДТН ТДТНШ	110	4400	6400	5200	43000	51400
16,0	TAHC TAH TATH TATIM	35 110 110	3080 3500 4400	6100 6000 6400	5250 5500 5200	31800 33400 4300	35800 41500 51400
25,0	TPJHC TJH TJTH TJTH	110 110 110	4300 4600 4600	6600 5900 6600	5350 5400 6000	48000 44000 56000	55000 52000 65000
32,0	ТРДНС	35 110	4300	6600	5350	54000	61000
40,0	ТРДНС ТИН ТРДН	35 110	4500 4700	6800 6000	5500 5700	62000 55600	70000 68000
	TATH TATHW	110	4800	6800	6400	74000	83000
63,0	TPIHC TIH TEM	35 110	4600 5200	7000 6700	6100 6200	80000 72600	91000 87500
	i pih Tath	110	5300	7200	6700	94500	117500

Технические параметры комплектных трансформаторных подстанций

2TCBH - 630/IO - 0,69 УХЛ5 TCBH - 250/IO - 0,69 УХЛ5

Показатели	Значение показ типоразмер	
	630 kB·A	250 кВ•А
Номинальная мощность, кВ-А	630	250
Номинальное напряжение, кВ;	TO 50	*0.50
высшее (ВН)	10+5%	10+5%
ниэшее (НН)	0,69; 1,2	0,69
Схема и группа соединени я обмоток	Y/A = II Y/Y = 0	Y/2 - II
Номинальный ток, А:		<u></u>
обмотки БН	36,4	14,4
" НН	527	209,2
Ток холостого хода, %	1,3	2,5
Напряжение короткого замыкания, %	4,5	3,5
Потери короткого замыкания при температуре 115°C, Вт	4300	2250
Потери холостого хода, Вт	2200	1250
Исполнени <i>е</i>	PB-4B-3B	PB-4B-3B
Степень защиты оболочки	IP54	IP54
Габаритные размеры, мм:		
длина	3525/3625	3220
ширина	995	990
BUCOTA	1388	1210
Macca, Kr	3850/3900	2350

Изготонитель - Донецкий внергозавод (г. Донецк).

Приложение 4
Технические параметры комплектного распределительного
устройства УКР-6-10 УХЛ5

Показэтели	Значение показателей					
Напряжение, кВ:						
номинальное	10	6				
наибольшее рабочее	12	7,2				
іоминальный ток, А:		·				
сборных шин и главных цепей	400; 630	400;630				
вводных и секционных шкефов	315; 400; 630	315;400;630				
отходящих присовдинений	50;100;200;40	0 50;100;160; 200;315;400				
Номинальный ток отключения, кА	10	5; 10; 20				
Мощность отключения МВ·А	200	60;125;250				
Гок электродинамической стой- кости, кА	25	I3; 25; 52				
Гок термической стойкости	10	5; I0; 20				
Время действия тока термической стойкости, с	I	I				
Степень защиты	IP54	IP54				
Исполнение	PHI	PHI				
Допустимые колебания напряжения в сети, %	От -15 до -	+ 15				
Максимальная длина кабеля пульта цистанционного управления, м	До 34	000				
іолное время отключения, с:						
номинальной мощности	0,	12				
при кратности тока реле защитн от токов к.з. к току уставки I,5	0,	18				
Сабариты, мм: длина	116	00				
ширина Высота	150					
Macca, Kr	595-7	700				

Изготовитель - Константиновский завод высоковольтиих аппаратов (г. Константиновка, Донецкой обл.).

Приложение б
Технические параметры взрывозащищенных асинхронных электродвигателей типа BAO2

Показатели	еинерен С	показателя
Номинальная мощность, кВт	630	800
Номинальное напряжение, кВ	10	10
Номинальная скорость вращения, мин-Т	1500	1500
Коэффициент полезного действия, %	94,9	95,4
Коэффициент мощности	0,9	0,9
Кратность пускового момента	1,3	1,3
Кратность максимального момента	2,5	2,5
Кратность пускового тока	6,5	6,5
Момент инерции ротора, кг м2	34	•
Скольжение, %	0,8	0,7
Габариты, мм:		
длива	1865	2045
ширина висота	1130	1130
DMOOTE	1280	1320
Macca, mr	4050	4950

Изготовитель - завод "Электромаш" (г. Тирасполь).

Обозначание	Гагмо- ника	Напра- жение номи- валь- ное, къ	номх- наль- нал,Гц	HOCTS HOMM- Hajs-	CIT-YE-	LOCPOT- BOCTS BA PE- BOHARC- HOM MACTO- Te, BE MARGE	Hand- Hand- Esz.	Ke Rac-	периодич- ностъю 24 ч А. не более	-qer or kor -ber sakeom -roe e kror -er e sakeog o r 8 seese	TOK B TEVE- HER IO MEN C REDECTION D Y A, HE COMES	EONYCTEMENT TOK NO TRO- MOSIKE TRO- TOTH RRCT- POZKH E TR- TENZE IOMEN C NEDEOINT- HOCTED & T A, SE COME
95-10-2412 IV3 95-10-2412 IV3	5					34						
4 7-10-2412 193 4 7-10-2412 193	7	IO	50	2412	2000	30	£20	20	I45	95	155	II 0
011-10-2412 JY3 011-10-2412 DY3	11	! 				22		(40)* (50)	(135) (145)	(šõ) (90)	(155) (155)	(100) (105)
Ф13-10-2412 ЛУЗ Ф13-10-2412 ПУЗ	13					Ia						

значения тока в скобках даны при напряжении I,I неминального (вторея сторона) и при напряжании I,35 неминального (третья сторона).

Изготовитель - Усть-Каменогорский конденсаторный завод.

Основние параметры конденсаторных установок и трехфазных фильтровых реакторов

ianpma-		Установ-	Выдава-		Наиболь-	Конденсаторные	установки	Реактор фильтровый		
No, RB Padmo-	леннал мошность, Мвар	емал мощно- сть, мвар	мощно- частоты сть, 50 Гп.		Габаритные размеры, мм	Macca, ET	Габаритные размеры, мм	Macca, Kr		
Ī	1 2	3	4	5	6	7	8	9	10	
6,3	5	, 2,7	1,92	176	220	2465xI890xI040	1400+5,0	1087x1020xts90*	583+29	
6,3	7	2,7	1,68	I73	220	2465x1890x1040	1400+5.0	2532x800x724	765+38	
€,3	II	2,7	1,86	171	220	2465x1890x1040	1400+5.0	2388x780x753	625+3I	
	13	2,7	1,86	170	220	2465x1890x1040	1400+5,0	2176x625x 50	530 <u>+</u> 26	
10,5	5	2,7	2,37	130	165	2465xI690xI040	1400+5.0	I046x900x775*	490+19	
10.5	5	4,5	3,95	220	280	2465x2610x1040	2200+5.0	968xI020x877*	375+19	
10,5	5	6,3	5,54	304	390	2465x3630x1040	3100+5,0	2970x901x727	1481+74	
10,5	5	9,9	8,7	480	600	2465x5070x1040	4700+5,0	1232x1035x897*	520+26	
10,5	٠ 7	2,7	2,32	I3 0	I65	2465xI890xI040	1400+5.0	2180x822x741	540+27	
10,5	7	4,5	3,88	215	28 0	2465x2610x1040	2200+5.0	22I4x744x670	598+30	
10,5	1 7	6,3	5,43	300	36 0	2465x3630x1040	3100+5.0	2540x878x708	I090+54	
10,5	7	9,9	8,53	470	600	2465x5070x1040	4700+150	2964xI054x890	760+38	

I	2	3	4	5	6	7	8	3	IO
10,5	II	2,7	2,3	125	I65	2465xI690xI040	I400+50	1964x760x710	681+24
10,5	II	6,3	5,36	295	380	2465x3630xI040	3100+150	2920x808x628	1010+51
10,5	II	9,9	8,42	465	600	2465x5070x1040	4700+150	2524x1064x900	754 <u>+</u> 38
10,5	13	2,7	2,29	125	165	2465xI890xI040	I400+50	2391x728x721	530+26
10,5	13	6,3	5,35	295	380	2465x3630xI040	3100+150	2628xc02xc22	890+45
10,5	13	9,9	8,4	460	600	2465x570x1040	4700+150	2431x980x834	640-32

х) Реакторы сднофазные.

Маготовитель - BNO "Преобразователь" (г. Запорожье).

в еинежопицп

Рекомендуемие значения сопротивления високосмиих резисторов в нейтрали шахтных сетей 6 и 10 кВ

Емкостной ток однофизного за- микария на землю, А	Сопротивление резистора в нейтра- ли, ком, при напряжении сети:				
	10 кВ	6 rdB			
0,9 - 1,3	10	6			
1,4-2	6,5	3,8			
2,5 - 3	4	2,5			
4 - 5	2,5	1,5			
6 - 8	1,5	0,9			
9 - 12	I	0,6			
I3 - I7	0,75	0,42			
18 - 20	0,6	0,35			
2I - 26	_	0,28			
27 - 30	_	0,23			

Примечания: При промежуточных значениях емкостного тока замыкания на земых следует принимать бли-жайшие меньшие значения сопротивлений резисторов.

Рекомендуемие значения сопротивления резисторов могут быть скорроктированы с накоплением опыта эксплуатыции.

Рекомендуемые значения сопротивления резисторов при активно-индуктивном заземлении нейтрали шахтных сетей 6 и IO кВ

	ток однофазного	Сопротивление рез	истора в нейтрали
земыкения	на землю, А	при параллельном соединения с ДГК, Ом	при последовательном соединении с ДГК, Ом
	Han	ряжение сети 10 кВ	
21	- 2 5	500	300
26	- 3 5	350	220
36	- 50	250	160
	Ha	пряжение сети 6 кВ	
31	- 36	200	150
37	- 50	150	100

Примечания: При промежуточных значениях емкостного тока замыкания на землю следует принимать ближайшие меньшие значения сопротивлений резисторов. Рекомендуемые значения сопротивления резисторов могут быть скорректированы с некоплением опыта эксплуатации.

СОДЕРЖАНИЕ

I.	РЕКОМЕНДАЦИИ ПО ПОСТРОЕНИЮ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ПОД-	
	ЗЕМНЫХ ЭЛЕКТРОПРИЕМНИКОВ НАПРЯЖЕНИЕМ 6(ТО) КВ УГОЛЬНЫХ	
	WAXT	I
2.	ОСНОВНЫЕ ТРЕБОВАНИЯ К СХЕМАМ ГЛАВНЫХ ПОНИЗИТЕЛЬНЫХ ПОД-	
	CTAHLIMA (ITIII)	3
3.	УКАЗАНИЯ ПО ПРИМЕНЕНИЮ СХЕМ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕ-	
	HUM ITUI	4
	3.1. Схемы распределительных устройств вношего напряже-	
	ния (35, 110, 150, 220 кВ)	4
	3.2. Схемы подключения силовых трансформаторов и схемы	
	электрических соединений распредустройств 6(IO) кВ.	5
4.	РЕЛЕЙНАЯ ЗАЩИТА И РЕЖИМЫ НЕЙТРАЛИ	7
	4.1. Релейная защита электроустановок и сетей	7
	4.2. Рекомендации по выбору параметров оптимального режи-	
	ма нейтрали электрических сетей 6(10) кВ	8
5.	конструкция элементов систем обособленного питания	9
6.	TUTIOBLE CXEMI SJEKTPUYECKUX COEJJUHEHUM PACHPEJEJUTEJISHBIX	
	УСТРОЙСТВ НАПРЯЖЕНИЕМ 6-220 кВ	II
	Приложение I	24
	Приложение 2	27
	Приложение 3	28
	Приложение 4	29
	Приложение 5	30
	Приложение 6	31
	Приложение 7	32
	Приложение 8	34
	Приложение 9	35

РЕКОМЕНДАЦИИ

ПРСЕКТИРОВАНИЕ СИСТЕМ

ЭЛЕКТРОСНАБЖЕНИЯ УГОЛЬНЫХ ШАХТ
С ОБОСОБЛЕННЫМ ПИТАНИЕМ ПОДЗЕЛНЫХ

ЗЛЕКТРОПРИЕМНЕКОВ НАПРЯЖЕНИЕМ 6(10) кВ
Р 12.26.299-90

Редакторы Л.А.Перминова, В.В.Елепкая. Художественный редектор Л.Н.Захарьящева. Подписано в печать 7.02.91. Формат 62,5х84 I/I6. Бум. писчая. Печать офсетная Уч.-иэд.л. 2,25. Тираж 600. Изд. № 9813. Тип. эак. 256 Цена 25 к.

Институт горного дела им. А.А.Скочинского I4COO4, г. Люберим Моск. обл.

Типография Минутлерома СССР 140004, г. Люберин Моск. обл.