КОРМА, КОМБИКОРМА И КОРМОВЫЕ ДОБАВКИ

Определение элементного состава атомно-эмиссионным методом

КАРМЫ, КАМБІКАРМЫ І КАРМАВЫЯ ДАБАЎКІ

Вызначэнне элементнага саставу атамна-эмісійным метадам

Издание официальное

ЕВРАЗИЙСКИЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (EACC)

EURO-ASIAN COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (EASC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСТ 30823-2002

КАРМЫ, КАМБІКАРМЫ І КАРМАВЫЯ ДАБАЎКІ Вызначэнне элементнага саставу атамна-эмісійным метадам

КОРМА, КОМБИКОРМА И КОРМОВЫЕ ДОБАВКИ Определение элементного состава атомно-эмиссионным методом

Издание официальное

Минск Госстандарт Республики Беларусь 2003

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Научно-производственным обществом с ограниченной ответственностью «Белинтераналит»
 - 2 ВНЕСЕН Госстандартом Республики Беларусь
- 3 ПРИНЯТ Евразийским советом по стандартизации, метрологии и сертификации (протокол № 21 от 27 мая 2002 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Армстандарт
Беларусь	BY	Госстандарт Республики Беларусь
Казахст а н	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Госстандарт России
Таджикистан	TJ	Таджикстандарт
Туркменистан	ТМ	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA	Госпотребстандарт Украины

- 4 ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 31 октября 2003 г. № 44 непосредственно в качестве государственного стандарта Республики Беларусь с 1 мая 2004 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ (с отменой на территории Республики Беларусь СТБ 1254-2001)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных (государственных) стандартов, издаваемых в этих государствах.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Республики Беларусь без разрешения Госстандарта Республики Беларусь

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	2
4 Общие положения	3
5 Технические требования к оборудованию и реактивам	4
5.1 Средства измерений	4
5.2 Вспомогательные устройства	4
5.3 Реактивы	4
6 Метод измерений	5
7 Требования безопасности	5
8 Подготовка к выполнению измерений	5
8.1 Подготовка лабораторной посуды	5
8.2 Подготовка йодида меди	6
8.3 Отбор и подготовка проб	6
8.4 Проведение сухой минерализации	е
8.5 Проведение окислительного сплавления	٤٤
8.6 Проведение мокрой минерализации	9
8.7 Определение массы остатка	10
8.8 Приготовление подготовленной пробы	10
8.9 Хранение минерализованных и подготовленных проб	11
9 Проведение измерений	11
9.1 Подготовка аппаратуры к измерениям	11
9.2 Качественная оценка элементного состава	11
9.3 Определение массовых долей элементов	12
9.4 Разбавление подготовленной пробы	12
10 Обработка результатов	13
11 Оформление результатов измерений	13
12 Контроль точности (погрешности) измерений	14
Приложение A (рекомендуемое) Рекомендуемые аналитические линии анализируемых элементов для количественного анализа	15
Приложение Б (рекомендуемое) Рекомендуемые аналитические линии анализируемых элементов для качественного анализа	17
Приложение В (рекомендуемое) Рекомендуемые государственные стандартные образцы (ГСС и межгосударственные стандартные образцы (МСО)	
Приложение Г (обязательное) Алгоритмы проведения внутреннего оперативного контроля качества результатов измерений	20
Приложение Д (рекомендуемое) Массовые доли элементов в градуировочных смесях	22
Библиография	23

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КАРМЫ, КАМБІКАРМЫ І КАРМАВЫЯ ДАБАЎКІ Вызначэнне элементнага саставу атамна-эмісійным метадам

КОРМА, КОМБИКОРМА И КОРМОВЫЕ ДОБАВКИ Определение элементного состава атомно-эмиссионным методом

FODDERS, MIXED FODDERS AND MIXED FODDERS COMPONENTS Determination of elements content by atomic-emission method

Дата введения 2004-05-01

1 Область применения

Настоящий стандарт распространяется на растительные корма, комбикорма, кормовые средства, кормовые добавки всех видов и сырье для производства кормов (далее — корма и сырье) и устанавливает атомно-эмиссионный метод определения в кормах и сырье химических элементов (далее — элементы): алюминия, бария, бора, бериллия, висмута, железа, золота, кадмия, калия, кальция, кобальта, кремния, лития, магния, марганца, меди, молибдена, мышьяка, натрия, никеля, олова, ртути, свинца, селена, серебра, стронция, сурьмы, таллия, фосфора, хрома и цинка.

Настоящий стандарт применяют для количественного определения содержания элементов в диапазонах, соответствующих требованиям нормативных документов, устанавливающих нормы показателей безопасности и качества, и для качественной оценки элементного состава кормов, сырья и веществ, субстанций и материалов неизвестного состава (далее — вещества).

Обязательные требования безопасности при выполнении измерений изложены в разделе 7.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты: ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.019-79 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.1.030-81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление

ГОСТ 12.2.003-91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.3.019-80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 12.4.021-75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 61-75 Реактивы. Кислота уксусная. Технические условия

ГОСТ 195-77 Реактивы. Натрий сернистокислый. Технические условия

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

FOCT 30823-2002

ГОСТ 4146-74 Реактивы. Калий надсернокислый. Технические условия

ГОСТ 4165-78 Реактивы. Медь (II) сернокислая 5-водная. Технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4232-74 Реактивы. Калий йодистый. Технические условия

ГОСТ 4461-77 Реактивы. Кислота азотная. Технические условия

ГОСТ 4526-75 Реактивы. Магний оксид. Технические условия

ГОСТ 4808-87 Сено. Технические условия

ГОСТ 6691-77 Реактивы. Карбамид. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 7631-85 Рыба, морские млекопитающие, морские беспозвоночные и продукты их переработки. Правила приемки, органолептические методы оценки качества, методы отбора проб для лабораторных испытаний

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 11088-75 Реактивы. Магний нитрат 6-водный. Технические условия

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 13496.0-80 Комбикорма, сырье. Методы отбора проб

ГОСТ 13586.3-83 Зерно. Правила приемки и методы отбора проб

ГОСТ 13979.0-86 Жмыхи, шроты и горчичный порошок. Правила приемки и методы отбора проб

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 17681-82 Мука животного происхождения. Методы испытаний

ГОСТ 18300-57 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 23463-79 Графит порошковый особой чистоты. Технические условия

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27262-87 Корма растительного происхождения. Методы отбора проб

ГОСТ 27668-88 Мука и отруби. Приемка и методы отбора проб

ГОСТ 28165-89 Приборы и аппараты лабораторные из стекла. Аквадистилляторы. Испарители. Установки ректификационные. Общие технические требования

ГОСТ 28736-90 Корнеплоды кормовые. Технические условия

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 30538-97 Продукты пищевые. Методика определения токсичных элементов атомно-эмиссионным методом

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (и классификаторов) на территории государства по соответствующему указателю стандартов (и классификаторов), составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

аликвота: Часть смеси (раствора), отражающая состав, свойства и качества, присущие всему объему смеси (образца).

аттестованная смесь: Невыпускаемое серийно средство измерений в виде смеси веществ, метрологические характеристики которой установлены методом аттестации по процедуре приготовления и которая приготовлена на месте применения в соответствии с методикой, установленной нормативным документом.

градуировочные смеси: Смеси, используемые для градуировки.

диапазон измерений: Область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений.

жировые продукты: Кормовые жиры и другие продукты переработки сырья растительного и животного происхождения с содержанием жира более 60 %.

массовая доля: Отношение массы компонента к общей массе, выражаемое в процентах.

минерализованная проба: Сухой остаток, лишенный органических веществ одним из способов минерализации.

мокрая минерализация: Минерализация, основанная на разрушении органических веществ пробы при нагревании ее с концентрированными неорганическими кислотами в присутствии катализатора.

образцовое вещество: Образцовая мера в виде вещества с известными свойствами, воспроизводимыми при соблюдении условий приготовления.

окислительное сплавление: Сплавление, основанное на разложении органических материалов с нитратами шелочных металлов.

остаток: Зола, оставшаяся после минерализации пробы.

подготовленная проба: Проба, подготовленная для проведения измерений, которая содержит минерализованную пробу и буферную смесь или графитовый порошок.

средняя проба: Выделенная часть объединенной пробы, состоящая из нескольких точечных проб. взятых единовременно из нештучной продукции.

сухая минерализация: Минерализация, основанная на разложении органических веществ пробы путем ее обработки в электропечи при контролируемом температурном режиме.

центры кипения: Стеклянные шарики, кусочки фарфоровой посуды.

4 Общие положения

- 4.1 Лабораторное помещение должно быть оснащено и оборудовано:
- сетью переменного тока со следующими параметрами: напряжение (380 \pm 38) В, частота (50 \pm 1) Гц; напряжение (220 \pm 22) В, частота (50 \pm 1) Гц;
 - контуром заземления по ГОСТ 12.1.030:
 - приточно-вытяжной вентиляцией по ГОСТ 12.4.021, отдельными вытяжными шкафами;
 - подводкой холодной и горячей воды.
- **4.2** К выполнению испытаний и обработке их результатов допускают лиц, прошедших обучение приемам работы на оборудовании, освоивших выполнение операций, предусмотренных настоящим стандартом.
 - 4.3 При выполнении испытаний соблюдают следующие условия:
 - температура окружающего воздуха $-(20 \pm 5)$ °C:
 - относительная влажность воздуха от 30 % до 80 %;
 - атмосферное давление– от 86,6 до 106,7 кПа (от 650 до 800 мм рт. ст.).
 - 4.4 Проверка степени чистоты кислот по ГОСТ 30538 (приложение Б).
- **4.5** Подготовка проб для проведения измерений интенсивностей аналитических линий элементов по 8.4, мышьяка по 8.5, ртути по 8.6.
- **4.6** Общая продолжительность испы**таний 4 7** ч, **включая подготовку пробы и выполнение** измерений.
- 4.7 Для проведения испытаний параллельно готовят не менее двух проб одного и того же образца, в случае многокомпонентных проб и проб с визуально наблюдаемыми разнородными включениями значимых размеров, которые невозможно устранить измельчением или гомогенизацией, не менее трех.
- **4.8** Атомно-эмиссионный метод обеспечивает одновременное определение в одной подготовленной пробе содержания группы элементов или последовательное определение содержания каждого элемента.
- **4.9** Допускается градуировка средства измерений для одновременного определения содержания нескольких элементов.

5 Технические требования к оборудованию и реактивам

5.1 Средства измерений

Прибор атомно-эмиссионный многоканальный специализированный АЭМС с относительной погрешностью по фотометрической шкале не более 4 % [1].

Весы лабораторные высокого класса точности – по ГОСТ 24104.

Весы лабораторные среднего класса точности - по ГОСТ 24104.

Колба мерная 1-100-2 или 2-100-2; 1-500-2 или 2-500-2; 1-1000-2 или 2-1000-2 – по ГОСТ 1770.

Пипетки 1-1-2-5 или 1-1-1-5: 1-1-2-10 или 1-1-1-10 – по ГОСТ 29227.

Цилиндры мерные 50 и 100 см 3 – по ГОСТ 1770.

5.2 Вспомогательные устройства

Шкаф сушильный лабораторный, обеспечивающий температурный режим от 40 °C до 250 °C с погрешностью \pm 5 °C.

Электропечь сопротивления камерная лабораторная, обеспечивающая поддержание температурного режима от $250 \, ^{\circ}$ C до $800 \, ^{\circ}$ C с погрешностью $\pm 25 \, ^{\circ}$ C.

Аквадистилляторы одноступенчатые и двухступенчатые – по ГОСТ 28165.

Баня водяная [2].

Электроплитка бытовая с закрытой спиралью - по ГОСТ 14919.

Бумага индикаторная универсальная рН 1-10.

Бумага фильтровальная лабораторная – по ГОСТ 12026.

Воронка В-25-38-ХС; В-100-150-ХС; В-250-345-ХС – по ГОСТ 25336.

Дефлегматор 300-19/26-29/32 ТС или 350-19/26-29/32 ТС - по ГОСТ 25336.

Колбы Кн-1-300-29/32 ТХС или Кн-1-500-29/3 2 ТХС; Кн-1-750-29/3 2 ТХС – по ГОСТ 25336.

Колбы П-1-300-29/32 ТХС или П-1-500-29/32 ТХС – по ГОСТ 25336.

Мезгообразователь МЛ-1.

Мельница лабораторная МРП-2.

Ножницы.

Сетка асбестовая или металлическая диаметром не менее 200 мм.

Сито с отверстиями диаметром 1 мм.

Сосуд стеклянный вместимостью 5 дм³ любого исполнения.

Стаканы В-1-50 ТС; В-1-100 ТС - по ГОСТ 25336.

Ступка агатовая (яшмовая, корундовая) диаметром не менее 90 мм и пестик агатовый (яшмовый, корундовый) в комплекте.

Фильтры бумажные обеззоленные диаметром 7 см [3].

Чашки фарфоровые № 2, 3 – по ГОСТ 9147.

Шпатель стеклянный длиной 5 – 10 см, диаметром 2 – 5 мм.

Щипцы тигельные [4].

Эксикатор по ГОСТ 25336.

Центры кипения.

5.3 Реактивы

Аммиак водный по ГОСТ 3760, х.ч., водный раствор 4 %, спиртовой раствор 4 %.

Вода бидистиллированная, полученная перегонкой дистиллированной воды – по ГОСТ 6709.

Вода дистиллированная - по ГОСТ 6709.

Графитовые электроды марки СЭ [5].

Графитовые электроды типов 1.000; 1.007; 2.003; 2.006 [6].

Графитовые электроды марок Э-01; Э-02; Э-03 [7].

Графит порошковый - по ГОСТ 23463, ос.ч.

Калий йодистый - по ГОСТ 4232, х.ч.

Калий надсернокислый – по ГОСТ 4146, х.ч., водный раствор 10 г/дм³.

Карбамид – по ГОСТ 6691, х.ч., раствор 200 г/дм³.

Кислота азотная - по ГОСТ 11125, ос.ч., водный раствор 1:2.

Кислота азотная - по ГОСТ 4461, х.ч., водный раствор 1:1.

Кислота серная - по ГОСТ 4204, х.ч.

Кислота соляная - по ГОСТ 3118, х.ч., водный раствор 1:1.

Кислота уксусная – по ГОСТ 61, х.ч., водный раствор 50 г/дм³.

Магний нитрат 6-водный – по ГОСТ 11088, ч.д.а., водный раствор 44 г/дм³.

Магний оксид - по ГОСТ 4526, х.ч.

Медь (II) сернокислая 5-водная – по ГОСТ 4165, х.ч., раствор 200 г/дм³.

Натрий сернокислый, безводный – по ГОСТ 4166, х.ч., растворы 10 г/дм³ и насыщенный.

Натрий сернистокислый, безводный – по ГОСТ 195, ч.д.а.

Смеси реактивов ГС, марок As, Hg, V, KM [8].

Смеси реактивов БФ, марок Б1, Б3, Б4, Б5, OV и ОА [9].

Спирт этиловый - по ГОСТ 18300.

Хлороформ, х.ч. [10].

Допускается использование оборудования, посуды и реактивов с метрологическими характеристиками не хуже вышеуказанных.

6 Метод измерений

Атомно-эмиссионный метод заключается в измерении интенсивности линий определяемых элементов в спектре излучения, образованном при испарении анализируемого вещества под действием электрического разряда, регистрации спектра излучения многоканальным фотоэлектрическим преобразователем и последующей обработке данных ЭВМ.

Метод обеспечивает определение элементного состава кормов, сырья и веществ по интенсивностям аналитических линий следующих элементов: алюминия, бария, бора, бериллия, висмута, железа, золота, кадмия, кальция, кобальта, кремния, лития, магния, марганца, меди, молибдена, мышьяка, натрия, никеля, олова, ртути, свинца, селена, серебра, стронция, сурьмы, таллия, фосфора, хрома и цинка.

Оценка присутствия элемента в пробе основана на нахождении в спектре излучения соответствующих аналитических линий этого элемента.

Количественное содержание (далее – массовая доля) элемента определяют сравнением интенсивностей линий в спектрах излучения подготовленной пробы и градуировочных смесей.

Массовые доли элементов, %, в подготовленной пробе для наименьшего значения диапазона измерений составляют: алюминия — 0,002; бария — 0,0001; бериллия — 0,000001; бора — 0,0004; висмута — 0,000001; железа — 0,004; золота — 0,000001; кадмия — 0,00002; калия — 0,02; кальция — 0,009; кобальта — 0,0001; кремния — 0,000001; лития — 0,0001; магния — 0,01; марганца — 0,001; меди — 0,001; молибдена — 0,0001; мышьяка — 0,00006; натрия — 0,003; никеля — 0,0001; олова — 0,0004; ртути — 0,000025; свинца — 0,0001; селена — 0,0001; серебра — 0,000001; сурьмы — 0,0001; таллия — 0,000001; фосфора — 0,015; хрома — 0,0001; цинка — 0,00040.

7 Требования безопасности

- **7.1** Требования электробезопасности по ГОСТ 12.1.019, ГОСТ 12.2.003, ГОСТ 12.2.007.0, ГОСТ 12.3.019.
- 7.2 Требования пожарной безопасности по ГОСТ 12.1.004; средства огнетушения по ГОСТ 12.4.009.
- 7.3 Для предотвращения попадания в воздух рабочей зоны вредных веществ в количествах, превышающих предельно допустимые концентрации по ГОСТ 12.1.005, необходимо все работы проводить в вытяжных шкафах и выполнять требования инструкций по охране труда в химических лабораториях.
- **7.4** Содержание вредных веществ в воздухе рабочей зоны определяют по методикам выполнения измерений, согласованным и утвержденным в установленном порядке.

8 Подготовка к выполнению измерений

8.1 Подготовка лабораторной посуды

Стеклянную посуду моют горячим раствором азотной кислоты по ГОСТ 4461 (1:1), промывают водопроводной и ополаскивают дистиллированной водой, высушивают в сушильном шкафу при температуре 150 °C.

Фарфоровые чашки моют в растворе любого моющего средства, промывают водопроводной водой и дополнительно обрабатывают раствором уксусной кислоты на кипящей водяной бане в течение 1 ч или промывают горячим раствором азотной кислоты (1:1), затем промывают водопроводной, ополаскивают дистиллированной водой, высушивают в сушильном шкафу при температуре 150 °C.

FOCT 30823-2002

Агатовые ступку и пестик после каждого растирания образца одной группы протирают ватным тампоном, смоченным в этиловом спирте. Расход спирта на обработку – 1 см³. Перед началом работы или при переходе к растиранию образца другой группы ступку и пестик моют раствором любого моющего средства, промывают водопроводной и ополаскивают дистиллированной водой, высушивают на воздухе.

8.2 Подготовка йодида меди

Для получения 1 дм³ взвеси йодида меди взвешивают 212,0 г йодистого калия, указанную навеску растворяют в 2 дм³ бидистиллированной воды, смешивают с 800 см³ раствора сульфата меди концентрации 200 г/дм³ в стеклянной банке вместимостью не менее 5 дм³ и оставляют до полного осаждения йодида меди. С образовавшегося осадка декантируют жидкость. Осадок многократно промывают водой до светло-желтого цвета надосадочной жидкости. Для удаления розового оттенка осадок отбеливают. Для этого в сосуд со взвесью добавляют сначала 20 см³ раствора сернистокислого натрия концентрации 1,25 моль/дм³, а затем – 20 см³ насыщенного раствора сернокислого натрия для коагуляции осадка. Надосадочную жидкость сливают декантацией, а осадок переносят на двойной бумажный фильтр, уложенный в воронку диаметром 250 мм, и многократно промывают водой. Фильтр прокалывают стеклянной палочкой, осадок смывают водой в мерную колбу и доводят объем до 1 дм³.

Взвесь йодида меди хранят в темной склянке не более 1 мес.

8.3 Отбор и подготовка проб

8.3.1 Отбор проб

Отбор проб для проведения измерений – по ГОСТ 4808, ГОСТ 7631, ГОСТ **13496.0**, ГОСТ **13586.3**, ГОСТ 13979.0, ГОСТ 17681, ГОСТ 27262, ГОСТ 27668, ГОСТ 28736.

- 8.3.2 Подготовка средней пробы
- **8.3.2.1** Среднюю пробу зеленых и грубых кормов (сено, солома, сенаж) измельчают ножницами на отрезки длиной 0,5 1,0 см. Полученную массу тщательно перемешивают и выделяют пробу массой не менее 100 г.
- **8.3.2.2** От каждого корнеклубнеплода берут четвертую часть, разрезая крестообразно вдоль вертикальной оси. Из полученного материала выделяют пробу массой 100 г. Затем пробу измельчают на терке или мезгообразователе.
- **8.3.2.3** Среднюю пробу корма влажностью не более 15 %, полученную по 8.3.1, измельчают на лабораторной мельнице и просеивают через сито с отверстиями диаметром 1 мм. Остаток на сите измельчают ножницами или в ступке, добавляют к пробе и перемешивают. Масса полученной пробы должна быть не менее 50 г.
- **8.3.2.4** Водянистые корма (барду, мезгу, кормовую патоку) тщательно перемешивают, не допуская образования комков, выделяют пробу массой 250 г.

8.4 Проведение сухой минерализации

- 8.4.1 Взвешивают пустую фарфоровую чашку на весах высокого класса точности.
- 8.4.2 Вносят в чашку навеску кормов в соответствии с таблицей 1.
- 8.4.3 Взвешивают чашку с навеской на весах высокого класса точности.

Таблица 1 – Навески кормов и сырья

	Навеска кормов и сырья, г, для проведения				
Наименование кормов и сырья	сухой мине- рализации	окисли- тельного сплав- ления	мокрой минера- лизации		
Влажные корма (зеленые корма, силос из зеленых растений, сенаж, корнеклубнеплоды, бахчевые культуры и т. д.), побочная продукция спиртового производства (барда)		10,0	15,0		
Грубые корма (сено, солома, мякина и т. д.), отруби, побочная продукция маслоэкстракционного (жмых, шрот, лузга, шелуха и т. д.) и пивоваренного (пивная дробина, солодовые ростки) производств ¹⁾ , комбикорма		2,0	15,0		
Побочная продукция молочной промышленности (сухое молоко, заменитель цельного молока)	2,0	2,0	10,0		
Зерно, зернобобовые, зернофураж, семена масличных культур, побочная продукция мукомольного, крупяного (кормовые мука и мучка и т. д.), крахмалопаточного (мезга, зародыши) ¹⁾ , сахарного (жом) ¹⁾ , консервного и овощесушильного (выжимки) ¹⁾ производств		4,0	15,0		
Побочная продукция мясной, птицеперерабатывающей (мука мясокостная, костная, кровяная, гидролизованное перо) и рыбной промышленности (мука из рыбы, ракообразных и водорослевая), кормовые добавки, дрожжи		1,0	5,0		
Кормовые жиры и отходы маргаринового производства	8,0	6,0	15,0		
1) При содержании влаги в кормах и сырье более 40 % для сухой минерализации и окислительного сплав-					

При содержании влаги в кормах и сырье более 40 % для сухой минерализации и окислительного сплавления следует брать навеску 10 г и далее вести подготовку пробы как для влажных кормов.

8.4.4 Подготовив пробу по 8.4.1 – 8.4.3, в чашку с навеской влажных кормов и влажной побочной продукции (кроме барды) добавляют бидистиллированную воду в количестве 8 см³. Содержимое чашки выпаривают и обугливают на электроплитке до прекращения выделения дыма.

Затем чашку помещают в электропечь, отрегулированную на температуру 250 °C, постепенно повышают температуру (на 50 °C через каждые 10 мин) до 450 °C и продолжают минерализацию при этой температуре в течение 60 мин, для корнеклубнеплодов, сенажа – 120 мин.

8.4.5 Подготовив пробу по 8.4.1 – 8.4.3, чашку с навеской зерна, грубых кормов, сухой побочной продукции, комбикормов и кормовых добавок помещают на электроплитку и обугливают содержимое до прекращения выделения дыма.

Затем чашку помещают в электропечь, отрегулированную на температуру 200 °C, выдерживают в течение 30 мин, после чего постепенно повышают температуру (на 50 °C через каждые 10 мин) до 450 °C и продолжают минерализацию при этой температуре для зерна, зернофуража, грубых кормов, отрубей, отходов мукомольного и крупяного производств, побочной продукции молочной промышленности, комбикормов в течение 120 мин; зернобобовых, семян масличных культур, отходов маслоэкстракционного и пивоваренного производств, дрожжей – 180 мин; для всех остальных объектов – 60 мин.

8.4.6 Подготовив пробу по 8.4.1 — 8.4.3, в чашку с навеской побочной продукции мясной, птицеперерабатывающей и рыбной промышленности добавляют 2 см³ раствора азотной кислоты (1:1). Содержимое чашки выпаривают на электроплитке с сеткой и обугливают до прекращения выделения дыма на электроплитке без сетки.

Затем чашку помещают в электропечь, отрегулированную на температуру 250 °C, постепенно повышают температуру (на 50 °C через каждые 10 мин) до 450 °C и продолжают минерализацию при этой температуре в течение 120 мин.

FOCT 30823-2002

8.4.7 Подготовив пробу по 8.4.1 – 8.4.3, в чашку с навеской кормовых жиров, побочной продукции маргаринового производства добавляют 0,060 г оксида магния, 2 см³ концентрированной азотной кислоты. Содержимое чашки выпаривают на электроплитке с сеткой и обугливают до прекращения выделения дыма на электроплитке без сетки. Затем чашку снимают, охлаждают на воздухе и добавляют 2 см³ концентрированной азотной кислоты. Чашку ставят на электроплитку с сеткой и выпаривают кислоту, сетку снимают и обугливают пробу до прекращения выделения дыма.

Затем чашку помещают в электропечь, отрегулированную на температуру 200 °C, выдерживают в течение 30 мин, после чего постепенно повышают температуру (на 50 °C через каждые 10 мин) до 450 °C и продолжают минерализацию при этой температуре в течение 180 мин.

После минерализации чашку извлекают из электропечи, охлаждают на воздухе, добавляют 2 см³ раствора соляной кислоты (1:1) и выпаривают на электроплитке. Горячую чашку помещают в электропечь при 450 °C и продолжают минерализацию при этой температуре в течение 60 мин.

8.5 Проведение окислительного сплавления

- **8.5.1** Подготовив пробу по 8.4.1 8.4.3, в чашку с навеской вносят последовательно, в соответствии с таблицей **2**, оксид магния, азотнокислый магний, равномерно перемешивают стеклянной палочкой, затем добавляют раствор аммиака.
- **8.5.2** Чашку, подготовленную по 8.5.1, помещают в сушильный шкаф, отрегулированный на температуру 90 °C 100 °C, высушивают содержимое чашки, после чего повышают температуру до 200 °C и выдерживают до почернения содержимого.

Затем чашку помещают в электропечь, отрегулированную на температуру 250 °C, выдерживают в течение 30 мин, после чего постепенно повышают температуру (на 50 °C через каждые 10 мин) до 480 °C и продолжают минерализацию при этой температуре для побочной продукции молочной промышленности в течение 30 мин, зерна, зернофуража, семян масличных культур, комбикормов, кормовых добавок, отрубей, побочных продуктов мукомольного, крупяного, маслоэкстракционного, пивоваренного производств, мясной, птицеперерабатывающей и рыбной промышленности, дрожжей — 120 мин, для всех остальных объектов — 60 мин.

Таблица 2 – Добавки реактивов при проведении окислительного сплавления

	Навеска р	еактива, г	Объе	Объем раствора, см ³	
Наименование кормов и сырья	оксида магния	азотно- кислого магния	азотно- кислого магния 44 г/дм ³	водного аммиака 4 %	спирто- вого аммиака 4 %
Влажные корма (зеленые корма, силос из зеленых растений, сенаж, корнеклубнеплоды, бахчевые культуры и т. д.), побочная продукция спиртового производства (барда)		_	8,0	0,5	1
Зерно, зернобобовые, зернофураж, семена масличных культур, побочная продукция мукомольного, крупяного (кормовые мука и мучка и т. д.), крахмалопаточного (мезга, зародыши) ¹⁾ , сахарного (жом) ¹⁾ , консервного и овощесушильного (выжимки) ¹⁾ производств, мясной и птицеперерабатывающей промышленности (мука мясокостная, костная, кровяная, гидролизованное перо)		_	4,0	1,0	1
Побочная продукция рыбной промышленности (мука из рыбы, ракообразных и водорослевая), дрожжи	0,16	_	4,0	1,0	-
Кормовые жиры и отходы маргаринового производства	0,08	0,30	_	_	3,0

¹⁾ При содержании влаги в кормах и сырье более 40 % следует брать навески реактивов, соответствующие влажным кормам.

8.5.3 В чашку с кормовыми жирами и отходами маргаринового производства, подготовленную по 8.5.1, добавляют 8 см³ смеси хлороформа с этиловым спиртом в соотношении (1:1), чашку помещают в сушильный шкаф, отрегулированный на температуру не выше 70 °C, выпаривают хлороформ, затем температуру повышают до 100 °C и выдерживают до почернения содержимого. После этого чашку ставят на электроплитку без сетки и обугливают до прекращения выделения дыма.

Затем чашку помещают в электропечь, отрегулированную на температуру 250 °C, постепенно повышают температуру (на 50 °C через каждые 10 мин) до 480 °C и продолжают минерализацию при этой температуре в течение 60 мин.

8.6 Проведение мокрой минерализации

- **8.6.1** В коническую или плоскодонную колбу вместимостью 300 500 см³ вносят навеску кормов в соответствии с таблицей 1, взвешенную на весах среднего класса точности. Параллельно ставят контроль на реактивы, учитывая его результаты при расчете конечного результата вычитанием массовой доли ртути, найденной в реактивах, из массовой доли ртути, найденной в кормах и сырье.
- **8.6.2** В колбу, подготовленную по 8.6.1, с пробами кормов влажных, грубых, зерновых, зернобобовых, комбикормов, побочной продукции мукомольного, крупяного, крахмалопаточного, сахарного, спиртового, консервного, овощесушильного, маслоэкстракционного, пивоваренного производств, кормовых добавок, дрожжей и семян масличных культур добавляют 35 см³ бидистиллированной воды, 15 см³ концентрированной серной кислоты и вставляют дефлегматор. Содержимое колбы перемешивают и выдерживают при комнатной температуре в течение 30 мин. После этого в колбу добавляют 10 см³ концентрированной азотной кислоты по ГОСТ 11125 порциями по 2 4 см³ с интервалом 5 10 мин, промывая дефлегматор водой, и выдерживают до прекращения выделения бурых паров окислов азота, но не более 20 мин. Затем в колбу добавляют 10 см³ бидистиллированной воды, помещают на водяную баню или электроплитку с сеткой и нагревают в течение 60 90 мин, при этом кипение не должно быть бурным.
- **8.6.3** В колбу, подготовленную по 8.6.1, с пробами побочной продукции молочной, мясной, птице-перерабатывающей, рыбной промышленности добавляют 20 см 3 бидистиллированной воды (для сухого молока 70 см 3), 6 см 3 концентрированной азотной кислоты по ГОСТ 11125 и вставляют дефлегматор. Содержимое колбы перемешивают и выдерживают при комнатной температуре в течение 30 мин. После этого в колбу добавляют 6 см 3 концентрированной серной кислоты порциями по 2 4 см 3 с интервалом 5 10 мин, промывая дефлегматор водой, и выдерживают до прекращения выделения бурых паров окислов азота, но не более 20 мин. Затем в колбу добавляют 10 см 3 бидистиллированной воды, помещают на водяную баню или электроплитку с сеткой и нагревают в течение 60 90 мин, причем кипение не должно быть бурным.
- **8.6.4** В колбу, подготовленную по 8.6.1, с пробами кормовых жиров и отходов маргаринового производства добавляют 5 см³ раствора надсернокислого калия концентрации 10 г/дм³, 15 см³ раствора азотной кислоты по ГОСТ 11125 (1:2), центры кипения и вставляют дефлегматор. Содержимое колбы перемешивают и выдерживают при комнатной температуре в течение 30 мин. Затем колбу помещают на водяную баню или электроплитку с сеткой и нагревают в течение 60 мин. После этого колбу снимают с нагревающего устройства, охлаждают, добавляют 10 см³ концентрированной серной кислоты порциями по 2 4 см³ с интервалом 5 10 мин, промывая дефлегматор водой, и выдерживают до прекращения выделения бурых паров окислов азота, но не более 20 мин. После прекращения выделения паров в колбу добавляют 10 см³ бидистиллированной воды, помещают на водяную баню или электроплитку с сеткой и нагревают в течение 60 90 мин, при этом кипение не должно быть бурным.
- **8.6.5** Колбу с деструктатом по **8.6.2**, или **8.6.3**, или **8.6.4** снимают с нагревающего устройства, через дефлегматор вливают 10 см³ горячей бидистиллированной воды и фильтруют горячий деструктат в колбу вместимостью 300 см³, в которую предварительно наливают 30 см³ раствора мочевины концентрации 200 г/дм³ через увлажненный водой двойной бумажный фильтр, уложенный в воронку диаметром 100 150 мм. Колбу из-под деструктата и остаток на фильтре промывают горячей бидистиллированной водой. Общий объем фильтрата и промывных вод не должен превышать 300 см³.
- **8.6.6** В колбу с охлажденным фильтратом, приготовленным по 8.6.5, добавляют 6 см³ взвеси йодида меди по 8.2. Содержимое колбы перемешивают три раза с интервалом 5 мин и оставляют до полного осаждения осадка. Если осадок окрашен в ярко-розовый или кирпичный цвет, добавляют еще 6 см³ взвеси йодида меди.

- **8.6.7** Через 1 ч надосадочную жидкость сливают, стараясь не взмутить осадок, и отбрасывают. К осадку добавляют 10 см³ раствора сернокислого натрия концентрации 10 г/дм³, взбалтывают и переносят на бумажный фильтр, предварительно взвешенный на весах высокого класса точности и уложенный в воронку диаметром 35 мм. Колбу из-под осадка несколько раз ополаскивают раствором сернокислого натрия концентрации 10 г/дм³ и сливают на тот же фильтр. Отмывание осадка проводят до рН не менее 5 (по универсальной индикаторной бумаге).
- **8.6.8** Когда вся жидкость профильтруется, фильтр с осадком укладывают в фарфоровую чашку и помещают в сушильный шкаф, отрегулированный на температуру 90 °C 95 °C. Фильтр высушивают при этой температуре в течение 90 мин.

8.7 Определение массы остатка

- **8.7.1** Чашку с остатком, подготовленную по 8.4 или 8.5, извлекают из электропечи, охлаждают на воздухе и взвешивают на весах высокого класса точности.
 - 8.7.2 Массу минерализованной пробы определяют по разности масс чашек по 8.7.1 и 8.4.1.
- **8.7.3** Остаток размельчают стеклянным шпателем и извлекают из чашки, чашку взвешивают после извлечения остатка с точностью до 0,001 г.
 - 8.7.4 Масса остатка равна разности масс чашек по 8.7.1 и 8.7.3.
- **8.7.5** Чашку с фильтром, подготовленную по 8.6, извлекают из сушильного шкафа, охлаждают в эксикаторе и взвешивают фильтр с остатком на весах высокого класса точности.
 - 8.7.6 Масса остатка равна разности масс фильтра с остатком по 8.7.5 и фильтра по 8.6.7.

8.8 Приготовление подготовленной пробы

- **8.8.1** Минерализованные пробы, смеси реактивов БФ и графитовый порошок взвешивают на весах высокого класса точности. Навески смешивают и растирают в агатовой ступке до однородности не менее 20 мин.
- **8.8.2** При определении массовой доли мышьяка для подготовленной пробы к остатку пробы по 8.7.3, минерализованной по 8.5, добавляют смесь реактивов БФ марки Б3 в количестве от массы остатка по 8.7.4:
 - для проб влажных кормов равном 30 %;
- для проб зерна, зернофуража, комбикормов, отходов мукомольного, крупяного, крахмалопаточного и сахарного производств, солодовых ростков равном 50 %;
- для проб побочной продукции мясной, птицеперерабатывающей и рыбной промышленности равном 25 %.

Для проб грубых кормов, отрубей, кормовых добавок, отходов маслоэкстракционного и побочных продуктов пивоваренного производств и дрожжей смесь реактивов БФ не добавляют, остаток по 8.7.3 растирают в агатовой ступке до однородности не менее 20 мин.

Для проб побочной продукции молочной промышленности к остатку пробы по 8.7.3, минерализованной по 8.5, добавляют графитовый порошок в количестве, равном 30 % массы остатка по 8.7.4.

Для проб кормовых жиров и отходов маргариновой промышленности к остатку пробы по 8.7.3, минерализованной по 8.5, добавляют смесь реактивов БФ марки Б4 в количестве, равном 50 % массы остатка по 8.7.4.

- **8.8.3** При определении массовой доли ртути для подготовленной пробы остаток пробы по 8.7.5, минерализованной по 8.6, измельчают стеклянным шпателем, перемешивают и переносят в стеклянный укупоренный сосуд.
- **8.8.4** При определении массовой доли калия, кальция, магния, натрия, фосфора для подготовленной пробы к остатку пробы по 8.7.3, минерализованной по 8.4, добавляют графитовый порошок в количестве от массы остатка по 8.7.4:
- для проб побочной продукции мясной, птицеперерабатывающей и рыбной промышленности, кормовых добавок, дрожжей – равном значению массы остатка;
- для проб грубых кормов, отрубей, побочной продукции маслоэкстракционного, пивоваренного производств, комбикормов – равном трехкратному значению массы остатка;
- для проб влажных кормов, корнеклубнеплодов, зерна, зернобобовых, зернофуража, побочной продукции спиртового, мукомольного, крупяного, крахмалопаточного, сахарного, консервного и овощесушильного производств и побочной продукции молочной промышленности равном девятикратному значению массы остатка.

Навески смешивают и растирают в агатовой ступке до однородности не менее 20 мин.

После предварительного разбавления графитовым порошком из пробы берут аликвоту в количестве 0,100 г и добавляют смесь реактивов БФ марки Б5 в количестве, равном трехкратному значению массы апиквоты.

8.8.5 При определении массовой доли других элементов для подготовленной пробы к остатку пробы по 8.7.3, минерализованной по 8.4, добавляют смесь реактивов БФ марки Б4 в количестве, равном значению массы остатка по 8.7.4.

8.9 Хранение минерализованных и подготовленных проб

- **8.9.1** В случае необходимости пробы, минерализованные по 8.4, 8.5 и 8.6 и подготовленные по 8.8, хранят в стеклянных укупоренных сосудах, помещенных в эксикатор с осущителем:
 - подготовленную пробу по 8.8.2 не более трех суток;
 - подготовленную пробу по 8.8.3 не более одних суток;
 - подготовленную пробу по 8.8.4 не более трех суток;
 - подготовленную пробу по 8.8.5 не более одной недели.
 - 8.9.2 Сосуды при хранении снабжают этикетками, содержащими следующую информацию:
 - наименование исходной пробы;
 - наименование определяемого элемента;
 - навеску, внесенную в чашку или колбу;
 - массу остатка по 8.7.4 или 8.7.6;
 - массу буферной смеси по 8.8;
 - дату проведения подготовки пробы.

9 Проведение измерений

9.1 Подготовка аппаратуры к измерениям

- 9.1.1 Измерение количественного содержания элементов и качественную оценку элементного состава проводят при условиях испытаний по 4.3.
- **9.1.2** Подготовку атомно-эмиссионного многоканального специализированного прибора АЭМС (далее прибор) к измерениям осуществляют в соответствии с эксплуатационными документами на указанный прибор.
- **9.1.3** Рекомендуемые аналитические линии элементов для определения количественного содержания приведены в приложении A, для проведения качественной оценки элементного состава в приложении Б. Налагающиеся линии элементов, которые могут влиять на окончательный результат при концентрациях более указанных, приведены в приложении A.
- **9.1.4** Для градуировки прибора используют градуировочные смеси, приготовленные из государственных стандартных образцов (далее ГСО) массовой доли элемента в твердой матрице в соответствии с инструкцией по применению. Список ГСО представлен в приложении В, таблица В.2.

Примечание – В случае отсутствия ГСО используют смеси реактивов ГС.

- **9.1.5** Для проведения измерений используют графитовые электроды: верхние марок Э-01, СЭ и типов 1.000, 1.007; нижние марок Э-02, Э-03, СЭ, типов 2.003, 2.006. Электроды заполняют в соответствии с инструкцией по применению.
- **9.1.6** Для определения массовой доли мышьяка и ртути используют графитовые электроды марки Э-03; для определения массовой доли других элементов используют графитовые электроды марки Э-02, типов 2.003; 2.006.
- **9.1.7** Допускается использование графитовых электродов других форм и размеров, обеспечивающих точность измерений, сходимость, воспроизводимость в соответствии с критериями, указанными в приложении Г, и последовательность выполнения измерений согласно настоящему стандарту.

9.2 Качественная оценка элементного состава

- **9.2.1** Для проведения измерения электрод заполняют подготовленной пробой по 8.8. Смесь, оставшуюся после заполнения электродов, сохраняют до завершения измерений.
- **9.2.2** Электрод устанавливают в штатив источника возбуждения спектра и регистрируют спектр. Проводят идентификацию полученных аналитических линий. Критерием обнаружения элемента является появление в спектре хотя бы одной аналитической линии этого элемента. Для большей достоверности рекомендуется использовать 2 3 линии.

Длины волн рекомендуемых аналитических линий элементов приведены в приложении Б.

9.2.3 Уровень нахождения элемента или элементов в испытуемой пробе оценивают путем сравнения спектра подготовленной пробы со спектром образцового вещества, которое содержит определяемый элемент или группу элементов.

Образцовым веществом с известным элементным составом служат:

- проба, подготовленная в соответствии с разделом 8 с исследуемым элементом или группой элементов, внесенных в виде ГСО. Перечень ГСО приведен в приложении В;
- подготовленная проба аналогичного продукта с аттестованным или приписанным значением массовой доли исследуемого элемента или элементов;
- аттестованная смесь в виде смеси веществ, метрологические характеристики которой установлены методом аттестации по процедуре приготовления;
 - смеси реактивов ГС для градуировки прибора.

Критерием уровня нахождения элемента является соотношение значений интенсивностей аналитических линий элементов в образцовом веществе и анализируемой пробе.

9.3 Определение массовых долей элементов

- 9.3.1 Градуировка прибора
- **9.3.1.1** Градуировку прибора проводят перед началом измерений подготовленных проб. Для этого используют градуировочные смеси, соответствующие требованиям 9.1.4. Необходимо использовать не менее четырех градуировочных смесей одной группы в соответствии с ожидаемой концентрацией в подготовленной пробе.

Примечание – Массовые доли элементов в смесях реактивов ГС указаны в приложении Д.

Для проб, подготовленных по 8.8.2, используют градуировочные смеси с концентрациями элементов, соответствующими массовым долям в смесях марки As, по 8.8.3 – марки Hg, по 8.8.4 – марки KM, по 8.8.5 – марки V.

- 9.3.1.2 Для каждой градуировочной смеси заполняют не менее трех электродов. Электроды поочередно устанавливают в штатив источника возбуждения спектра и проводят измерение интенсивностей аналитических линий элементов в соответствии с инструкцией по эксплуатации прибора. По трем результатам измерений вычисляют среднеарифметическое значение интенсивности аналитической линии.
- **9.3.1.3** Градуировку прибора проводят по вычисленным среднеарифметическим значениям интенсивностей I и соответствующим им массовым долям элементов C в градуировочных смесях в координатах логарифмических IgI IgC или линейных I C.
 - 9.3.2 Проведение измерений подготовленной пробы
- **9.3.2.1** Для проведения измерений заполняют пробой, подготовленной по 8.8, не менее трех электродов. Смесь, оставшуюся после заполнения электродов, сохраняют до завершения измерений.
- **9.3.2.2** Электроды поочередно устанавливают в штатив источника возбуждения спектра и проводят измерение интенсивностей аналитических линий в соответствии с инструкцией по эксплуатации прибора. Вычисляют среднеарифметические значения интенсивностей аналитических линий элементов для каждой из параллельно подготовленных проб.
- **9.3.2.3** По вычисленным средним значениям интенсивностей аналитических линий, используя соответствующий градуировочный график, построенный в соответствии с 9.3.1, определяют массовую долю элемента в подготовленной пробе $C_{\square i}$, выраженную в процентах.

9.4 Разбавление подготовленной пробы

9.4.1 В случае когда при выполнении измерения массовых долей элементов по 9.3, кроме ртути, найденное значение $C_{\Pi i}$ превышает верхнюю границу диапазона массовой доли определяемого элемента в градуировочных смесях, пробу разбавляют.

Для этого смесь, оставшуюся после заполнения электродов по 9.3.2.1, взвешивают и к ней добавляют соответствующую смесь марки OV или OA в количестве $m_{\rm доб}$, г, рассчитанном по формуле

$$m_{\text{dof}} = m_{\text{cm}}(k-1), \tag{1}$$

где $m_{\rm cm}$ – масса смеси, оставшейся после заполнения электродов по 9.3.2.1, г;

k – кратность разбавления, вычисленная по формуле (2) и округленная до целых значений

$$k = \frac{2C_{\Pi i}}{C_{\rm R} + C_{\rm H}},\tag{2}$$

где $C_{\rm B}$ – максимальное верхнее значение массовой доли определяемого элемента в градуировочных смесях;

 $C_{\rm H}$ – минимальное нижнее значение массовой доли определяемого элемента в градуировочных смесях.

Полученную смесь растирают в агатовой ступке до однородности не менее 20 мин.

9.4.2 В случае когда при выполнении измерения массовой доли ртути по 9.3 найденное значение $C_{\Pi i}$ превышает верхнюю границу диапазона массовой доли ртути в градуировочных смесях, проводят повторное испытание.

Для этого готовят пробу по 8.6 и 8.7, где по 8.6.6 добавляют взвесь йодида меди в количестве, увеличенном в k раз.

9.4.3 После разбавления подготовленной пробы по 9.4.1 и 9.4.2 проводят повторное измерение по 9.3, вновь полученное значение С_{□і} умножают на *k*. Окончательный расчет проводят по формуле (3), используя те же значения массы остатка и буферной смеси, что и до разбавления.

10 Обработка результатов

10.1 Массовые доли определяемых элементов в продукте *C*_i, %, для каждого параллельного измерения рассчитывают по формуле

$$C_{i} = C_{\Pi i} \frac{m_{\text{ocr}} + m_{\text{fy}\varphi}}{m_{\text{un}}}, \qquad (3)$$

где $m_{\text{ост}}$ – разность масс по 8.7.2 или 8.7.6, г;

 $m_{\text{буф}}$ – количество буферной смеси по 8.8, г, умноженное на отношение $m_{\text{ост}}$ к массе остатка по 8.7.4 или 8.7.6;

 $m_{\text{ип}}$ – навеска исходного продукта (корма и сырья), взятая в соответствии с таблицей 1, г.

10.2 Пригодными считают результаты, для которых разница между максимальным и минимальным значениями результатов параллельных измерений не превышает допустимого расхождения *d*, рассчитанного по формуле (Г.2).

В случае расхождения результатов параллельных измерений более допустимого анализ повторяют.

- **10.3** За окончательный результат принимают среднеарифметическое результатов не менее двух измерений параллельно подготовленных проб одного и того же образца, \overline{C} , выраженное массовой долей, %, с относительной погрешностью не более 30 %.
- **10.4** Расхождение между результатами анализов, выполненных в двух разных лабораториях, допускается не более 60 % по отношению к среднеарифметическому значению при доверительной вероятности *P* = 0,95.
- **10.5** За результат качественной оценки принимают обнаружение или необнаружение элемента по присутствию или отсутствию в спектре соответственно выбранных аналитических линий этого элемента, которое оформляют записью «обнаружено» или «не обнаружено».

Уровень нахождения элемента в испытуемой пробе оценивают относительно уровня его содержания в образцовом веществе и оформляют записью «на уровне», «выше уровня» или «ниже уровня».

11 Оформление результатов измерений

В лабораторный журнал по форме, установленной на предприятии в соответствии с требованиями нормативных документов, вносят:

- наименование пробы;
- дату поступления пробы;
- дату проведения измерения;
- результаты взвешивания;

FOCT 30823-2002

- значения навесок при дополнительном разбавлении (если его проводили);
- результат измерения по каждому элементу для всех параллельных измерений С;
- окончательный результат по каждому элементу в виде $(C \pm 0.3 \ C)$, %;
- фамилию оператора.

12 Контроль точности (погрешности) измерений

- **12.1** Внутренний оперативный контроль (ВОК) качества результатов определений проводят для предотвращения получения недостоверных результатов.
 - 12.2 Требования к организации и проведению ВОК приведены в [11].
- **12.3** ВОК точности осуществляют с использованием метода добавок стандартных образцов или аттестованных смесей в испытуемые пробы.
 - 12.4 Алгоритм проведения ВОК качества результатов определений приведен в приложении Г.

Приложение A (рекомендуемое)

Рекомендуемые аналитические линии анализируемых элементов для количественного анализа

Таблица А.1

Наименование (обозначение) определяемого элемента	Длина волны аналитической линии, нм		Обозначение мешающего элемента и длина волны его аналитической линии, нм	
Железо (Fe)	216,677	Pt	216,676	2,00
	229,779	_	_	_
Кадмий (Cd)	228,802	As Co	228,812 228,780	0,30 0,50
	346,620	Fe Co	346,586 346,580	0,05 0,01
 Калий (К)	344,643	_	_	_
	344,738	_	_	_
Кальций (Са)	227,547	Fe	227,602	0,4
	239,856	Чувствительн	юсть в КСІ	~ 0,3
Кобальт (Со)	340,512	V Cr Ti	340,516 340,520 340,509	0,10 1,00 10,0
	242,493	Молекулярная полоса SiO ₂		
Магний (Mg)	333,668	_	_	_
	333,215	_	_	_
	332,992	_	_	_
Марганец (Mn)	221,382	_	_	_
Молибден (Мо)	317,035	Fe	317,035	3,00
	313,259	V Fe	313,259 313,251	0,03 1,00
Медь(Cu)	216,509	Pt	216,517	0,0001
	222,778	Co	222,765	1,00
	223,008	Ti	223,022	2,00
Мышьяк (As)	234,984		_	
Натрий (Na)	330,237	Zn	330,259 330,294	0,03 0,03
	330,298	Zn	330,259 330,294	0,03 0,03
Никель(Ni)	300,249		_	-
	315,410		_	_

FOCT 30823-2002

Окончание таблицы А.1

Наименование (обозначение) определяемого элемента	Длина волны аналитической линии, нм	Обозначение мешающего элемента и длина волны его аналитической линии, нм		Массовая доля мешающего элемента, %, более
Олово (Sn)	224,605	Fe	224,565	0,50
	226,891	Al	226,910	0,10
	231,723	Ni	231,716	0,10
	233,480	Ва	233,527	0,10
	235,484	Fe	235,489	1,00
Ртуть (Hg)	253,652	_	_	_
Свинец (Pb)	216,999	_	_	_
	283,307	W	283,295	1,00
Сурьма (Sb)	231,147	V	231,146	1,00
	217,581	_	_	_
Фосфор (Р)	253,399	_	_	_
	255,493	_	_	_
	255,325	Vi	255,338	0,10
		Co	255,337	0,10
		Fe	255,318	3,00
	253,565	Fe	253,561	0,10
Хром (Сr)	301,476	_	-	_
	298,647	_	_	_
Цинк (Zn)	213,856	Cu	213,851	1,00
		Co	213,897	1,00
		Co	213,778	1,00
	334,502	Cr	334,514	1,00

Приложение Б (рекомендуемое)

Рекомендуемые аналитические линии анализируемых элементов для качественного анализа

Табли**ца** Б.1

Определяемый	Длина волны аналитической линии, нм				
эле мент	λ ₁	λ ₂	λ ₃	λ ₄	
Алюминий	309,271	236,705	226,346	265,249	
Барий	233,527	230,424	307,158	_	
Бор	249,733	249,678	_	_	
Бериллий	234,861	249,455	332,134	_	
Висмут	289,798	298,903	_	_	
Железо	248,327	269,454	229,779	302,064	
Золото	242,795	267,595	_	_	
Кадмий	228,802	346,620	340,365	326,106	
Калий	344,643	321,716	310,179	_	
Кальций	227,547	239,856	215,078	315,887	
Кобальт	340,512	343,304	242,493	_	
Кремний	251,611	212,412	243,515	288,158	
Литий	323,261	_	_	_	
Магний	333,668	285,213	277,983	280,270	
Марганец	279,482	257,610	221,382	280,106	
Медь	327,396	261,837	223,008	324,754	
Молибден	317,035	202,032	247,197	313,259	
Мышьяк	234,984	245,653	286,045	_	
Натрий	330,237	285,281	268,034	268,044	
Никель	300,249	232,003	228,998	341,477	
Олово	283,999	235,484	224,605	303,412	
Ртуть	253,652	256,652	312,566	313,183	
Свинец	216,999	283,307	280,200	287,332	
Селен	203,985	206,279	241,352	_	
Серебро	328,068	338,389	_	_	
Стронций	215,283	216,591	346,446	_	
Сурьма	287,792	268,276	231,147	217,581	
Таллий	292,152	276,787	_	_	
Фосфор	255,325	253,565	253,399	255,493	
Хром	359,348	206,154	301,476	284,325	
Цинк	213,856	334,502	334,557	328,233	

Приложение В (рекомендуемое)

Рекомендуемые государственные стандартные образцы (ГСО) и межгосударственные стандартные образцы (МСО)

Таблица В.1

Наименование элемента	Обозначение ГСО	Обозначение МСО	Наименование ГСО водных растворов
Алюминий	8059-94-8061-94	0015:1998	Ионов алюминия
Барий	7107-94-7109-94	0021:1998	Ионов бария
Бериллий	5217-90	_	Ионов бериллия
Бор	7337-96-7339-96	0089:1999	Ионов бора (тетраборат)
Висмут	6065-91	_	Ионов висмута
Железо	8032-94-8034-94	0009:1998	Ионов железа (III)
Золото	Золото	_	Стандарт-ионов
Кадмий	6690-93-6692-93	0005:1998	Ионов кадмия
Калий	8092-94-8094-94	0019:1998	Ионов калия
Кальций	8065-94-8067-94	0020:1996	Ионов кальция
Кобальт	8089-94-8091-94	0012:1998	Ионов кобальта
Кремний	Кремний	-	Стандарт-ионов
Литий	5224-90	_	Ионов лития
Магний	7190-95-7192-95	0085:1999	Ионов магния
Марганец	8056-94-8058-94	0014:1998	Ионов марганца (II)
Медь	7998-93-8000-93	0007:1998	Ионов меди
Молибден	8088-94	0016:1998	Ионов молибдена (VI)
Мышьяк	7143-95-7144-95	0031:1998	Ионов мышьяка
Натрий	8062-94-8064-94	0018:1998	Ионов натрия
Никель	8001-93-8003-93	0010:1998	Ионов никеля
Олово	7238-96-7240-96	0088:1999	Ионов олова (IV)
Ртуть	8004-93-8006-93	0013:1998	Ионов ртути
Свинец	7012-93-7014-93	0006:1998	Ионов свинца
Селен	7340-96-7342-96	0087:1999	Ионов селена (IV)
Серебро	5234-90	_	Ионов серебра
Стронций	7145-95-7147-95	0083:1999	Ионов стронция
Сурьма	7203-95-7204-95	0086:1999	Ионов сурьмы (III)
Таллий	Таллий (I)	_	Стандарт-ионов
Фосфор	7018-93-7020-93	0026:1998	Фосфат-ион
Хром	8035-94-8037-94	0011:1998	Ионов хрома (VI)
Цинк	8053-94-8055-94	0008:1998	Ионов цинка

Таблица В.2

Наименование элемента	Обозначение ГСО	Наименование ГСО в твердой матрице
Железо	786-02-788-02	Массовой доли железа БИАС ЖЛ
Кадмий	777-02-776-02	Массовой доли кадмия БИАС КД
Медь	783-02-785-02	Массовой доли меди БИАС МД
Мышьяк	792-02-794-02	Массовой доли мышьяка БИАС МШ
Никель	798-02-800-02	Массовой доли никеля БИАС НК
Олово	789-02-791-02	Массовой доли олова БИАС ОЛ
Ртуть	795-02-797-02	Массовой доли ртути БИАС PT
Свинец	774-02-776-02	Массовой доли свинца БИАС СВ
Хром	801-02-803-02	Массовой доли хрома БИАС ХР
Цинк	780-02-782-02	Массовой доли цинка БИАС ЦН
Алюминий, бор, кальций, кадмий, кобальт, хром, медь, железо, магний, марганец, молибден, натрий, никель, свинец, кремний, таллий		Состава графита СОГ-21
Алюминий, бериллий, бор, кадмий, кальций, кобальт, медь, железо, кремний, магний, марганец, молибден, мышьяк, натрий, никель, олово, ртуть, свинец, селен, серебро, таллий, фосфор, хром		Графитового коллектора микро- примесей СОГ-24

Приложение Г (обязательное)

Алгоритмы проведения внутреннего оперативного контроля качества результатов измерений

Г.1 Внутренний оперативный контроль (ВОК) качества результатов количественного химического анализа (КХА) организует и проводит руководитель лаборатории или назначенные им специалисты для обеспечения требуемой точности результатов в процессе текущих измерений. Контроль показателей качества измерений проводят с применением средств контроля, роль которых выполняют рабочие пробы с известной добавкой определяемого элемента.

Г.2 Алгоритм проведения оперативного контроля сходимости

Контроль сходимости проводят сравнением расхождения результатов параллельных измерений с нормативом сходимости.

Сходимость результатов параллельных измерений признают удовлетворительной при доверительной вероятности P = 0.95, если выполняется соотношение

$$C_{\text{MAKC}} - C_{\text{MUH}} \le d,$$
 (Г.1)

где $C_{\text{макс}}$ – максимальный результат из n параллельных измерений;

 $C_{\text{мин}}$ – минимальный результат из n параллельных измерений;

d – норматив сходимости, вычисляемый по формуле

$$d = Q(P, n)0.2\overline{C}, \qquad (\Gamma.2)$$

где Q(P, 2) = 2.77 при n = 2, P = 0.95;

Q(P, 3) = 3,31 при n = 3, P = 0,95;

Q(P, 4) = 3,63 при n = 4, P = 0,95;

Q(P, 5) = 3,86 при n = 5, P = 0,95;

0,2С – показатель сходимости (характеристика составляющей случайной составляющей погреш-ности);

С – среднеарифметическое значение результатов п параплельных измерений.

Г.3 Алгоритм проведения оперативного контроля воспроизводимости

ВОК воспроизводимости проводят с использованием рабочей пробы, которую делят на две части и выдают двум аналитикам или одному и тому же аналитику, но через определенный промежуток времени.

Контроль воспроизводимости проводят сравнением разности двух результатов \overline{C}_1 и \overline{C}_2 определения массовой доли компонентов в одной и той же пробе. Воспроизводимость признают удовлетворительной при доверительной вероятности P=0.95, если выполняется соотношение

$$\left|\overline{C}_{1}-\overline{C}_{2}\right|\leq D$$
, (Γ.3)

где D - рассчитывают по формуле

$$D = Q(P, 2)0,1C_{cp},$$
 ($\Gamma.4$)

где Q(P, 2) = 2.77:

0,1 – показатель воспроизводимости (характеристика случайной составляющей погрешности измерения);

 C_{co} – среднее значение результатов \overline{C}_1 и \overline{C}_2 .

Г.4 Алгоритм проведения оперативного контроля точности

ВОК точности проводят путем сравнения результатов определения массовой доли элементов в пробе с известной добавкой $C_{\rm D}$, в пробе без добавки $C_{\rm O}$ и в добавке $C_{\rm C}$.

Добавку вносят в виде раствора ГСО, указанного в приложении В, с известной концентрацией элемента к навеске анализируемой пробы из числа проанализированных ранее в таком количестве, чтобы содержание добавляемого элемента составляло 50 % – 150 % среднего содержания измеряемого элемента в рабочей пробе. Добавку в пробу вносят до проведения подготовки пробы к анализу в соответствии с настоящим стандартом.

Точность признают удовлетворительной, если выполняется соотношение

$$\left| \overline{C}_{\mathcal{A}} - \overline{C}_{\mathcal{O}} - C \right| \leq K_{\mathcal{A}}, \tag{\Gamma.5}$$

$$K_{\text{II}} = 0.84\Delta_{\text{II}},$$
 (Γ.6)

где $\Delta_{\text{Д}}$ – характеристика погрешности, рассчитанная по формуле

$$\Delta_{\Pi} = 0.3\sqrt{\overline{C_{\Pi}}^2 + \overline{C_{O}}^2}$$
 (Γ.7)

Для внешнего оперативного контроля при доверительной вероятности P = 0.95

$$K_{\Omega} = \Delta_{\Omega}.$$
 (Γ.8)

Г.5 Если значение какого-либо из показателей качества измерений превышает норматив, то эксперимент повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Приложение Д (рекомендуемое)

Массовые доли элементов в градуировочных смесях

Таблица Д.1

Наименование элемента		Массов	зая доля элем	ентов в градуі	ировочных см	есях, %	
			Смесь ма	арки As			
	As1	As2	As3	As4	As5	As6	As7
Мышьяк	0,0000624	0,0001376	0,000275	0,000550	0,001201	0,002403	0,0048
			Смесь ма	рки Hg			
	Hg1	Hg2	Hg3	Hg4	Hg5	Hg6	
Ртуть	0,000025	0,000050	0,0001	0,0002	0,0004	0,0008	
			Смесь ма	рки КМ			
	KM1	KM2	KM3	KM4	KM5	KM6	
Калий	0,0219	0,0437	0,0875	0,1749	0,3498	0,6996	
Кальций	0,0094	0,0188	0,0375	0,0750	0,1501	0,3002	
Магний	0,0117	0,0235	0,0469	0,0939	0,1877	0,3754	
Натрий	0,0031	0,0063	0,0125	0,0251	0,0502	0,1003	
Фосфор	0,0173	0,0346	0,0693	0,1385	0,2771	0,5541	
			Смесь м	арки V			
	V1	V2	V3	V4	V5		
Алюминий	0,00200	0,00600	0,01800	0,05400	0,16200		
Железо	0,00400	0,01201	0,03604	0,10812	0,32435		
Кадмий	0,00002	0,00006	0,00018	0,00054	0,00162		
Кобальт	0,00010	0,00030	0,00090	0,00271	0,00808		
Марганец	0,00100	0,00300	0,00900	0,02700	0,08110		
Медь	0,00100	0,00300	0,00900	0,02700	0,08100		
Молибден	0,00010	0,00030	0,00090	0,00271	0,00811		
Никель	0,00010	0,00030	0,00090	0,00271	0,00812		
Олово	0,00401	0,01203	0,03608	0,10823	0,32470		
Свинец	0,00010	0,00030	0,00090	0,00271	0,00810		
Сурьма	0,00010	0,00030	0,00090	0,00271	0,00808		
Хром	0,00010	0,00030	0,00090	0,00271	0,00810		
Цинк	0,00401	0,01203	0,03608	0,10823	0,32469		

Библиография

[1] ТУ РБ 14729236.001-97	Приборы атомно-эмиссионные многоканальные специализированные АЭМС
[2] TY 6 4- 1. 2 850-80	Баня водяная лабораторная с электрическим подогревом
[3] TY 6-09-1678-86	Фильтры бумажные обеззоленные
[4] TY 64-1.973-76	Щипцы тигельные ЩТ
[5] ТУ 303-96 ИЛЕА 757351.048 ТУ	Электроды графитовые спектральные
[6] TY 3497-001-51046676-2001	Графитовые электроды для эмиссионного спектрального анализа
[7] ТУ РБ 100016048.003-2002	Электроды графитовые марок Э-01, Э-02, Э-02.1, Э-03
[8] TY P5 100016048.005-2002	Смеси реактивов ГС
[9] ТУ РБ 100016048.006-2002	Смеси реактивов БФ
[10] TY 6-09-4263-76	Хлороформ
[11] МИ 2335-95	Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа

УДК 29.31.26; 65.01.81

MKC 65.120

C14

Ключевые слова: атомно-эмиссионная спектрометрия, показатели безопасности, экспресс-контроль, определение содержания, массовая доля элемента, токсичные элементы, минерализация

Ответственный за выпуск <i>И.А.Воробей</i>
Сдано в набор 13.01.2004. Подписано в печать 09.02.2004. Формат бумаги 60 х 84/8. Гарнитура Ариал. Печать ризографическая. Усл. печ. л. 3,14. Уч изд. л. 1,51. Тираж экз. Заказ
Издатель и полиграфическое исполнение НП РУП «Белорусский государственный институт стандартизации и сертификации (БелГИСС)» Лицензия ЛВ № 231 от 04.03.2003. Лицензия ЛП № 408 от 25.07.2000 220113, г. Минск, ул. Мележа, 3.