Автотранспортные средства СИСТЕМЫ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ

Методы оценки эффективности и безопасности

Аўтатранспартныя сродкі СІСТЭМЫ АЦЯПЛЕННЯ, ВЕНТЫЛЯЦЫІ І КАНДЫЦЫЯНІРАВАННЯ

Метады ацэнкі эфектыўнасці і бяспекі

(FOCT P 50866-96, IDT)

Издание официальное

53 2-2003

СТБ ГОСТ Р 50866-2003

УДК 629.113.06(083.74)

MKC 43.020, 43.080, 43.100

(КГС Д21, Д22, Д23)

IDT

Ключевые слова: методы испытаний, системы отопления, вентиляции, кондиционирования, параметры микроклимата, режимы движения, температура воздуха, скорость воздушного потока, относительная влажность

ОКП 45 1000 ОКП РБ 34.10

Предисловие

1 ПОДГОТОВЛЕН производственным республиканским унитарным предприятием «Минский завод колесных тягачей (УП M3KT)»

ВНЕСЕН Министерством промышленности Республики Беларусь

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 12 июня 2003 г. № 30
- 3 Настоящий стандарт идентичен государственному стандарту Российской Федерации ГОСТ Р 50866-96 «Автотранспортные средства. Системы отопления, вентиляции и кондиционирования. Методы оценки эффективности и безопасности»

Государственный стандарт Российской Федерации разработан Техническим комитетом по стандартизации ТК 315 «Эксплуатация автотранспортных средств», Государственным научно-исследовательским институтом автомобильного транспорта (НИИАТ) Министерства транспорта Российской Федерации, Государственным научным центром Российской Федерации, Центральным научно-исследовательским автомобильным и автомоторным институтом (ГНЦ НАМИ) Главного управления по развитию автомобильной промышленности Комитета по машиностроению Российской Федерации и Научно-исследовательским центром по испытаниям и доводке автомототехники (НИЦИАМТ)

Официальные экземпляры стандарта Российской Федерации, на основе которого подготовлен настоящий государственный стандарт, и стандартов, на которые даны ссылки, имеются в БелГИСС

Сведения о соответствии стандартов, на которые даны ссылки, государственным стандартам, принятым в качестве идентичных и модифицированных государственных стандартов, приведены в дополнительном приложении Ж

Степень соответствия – идентичная (IDT)

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть тиражирован и распространен без разрешения Госстандарта Республики Беларусь

Содержание

Введение	. IV
1 Область применения	. 1
2 Нормативные ссылки	. 1
3 Оценочные параметры	. 1
4 Измеряемые показатели	. 2
5 Метрологическое обеспечение испытаний	. 2
6 Требования к технике безопасности	. 2
7 Требования к квалификации оператора	. 2
8 Условия проведения испытаний	. 3
9 Методы определения параметров	. 4
10 Обработка и оформление результатов	. 6
Приложение А Перечень веществ, запрещенных и разрешенных к использованию в качестве хладагентов в АТС, в соответствии с «Монреальским протоколом по веществам, разрушающим озоновый слой» от 16.09.1987 г	. 7
Приложение Б Места измерения температуры воздуха при испытании системы отопления (вентиляции, кондиционирования)	. 9
Приложение В Метод определения объема наружного воздуха, поступающего в кабину и пассажирский салон АТС, при испытании систем вентиляции и отопления	.12
Приложение Г Форма протокола результатов <mark>измерения температур воздуха при</mark> испытаниях систем отопления (вентиляции, кондиционирования)	.15
Приложение Д Форма протокола результатов измерения скорости воздушных потоков при испытаниях систем вентиляции (кондиционирования)	.16
Приложение Е Форма протокола результатов измерения относительной влажности при испытаниях систем кондиционирования	.17
Приложение Ж Сведения о соответствии стандартов, на которые даны ссылки, государственным стандартам, принятым в качестве идентичных и модифицированных государственных стандартов	.18
Приложение К Библиография	.19

СТБ ГОСТ Р 50866-2003

Введение

Введение в Республике Беларусь ГОСТ Р 50866 в качестве государственного стандарта обусловлено необходимостью гармонизации номенклатуры параметров эффективности и безопасности при работе систем отопления, вентиляции, кондиционирования и методов их определения.

Приведенная в стандарте классификация дорожного транспорта соответствует СТБ 1277-2001.

Все применяемые химические вещества в системах отопления, вентиляции и кондиционирования должны соответствовать требованиям санитарных норм и правил Республики Беларусь.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

Автотранспортные средства СИСТЕМЫ ОТОПЛЕНИЯ, ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ Методы оценки эффективности и безопасности

Аўтатранспартныя сродкі СІСТЭМЫ АЦЯПЛЕННЯ, ВЕНТЫЛЯЦЫІ І КАНДЫЦЫЯНІРАВАННЯ Метады ацэнкі эфектыўнасці і бяспекі

Motor vehieles HEATING, VENTILATION AND AIR-CONDITIONING SYSTEMS Methods for determination of efficiency and safety

Дата введения 2004-01-01

1 Область применения

Настоящий стандарт распространяется на автотранспортные средства (ATC), предназначенные для перевозки пассажиров и грузов по дорогам общей транспортной сети Республики Беларусь и Российской Федерации, и устанавливает номенклатуру параметров эффективности и безопасности при работе систем отопления, вентиляции и кондиционирования и методы их определения.

Требования настоящего стандарта являются обязательными и направлены на обеспечение безопасности жизни и здоровья населения.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 22895-77 Тормозные системы и тормозные свойства автотранспортных средств. Нормативы эффективности. Общие технические требования

ГОСТ 27815-88 (Правила ЕЭК ООН № 36) Автобусы. Общие требования к безопасности констукции

ГОСТ 28261-89 (ИСО 4130-78, ИСО 6549-80) Автотранспортные средства. Порядок определения положения точки Н и фактического угла наклона спинки сиденья посадочных мест водителя и пассажиров

ГОСТ Р 51266-99 Автомобильные транспортные средства. Обзорность с места водителя. Технические требования. Методы испытаний

3 Оценочные параметры

Устанавливаются следующие оценочные параметры.

- 3.1 Температура воздуха внутри АТС на:
- рабочем месте водителя;
- пассажирских местах в легковых и грузовых автомобилях;
- спальных местах, предназначенных для отдыха водителей.
- 3.2 Средняя температура воздуха в пассажирском салоне автобуса.
- 3.3 Температура поверхностей ограждений.
- 3.4 Температура воздуха на выходе из каналов систем отопления и кондиционирования.
- 3.5 Объем наружного воздуха, подаваемого в кабину и пассажирский салон.
- **3.6** Время достижения температур воздуха внутри ATC, оговоренных в соответствующих нормативных документах.
 - 3.7 Неравномерность распределения температур воздуха на рабочем месте водителя.

CTE FOCT P 50866-2003

- 3.8 Перепад между температурой воздуха внутри АТС и температурой наружного воздуха на:
- рабочем месте водителя;
- пассажирских местах в легковых и грузовых автомобилях;
- спальных местах, предназначенных для отдыха водителей.
- **3.9** Перепад между средней температурой воздуха в пассажирском салоне автобуса и температурой наружного воздуха.
- **3.10** Время достижения необходимой температуры воздуха внутри АТС вне зависимости от температуры наружного воздуха.
 - 3.11 Скорость воздушных потоков (подвижность воздуха) внутри АТС на:
 - рабочем месте водителя;
 - пассажирских местах;
 - спальных местах, предназначенных для отдыха водителей.
 - 3.12 Относительная влажность воздуха внутри АТС (для систем кондиционирования):
 - на рабочем месте водителя;
 - в пассажирском салоне автобусов.

4 Измеряемые показатели

В процессе испытаний измеряют следующие показатели:

- температуру воздуха снаружи и внутри АТС;
- температуру внутренних поверхностей ограждений;
- скорость воздушных потоков снаружи и внутри АТС;
- относительную влажность воздуха снаружи и внутри АТС;
- объем наружного воздуха, подаваемого в кабину и пассажирский салон;
- скорость движения АТС;
- время проведения испытаний.

5 Метрологическое обеспечение испытаний

5.1 Применяемая измерительная аппаратура должна быть технически исправна и поверена в установленные для нее сроки.

5.2 Допускаемая погрешность измерения должна быть:

– температуры	+ 0.5 K (+ 0.5 °C)
– времени	
– скорости воздушных потоков (v)до 0,5 м/с	± 0.05 m/c ± 5 %:
	± 0,1 м/с;
– относительной влажности	± 5 [°] %;
– расположения точек измерения	± 5 мм.

6 Требования к технике безопасности

- **6.1** При проведении дорожных испытаний должны выполняться требования [1] и инструкций по технике безопасности и безопасности движения при проведении испытаний.
- **6.2** При проведении испытаний в аэроклиматической камере должны выполняться требования инструкций по технике безопасности при работе в производственных помещениях и правил по охране труда на автомобильном транспорте.

7 Требования к квалификации оператора

К проведению измерений допускаются операторы, изучившие настоящие методы и имеющие практические навыки работы с применяемой аппаратурой.

Стаж работы оператора должен быть не менее одного года.

8 Условия проведения испытаний

8.1 Состояние АТС

- 8.1.1 Пробег перед проведением испытаний должен составлять не менее 5000 км.
- 8.1.2 АТС должны находиться в технически исправном состоянии.

Регулировки систем, агрегатов и механизмов должны соответствовать указаниям в руководстве по эксплуатации изготовителя.

Применяемые топлива, смазочные материалы и рабочие жидкости должны применяться в соответствии с предписаниями изготовителя АТС.

- **8.1.3** Системы АТС, выделяющие тепло или холод, а также устройства тепловой защиты рабочего места водителя и пассажирского салона должны соответствовать требованиям нормативных документов изготовителя.
- **8.1.4** Применяемые хладагенты в системах кондиционирования АТС должны соответствовать положениям «Монреальского протокола по веществам, разрушающим озоновый слой» (приложение A).
- **8.1.5** Системы воздухораспределения должны обеспечивать устранение запотевания или обмерзания ветровых и боковых окон кабины водителя в зонах обзорности (по ГОСТ Р 51266).
 - 8.1.6 Испытания систем отопления
- **8.1.6.1** Перед началом движения АТС выдерживается на открытом воздухе не менее 60 мин с открытыми дверями, окнами и вентиляционными люками.
- **8.1.6.2** Во время движения отопительные устройства должны быть установлены на наиболее эффективное действие.

В случае превышения нормативных параметров подвижности воздуха внутри АТС отопительные устройства должны быть отрегулированы на частичную производительность.

- 8.1.7 Испытания систем вентиляции и кондиционирования
- **8.1.7.1** Перед началом движения АТС выдерживается на стоянке не менее 60 мин с закрытыми дверями, окнами и вентиляционными люками.
- **8.1.7.2** При наличии в АТС оборудования для кондиционирования с приводом от двигателя АТС система кондиционирования должна быть перед началом испытаний отключена.
- **8.1.7.3** В случае применения системы кондиционирования с приводом от отдельного двигателя указанный двигатель должен быть прогрет до оптимальных температур, указанных в нормативных документах изготовителя, а система кондиционирования должна быть отключена.
- **8.1.7.4** При испытании системы естественной вентиляции все вентиляционные проемы открыты, двери закрыты.
- **8.1.7.5** При испытании принудительной системы вентиляции вентиляционные устройства включены на максимальную производительность. Заборники наружного воздуха естественной системы вентиляции и двери закрыты.
- **8.1.7.6** При испытании комбинированной системы вентиляции (естественная и принудительная) все вентиляционные проемы открыты, вентиляционные устройства включены на максимальную производительность, двери закрыты.
- **8.1.7.7** В случае превышения нормативных параметров подвижности воздуха внутри АТС вентиляционные устройства систем вентиляции и кондиционирования должны быть отрегулированы на частичную производительность.

8.2 Место проведения испытаний

8.2.1 Дороги общего пользования

Дорога должна быть сухая, с твердым покрытием. Радиусы поворотов и продольные уклоны дорог не должны оказывать влияние на заданные режимы движения.

При испытании систем отопления допускается наличие на поверхности дороги укатанного снега.

8.2.2 Аэроклиматические камеры

При проведении испытаний в аэроклиматической камере имитируется движение по горизонтальному участку дороги с асфальтобетонным покрытием.

8.3 Нагрузка

- 8.3.1 На дорогах общего пользования АТС испытывается при оценке систем:
- отопления с частичной нагрузкой (водитель, оператор и измерительная аппаратура);
- вентиляции и кондиционирования с полной нагрузкой.

CTE FOCT P 50866-2003

- 8.3.2 Нагрузка осуществляется балластом, не влияющим на параметры тепловой инерции АТС.
- **8.3.3** При проведении испытаний в аэроклиматической камере на стенде с беговыми барабанами ведущие колеса АТС нагружаются на нагрузку, указанную в 8.3.1.
- **8.3.4** При испытании имитируется выделение влаги в соответствии с числом перевозимых пассажиров для систем:
 - отопления 50 г/пасс.
 - вентиляции и кондиционирования 100 г/пасс.

8.4 Атмосферные условия

8.4.1 Испытания систем отопления

Дорожные испытания должны проводиться при температуре наружного воздуха для АТС исполнения:

- «У» по ГОСТ 15150 (248 \pm 2) К [минус (25 \pm 2) °C] и (233 \pm 2) К [минус (40 \pm 2) °C];
- «ХЛ» по ГОСТ 15150 (223 \pm 5) К [минус (50 \pm 5) °C].

Скорость ветра должна быть не более 3 м/с.

При этом должно отсутствовать дополнительное (из-за нагрева солнечными лучами) повышение температуры воздуха внутри АТС.

8.4.2 Испытания систем вентиляции и кондиционирования

Испытания должны проводиться при температуре наружного воздуха для АТС исполнения:

- «У» и «ХЛ» (303 \pm 2) К [(30 \pm 2) °C] и (313 \pm 2) К [(40 \pm 2) °C];
- «Т» по ГОСТ $15150 (303 \pm 2)$ К $[(30 \pm 2)$ °C] и (323 ± 5) К $[(50 \pm 5)$ °C].

Испытания проводятся в период максимальных температур и солнечной радиации с 12 до 16 ч местного времени при отсутствии облачности и осадков.

Скорость ветра должна быть не более 3 м/с.

8.4.3 При испытаниях в аэроклиматической камере имитируются атмосферные условия, указанные в 8.4.1 и 8.4.2.

8.5 Места определения измеряемых показателей

8.5.1 Температура воздуха

Температура воздуха внутри АТС определяется в зонах, указанных в приложении Б.

8.5.2 Скорость воздушных потоков внутри АТС

Скорость воздушных потоков определяется на:

- рабочем месте водителя на высоте 500 мм от точки H^* (по ГОСТ 28261);
- местах размещения пассажиров на высоте 500 мм от точки H*;
- спальных местах, предназначенных для отдыха водителей, на высоте 100 мм от поверхности спального места.
 - 8.5.3 Относительная влажность воздуха внутри АТС измеряется:
 - на рабочем месте водителя;
 - в пассажирском салоне автобуса.
 - 8.5.4 Температура внутренних поверхностей ограждений измеряется на:
- внутренних поверхностях ATC на рабочем месте водителя и на местах размещения пассажиров на высоте 250 мм от точки *H*;
- местах расположения элементов систем отопления, вентиляции и кондиционирования, контактирующих с водителем и пассажирами.
- **8.5.5** Объем наружного воздуха, подаваемого в кабину и пассажирский салон при работе системы принудительной вентиляции или системы отопления, измеряется в соответствии с приложением В.
- **8.5.6** Первичные преобразователи температуры, скорости воздушных потоков и относительной влажности должны быть защищены от теплового излучения и механического воздействия.

9 Методы определения параметров

9.1 Перед началом испытаний проверяется соответствие состояния АТС согласно 8.1.1 – 8.1.3.

^{*} Одновременно проводится контрольное измерение на высоте 150 мм от точки H на рабочем месте водителя и местах размещения пассажиров.

9.2 Режимы движения

- 9.2.1 Движение с постоянными скоростями (имитация магистрального режима движения)
- **9.2.1.1** Для АТС, имеющих максимальную скорость 16,6-19,4 м/с (60-70 км/ч), скорость движения должна составлять $(11,1\pm0,5)$ м/с (40 ± 2) км/ч.
- **9.2.1.2** Для ATC, имеющих максимальную скорость 22,2-25 м/с (80-90 км/ч), скорость движения должна составлять $(16,6\pm0,5)$ м/с (60 ± 2) км/ч.
- **9.2.1.3** Для АТС, имеющих максимальную скорость свыше 27,7 м/с (100 км/ч), скорость движения должна составлять (22,2 \pm 1) м/с (80 \pm 5) км/ч.
 - 9.2.2 Движение с переменными скоростями (имитация городского режима движения)
- **9.2.2.1** Испытания автобусов (класс 1 ГОСТ 27815 для городских перевозок) осуществляются при движении с периодическими (через 500 м) остановками. Время открывания дверей на остановке составляет 10 с.

Средняя скорость движения должна быть (7 ± 0.5) м/с (25 ± 2) км/ч.

9.2.2.2 Испытания автобусов (класс 1 ГОСТ 27815 – для пригородных перевозок) осуществляются при движении с периодическими (через 1 км) остановками. Время открывания дверей на остановке составляет 10 с.

Средняя скорость движения должна быть $(11,11 \pm 0,5)$ м/с (40 ± 2) км/ч.

9.2.2.3 Испытания АТС других типов осуществляются при движении с периодическими (через 1 км) остановками продолжительностью 10 с без открывания дверей.

Режим движения:

- разгон с переключением передач до (16.6 ± 0.5) м/с (60 ± 2) км/ч. При наличии автоматической коробки передач движение производится в положении «Автоматическое переключение»;
 - движение с постоянной скоростью;
- торможение двигателем со скорости (16,6 \pm 0,5) м/с (60 \pm 2) км/ч до скорости (11,1 \pm 0,5) м/с (40 \pm 2) км/ч;
- служебное торможение до полной остановки. Средняя скорость движения АТС должна быть $(11,1\pm0,5)$ м/с (40 ± 2) км/ч.
- **9.2.3** Испытания по оценке параметров микроклимата на спальном месте водителя осуществляются для ATC:
- оборудованных системами отопления, вентиляции и кондиционирования, зависящими от работы двигателя, при движении в соответствии с требованиями 9.2.1;
 - имеющих системы, работа которых не зависит от двигателя, на стоянке.
- **9.2.4** Скорость воздушного потока (имитация движения ATC) в аэроклиматической камере должна регулироваться в соответствии с режимами движения, указанными в 9.2.2.

При имитации остановки АТС вентиляторы, создающие воздушный поток, выключаются.

Скорость воздушного потока при движении АТС может быть постоянной и равной средней скорости прохождения участков между остановками.

9.3 Проведение испытаний

- **9.3.1** Измерения температуры воздуха внутри АТС проводятся непосредственно перед началом движения. Во время движения рекомендуется проводить измерение температур через каждые 5 мин.
- 9.3.2 Испытания прекращаются при достижении установившихся температур воздуха внутри АТС, т. е. когда температура во всех зонах окажется по результатам 3 последних измерений практически постоянной, т. е. отклонения не будут превышать 1 К (1 °C), с одновременной фиксацией температур при достижении контрольного времени.
- 9.3.3 Скорость воздушных потоков внутри АТС измеряется в течение цикла испытаний не менее 3 раз.
- **9.3.4** Относительная влажность воздуха внутри ATC (при испытании систем кондиционирования) измеряется в конце испытаний при достижении установившихся температур воздуха.
- 9.3.5 Измерение температуры воздуха на выходе из каналов отопления и кондиционирования осуществляется в процессе испытаний не менее 3 раз.
 - 9.3.6 Измерение температуры ограждающих поверхностей осуществляется в конце испытаний.
- **9.3.7** Измерение параметров наружного воздуха (температуры, скорости и относительной влажности) осуществляется на высоте (1500 ± 50) мм от поверхности дороги вдали от окружающих объектов, в начале и в конце испытаний.

10 Обработка и оформление результатов

- **10.1** Все результаты испытаний и данные метеорологических измерений вносят в таблицы, приведенные в приложениях Г, Д, Е.
 - 10.2 Определение параметров микроклимата АТС
 - **10.2.1** Средняя температура воздуха T_{cp} , К (°C), в пассажирском салоне автобуса

$$T_{cp} = \frac{\sum\limits_{i=1}^{n} T_k}{N_0}, \tag{1}$$

- где T_k температура воздуха в конкретной зоне измерения (на высоте 100 мм от пола зона ног или на высоте 500 мм от точки H зона головы) в пассажирском салоне автобуса в конце испытаний, К (°C);
 - N_0 общее количество мест измерения температуры.
- **10.2.2** Неравномерность распределения температур воздуха $R_{p.м.в}$, К (°C), на рабочем месте водителя

$$R_{p.m.s} = T_{H.s.} - T_{z.s.}, \tag{2}$$

- где $T_{H.6.}$ температура воздуха на высоте 100 мм от пола (зона ног) в конце испытаний, К (°C); $T_{a.e.}$ температура воздуха на высоте 500 мм от точки H (зона головы) в конце испытаний, К (°C).
- **10.2.3** Перепад между температурой воздуха на рабочем месте водителя или на пассажирских местах легковых и грузовых автомобилей и температурой наружного воздуха
 - 10.2.3.1 Для систем вентиляции

$$\Delta T_{\rm geH} = T_{\rm geH} - T_{\rm Hap} \,, \tag{3}$$

- где $\Delta T_{\it вен}$ перепад между температурой воздуха внутри ATC и температурой наружного воздуха при испытании систем вентиляции, К (°C);
 - $T_{\text{вен}}$ температура воздуха внутри ATC (зона головы водителя или пассажиров) в конце испытаний системы вентиляции, К (°C);
 - $T_{\text{нар}}$ температура наружного воздуха в конце испытаний, К (°С).
- 10.2.3.2 Для систем кондиционирования

$$\Delta T_{\kappa O H \partial} = T_{H A D} - T_{\kappa O H \partial} , \qquad (4)$$

- где $\Delta T_{\kappa o H \partial}$ перепад между температурой наружного воздуха и температурой воздуха внутри АТС при испытании систем кондиционирования, К (°C);
 - $T_{\kappa o H \partial}$ температура воздуха внутри АТС (зона головы водителям или пассажиров) в конце испытаний системы кондиционирования, К (°C).
- **10.2.4** Перепад между средней температурой воздуха в пассажирском салоне автобуса и температурой наружного воздуха при испытании систем вентиляции и кондиционирования
 - 10.2.4.1 Для систем вентиляции

$$\Delta T_{cp.8\theta H} = T_{cp.8\theta H} - T_{Hap}, \tag{5}$$

- где $\Delta T_{cp.seh}$ перепад между средней температурой воздуха в пассажирском салоне автобуса и температурой наружного воздуха, К (°C);
 - Т_{ср.вен} средняя температура воздуха в пассажирском салоне автобуса (зона головы пассажиров) в конце испытаний системы вентиляции, К (°C).
- 10.2.4.2 Для систем кондиционирования

$$\Delta T_{cp,KOH\partial} = T_{Hap} - T_{cp,KOH\partial}, \tag{6}$$

- где $\Delta T_{cp,\kappa o h \partial}$ перепад между температурой наружного воздуха и средней температурой воздуха в пассажирском салоне автобуса, К (°C);
 - $T_{cp. \kappa o H \partial}$ средняя температура воздуха в пассажирском салоне автобуса (зона головы пассажиров) в конце испытаний системы кондиционирования, К (°C).

Приложение А (справочное)

Перечень веществ, запрещенных и разрешенных к использованию в качестве хладагентов в АТС, в соответствии с «Монреальским протоколом по веществам, разрушающим озоновый слой» от 16.09.1987 г.

(Приложения A и B «Монреальского протокола по веществам, разрушающим озоновый слой». Применение данных веществ запрещено с 01.01.1996 г.)

Группа 1	Вещество	Озоноразрушающая способность
CFCI ₃	(ХФУ-11)	1,0
CF ₂ CI ₃	(ХФУ-12)	1,0
$C_2F_3CI_3$	(ХФУ-113)	0,8
$C_2F_4CI_2$	(ХФУ-114)	1,0
C ₂ F ₅ CI	(ХФУ-115)	0,6
CF₃CI	(ХФУ-13)	1,0
C ₂ FCI ₅	(ХФУ-111)	1,0
$C_2F_2CI_4$	(ХФУ-112)	1,0
C ₃ FCl ₇	(ХФУ-211)	1,0
$C_3F_2CI_6$	(ХФУ-212)	1,0
C ₃ F ₃ Cl ₅	(ХФУ-213)	1,0
$C_3F_4CI_4$	(ХФУ-214)	1,0
$C_3F_5CI_3$	(ХФУ-215)	1,0
C ₃ F ₆ Cl ₂	(ХФУ-216)	1,0
C ₃ F ₇ CI	(ХФУ-217)	1,0

(Приложение С «Монреальского протокола по веществам, разрушающим озоновый слой» Применение данных веществ разрешено до 01.01.2030 г.)

Группа 1	Вещество	Группа 1	Вещество
CHFCI ₂	(ГХФУ-21)	C ₃ HF ₅ Cl ₂	(ГХФУ-225)
CHF₂CI	(ГХФУ-22)	C₃HF ₆ CI	(ГХФУ-226)
CH ₂ FCI	(ГХФУ-31)	C ₃ H ₂ FCI ₅	(ГХФУ-231)
C ₂ HFCI ₄	(ГХФУ-121)	$C_3H_2F_2CI_4$	(ГХФУ-232)
$C_2HF_2CI_3$	(ГХФУ-122)	$C_3H_2F_3CI_3$	(ГХФУ-233)
$C_2HF_3CI_2$	(ГХФУ-123)	$C_3H_2F_4CI_2$	(ГХФУ-234)
C ₂ HF ₄ CI	(ГХФУ-124)	C ₃ H ₂ F ₅ CI	(ГХФУ-235)
$C_2H_2FCI_3$	(ГХФУ-131)	C ₃ H ₃ FCI ₄	(ГХФУ-241)
$C_2H_2F_2CI_2$	(ГХФУ-132)	$C_3H_3F_2CI_3$	(ГХФУ-242)
$C_2H_2F_3CI$	(ГХФУ-133)	$C_3H_3F_3CI_2$	(ГХФУ-243)
$C_2H_3FCI_2$	(ГХФУ-141)	C ₃ H ₃ F ₄ CI	(ГХФУ-244)
$C_2H_3F_2CI$	(ГХФУ-142)	C ₃ H ₄ FCI ₃	(ГХФУ-251)
C ₂ H ₄ FCI	(ГХФУ-151)	$C_3H_4F_2CI_2$	(ГХФУ-252)
C₃HFCI ₆	(ГХФУ-221)	C ₃ H ₄ F ₃ CI	(ГХФУ-253)
C ₃ HF ₂ Cl ₅	(ГХФУ-222)	$C_3H_5FCI_2$	(ГХФУ-261)
C ₃ HF ₃ CI ₄	(ГХФУ-223)	$C_3H_5F_2CI$	(ГХФУ-262)
C ₃ HF ₄ CI ₃	(ГХФУ-224)	C₃H ₆ FCI	(ГХФУ-271)

CTE FOCT P 50866-2003

Предусматривается потребление веществ, указанных в «Монреальском протоколе по веществам, разрушающим озоновый слой» (приложение С), в процентах расчетного уровня 1989 г., не более:

65-c 01.01.2004 до 01.01.2010; 35-c 01.01.2010 до 01.01.2015; 10-c 01.01.2015 до 01.01.2020; 0,5-c 01.01.2020 до 01.01.2030.

Приложение Б (обязательное)

Места измерения температуры воздуха при испытании системы отопления (вентиляции, кондиционирования)

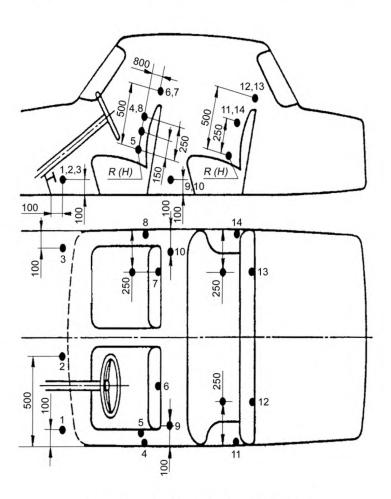


Рисунок Б.1 – АТС категории М1 (по ГОСТ 22895)

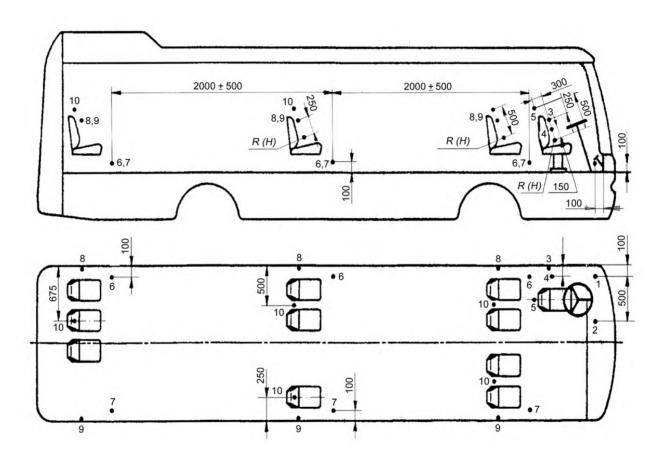


Рисунок Б.2 – АТС категорий М2 и М3 (по ГОСТ 22895)

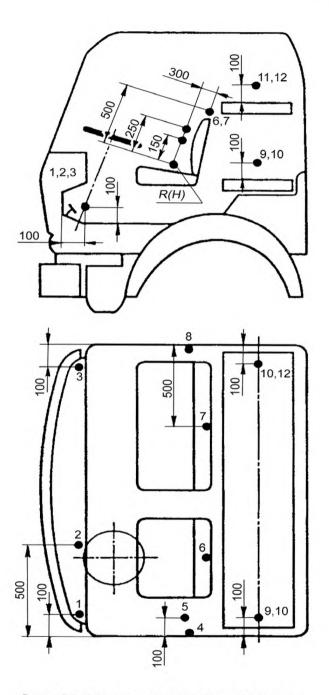


Рисунок Б.3 – **ATC категорий N1, N2 и N3 (по ГОСТ 22895)**

Приложение В

(рекомендуемое)

Метод определения объема наружного воздуха, поступающего в кабину и пассажирский салон АТС, при испытании систем вентиляции и отопления

В.1 Объект испытаний

- В.1.1 Объектами испытаний являются АТС категорий М и N.
- **В.1.2** Кабина и пассажирский салон АТС не должны иметь повреждений, нарушающих их герметичность.
 - В.1.3 Уплотнители дверей, окон, форточек, люков должны быть исправны.

В.2 Условия испытаний

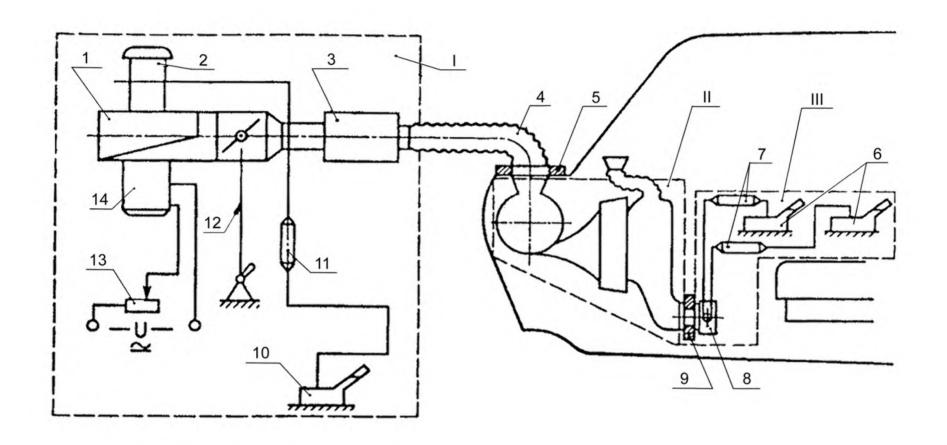
- В.2.1 Испытания проводят в два этапа:
- стендовые испытания для определения зависимости между параметрами воздушных потоков на входе в кабину или в пассажирский салон и на выходе из дефростеров внутри кабины или пассажирского салона;
- дорожные испытания (или имитация дорожных испытаний) для определения объема наружного воздуха, поступающего в кабину или пассажирский салон.
 - В.2.1.1 Стендовые испытания проводят в закрытом помещении.
- **В.2.1.2** Дорожные испытания (или имитация дорожных испытаний) проводят на типовых маршрутах испытаний или на стенде с беговыми барабанами.
- **В.2.2** Режим работы системы принудительной вентиляции (отопления), а также метеорологические условия и режимы работы АТС (при проведении дорожных испытаний) в соответствии с 8.4 и 9.2 настоящего стандарта.

В.2.3 Техническое обеспечение

Для проведения стендовых испытаний используется воздухонапорная установка (стенд), обеспечивающая возможность подачи в кабину или в пассажирский салон воздушного потока с заданным расходом и измерения расхода воздуха на выходе из одного из дефростеров системы принудительной вентиляции (отопления) внутри кабины или пассажирского салона.

В качестве измерительных элементов стенда рекомендуется применять:

- измерительный коллектор (коллектор ЦАГИ) для измерения расхода воздуха, нагнетаемого в кабину или в пассажирский салон;
- напорный расходомер для прямоугольных каналов для измерения расхода воздуха на выходе из дефростеров системы принудительной вентиляции (отопления) внутри кабины или пассажирского салона.


Для сопряжения элементов стенда с соответствующими элементами кабины или пассажирского салона применяются переходники, изготовленные из легкообрабатываемого материала (пенопласт, резина, плотный тканевый материал и т. п.).

Принципиальная схема стенда и рекомендуемые технические характеристики стенда приведены на рисунке В.1.

В.3 Порядок проведения испытаний

В.3.1 Стендовые испытания

- В.3.1.1 Установить АТС на площадку для проведения испытаний.
- **В.3.1.2** Присоединить рукав 4 стенда к воздухозаборнику отопителя снаружи кабины или пассажирского помещения при помощи переходника 5. Ответную часть III с измерительным элементом 8 и микроманометрами 6 и 10 при помощи переходника 9 присоединить к одному из открытых дефростеров в кабине или в пассажирском салоне.
- **В.3.1.3** Установить режим работы системы принудительной вентиляции (отопления) в соответствии с В.2.2. Закрыть двери, окна, форточки и люки кабины или пассажирского салона.
- **В.3.1.4** Включить стенд. Регулированием производительности вентиляторов стенда установить поочередно текущие значения расходов нагнетаемого воздуха в выбранном примерном диапазоне.

І – внешняя часть стенда; ІІ – штатная система отопления АТС; ІІІ – ответная часть стенда; 1 – центробежный вентилятор; 2 – измерительный коллектор (коллектор ЦАГИ) внешней части стенда; 3 – демпферная камера; 4 – гибкий рукав; 5 и 9 – переходники; 6 и 10 – микроманометры; 7 и 11 – гасители колебаний измерений; 8 – измерительный элемент ответной части стенда; 12 – привод управления расходом воздуха; 13 – реостат; 14 – электродвигатель

Примечание — Рекомендуемые параметры стенда: электродвигатель — мощность 0,8 — 1,0 кВт, напряжение 220 В (соответствующее бытовой сети); расход воздуха — 0 — 1000 м³/ч при динамическом давлении 320 Па; пульсация давления воздушного потока — не более 5 %.

СТБ ГОСТ Р 50866-2003

Примерный диапазон значений расхода рекомендуется принимать:

- 0 400 м³/ч для АТС категорий N без спального места в кабине и кабин АТС категории М2 и М3, изолированных от пассажирского салона:
 - $-0-600 \text{ м}^3$ /ч для кабин ATC категорий N, оборудованных спальным местом и ATC категорий M1;
- 0 1000 м³/ч для пассажирских салонов, оборудованных системой отопления с забором воздуха снаружи или системой принудительной вентиляции, АТС категорий М.

Текущие значения расходов воздуха L_i принимаются последовательно с шагом 0,1-0,2 от значения верхней границы примерного диапазона.

- **В.3.1.5** При каждом значении L_i определить расходы воздуха L_{ki} через измерительный элемент ответной части внутри кабины или пассажирского салона.
 - В.3.1.6 Испытания по В.3.1.3 В.3.1.5 проводятся не менее 3 раз.

В.3.2 Дорожные испытания

- **В.3.2.1** Установить ответную часть стенда в кабине или в пассажирском салоне АТС в соответствии с В.3.1.2.
 - В.3.2.2 Установить режим работы системы отопления в соответствии с В.3.1.3.
 - В.3.2.3 Установить режим движения АТС в соответствии с В.2.2.
- **В.3.2.4** Измерить параметры расхода воздуха $L_{\kappa\partial s}$ через измерительный элемент ответной части внутри кабины или пассажирского салона.
 - В.3.2.5 Испытания по В.3.2.2 В.3.2.4 проводят не менее 3 раз.

В.4 Обработка результатов испытаний

В.4.1 Обработка результатов стендовых испытаний

В.4.1.1 Определить средние значения L_{ki} по результатам n экспериментов для каждого из соответствующих значений L_i по формуле

$$L_{cp,ki} = \frac{\sum_{1}^{n} L_{ki}}{n},\tag{B.1}$$

где n – число выполненных экспериментов на стенде при заданном значении L_i .

В.4.1.2 Сопоставляя ранее принятые значения L_i (В.3.1.4) с вычисленными по формуле (В.1) соответствующими им значениями $L_{co,ki}$, построить график зависимости L_k от L.

В.4.2 Обработка результатов дорожных испытаний

Произвести расчет среднего значения расхода воздуха $L_{cp.\kappa\partial s}$ через измерительный элемент ответной части внутри кабины из m экспериментов по формуле

$$L_{cp,\kappa\partial e} = \frac{\sum_{i=1}^{m} L_{\kappa\partial e}}{m},\tag{B.2}$$

где т – число выполненных экспериментов в движении.

В.4.3 Определить объем наружного воздуха, поступающего в кабину или в пассажирский салон через систему принудительной вентиляции (отопления) при движении ATC.

За численное значение объема наружного воздуха, поступающего в кабину или пассажирский салон через систему принудительной вентиляции (отопления) в единицу времени (м 3 /ч) при заданном режиме испытаний (В.2.2), принимается значение L, определенное по графику $L-L_{cp.k}$ (В.4.1.2) при $L_k=L_{cp.k\partial s}$.

В.5 Оформление результатов испытаний

По результатам испытаний оформляется техническая справка.

Приложение Г

(рекомендуемое)

Форма протокола результатов измерения температуры воздуха при испытаниях систем отопления (вентиляции, кондиционирования)

ПРОТОКОЛ

результатов измерения температур воздуха при испытаниях систем отопления (вентиляции, кондиционирования)

_				/					
Дат а испытаний		_	A	ТС (тип, м	иодель,	год вы	пуска,	номер	шасси,
пробег)									
Место проведен	ия испытаний	<u> </u>							
		Температура воздуха, К (°C)							
Условия	Время		на рабочем месте водителя		в пассажирском салоне				
проведения испытаний	работы системы	Наружного	на на	на	на	номера датчиков		В	
испытании	CVICTCIVIBI	воздуха	уровне ног	1 4. 1 4.	1	2	3	n	
Тип системы, режи движения, скорость	•								
_									
Заключение:		тветствие сис	темы треб	ованиям но	рмативны	ых докум	лентов)		
Исполнители:									
	должнос	ТЬ	лич	ная подпис	ь	р	асшифр	овка по	дписи

Приложение Д

(рекомендуемое)

Форма протокола результатов измерения скорости воздушных потоков при испытаниях систем вентиляции (кондиционирования)

ПРОТОКОЛ

результатов измерения скорости воздушных потоков при испытаниях систем вентиляции (кондиционирования)

Дата испытаний _		A ⁻	ГС (тип, м	одель, год	д выпуска,	номер шасси,	
пробег)							
Место проведения	я испытаний <u> </u>						
Условия проведения	Место измерения	Номера	Подвижность воздуха, м/с				
испытаний		датчиков	1	2	3	Средняя	
Тип системы, режим движения, скорость ветра и т. д.	Рабочее место водителя	-					
	Пассажирский салон	1					
		2					
		3					
		n					
				l			
Заключение:							
	(соответствие с	истемы требовани	ям норматі	ивных доку	иментов)		
Исполнители:							
	должность		подпись		расшифро	вка подписи	

Приложение Е

(рекомендуемое)

Форма протокола результатов измерения относительной влажности при испытаниях систем кондиционирования

ПРОТОКОЛ

результатов измерения относительной влажности при испытаниях систем кондиционирования

Дата испытаний	ATC	(тип, модель,	год выпуска, номер шасси
пробег)			
Место проведения испытаний_			
Условия проведения испытаний	Отно	сительная влажн	ность, %
условия проведения испытании	Рабочее место	 Пас	сажирский салон
Тип системы, наружная температура, относительная влажность наружного воздуха, режим движения и т. д.	Параметры относительно установившихся температу		иводятся при достижении ;
Заключение:(соотв	етствие системы требовани	ям нормативных	документов)
Исполнители:			
до лжность	личная	подпись	расшифровка подписи

Приложение Ж

(справочное)

Сведения о соответствии стандартов, на которые даны ссылки, государственным стандартам, принятым в качестве идентичных и модифицированных государственных стандартов

Таблица А.1

Обозначение и наименование межгосударственного стандарта	Степень соот- ветст- вия	Обозначение и наименование государственного стандарта
ГОСТ 27815-88 (Правила ЕЭК ООН №36) Автобусы. Общие требования к безопас- ности конструкции	MOD	ПРАВИЛА ЕЭК ООН № 36 – Пересмотр 1 Единообразные предписания, касающиеся официального утверждения пассажирских транспортных средств большой вместимо- сти в отношении общей конструкции
ГОСТ Р 51266-99 Автомобильные транспортные средства. Обзорность с места водителя. Технические требования. Методы испытаний	IDT	СТБ ГОСТ Р 51266-2003 — Автомобильные транспортные средства. Обзорность с места водителя. Технические требования. Методы испытаний

Приложение К

(информационное)

Библиография

[1] Правила дорожного движения, утвержденные постановлением Кабинета Министров Республики Беларусь от 21 марта 1996 г.

Ответственный за выпуск І	1.A	 Воробей 	1
---------------------------	-----	-----------------------------	---

Сдано в набор 29.07.2003. Подписано в печать 25.08.2003. Формат бумаги 60х84/8. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 2,32. Уч.- изд. л. 0,8. Тираж экз. Заказ