

Открытое акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях»

(ОАО «Концерн Росэнергоатом»)

ПРИКАЗ

16.07.2013

№ *9/656-1*7

Москва

О введении в действие методики МТ 1.2.5.05.0110-2012

В целях установления алгоритма определения размеров зон планирования защитных мероприятий (зон аварийного реагирования) вокруг проектируемых и строящихся атомных станций

ПРИКАЗЫВАЮ:

- 1. Ввести в действие с 01.09.2013 «Методику определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции» МТ 1.2.5.05.0110-2012 (далее Методика МТ 1.2.5.05.0110-2012, приложение) применительно к проектируемым и строящимся АЭС.
- 2. Структурным подразделениям центрального аппарата ОАО «Концерн Росэнергоатом», филиалам ОАО «Концерн Росэнергоатом» дирекциям строящихся атомных станций принять Методику МТ 1.2.5.05.0110-2012 к руководству и исполнению и обеспечить ее введение в действие в установленном на АЭС порядке.
- 3. Департаменту планирования производства, модернизации и продления срока эксплуатации (Дементьев А.А.) внести в установленном порядке Методику МТ 1.2.5.05.0110-2012 в часть I, подраздел 2.1 Указателя технических документов, регламентирующих обеспечение безопасной эксплуатации энергоблоков АС (обязательных и рекомендуемых к использованию).

4. Контроль за исполнением настоящего приказа возложить на первого заместителя Генерального директора Асмолова В.Г.

Генеральный директор

Е.В. Романов

В.И. Пискунов, (495) 660-50-01 (доб. 413)

72/2307/15.07

Приложение к приказу ОАО "Концерн Росэнергоатом" от <u>1607.2013</u> № <u>2/656-17</u>

Открытое акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях»

(ОАО «Концерн Росэнергоатом»)

УТВЕРЖДАЮ

Первый заместитель Генерального директора

ОАО

(СОНЦЕРНУ 2012

В.Г. Асмолов

2012

РОСЭНЕРГОАТОМ В 35.75

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ЗОН ПЛАНИРОВАНИЯ ЗАЩИТНЫХ МЕРОПРИЯТИЙ В СЛУЧАЕ АВАРИИ НА АТОМНОЙ СТАНЦИИ

MT 1.2.5.05.0110-2012

Предисловие

1 РАЗРАБОТАНА Открытым акционерным обществом «Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций» (ОАО «ВНИИАЭС») (Иванов Е.А., Полянцев С.С., Косов А.Д., Орехов А.А.); Государственным научным центром Российской Фелерации Федеральный медицинский биофизический А.И. Бурназяна (ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России) (Грачев М. И., Титов А.В.); Федеральным государственным бюджетным учреждением «Научно-производственное объединение «Тайфун» (ФГБУ НПО «Тайфун» Росгидромета) (Булгаков В.Г., Клепикова Н.В), Проектно-конструкторским ОАО «Концерн Росэнергоатом» (ПКФ OAO «Концерн Росэнергоатом») (Максимов А.Ю., Пискунов В.И.)

2 ВНЕСЕНА Проектно-конструкторским филиалом и СОГЛАСОВАНА Дирекцией по производству и эксплуатации АЭС ОАО «Концерн Росэнергоатом»

3 СОГЛАСОВАНА Федеральным медико-биологическим агентством (23.11.2012) и Федеральной службой по гидрометеорологии и мониторингу окружающей среды (23.11.2012)

4 ВВЕДЕНА В ДЕЙСТВИЕ приказом ОАО «Концерн Росэнергоатом» от /6.07.20/3 № 9/656-/7 5 ВВОЛИТСЯ ВПЕРВЫЕ

Содержание

1	Область применения	4
2	Нормативные ссылки	2
3	Термины и определения	5
4	Сокращения	11
5	Общие положения	11
6	Критерии определения зон аварийного реагирования	14
6.1	Зоны аварийного реагирования в нормативных документах	14
6.2	Зоны аварийного реагирования в стандартах МАГАТЭ	15
7	Общие требования к исходным данным	17
8	Модели, используемые для определения размеров зон аварийного	
pear	гирования	18
Прил	пожение А (Обязательное) Численные значения критериев для	
	определения границ зон аварийного реагирования	19
Прил	пожение Б (Обязательное) Доза облучения населения по различным	
	путям воздействия в начальном периоде радиационной	
	аварии на атомной станции	20
Прил	пожение В (Обязательное) Кратковременный метеорологический	
	фактор разбавления примеси в атмосфере и выведения ее на	
	подстилающую поверхность	34
Библ	иография	42

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ЗОН ПЛАНИРОВАНИЯ ЗАЩИТНЫХ МЕРОПРИЯТИЙ В СЛУЧАЕ АВАРИИ НА АТОМНОЙ СТАНЦИИ

Дата введения 01.09 2013

1 Область применения

- 1.1 Настоящая Методика устанавливает алгоритм определения размеров зон планирования защитных мероприятий (зон аварийного реагирования) в случае аварии для проектируемых АС.
- 1.2 Требования настоящей Методики распространяются на все организации, осуществляющие разработку и проектирование АС на территории Российской Федерации. Методикой могут руководствоваться органы, осуществляющие государственный санитарно-эпидемиологический надзор, а также организации, проводящие экспертизу проектов АС.
- 1.3 Настоящая Методика предназначается для расчета и обоснования размеров зон планирования защитных мероприятий вокруг проектируемых и строящихся АС по российским проектам как в Российской Федерации, так и за ее пределами.

2 Нормативные ссылки

В настоящей Методике использованы ссылки на следующие нормативные документы:

НП-001-97 (ПНАЭ Г-01-011-97) Общие положения обеспечения безопасности атомных станций (ОПБ-88/97)

НП-032-01 Размещение атомных станций. Основные критерии и требования по обеспечению безопасности

Сан Пин 2.6.1.2523-09 Нормы радиационной безопасности НРБ-99/2009 Сан Пин 2.6.1.24-03 Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03) СП 2.6.1.2612-10 Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)

3 Термины и определения

В настоящей Методике применены следующие термины с соответствующими определениями:

- 3.1 аварийное реагирование (emergency response): Осуществление мер, направленных на смягчение последствий аварийной ситуации для здоровья человека и безопасности, качества жизни, собственности и окружающей среды. Оно может также обеспечивать основу для возобновления нормальной социальной и хозяйственной деятельности (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- 3.2 авария радиационная: Потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды (НРБ-99/2009).
- 3.3 атомная станция: Ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) (ОПБ-88/97).
- **3.4 атомная электрическая станция**: Атомная станция, предназначенная для производства электрической энергии (ОПБ-88/97).
- 3.5 вмешательство: Деятельность, направленная на снижение вероятности, либо дозы, либо неблагоприятных последствий облучения населения при радиационных авариях, при обнаружении радиоактивных загрязнений объектов окружающей среды или повышенных уровней

природного облучения на территориях, в зданиях и сооружениях (НРБ-99/2009).

- 3.6 группа критическая: Группа лиц из населения (не менее 10 человек), однородная по одному или нескольким признакам полу, возрасту, социальным или профессиональным условиям, месту проживания, рациону питания, которая подвергается наибольшему радиационному воздействию по данному пути облучения от данного источника излучения (НРБ-99/2009).
- 3.7 декорпорация: Осуществляющиеся с помощью химических или биологических агентов биологические процессы, благодаря которым из организма человека удаляются инкорпорированные радионуклиды(Общее руководство МАГАТЭ по безопасности № GSG-2 [6]).

Примечание - Общий критерий для декорпорации основан на прогнозируемой дозе без декорпорации.

- 3.8 доза в органе или ткани (D_T): средняя поглощенная доза в определенном органе или ткани человеческого тела (HPБ-99/2009).
- 3.9 доза ОБЭ взвешенная поглощенная (AD_T): Произведение усредненной поглощенной дозы излучения в органе или ткани и относительной биологической эффективности для рассматриваемого вида излучения (Общее руководство МАГАТЭ по безопасности № GSG-2 [6]).
- 3.10 доза поглощенная (D): Величина энергии ионизирующего излучения, переданная веществу. В единицах СИ доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название грей (Гр) (НРБ-99/2009).
- **3.11 доза** предотвращаемая: Прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями (НРБ-99/2009).
- **3.12 доза** прогнозируемая (projected dose): Доза, которая, как ожидается, будет получена в том случае, если не проводятся никакие защитные действия или не принимаются никакие восстановительные меры (Серия изданий МАГАТЭ по безопасности № 115 [8]).

- 3.13 доза эквивалентная ($H_T(\tau)$) или эффективная ($E(\tau)$), ожидаемая при внутреннем облучении: Доза за время τ , прошедшее после поступления радиоактивных веществ в организм. Когда τ не определено, его следует принять равным 50 годам для взрослых и (70 t_0) для детей.
- **3.14 доза эквивалентная (H_{T,R}):** Поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения. Единицей эквивалентной дозы является зиверт (Зв) (НРБ-99/2009).
- 3.15 доза эффективная (E): Величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности (HPБ-99/2009). Единица эффективной дозы зиверт (Зв) (HPБ-99/2009).
- 3.16 запроектная авария: Авария, вызванная не учитываемыми для проектных аварий исходными событиями или сопровождающаяся дополнительными по сравнению с проектными авариями отказами систем безопасности сверх единичного отказа, реализацией ошибочных решений персонала (ОПБ-88/97).
- **3.17 защитная мера (protective action):** Вмешательство, направленное на устранение или снижение доз для лиц из населения в аварийных ситуациях или ситуациях хронического облучения (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- **3.18 зона планирования защитных мероприятий:** Территория вокруг атомной станции, в границах которой возможно радиационное воздействие при запроектных авариях и планируются мероприятия по защите населения, предусмотренные действующими нормами радиационной безопасности. За пределами этой зоны для вышеуказанных аварий проведение мероприятий по защите населения не требуется (НП-032-01).
- **3.19 зона планирования мероприятий по обязательной эвакуации населения:** Территория прогнозируемого облучения при запроектных авариях, в границах которой в начальном периоде радиационной аварии

может быть достигнут или превышен верхний уровень дозового критерия по обязательной эвакуации критической группы населения, установленный действующими нормами радиационной безопасности (НП-032-01).

- 3.20 зона планирования срочных защитных мер (urgent protective action planning zone): Зона вокруг установки, в отношении которой проводятся мероприятия, направленные на осуществление срочных защитных мер в случае ядерной или радиологической аварийной ситуации, с целью предотвратить получение доз за пределами площадки в соответствии с международными нормами безопасности. Защитные меры в пределах этой зоны должны выполняться на основе мониторинга окружающей среды или в надлежащих случаях с учетом обстановки, создавшейся на установке (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- 3.21 зона предупредительных мер (precautionary action zone): Зона вокруг установки, в отношении которой проводятся мероприятия для осуществления срочных предупредительных защитных мер в случае ядерной или радиологической аварийной ситуации с целью снижения риска появления серьезных детерминированных эффектов за пределами площадки. Защитные меры в пределах этой зоны должны приниматься до или вскоре после выброса радиоактивного материала или облучения на основе обстановки, создавшейся на установке (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- 3.22 йодная профилактика (iodine prophylaxis): Введение препарата стабильного иода (обычно иодистого калия) в целях предотвращения или уменьшения поглощения радиоактивных изотопов иода щитовидной железой в случае аварии, связанной с воздействием радиоактивного иода (Глоссарий МАГАТЭ по вопросам безопасности).
- **3.23 население:** Все лица, включая персонал вне работы с источниками ионизирующего излучения (НРБ-99/2009).
- **3.24 облучение аварийное:** Облучение в результате радиационной аварии (НРБ-99/2009).

- **3.25 площадка АС:** Территория в пределах охраняемого периметра, где размещаются основные и вспомогательные здания и сооружения АС (НП-032-01).
- **3.26 путь облучения (exposure pathway):** Путь, по которому излучение или радионуклиды могут попасть к человеку и привести к его облучению (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- **3.27 район размещения АС:** Территория, включающая площадку АС, на которой возможны явления, процессы и факторы природного и техногенного происхождения, способные оказать влияние на безопасность АС (НП-032-01).
- 3.28 риск (risk): Многозначная величина, выражающая угрозу, опасность или возможность возникновения вредных или поражающих последствий в результате действительного или потенциального облучения. Она связана с такими величинами, как вероятность возникновения конкретных пагубных последствий, а также масштаб и характер таких последствий (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- **3.29 риск радиационный:** Вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения (НРБ-99/2009).
- 3.30 срочная защитная мера (urgent protective action): Защитная мера в случае аварийной ситуации, которая в целях обеспечения ее эффективности должна выполняться оперативно (обычно в течение нескольких часов) и эффективность которой будет заметно снижена в случае задержки с ее исполнением (Глоссарий МАГАТЭ по вопросам безопасности [3]).

Примечание - Наиболее часто рассматриваемые срочные защитные меры: укрытие, йодная профилактика, эвакуация, санитарная обработка людей, защита органов дыхания, а также введение ограничений в отношении потребления загрязненных пищевых продуктов.

3.31 срочные предупредительные меры: Защитная мера в случае ядерной или радиационной аварийной ситуации, которая должна быть

принята до или вскоре после выброса радиоактивного материала, или до облучения, с учетом создавшейся обстановки, с тем чтобы предотвратить или уменьшить риск серьезных детерминированных эффектов (Серия норм МАГАТЭ по безопасности, № GSR Part 3 (Interim) [7].

- **3.32 тяжелая запроектная авария:** Запроектная авария с повреждением твэлов выше максимального проектного предела, при которой может быть достигнут предельно допустимый аварийный выброс радиоактивных веществ в окружающую среду (ОПБ-88/97).
- 3.33 укрытие: Использование определенной конструкции для защиты от аэрозольного шлейфа и/или осаждения радионуклидов (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- **3.34 уровень вмешательства:** Уровень радиационного фактора, при превышении которого следует проводить определенные защитные мероприятия (НРБ-99/2009).
- **3.35 эвакуация (evacuation):** Неотложное, временное перемещение людей с территории с целью предотвратить или уменьшить краткосрочное радиационное облучение в случае аварийной ситуации (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- **3.36** эффекты излучения детерминированные: Клинически выявляемые вредные биологические эффекты, вызванные ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше тяжесть эффекта зависит от дозы (НРБ-99/2009).
- 3.37 эффект серьезный детерминированный (severe deterministic effect): Детерминированный эффект, который является смертельным или угрожающим жизни, или же приводит к постоянному ущербу, снижающему качество жизни (Глоссарий МАГАТЭ по вопросам безопасности [3]).
- 3.38 эффекты излучения стохастические: Вредные биологические эффекты, вызванные ионизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых

пропорциональна дозе и для которых тяжесть проявления не зависит от дозы (НРБ-99/2009).

4 Сокращения

В настоящей Методике используются следующие сокращения:

АС - атомная станция

КГ - критическая группа ККМ - красный костный мозг

3АР - зона аварийного реагирования

ЗПА - запроектная авария

3ПМ - зона предупредительных мер

ЗПМОЭ - зона планирования мероприятий по обязательной

эвакуации населения

3ПЗМ - зона планирования защитных мероприятий
 МАГАТЭ - международное агентство по атомной энергии

НРБ - нормы радиационной безопасности

ОБЭ - относительная биологическая эффективность

РК - радиационный контроль

СП - санитарные правила

УВ - уровень вмешательства

ФНП - Федеральные нормы и правила

ІЦЖ - щитовидная железа

5 Общие положения

- 5.1 Ограничение радиационного воздействия на персонал, население и окружающую среду при запроектных авариях на AC достигается за счет:
 - управления запроектными авариями;
- осуществления планов противоаварийных мероприятий на площадке АС и за ее пределами.
- 5.2 Мероприятия по защите персонала и населения в случае тяжелой запроектной аварии направлены на:
 - предотвращение серьезных детерминированных эффектов облучения;

- уменьшение риска стохастических эффектов облучения.
- 5.3 С целью разработки планов противоаварийных мероприятий нормативными документами Российской Федерации и документами МАГАТЭ предусматривается установление вокруг АС специальных зон аварийного реагирования.
- 5.4 Нормативными документами НП-032-01, СП АС-03 определяются две зоны аварийного реагирования:
 - зона планирования мероприятий по обязательной эвакуации населения;
 - зона планирования защитных мероприятий.
- 5.5 Границы зоны планирования защитных мероприятий и зоны планирования мероприятий по обязательной эвакуации населения должны быть обоснованы в проекте АС с учетом выполнения следующих условий:
- в границах ЗПМОЭ в начальном периоде запроектной радиационной аварии (10 суток) может быть достигнут или превышен верхний уровень дозового критерия по обязательной эвакуации населения, установленный нормами радиационной безопасности.
- в границах ЗПЗМ в начальном периоде радиационной аварии возможно радиационное воздействие, при котором планируются мероприятия по защите населения, предусмотренные действующими нормами радиационной безопасности. За пределами этой зоны проведение мероприятий по защите населения не требуется.
- 5.6 В ЗПМОЭ планируются необходимые организационные и технические мероприятия, направленные на обеспечение оперативной эвакуации всего находящегося на ее территории населения.
- 5.7 На территории ЗПЗМ планируются организационные и технические решения, направленные на оповещение населения и организацию защитных мероприятий (эвакуация, укрытие в защитных сооружениях, проведение йодной профилактики) при получении данных о радиационной обстановке.
- 5.8 В Требованиях GS-R-2 [4] и Руководстве МАГАТЭ по безопасности GS-G-2.1 [5] предусматриваются две ЗАР в районе размещения АС:
 - зона предупредительных мер;
 - зона планирования срочных защитных мер.

- ЗПМ планируется проведение срочных предупредительных зашитных мер (включая эвакуацию) в случае аварии с предотвращения серьезных детерминированных эффектов. Защитные меры в приниматься до этой зоны должны или выброса на основе данных о состоянии реакторной радиоактивного установки.
- 5.10 В соответствии с Руководством МАГАТЭ по безопасности GS-G-2.1 [5] максимальный обоснованный радиус ЗПМ составляет 5 км. Это расстояние, на котором при низком источнике (высота до 30 м) и среднеклиматических метеорологических условиях, доза примерно в десять раз меньше, чем на границе площадки АС. При этом маловероятно, чтобы в тяжелой запроектной аварии потребовались срочные случае предупредительные защитные меры на расстояниях свыше 5 KM. Осуществление срочных предупредительных защитных мер на больших расстояниях от источника может снизить их эффективность для населения вблизи площадки АС, находящегося в ситуации наибольшего риска.
- 5.11 В ЗПСМ планируются срочные защитные меры с целью снижения риска стохастических эффектов в случае аварии. Защитные меры в пределах этой зоны должны проводиться на основе мониторинга окружающей среды с учетом данных о состоянии реакторной установки.
- 5.12 Срочные защитные меры в случае аварийной ситуации на АС должны проводиться оперативно (обычно в течение нескольких первых часов после аварии), так как их эффективность с течением времени заметно снижается.
- 5.13 ЗПМ и ЗПСМ следует определять как территории приблизительно круглой формы вокруг АС, с границами, определяемыми местными ориентирами (например, населенными пунктами, дорогами, реками и др.), с тем чтобы обеспечить легкость идентификации в процессе аварийного реагирования.

Границы ЗПМ и ЗПСМ не прерываются на национальных границах (рисунок 5.1).

- 5.14 В Методике описаны алгоритмы определения размеров зон аварийного реагирования как в соответствии с российскими нормативными документами, так и стандартами МАГАТЭ.
- 5.15 Размеры зон аварийного реагирования определяются для тяжелой запроектной аварии с максимальными радиационными последствиями.
- 5.16 Радиус зоны аварийного реагирования для AC с несколькими энергоблоками отсчитывается от их геометрического центра.

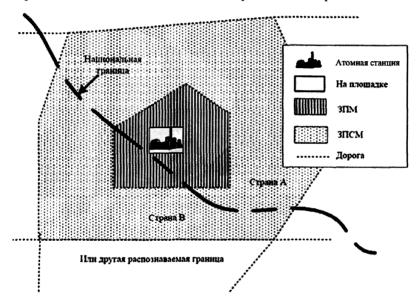


Рисунок 5.1 - Границы ЗПМ и ЗПСМ

6 Критерии определения зон аварийного реагирования

6.1 Зоны аварийного реагирования в нормативных документах

6.1.1 Критерий для определения радиуса зоны планирования мероприятий по обязательной эвакуации населения записывается в виде

$$R_{3\Pi MO3} = \max \left\{ R_{3\Pi MO3}^{1}, R_{3\Pi MO3}^{2}, R_{3\Pi MO3}^{3}, R_{3\Pi MO3}^{4} \right\}, \tag{6.1}$$

$$R_{3\Pi MO3}^{i}$$
: $D_{i}(x=R_{3\Pi MO3}^{i}, \tau=10\ cymo\kappa)=D_{i,E}(\tau=10\ cymo\kappa),\ i=\overline{1,4}$, (6.2) где $D_{i}(x,\tau=10\ cymo\kappa)$ - прогнозируемая доза в *i*-ом органе или ткани (1 -

все тело, 2 - легкие, 3 - кожа, 4 - щитовидная железы) человека в начальном периоде аварии ($\tau=10$ суток) на расстоянии x от источника, при условии, что при $x>R^i_{_{3ЛМОЭ}}$ величина $D_i(x,\tau=10\ cymo\kappa)$ является монотонно убывающей функцией аргумента x;

 $D_{i,E}(\tau=10\ cymo\kappa)$ - уровень предотвращаемой эвакуацией дозы в i-ом органе или ткани за первые 10 суток (уровень Б в таблице 6.3 НРБ-99/2009), при превышении которого эвакуация необходима (таблица A.1 приложения A).

Если при ЗПА за пределами промплощадки AC критерий (6.2) не достигается, то ЗПМОЭ не устанавливается.

6.1.2 Критерий для определения радиуса зоны планирования защитных мероприятий (ЗПЗМ) записывается в виде

$$R_{3\Pi 3M} = \max \left\{ R_{3\Pi 3M}^{1}, R_{3\Pi 3M}^{2}, R_{3\Pi 3M}^{3}, R_{3\Pi 3M}^{4} \right\}, \tag{6.3}$$

 $R^{i}_{3\Pi 3M}: D_{i}(x=R^{i}_{3\Pi 3M}, au=10\ cymo\kappa)=D_{i,A}(au=10\ cymo\kappa),\ i=\overline{1,4}\ ,\ (6.4)$ при условии, что при $x>R^{i}_{3\Pi 3M}$ величина $D_{i}(x, au=10\ cymo\kappa)$ является монотонно убывающей функцией аргумента x.

Здесь $D_{i,A}(x,\tau=10\ cymo\kappa)$ - уровень предотвращаемой укрытием дозы в i-ом органе или ткани человека за первые 10 суток (уровень A в таблице 6.3 HPБ-99/2009), ниже которого нет необходимости в выполнении мер защиты в начальном периоде радиационной аварии (таблица A.1 приложения A).

6.2 Зоны аварийного реагирования в стандартах МАГАТЭ

6.2.1 Критерий для определения радиуса зоны предупредительных мер записывается в виде

$$R_{3\Pi M} = \max \left\{ R_{3\Pi M}^{KKM}, R_{3\Pi M}^{IJK} \right\}, \tag{6.5}$$

$$R_{3\Pi M}^{KKM}: AD_{KKM}(x = R_{3\Pi M}^{KKM}, \tau = 10 \, u) = AD_{KKM}^{*}(\tau = 10 \, u), \tag{6.6}$$

$$R_{3\Pi M}^{IJJK}: AD_{IJJK}(x = R_{3\Pi M}^{IJJK}, \tau = 30 \ cymo\kappa) = AD_{IJJK}^{*}(\tau = 30 \ cymo\kappa),$$
 (6.7)

где $AD_{KKM}(x, \tau = 10\,u)$ - прогнозируемая ОБЭ - взвешенная поглощенная доза в красном костном мозге в результате внешнего острого облучения (в течение 10 часов) в однородном поле сильнопроникающего излучения на расстоянии

x от источника, при условии, что при $x > R_{3//M}$ величина $AD_{KKM}(x, \tau = 10 \ u)$ является монотонно убывающей функцией аргумента x;

 $AD_{KKM}^{*}(\tau=10\, 4)$ - прогнозируемая ОБЭ - взвешенная поглощенная доза в ККМ от внешнего острого облучения, при превышении которой следует немедленно принять предупредительные защитные меры (таблица A.2 приложения A).

 $AD_{U\!U\!K}(x,\tau=30\ cymo\kappa)$ - прогнозируемая ОБЭ - взвешенная поглощенная доза в ЩЖ, ожидаемая в течение времени τ после острого поступления радионуклидов в организм человека на расстоянии x от источника, при условии, что при $x>R_{3\Pi M}$ величина $AD_{U\!U\!K}(x,\tau=30\ cymo\kappa)$ является монотонно убывающей функцией аргумента x;

 $AD_{\text{Шж}}^*(\tau=30\ \text{суток})$ - ОБЭ - взвешенная поглощенная доза в ЩЖ, полученная за период времени τ в результате острого поступления радионуклидов, которое приводит к серьезному (тяжелому) детерминированному эффекту у 5 % лиц [10], подвергшихся облучению и требует немедленного проведения медицинского обследования, немедленной декорпорации и др. (таблица A.2 приложения A).

- 6.2.2 Если при ЗПА за пределами промплощадки АС критерии (6.6) и (6.7) не достигаются, то ЗПМ не устанавливается.
- 6.2.3 Критерий для определения внешнего радиуса зоны планирования срочных мероприятий записывается в виде

$$R_{3\Pi CM} = \max \left\{ R_{3\Pi CM}^{IJJK}, R_{3\Pi CM}^{sop} \right\}, \tag{6.8}$$

$$R_{3IIM}^{\mu\nu\kappa}$$
: $H_{IIJK}(x = R_{3IICM}^{\mu\nu\kappa}, \tau = 7 \ cymo\kappa) = H_{IIJK}^*(\tau = 7 \ cymo\kappa),$ (6.9)

$$R_{3\Pi M}^{s\phi}$$
: $E(x=R_{3\Pi CM}^{s\phi}, \tau=7\ cymo\kappa)=E^*(\tau=7\ cymo\kappa),$ (6.10) где $H_{\mu\nu\kappa}(x,\tau=7\ cymo\kappa)$ - прогнозируемая эквивалентная доза на щитовидную железу ребенка (от одного до двух лет) за счет ингаляции радионуклидов в

первые семь суток после аварии, при условии, что при $x > R_{3\Pi CM}^{\mu\nu\kappa}$ величина $H_{\mu\nu\kappa}(x,\tau=7\ cymo\kappa)$ является монотонно убывающей функцией аргумента x;

 $H_{\mathit{ЦЈЖ}}^{\bullet}(\tau=7\; cymo\kappa)$ - прогнозируемая эквивалентная доза на ЩЖ за первые семь суток после аварии, при превышении которой следует срочно предпринять йодное блокирование ЩЖ (таблица А.2 приложения А).

 $E(x, \tau = 7\ cymo\kappa)$ - прогнозируемая эффективная доза облучения человека за первую неделю (семь суток) после аварии при условии, что при $x > R_{3\Pi CM}^{s\phi}$ величина $E(x, \tau = 7\ cymo\kappa)$ является монотонно убывающей функцией аргумента x;

 $E^*(\tau=7\ cymo\kappa)$ - прогнозируемая эффективная доза за первые семь суток после аварии, при превышении которой необходимо проведение защитных мер (укрытие, эвакуация) (таблица A.2 приложения A).

6.3 Алгоритм расчета величин $\{D_i(x,\tau\}, AD_{KKM}(x,\tau), AD_{UUK}(x,\tau), H_{UUK}(x,\tau)\}$ и $E(x,\tau)$ приведен в приложении Б.

7 Общие требования к исходным данным

- 7.1 Исходные данные для определения размеров зон аварийного реагирования подразделяются на следующие основные блоки:
 - описание источника поступления радионуклидов в атмосферу;
 - условия рассеяния примеси в атмосфере.
 - 7.2 К основным параметрам источника относятся:
 - радионуклидный состав выброса;
 - активность выброса;
 - физико-химический состав выброса;
 - эффективная высота выброса;
 - длительность формирования выброса;
 - время действия источника.

- 7.3 К основным условиям рассеяния примеси в атмосфере в районе источника относятся:
 - скорость ветра на флюгере (10 м);
 - направление ветра;
 - категория устойчивости атмосферы по классификации Тернера (Т-ИЭМ);
 - интенсивность и тип атмосферных осадков;
 - продолжительность стационарных метеоусловий;
 - тип подстилающей поверхности.

8 Модели, используемые для определения размеров зон аварийного реагирования

- 8.1 Методология определения размеров зон аварийного реагирования базируется на применении методик расчета прогнозируемой дозы облучения населения по возможным путям воздействия в случае аварии на атомной станции.
- 8.2 Применительно к задаче расчетного определения размеров ЗАР допускается использование методик, основанных на Гауссовой модели и реализованных в виде программных средств RECASS-NT (EXPRESS), SULTAN и др.

Приложение A (Обязательное)

Численные значения критериев для определения границ зон аварийного реагирования

Численные значения критериев для определения границ зон аварийного реагирования указаны в таблицах A.1 и A.2.

Таблица А.1 - Критерии для определения границ зон аварийного реагирования, установленные в НРБ-99/2009, НП-032-01

ВмГр

			D MI P
Зона аварийного	Критерий	Обозначение	Значение
реагирования			критерия
Зона планирования мероприятий по	Поглощенная доза во всем теле за 10 суток	$D_{1,\mathcal{B}}(\tau=10\ cymo\kappa)$	500
обязательной эвакуации	Поглощенная доза в легких за 10 суток	$D_{2,E}(au=10\ cymo\kappa)$	5000
населения	Поглощенная доза в коже за 10 суток	$D_{3,E}(\tau=10\ cymo\kappa)$	5000
	Поглощенная доза в ЩЖ за 10 суток	$D_{4,E}(au=10\ cymo\kappa)$	5000
Зона планирования защитных	Поглощенная доза на все тело за 10 суток	$D_{1,A}(\tau = 10 \ cymo\kappa)$	5
мероприятий	Поглощенная доза в легких за 10 суток	$D_{2,A}(\tau=10\ cymo\kappa)$	50
	Поглощенная доза в коже за 10 суток	$D_{3,A}(\tau = 10 \ cymo\kappa)$	50
	Поглощенная доза в ЩЖ за 10 суток	$D_{4,A}(\tau = 10 \ cymo\kappa)$	50

Т а б л и ц а A.2 - Критерии для определения границ зон аварийного

реагирования, рекомендованные в стандартах МАГАТЭ [6]

Зона аварийного		Обозначение	Значение
реагирования	Критерий		критерия
Зона предупредительных мер	ОБЭ - взвешенная поглощенная доза в ККМ в результате внешнего острого облучения	$AD_{KKM}^*(\tau=10\mathrm{u})$	1000 мГр
	ОБЭ - взвешенная поглощенная доза в ЩЖ в результате острого поступления	$AD^*_{\mu\mu}(\tau=30\ cymo\kappa)$	2000 мГр
Зона планирования срочных защитных мер	Эквивалентная доза в ЩЖ за первые семь суток после аварии	$H^*_{IUK}(\tau = 7 \ cymo\kappa)$	50 мЗв
	Эффективная доза за первые 7 суток после аварии	$E^*(\tau = 7 \ cymo\kappa)$	100 мЗв

Приложение Б (Обязательное)

доза облучения населения по различным путям воздействия в начальном периоде радиационной аварии на атомной станции

Б.1 Принятые условия

Б.1.1 При расчете дозиметрических величин $\{D_i(x,\tau)\}$, $AD_{KKM}(x,\tau)$, $AD_{UJK}(x,\tau)$, $H_{UJK}(x,\tau)$, и $E(x,\tau)$ учитываются пути облучения, указанные в таблице Б.1.

Таблица Б.1 - Пути радиационного воздействия, учитываемые при расчете дозиметрических величин

Дозиметрическая		Путь облучения					
величина	от облака	от выпадений	ингаляционный путь				
Поглощенная доза $^{1)}$ $D_i(x, au)$	+	+	+				
ОБЭ - взвешенная поглощенная доза в ККМ $AD_{K\!K\!M}(x, au)$	+	+	-				
ОБЭ - взвешенная поглощенная доза в ЩЖ $AD_{\mu\mu}(x, au)$	-	-	+				
Эквивалентная доза в ЩЖ $H_{\mu \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	-	-	+				
Θ ффективная доза $E(x, au)$	+	+	+				
Примечание — ¹⁾ поглощенная доза во всем теле рассчитывается от облака и выпадений							

Б.1.2 Для гамма - и бета - излучения эквивалентная доза и ОБЭ - взвешенная поглощенная доза в органе (ткани) численно совпадают (кроме ОБЭ - взвешенной поглощенной дозы, создаваемой бета-излучением радиоизотопов йода, в щитовидной железе) с соответствующей поглощенной дозой в этом органе (ткани), так как для этих видов излучений взвешивающие коэффициенты и коэффициенты относительной биологической эффективности равны единице [6, 12].

Б.1.3 В [6] предполагается, что однородное облучение ткани щитовидной железы в пять раз повышает вероятность возникновения детерминированных эффектов по сравнению с внутренним облучением, создаваемым низкоэнергетическим бета-излучением радиоизотопов йода (123 I, 124 I, 125 I, 131 I).

Радионуклиды, накапливающиеся в щитовидной железе, распределяются в ткани ЩЖ неравномерно. Радионуклид 131 І испускает низкоэнергетические бета-частицы, что приводит к снижению эффективности облучения критических тканей ЩЖ вследствие поглощения энергии этих частиц в других тканях. С учетом вышесказанного, коэффициент относительной биологической эффективности $RBE_{\mu | x, \beta}$ для ЩЖ при поступлении радиоизотопов йода в организм принимается равным 0,2. Тогда

$$AD_{IIIK}(x,\tau) = RBE_{IIIK B} \cdot H_{IIIK} = 0, 2 \cdot H_{IIIK}.$$

- Б.1.4 По ингаляционному пути воздействия рассчитываются ожидаемые поглощенная доза в органе (ткани) и эффективная доза доза за 50 лет (для взрослых) и 70 лет (для детей) после поступления радионуклидов в организм.
 - Б.1.5 Расчет дозиметрических величин проводится для:
 - точечного источника конечного времени действия;
 - среднеклиматических метеорологических условий без осадков;
 - лиц из критической группы населения;
- нахождения человека на открытой местности (кроме расчета дозы от радиоактивных выпадений на землю) на оси следа.
- Б.1.6 В качестве потенциально критических групп рассматриваются следующие возрастные группы населения:
 - до года (первая группа);
 - от одного года до двух лет (вторая группа);
 - от двух лет до семи лет (третья группа);
 - от семи лет до двенадцати лет (четвертая группа);
 - от двенадцати лет до семнадцати лет (пятая группа);
 - взрослые (больше семнадцати лет, шестая группа).

Б.2 Расчет поглощенной дозы

Б.2.1 Расчет поглощенной дозы в i-ом органе или ткани лица из критической группы населения по возможным путям воздействия за первые τ суток после аварии на расстоянии x от источника проводится по формуле

$$D_{i}(x,\tau) = \max_{\tau} \{D_{i}^{l}(x,\tau)\}, \ D_{i}^{l}(x,\tau) = D_{i,A}^{l}(x,\tau) + D_{i,S}^{l}(x,\tau) + D_{i,inh}^{l}(x,\tau), \tag{B.1}$$

где $D_{l,A}^l(x,\tau)$, $D_{l,S}^l(x,\tau)$, $D_{l,mh}^l(x,\tau)$ - поглощенная доза в i-ом органе или ткани лиц из возрастной группы населения l от радиоактивного облака, радиоактивных выпадений и поступления радионуклидов по ингаляционному пути за период времени τ , соответственно, Γ р.

При расчете поглощенной дозы во всем теле ингаляционный путь не учитывается.

Б.2.2 Расчет величины $D_{i,A}^{l}(x,\tau)$ проводится по формуле

$$D_{i,A}^{l}(x,\tau) = \sum_{r} C_{y}^{l} \cdot Q^{r} \cdot R_{A}^{i,r} \cdot A_{\tau_{0}}^{r}(x,0,0),$$
 (B.2)

где Q' - выброс радионуклида r в атмосферу, Бк;

 C_y' - корректирующий фактор для лиц из возрастной группы населения l при расчете дозы от радиоактивного облака (для взрослых $C_y = 1$, детей $C_y = 1,3$ и новорожденных $C_y = 1,5$);

 $A_{\tau_0}^r(x,0,0)$ - кратковременный приземный (z=0) на оси радиоактивного следа облака (y=0) метеорологический фактор разбавления радионуклидов r для источника конечного времени действия τ_0 , с/м³ (приложение B);

x - расстояние от источника до рецептора, м;

 $R_A^{i,r}$ - коэффициент дозового преобразования при облучении i-го органа или ткани взрослого человека от облака для радионуклида $r, \ \frac{\Gamma p \cdot M^3}{E \kappa \cdot c}$ (таблица Б.2).

Б.2.3 Расчет величины $D_{i,S}^{l}(x,\tau)$ проводится по формуле

$$D_{i,S}^{l}(x,\tau) = \sum_{r} k_{1} \cdot k_{2} \cdot G_{r}^{l} \cdot Q^{r} \cdot V_{d}^{r} \cdot R_{S}^{i,r} \cdot \frac{1 - \exp(-\lambda^{r} \cdot \tau)}{\lambda^{r}} \cdot A_{\tau_{0}}^{r}(x,0,0),$$
 (5.3)

 $k_{\rm l}$ - безразмерный коэффициент, учитывающий рельеф местности (принимается равным 0,7);

 k_2 - безразмерный коэффициент, учитывающий эффекты экранирования и неполного пребывания человека на открытой местности (принимается равным 0,4);

 G_y^l - корректирующий фактор для лиц из возрастной группы населения l при расчете дозы от радиоактивных выпадений (для взрослых $G_y = 1$, для детей $G_y = 1,4$ и для новорожденных $G_y = 1,8$).

 $R_S^{i,r}$ - коэффициент дозового преобразования при облучении i-го органа или ткани взрослого человека от радиоактивно загрязненной радионуклидом r ровной поверхности, $\frac{\Gamma p \cdot M^2}{E_{K,r}C}$ (таблица Б.3);

 λ' - постоянная распада радионуклида r, c^{-1} (таблица Б.4);

 V_d^r - скорость сухого осаждения радионуклида r, м/с (таблица В.6 приложения В).

Б.2.4 Расчет величины $D_{i \, inh}^{l}(x, \tau)$ проводится по формуле

$$D_{i,lnh}^{l}(x,\tau) = \sum_{r} Q^{r} \cdot U^{l} \cdot R_{inh}^{l,l,r} \cdot A_{\tau_{0}}^{r}(x,0,0),$$
 (Б.4)

 $R_{\it tot}^{i,l,r}$ - ожидаемая поглощенная доза в i-ом органе или ткани лица из возрастной группы населения l на единицу ингаляционного поступления радионуклида r, Гр/Бк (таблицы Б.5 - Б.8);

U' - скорость дыхания лица из возрастной группы l, м 3 /с (таблица Б.10).

Б.3 Расчет эффективной дозы

Б.3.1 Расчет эффективной дозы облучения лица из критической группы населения по возможным путям воздействия за первые τ суток после аварии на расстоянии x от источника проводится по формуле

$$E(x,\tau) = \max\{E'(x,\tau)\}, \ E'(x,\tau) = E'_A(x,\tau) + E'_S(x,\tau) + E'_{inh}(x,\tau),$$
 (B.5)

где $E'_A(x,\tau)$, $E'_S(x,\tau)$, $E'_{lnh}(x,\tau)$ - эффективная доза облучения лиц из возрастной группы населения l от радиоактивного облака, радиоактивных выпадений и от вдыхания радионуклидов за первые τ суток после аварии, соответственно.

Б.3.2 Расчет величины $E'_{A}(x,\tau)$ проводится по формуле

$$E'_{A}(x,\tau) = \sum_{r} C'_{\gamma} \cdot Q' \cdot R'_{A} \cdot A'_{\tau_{0}}(x,0,0),$$
 (B.6)

 R'_A - коэффициент дозового преобразования при облучении взрослого человека от облака для радионуклида $r, \frac{3e \cdot M^3}{6k \cdot c}$ (таблица Б.4).

Б.3.3 Расчет величины $E'_{S}(x,\tau)$ проводится по формуле

$$E_S^l(x,\tau) = \sum_r k_1 \cdot k_2 \cdot G_\gamma^l \cdot Q^r \cdot V_g^r \cdot R_S^r \cdot \frac{1 - \exp(-\lambda^r \cdot \tau)}{\lambda^r} \cdot A_{\tau_0}^r (x,0,0),$$
 (5.7)

 R_s^r - коэффициент дозового преобразования при облучении взрослого человека от радиоактивно загрязненной радионуклидом r ровной поверхности, $\frac{3a \cdot M^2}{E_{r,r}c}$ (таблица Б.4).

Б.3.4 Расчет величины $E_{inh}^l(x,\tau)$ проводится по формуле

$$E_{lnh}^{l}(x,\tau) = \sum_{r} Q^{r} \cdot U^{l} \cdot R_{lnh}^{l,r} \cdot A_{\tau_{0}}^{r}(x,0,0),$$
(B.8)

 $R_{\it inh}^{l,r}$ - ожидаемая эффективная доза облучения лица из возрастной группы населения l на единицу ингаляционного поступления радионуклида r, 3в/ \bar{b} к (таблицы \bar{b} .9);

U' - скорость дыхания лица из возрастной группы l, м³/с (таблица Б.10).

ТаблицаБ.2 - Коэффициенты дозового преобразования при облучении органов и тканей человека от радиоактивного облака, $R_A^{i,r}$ [14,15] (в единицах поглощенной дозы)

B Γ p·м³/(Бκ·c)

	,		,		J P M ((DKC)
Нуклид	Гонады	Легкие	Костный мозг	Щитовидная железа	Кожа
¹³³ Xe	1,61·10 ⁻¹⁵	1,32·10 ⁻¹⁵	1,07·10 ⁻¹⁵	1,51·10 ⁻¹⁵	4,97·10 ⁻¹⁵
¹³⁵ Xe	1,17·10 ⁻¹⁴	1,13-10 ⁻¹⁴	1,07-10-14	1,18·10 ⁻¹⁴	3,12·10 ⁻¹⁴
^{85m} Kr	7,31·10 ⁻¹⁵	7,04-10 ⁻¹⁵	6,43·10 ⁻¹⁵	7,33·10 ⁻¹⁵	2,24·10 ⁻¹⁴
⁸⁷ Kr	4,00.10-14	4,04-10 ⁻¹⁴	4,00.10-14	4,13·10 ⁻¹⁴	1,37·10 ⁻¹³
⁸⁸ Kr	9,90.10-14	1,01.10-13	1,00.10-13	1,03·10 ⁻¹³	1,35·10 ⁻¹³
²² Na	1,06·10 ⁻¹³	1,06·10 ⁻¹³	1,04·10 ⁻¹³	1,08·10 ⁻¹³	1,33·10 ⁻¹³
²⁴ Na	2,12·10 ⁻¹³	2,16·10 ⁻¹³	2,16·10 ⁻¹³	2,20.10-13	2,75·10 ⁻¹³
⁹⁵ Nb	3,66·10 ⁻¹⁴	3,65·10 ⁻¹⁴	3,56·10 ⁻¹⁴	3,75·10 ⁻¹⁴	4,30·10 ⁻¹⁴
⁹⁵ Zr	3,53·10 ⁻¹⁴	3,51·10 ⁻¹⁴	3,43·10 ⁻¹⁴	3,61·10 ⁻¹⁴	4,50.10-14
¹⁰³ Ru	2,19·10 ⁻¹⁴	2,18·10 ⁻¹⁴	2,10.10-14	2,24·10 ⁻¹⁴	2,77·10 ⁻¹⁴
¹⁰⁶ Ru/ ¹⁰⁶ Rh	1,01·10 ⁻¹⁴	1,01·10 ⁻¹⁴	9,75·10 ⁻¹⁵	1,03·10 ⁻¹⁴	1,09·10 ⁻¹³
¹³² Te	1,02·10 ⁻¹⁴	9,65·10 ⁻¹⁵	8,95·10 ⁻¹⁵	1,02·10 ⁻¹⁴	1,39·10 ⁻¹⁴
¹³¹ I	1,78·10 ⁻¹⁴	1,76·10 ⁻¹⁴	1,68·10 ⁻¹⁴	1,81·10 ⁻¹⁴	2,98·10 ⁻¹⁴
¹³² I	1,09·10 ⁻¹³	1,09-10 ⁻¹³	1,07·10 ⁻¹³	1,12·10 ⁻¹³	1,58·10 ⁻¹³
133 _I	2,87·10 ⁻¹⁴	2,86·10 ⁻¹⁴	2,77·10 ⁻¹⁴	2,93·10 ⁻¹⁴	5,83·10 ⁻¹⁴
134 _I	1,27·10 ⁻¹³	1,27·10 ⁻¹³	1,25·10 ⁻¹³	1,30·10 ⁻¹³	1,87·10 ⁻¹³
135I	7,77·10 ⁻¹⁴	7,84·10 ⁻¹⁴	7,76·10 ⁻¹⁴	8,01·10 ⁻¹⁴	1,11·10 ⁻¹³
¹³⁴ Cs	7,40.10-14	7,37·10 ⁻¹⁴	7,19·10 ⁻¹⁴	7,57·10 ⁻¹⁴	9,45·10 ⁻¹⁴
¹³⁷ Cs/ ^{137m} Ba	2,82·10 ⁻¹⁴	2,80·10 ⁻¹⁴	2,73·10 ⁻¹⁴	2,88·10 ⁻¹⁴	3,73·10 ⁻¹⁴
¹⁴⁰ Ba	8,41·10 ⁻¹⁵	8,27·10 ⁻¹⁵	7,93·10 ⁻¹⁵	8,53·10 ⁻¹⁵	2,52·10 ⁻¹⁴
¹⁴⁰ La	1,14·10 ⁻¹³	1,15.10 ⁻¹³	1,14.10 ⁻¹³	1,18-10 ⁻¹³	1,66·10 ⁻¹³
¹⁴¹ Ce	3,38·10 ⁻¹⁵	3,17·10 ⁻¹⁵	2,83·10 ⁻¹⁵	3,35·10 ⁻¹⁵	1,02·10 ⁻¹⁴
¹⁴⁴ Ce	8,53·10 ⁻¹⁶	7,69·10 ⁻¹⁶	6,68·10 ⁻¹⁶	8,33·10 ⁻¹⁶	2,93·10 ⁻¹⁵

ТаблицаБ.3 - Коэффициенты дозового преобразования при облучении органов и тканей человека от радиоактивных выпадений, $R_S^{i,r}[14,15]$ (в единицах поглощенной дозы)

В $\Gamma p \cdot M^2 / (Б \kappa \cdot c)$

Нуклид	Гонады	Легкие	Костный мозг	Щитовидная железа	Кожа
²² Na	2,20.10-15	2,02·10 ⁻¹⁵	2,06·10 ⁻¹⁵	2,05·10 ⁻¹⁵	2,60·10 ⁻¹⁵
²⁴ Na	3,73·10 ⁻¹⁵	3,49·10 ⁻¹⁵	3,60·10 ⁻¹⁵	3,29·10 ⁻¹⁵	1,03·10 ⁻¹⁴
⁹⁵ Nb	7,85·10 ⁻¹⁶	7,16·10 ⁻¹⁶	7,32·10 ⁻¹⁶	7,47·10 ⁻¹⁶	9,05·10 ⁻¹⁶
⁹⁵ Zr	7,59·10 ⁻¹⁶	6,92·10 ⁻¹⁶	7,06·10 ⁻¹⁶	7,22·10 ⁻¹⁶	8,91·10 ⁻¹⁶
¹⁰³ Ru	4,87·10 ⁻¹⁶	4,43·10 ⁻¹⁶	4,48·10 ⁻¹⁶	4,63·10 ⁻¹⁶	6,16·10 ⁻¹⁶
¹⁰⁶ Ru/ ¹⁰⁶ Rh	2,23·10 ⁻¹⁶	2,03·10 ⁻¹⁶	2,05·10 ⁻¹⁶	2,11·10 ⁻¹⁶	1,42·10 ⁻¹⁴
¹³² Te	2,45·10 ⁻¹⁶	2,06·10 ⁻¹⁶	2,01·10 ⁻¹⁶	2,15·10 ⁻¹⁶	2,99.10 ⁻¹⁶
131 _I	3,94·10 ⁻¹⁶	3,58·10 ⁻¹⁶	3,60·10 ⁻¹⁶	3,71·10 ⁻¹⁶	6,43·10 ⁻¹⁶
132 _I	2,32·10 ⁻¹⁵	2,12·10 ⁻¹⁵	2,17·10 ⁻¹⁵	2,19·10 ⁻¹⁵	$7,54\cdot10^{-15}$
133 _I	6,27·10 ⁻¹⁶	5,72·10 ⁻¹⁶	5,80·10 ⁻¹⁶	5,94·10 ⁻¹⁶	4,55·10 ⁻¹⁵
134 _I	2,64·10 ⁻¹⁵	2,42·10 ⁻¹⁵	2,48·10 ⁻¹⁵	2,48·10 ⁻¹⁵	9,85·10 ⁻¹⁵
135 _I	1,53·10 ⁻¹⁵	1,42·10 ⁻¹⁵	1,46·10 ⁻¹⁵	1,40·10 ⁻¹⁵	4,83·10 ⁻¹⁵
¹³⁴ Cs	1,60·10 ⁻¹⁵	1,46.10 ⁻¹⁵	1,48·10 ⁻¹⁵	1,52·10 ⁻¹⁵	2,17·10 ⁻¹⁵
¹³⁷ Cs/ ^{137m} Ba	6,17·10 ⁻¹⁶	5,61·10 ⁻¹⁶	5,70·10 ⁻¹⁶	5,87·10 ⁻¹⁶	1,65·10 ⁻¹⁵
¹⁴⁰ Ba	1,91·10 ⁻¹⁶	1,70.10	1,71·10 ⁻¹⁶	1,79·10 ⁻¹⁶	1,95·10 ⁻¹⁵
¹⁴⁰ La	2,24·10 ⁻¹⁵	2,08·10 ⁻¹⁵	2,13·10 ⁻¹⁵	2,03·10 ⁻¹⁵	8,24·10 ⁻¹⁵
¹⁴¹ Ce	7,71.10-17	6,80·10 ⁻¹⁷	6,48·10 ⁻¹⁷	6,98·10 ⁻¹⁷	1,32·10 ⁻¹⁶
¹⁴⁴ Ce	2,17·10 ⁻¹⁷	1,80·10 ⁻¹⁷	1,64·10 ⁻¹⁷	1,90·10 ⁻¹⁷	2,61·10 ⁻¹⁷

ТаблицаБ.4 - Коэффициенты дозового преобразования для внешнего облучения человека (в терминах эффективной дозы) [14,15]

Шименти	Постоянная	Период	выпадения R_S^r ,	облако R'_A ,
Нуклид	распада, с ⁻¹	полураспада	$3\text{B}\cdot\text{m}^2/(\text{Б}\kappa\cdot\text{c})$	3в·м ³ /(Бк·с)
¹³³ Xe	1,5·10 ⁻⁶	5,24 сут	-	1,6·10 ⁻¹⁵
¹³⁵ Xe	2,1·10 ⁻⁵	9,1 ч	-	1,2·10 ⁻¹⁴
85mKr	4,3·10 ⁻⁵	4,48 ч	-	7,5·10 ⁻¹⁵
⁸⁷ Kr	1,5·10 ⁻⁴	1,27 ч	-	4,1·10 ⁻¹⁴
⁸⁸ Kr	6,8·10 ⁻⁵	2,84 ч	-	1,0.10-13
²² Na	1,0·10 ⁻⁸	2,6 лет	2,1·10 ⁻¹⁵	1,1.10-13
²⁴ Na	1,3·10 ⁻⁵	15 ч	3,6·10 ⁻¹⁵	2,2·10 ⁻¹³
⁹⁵ Nb	$2,3\cdot10^{-7}$	35,1 сут	7,5·10 ⁻¹⁶	3,7·10 ⁻¹⁴
⁹⁵ Zr	1,3·10 ⁻⁷	64,0 сут	7,2·10 ⁻¹⁶	3,6·10 ⁻¹⁴
¹⁰³ Ru	2,0·10 ⁻⁷	39,3 сут	4,6·10 ⁻¹⁶	2,3·10 ⁻¹⁴
¹⁰⁶ Ru/ ¹⁰⁶ Rh	2,2·10 ⁻⁸	1,01 лет	2,1·10 ⁻¹⁶	1,0.10-14
¹³² Te	2,5·10 ⁻⁶	3,26 сут	2,3·10 ⁻¹⁶	1,0.10-14
131 _I	$1,0.10^{-6}$	8,04 сут	3,8·10 ⁻¹⁶	1,8·10 ⁻¹⁴
132 _I	8,4·10 ⁻⁵	2,28 ч	2,2·10 ⁻¹⁵	1,1·10 ⁻¹³
133 _I	9,3·10 ⁻⁶	20,8 ч	6,0·10 ⁻¹⁶	2,9·10 ⁻¹⁴
¹³⁴ I	2,2·10 ⁻⁴	52,6 мин	2,5·10 ⁻¹⁵	1,3·10 ⁻¹³
¹³⁵ I	2,9·10 ⁻⁵	6,61 ч	1,5·10 ⁻¹⁵	8,0.10-14
¹³⁴ Cs	1,1·10 ⁻⁸	2,06 лет	1,5·10 ⁻¹⁵	7,6·10 ⁻¹⁴
¹³⁷ Cs/ ^{137m} Ba	7,3·10 ⁻¹⁰	30 лет	5,9·10 ⁻¹⁶	2,9·10 ⁻¹⁴
¹⁴⁰ Ba	6,3·10 ⁻⁷	12,7 сут	1,8-10 ⁻¹⁶	8,6·10 ⁻¹⁵
¹⁴⁰ La	4,8 ·10 ⁻⁶	1,68 сут	2,2-10 ⁻¹⁵	1,2·10 ⁻¹³
¹⁴¹ Ce	2,5·10 ⁻⁷	32,5 сут	7,4·10 ⁻¹⁷	3,4·10 ⁻¹⁵
¹⁴⁴ Ce	2,8·10 ⁻⁸	284 сут	2,0.10-17	8,5·10 ⁻¹⁶

Таблица Б.5 - Ожидаемая поглощенная доза для различных возрастных групп на костный мозг на единицу активности ингаляционного поступления [13]

В Гр/Бк

		≤1 r.	1-2 г.	2-7 лет	7-12 лет	12-17 лет	>17 лет
Ради	онуклид	3 месяца	1 год	5 лет	10 лет	15 лет	Взрослый
-	⁹⁰ Sr	3,1·10 ⁻⁷	1,2·10 ⁻⁷	7,7·10-7	1,0.10-7	1,3·10-7	7,0.10-8
	⁹⁵ Zr	1,2.10-8	1,0.10-8	5,7·10 ⁻⁹	3,7·10 ⁻⁹	2,7·10 ⁻⁹	2,4·10 ⁻⁹
9	⁰⁵ Nb	2,5·10 ⁻⁹	1,7·10 ⁻⁹	9,4·10 ⁻¹⁰	6,0.10-10	4,6.10-10	4,1·10 ⁻¹⁰
	⁰³ Ru	1,2·10 ⁻⁹	8,8.10-10	5,1·10 ⁻¹⁰	3,5·10 ⁻¹⁰	2,7·10 ⁻¹⁰	2,5·10 ⁻¹⁰
1	⁰⁶ Ru	2,1·10 ⁻⁸	1,5·10 ⁻⁸	8,1·10-9	4,8·10 ⁻⁹	3,1·10-9	2,8·10-9
I	³² Te	1,4·10 ⁻⁹	8,5·10 ⁻¹⁰	4,9·10 ⁻¹⁰	3,6.10-10	2,5·10 ⁻¹⁰	2,2·10 ⁻¹⁰
	аэрозоли	2,2·10 ⁻¹⁰	1,6.10-10	8,4·10-11	6,0.10-11	4,0.10-11	3,7·10 ⁻¹¹
¹³¹ I	I ₂	4,7·10 ⁻¹⁰	3,4·10 ⁻¹⁰	2,0.10-10	1,4·10 ⁻¹⁰	1,1.10-10	9,3·10 ⁻¹¹
	CH ₃ I	3,6·10 ⁻¹⁰	2,6.10-10	1,5·10 ⁻¹⁰	1,1.10-10	8,1·10 ⁻¹¹	7,1·10 ⁻¹¹
	аэрозоли	8,6·10 ⁻¹¹	6,1·10 ⁻¹¹	3,0·10 ⁻¹¹	2,1·10 ⁻¹¹	1,3·10 ⁻¹¹	1,1.10-11
¹³² I	I ₂	1,8·10 ⁻¹⁰	1,2.10-10	7,0.10-11	4,7·10 ⁻¹¹	3,1·10 ⁻¹¹	2,7·10 ⁻¹¹
	CH ₃ I	1,4·10 ⁻¹⁰	9,9·10 ⁻¹¹	5,6·10 ⁻¹¹	3,7·10 ⁻¹¹	2,4·10 ⁻¹¹	2,0.10-11
	аэрозоли	1,6.10-10	1,1.10-10	5,3·10 ⁻¹¹	3,5·10 ⁻¹¹	2,1·10 ⁻¹¹	1,8·10-11
133 _I	I ₂	3,5·10 ⁻¹⁰	2,3·10 ⁻¹⁰	1,2·10 ⁻¹⁰	8,0.10-11	5,3·10 ⁻¹¹	4,4.10-11
	CH ₃ I	2,7·10 ⁻¹⁰	1,8·10 ⁻¹⁰	9,4·10 ⁻¹¹	6,0.10-11	3,9·10 ⁻¹¹	3,3·10 ⁻¹¹
	аэрозоли	4,1·10 ⁻¹¹	2,9·10 ⁻¹¹	1,5·10 ⁻¹¹	1,0.10-11	6,2·10 ⁻¹²	5,5·10 ⁻¹²
134 _I	I ₂	8,8.10-11	6,0.10-11	3,4·10 ⁻¹¹	2,3·10-11	1,5·10 ⁻¹¹	1,3·10 ⁻¹¹
	CH ₃ I	7,9·10 ⁻¹¹	5,3·10 ⁻¹¹	3,0.10-11	1,9·10 ⁻¹¹	1,3·10 ⁻¹¹	1,1·10 ⁻¹¹
	аэрозоли	1,3·10 ⁻¹⁰	8,9·10 ⁻¹¹	4,5·10-11	3,1·10 ⁻¹¹	1,9·10 ⁻¹¹	1,7·10 ⁻¹¹
135 _I	I ₂	2,6·10 ⁻¹⁰	1,8·10 ⁻¹⁰	1,0.10-10	6,8·10 ⁻¹¹	4,6·10 ⁻¹¹	3,8·10 ⁻¹¹
	CH ₃ I	2,0.10-10	1,4·10 ⁻¹⁰	7,7·10 ⁻¹¹	5,1·10 ⁻¹¹	3,4·10 ⁻¹¹	2,8·10 ⁻¹¹
¹³⁴ Cs		8,4·10 ⁻⁹	5,2·10 ⁻⁹	4,0.10-9	4,7·10 ⁻⁹	5,9·10 ⁻⁹	6,3·10-9
¹³⁷ Cs		6,8·10 ⁻⁹	4,0.10-9	2,9·10 ⁻⁹	3,3·10 ⁻⁹	4,2·10 ⁻⁹	4,4·10 ⁻⁹
¹⁴⁰ Ba		1,3·10 ⁻⁸	3,3·10 ⁻⁹	1,6·10 ⁻⁹	1,4·10 ⁻⁹	1,3·10 ⁻⁹	6,4·10 ⁻¹⁰
ł	⁴¹ Ce	8,1·10 ⁻⁹	3,9·10 ⁻⁹	1,8·10-9	7,8·10 ⁻¹⁰	4,8·10 ⁻¹⁰	2,9·10 ⁻¹⁰
1	⁴⁴ Ce	5,1·10 ⁻⁷	3,2·10 ⁻⁷	1,7·10 ⁻⁷	7,0.10-8	4,6·10 ⁻⁸	2,8·10 ⁻⁸

ТаблицаБ.6 - Ожидаемая поглощенная доза для различных возрастных групп на ЩЖ на единицу активности ингаляционного поступления [13]

В Гр/Бк

		≤1 r.	1-2 г.	2-7 лет	7-12 лет	12-17 лет	В 1 р/вк >17 лет
Радис	онуклид						
	10	3 месяца	1 год	5 лет	10 лет	15 лет	Взрослый
,	⁹⁰ Sr	2,7·10 ⁻⁹	1,6·10 ⁻⁹	8,2·10 ⁻¹⁰	4,9-10 ⁻¹⁰	3,3·10 ⁻¹⁰	2,8·10 ⁻¹⁰
g	⁹⁵ Zr	2,9·10 ⁻⁹	2,5·10 ⁻⁹	1,5·10 ⁻⁹	9,8·10 ⁻¹⁰	7,2·10 ⁻¹⁰	6,4·10 ⁻¹⁰
9	⁵ Nb	1,2·10 ⁻⁹	1,0.10-9	6,1·10 ⁻¹⁰	3,8·10 ⁻¹⁰	2,6·10 ⁻¹⁰	2,2·10 ⁻¹⁰
10	³ Ru	1,4·10 ⁻⁹	1,0·10 ⁻⁹	5,8·10 ⁻¹⁰	3,4·10 ⁻¹⁰	2,2·10 ⁻¹⁰	1,9·10 ⁻¹⁰
1	³⁶ Ru	2,2·10 ⁻⁸	1,5·10 ⁻⁸	8,2·10 ⁻⁹	4,8·10 ⁻⁹	3,1·10-9	2,7·10 ⁻⁹
1.	³² Te	8,7·10 ⁻⁸	5,3·10 ⁻⁸	2,4·10 ⁻⁸	1,1.10-8	6,6·10 ⁻⁹	4,3·10 ⁻⁹
	аэрозоли	1,4·10 ⁻⁶	1,4·10 ⁻⁶	7,3·10 ⁻⁷	3,7·10 ⁻⁷	2,2·10 ⁻⁷	1,5·10 ⁻⁷
131I	I ₂	3,3·10 ⁻⁶	3,2·10 ⁻⁶	1,9·10 ⁻⁶	9,5·10-7	6,2·10 ⁻⁷	3,9·10 ⁻⁷
	CH ₃ I	2,6·10 ⁻⁶	2,5·10 ⁻⁶	1,5·10 ⁻⁶	7,4·10-7	4,8·10 ⁻⁷	3,1·10 ⁻⁷
	аэрозоли	1,8·10 ⁻⁸	1,6·10 ⁻⁸	7,6·10 ⁻⁹	3,4·10 ⁻⁹	2,1·10 ⁻⁹	1,4·10 ⁻⁹
¹³² I	I ₂	4,3·10 ⁻⁸	3,8·10-8	2,0.10-8	8,9·10 ⁻⁹	5,8·10 ⁻⁹	3,6·10 ⁻⁹
	CH ₃ I	3,7·10 ⁻⁸	3,3·10 ⁻⁸	1,7·10 ⁻⁸	7,7·10 ⁻⁹	5,0·10 ⁻⁹	3,2·10 ⁻⁹
	аэрозоли	3,8·10 ⁻⁷	3,5·10-7	1,6·10 ⁻⁷	7,4·10 ⁻⁸	4,4.10-8	2,8·10 ⁻⁸
133 _I	I ₂	8,9·10 ⁻⁷	8,0.10-7	4,2·10 ⁻⁷	1,9·10 ⁻⁷	1,2·10-7	7,6·10 ⁻⁸
	CH ₃ I	7,0.10-7	6,3·10 ⁻⁷	3,3·10 ⁻⁷	1,5·10 ⁻⁷	9,6·10 ⁻⁸	6,0·10 ⁻⁸
	аэрозоли	3,4·10 ⁻⁹	3,1·10 ⁻⁹	1,4·10 ⁻⁹	6,5·10 ⁻¹⁰	3,9.10 ⁻¹⁰	2,6·10 ⁻¹⁰
¹³⁴ I	I ₂	8,2·10 ⁻⁹	7,3·10 ⁻⁹	3,8·10 ⁻⁹	1,7·10 ⁻⁹	1,1.10-9	7,0·10 ⁻¹⁰
	CH ₃ I	8,2·10 ⁻⁹	7,3·10 ⁻⁹	3,8·10 ⁻⁹	1,7·10 ⁻⁹	1,1.10-9	7,0.10-10
	аэрозоли	7,7·10 ⁻⁸	7,0.10-8	3,3·10 ⁻⁸	1,5·10 ⁻⁸	8,8·10-9	5,7·10 ⁻⁹
¹³⁵ I	I ₂	1,8·10 ⁻⁷	1,6·10 ⁻⁷	8,4·10 ⁻⁸	3,8·10 ⁻⁸	2,4·10 ⁻⁸	1,5·10 ⁻⁸
	CH ₃ I	1,5·10 ⁻⁷	1,3·10 ⁻⁷	6,8·10 ⁻⁸	3,1·10 ⁻⁸	2,0.10-8	1,3·10-8
¹³⁴ Cs		1,0.10-8	6,3·10 ⁻⁹	4,7·10 ⁻⁹	5,1·10 ⁻⁹	6,1·10 ⁻⁹	6,3·10-9
¹³⁷ Cs		7,5·10 ⁻⁹	4,4.10-9	3,2·10 ⁻⁹	3,5·10 ⁻⁹	4,2·10 ⁻⁹	4,4·10 ⁻⁹
1	¹⁰ Ba	2,0.10-9	1,4·10 ⁻⁹	7,9·10 ⁻¹⁰	5,0.10-10	3,6·10 ⁻¹⁰	2,7·10 ⁻¹⁰
1	¹¹ Ce	3,0.10-10	2,3·10 ⁻¹⁰	1,2·10 ⁻¹⁰	7,2·10 ⁻¹¹	4,6·10 ⁻¹¹	3,8·10 ⁻¹¹
14	¹⁴ Ce	1,1·10 ⁻⁸	9,0·10 ⁻⁹	5,0·10 ⁻⁹	2,9·10 ⁻⁹	2,0·10 ⁻⁹	1,8·10 ⁻⁹

ТаблицаБ.7 - Ожидаемая поглощенная доза для различных возрастных групп на легкие на единицу активности ингаляционного поступления [13]

В Гр/Бк

		≤1 r.	1-2 г.	2-7 лет	7-12 лет	12-17 лет	DI D/DK >17 лет
Ради	онуклид						>17 лет
	00	3 месяца	1 год	5 лет	10 лет	15 лет	Взрослый
	⁹⁰ Sr	8,2·10 ⁻⁷	7,0·10 ⁻⁷	4,3·10 ⁻⁷	2,9·10 ⁻⁷	2,3·10-7	2,1·10 ⁻⁷
	⁹⁵ Zr	1,1·10 ⁻⁷	9,1·10 ⁻⁸	5,7·10 ⁻⁸	4,2·10 ⁻⁸	3,9·10 ⁻⁸	3,1·10 ⁻⁸
9	⁷⁵ Nb	3,6·10 ⁻⁸	2,8·10 ⁻⁸	1,8·10 ⁻⁸	1,3·10 ⁻⁸	1,2·10 ⁻⁸	9,5·10 ⁻⁹
	⁰³ Ru	6,9.10-8	5,3·10 ⁻⁸	3,3·10 ⁻⁸	2,4·10 ⁻⁸	2,2·10 ⁻⁸	1,8·10 ⁻⁸
	⁰⁶ Ru	8,4·10 ⁻⁷	7,1·10 ⁻⁷	4,2·10 ⁻⁷	2,8·10 ⁻⁷	2,2·10 ⁻⁷	2,0.10-7
Т	³² Te	4,0.10-8	3,0.10-8	1,9·10 ⁻⁸	1,4·10 ⁻⁸	1,3·10 ⁻⁸	1,0.10-8
	аэрозоли	3,9·10 ⁻¹⁰	2,9·10 ⁻¹⁰	1,6.10-10	1,1.10-10	7,3·10 ⁻¹¹	6,0.10-11
131 _I	I ₂	2,7·10 ⁻⁹	2,1·10 ⁻⁹	1,4·10 ⁻⁹	1,0.10-9	7,4·10 ⁻¹⁰	6,9·10 ⁻¹⁰
	CH ₃ I	5,1·10 ⁻¹⁰	3,8·10 ⁻¹⁰	2,3·10 ⁻¹⁰	1,5.10-10	8,8·10 ⁻¹¹	7,2·10 ⁻¹¹
	аэрозоли	2,0.10-10	1,5.10-10	8,0.10-11	5,6·10 ⁻¹¹	4,5·10-11	3,6·10 ⁻¹¹
¹³² I	I_2	2,2·10 ⁻⁹	1,7·10 ⁻⁹	1,1·10 ⁻⁹	8,5·10 ⁻¹⁰	6,4·10 ⁻¹⁰	6,0.10-10
	CH ₃ I	1,6·10 ⁻¹⁰	1,1.10-10	5,6·10 ⁻¹¹	3,6·10 ⁻¹¹	2,3·10 ⁻¹¹	1,9·10 ⁻¹¹
	аэрозоли	2,8·10 ⁻¹⁰	2,0.10-10	1,1.10-10	7,1·10 ⁻¹¹	5,3·10 ⁻¹¹	4,2·10 ⁻¹¹
133 _I	I ₂	2,5·10 ⁻⁹	2,0.10-9	1,3·10 ⁻⁹	9,3·10 ⁻¹⁰	7,0.10-10	6,5·10 ⁻¹⁰
	CH ₃ I	3,0.10-10	2,0.10-10	1,1.10-10	6,4·10 ⁻¹¹	3,9·10 ⁻¹¹	3,2·10 ⁻¹¹
	аэрозоли	1,4·10 ⁻¹⁰	1,1.10-10	6,1·10 ⁻¹¹	4,4·10 ⁻¹¹	3,7·10 ⁻¹¹	3,0·10 ⁻¹¹
¹³⁴ I	I ₂	1,9·10 ⁻⁹	1,5·10-9	1,0.10-9	7,5·10 ⁻¹⁰	5,7·10 ⁻¹⁰	5,3·10 ⁻¹⁰
	CH ₃ I	8,3·10 ⁻¹¹	5,6·10 ⁻¹¹	3,0.10-11	1,9·10 ⁻¹¹	1,2·10-11	9,9·10 ⁻¹²
	аэрозоли	2,4·10 ⁻¹⁰	1,8.10-10	9,5·10 ⁻¹¹	6,6·10 ⁻¹¹	5,0.10-11	4,0.10-11
135 _I	I ₂	2,3·10 ⁻⁹	1,8·10 ⁻⁹	1,2·10 ⁻⁹	8,9.10-10	6,7·10 ⁻¹⁰	6,2·10 ⁻¹⁰
	CH ₃ I	2,2·10 ⁻¹⁰	1,5·10 ⁻¹⁰	8,2·10 ⁻¹¹	5,2·10 ⁻¹¹	3,3·10 ⁻¹¹	2,7·10 ⁻¹¹
ľ	³⁴ Cs	9,0·10 ⁻⁹	5,5·10 ⁻⁹	4,1·10 ⁻⁹	4,6·10 ⁻⁹	5,8·10 ⁻⁹	6,0·10 ⁻⁹
¹³⁷ Cs		7,1·10 ⁻⁹	4,2·10 ⁻⁹	3,0·10 ⁻⁹	3,3·10 ⁻⁹	4,2·10 ⁻⁹	4,3·10 ⁻⁹
¹⁴⁰ Ba		1,4·10 ⁻⁷	1,1.10-7	6,6·10 ⁻⁸	4,8·10 ⁻⁸	4,3·10 ⁻⁸	3,5·10 ⁻⁸
	⁴¹ Ce	8,7·10 ⁻⁸	6,9·10 ⁻⁸	4,3·10 ⁻⁸	3,2·10 ⁻⁸	3,1·10 ⁻⁸	2,4·10 ⁻⁸
	⁴⁴ Ce	7,7·10 ⁻⁷	6,5·10 ⁻⁷	3,9·10 ⁻⁷	2,6·10 ⁻⁷	2,1·10 ⁻⁷	1,9·10 ⁻⁷

ТаблицаБ.8 - Ожидаемая поглощенная доза для различных возрастных групп на кожу на единицу активности ингаляционного поступления [13]

Β Γυ/Бκ

_		≤1 r.	1-2 г.	2-7 лет	7-12 лет	12-17 лет	В 1 р/БК >17 лет
Радио	энуклид	3 месяца	1 год	5 лет	10 лет	15 лет	Взрослый
ļ	⁹⁰ Sr	2,7·10 ⁻⁹	1,6·10 ⁻⁹	8,2·10 ⁻¹⁰	4,9·10 ⁻¹⁰	3,3·10 ⁻¹⁰	2,8·10 ⁻¹⁰
	⁹⁵ Zr	1,9·10 ⁻⁹	1,7·10 ⁻⁹	9,6·10 ⁻¹⁰	6,2·10 ⁻¹⁰	4,4.10-10	3,9·10 ⁻¹⁰
9	⁵ Nb	8,2·10 ⁻¹⁰	6,5·10 ⁻¹⁰	3,5·10 ⁻¹⁰	2,3·10 ⁻¹⁰	1,6.10-10	1,4·10 ⁻¹⁰
10	³ Ru	9,4·10 ⁻¹⁰	6,3·10 ⁻¹⁰	3,4·10 ⁻¹⁰	2,0.10-10	1,4·10 ⁻¹⁰	1,2·10 ⁻¹⁰
10	⁰⁶ Ru	2,1.10-8	1,5·10 ⁻⁸	7,8·10 ⁻⁹	4,6·10 ⁻⁹	3,0.10-9	2,6·10 ⁻⁹
T:	³² Te	7,9·10 ⁻¹⁰	5,0.10-10	2,5·10 ⁻¹⁰	1,6·10 ⁻¹⁰	1,0.10-10	8,7·10 ⁻¹¹
	аэрозоли	2,0.10-10	1,5·10 ⁻¹⁰	6,8·10 ⁻¹¹	4,7·10 ⁻¹¹	2,9·10 ⁻¹¹	2,5·10-11
¹³¹ I	I ₂	4,4·10 ⁻¹⁰	3,1·10 ⁻¹⁰	1,7·10 ⁻¹⁰	1,1.10-10	7,5·10 ⁻¹¹	6,4·10 ⁻¹¹
	CH ₃ I	3,4·10 ⁻¹⁰	2,4·10 ⁻¹⁰	1,3·10 ⁻¹⁰	8,6.10-11	5,8·10 ⁻¹¹	4,9.10-11
	аэрозоли	7,8·10 ⁻¹¹	5,4·10 ⁻¹¹	2,5·10 ⁻¹¹	1,6·10 ⁻¹¹	9,3·10 ⁻¹²	8,2·10 ⁻¹²
132 _I	I ₂	1,6·10 ⁻¹⁰	1,1.10-10	5,7·10 ⁻¹¹	3,6·10 ⁻¹¹	2,3·10 ⁻¹¹	1,9·10-11
	CH ₃ I	1,3·10 ⁻¹⁰	8,7·10 ⁻¹¹	4,6·10-11	2,8·10-11	1,8·10-11	1,5·10-11
	аэрозоли	1,5·10 ⁻¹⁰	1,0.10-10	4,6·10 ⁻¹¹	2,9·10 ⁻¹¹	1,7·10-11	1,4·10 ⁻¹¹
133 _I	I ₂	3,3·10 ⁻¹⁰	2,2.10-10	1,1.10-10	6,7·10-11	4,2·10 ⁻¹¹	3,5·10-11
	CH ₃ I	2,5·10 ⁻¹⁰	1,6·10 ⁻¹⁰	8,4·10 ⁻¹¹	5,1·10 ⁻¹¹	3,2·10-11	2,6·10-11
	аэрозоли	3,8·10-11	2,6·10 ⁻¹¹	1,2·10-11	7,7·10 ⁻¹²	4,5·10 ⁻¹²	4,0.10-12
134 _I	I ₂	8,0.10-11	5,3·10 ⁻¹¹	2,8·10 ⁻¹¹	1,7·10-11	1,1.10-11	9,4·10 ⁻¹²
E	CH ₃ I	7,1·10 ⁻¹¹	4,7·10-11	2,5·10 ⁻¹¹	1,5·10-11	9,6·10 ⁻¹²	8,1.10-12
	аэрозоли	1,2·10 ⁻¹⁰	8,1·10 ⁻¹¹	3,8·10-11	2,4·10 ⁻¹¹	1,4·10-11	1,3·10-11
135 _I	I ₂	2,4·10 ⁻¹⁰	1,6·10 ⁻¹⁰	8,6·10 ⁻¹¹	5,4·10 ⁻¹¹	3,4·10 ⁻¹¹	2,9·10 ⁻¹¹
	CH ₃ I	1,8.10-10	1,2·10 ⁻¹⁰	6,5·10 ⁻¹¹	4,1·10-11	2,6·10 ⁻¹¹	2,2·10-11
¹³⁴ Cs		7,0·10 ⁻⁹	4,2·10 ⁻⁹	3,1·10 ⁻⁹	3,3·10 ⁻⁹	4,1·10 ⁻⁹	4,4·10 ⁻⁹
¹³⁷ Cs		6,3·10 ⁻⁹	3,6·10 ⁻⁹	2,6·10 ⁻⁹	2,8·10 ⁻⁹	3,4·10 ⁻⁹	3,6·10 ⁻⁹
¹⁴⁰ Ba		1,5·10 ⁻⁹	8,1.10-10	4,4·10 ⁻¹⁰	3,1·10 ⁻¹⁰	2,2·10 ⁻¹⁰	1,6·10 ⁻¹⁰
l.	¹¹ Ce	2,3·10 ⁻¹⁰	1,7·10 ⁻¹⁰	8,5·10 ⁻¹¹	5,1·10 ⁻¹¹	3,3·10 ⁻¹¹	2,9·10 ⁻¹¹
14	¹⁴ Ce	1,1.10-8	8,9·10 ⁻⁹	5,0·10 ⁻⁹	2,9·10 ⁻⁹	2,0.10-9	1,7·10 ⁻⁹

ТаблицаБ.9 - Ожидаемая эффективная доза для различных возрастных групп на единицу активности ингаляционного поступления [13]

В Зв/Бк

		≤1 r.	1-2 г.	2-7 лет	7-12 лет	12-17 лет	>17 лет
Ради	онуклид	3 месяца	1 год	5 лет	10 лет	15 лет	Взрослый
	⁹⁰ Sr	1,5·10 ⁻⁷			5,1·10 ⁻⁸	5,0.10-8	3,6·10 ⁻⁸
			1,1·10 ⁻⁷	6,5·10 ⁻⁸			
	⁹⁵ Zr	2,0.10-8	1,6·10 ⁻⁸	9,7·10 ⁻⁹	6,8·10 ⁻⁹	5,9·10 ⁻⁹	4,8·10 ⁻⁹
	⁵ Nb	6,8·10-9	5,2·10 ⁻⁹	3,1·10 ⁻⁹	2,2·10 ⁻⁹	1,9·10-9	1,5·10 ⁻⁹
	⁰³ Ru	1,1.10-8	8,4·10 ⁻⁹	5,0.10-9	3,5·10 ⁻⁹	3,0.10-9	2,4·10-9
10	⁰⁶ Ru	1,4·10 ⁻⁷	1,1.10-7	6,4·10 ⁻⁸	4,1.10-8	3,1·10 ⁻⁸	2,8·10 ⁻⁸
1.	³² Te	1,6·10 ⁻⁸	1,3·10 ⁻⁸	6,4·10 ⁻⁹	4,0·10 ⁻⁹	2,6·10-9	2,0·10 ⁻⁹
	аэрозоли	7,2·10 ⁻⁸	7,2·10 ⁻⁸	3,7.10-8	1,9.10-8	1,1.10-8	7,4·10 ⁻⁹
¹³¹ I	I ₂	1,7·10 ⁻⁷	1,6·10 ⁻⁷	9,4·10 ⁻⁸	4,8.10-8	3,1·10 ⁻⁸	2,0.10-8
	CH ₃ I	1,3·10 ⁻⁷	1,3·10 ⁻⁷	7,4·10 ⁻⁸	3,7·10 ⁻⁸	2,4·10 ⁻⁸	1,5·10 ⁻⁸
	аэрозоли	1,1.10-9	9,6·10 ⁻¹⁰	4,5·10 ⁻¹⁰	2,2.10-10	1,3·10 ⁻¹⁰	9,4·10 ⁻¹¹
132 _I	I_2	2,8·10-9	2,3·10 ⁻⁹	1,3·10 ⁻⁹	6,4·10 ⁻¹⁰	4,3·10 ⁻¹⁰	3,1·10 ⁻¹⁰
	CH ₃ I	2,0.10-9	1,8·10-9	9,5.10-10	4,4·10 ⁻¹⁰	2,9·10 ⁻¹⁰	1,9·10 ⁻¹⁰
	аэрозоли	1,9.10-8	1,8.10-8	8,3·10-9	3,8·10 ⁻⁹	2,2·10-9	1,5·10 ⁻⁹
¹³³ I	I ₂	4,5·10-8	4,1.10-8	2,1.10-8	9,7·10 ⁻⁹	6,3·10-9	4,0·10 ⁻⁹
	CH ₃ I	3,5·10 ⁻⁸	3,2·10 ⁻⁸	1,7.10-8	7,6·10 ⁻⁹	4,9·10 ⁻⁹	3,1·10-9
	аэрозоли	4,6·10 ⁻¹⁰	3,7·10 ⁻¹⁰	1,8-10-10	9,7·10 ⁻¹¹	5,9·10 ⁻¹¹	4,5·10 ⁻¹¹
¹³⁴ I	I ₂	8,7·10 ⁻¹⁰	6,9·10 ⁻¹⁰	3,9·10 ⁻¹⁰	2,2·10 ⁻¹⁰	1,6·10 ⁻¹⁰	1,5·10 ⁻¹⁰
	CH ₃ I	5,1·10 ⁻¹⁰	4,3·10 ⁻¹⁰	2,3·10 ⁻¹⁰	1,1.10-10	7,4·10 ⁻¹¹	5,0.10-11
	аэрозоли	4,1·10 ⁻⁹	3,7·10 ⁻⁹	1,7·10 ⁻⁹	7,9.10 ⁻¹⁰	4,8·10 ⁻¹⁰	3,2·10 ⁻¹⁰
135 I	I ₂	9,7·10 ⁻⁹	8,5·10 ⁻⁹	4,5·10-9	2,1·10 ⁻⁹	1,4·10 ⁻⁹	9,2·10 ⁻¹⁰
	CH ₃ I	7,5·10-9	6,7·10 ⁻⁹	3,5·10 ⁻⁹	1,6·10-9	1,1·10 ⁻⁹	6,8·10 ⁻¹⁰
¹³⁴ Cs		1,1.10-8	7,3·10 ⁻⁹	5,2·10-9	5,3·10-9	6,3·10 ⁻⁹	6,6·10 ⁻⁹
¹³⁷ Cs		8,8·10 ⁻⁹	5,4·10 ⁻⁹	3,6·10-9	3,7·10 ⁻⁹	4,4·10 ⁻⁹	4,6·10-9
¹⁴⁰ Ba		2,7·10 ⁻⁸	2,0.10-8	1,1.10-8	7,6·10 ⁻⁹	6,2·10 ⁻⁹	5,1·10 ⁻⁹
i	⁴¹ Ce	1,4·10 ⁻⁸	1,1·10 ⁻⁸	6,3·10-9	4,6·10-9	4,1·10 ⁻⁹	3,2·10 ⁻⁹
1	⁴⁴ Ce	1,9·10 ⁻⁷	1,6·10 ⁻⁷	8,8.10-8	5,5·10 ⁻⁸	4,1·10 ⁻⁸	3,6·10 ⁻⁸

Т а б л и ц а Б.10 - Скорость дыхания U^{l} лиц из различных возрастных групп населения

 $B m^3/c$

До 1 года	1-2 года	2-7 лет	7-12 лет	12-17 лет	> 17 лет
V - 200	Среднегодо	вая скорость	дыхания (Н	РБ-99/2009)	
3,2·10 ⁻⁵	6,0.10-5	1,0.10-4	1,7·10 ⁻⁴	2,3.10-4	2,6.10-4
Скорост	ь дыхания пр	и легкой дея	тельности (д	невное время) [16,17]
3,2·10 ⁻⁵	9,7·10 ⁻⁵	1,6.10-4	3,1.10-4	3,8·10 ⁻⁴	4,1.10-4
	Скорость дь	хания в пок	ое (ночное вр	ремя) [16,17]	
3,2·10 ⁻⁵	4,2.10-5	6,7.10-5	8,6.10-5	1,2.10-4	1,3.10-4

Приложение В (обязательное)

Кратковременный метеорологический фактор разбавления примеси в атмосфере и выведения ее на подстилающую поверхность

В.1 Кратковременный метеорологический фактор разбавления

В.1.1 Исходные данные

Для вычисления кратковременного метеорологического фактора разбавления примеси в атмосфере необходима следующая исходная информация [18]:

- 1) метеоусловия в районе источника
- скорость ветра на флюгере u_{10} ;
- категория устойчивости атмосферы по классификации Тернера (Т-ИЭМ);
- интенсивность и тип атмосферных осадков;
- продолжительность стационарных метеоусловий τ_{cm} (в среднем можно принять 3 ч);
 - 2) тип подстилающей поверхности;
 - 3) характеристики источника
 - время действия источника τ_0 ;
- высота выброса точечного источника h или для объемного источника высоты нижней h_{min} и верхней h_{max} границ и диаметр d_s (размер источника по горизонтали);
 - радионуклидный состав.

При штилевых условиях в расчетах полагается, что скорость ветра на флюгере u_{I0} равна 0,5 м/с.

В.1.2 Расчет кратковременного метеорологического фактора разбавления

Кратковременный метеорологический фактор разбавления $A_{\tau_o}^r(x,y,z)$ определяется как нормированная на мощность выброса активность радионуклида r, поступившего в атмосферу от точечного источника конечного времени действия τ_0 . На практике кратковременный

метеорологический фактор разбавления для источника конечного времени действия τ_0 при использовании гауссовой модели распространения примеси в атмосфере рассчитывается, как метеорологический фактор разбавления для непрерывно действующего источника, считая, что в точке (x, y) примесь появляется в момент времени x/u_h и сохраняется в течении времени действия источника τ_0 . Для источника конечного времени действия τ_0 (10 мин $<\tau_0 \le \tau_{cm}$) вычисление приземного метеорологического фактора разбавления проводится по формуле

$$A_{\tau_0}^r(x, y, 0) = \frac{1}{\pi \cdot \sigma_y \cdot \sigma_z \cdot u_h} exp\left(-\frac{y^2}{2 \cdot \sigma_y^2}\right) \cdot exp\left(-\frac{h^2}{2 \cdot \sigma_z^2}\right) \cdot f_R \cdot f_F \cdot f_W,$$
 (B.1)

где $A'_{r_0}(x,y,0)$ - кратковременный приземный (z=0) метеорологический фактор разбавления радионуклидов r для конечного времени действия источника τ_0 , c/m^3 ;

 $\sigma_{y}(x)$, $\sigma_{z}(x)$ - стандартные отклонения распределения примеси в факеле в поперечном и вертикальном направлениях, соответственно, м;

h - высота точечного источника, м;

 u_h - скорость ветра на высоте источника, м/с;

 f_R , f_F , f_W - факторы обеднения факела за счет радиоактивного распада, сухого осаждения и вымывания атмосферными осадками, соответственно.

Стандартные отклонения распределения примеси вычисляются по формулам Бриггса для $\sigma_v(x)$ и Смита-Хоскера для $\sigma_z(x)$:

$$\sigma_{y}(x) = \frac{c_{3} \cdot x}{\sqrt{1 + c_{4} \cdot 10^{-4} \cdot x}},$$
(B.2)

$$\sigma_{z}(x) = \begin{cases} F(x, z_{0}) \cdot g(x), & npu \ F(x, z_{0}) \cdot g(x) < \sigma_{z}^{\max} \\ \sigma_{z}^{\max}, & npu \ F(x, z_{0}) \cdot g(x) > \sigma_{z}^{\max}, \end{cases}$$
(B.3)

где

$$F(x,z_0) = \begin{cases} \ln\left[c_1 \cdot x^{d_1} \left(1 + (c_2 \cdot x^{d_2})^{-1}\right)\right] & npu \ z_0 > 0,1 \ M\\ \ln\left[c_1 \cdot x^{d_1} \left(1 + c_2 \cdot x^{d_2}\right)^{-1}\right] & npu \ z_0 \le 0,1 \ M \end{cases}$$
(B.4)

$$g(x) = \frac{a_1 x^{b_1}}{1 + a_1 x^{b_2}},\tag{B.5}$$

- z_0 параметр шероховатости, приведенный в таблице В.1 для различных типов подстилающей поверхности;
- c_3 параметр, используемый при вычислении $\sigma_y(x)$, представлен в таблице В.2 в зависимости от категории устойчивости и параметра шероховатости z_0 ;
- c_4 параметр, используемый при вычислении $\sigma_y(x)$, учитывающий характер местности и равный 1 открытое поле ($z_0 = 0,1$ м), 1,5 сельская застройка ($z_0 = 0,4$ м), 4 крупный город ($z_0 = 1$ м);
- a_1, a_2, b_1, b_2 параметры, используемые для расчета функции g(x), представлены в таблице В.2;
- c_1, c_2, d_1, d_2 параметры, используемые для вычисления функции $F(z_0, x)$, представлены в таблице В.3;
- σ_z^{max} предельные (максимальные) значения $\sigma_z(x)$ для различных категорий устойчивости, приведенные в таблице В.4.

Формула Бригтса для $\sigma_y(x)$ применима до расстояний 10 км [25,26], однако на практике она используется до расстояний около 30 км.

Скорость ветра на высоте источника u_h определяется по скорости ветра на высоте флюгера следующей формулой

$$u_h = u_{l0} \cdot \left(\frac{h}{l0}\right)^b, \tag{B.6}$$

где u_{10} – скорость ветра на флюгере (около 10 м), м/с;

b — показатель степени, зависящий от категории устойчивости и параметра шероховатости z_{θ} (таблица В.5).

Фактор обеднения факела за счет радиоактивного распада f_R представляется в виде

$$f_R = exp\left(-\lambda_p \cdot \frac{x}{u_h}\right),\tag{B.7}$$

где λ_{δ} - постоянная радиоактивного распада радионуклида r, с⁻¹.

Фактор обеднения факела за счет сухого осаждения $f_{\!F}$ представляется в виде

$$f_F = exp\left(-\sqrt{\frac{2}{\pi}} \cdot \frac{V_d}{u_h} \cdot \int_0^x \frac{d\chi}{\sigma_z(\chi) \cdot exp(h^2/\sigma_z^2(\chi))}\right),\tag{B.8}$$

где V_d - скорость осаждения (таблица В.6), м/с.

Фактор обеднения факела за счет вымывания осадками представляется в виде

$$f_{W} = exp\left(-\Lambda \cdot \frac{x}{u_{h}}\right),\tag{B.9}$$

где Λ - постоянная вымывания примеси из атмосферы, ${\rm c}^{\text{-1}}$, определяемая как

$$\Lambda = k_r \cdot k_0 \cdot \theta, \tag{B.10}$$

 k_r - величина абсолютной вымывающей способности дождя при интенсивности $\theta = 1$ мм/ч для радионуклида r, приведенная в таблице В.6;

 k_0 - относительная вымывающая способность атмосферных осадков различных типов, приведенная в таблице В.7;

 θ - интенсивность атмосферных осадков, мм/ч.

При расположении атомной станции в холмистой местности, которая в радиусе до 10 км характеризуется перепадами высот более 50 м и уклонами свыше 0,05, в расчетную формулу (В.1) необходимо вносить поправку на рельеф [27]. При уклонах от 0,10 до 0,15 и перепадах до 100 м значение величины $A_{\tau_o}^r(x,y,0)$ необходимо умножить соответственно на поправочный коэффициент от 1,3 до 1,5. При расположении АС вблизи горной гряды с уклонами местности от 0,15 до 0,20 поправка равна двум. Если АС располагается в котловане или ущелье глубиной от 100 м до 200 м с уклонами местности более 0,20, то поправка на рельеф равна трем.

Расчет метеорологического приземного фактора разбавления $A_{\tau_o}^r(x,y,0)$ проводится по формуле (В.1) только для источника с временем действия τ_0 меньше времени сохранения стационарных метеоусловий τ_{cm} . Для источника с временем действия τ_0 превышающего τ_{cm} источник по времени действия делится на интервалы не превосходящие τ_{cm} . Для каждого из них проводится вычисление фактора разбавления по формуле (В.1), затем результаты суммируются.

Таблица В.1 — Характерные значения параметра шероховатости z_0 для различных типов подстилающей поверхности [28,29]

В метрах Тип подстилающей поверхности z_0 Водная поверхность 0,01 Луг, скошенные и пахотные угодья 0,1 Неоднородная поверхность с чередующимися участками травы, кустарника и т.п. 0,3 0,4 Сельская застройка Парк, лес высотой до 10 м 0,8 1,0 Крупные города

Т а б л и ц а В.2 - Значения параметра c_3 , используемого для расчета $\sigma_y(x)$, и параметров a_1 , a_2 b_1 , b_2 для вычисления функции g(x)

Категории Значения c_3 b_1 b_2 a_1 a_2 $z_0=0.1 \text{ M} \mid z_0=0.4 \text{ M} \mid z_0=1 \text{ M}$ устойчивости 0,22 0,27 0,33 0,112 5,38.10-4 1,06 0,815 Α 0,950 В 0,16 0,20 0,24 0,130 $6,52 \cdot 10^{-4}$ 0,750 0,112 9.05.10-4 C 0,12 0,14 0,18 0,920 0,718 0,098 D 0,08 0,10 0,12 1.35.10-3 0,889 0,688 E 0,06 0,07 0,09 0,08 $1,58 \cdot 10^{-3}$ 0,686 0,892 F 0,04 0,05 $1.96 \cdot 10^{-3}$ 0,06 0,0609 0,985 0,684 0,672 0,026 0,032 1,36.10-3 G 0,04 0,0638 0,783

ТаблицаВ.3 - Значения параметров, используемых для расчета

функции $F(x,z_0)$

Параметр шероховатости z_0 , м	c_{l}	d_{l}	c_2	d_2
0,01	1,56	0,0480	6,25.10-4	0,45
0,04	2,02	0,0269	7,76.10-4	0,37
0,1	2,72	0	0	0
0,4	5,16	-0,098	18,6	-0,225
1,0	7,37	-0,0957	4,29·10 ³	-0,60

Т а б л и ц а В.4 $\,-\,$ Значения верхней границы $\,\sigma_z^{\it max}$ для различных

категорий устойчивости, м

Категории устойчивости	σ_z^{max} , M	Категории устойчив ос ти	σ_z^{max} , M	
A	1600	Е	250	
В	1200	F	200	
C	800	_ G	160	
D	400		100	

ТаблицаВ.5 - Типичные значения скорости ветра на высоте флюгера и показателя степени b, как функции категории устойчивости и параметра

шероховатости z_0

Karciopan 1	ть ветра на уровне олюгера, м/с	Значения показателя степени b от параметра шероховатости z ₀				
по Тернеру	Средняя	Пределы изменения	0,01 м	0,1 м	0,4 м	1 м
Α	1	менее 3	0,05	0,08	0,11	0,17
В	2	от 1 до 5	0,06	0,09	0,13	0,17
С	3	от 1 до 7	0,06	0,11	0,16	0,20
D	5	любые	0,12	0,16	0,22	0,27
Е	3	от 2 до 6	0,22	0,22	0,27	0,31
F	2	менее 4	0,34	0,34	0,39	0,42
G	1	менее 3	0,52	0,52	0,57	0,60

Т а б л и ц а В.6 — Значения скорости сухого осаждения V_d и вымывающей способности дождя kr при интенсивности θ равной 1 мм/ч для разных

радионуклидов

Вещество	V_d ,M/c	k_r , ч/(мм·с)	
Элементарный йод	2.10-2	4.10-5	
Органические соединения йода	1.10-4	4.10-7	
Аэрозоль	8.10-3	10 ⁻⁵	
ИРГ	0	0	

ТаблицаВ.7	-	Относительная	вымывающая	способность
осалков				

Тип осадков	k_0	
Дождь	1,0	
Дождь с грозой	1,1	
Снег с дождем	2,4	
Ливень	2,8	
Снег	3,0	
Морось	4,5	
Туман	5,0	

Для получения осредненного за время au_{cp} метеорологического приземного фактора разбавления $A_{ca}^r(x,y,0)$ используется следующая формула

$$A'_{\tau_{cp}}(x,y,0) = A'_{\tau_0}(x,y,0) \cdot \left(\frac{\tau_0 + \frac{x}{u_h}}{\tau_{cp} + \frac{x}{u_h}}\right)^n,$$
(B.11)

где n – показатель степени, зависящий от времени осреднения τ_{cp} ;

 \overline{u}_h – средняя скорость ветра за время осреднения τ_{cp} , м/с.

На основании теоретических разработок и экспериментальных данных параметр n определяется неоднозначно. Согласно [11,30] рекомендуется использовать следующие значения n в зависимости от времени осреднения:

$$n=0$$
 при $au_{cp} < au_0$, причем $au_0 \le au_{cm}$; $n=0,2$ при $au_{cm} < au_{cp} < 1$ сут;

$$n$$
=0,4 при 1 месяц $\leq \tau_{cp} < 1$ год,

с линейной интерполяцией n между указанными интервалами изменения au_{cp} . Рекомендованные выше значения n, можно вычислять по следующей аппроксимационной формуле

$$n(\tau_{cp}) = 0.1 \cdot \left[2 + \frac{|\tau_{cp} - \tau_0| - |\tau_{cp} - \tau_{cm}|}{\tau_{cm} - \tau_0} + \frac{|\tau_{cp} - 24| - |\tau_{cp} - 24 \cdot 30|}{24 \cdot 30 - 24} \right], \tag{B.12}$$

где τ_0 , τ_{cp} и τ_{cm} измеряются в часах.

В.2 Расчет кратковременного метеорологического фактора вывеления

Выпадение радионуклидов на подстилающую поверхность обусловлено сухим и влажным выведением.

Вычисление кратковременного метеорологического фактора сухого выведения радионуклида r на подстилающую поверхность $D^r_{d,r_o}(x,y,t)$ проводится по формуле

$$D'_{d,r_0}(x,y,t) = V_d \cdot A'_{r_0}(x,y,0) \cdot \exp\left[-\lambda_p \cdot (t-x/u_h)\right] \cdot \tau(x,t), \tag{B.13}$$

где

$$\tau(x,t) = \begin{cases} 0, & npu \ t < x/u_h, \\ t - x/u_h, & npu \ x/u_h \le t \le \tau_0 + x/u_h, \\ \tau_0, & npu \ t > \tau_0 + x/u_h. \end{cases}$$
(B.14)

Вычисление кратковременного метеорологического фактора влажного выведения радионуклида r на подстилающую поверхность $D^r_{w,r_o}(x,y,t)$ проводится по формуле

$$D_{w,\tau_0}^r(x,y,t) = \frac{\Lambda}{\sqrt{2\pi} \cdot \sigma_y \cdot u_h} \cdot \exp\left(-\frac{y^2}{2 \cdot \sigma_y^2}\right) \cdot \exp\left[-\lambda_p \cdot (t-x/u_h)\right] \cdot \tau(x,t) \cdot f_R \cdot f_F \cdot f_w. \quad (B.15)$$

Лист визирования

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Заместитель генерального директора ОАО «ВНИИАЭС», директор отделения РБ, РАО, ОЯТ, вывода из эксплуатации и ООС, к.т.н.

Зам. начальника ОНМЦ РБ, Э и ОТ АС, к.т.н.

Главный специалист

Ведущий инженер

Начальник отдела стандартизации и качества

Е.А. Иванов

- И.В. Пырков

Лист визирования

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Генеральный директор от БУТТ ФМБЦ им. А.И. Бурназина Ф России, д.м.н. Заместитель Генерацьного пиректора по науке и биофизическим ..

технологиям, д.м.н.

Заведующий отделом, к.т.н.

Ведущий научный сотрудник, к.т.н.

К.В. Котенко

Н.К. Шандала

М.И. Грачев

А.В. Титов

Лист визирования

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции,

Генеральный директор ФГБУ НПО «Тайфун», д.т.н.

В.М. Шершаков

Заместитель Генерального директора - директор ИПМ ФГБУ НПО «Тайфун», к.ф.-м.н. В.Г. Булгаков Н.В. Клепикова

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Заместитель Генерального директора – директор по производству и эксплуатации АЭС

Заместитель директора по производству и эксплуатации АЭС – директор Департамента противоаварийной готовности и радиационной защиты

Заместитель директора Департамента противоаварийной готовности и радиационной защиты – начальник отдела РБ, УиК ЯМ, РВ и РАО, ООС

Нормоконтролер

А.В. Шутиков

В.Е. Хлебцевич

И.В. Долженков

М.А. Михайлова

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Директор проектно-конструкторского филиала ОАО «Концерн Росэнергоатом»

Директор по планированию и проектам

Главный специалист

С.В. Егоров

В.М. Мешков

А.Ю. Максимов

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Заместитель руководителя Федерального медико-биологического агентства, Главный Государственный санитарный врач по обслуживаемым организациям и обслуживаемым территориям

В.В. Романов

МТ 1.2.5.05.0110-2012. Методика определения размеров зон планирования защитных мероприятий в случае аварии на атомной станции

Начальник Управления мониторинга загрязнения окружающей среды, подярных и морских работ Росгидромета

Ю.В. Пешков