УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации,

Первый заместитель министраздравоохранения Российской Федерации

Сенц Г.Г. Он

Дата введения. 30 иючя 2003 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по определению остаточных количеств этофумезата в корнеплодах и ботве сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения в корнеплодах и ботве сахарной, столовой и кормовой свеклы массовой концентрации этофумезата в диапазоне 0,05 - 0.5 мг/кг.

Этофумезат - действующее вещество препарата БЕТАНЕС, КЭ (70 г/л десмедифама + 90 г/л фенмедифама + 110 г/л этофумезата), фирма производитель «Август», Россия.

(±)-2-этокси-2,3-дигидро-3,3-диметилбензофуран-5-ил метансульфонат (IUPAC)

С₁₃H₁₄O₅S Мол. масса 286,3

Бесцветное кристаллическое вещество без запаха. Температура плавления 70-72°C. Давление паров при 25° C: 0,12-0,65 мПа. Растворимость в органических растворителях при 25° C (г/дм³): дихлорметан, ацетон, этилацетат - более 600; толуол – 300-600; метанол – 120-150; этанол – 60-75; гексан – 4,7. Растворимость в воде при 25° C – 50 мг/ дм³.

Этофумезат стабилен в водной среде при рН 7 – 9. При кислой среде разлагается; DT50 (рН 5,0) - 940 дней, с образованием гидроксианалога.

Краткая токсикологическая характеристика:

Острая пероральная токсичность (LD $_{50}$) для крыс > 5000 мг/кг; острая дермальная токсичность (LD $_{50}$) для кроликов > 2000 мг/кг; острая ингаляционная токсичность (LK $_{50}$) для крыс > 3970 мг/м 3 .

Область применения препарата

Этофумезат рекомендуется к применению в качестве контактного селективиого гербицида против однолетних двудольных и злаковых сорняков на посевах свеклы сахарной, столовой, кормовой.

Гигиенические нормативы:

ДСД - 0,1 мг/кг массы тела

ОБУВ в воздухе рабочей зоны -0.1 мг/м^3 .

ПДК в воде водоемов -0.5 мг/дм³.

ОДК в почве - 0,2 мг/кг

МДУ в свекле сахарной, столовой и кормовой - 0,1 мг/кг

1. Метрологические характеристики метода

Метрологические характеристики метода представлена в таблицах 1 и 2.

Таблица 1

Метрологические параметры

	Метрологические параметры, P = 0,95, n = 24				
Ана лизируемый объект	Предел обнару- жения, мг/кг	Диапазон определяемых концентраций, мг/кг	Среднее значение определения %	Стандартное отклонение, S, %	Доверительный интервал среднего результата, %
Корнеплоды сахарной свеклы	0,05	0,05 – 0,5	84,93	2,19	3,2
Корнеплоды столовой свеклы	0,05	0,05 – 0,5	82,69	2,26	3,3
Корнеплоды кормовой свеклы	0,05	0,05 – 0,5	84,33	2,33	3,4
Ботва столовой свеклы	0,05	0,05 – 0,5	87,04	2,51	3,7

Таблица 2 Полнота извлечения этофумезата из корнеплодов сахарной, столовой и кормовой свеклы, ботвы столовой свеклы (6 повторностей для каждой концентрации)

Среда	Внесено этофумезата мг/кг	Обнаружено этофумезата мг/кг	Полнота извлечения,
1	2	3	4
Корнеплоды	0,05	0,04184 ± 0,00134	83,69
сахарной свеклы	0,1	0,08527±0,00264	85,27
	0,25	0,2 081 ± 0,0060	83,24
	0,5	0,4376 ± 0,0149	87,52
Корнеплоды	0,05	0,04011 ± 0,00136	80,22
столовой свеклы	0,1	0,08346 ± 0,00250	83,46
	0,25	0,2104 ± 0,0069	84,16
	0,5	0,4147 ± 0,0145	82,94
Корнеплоды	0,05	0,0 4069 ± 0,00163	81,38
кормовой свеклы	0,1	0,08416 ± 0,00278	84,16
	0,25	0,2461 ± 0,0067	86,57
	0,5	$0,4261 \pm 0,0136$	85,23
Ботва столовой	0,05	0,04256 ± 0,00179	85,12
свеклы	0,1	0,08639 ± 0,00700	86,39
	0,25	0,2226 ± 0,0078	89,03
	0,5	0,4382 ± 0,0140	87,64

2. Метод измерений

Методика основана на определении вещества с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым детектором после экстракции из анализируемой пробы растительного материала смесью ацетон-вода, очистки экстракта перераспределением между двумя несмешивающимися фазами и на колонке с силикагелем.

Количественное определение проводится методом абсолютной калибровки. Нижний предел измерения в хроматографируемом объеме пробы — 4 нг. В предлагаемых условиях определения метод специфичен в присутствии пестицидов, применяемых в технологии выращивания свеклы кормовой, столовой, сахарной, в том числе десмедифама и фенмедифама.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Жидкостной хроматограф с ультрафиолетовым Номер Госреестра 15945-97 детектором с переменной длиной волны (фирмы Perkin-Elmer, США)

Весы аналитические ВЛА-200 ГОСТ 24104

Весы лабораторные общего назначения, с наибольшим ГОСТ 7328

пределом взвешивания до 500 г и пределом

допустимой погрешности +/- 0,038 г

Колбы мерные вместимостью 50, 100 и 1000 см³ ГОСТ 1770

Пипетки градуированные 2-го класса точности ГОСТ 29227

вместимостью 1.0, 2.0, 5.0, 10 cm³

Пипетки с одной меткой 2-го класса точности ГОСТ 29169

вместимостью 20 см³

Пробирки градуированные вместимостью 5 или 10 см³ ГОСТ 1770

Цилиндры мерные 2-го класса точности вместимостью ГОСТ 1770

10, 25, 50, 100, 200, 500 и 1000 см³

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Этофумезат с содержанием действующего

вещества 99,6% (ВНИИХСЗР, Россия)

Ацетон, чда ГОСТ 2603

Ацетонитрил для хроматографии, хч ТУ-6-09-4326-76

Вода бидистиллированная, деионизованная или ГОСТ 6709

перегнанная над КМпО4

н-Гексан, хч ТУ-6-09-3375

Изопропиловый спирт (пропанол-2), хч ТУ 6-09-402-75

Кислота орто-фосфорная, хч, 85%	FOCT 6552			
Метилен хлористый (дихлорметан), хч	ΓΟCT 12794			
Метиловый спирт (метанол), хч	ΓΟCT 6995			
Натрий сернокислый, безводный, хч	ΓΟ CT 4166			
Натрий хлористый, хч	ΓΟCT 4233			
Силикагель для колоночной хроматографии L 100-160 меш				
(фирмы «Лахема», Чехия)				
Этиловый эфир уксусной кислоты, ч	ΓΟCT 22300			

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

	-
Аппарат для встряхивания типа АВУ-6с	ТУ 64-1-2851-78
Бумажные фильтры "красная лента", обеззоленные	ТУ 6-09-2678-77
Воронка Бюхнера	ГОСТ 25 336
Воронки делительные вместимостью 250 см ³	ΓΟCT 25336
Воронки конусные диаметром 30-37 и 60 мм	ГОСТ 25336
Гомогенизатор	
Груша резиновая	
Колба Бунзена	ГОСТ 25336
Колбы плоскодонные вместимостью $200-250$ см 3	ГОСТ 9737
Колбы круглодонные на шлифе вместимостью 10, 100 и	ГОСТ 9737
250 cм ³	
Мембранные фильтры капроновые, диаметром 47 мм	
Насос водоструйный	ΓΟCT 10696
Ректификационная колонна с числом теоретических	
тарелок не менее 50	
Ротационный вакуумный испаритель ИР-1М или	ТУ 25-11-917-74
ротационный вакуумный испаритель В-169 фирмы Висні,	
Швейцария	
Стаканы химические, вместимостью 400 см ³	Γ O CT 25336
Стекловата	
Стеклянная колонка длиной 25 см, внутренним диаметром	

8-10 MM

Стеклянные палочки

Установка для перегонки растворителей

Набор для фильтрации растворителей через мембрану

Хроматографическая колонка стальная, длиной 25 см.

внутренним диаметром 2,1 мм, содержащая Spherisorb S5

ODS 2, зернением 5 мкм

Хроматографическая колонка стальная, длиной 25 см, внутренним диаметром 4,0 мм, содержащая Zorbax ODS, зернением 5 мкм

Шкаф сушильный

ТУ 64-1-1411-76

Шприц для ввода образцов для жидкостного хроматографа вместимостью $50 - 100 \text{ мм}^3$

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При работе с реактивами соблюдать требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами по ГОСТу 12.1005.
- 4.2. При выполнении измерений с использованием жидкостного хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на жидкостном хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20±5) ⁰С и относительной влажности не более 80%.
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Выполнению измерений предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, подвижных фаз для ВЭЖХ, кондиционирование хроматографических колонок, установление градуировочной характеристики, подготовка колонки с силикагелем для очистки экстрактов, проверка хроматографического поведения вещества на колонке с силикагелем.

7.1. Подготовка органических растворителей

7.1.1. Очистка ацетонитрила

Ацетонитрил кипятят с обратным холодильником над пентоксидом фосфора не менее 1 часа, после чего перегоняют, непосредственно перед употреблением ацетонитрил повторно перегоняют над прокаленным карбонатом калия.

7.1.2. Очистка этилацетата и хлористого метилена

Этилацетат (хлористый метилен) промывают последовательно 5%-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сушат над безводным карбонатом калия и перегоняют или подвергают ректификационной перегонке на колонне с числом теоретических тарелок не менее 50.

7.1.3. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты, до тех пор, пока она не перестанет окрашиваться в желтый цвет, водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.2. Приготовление смеси растворителей для экстракции

В мерную колбу вместимостью 1000 см³ помещают 800 см³ и 200 см³ дистиплированной воды, тщательно перемешивают.

7.3. Подготовка подвижной фазы № 1 для ВЭЖХ

В мерную колбу вместимостью 1000 см³ помещают 480 см³ метанола, 50 см³ изопропанола, добавляют 470 см³ бидистиллированной воды и вносят 0,1 см³ ортофосфорной кислоты, перемешивают, фильтруют и дегазируют.

7.4. Подготовка подвижной фазы № 2 для ВЭЖХ

В мерную колбу вместимостью 1000 см³ помещают 700 см³ ацетонитрила и 300 см³ бидистиллированной воды, перемешивают, фильтруют и дегазируют.

7.5. Кондиционирование хроматографической колонки

Промывают колонку подвижной фазой (приготовленной по п. 7.3 или п. 7.4.) в течение 30 минут при скорости подачи растворителя 0,3 см³/мин или 1 см³/мин до установления стабильной базовой линии.

7.6. Приготовление градуировочных растворов

7.6.1. Исходный раствор этофумезата для градуировки (концентрация 1 мг/см³)
В мерную колбу вместимостью 100 см³ помещают 0,1 г этофумезата, растворяют в 50-70 см³ метанола, доводят метанолом до метки, тщательно перемешивают. Раствор хранится в холодильнике в течение месяца.

Растворы № 1-5 готовят объемным методом путем последовательного разбавления исходного стандартного раствора.

7.6.2. Раствор № 1 этофумезата для градуировки (концентрация 10 мкг/см³)

В мерную колбу вместимостью 100 см³ помещают 1 см³ исходного стандартного раствора этофумезата с концентрацией 1 мг/см³ (п. 7.6.1.), разбавляют метанолом до метки. Раствор хранится в холодильнике в течение месяца.

Этот стандартный раствор используют для приготовления проб с внесением при оценке полноты извлечения этофумезата из исследуемых образцов.

7.6.3. Рабочие растворы № 2 -5 этофумезата для градуировки (концентрация 0.2 - 2.0 мкг/см³)

В 4 мерные колбы вместимостью 100 см³ помещают по 2, 4, 10 и 20 см³ стандартного раствора №1 с концентрацией 10 мкг/см³ (п. 7.6.2.), доводят до метки подвижной фазой для ВЭЖХ № 1 или № 2 (приготовленныхй по п. 7.3 или 7.4.), тщательно перемешивают, получают рабочие растворы №№ 2 - 5 с концентрацией этофумезата 0.2, 0.4, 1.0 и 2.0 мкг/см³, соответственно.

Растворы хранятся в холодильнике не более 5-ти дней.

7.7. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (отн. единицы) от концентрации этофумезата в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4-м растворам для градуировки №№ 2 - 5.

В инжектор хроматографа вводят по 20 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.4.1 или 9.4.2. Осуществляют не менее 3-х параллельных измерений.

7.8. Подготовка колонки с силикагелем для очистки экстрактов

Нижнюю часть стеклянной колонки длиной 25 см, внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом кране) суспензию 5 г силикагеля в 20 – 25 см³ гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 0,5 см. Колонку промывают 25 см³ смеси этилацетат-гексан (1:1, по объему), затем 25 см³ гексана со скоростью 1-2 капли в сек. После этого колонка готова к работе.

7.9. Проверка хроматографического поведения этофумезата на колонке с силикагелем

В круглодонную колбу вместимостью 10 см³ помещают по 0,5 см³ стандартного раствора № 1 (п. 7.6.2.). Упаривают растворитель досуха, остаток растворяют в 3-х см³ гексана и наносят на колонку, подготовленную по п. 7.8. Промывают колонку 25 см³ смеси гексан- этилацетата (9:1, по объему), элюат отбрасывают.

Затем колонку промывают 50 см³ смеси гексан-этилацетат (7:3, по объему) со скоростью 1-2 капли в сек. Фракционно (по 10 см³) отбирают элюат, упаривают, остатки растворяют в 2-х см³ подвижной фазы для ВЭЖХ (приготовленной по п. 7.2 или 7.3), анализируют на содержание этофумезата, по п.п. 9.4.1 или 9.4.2.

Фракции, содержащие этофумезат, объединяют вместе и вновь анализируют по п.п. 9.4.1 или 9.4.2.

Рассчитывают содержание вещества в элювтах, определяют полноту смывания с колонки и необходимый для очистки объем элюента.

ПРИМЕЧАНИЕ: Проверку хроматографического поведения этофумезата следует проводить обязательно, поскольку профиль вымывания может изменяться при использовании новой партии сорбентов и растворителей.

8. Отбор проб

Отбор проб производится в соответствии с "Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов" (№ 2051-79 от 21.08.79 г.).

Отобранные пробы ботвы и корнеплодов свеклы, хранят в стеклянной или полиэтиленовой таре в холодильнике не более суток. Для длительного хранения пробы замораживают и хранят при температуре –18°C.

Перед анализом образцы измельчают.

9. Выполнение определения

9.1 Экстракция

Образец измельченных корнеплодов свеклы или ботвы массой 20 г помещают в коническую колбу (или химический стакан) вместимостью 400 см³, вносят 40 см³ смеси ацетон-вода (80:20, по объему), гомогенизируют в течение 1 мин, затем добавляют 60 см³ смеси ацетон-вода (80:20, по объему) и помещают на встряхиватель на 30 мин.

Раствор фильтруют на воронке Бюхнера через двойной бумажный фильтр «красная лента» под вакуумом. Осадок на фильтре промывают 50 см³ смеси ацетонвода (80:20, по объему). Экстракт и промывку переносят в мерный цилиндр вместимостью 250 см³ с пришлифованной пробкой, перемешивают, измеряют объем раствора, ½ его часть (эквивалентную 10 г образца) переносят в круглодонную колбу. Далее проводят очистку экстракта по п. 9.2.

9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Экстракт, полученный по п. 9.1. и помещенный в круглодонную колбу, упаривают на ротационном вакуумном испарителе до водного остатка (~20 см³) при температуре не выше 35°C, внимательно следя за процессом и не допуская переброса жидкости при вспенивании. Водный остаток переносят в делительную воронку вместимостью 250 см³, добавляют 20 см³ насыщенного раствора хлорида натрия, 50 см³ смеси гексан-хлористый метилен (65:35, по объему), интенсивно встряхивают делительную воронку в течение 2-х мин. После полного разделения фаз верхний

органический слой отделяют, фильтруют через слой безводного сульфата натрия, помещенный на бумажном фильтре в конусной воронке, в круглодонную колбу вместимостью 250 см³. Водную фазу вновь переносят в делительную воронку. Операцию экстракции повторяют еще дважды, используя по 20 см³ смеси гексан-клористый метилен (65:35, по объему). Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха и подвергают дополнительной очистке на колонке по п. 9.3.

9.3. Очистка экстракта на колонке с силикагелем

Остаток в круглодонной колбе, полученный по п. 9.2. растворяют в 3-х см³ гексана и наносят на колонку, подготовленную по п. 7.8. Колбу обмывают трижды порциями гексана по 3 см³, которые также наносят на колонку. Промывают колонку 25 см³ смеси гексан- этилацетата (9:1, по объему), элюат отбрасывают. Этофумезат элюируют с колонки 30 см³ смеси гексан-этилацетат (7:3, по объему) со скоростью 1-2 капли в сек, собирая элюат непосредственно в круглодонную колбу. Раствор упаривают досуха при температуре не выше 35°С. Остаток в колбе, растворяют 2,5 см³ подвижной фазы для ВЭЖХ (подготовленной по п. 7.2 или 7.3) и анализируют на содержание этофумезата по п. 9.4.1 или 9.4.2.

9.4. Условия хроматографирования

Жидкостной хроматограф с ультрафиолетовым детектором Perkin-Elmer (США)

9.4.1. Колонка стальная длиной 25 см, внутренним диаметром 2,1 мм, содержащая Spherisorb S5 ODS 2, зернением 5 мкм.

Температура колонки: комнатная

Подвижная фаза: метанол-изопропанол-вода-орто-фосфорная кислота (48:5:47:0,1, по объему)

Скорость потока элюента: 0,3 см³/мин

Рабочая длина волны: 280 нм

Чувствительность: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм³

Ориентировочное время выхода этофумезата: 14,7 - 15,0 мин

9.4.2 Колопка стальная длиной 25 см, внутренним диаметром 4,0 мм, содержащая Zorbax ODS, зернением 5 мкм.

Температура колонки: комнатная

Подвижная фаза: ацетонитрил-вода (60:40, по объему)

Скорость потока элюента: 1,0 см³/мин

Рабочая длина волны: 280 нм

Чувствительность: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм³

Ориентировочное время выхода этофумезата: 4,7 - 4,9 мин

Диапазон определяемых концентраций 4 - 40 нг

Образцы, дающие пики, большие, чем стандартный раствор этофумезата с коицентрацией 2,0 мкг/см³, разбавляют подвижной вазой для ВЭЖХ (приготовленной по п. 7.2 или 7.3).

10. Обработка результатов анализа

Содержание этофумезата в пробе рассчитывают по формуле:

$$X = \frac{(A \times K) V}{m}$$
, где

Х - содержание этофумезата в пробе, мг/кг;

 А - концентрация этофумезата, найденная по градуировочному графику, мкг/см³;

V - объем экстракта, подготовленного для хроматографирования, см³;

т - масса анализируемого образца, г;

К – коэффициент пересчета, учитывающий объем экстрактов проб, используемый для анализа, равный 2

4. Разработчики.

Юдина Т.В., Федорова Н.Е., Волкова В.Н., Гарбузова А.А.

Федеральный научный центр гигиены им. Ф.Ф. Эрисмана (ФНЦГ им.Ф.Ф.Эрисмана)

141000, г. Мытищи Московской обл., ул. Семанко, д. 2, лаборатория аналитических методов контроля.

Телефон: (095) 586-1276