ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **FOCT P 58092.1**— **2018**

СИСТЕМЫ НАКОПЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (СНЭЭ)

Термины и определения

(IEC 62933-1:2018, NEQ)

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Национальной ассоциацией производителей источников тока «РУСБАТ» (Ассоциация «РУСБАТ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 044 «Аккумуляторы и батареи»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 мая 2018 г. № 291-ст
- 4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта МЭК 62933-1:2018 «Системы накопления электрической энергии (СНЭЭ). Часть 1. Словарь» (IEC 62933-1 «Electric energy storage (EES) systems Part 1: Vocabulary», NEQ)
 - 5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ГОСТ Р 58092.1—2018

Содержание

1 Область применения	1
2 Термины и определения	1
Алфавитный указатель терминов на русском языке	.34
Алфавитный указатель терминов на английском языке	41
Приложение А (справочное) Примеры для иллюстрации терминов	46
Бибпиография	49

Введение

Настоящий стандарт является первым в системе стандартов, нацеленной на выработку единого подхода ко всем аспектам полного жизненного цикла нового и интенсивно развивающегося направления систем накопления электрической энергии (СНЭЭ), которые в ближайшее время будут широко внедряться во многих определяющих отраслях экономики Российской Федерации. Стандарты системы распределяют по следующим классификационным группам:

- 1 общие вопросы;
- 2 параметры установок и методы испытаний;
- 3 проектирование и монтаж;
- 4 экологические аспекты;
- 5 безопасность систем, работающих в составе сети;
- 6 прочие стандарты, —

обозначаемым номером группы в соответствии с ГОСТ Р 1.5. Внутри групп стандарты нумеруются порядковыми номерами по мере разработки и введения.

Цель настоящего стандарта — определить терминологию, обеспечить термины и определения для всех указанных выше групп. СНЭЭ включают в себя любые типы интегрированных с сетью системы накопления энергии, которые могут накапливать, хранить и отдавать электрическую энергию (по принципу «от электричества к электричеству»).

С технической точки зрения СНЭЭ является сложной многокомпонентной системой с несколькими возможными способами преобразования энергии. Каждый этап осуществляется с помощью хорошо стандартизованных компонентов (таких, как трансформаторы, системы преобразования энергии) или инновационных компонентов (таких, как новые типы аккумуляторов). Несколько стандартов МЭК дают определения, необходимые для понимания некоторых терминов, используемых для этих компонентов. К их числу относятся Международный электротехнический словарь (МЭС, МЭК 60050, http://www.electropedia.org) и онлайн-платформы просмотра ИСО (http://www.iso.org/obp), которые позволяют получить доступ к этой информации в режиме реального времени. Настоящий стандарт направлен на фиксацию терминов и их определений, необходимых на уровне системы НЭЭ и ее взаимодействия с энергосистемой, устройствами потребителя и окружающей средой.

Без строгой стандартизации терминологии СНЭЭ отдельные понятия могут иметь разное значение в СНЭЭ, относящихся в частности к различным видам батарей и в целом технологий хранения. Этот аспект имеет важное значение, т.к. неопределенность понятий может стать препятствием для конкурентного сравнения и правильного сопоставления различных вариантов. С этой точки зрения основные термины и определения могут существенно повлиять на экономические и технические решения.

В основу стандарта заложены термины и определения стандарта МЭК 62933-1, которые дополнены терминами, имеющими устоявшееся значение в Российской Федерации. Термины и определения, насколько это возможно, унифицированы с МЭС, ОПП, Словарем МЭК и другими документами МЭК.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.

Для каждого понятия установлен один стандартизованный термин.

Нерекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой «Нрк».

Термины-синонимы без пометы «Нрк» приведены в качестве справочных данных и не являются стандартизованными.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.

Наличие квадратных скобок в терминологической статье означает, что в нее включены два (три, четыре и т. п.) термина, имеющие общие терминоэлементы.

В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.

Помета, указывающая на область применения многозначного термина, приведена в круглых скоб-ках светлым шрифтом после термина. Помета не является частью термина.

Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, — светлым, синонимы — курсивом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИСТЕМЫ НАКОПЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ (СНЭЭ)

Термины и определения

Electric energy storage (ESS) systems. Terms and definitions

Дата введения — 2019—03—01

1 Область применения

Настоящий стандарт устанавливает термины и определения понятий в области СНЭЭ, в том числе термины, необходимые для определения параметров устройств, методов испытаний, проектирования, установки, вопросов безопасности и охраны окружающей среды.

Настоящий стандарт распространяется на системы, входящие в состав электрической сети и способные извлекать электрическую энергию из энергосистемы, хранить ее внутри себя и выдавать электрическую энергию в электрическую энергосистему. Процессы заряда и разряда СНЭЭ могут включать в себя преобразование энергии.

Термины, установленные настоящим стандартом, рекомендуются для применения во всех видах документации и литературы (по данной научно-технической отрасли), входящих в сферу действия работ по стандартизации и (или) использующих результаты этих работ.

2 Термины и определения

Термины и определения для классификации СНЭЭ

1

электроустановка: Энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электрической энергии.

electrical installation

Примечания

- 1 Электроустановка может включать в себя также источники электрической энергии, такие как аккумуляторные батареи, конденсаторы или любые другие источники накопленной электрической энергии (МЭК 60050-651, статья 651-26-01).
- 2 Частным случаем электроустановки является накопитель электрической энергии.

[ГОСТ 19431—84, статья 25 с изменениями]

2 накопитель электрической энергии; НЭЭ: Устройство, способное поглощать электрическую энергию, хранить ее в течение определенного времени и отдавать электрическую энергию обратно, в ходе чего могут происходить процессы преобразования энергии.

electrical energy storage; EES

Пример — Устройство, которое поглощает электрическую энергию в виде переменного тока, использует ее для производства водорода путем электролиза, хранит полученный водород, и использует этот газ для производства электрической энергии в виде переменного тока, является накопителем электрической энергии.

Примечания

- 1 Термин «накопитель электрической энергии» может быть также использован для индикации состояния активности оборудования, описанного в определении этого термина при выполнении его функций.
- 2 Термин «накопитель электрической энергии» не может быть использован для обозначения установки, подключенной к сети, правильным термином для этого случая является «система накопления электрической энергии».
- 3 система накопления электрической энергии; система НЭЭ; СНЭЭ: Установка с определенными границами, подключенная к электрической сети, включающая как минимум один накопитель электрической энергии, которая извлекает электрическую энергию из электроэнергетической системы, хранит эту энергию внутри себя в какой-либо форме и отдает электрическую энергию обратно в электроэнергетическую систему и которая включает в себя инженерные сооружения, оборудование преобразования энергии и связанное с ними вспомогательное оборудование.

electrical energy storage system; EES system; EESS

Примечания

- 1 СНЭЭ управляется и согласуется для предоставления услуг операторам или потребителям электроэнергетической системы.
- 2 В некоторых случаях системе НЭЭ может потребоваться дополнительный источник энергии во время ее разряда для обеспечения отдачи большего количества энергии в энергосистему, чем количество энергии, сохраненное непосредственное в ней
- 4 **СНЭЭ низкого напряжения:** СНЭЭ, предназначенная для подключения к первичной ТПН низкого напряжения.

low voltage EESS

5 **СНЭЭ среднего напряжения:** СНЭЭ, предназначенная для подключения к первичной ТПН среднего напряжения.

medium voltage EESS

6 СНЭЭ высокого напряжения: СНЭЭ, предназначенная для подключения первичной ТПН высокого напряжения.

high voltage EESS

7 СНЭЭ общего назначения: СНЭЭ, используемая как компонента сети общего назначения.

utility EESS

8 бытовая СНЭЭ: СНЭЭ, предназначенная для применения частными потребителями, кроме коммерческой, производственной или иной профессиональной деятельности.

residential EESS

П р и м е ч а н и е — Системы НЭЭ бытового назначения должны соответствовать действующим стандартам для бытовых устройств (например, по электромагнитной совместимости), нормированная полная мощность не должна превышать установленной мощности энергопотребления дома.

9 коммерческая [промышленная] СНЭЭ: СНЭЭ, предназначенная для коммерческого [промышленного] использования потребителем или для другой профессиональной деятельности.

commercial [industrial] EESS

Примечание — Системы коммерческих [промышленных] НЭЭ должны соответствовать действующим стандартам для коммерческих [промышленных] устройств (например, по электромагнитной совместимости).

10 комплектная СНЭЭ: СНЭЭ, компоненты которой были подобраны и смонтированы на заводе и которая поставляется в одном или нескольких контейнерах в состоянии, готовом к установке на месте.

self-contained EES system

11 подключенная к сети (СНЭЭ): Подключенная к электроэнергетической системе в одной или нескольких точках подключения.

grid-connected (EESS)

Термины и определения для взаимодействия СНЭЭ с электроэнергетической системой

12

электрифицировать:

electrify

- 1) Поставлять электроэнергию, электрическую технику и соответствующее оборудование для выработки и транспортировки электрического тока и управления этим процессом.
- 2) Подавать напряжение или электрический ток в электрическую схему или устройство.

[ГОСТ Р 55993—2014, статья 3.3.24]

13

электроэнергетическая система; энергосистема: Совокупность электрических станций, электрических сетей и энергопринимающих устройств потребителей электрической энергии, связанных общностью режима в непрерывном процессе производства, передачи, распределения и потребления электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

electric power system

[ГОСТ Р 57114—2016, статья 3.116]

14

технологически изолированная территориальная электроэнергетическая система: Электроэнергетическая система, находящаяся на территории, определяемой Правительством Российской Федерации, технологическое соединение которой с Единой энергетической системой России отсутствует.

technologically isolated territorial electric power system

[ГОСТ Р 57114—2016, статья 3.97]

15

система электроснабжения общего назначения: Совокупность электроустановок и электрических устройств, предназначенных для обеспечения электрической энергией различных потребителей электрических сетей.

electricity supply system

[ГОСТ 32144—2013, статья 3.1.1]

16

система распределения энергии: Электрические устройства и их компоненты, включая опоры, трансформаторы, разъединители, реле, изоляторы и провода, принадлежащие электрической сети, осуществляющей распределение электрической энергии от подстанций к потребителям.

distribution system

П р и м е ч а н и е — В некоторых регионах система распределения энергии работает при номинальном напряжении 34 500 В.

[ГОСТ Р 55993—2014, статья 3.3.21]

17

электрическая сеть: Совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.

electric power network [grid]

П р и м е ч а н и е — Границы разных частей этой сети определяются соответствующими критериями, такими как географическая ситуация, владение, напряжение и т. д.

[ГОСТ 24291—90, статья 6, с изменениями]

распределительная электрическая сеть: Электрическая сеть, обеспечивающая распределение электрической энергии между пунктами потребления.

distribution electric power network [grid]

[ГОСТ 24291—90, статья 70]

19 (электрическая) сеть общего назначения: Часть электрической сети, которая управляется с помощью местного или системного оператора.

utility grid

Примечание — Сети общего назначения, как правило, используются для передачи электроэнергии от сети (или к сети) пользователя или других сетей в пределах области полномочий. Пользователи сети могут быть производителем или потребителем электроэнергии. Область полномочий устанавливается национальным законодательством или правилами.

20 распределенные источники энергии; ИЭР: Источники энергии, включая накопители энергии, присоединенные в распределительной сети или у потребителя электроэнергии, в том числе вспомогательное оборудование и системы защиты.

distributed energy resources;
DER

Примечания

- 1 СНЭЭ относят к распределенным источникам энергии, т.к. хотя они и не являются объектами первичной генерации, но имеют функцию генерации на отдельных этапах работы.
 - 2 Термин определен в [1].
- 21 объект малой генерации: Расположенные в непосредственной близости от потребителя одна или несколько генерирующих установок, соответствующие одновременно следующим критериям:
 - -

- установленная мощность менее 25 МВт;
- высший класс напряжения распределительного устройства установок менее 110 кВ.

П р и м е ч а н и е — СНЭЭ не являются самостоятельными объектами малой генерации, т.к. не являются объектами первичной генерации, но могут входить в состав последних при совместном использовании с источниками первичной генерации, например на основе возобновляемых источников энергии.

22

возобновляемый источник энергии: Энергия солнца, ветра, вод (в том числе энергия сточных вод), за исключением случаев использования такой энергии на гидроаккумулирующих электроэнергетических станциях, энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов, геотермальная энергия с использованием природных подземных теплоносителей, низкопотенциальная тепловая энергия земли, воздуха, воды с использованием специальных теплоносителей, биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива, биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках.

renewable energy source; renewed energy source

small generation facility

[[2], статья 3]

23

частная система электрификации; СЭЧ: Небольшая электростанция, снабжающая электричеством одного потребителя, например домашнее хозяйство, как правило, от одного источника энергии. individual electrification system; IES

[ГОСТ Р 55993—2014, статья 3.3.32]

энергорайон; *энергоузел*: Часть одной или нескольких территориаль- power district ных энергосистем.

[ГОСТ Р 57114—2016, статья 3.118]

25

синхронная зона: Совокупность синхронно работающих энергосистем (энергорайонов), генерирующего оборудования, имеющих общую частоту электрического тока.

synchronous area

[ГОСТ Р 57114—2016, статья 3.89]

26

субъект электроэнергетики: Лицо, осуществляющее деятельность в сфере электроэнергетики, в том числе производство электрической, тепловой энергии и мощности, приобретение и продажу электрической энергии и мощности, энергоснабжение потребителей электрической энергии, оказание услуг по передаче электрической энергии оперативно-диспетчерскому управлению в электроэнергетике, сбыт электрической энергии (мощности), организацию купли-продажи электрической энергии и мощности.

electric power industry entity

[ГОСТ Р 57114—2016, статья 3.93]

27

системный оператор (электроэнергетической системы): Специализированная организация, единолично осуществляющая централизованное оперативно-диспетчерское управление в пределах Единой энергетической системы России и уполномоченная на выдачу оперативных диспетчерских команд и распоряжений, обязательных для субъектов электроэнергетики и потребителей электрической энергии, влияющих на электроэнергетический режим работы энергетической системы, в том числе потребителей электрической энергии с управляемой нагрузкой. system operator (power system)

[[2], статья 12, пункт 1]

28

сетевая организация: Организация, владеющая на праве собственности или на ином установленном законами основании объектами электросетевого хозяйства, с использованием которых оказывающая услуги по передаче электрической энергии и осуществляющая в установленном порядке технологическое присоединение энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям, а также осуществляющая право заключения договоров об оказании услуг по передаче электрической энергии с использованием объектов электросетевого хозяйства, принадлежащих другим собственникам и иным законным владельцам и не входящих в единую национальную электрическую сеть.

network company

[ГОСТ 32144—2013, статья 3.1.4]

29 производитель электроэнергии: Сторона, генерирующая электрическую энергию.

producer of electricity

30 **поставщик электроэнергии:** Сторона, осуществляющая поставку электрической энергии (мощности) потребителям электрической энергии.

supplier of electricity

Примечания

1 Поставщик электроэнергии должен иметь статус субъекта оптового рынка электрической энергии и мощности, полученный в установленном порядке.

ГОСТ Р 58092.1—2018

- 2 Поставщик, имеющий статус гарантирующего поставщика, обязан заключить договор купли-продажи электрической энергии с любым обратившимся к нему потребителем электрической энергии либо с лицом, действующим от имени и в интересах потребителя электрической энергии и желающим приобрести электрическую энергию.
- 31 субъект оптового рынка: Юридическое лицо, получившее в установленном законом порядке право участвовать в отношениях, связанных с обращением электрической энергии и (или) мощности на оптовом рынке, в соответствии с утвержденными правилами оптового рынка.

wholesale market entity

Примечание — Оптовый рынок электрической энергии и мощности — сфера обращения электрической энергии и мощности в рамках Единой энергетической системы России в границах единого экономического пространства Российской Федерации с участием крупных производителей и крупных покупателей электрической энергии и мощности, а также иных лиц, получивших статус субъекта оптового рынка и действующих на основе правил оптового рынка.

32 **оптовый покупатель:** Юридическое или физическое лицо, приобретающее электроэнергию в течение определенного интервала времени и мощность с целью их продажи внутри или вне электрической системы.

wholesale customer wholesaler

Примечание — Оптовый покупатель должен иметь статус субъекта оптового рынка электрической энергии и мощности, полученный в установленном порядке.

33

пользователь электрической сети: Сторона, получающая электрическую энергию от электрической сети либо передающая электрическую энергию в электрическую сеть.

power system user; power network user distributor of electric system

Примечание — К пользователям электрических сетей относят сетевые организации и иных владельцев электрических сетей, потребителей электрической энергии, а также генерирующие организации.

[ГОСТ 32144—2013, статья 3.1.2 с изменениями. Часть определения оформлена в виде примечания]

34

потребитель электрической мощности: Лицо, приобретающее мощность, в том числе для собственных бытовых и (или) производственных нужд и (или) для последующей продажи, а также лица, реализующие электрическую энергию на розничных рынках, лица, реализующие электрическую энергию на территориях, на которых располагаются электроэнергетические системы иностранных государств.

consumer [customer] of electric power

[[2], статья 3]

35

(конечный) потребитель электрической энергии: Юридическое или физическое лицо, осуществляющее пользование электрической энергией.

Примечания

- 1 Приобретение электрической энергии [мощности] осуществляется на основании договора.
- 2 Приобретенная электрическая энергия используется исключительно в целях собственного потребления, а не для перепродажи.

[ГОСТ 32144—2013, статья 3.1.5 с изменениями. Термин расширен и введены примечания]

consumer of electric energy final customer end-use customer

точка общего присоединения: Электрически ближайшая к конкретной нагрузке пользователя сети точка, к которой присоединены нагрузки других пользователей сети.

point of common coupling; PCC

[ГОСТ 32144—2013, статья 3.1.7 с изменениями]

37

точка передачи электрической энергии: Точка электрической сети, находящаяся на линии раздела объектов электроэнергетики между владельцами по признаку собственности или владения на ином предусмотренном законами основании, определенная в процессе технологического присоединения.

point of distribution of electric energy, supply point. point of supply, supply terminal

[ГОСТ 32144—2013, статья 3.1.6]

38

установленная мощность; номинальная мощность: Мощность, с которой электроустановка, оборудование могут работать длительное время при номинальных параметрах и/или нормальных условиях.

installed power

[ГОСТ Р 57114—2016, статья 3.107]

интерфейс: Общая физическая и концептуальная граница между двуinterface мя системами или между двумя частями одной системы.

[ГОСТ Р 55993—2014, статья 3.3.33]

40

интерфейс сети: Интерфейс между подсистемой источника питания, utility interface местной нагрузкой переменного тока и сетью.

Примечание — Интерфейс сети может иметь АС/АС преобразователя напряжения и подключенные к сети защитные функции.

[ГОСТ Р 55993—2014, статья 3.3.33, f)]

AC/AC интерфейс: Интерфейс между инвертором и его нагрузкой AC/AC interface переменного тока.

Примечание — АС/АС интерфейс могут иметь АС/АС преобразователи напряжения (трансформаторы), фильтры и устройства для подключения к дополнительным источникам энергии переменного тока.

[ГОСТ Р 55993—2014, статья 3.3.33, а)]

42

сторона переменного тока интерфейса: Часть подсоединенной к AC side of the interface сети установки от контактов переменного тока инвертора к месту соединения с системой распределения энергии.

[ГОСТ Р 55993—2014, статья 3.3.33, b)]

43

DC интерфейс; *интерфейс стороны постоянного тока*: Интерфейс между системой установок, генерирующих постоянный ток, и входом подсистемы источника стабилизированного питания.

DC interface

[ГОСТ Р 55993—2014, статья 3.3.33, с) с изменениями: Фотоэлектрические устройства заменены на общее понятие — установки, генерирующие постоянный ток]

DC/DC интерфейс: Интерфейс между преобразователем постоянного DC/DC interface тока на выходе и его нагрузкой постоянного тока.

П р и м е ч а н и е — DC/DC интерфейс может включать в себя аппаратуру распределительных устройств постоянного тока, фильтры и устройства для подключения к дополнительным источникам энергии постоянного тока.

[ГОСТ Р 55993—2014, статья 3.3.33, d)]

45

сторона постоянного тока интерфейса: Работающая от постоянного тока часть подсоединенной к сети установки от элементов, генерирующих постоянный ток. до контактов постоянного тока инвертора.

[ГОСТ Р 55993—2014, статья 3.3.33, е) с изменениями: Фотоэлектрические устройства заменены на общее понятие — элементы, генерирующие постоянный ток]

DC side of the interface

46

электроэнергетический режим энергосистемы: Совокупность технических параметров, характеризующих единый процесс производства, преобразования, передачи и потребления электрической энергии (мощности) в энергосистеме и состояние объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии (включая схемы электрических соединений объектов электроэнергетики).

power grid mode

[ГОСТ Р 57114—2016, статья 3.117]

47

параметры электроэнергетического режима: Частота электрического тока, перетоки активной мощности, токовая нагрузка линий электропередачи и оборудования, напряжение на шинах электрических станций и подстанций.

operating conditions factors

[ГОСТ Р 57114—2016, статья 3.68]

48

частота напряжения электропитания: Частота повторения колебаний основной гармоники напряжения электропитания, измеряемая в течение установленного интервала времени.

frequency

[ГОСТ 32144—2013, статья 3.1.14]

49

номинальная частота: Номинальное значение частоты напряжения электропитания.

nominal frequency

П р и м е ч а н и е — В Российской Федерации значение номинальной частоты установлено 50 Гц (ГОСТ Р 55890—2013, статья 2.16).

[ГОСТ 32144—2013, статья 3.1.15 с изменениями. Добавлено примечание]

50

напряжение электропитания: Среднеквадратическое значение напряжения в определенный момент времени в точке передачи электрической энергии пользователю электрической сети, измеряемое в течение установленного интервала времени.

[r.m.s.] (root-meansquare) voltage value

[ГОСТ 32144—2013, статья 3.1.9]

номинальное напряжение электрической сети [электроустановки]: Напряжение, для которого предназначена или идентифицирована электрическая сеть [электроустановка] и применительно к которому устанавливают ее рабочие характеристики. nominal voltage of system [electrical installation]

[ГОСТ 32144—2013, статья 3.1.8 с изменениями]

52

низкое напряжение: Напряжение, номинальное среднеквадратическое значение которого не превышает 1 кВ.

low voltage;

LV

[ГОСТ 32144—2013, статья 3.1.11]

53

среднее напряжение: Напряжение, номинальное среднеквадратическое значение которого превышает 1 кВ, но не превышает 35 кВ.

medium voltage;

ΜV

[ГОСТ 32144—2013, статья 3.1.12]

54

высокое напряжение: Напряжение, номинальное среднеквадратическое значение которого превышает 35 кВ, но не превышает 220 кВ.

high voltage;

HV

[ГОСТ 32144—2013, статья 3.1.13]

55

согласованное напряжение электропитания, $U_{\rm c}$: Напряжение, отличающееся от стандартного номинального напряжения электрической сети по ГОСТ 29322, согласованное для конкретного пользователя электрической сети при технологическом присоединении в качестве напряжения электропитания.

declared supply voltage

[ГОСТ 32144—2013, статья 3.1.10]

56

надежность энергосистемы: Комплексное свойство (способность) энергосистемы выполнять функции по производству, передаче, распределению и электроснабжению потребителей электрической энергии путем технологического взаимодействия объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии, в том числе удовлетворять в любой момент времени (как текущий, так и на перспективу) спрос на электрическую энергию, противостоять возмущениям, вызванным отказами элементов энергосистемы, включая каскадное развитие аварий и наступление форс-мажорных условий, и восстанавливать свои функции после их нарушения.

dependability of power system

[ГОСТ Р 57114—2016, статья 3.42]

57

нормальный режим энергосистемы: Электроэнергетический режим энергосистемы, при котором значения технических параметров режима энергосистемы находятся в пределах длительно допустимых значений, имеются резервы мощности и запасы топлива на электрических станциях, обеспечивается электроснабжение энергопринимающих устройств потребителей электрической энергии.

normal mode of power system

[ГОСТ Р 57114—2016, статья 3.51]

58 качество функционирования сети: Возможность установления режимов сети, обеспечивающих поддержание заданных оптимальных уровней напряжения и контроль во всех точках приема и отпуска электроэнергии, уровня потерь, соблюдение требований по оптимальной плотности тока.

quality of network operation

59

качество электрической энергии; КЭ: Степень соответствия характеристик электрической энергии в данной точке электрической системы совокупности нормированных показателей КЭ.

quality of supply; electric energy quality; power quality

[ГОСТ 32144—2013, статья 3.1.38 с изменениями]

60

устойчивость энергосистемы: Способность энергосистемы сохранять синхронную работу электрических станций после различного рода возмущений.

power system stability

[ГОСТ Р 57114—2016, статья 3.108 с изменениями]

61

статическая устойчивость: Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений. steady state stability of a power system

П р и м е ч а н и е — Под малым возмущением режима энергосистемы понимают такое возмущение, при котором изменения параметров несоизмеримо малы по сравнению со значениями этих параметров.

[ГОСТ Р 57114—2016, статья 3.91 с изменениями]

62 пропускная способность электрической сети: Технологически максимально допустимое значение мощности, которая может быть передана с учетом условий эксплуатации и параметров надежности функционирования электрических сетей, без ущерба качеству поставляемой потребителю электроэнергии, без повреждения элементов сети или выхода нормируемых параметров, в т. ч. условий безопасной эксплуатации, за пределы допустимых.

adequacy (of an electric power system)

Примечание — Термин определен в [3], статья 617-01-04.

63 (активно-)адаптивная электрическая сеть; (Нрк. интеллектуальная сеть): Система электроснабжения, использующая технологии обмена информацией и управления, распределенные вычислительные устройства и связанные с ними датчики и приводы, для целей:

smart grid intelligent grid

- объединения и согласования поведения и действий пользователей сети и других заинтересованных сторон,
- обеспечения экономической эффективности, устойчивости и надежности электроснабжения.

Примечание — Термин определен в [3], статья 617-04-13.

64 адаптивность (электрической сети): Способность электрической сети изменять пропускную способность за счет применения технических средств и конструктивных решений без изменения качественных показателей электрической энергии у потребителя.

adaptability (electrical network)

6

технологический режим работы: Процесс, протекающий в линиях электропередачи, оборудовании, устройствах объекта электроэнергетики или энергопринимающей установки потребителя электрической энергии, и состояние этого объекта или установки, включая параметры настройки комплексов и устройств релейной защиты и автоматики.

technological regime of the power system

[ГОСТ Р 57114—2016, статья 3.99]

управляющее воздействие: Задание на изменение режима работы или эксплуатационного состояния объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии, реализуемое по команде противоаварийной или режимной автоматики.

control action

[ГОСТ Р 57114—2016, статья 3.105]

67

переключения в электроустановках: Процесс, выполняемый в электроустановках с целью изменения технологического режима работы и/или эксплуатационного состояния линий электропередачи, оборудования, устройств и включающий в себя непосредственные или с использованием средств дистанционного управления воздействия на органы управления коммутационных аппаратов, заземляющих разъединителей, устройств регулирования режима работы оборудования, устройств релейной защиты и автоматики, телемеханики, связи, сигнализации, блокировки, а также выдачу диспетчерским персоналом команд и/или разрешений на производство переключений или выдачу оперативным персоналом указаний на производство переключений и/или подтверждений возможности изменения технологического режима работы или эксплуатационного состояния, и контроль за правильностью их выполнения.

switching in electrical installations

[ГОСТ Р 57114—2016, статья 3.70]

68

установившийся режим энергосистемы: Электроэнергетический режим энергосистемы, характеризующийся незначительными изменениями значений технических параметров, позволяющими считать их неизменными. [ГОСТ Р 57114—2016, статья 3.106]

steady-state mode of power system operating conditions

69

переходный режим энергосистемы: Переход от одного установившегося режима к другому установившемуся режиму, вызванный аварийными возмущениями или изменением технологического режима работы или эксплуатационного состояния объектов электроэнергетики, энергопринимающих установок потребителей электрической энергии, оборудования, устройства.

transient mode of power system operating conditions

[ГОСТ Р 57114—2016, статья 3.71]

70

нормативное возмущение: Аварийное возмущение, учет которого необходим при проведении расчетов электроэнергетических режимов и устойчивости энергосистемы.

rated disturbance

[ГОСТ Р 57114—2016, статья 3.52]

71

исчезновение напряжения: Снижение напряжения в любой точке си- loss of voltage стемы электроснабжения до нуля.

[ГОСТ Р 54130—2010, статья 99]

72

восстановление напряжения: Увеличение напряжения после его посадки, провала, прерывания или исчезновения до значения, находящегося в допустимых пределах для установившегося режима работы системы электроснабжения.

voltage recovery

[ГОСТ Р 54130—2010, статья 100]

опорное напряжение (при оценке провалов, прерываний напряжения и перенапряжений): Значение напряжения, применяемое в качестве основы при установлении остаточного напряжения, пороговых значений напряжения и других характеристик провалов, прерываний напряжения и перенапряжений, выраженное в вольтах или в процентах номинального напряжения.

reference voltage (for assessment of voltage dips, voltage interruptions and overvoltages)

Примечание — В соответствии с требованиями настоящего стандарта опорное напряжение (при оценке провалов, прерываний напряжения и перенапряжений) считают равным номинальному или согласованному напряжению электропитания.

[ГОСТ 32144—2013, статья 3.1.22]

74

прерывание напряжения: Ситуация, при которой напряжение в точке voltage interruption передачи электрической энергии меньше 5 % опорного напряжения.

[ГОСТ 32144—2013, статья 3.1.23]

75

провал напряжения: Временное уменьшение напряжения в конкрет- voltage dip ной точке электрической системы ниже установленного порогового значения.

ГГОСТ 32144—2013, статья 3.1.251

76

пороговое значение начала провала напряжения: Среднеквадратическое значение напряжения в системе электроснабжения, установленное для определения начала провала напряжения.

voltage dip start threshold

[ГОСТ 32144—2013, статья 3.1.29]

77

пороговое значение окончания провала напряжения: Среднеквадратическое значение напряжения в системе электроснабжения, установленное для определения окончания провала напряжения.

voltage dip end threshold

[ГОСТ 32144—2013, статья 3.1.27]

78

остаточное напряжение провала напряжения: Минимальное среднеквадратическое значение напряжения, отмеченное в течение провала напряжения.

residual voltage of voltage dip

Примечание — В соответствии с требованиями настоящего стандарта остаточное напряжение провала напряжения выражают в процентах опорного напряжения.

[ГОСТ 32144—2013, статья 3.1.28]

79

длительность провала напряжения: Интервал времени между моментом, когда напряжение в конкретной точке системы электроснабжения падает ниже порогового значения начала провала напряжения, и моментом, когда напряжение возрастает выше порогового значения окончания провала напряжения.

duration of voltage dip

[ГОСТ 32144—2013, статья 3.1.26]

перенапряжение: Временное возрастание напряжения в конкретной overvoltage точке электрической системы выше установленного порогового значения.

[ГОСТ 32144—2013, статья 3.1.30]

8

пороговое значение начала перенапряжения: Среднеквадратическое значение напряжения в системе электроснабжения, установленное threshold для определения начала перенапряжения.

ГГОСТ 54130-2010, статья 861

82

пороговое значение окончания перенапряжения: Среднеквадратическое значение напряжения в системе электроснабжения, установленное threshold для определения окончания перенапряжения.

[ГОСТ 32144—2013, статья 3.1.32]

83

длительность перенапряжения: Интервал времени между моментом, когда напряжение в конкретной точке системы электроснабжения возрастает выше порогового значения начала перенапряжения, и моментом, когда напряжение падает ниже порогового значения окончания перенапряжения.

duration of overvoltage

[ГОСТ 32144—2013, статья 3.1.31]

84

импульсное напряжение: Перенапряжение, представляющее собой одиночный импульс или колебательный процесс (обычно сильно демпфированный) длительностью до нескольких мс.

voltage impulse

[ГОСТ 32144—2013, статья 3.1.24]

85

быстрое изменение напряжения: Быстрое изменение среднеквадратического значения напряжения между двумя последовательными уровнями установившегося напряжения.

unitary deviation of voltage

Примечание — См. также ГОСТ 30804.3.3.

[ГОСТ 32144—2013, статья 3.1.21]

86

выброс напряжения: Единичное быстрое значительное увеличение (свыше 110 % заявленного напряжения) среднеквадратического значения напряжения в электрической сети с последующим восстановлением за время от 10 мс до 1 мин.

fast increase in voltage

[ГОСТ 32144—2013, статья 3.1.24]

87

несимметрия напряжений: Состояние трехфазной системы энергоснабжения переменного тока, в которой среднеквадратические значения основных составляющих междуфазных напряжений или углы сдвига фаз между основными составляющими междуфазных напряжений не равны между собой. voltage unbalance

[ГОСТ 32144—2013, статья 3.1.39]

88 изолированный район (энергосистемы); обособленный район; island выделенный район: Часть энергосистемы, которая отключена от остальной части системы, но остается под напряжением.

Примечания

- 1 Изолированный район может образоваться либо в результате действия автоматической защиты, либо в результате преднамеренного действия.
 - 2 Термин определен в [3], статья 617-04-12.
- 3 В отдельных случаях образование изолированного района не предполагает восстановления связи с остальной энергосистемой.
- 89 обособление (района энергосистемы); выделение; изолирование: Выделение района из энергосистемы на изолированную работу, при которой генерация в пределах выделенной области продолжает выдавать мощность в локальную распределительную сеть.

islanding: network splitting

Примечание — Термин определен в [4], статья 603-04-31.

90 непреднамеренное обособление; непреднамеренное выделение; непреднамеренное изолирование: Условие изолированной работы, возникшее в результате автоматической защиты или человеческих ошибок.

unintentional islanding

91 преднамеренное обособление; преднамеренное выделение; преднамеренное изолирование: Условие изолированной работы, возникшее в результате преднамеренного управляющего воздействия.

intentional islanding

Примечание — Преднамеренное обособление создается, как правило, для восстановления или поддержания энергоснабжения в части сети, пострадавшей от неисправности.

Термины и определения для проектирования и установки СНЭЭ

92 архитектура СНЭЭ: Взаимосвязь отдельных систем и элементов, EESS architecture позволяющая обеспечить функционирование СНЭЭ.

Примечание — Пример архитектуры СНЭЭ приведен в приложении А, рисунки А.1 и А.2.

93 подсистема (СНЭЭ): Часть системы НЭЭ, которая сама по себе EESS subsystem является системой.

Примечания

- 1 Подсистема, как правило, на более низком уровне разукрупнения, чем СНЭЭ, частью которой она является.
- 2 Термин взят из [5], статья 192-01-04, с изменениями: Исходное определение было конкретизировано для системы НЭЭ.
- 94 основная подсистема (СНЭЭ): Подсистема СНЭЭ, состоящая из компонентов/подсистем, которые непосредственно отвечают за накопление, хранение и за извлечение электрической энергии.

primary subsystem

Примечание — Как правило, основная подсистема подключена к основной ТПН и содержит, по меньшей мере, подсистемы накопления и подсистемы преобразования энергии (рисунки А.1 и А.2).

95 подсистема контроля и управления (СНЭЭ): Подсистема СНЭЭ, служащая для контроля и управления СНЭЭ, включая все оборудование и функции для сбора, обработки, передачи и отображения всей необходимой информации.

control subsystem

Примечания

1 Как правило (рисунки А.1 и А.2), подсистема контроля и управления подключена к интерфейсу связи и включает в себя, по крайней мере, подсистему управления, коммуникационную подсистему и подсистему защиты.

- Подсистема контроля и управления, как правило, обеспечивается питанием от вспомогательной подсистемы.
- 3 Для обозначения подсистемы контроля и управления часто используют сокращение СКУ (система контроля и управления).
- 96 подсистема управления (СНЭЭ): Подсистема СНЭЭ, обеспечивающая функциональность, необходимую для безопасной, полезной и эффективной работы СНЭЭ.

management subsystem

97 подсистема накопления (СНЭЭ): Подсистема СНЭЭ, содержащая по меньшей мере один НЭЭ, где накапливается и хранится энергия в той или иной форме.

accumulation subsystem; storage subsystem

Примечания

- 1 Частые формы запасания энергии: механическая энергия, электрохимическая энергия, электромагнитная энергия.
- 2 В общем случае (рисунки А.1 и А.2) подсистемы накопления подключены к подсистеме преобразования электрической энергии, которая выполняет необходимые преобразования энергии в электрическую энергию. Однако в некоторых случаях функции преобразования энергии заложены в саму подсистему накопления (например, во вторичных электрохимических элементах (аккумуляторах) энергия доступна непосредственно в форме электрической энергии).
- 98 подсистема преобразования энергии (СНЭЭ): Подсистема СНЭЭ, в которой энергия преобразуется из доступной формы на выходе подсистемы накопления системы НЭЭ в электрическую энергию с теми же характеристиками (напряжение, частота и т. п.), что и в основной ТПН.

power conversion subsystem

П р и м е ч а н и е — Как правило (рисунки А.1 и А.2), подсистема преобразования энергии подключена к подсистеме накопления и основной ТПН через СВ.

99 вспомогательная подсистема (СНЭЭ): Подсистема СНЭЭ, содержащая оборудование, предназначенное для выполнения определенных дополнительных функций для накопления/извлечения электрической энергии, которое осуществляется в основной подсистеме.

auxiliary subsystem

Примечания

- 1 Как правило (рисунок А.2), вспомогательная подсистема подключена к вспомогательной ТПН через вспомогательный СВ.
- 2 Оборудование вспомогательной подсистемы (вспомогательное оборудование), как правило, необходимо для обеспечения всех эксплуатационных состояний СНЭЭ и оценки правильного функционирования (работы) основной и контрольной подсистем при любом режиме работы.
- 3 Вспомогательная подсистема может быть настроена так, чтобы брать энергию для своей работы из основной подсистемы (рисунок А.1).
- 4 Вспомогательная подсистема в свою очередь может состоять из нескольких вспомогательных систем различного назначения, например подсистемы теплового кондиционирования, подсистемы пожаротушения, подсистемы запуска дизель-генератора или иного распределенного генератора.

100

коммуникационная подсистема (СНЭЭ): Подсистема СНЭЭ, содержащая совокупность оборудования, программного обеспечения и средства передачи информации для обеспечения передачи сообщений от одного компонента/подсистемы СНЭЭ в другую, в том числе интерфейс обмена данными с внешними устройствами.

communication subsystem

[ГОСТ Р 56205—2014, статья 3.2.25 с изменениями: Исходное определение было конкретизировано для системы НЭЭ]

101 подсистема защиты (СНЭЭ): Подсистема СНЭЭ, содержащая совокупность одного или более устройств защиты и других устройств, предназначенных для выполнения одной или нескольких определенных функций зашиты.

protection subsystem

Примечания

- 1 Подсистема защиты включает в себя одно или более устройств защиты, трансформатор(ы), датчики, проводку, цепи отключения, вспомогательные источники питания. В зависимости от принципа(ов) подсистемы защиты она может включать один конец или все концы защищаемого участка и, возможно, обеспечение автоматического повторного включения оборудования.
 - 2 Выключатели и предохранители исключаются из понятия.
- 3 Термин взят из [6], статья 448-11-04 с изменениями: исходное определение было конкретизировано для системы НЭЭ и добавлено примечание 2 для исключения всех выключателей и предохранителей, а не только размыкателей цепи.
- 102 точка подключения (СНЭЭ); ТПН: Указанная точка в электроэнергетической системе, в которой подключена СНЭЭ.

point of connection; POC

Примечания

- 1 СНЭЭ может иметь несколько ТПН в двух разных классах: основная ТПН и вспомогательная ТПН. Вспомогательная ТПН предназначена для питания вспомогательной системы. Из вспомогательной ТПН невозможно брать электрическую энергию для заряда для того, чтобы накопить и в дальнейшем отдать энергию в электрическую энергосистему, в то же время основная ТПН может использоваться для питания вспомогательной подсистемы и подсистемы контроля и управления. В случае отсутствия вспомогательной ТПН основная ТПН может быть названа просто ТПН.
- 2 Термин взят из [3], статья 617-04-01 с изменениями: исходное определение было конкретизировано для СНЭЭ и добавлены примечания.
- 103 основная ТПН (СНЭЭ): Точка подключения, в которой СНЭЭ может брать электрическую энергию для заряда для того, чтобы накопить и в дальнейшем отдать электрическую энергию в энергосистему.

primary POC

Примечание — Как правило, основная ТПН связана с основной подсистемой системы НЭЭ через основной СВ.

104 вспомогательная ТПН (СНЭЭ): Точка подключения СНЭЭ к электроэнергетической системе, используемая для питания вспомогательной подсистемы, если основная ТПН не используется для питания всех подсистем.

auxiliary POC

Примечания

- 1 Вспомогательная ТПН может также быть запитана от другого источника электрической энергии (например, дизельного генератора).
- 2 Как правило, подсистемы контроля запитываются от вспомогательной системы и, следовательно, от вспомогательной ТПН.
- 105 стыковочный вывод (СНЭЭ); СВ: Компонент системы НЭЭ, используемый для подключения к ТПН.

connection terminal

 Π р и м е ч а н и е — СНЭЭ может иметь несколько СВ в двух разных классах: основной и вспомогательные СВ. В отсутствие вспомогательной ТПН основной СВ может быть назван просто как стыковочный вывод (СВ).

106 модуль СНЭЭ: Часть системы НЭЭ, которая сама по себе является системой НЭЭ.

EESS module; EESS unit

- . 1 Модуль СНЭЭ является конкретной подсистемой НЭЭ.
- 2 В модуле СНЭЭ СВ вспомогательной подсистемы и подсистемы контроля могут отсутствовать, они могут быть централизованы на уровне СНЭЭ.

107 **модульность:** Свойство системы НЭЭ, которое определяет, до какой степени она была составлена из отдельных частей, называемых модулями СНЭЭ.

modularity

Примечание — Термин взят из [7], статья 3.2.9 с изменениями: исходное определение было конкретизировано под системы НЭЭ.

108 рабочие сигналы: Набор сигналов, согласованных в установленном виде и передающихся через установленный протокол, используемый для задания состояния СНЭЭ, в том числе передачи команд для СНЭЭ и ответы от нее в режиме реального времени, а также результаты измерений.

operation signals

П р и м е ч а н и е — Рабочие сигналы находятся под управлением коммуникационной подсистемы.

Термины и определения для установления требований к СНЭЭ

109 условия длительной эксплуатации: Диапазон условий эксплуатации, в котором СНЭЭ предназначена для длительной работы в рамках заданных пределов рабочих характеристик.

continuous operating conditions

Примечание — Условия длительной эксплуатации, как правило, определяются, как описано ниже, но могут быть и другие условия в зависимости от технологии:

- а) напряжение и частота на ТПН и в рамках диапазона условий длительной эксплуатации;
 - б) СНЭЭ полностью работоспособна;
 - в) СНЭЭ находится внутри рекомендованных условий окружающей среды.
- 110 рабочий цикл (СНЭЭ): Комбинация из контролируемых фаз (фаза заряда, пауза, фаза разряда и т.п.) начиная с начальной степени заряженности и заканчивая степенью заряженности в конце цикла, используемая для определения характеристик СНЭЭ, требований и методов испытаний для определенного режима работы.

duty-cycle of the EES system

111 зарядно-разрядный цикл (СНЭЭ): Рабочий цикл СНЭЭ, состоящий из четырех контролируемых этапов начиная с СЗ исходного состояния, а именно: фаза заряда, затем пауза, затем фаза разряда и еще одна пауза.

charging / discharging cvcle

Примечание — Пример для иллюстрации зарядно-разрядного цикла СНЭЭ приведен в приложении A, рисунок A.3.

112 заданный зарядно-разрядный цикл (СНЭЭ): Цикл заряда-разряда, используемый для определения характеристик СНЭЭ, требований и методов испытаний для определенного режима работы.

predetermined charging/discharging cycle

Пример — Возможными определениями заданного цикла заряда-разряда являются:

- а) E_{0} соответствующая полному разряду, что означает С3 = 0 %;
- б) Т₁ не менее номинального времени заряда НЭЭ;
- в) Т₃ не менее номинального времени разряда НЭЭ;
- e) $T_2 + T_4 \le T_1$;
- д) E_3 не менее номинальной энергоемкости;
- е) Ез для того, чтобы вернуться в состояние полного разряда, СЗ = 0 %

Примечание — Заданный зарядно-разрядный цикл определяется путем задания значений Е и/или Т и профиля фазы заряда и разряда (рисунок А.3).

номинальное напряжение (СНЭЭ), $U_{\rm H}$: Значение напряжения, которым СНЭЭ обозначена и идентифицирована и которое измерено на основном СВ.

nominal voltage

П р и м е ч а н и е — Базовой единицей является В, но для удобства могут использоваться и другие единицы (кВ).

[ГОСТ Р МЭК 60050-826—2009, статья 826-11-01 с изменениями]

114

нормированное напряжение (СНЭЭ), $U_{\rm hp}$: Значение напряжения, rated voltage определенного для основного СВ СНЭЭ.

Примечания

- 1 Разрешенный диапазон отклонения от нормированного напряжения называется диапазоном напряжения длительной работы и задает допустимое отклонение напряжения от нормированного значения.
- 2 Базовой единицей является B, но для удобства могут использоваться и другие единицы (кB).

[ГОСТ Р МЭК 60050-826—2009, статья 826-11-01 с изменениями]

115 **номинальная частота (СНЭЭ)**, $f_{\rm H}$: Значение частоты, которым СНЭЭ обозначена и идентифицирована и которое измерено на основном СВ.

nominal frequency

Примечания

- 1 Базовой единицей является Гц.
- 2 Использован тот же подход, как и в ГОСТ Р МЭК 60050-826—2009, статья 826-11-01]
- 116 **нормированная частота (СНЭЭ)**, $f_{\rm hp}$: Значение частоты, для ко- rated frequency торой предназначен основной СВ СНЭЭ.

Примечания

- 1 Разрешенный диапазон отклонения от нормированной частоты называется диапазоном частот длительной работы и задает допустимое отклонение частоты от нормированного значения.
 - Базовой единицей является Гц.
- 117 **номинальная энергоемкость (СНЭЭ)**, *E*_н: Значение энергоемкости, которым СНЭЭ обозначена и идентифицирована.

nominal energy capacity;

 $E_{\rm NC}$

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 Использован тот же подход, что и в ГОСТ Р МЭК 60050-826—2009, статья 826-11-01]
- 118 **нормированная энергоемкость (СНЭЭ)**, $E_{\rm hp}$: Значение содержания энергии полностью заряженной СНЭЭ в условиях длительной эксплуатации при разряде непрерывно при нормированной активной мощности, измеренное на основной ТПН.

rated energy capacity; E_{RC}

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
 - 2 Нормированная энергоемкость, как правило, относится к началу срока службы.
- 119 фактическая энергоемкость (СНЭЭ), E_{ϕ} : Значение энергоемкости полностью заряженной СНЭЭ в данный момент времени в результате снижения работоспособности и других факторов.

actual energy capacity;

П р и м е ч а н и е — Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).

120 доступная энергия (СНЭЭ), E_{Π} : Максимальная электрическая available energy энергия, которую можно извлечь из СНЭЭ при ее текущей СЗ.

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 Для разных технологий СНЭЭ доступная энергия может отличаться в зависимости от температуры окружающей среды, потерь от саморазряда и преобразования энергии, режима разряда (для батарей) и других факторов.
- 121 доступная энергия (СНЭЭ) при нормированной мощности, $E_{\rm л. hp}$: Максимальная электрическая энергия, которую можно извлечь из СНЭЭ при ее текущей СЗ при разряде при нормированной мощности.

available energy at rated power

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 Для разных технологий СНЭЭ доступная энергия может отличаться в зависимости от температуры окружающей среды, потерь от саморазряда и преобразования энергии, режима разряда (для батарей) и других факторов.
- 122 номинальная полная мощность (СНЭЭ), S_н: Значение полной мощности, которым СНЭЭ обозначена и идентифицирована.

nominal apparent power

Примечания

- 1 Базовой единицей является ВА, но для удобства могут использоваться и другие единицы (кВА, МВА).
- 2 Использован тот же подход, как и в ГОСТ Р МЭК 60050-826-2009, статья 826-11-01]
- 123 номинальная активная мощность (СНЭЭ), $P_{\rm H}$: Значение активной мощности, которым СНЭЭ обозначена и идентифицирована.

nominal active power

Примечания

- 1 Данное понятие может быть конкретизировано как номинальная активная мощность во время заряда $(P_{3\, \mathrm{H}})$ и номинальная активная мощность при разряде
- 2 Базовой единицей является Вт, но для удобства могут использоваться и другие единицы (кВт, МВт).
- 3 Использован тот же подход, что и в ГОСТ Р МЭК 60050-826—2009, статья 826-11-01.
- 124 диаграмма мощности (СНЭЭ); показатель полной мощности; оценка входной и выходной мощности: Представление мощности, которой СНЭЭ может обмениваться с энергосистемой через основную ТПН в установившемся режиме работы и условиях длительной эксплуатации, на чертеже в координатах активной и реактивной мощности (P-Q).

power capability chart; apparent power characteristic; input and output power rating

Примечание — Пример диаграммы мощности приведен в приложении А. рисунок А.4.

125 нормированная полная мощность (СНЭЭ), S_{но}: Полная мощность СНЭЭ на критических рабочих пределах диаграммы мощности.

rated apparent power

Примечание — Базовой единицей является ВА, но для удобства могут использоваться и другие единицы (кВА, МВА).

126 нормированный коэффициент мощности (СНЭЭ): Коэффициент мощности СНЭЭ при нормированной полной мощности.

rated power factor

Примечание — Термин «коэффициент мощности» определяется в [8], статья 131-11-46.

127 **нормированная активная мощность (СНЭЭ)**, $P_{\rm hp}$: Максимальная активная мощность СНЭЭ на критических рабочих пределах диаграммы мощности.

rated active power

Примечания

- 1 Базовой единицей является Вт, но для удобства могут использоваться и другие единицы (кВт, МВт).
- 2 На рисунке А.4 приложения А нормированная активная мощность это максимум ($P_{\mathtt{3.Hp}}, P_{\mathtt{p.hp}}$).
- 128 **нормированная реактивная мощность (СНЭЭ)**, Q_{нр}: Максимальная реактивная мощность СНЭЭ на критических рабочих пределах диаграммы мощности.

rated reactive power

Примечания

- 1 Базовой единицей является Вар, но для удобства могут использоваться и другие единицы (кВар, МВар).
- 2 На рисунке А.4 приложения А нормированная реактивная мощность это максимум (Q_{LHD} , Q_{CHD}).
- 129 кратковременная реактивная мощность (СНЭЭ): Максимальная реактивная мощность, которой СНЭЭ может обмениваться в течение указанного времени в установившихся режимах работы и в непрерывных условиях эксплуатации.

short duration reactive power

Примечания

- 1 Кратковременная мощность, как правило, получается из диаграммы мощности.
- 2 Базовой единицей является Вар, но для удобства могут использоваться и другие единицы (кВар, МВар).
- 130 кратковременная мощность отдачи энергии (СНЭЭ); кратковременная выходная мощность: Максимальная мощность, которую СНЭЭ может выдать при разряде в течение указанного времени в установившихся режимах работы и в непрерывных условиях эксплуатации.

short duration power during discharge; short duration output power

Примечания

- 1 Кратковременная мощность, как правило, получается из диаграммы мощности.
- $2\;$ Базовой единицей является Вт, но для удобства могут использоваться и другие единицы (кВт, МВт).
- 131 кратковременная мощность при заряде (СНЭЭ); кратковременная входная мощность: Максимальная мощность, при которой СНЭЭ может заряжаться в течение указанного времени в установившихся режимах работы и в непрерывных условиях эксплуатации.

short duration power during charge; short duration input power

Примечания

- Значение кратковременной мощности, как правило, получают из диаграммы мошности.
- 2 Базовой единицей является Вт, но для удобства могут использоваться и другие единицы (кВт, МВт).
- 132 **номинальное время заряда (СНЭЭ)**; $T_{3,\mathrm{H}}$: Номинальная энергоемкость, деленная на номинальную активную мощность при заряде.

nominal charging time; $T_{\rm NC}$

Примечания

1 Базовой единицей является с, но для удобства могут использоваться и другие единицы (ч).

$$T_{3,H} = \frac{E_{H}}{P_{3,H}}.$$
 (1)

- 3 В применении к СНЭЭ на основе вторичных батарей и со ссылкой на определение режима заряда, $T_{3.H}$ это минимальное время, в течение которого батарея должна набрать номинальную емкость (значение емкости должно соответствовать используемому значению $P_{3.H}$).
- 4 Режим заряда (в отношении вторичных элементов и батарей) определяется в ГОСТ Р МЭК 60050-482, статья 482-05-45.

133 **номинальное время разряда (СНЭЭ)**; $T_{\rm p, H}$: Номинальная энергоемкость, деленная на номинальную активную мощность при разряде.

nominal discharging time:

 $T_{\rm ND}$

Примечания

1 Базовой единицей является с, но для удобства могут использоваться и другие единицы (ч).

$$T_{p,H} = \frac{E_H}{P_{p,H}}.$$
 (2)

- 3 В применении к СНЭЭ на основе вторичных батарей и со ссылкой на определение режима разряда, $T_{\rm p.h}$ это минимальное время, в течение которого батарея должна отдать номинальную емкость (значение емкости должно соответствовать используемому значению $P_{\mathsf{p},\mathsf{H}}$).
- 4 Скорость разряда (в отношении вторичных элементов и батарей) определяется в ГОСТ Р МЭК 60050-482, статья 482-03-25.
- 134 степень заряженности (СНЭЭ); С3: Отношение доступной энергии СНЭЭ и фактической энергоемкости.

EESS: **EESS SOC**

Примечание — Степень заряженности, как правило, выражают в процентах.

target state of charge

state of charge of

135 целевая степень заряженности (СНЭЭ); СЗЦ: Степень заряженности, к которой должна стремиться СНЭЭ в установившемся состоянии для того, чтобы иметь возможность принять в себя или отдать количество энергии, рассчитанное при проектировании системы для конкретного применения.

> permitted depth of charge: permitted DOC

136 разрешенная степень заряженности (СНЭЭ); СЗР (Нрк. разрешенная глубина заряда): Максимальное относительное значение величины энергоемкости, которое допускается передать системе накопления начиная от полностью разряженного ее состояния для работы СНЭЭ в заданном режиме и в непрерывных условиях эксплуатации.

Примечания

- 1 Как правило, энергоемкость подсистемы накопления переразмерена, чтобы соответствовать требованиям по рабочим характеристикам, налагаемым на системы ЕЭС, в течение всего срока службы, поэтому только часть ее энергии задействована. Разрешенная СЗР является одной из двух границ этой части. СЗР может быть отнесена к фактической, номинальной или нормированной энергоемкости. Для конкретизации рекомендуется использовать индексы СЗР_ф, СЗР_{но} соответственно.
- 2 СЗР может быть также определена при заданной мощности заряда Ру, в этих случаях часто используют словосочетание СЗР при $P_{\mathbf{x}}$.
 - 3 СЗР обычно выражают в процентах.

137 разрешенная глубина разряда (СНЭЭ); ГРР: Максимальное относительное значение величины энергоемкости, которое допускается получить от системы накопления начиная от полностью заряженного ее состояния для работы СНЭЭ в заданном режиме и в непрерывных условиях эксплуатации.

permitted depth of discharge; permitted DOD

- 1 Как правило, энергоемкость подсистемы накопления переразмерена, чтобы соответствовать требованиям по рабочим характеристикам, налагаемым на системы ЕЭС, в течение всего срока службы, поэтому только часть ее энергии задействована. ГРР является одной из двух границ этой части. ГРР может быть отнесена к фактической, номинальной или нормированной энергоемкости. Для конкретизации рекомендуется использовать индексы $\mathsf{ГPP}_{\mathbf{d}}$, $\mathsf{ГPP}_{\mathsf{HP}}$, $\mathsf{ГPP}_{\mathsf{HP}}$ соответственно.
- 2 ГРР может быть также определена при заданной мощности разряда Ру, в этих случаях часто используют словосочетание ГРР при Ру.
 - 3 ГРР обычно выражают в процентах.

саморазряд (СНЭЭ): Явление, вследствие которого подсистема накопления СНЭЭ теряет энергию иными способами, чем путем разряда через основную ТПН.

self-discharge of EESS

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 Саморазряд, как правило, относят к величине фактической энергоемкости системы и выражают в процентах с указанием периода времени, к которому относится снижение энергоемкости.
- 3 Величина саморазряда, не связанная с электрическими утечками, обычно зависит от температуры отдельных элементов НЭ.

[ГОСТ Р МЭК 60050-482, статья 482-03-27 с изменениями]

139 **степень работоспособности (СНЭЭ)**; СР: Оценка общего состояния системы СНЭЭ, полученная на основании измерений, которые свидетельствуют о ее реальных рабочих характеристиках по сравнению с номинальными/нормируемыми значениями.

state of health of EESS; EESS SOH

Примечания

- 1 Степень работоспособности характеризует временную деградацию из-за неисправностей внутри подсистем СНЭЭ, а также деградацию материалов НЭ.
 - 2 Степень работоспособности, как правило, выражают в процентах.
- 140 переходная функция на ступенчатое возмущение: Для СНЭЭ отклик на ступенчатое изменение входного параметра, длительность интервала времени между моментом ступенчатого изменения входной переменной и моментом, когда выходная величина достигает требуемого значения.

step response performances

Примечания

- 1 Пример переходной функции приведен в приложении A, рисунок A.5. Если входная переменная является уставкой, окончательное стационарное значение (Y_{∞} на рисунке A.5) равно уставке.
- 2 Базовой единицей является с, но для удобства могут использоваться и другие единицы (мс).
 - Термин взят из [9], статья 351-45-36 с изменениями.
- 141 **время запаздывания:** Отклик на единичное ступенчатое возмущение, длительность интервала времени между моментом ступенчатого изменения входной переменной и моментом, когда выходная величина начала изменение от исходного установившегося значения.

dead time

Примечания

- 1 На рисунке А.5 время запаздывания $T_{\mathbf{t}}$.
- 2 Базовой единицей является с, но для удобства могут использоваться и другие единицы (мс).
 - 3 Термин взят из [9], статья 351-45-36 с изменениями.
- 142 **скорость изменения (выходной переменной):** Отклик на единичное ступенчатое возмущение, средняя скорость изменения значения величины за единицу времени после времени запаздывания и в течение времени отклика на единичное ступенчатое возмущение.

ramp rate;

Примечания

- 1 Если входная переменная является уставкой, окончательное стационарное значение (Y_{∞} на рисунке A.5) равно уставке.
 - 2 При определении $T_{\rm t} \le T_{\rm 1} < T_{\rm 2} \le T_{\rm sr}$ на рисунке A.5 скорость изменения:

$$RR = \frac{Y(T_2) - Y(T_1)}{T_2 - T_1}.$$
 (3)

3 Термин взят из [9], статья 351-45-36 с изменениями.

143 время отклика на единичное ступенчатое возмущение: Отклик на единичное ступенчатое возмущение, длительность интервала времени между моментом ступенчатого изменения входной переменной и моментом, когда выходная величина в первый раз достигла установленного процентного отклонения между окончательным и начальным установившимися значениями.

step response time

Примечания

- 1 Если входная переменная является уставкой, окончательное стационарное значение (У на рисунке А.5) равно уставке.
- 2 В случае неколебательных процессов время отклика на единичное ступенчатое возмущение равно времени стабилизации.
 - 3 На рисунке A.5 время отклика на единичное ступенчатое возмущение $T_{\rm sr}$
- 4 Базовой единицей является с, но для удобства могут использоваться и другие единицы (мс).
 - 5 Термин взят из [9], статья 351-45-36 с изменениями.
- 144 время стабилизации: Отклик на единичное ступенчатое возмущение, длительность интервала времени между моментом ступенчатого изменения входной переменной и моментом, когда выходная величина окончательно достигла установленного процентного отклонения между окончательным и начальным установившимися значениями.

settling time

Примечания

- 1 Если входная переменная является уставкой, окончательное стационарное значение (У на рисунке А.5) равно уставке.
 - 2 На рисунке A.5 время стабилизации T_s .
- 3 Базовой единицей является с, но для удобства могут использоваться и другие единицы (мс).
 - 4 Термин взят из [9], статья 351-45-36 с изменениями.
- 145 нормированное напряжение вспомогательной подсистемы (СНЭЭ): Значение напряжения, установленное для вспомогательного СВ СНЭЭ.

rated voltage of the auxiliary subsystem

Примечания

- 1 Разрешенный диапазон отклонения от номинального напряжения называется диапазоном напряжения длительной работы на вспомогательном СВ.
- 2 Базовой единицей является В, но для удобства могут использоваться и другие единицы (кВ).
- 146 нормированная частота вспомогательной подсистемы rated frequency of the (СНЭЭ): Значение частоты, установленное для вспомогательного СВ СНЭЭ.

auxiliary subsystem

Примечания

- 1 Разрешенный диапазон отклонения от нормированной частоты называется диапазоном частот длительной работы вспомогательной системы.
- 2 Базовой единицей является Гц, но для удобства могут использоваться и другие единицы (кГц).
- 147 мощность потребления вспомогательной подсистемы (СНЭЭ): Активная мощность, потребляемая вспомогательной подсистемой СНЭЭ в указанное время и в указанном режиме в непрерывных условиях эксплуатации.

auxiliary power consumption

- 1 Базовой единицей является Вт, но для удобства могут использоваться и другие единицы (кВт, МВт).
- 2 В случае отсутствия вспомогательной ТПН (вспомогательная подсистема запитана через основную ТПН) потребляемая мощность может быть оценена на внутренней точке подключения вспомогательной подсистемы, а не на вспомогательной ТПН.

148 нормированная полная мощность вспомогательной подсистемы (СНЭЭ): Максимальная полная мощность, потребляемая вспомогательной подсистемой СНЭЭ в установившихся режимах работы при непрерывных условиях эксплуатации.

rated apparent power of the auxiliary subsystem

П р и м е ч а н и е — Базовой единицей является ВА, но для удобства могут использоваться и другие единицы (кВА, МВА).

149 **нормированный коэффициент мощности вспомогательной подсистемы (СНЭЭ):** Коэффициент мощности при нормированной полной мощности вспомогательной подсистемы.

rated power factor of the auxiliary subsystem

150 значения показателей (СНЭЭ) в конце срока службы: Значение показателей рабочих характеристик СНЭЭ, которые определяют достижение конца срока службы.

end of service life values

П р и м е ч а н и е — Конкретные значения рабочих характеристик СНЭЭ, таких как нормированная энергоемкость, переходная функция на ступенчатое возмущение от изменения режима, нормированная мощность и т. п., как правило, определяются по соглашению между пользователем и поставщиком.

Термины и определения по эксплуатации СНЭЭ

151 режим работы (СНЭЭ): Условия, при которых СНЭЭ выполняет хотя бы одно приложение.

operating mode

Примечания

- 1 Условия затрагивают переходы рабочих состояний, уставки подсистем СНЭЭ и т.п.
 - 2 Термин взят из [10], статья 904-03-13 с изменениями.
- 152 рабочее состояние (СНЭЭ): Особое сочетание состояний элементов СНЭЭ, связанное с конкретной операцией СНЭЭ в течение требуемого времени.

operating state

153 подключенное к сети состояние (СНЭЭ): Тип рабочего состояния, в котором СНЭЭ подключена к основной ТПН.

grid-connected state

154 состояние ожидания (СНЭЭ): Тип рабочего состояния, в котором СНЭЭ в течение требуемого времени подключена к сети без каких-либо целенаправленных потоков энергии и готова изменить свое состояние на состояние зарядки, разрядки или остановки.

stand-by state

П р и м е ч а н и е — В этом состоянии СНЭЭ находится в подключенном к сети состоянии и подсистемы накопления соединены с подсистемами преобразования энергии.

155 **состояние разрядки (СНЭЭ):** Тип рабочего состояния, в котором СНЭЭ в течение требуемого времени контролируемым образом снабжает основную ТПН электрической энергией.

discharging state

156 **состояние зарядки (СНЭЭ):** Тип рабочего состояния, в котором СНЭЭ в течение требуемого времени контролируемым образом снабжается электрической энергией от основной ТПН.

charging state

157 **отключенное от сети состояние (СНЭЭ):** Тип рабочего состояния, в котором СНЭЭ отключена от основной ТПН.

grid-disconnected state

158 остановленное состояние (СНЭЭ): Тип рабочего состояния, в котором СНЭЭ находится в отключенном от сети состоянии и подсистемы накопления не соединены с подсистемами преобразования энергии.

stopped state

- 1 В случае отсутствия устройств отключения между подсистемой накопления и подсистемой преобразования энергии гальваническую развязку можно обеспечить другими решениями (например, извлекаемые батареи).
 - 2 В этом состоянии вспомогательные подсистемы находятся под напряжением.

159 обесточенное состояние (СНЭЭ): СНЭЭ находится в остановленном состоянии и вспомогательная подсистема обесточена.

de-energized state

Примечание — Во многих случаях может быть невозможно обесточить подсистемы накопления без серьезных повреждений (например, батареи имеют напряжение на выходе даже в полностью разряженном состоянии).

160 вспомогательная подсистема (СНЭЭ) обесточена: Условие обслуживания, при котором вспомогательная подсистема системы НЭЭ не имеет никакого источника энергии для питания вспомогательного оборудования внутри подсистем и она не подключена к внешнему источнику энергии.

auxiliary subsystem deenergized

Примечания

- 1 В этом состоянии вспомогательная подсистема не запитана от возможно имеющихся ИБП.
 - 2 Термин «ИБП» определен в ГОСТ IEC 62040-1—2013, статья 3.1.1.
- 161 **аварийная остановка (СНЭЭ):** Рабочая процедура, предназначенная для как можно более быстрой остановки операции, которая стала опасна.

emergency stop

162 **выключение (СНЭЭ);** *останов*: Команда для перевода системы НЭЭ в остановленное состояние из другого рабочего состояния.

shutdown

Примечание — Эта команда также может быть следствием аварийных условий.

163 рабочая процедура (СНЭЭ): Последовательность операций, необходимых для достижения функциональных целей.

operating procedure

164

регулировочный диапазон (по активной мощности): Интервал нагрузок генерирующего оборудования по активной мощности для нормальных условий его эксплуатации, при которых параметры генерирующего оборудования находятся в допустимых пределах.

control range (of active power)

[ГОСТ Р 57114—2016, статья 3.81]

165

технический минимум: Нижний предел регулировочного диапазона по активной мощности генерирующего оборудования, для достижения которого допускается изменение состава работающего основного и вспомогательного оборудования и отключение автоматического регулирования или сохранение в работе отдельных регуляторов.

technical minimum

[ГОСТ Р 57114—2016, статья 3.95]

166

технологический минимум: Нижний предел регулировочного диапазона по активной мощности генерирующего оборудования исходя из требований его работы при сохранении автоматического регулирования или отдельных регуляторов или отдельных регуляторов и минимально допустимого для данного режима работы состава вспомогательного оборудования. technologic minimum

[ГОСТ Р 57114—2016, статья 3.98]

167 приложение длительного времени действия (СНЭЭ); интенсивного использования энергии: Приложение использования СНЭЭ, как правило, не очень требовательное к переходной функции на ступенчатое возмущение от изменения режима, но с частыми и длительными фазами заряда и разряда при переменной мощности.

long duration applications; energy intensive applications

П р и м е ч а н и е — Совместно с обменом активной мощностью часто присутствует обмен реактивной мощностью с энергосистемой.

168 регулирование потока активной мощности (приложение СНЭЭ): Приложение длительного времени действия с использованием энергии заряда или разряда СНЭЭ для частичной или полной компенсации изменения потока активной мощности в определенном сегменте электроэнергетической системы.

active power flow control

Пример — Типичными примерами являются срезание, выравнивание или смещение пиков нагрузки.

П р и м е ч а н и е — Это приложение может потребовать непрерывного заряда или разряда СНЭЭ в течение нескольких часов.

169 регулирование тока линии электропитания (приложение СНЭЭ): Приложение длительного времени действия с использованием обмена активной мощностью СНЭЭ с электрической сетью для обеспечения подачи тока в определенных пределах.

feeder current control

Пример — Типичным примером является уменьшение перегрузок.

П р и м е ч а н и е — Теоретически в линии электропитания может осуществляться и обмен реактивной составляющей мощности, но типичным для него является только активный обмен энергией.

170 приложение короткого времени действия (СНЭЭ); интенсивного использования мощности: Приложение использования СНЭЭ, как правило, требовательные к переходной функции на ступенчатое возмущение от изменения режима и с частым переходом фаз заряда и разряда или с реактивным обменом энергией НЭЭ с энергосистемой.

short duration applications; power intensive applications

171 смягчение последствий снижения качества питания (приложение СНЭЭ): Приложение короткого времени действия, используемое для смягчения наведенных помех в электрических системах, таких как кратковременные прерывания, провалы напряжения, выбросы напряжения, гармоники напряжения и тока, переходные перенапряжения, быстрые изменения напряжения путем обмена активной или реактивной мощностью СНЭЭ с энергосистемой.

power quality events mitigation

Пример — Типичным примером СНЭЭ, используемой для этого приложения, являются источники бесперебойного питания (ИБП).

Примечания

- 1 Смягчение последствий событий, приводящих к снижению качества питания (за исключением перерывов питания и гармоник) происходит, как правило, в течение периода времени порядка от мс до нескольких с.
- 2 Для смягчения последствий снижения качества питания в виде гармоник и промежуточных гармоник могут быть использованы также активный и реактивный обмен мощностью.
- 3 Теоретически прерывания питания могут иметь большую длительность, практически же большая часть из них имеют длительность не более 1 мин. Смягчение событий с длительностью более 1 мин, определяется как смягчение последствий исчезновения напряжения.
- 4 Термин «качество электроэнергии» определяется в [3], статья 617-01-05, ГОСТ 32144—2013, статья 3.1.38; «события снижения качества питания» определены в [11]; «ИБП» определен в ГОСТ IEC 62040-1—2013, статья 3.1.1.
- 172 регулирование потока реактивной мощности (приложение СНЭЭ): Приложение короткого времени действия, используемое для компенсации частично или полностью реактивной мощности потока в определенном сегменте электрической энергосистемы с помощью СНЭЭ.

reactive power flow control

Пример — Типичным примером является регулирование мощности, достигаемое использованием батарей конденсаторов.

регулирование частоты сети (приложение СНЭЭ): Приложение короткого времени действия СНЭЭ для электроэнергетической системы с добавлением энергии в виде активной мощности в сеть или отводом ее из сети для поддержания частоты в определенных границах.

grid frequency control; active power response to frequency variations

Примечания

- 1 Балансировка временных изменений частоты сети происходит, как правило, в пределах порядка от с до мин.
- 2 Регулирование частоты энергосистемы с помощью СНЭЭ относится к процессу вторичного регулирования (см. ГОСТ Р 55890—2013, статья 2.3).
- 3 В изолированном районе приложение может выполнять функцию первичного регулирования (см. ГОСТ Р 55890-2013, статьи 2.19, 2.21).

[ГОСТ Р МЭК 61427-2:2016, статья 3.24 с изменениями]

174 регулирование напряжения в узлах (приложение СНЭЭ): Приложение короткого времени действия, используемое для стабилизации напряжения на первичной ТПН СНЭЭ или соседних узлах путем обмена активной или реактивной мощностью.

nodal voltage control

Примечание — Реактивная мощность, как правило, используется в высоковольтных сетях и сетях среднего напряжения, активная мощность — в сетях низкого напряжения, в зависимости от коэффициента R/X- соответствующей линии.

175 гибридное [аварийное] приложение (СНЭЭ): Приложение использования СНЭЭ, как правило, требовательное к переходной функции на ступенчатое возмущение от изменения режима и с частыми и длительными фазами разряда с переменной мощностью.

hybrid [emergency] application

176 смягчение последствий исчезновения напряжения (приложение СНЭЭ): Гибридные и аварийные применения СНЭЭ, используемые для обеспечения электрической энергией в течение определенного времени и заранее определенной максимальной мощности, в течение которого основной источник электроэнергии недоступен.

outage mitigation; back-up power

Пример — Типичным примером СНЭЭ, используемой для этого приложения, являются источники бесперебойного питания (ИБП).

Примечания

- 1 Теоретически событие исчезновения напряжения может иметь большую длительность, практически же большая часть из них имеют длительность не более 1 мин. Смягчение событий с длительностью не более 1 мин, определяется как смягчение последствий событий снижения качества питания.
- 2 Термин «события снижения качества питания» определен в [11]; «ИБП» определен в ГОСТ IEC 62040-1—2013, статья 3.1.1.

177 энергоэффективность (СНЭЭ); коэффициент полезного действия: Полезный выход энергии на основной ТПН, деленный на количество энергии, пошедшей на заряд СНЭЭ, включая все потери, а также количество энергии, потребленной вспомогательной подсистемой, необходимой для работы системы, и вычисленная за время прихода СНЭЭ при работе в ту же конечную СЗ, что и в начальном состоянии.

energy efficiency

- 1 Потери и энергия, пошедшая на обеспечение работы вспомогательной подсистемы, необходимой для работы системы, включают в себя потери энергии, в том числе из-за саморазряда, нагрева или охлаждения и т. п.
 - 2 Энергоэффективность, как правило, выражается в процентах.

178 эффективность заряда-разряда (СНЭЭ), $\eta_{3,p}$: Количество энергии, отданное при разряде, измеренное на основной ТПН, деленное на количество энергии, поглощенное СНЭЭ при заряде, измеренное на всех ТПН (основной и вспомогательной) в течение одного заданного цикла зарядаразряда определенного рабочего режима при длительной работе.

roundtrip efficiency;

П р и м е ч а н и е — Эффективность заряда-разряда, как правило, выражается в процентах.

179 эффективность заряда-разряда рабочего цикла (СНЭЭ): Количество энергии, отданной при разряде, измеренное на основной ТПН, деленное на количество энергии, поглощенной СНЭЭ при заряде, измеренную на всех ТПН (основной и вспомогательной) в течение рабочего цикла определенного рабочего режима при длительной работе до той же СЗ конечного состояния, что и исходное состояние.

duty-cycle roundtrip efficiency

Примечание — Эффективность, как правило, выражается в процентах.

180 эффективность заряда-разряда основной подсистемы (СНЭЭ): Количество энергии, отданной при разряде, измеренное на основной ТПН, деленное на количество энергии, поглощенной СНЭЭ при заряде, измеренное на основной ТПН в течение одного заданного цикла определенного рабочего режима при длительной работе.

primary subsystem roundtrip efficiency

Примечания

- 1 Эффективность, как правило, выражается в процентах.
- 2 В случае, если вспомогательная подсистема и подсистема управления питаются от основной ТПН, необходимо вычесть энергию, потребленную ими из общей поглощенной энергии.
- 181 таблица эффективности (СНЭЭ): Двумерная таблица, определяющая эффективность заряда-разряда СНЭЭ во всех основных точках диаграммы мощности.

efficiency chart

Пример — По данным таблицы 1, на первой оси диаграммы эффективности имеются по меньшей мере 10 точек диаграммы мощности в квадрантах заряда, вторая ось содержит по меньшей мере 10 точек диаграммы мощности в квадрантах разряда. Выбор этих точек может проводиться по следующим правилам:

- а) должны включаться любые комбинации между точками с полными нормированными мощностями, $P_{\rm 3.hp}$, $P_{\rm p.hp}$, $Q_{\rm Chp}$; б) необходимо избегать включения точек с активной мощностью ме-
- б) необходимо избегать включения точек с активной мощностью менее 5% от нормированной активной мощности;
- в) должны быть включены точки, где эффективность заряда-разряда минимальна:
- г) должны быть включены точки, где эффективность заряда-разряда максимальна.

Таблица 1 — Пример диаграммы эффективности СНЭЭ

Точки диаграммы мощности	Р _{разряд1}	Р _{разряд}	Р _{разряд10}
Р _{заряд1}			
Р _{заряд}			
Рзаряд10			

- 1 Заданный цикл заряда-разряда определяет, в том числе, среднюю мощность при заряде и разряде. Диаграмма эффективности требует варьирования только этих значений, поэтому другие параметры цикла не должны изменяться.
- 2 Выбор основных точек диаграммы мощности, как правило, позволяет хорошо охарактеризовать эффективность СНЭЭ.
 - 3 Эффективность, как правило, выражается в процентах.

182 таблица эффективности основной подсистемы (СНЭЭ): Двумерная таблица, определяющая эффективность заряда-разряда основной подсистемы СНЭЭ во всех основных точках диаграммы мощности.

primary subsystem efficiency chart

Пример — По данным таблицы 1, на первой оси диаграммы эффективности основной подсистемы имеются по меньшей мере 10 точек диаграммы мощности в квадрантах заряда, вторая ось содержит по меньшей мере 10 точек диаграммы мощности в квадрантах разряда. Выбор этих точек может проводиться по следующим правилам:

- а) должны включаться любые комбинации между точками с полными нормированными мощностями, $P_{\rm 3.hp}, P_{\rm p.hp}, Q_{\rm Chp}, Q_{\rm Chp};$
- б) необходимо избегать включения точек с активной мощностью менее 5% от нормированной активной мощности;
- в) должны включаться точки, где эффективность заряда-разряда минимальна;
- г) должны включаться точки, где эффективность заряда-разряда максимальна.

Примечания

- 1 Заданный цикл заряда-разряда определяет, в том числе, среднюю мощность при заряде и разряде. Диаграмма эффективности требует варьирования только этих значений, поэтому другие параметры цикла не должны изменяться.
- 2 Выбор основных точек диаграммы мощности, как правило, позволяет хорошо охарактеризовать эффективность СНЭЭ.
 - 3 Эффективность, как правило, выражается в процентах.
- 183 потери основной подсистемы (СНЭЭ): Излишнее потребление энергии в основной подсистеме, по сравнению с необходимым для функционирования СНЭЭ определенное время.

primary subsystem losses

Примечания

- 1 Потери в основной подсистеме включают явление саморазряда в подсистеме накопления.
- 2 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кBт · ч, MBт · ч).
- 184 номинальное потребление энергии вспомогательной подсистемой (СНЭЭ): Ожидаемое потребление энергии вспомогательной подсистемой СНЭЭ в указанное время и в указанном режиме в непрерывных условиях эксплуатации.

nominal energy consumption of the auxiliary subsystem

Примечания

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 В случае отсутствия вспомогательной ТПН (вспомогательная подсистема запитана через основную ТПН) номинальная энергия потребления может быть оценена на внутренней точке подключения вспомогательной подсистемы, а не на вспомогательной ТПН.
- 185 номинальное потребление энергии вспомогательной подсистемой (СНЭЭ) в режиме ожидания: Ожидаемое потребление энергии вспомогательной подсистемой СНЭЭ в режиме ожидания за указанное время и в указанном режиме в непрерывных условиях эксплуатации.

nominal stand-by energy consumption of the auxiliary subsystem

- 1 Базовой единицей является Дж, но для удобства могут использоваться и другие единицы (кВт · ч, МВт · ч).
- 2 В случае отсутствия вспомогательной ТПН (вспомогательная подсистема запитана через основную ТПН) номинальная энергия потребления может быть оценена на внутренней точке подключения вспомогательной подсистемы, а не на вспомогательной ТПН.

186 **срок службы:** Продолжительность времени от испытаний по вво- service life ду СНЭЭ в эксплуатацию до конца срока службы.

Примечания

- 1 Как правило, это время выражается в годах или в рабочих циклах.
- 2 Термин «испытание при вводе в эксплуатацию» определяется в ГОСТ IEC 60050-411—2015, статья 411-53-06]
- 187 расчетный срок службы, $T_{\rm c.c}$: Запроектированный период времени, в течение которого показатели рабочих характеристик СНЭЭ в непрерывных условиях эксплуатации выше, чем значения, установленные для конца срока службы.

expected service life; T_{SI}

Примечания

- 1 Как правило, это время выражается в годах или в рабочих циклах.
- 2 Термин взят из [12], статья 3.14, с изменениями: Исходное определение было конкретизировано для СНЭЭ и добавлено Примечание 1.
- 188 конец срока службы: Стадия жизненного цикла СНЭЭ начиная end о с момента, когда она снимается со стадии использования по назначению.

end of service life

Примечания

- 1 Согласно ГОСТ Р 56268-2014/Guide 64:2008 предложение «со стадии использования по назначению» не означает «демонтировано». Фактически, по истечении срока службы система EES может быть повторно использована / восстановлена или утилизирована (после обработки, когда это необходимо), возможно, после демонтажа и последующих процессов.
- 2 Термин «жизненный цикл» определен в 2.5 ГОСТ Р 56268-2014/Guide 64:2008 и в ГОСТ IEC 60050-901—2016, 901-07-12.
- 3 Термин взят из [10], 904-01-17, с изменениями: Исходное определение было конкретизировано для системы НЭЭ и добавлены Примечания 1 и 2.
- 189 эффективность инвестиционных затрат по валовой отданной энергии; ВЭИ: Количество энергии, которое может быть отдано с помощью СНЭЭ в течение всего срока службы, отнесенное к количеству энергии, необходимому для изготовления СНЭЭ.

energy stored on investment;

ESOI

П р и м е ч а н и е — Фактор ВЭИ характеризует энергетическое преимущество СНЭЭ.

Термины и определения по безопасности и взаимодействию СНЭЭ с окружающей средой

190 безопасность: Состояние, при котором отсутствует неприемлемый риск, связанный с причинением вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений.

safety

- 1 В области стандартизации безопасность продукции, процессов и услуг, как правило, рассматривается с точки зрения достижения оптимального баланса ряда факторов, включая нетехнические факторы, такие как поведение человека, что позволит исключить неоправданные риски вреда для людей и имущества или снизить их до приемлемого уровня.
 - 2 Неприемлемый риск должен быть определен в каждом конкретном случае.
- 3 Если не могут возникнуть условия, которые могут привести к неприемлемому риску, то СНЭЭ находится в безопасном состоянии, в противном случае СНЭЭ находится в опасном состоянии.
 - 4 Термин взят из [13], статья 903-01-19 с изменениями.

опасность поражения электрическим током: Потенциальный источ- electrical hazard ник вреда от электрической установки, находящейся под напряжением.

[ГОСТ ІЕС 60050-651—2014, статья 651-01-30]

192

риск поражения электрическим током: Комбинация вероятности electrical risk получения электрического вреда от электрической установки, находящейся под напряжением, и серьезности этого вреда.

[ГОСТ ІЕС 60050-651—2014, статья 651-01-31]

193

электротравма: Любое физическое повреждение человека или животного, вызванное поражением электрическим током, электрическим выгоранием, электрическими дугами, или от огня или взрыва, возникшее в результате выделения электрической энергии.

(electrical) injury

[ГОСТ IEC 60050-651—2014, статья 651-01-32 с изменениями]

194 опасность взрыва: Состояние системы НЭЭ, которое может привести к возможности нежелательных последствий в виде взрыва.

explosion hazard

Примечание — Состояние, когда существует опасность того, что присутствующие опасные вещества могут среагировать (например, детонация, вспышка) приводя к происшествию с потенциальными неприемлемыми последствиями (например, смерть, травмы, повреждения) для людей, имущества, работоспособности, или окружающей среды.

195 **опасность пожара:** Состояние системы НЭЭ, которое может привести к возможности нежелательных последствий в виде пожара.

fire hazard

Примечания

- 1 Состояние, когда существует опасность того, что легковоспламеняющиеся твердые вещества, жидкости, газы или их смеси присутствуют в количествах/концентрациях, которые могут привести к неконтролируемому воспламенению, что может привести к смерти, увечьям или ущербу людям, имуществу, работоспособности или окружающей среде.
- 2 Термин взят из ИСО 13943:2008, статья 4.112 с изменениями: Исходное определение было конкретизировано для системы НЭЭ и добавлено Примечание 1.

196 тепловая опасность: Состояние СНЭЭ, которое может привести к возможности нежелательных последствий от теплового воздействия.

thermal hazard

 Π р и м е ч а н и е — Состояние, при котором имеется неприемлемый риск получения травмы или болезни из-за тепла, выделяющегося как от нагретых частей, веществ или поверхностей, так и из-за внутреннего короткого замыкания, работы при чрезмерном токе и самонагреве.

197 опасность механического воздействия: Состояние СНЭЭ, которое может привести к возможности нежелательных последствий в виде физического воздействия.

mechanical hazard

- 1 Состояние, в котором физические факторы могут привести к травмам из-за механических свойств изделий или их частей.
- 2 Определение было сформулировано в том же подходе, что и в [14], статья 4.112.

198 опасное вещество [материал]: Вещество [материал], которое может влиять на здоровье человека или окружающую среду с немедленным или отложенным эффектом, или могут представлять неприемлемый риск для здоровья, безопасности имущества или окружающей среды.

hazardous substance [material]

П р и м е ч а н и е — Могут касаться других веществ, помимо тех, которые официально признаны таковыми в существующих системах классификации опасных материалов, например, в Глобальной гармонизированной системе (GHS), Правилах перевозки опасных грузов (TDG).

199 окружающая среда: Естественная и искусственная окружающая среда, в которой СНЭЭ установлена, функционирует и с которой взаимодействует, в том числе здания и сооружения, воздух, вода, земля, природные ресурсы, флора, фауна (включая людей), входящие в это окружение.

environment

Примечание — Термин взят из [10], статья 904-01-01 с изменениями.

200 базовые условия окружающей среды: Физические условия, такие как диапазоны температуры окружающей среды, давления, излучения, влажности, составов аэрозолей и взвесей химических веществ, в которых СНЭЭ предназначены для длительной работы.

reference environmental conditions

Примечание — Термин взят из [15], статья 395-07—98 с изменениями.

201

хроническое воздействие: Термин, используемый для обозначения продолжительного, непрерывного или периодического воздействия низкого уровня на окружающую среду.

chronic exposure

[ГОСТ Р МЭК 60050-881—2008, статья 881-15-02 с изменениями]

202

экологический аспект: Элемент системы СНЭЭ, который взаимодействует или может взаимодействовать с окружающей средой.

environmental aspect

[ГОСТ Р ИСО 14001—2016, статья 3.2.2 с изменениями]

203 взаимодействие с окружающей средой: Любое воздействие со стороны окружающей среды на СХЭЭ и на окружающую среду со стороны СНЭЭ, включая воздействие на человека во время или после хронического воздействия.

environmental issue

204

квалифицированный (электротехнический) **персонал:** Человек с образованием и опытом, позволяющим чувствовать риски и избегать опасности, создаваемые электричеством.

(electrically) skilled [qualified] person

[ГОСТ IEC 60050-651—2014, статья 651-01-33 с изменениями]

205

обученный (электротехнический) персонал: Человек, надлежащим образом проинструктированный и проконтролированный электрически квалифицированными работниками, чтобы чувствовать риски и избегать опасности, связанные с электричеством.

(electrically) [trained] instructed person

[ГОСТ IEC 60050-651—2014, статья 651-01-34 с изменениями]

206

ответственный за проведение работ: Человек, на которого налагается непосредственная ответственность за проведение работы.

designated [nominated] person in control of a work activity

П р и м е ч а н и е — Часть этой ответственности, если требуется, может быть делегирована другим лицам.

[ГОСТ ІЕС 60050-651—2014, статья 651-01-36 с изменениями]

207

ответственный за эксплуатацию электрической установки: Человек, на которого налагается непосредственная ответственность за работу электрической установки.

designated [nominated] person in control of an electrical installation

П р и м е ч а н и е — Часть этой ответственности, если требуется, может быть делегирована другим лицам.

[ГОСТ ІЕС 60050-651—2014, статья 651-01-37 с изменениями,]

Алфавитный указатель терминов на русском языке

$E_{_{ m f J}}$ — доступная энергия	120
Е _{д.нр} — доступная энергия (СНЭЭ) при нормированной мощности	121
Е _н — номинальная энергоемкость	117
 Е _{нр} — нормированная энергоемкость	118
Е _ф — фактическая энергоемкость	119
f _н — номинальная частота	115
г _{пр} — нормированная частота	116
нр Р _{з.н} — номинальная активная мощность во время заряда	123
з.н Р _{з.нр} — нормированная активная мощност ь во время заряда	127
- _{3.нр} — номинальная активная мощность	123
Р _{нр} — нормированная активная мощность	127
нр поримерения активная мощность при разряде	123
•	127
Р _{р.нр} — нормированная активная мощность при разряде Ѕ _н — номинальная полная мощность	122
_'''	125
S _{нр} — нормированная полная мощность	128
Q _{Снр} — нормированная емкостная реактивная мощность	128
Q _{Lнр} — нормированная индуктивная реактивная мощность	
Q _{нр} — нормированная реактивная мощность	128
7 _{з.н} — номинальное время заряда	132
_{Тр.н} — номинальное время разряда	133
7 _{с.с} — расчетный срок службы	187
<i>U_н</i> — номинальное напряжение	113
U _{нр} — нормированное напряжение	114
$U_{ m c}$ — согласованное напряжение электропитания	55
η _{з.р} — эффективность заряда-разряда	178
адаптивность	64
архитектура СНЭЭ	92
аспект экологический	202
безопасность	190
вещество опасное	198
взаимодействие с окружающей средой	203
воздействие управляющее	66
воздействие хроническое	201
возмущение нормативное	70
восстановление напряжения	72
время запаздывания	141
время заряда номинальное	132
время заряда СНЭЭ номинальное	132
время отклика на единичное ступенчатое возмущение	143
время разряда номинальное	133
время разряда СНЭЭ номинальное	133
время стабилизации	144
выброс напряжения	86
вывод СНЭЭ стыковочный	105
вывод стыковочный	105
ь. выделение (района энергосистемы)	89
выделение непреднамеренное	90
выделение преднамеренное	91
выключение	162
выключение СНЭЭ	162

ВЭИ	189
глубина заряда	136
глубина заряда СНЭЭ	136
грр ГРР	137
глубина разряда разрешенная	137
глубина разряда СНЭЭ разрешенная	137
диаграмма мощности	124
диаграмма мощности СНЭЭ	124
диапазон по активной мощности регулировочный	164
диапазон регулировочный	164
длительность перенапряжения	83
длительность провала напряжения	79
значение начала перенапряжения пороговое	81
значение начала перенапряжения пороговое	76
значение окончания перенапряжения пороговое	82
·	77
значение окончания провала напряжения пороговое значения показателей в конце срока службы	150
	150
значения показателей СНЭЭ в конце срока службы	25
зона синхронная	
изменение напряжения быстрое	85
изолирование (района энергосистемы)	89
изолирование непреднамеренное	90
изолирование преднамеренное	91
интерфейс	39
интерфейс АС/АС	41
интерфейс DC	43
интерфейс DC/DC	44
интерфейс сети	40
интерфейс стороны постоянного тока	43
источник энергии возобновляемый	22
источники энергии распределенные	20
исчезновение напряжения	71
ИЭР	20
качество функционирования сети	58
качество электрической энергии	59
конец срока службы	188
коэффициент мощности вспомогательной подсистемы нормированный	149
коэффициент мощности вспомогательной подсистемы СНЭЭ нормированный	149
коэффициент мощности нормированный	126
коэффициент мощности СНЭЭ нормированный	126
коэффициент полезного действия	177
КЭ	59
материал опасный	198
минимум технический	165
минимум технологический	166
модуль СНЭЭ	106
модульность	107
мощность активная номинальная	123
мощность активная номированная	127
мощность вспомогательной подсистемы полная нормированная	148
мощность вспомогательной подсистемы СНЭЭ полная нормированная	148
мощность входная кратковременная	131
мощность выходная кратковременная мощность выходная кратковременная	130
мощность оыхооная кранкоороженная	130

мощность номинальная	38
мощность отдачи энергии кратковременная	130
мощность отдачи энергии СНЭЭ кратковременная	130
мощность полная номинальная	122
мощность полная нормированная	125
мощность потребления вспомогательной подсистемы	147
мощность потребления вспомогательной подсистемы СНЭЭ	147
мощность приема энергии кратковременная	131
мощность приема энергии СНЭЭ кратковременная	131
мощность реактивная кратковременная	129
мощность реактивная нормированная	128
мощность реактивная СНЭЭ кратковременная	129
мощность реактивная СНЭЭ нормированная	128
мощность СНЭЭ активная номинальная	123
мощность СНЭЭ активная нормированная	127
мощность СНЭЭ полная номинальная	122
мощность СНЭЭ полная нормированная	125
мощность установленная	38
надежность энергосистемы	56
накопитель электрической энергии	2
напряжение вспомогательной подсистемы нормированное	145
напряжение вспомогательной подсистемы СНЭЭ нормированное	145
напряжение высокое	54
напряжение импульсное	84
напряжение низкое	52
напряжение номинальное	113
напряжение нормированное	114
напряжение опорное	73
напряжение опорное при оценке провалов, прерываний напряжения и перенапряжений	73
напряжение провала напряжения остаточное	78
напряжение СНЭЭ номинальное	113
напряжение СНЭЭ нормированное	114
напряжение среднее	53
напряжение электрической сети номинальное	51
напряжение электропитания	50
напряжение электропитания согласованное	55
напряжение электроустановки номинальное	51
несимметрия напряжений	87
нээ	2
обособление (района энергосистемы)	89
обособление непреднамеренное	90
обособление преднамеренное	91
объект малой генерации	21
опасность взрыва	194
опасность механического воздействия	197
опасность пожара	195
опасность полара опасность поражения электрическим током	191
опасность тепловая	196
оператор системный	27
оператор электроэнергетической системы системный	27
организация сетевая	28
останов	162

ΓΟCT P 58092.1—2018

остановка аварийная	161
остановка СНЭЭ аварийная	161
ответственный за проведение работ	206
ответственный за эксплуатацию электрической установки	207
оценка входной и выходной мощности	124
параметры электроэнергетического режима	47
переключения в электроустановках	67
перенапряжение	80
персонал (электротехнический) квалифицированный	204
персонал (электротехнический) обученный	205
подключенная к сети	11
подсистема	93
подсистема вспомогательная	99
подсистема вспомогательная обесточена	160
подсистема защиты	101
подсистема коммуникационная	100
подсистема контроля и управления	95
подсистема накопления	97
подсистема основная	94
подсистема преобразования энергии	98
подсистема СНЭЭ	93
подсистема СНЭЭ вспомогательная	99
подсистема СНЭЭ вспомогательная обесточена	160
подсистема СНЭЭ защиты	101
подсистема СНЭЭ коммуникационная	100
подсистема СНЭЭ контроля и управления	95
подсистема СНЭЭ накопления	97
подсистема СНЭЭ основная	94
подсистема СНЭЭ преобразования энергии	98
подсистема СНЭЭ управления	96
подсистема управления	96
показатель полной мощности	124
покупатель оптовый	32
пользователь электрической сети	33
поставщик электроэнергии	30
потери основной подсистемы	183
потери основной подсистемы СНЭЭ	183
потребитель электрической мощности	34
потребитель электрической энергии	35
потребитель электрической энергии конечный	35
потребление энергии вспомогательной подсистемой в режиме ожидания номинальное	185
потребление энергии вспомогательной подсистемой номинальное	184
потребление энергии вспомогательной подсистемой СНЭЭ в режиме ожидания номинальное	185
потребление энергии вспомогательной подсистемой СНЭЭ номинальное	184
прерывание напряжения	74
 приложение аварийное (СНЭЭ)	175
приложение гибридное (СНЭЭ)	175
приложение длительного времени действия (СНЭЭ)	167
приложение интенсивного использования мощности (СНЭЭ)	170
приложение интенсивного использования энергии (СНЭЭ)	167
приложение короткого времени действия (СНЭЭ)	170
приложение СНЭЭ аварийное	175
•	

FOCT P 58092.1—2018

приложение СНЭЭ гибридное	175
приложение СНЭЭ длительного времени действия	167
приложение СНЭЭ интенсивного использования мощности	170
приложение СНЭЭ интенсивного использования энергии	167
приложение СНЭЭ короткого времени действия	170
приложение СНЭЭ регулирование напряжения в узлах	174
приложение СНЭЭ регулирование потока активной мощности	168
приложение СНЭЭ регулирование потока реактивной мощности	172
приложение СНЭЭ регулирование тока линии электропитания	169
приложение СНЭЭ регулирование частоты сети	173
приложение СНЭЭ смягчение последствий исчезновения напряжения	176
приложение СНЭЭ смягчение последствий снижения качества питания	171
провал напряжения	75
производитель электроэнергии	29
процедура рабочая	163
процедура СНЭЭ рабочая	163
район (энергосистемы) изолированный	88
район вы деленный	88
район обособленный	88
режим работы	151
режим работы СНЭЭ	151
режим работы технологический	65
режим энергосистемы нормальный	57
режим энергосистемы переходный	69
режим энергосистемы установившийся	68
режим энергосистемы электроэнергетический	46
риск поражения электрическим током	192
саморазряд	138
саморазряд СНЭЭ	138
СВ	105
сеть интеллектуальная	63
сеть общего назначения	19
сеть электрическая	17
сеть электрическая адаптивная	63
сеть электрическая активно-адаптивная	63
сеть электрическая адаптивность	64
сеть электрическая общего назначения	19
сеть электрическая распределительная	18
C3	134
C3P	135
СЗЦ	135
сигналы рабочие	108
система накопления электрической энергии	3
система НЭЭ	3
система распределения энергии	16
система электрификации частная	23
система электроснабжения общего назначения	15
система электроэнергетическая	13
система электроэнергетическая территориальная технологически изолированная	14
скорость изменения	142
скорость изменения выходной переменной	142
смягчение последствий исчезновения напряжения (приложение СНЭЭ)	176
1 \(\frac{1}{2}\)	

ΓΟCT P 58092.1—2018

39

смягчение последствий снижения качества питания (приложение СНЭЭ)	171
CH99	3
СНЭЭ бытовая	8
СНЭЭ высокого напряжения	6
СНЭЭ коммерческая	9
СНЭЭ комплектная	10
СНЭЭ низкого напряжения	4
СНЭЭ общего назначения	7
СНЭЭ подключенная к сети	11
СНЭЭ промышленная	9
СНЭЭ среднего напряжения	5
состояние зарядки	156
состояние зарядки СНЭЭ	156
состояние обесточенное	159
состояние ожидания	154
состояние ожидания СНЭЭ	154
состояние остановленное	158
состояние отключенное от сети	157
состояние подключенное к сети	153
состояние рабочее	152
состояние разрядки	155
состояние разрядки СНЭЭ	155
состояние СНЭЭ обесточенное	159
состояние СНЭЭ остановленное	158
состояние СНЭЭ отключенное от сети	157
состояние СНЭЭ подключенное к сети	153
состояние СНЭЭ рабочее	152
CU3	136
способность электрической сети пропускная	62
CP	139
среда окружающая	199
срок службы	186
срок службы расчетный	187
степень заряженности	134
степень заряженности разрешенная	136
степень заряженности СНЭЭ	134
степень заряженности СНЭЭ разрешенная	136
степень заряженности СНЭЭ целевая	135
степень заряженности целевая	135
степень работоспособности	139
степень работоспособности СНЭЭ	139
сторона переменного тока интерфейса	42
сторона постоянного тока интерфейса	45
субъект оптового рынка	31
субъект электроэнергетики	26
СЭЧ	23
таблица эффективности	181
таблица эффективности основной подсистемы	182
таблица эффективности основной подсистемы СНЭЭ	182
таблица эффективности СНЭЭ	181
точка общего присоединения	36
точка передачи электрической энергии	37

точка подключения	102
точка подключения СНЭЭ	102
ТПН	102
ТПН вспомогательная	104
ТПН основная	103
ТПН СНЭЭ вспомогательная	104
ТПН СНЭЭ основная	103
условия длительной эксплуатации	109
условия окружающей среды базовые	200
устойчивость статическая	61
устойчивость энергосистемы	60
функция на ступенчатое возмущение переходная	140
цикл зарядно-разрядный	111
цикл зарядно-разрядный заданный	112
цикл рабочий	110
цикл СНЭЭ зарядно-разрядный	111
цикл СНЭЭ зарядно-разрядный заданный	112
цикл СНЭЭ рабочий	110
частота вспомогательной подсистемы нормированная	146
частота вспомогательной подсистемы СНЭЭ нормированная	146
частота напряжения электропитания	48
частота номинальная	49
частота номинальная	115
частота нормированная	116
частота СНЭЭ номинальная	115
частота СНЭЭ нормированная	116
электрифицировать	12
электротравма	193
электроустановка	1
энергия доступная	120
энергия доступная при нормированной мощности	121
энергия СНЭЭ доступная	120
энергия СНЭЭ при нормированной мощности доступная	121
энергоемкость номинальная	117
энергоемкость нормированная	118
энергоемкость СНЭЭ номинальная	117
энергоемкость СНЭЭ нормированная	118
энергоемкость СНЭЭ фактическая	119
энергоемкость фактическая	119
энергорайон	24
энергосистема	13
, энергоузел	24
энергоэффективность	177
энергоэффективность СНЭЭ	177
эффективность заряда-разряда	178
эффективность заряда-разряда основной подсистемы	180
эффективность заряда-разряда основной подсистемы СНЭЭ	180
эффективность заряда-разряда рабочего цикла	179
эффективность заряда-разряда рабочего цикла СНЭЭ	179
эффективность заряда-разряда СНЭЭ	178
эффективность инвестиционных затрат по валовой отданной энергии	189

Алфавитный указатель терминов на английском языке

accumulation subsystem	97
active power flow control	168
active power response to frequency variations	173
actual energy capacity	119
adaptability (electrical network)	64
adequacy (of an electric power system)	62
apparent power characteristic	124
auxiliary POC	104
auxiliary power consumption	147
auxiliary subsystem	99
auxiliary subsystem de-energized	160
available energy	120
available energy at rated power	121
AC side of the interface	42
AC/AC interface	41
back-up power	176
charging / discharging cycle	111
charging state	156
chronic exposure	201
commercial EESS	9
communication subsystem	100
connection terminal	105
consumer of electric energy	35
consumer of electric power	34
continuous operating conditions	109
control action	66
control range (of active power)	164
control subsystem	95
customer of electric power	34
DC interface	43
DC side of the interface	45
DC/DC interface	44
dead time	141
declared supply voltage	55
de-energized state	159
dependability of power system	56
depth of charge permitted	136
depth of discharge permitted	137
DER	20
designated person in control of a work activity	206
designated person in control of an electrical installation	207
discharging state	155
distributed energy resources	20
distribution electric power grid	18
distribution electric power network	18
distribution system	16
distributor of electric system	33
duration of overvoltage	83
duration of voltage dip	79
duty-cycle of the EES system	110
duty-cycle roundtrip efficiency	179

$E_{\mathbf{C}}(t)$	119
EES	2
EES system	3
EESS	3
EESS architecture	92
EESS module	106
EESS SOC	134
EESS SOH	139
EESS subsystem	93
EESS unit	106
efficiency chart	181
electric energy quality	59
electric power grid	17
electric power industry entity	26
electric power network	17
electric power system	13
electrical energy storage	2
electrical energy storage system	3
electrical hazard	191
electrical installation	1
electrical risk	192
electricity supply system	15
Electrify	12
emergency application	175
emergency stop	161
E _{NC}	117
end of service life	188
end of service life values	150
end-use customer	35
energy efficiency	177
energy intensive applications	167
energy stored on investment	189
environment	199
environmental aspect	202
environmental issue	203
E _{RC}	118
ESOI	189
expected service life	187
explosion hazard	194
fast increase in voltage	86
feeder current control	169
final customer	35
fire hazard	195
Frequency	48
grid frequency control	173
grid-connected (EESS)	11
grid-connected state	153
grid-disconnected state	157
hazardous material	198
hazardous substance	198
high voltage	54
high voltage EESS	6
HV	54

43

hybrid application	175
IES	23
individual electrification system	23
industrial EESS	9
injury (electrical)	193
input and output power rating	124
installed power	38
intelligent grid	63
intentional islanding	91
interface	39
island	88
islanding	89
long duration applications	167
loss of voltage	71
low voltage	52
low voltage EESS	4
LV	52
management subsystem	96
mechanical hazard	197
medium voltage	53
medium voltage EESS	5
modularity	107
MV	53
network company	28
network splitting	89
nodal voltage control	174
nominal active power	123
nominal apparent power	122
nominal charging time	132
nominal discharging time	133
nominal energy capacity	117
nominal energy consumption of the auxiliary subsystem	184
nominal frequency	49
nominal frequency	115
nominal stand-by energy consumption of the auxiliary subsystem	185
nominal voltage	113
nominal voltage of electrical installation	51
nominal voltage of system	51
nominated person in control of a work activity	206
nominated person in control of an electrical installation	207
normal mode of power system	57
operating conditions factors	47
operating mode	151
operating procedure	163
operating state	152
operation signals	108
outage mitigation	176
Overvoltage	80
overvoltage end threshold	82
overvoltage end threshold	81
permitted DOC	136
permitted DOD	137
	36
1 00	30

POC	102
point of common coupling	36
point of connection	102
point of distribution of electric energy	37
point of supply	37
power capability chart	124
power conversion subsystem	98
power district	24
power grid mode	46
power intensive applications	170
power network user	33
power quality	59
power quality events mitigation	171
power system stability	60
power system user	33
primary POC	103
primary subsystem	94
primary subsystem efficiency chart	182
primary subsystem losses	183
primary subsystem roundtrip efficiency	180
producer of electricity	29
protection subsystem	101
quality of network operation	58
quality of supply	59
r.m.s.	50
ramp rate	142
rated active power	127
rated apparent power	125
rated apparent power of the auxiliary subsystem	148
rated disturbance	70
rated energy capacity	118
rated frequency	116
rated frequency of the auxiliary subsystem	146
rated power factor	126
rated power factor of the auxiliary subsystem	149
rated reactive power	128
rated voltage	114
rated voltage of the auxiliary subsystem	145
reactive power flow control	172
reference environmental conditions	200
reference voltage (for assessment of voltage dips, voltage interruptions and overvoltages)	73
renewable energy source	22
renewed energy source	22
residential EESS	
residual voltage of voltage dip	78
roundtrip efficiency	178
RR	142
safety	190
self-contained EES system	10
self-discharge of EESS	138
service life	186
settling time	144
short duration applications	170
errore datación applicacións	170

short duration input power	131
short duration output power	130
short duration power during charge	131
short duration power during discharge	130
short duration reactive power	129
shutdown	162
skilled qualified person (electrically)	204
small generation facility	21
smart grid	63
predetermined charging / discharging cycle	112
stand-by state	154
state of charge of EESS	134
state of health of EESS	139
steady state stability of a power system	61
steady-state mode of power system operating conditions	68
step response performances	140
step response time	143
stopped state	158
storage subsystem	97
supplier of electricity	30
supply point	37
supply terminal	37
switching in electrical installations	67
synchronous area	25
system operator (power system)	27
target state of charge	135
technical minimum	165
technologic minimum	166
technological regime of the power system	65
technologically isolated territorial electric power system	14
thermal hazard	196
trained instructed person (electrically)	205
transient mode of power system operating conditions	69
T_{NC}	132
T_{ND}	133
$ au_{SL}$	187
unintentional islanding	90
unitary deviation of voltage	85
utility EESS	7
utility grid	19
utility interface	40
voltage dip	75
voltage dip end threshold	77
voltage dip start threshold	76
voltage impulse	84
voltage interruption	74
voltage recovery	72
voltage unbalance	87
voltage value (root-mean-square)	50
wholesale customer	32
wholesale market entity	31
wholesaler	32
n_{RT}	178
	45

Приложение A (справочное)

Примеры для иллюстрации терминов

Рисунок А.1 — Архитектура СНЭЭ с одним типом ТПН

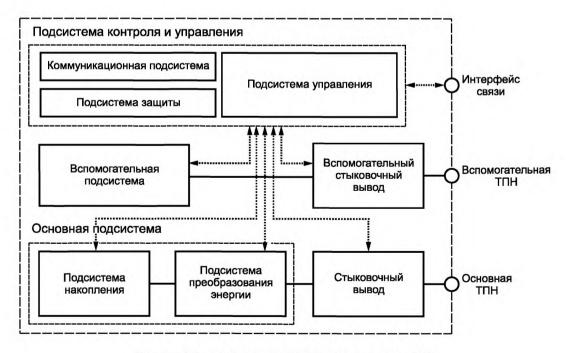
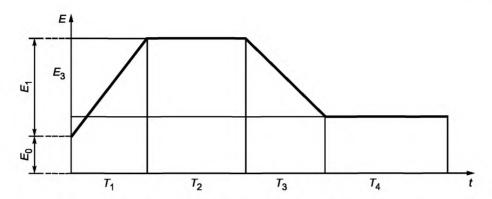
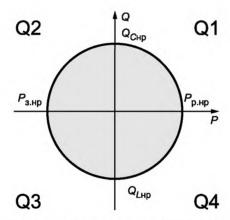



Рисунок А.2 — Архитектура СНЭЭ с двумя типами ТПН

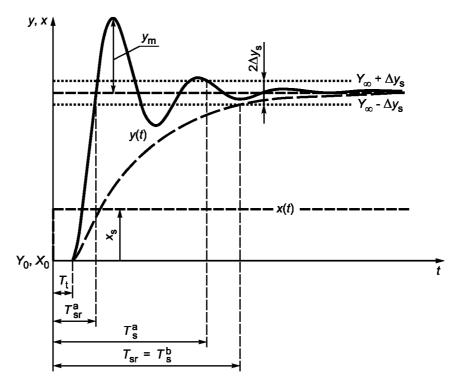


 T_1 — длительность фазы заряда; T_2 — длительность паузы после заряда; T_3 — длительность фазы разряда; T_4 — длительность паузы после разряда; E_1 — энергия, измеренная на основной ТПН во время фазы заряда; E_3 — энергия, измеренная на основной ТПН в ходе выполнения разряда; E_0 — начальная C3

Примечания

- 1 Возможны варианты, когда $T_2 = 0$ или $T_4 = 0$.
- 2 Профили фаз заряда и разряда, как правило, линейные (постоянная активная мощность), однако также возможны и другие варианты.

Рисунок А.3 — Пример для иллюстрации зарядно-разрядного цикла СНЭЭ



П р и м е ч а н и е — Доступная мощность обозначена областью на плоскости. Границы области представляют собой критические рабочие пределы, заложенные при проектировании СНЭЭ. На рисунке применена система векторов мощности, где $P_{\rm 3.hp}$ — нормированная активная мощность во время заряда; $P_{\rm p.hp}$ — нормированная активная мощность при разряде; $Q_{\rm Lhp}$ — нормированная индуктивная реактивная мощность и $Q_{\rm Chp}$ — нормированная емкостная реактивная мощность.

Диаграмма мощности разделена на четыре квадранта осями P/Q (применяется указанный производителем диапазон значений):

- а) в квадранте Q1 СНЭЭ разряжается, и ее поведение подобно емкости;
- б) в квадранте Q2 СНЭЭ заряжается, и ее поведение подобно емкости;
- в) в квадранте Q3 СНЭЭ заряжается, и ее поведение подобно индуктивности;
- г) в квадранте Q4 СНЭЭ разряжается, и ее поведение подобно индуктивности.

Рисунок А.4 — Пример для иллюстрации диаграммы мощности СНЭЭ

x — входная переменная; X_0 — начальное значение входной переменной; $X_{\rm S}$ — величина входного ступенчатого возмущения; у — выходная переменная; Y_0 , Y_{∞} — установившиеся значения до и после ступени; у_m — перерегулирование (максимальное переходное отклонение от конечного установившегося значения); $2\Delta y_{\rm S}$ — заданное предельное значение отклонения; $T_{\rm ST}$ — время отклика; $T_{\rm S}$ — время стабилизации; $T_{\rm t}$ — время задержки; а — для колебательного процесса; b — для монотонного процесса

Рисунок А.5 — Пример переходной функции СНЭЭ

Библиография

[1]	MЭК/TO 63097:2017 (IEC/TR 63097:2017)	Дорожная карта стандартизации адаптивных электрических сетей (Smart grid standardization roadmap)	
[2]	Федеральный закон от 26 марта 2003 г. № 35-ФЗ «Об электроэнергетике»		
[3]	МЭК 60050-617:2009	Международный электротехнический словарь. Часть 617. Структура/рынок	
	(IEC 60050-617:2009)	электричества (International Electrotechnical Vocabulary — Part 617: Organization/Market of electricity)	
[4]	MЭК 60050-603:1986	Международный электротехнический словарь. Часть 603. Производство, передача и распределение электроэнергии— планирование и управление электро-	
	(IEC 60050-603:1986)	энергетическими системами (International Electrotechnical Vocabulary. Chapter 603: Generation, transmission and distribution of electricity — Power systems planning and management)	
[5]	МЭК 60050-192:2015 (IEC 60050-192:2015)	Международный электротехнический словарь. Часть 192. Надежность (International electrotechnical vocabulary — Part 192: Dependability)	
[6]	МЭК 60050-448:1995 IEC 60050-448:1995)	Международный электротехнический словарь. Часть 448. Защита энергосистем (International Electrotechnical Vocabulary — Chapter 448: Power system protection)	
[7]	ИСО/МЭК 14543-2-1:2006	Информационные технологии. Архитектура домашних электронных систем	
	(ISO/IEC 14543-2-1:2006)	(HES). Часть 2-1. Введение и модульность устройств (Information technology — Home electronic system (HES) architecture — Part 2-1: Introduction and device modularity)	
[8]	МЭК 60050-131:2002 (IEC 60050-131:2002)	Международный электротехнический словарь. Часть 131. Теория цепей (International Electrotechnical Vocabulary — Part 131: Circuit theory)	
[9]	МЭК 60050-351 (IEC 60050-351:2013)	Международный электротехнический словарь. Часть 351. Технологии управления (International Electrotechnical Vocabulary — Part 351: Control technology)	
[10]	МЭК 60050-9 04 : 2014	Международный электротехнический словарь. Часть 904. Экологическая стан-	
	(IEC 60050-904:2014)	дартизация электротехнической и электронной продукции и систем (International Electrotechnical Vocabulary — Part 904: Environmental standardization for electrical and electronic products and systems)	
[11]	M9K TC 62749:2015	Оценка качества электроэнергии. Характеристики электроэнергии, подаваемой	
	(IEC TS 62749:2015)	сетей общего пользования (Assessment of power quality — Characteristics of electricity supplied by public networks)	
[12]	МЭК 62477-1: 20 12	Требования безопасности к силовым электронным преобразовательным систе-	
	(IEC 62477-1:2012)	мам и оборудованию. Часть 1. Общие положения (Safety requirements for power electronic converter systems and equipment — Part 1: General)	
[13]	MЭK 60050-903:2013 (IEC 60050-903:2013)	Международный электротехнический словарь. Часть 903. Оценка риска (International Electrotechnical Vocabulary — Part 903: Risk assessment)	
[14]	ИСО 13943:2008 (ISO 13943:2008)	Пожарная безопасность. Словарь (Fire safety — Vocabulary)	
[15]	МЭК 60050-395:2014	Международный электротехнический словарь. Часть 395. Ядерные приборы: физические явления, основные понятия, приборы, системы, оборудование и	
	(IEC 60050-395:2014)	детекторы (International Electrotechnical Vocabulary — Part 395: Nuclear instrumentation: Physical phenomena, basic concepts, instruments, systems, equipment and detectors)	

УДК 621.355:006.354 621.311 OKC 01.040.29, 13.020, 27.010, 29.020, 29.220, 29.240,99

ОКПД2 27.1, 27.2, **35**.1

Ключевые слова: система накопления, система накопления электрической энергии, накопитель, аккумулятор, батарея аккумуляторная, батарея литий-ионная

БЗ 5—2018/23

Редактор *Л.В. Коретникова*Технический редактор *В.Н. Прусакова*Корректор *С.И. Фирсова*Компьютерная верстка *Л.А. Круговой*

Сдано в набор 30.05.2018. Подписано в печать 13.06.2018. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 6,05. Уч.-изд. л. 5,45. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта