#### **РОСГИДРОМЕТ**

Федеральное государственное бюджетное учреждение «Государственный гидрологический институт» (ФГБУ «ГГИ»)

СТАНДАРТ ОРГАНИЗАЦИИ

СТО ГГИ 52.08.41-2017

# ОСНОВНЫЕ ГИДРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИ НЕСТАЦИОНАРНОСТИ ВРЕМЕННЫХ РЯДОВ, ОБУСЛОВЛЕННОЙ ВЛИЯНИЕМ КЛИМАТИЧЕСКИХ ФАКТОРОВ

Рекомендации по расчету

Санкт-Петербург ФГБУ «ГГИ» 2017

### Предисловие

- 1 PA3PAБОТАН Федеральным государственным бюджетным учреждением «Государственный гидрологический институт» (ФГБУ «ГГИ») Росгидромета
- 2 РАЗРАБОТЧИКИ В. Ю. Георгиевский, д-р геогр. наук (руководитель темы), А. Г. Лобанова, канд. техн. наук; (руководитель разработки), Т.Г. Молчанова, вед. инженер, Е.А. Грек, вед. инженер, Е.В. Гуревич, канд. геогр. наук, Д.В.Георгиевский, науч. сотрудник
  - 3 ОДОБРЕН решением методической комиссии ФГБУ «ГГИ» протокол от 22 декабря 2016 г. № 3
    - 4 УТВЕРЖДЕН приказом ФГБУ «ГГИ» от 24.08.2017. № 25
    - 5 ВВЕДЕН ВПЕРВЫЕ

# Содержание

| 1 | Область применения                                                  | 1  |
|---|---------------------------------------------------------------------|----|
| 2 | Нормативные ссылки                                                  | 1  |
| 3 | Термины, определения                                                | 2  |
| 4 | Общие положения                                                     | 5  |
| 5 | Расчет основных гидрологических характеристик                       | 5  |
|   | 5.1 Оценка однородности гидрологических рядов                       | 6  |
|   | 5.1.1 Генетический анализ                                           | 6  |
|   | 5.1.2 Статистический анализ однородности                            | 6  |
|   | 5.1.3 Критерии однородности экстремальных значений гидрологических  |    |
|   | характеристик                                                       | 8  |
|   | 5.2 Расчет гидрологических характеристик по неоднородным данным     | 10 |
|   | 5.2.1 Расчет кривой распределения по составным однородным           |    |
|   | совокупностям                                                       | 10 |
|   | 5.2.2 Определение расчетной кривой распределения по «сумме          |    |
|   | распределений» на основе байесовских подходов                       | 10 |
|   | 5.2.3 Расчет суммарной кривой обеспеченности с учетом               |    |
|   | средних квадратических погрешностей расчетных значений стока        |    |
|   | заданных обеспеченностей                                            | 12 |
|   | 5.3 Расчет параметров и кривых обеспеченности стока с учетом        |    |
|   | экстремальных значений                                              | 12 |
| П | риложение А (рекомендуемое) Примеры расчетов основных характеристик |    |
|   | по неоднородным рядам речного стока                                 | 14 |
|   | А.1 Расчет годового и сезонного стока                               | 14 |
|   | А.2 Расчет максимальных расходов воды                               | 21 |
|   | А 3 Расчет слоя стока весеннего половодья                           | 24 |
|   | А.4 Расчет минимальных 30-ти суточных зимних расходов воды          | 27 |
|   | А.5 Расчет минимальных 30-ти суточных летних расходов воды          | 30 |
|   | А.6 Расчет максимального стока по составной кривой и                |    |
|   | по «сумме распределений» на основе байесовских подходов             | 33 |
| П | риложение Б (рекомендуемое) Пример расчета максимальных расходов    |    |
| ľ | воды с учетом экстремального значения расхода                       | 37 |
| Б | ибпиография                                                         | 40 |

### Введение

В последние десятилетия 20-го века и по настоящее время на значительной части территории Российской Федерации наблюдается устойчивая тенденция потепления климата. вследствие чего существенно изменились условия формирования речного стока, что привело к значимой трансформации внутригодового распределения И К разнонаправленным изменениям его составляющих. Характерным является увеличение меженного стока, особенно в зимний период года.

На многих реках европейской территории страны зимний сток увеличился в пределах от 50 до 120 %, в то же время на реках бассейнов Балтийского моря, Волги (за исключением северной и северо-восточной ее частей), Дона, Днепра и Оби (в верхней ее части) сток весеннего половодья снизился на 10-30 %.

Вместе с тем, в бассейнах рек, где максимальный сток формируются в период прохождения дождевых паводков (реки Черноморского побережья Кавказа, бассейна Кубани, Амура, Дальневосточного Приморья), в условиях потепления климата на рубеже 21-го века, прошли катастрофические паводки с экстремальными расходами, значительно превышающими наблюденные ранее [1] - [5].

Изменения водного режима рек, обусловленные климатическими факторами, привели к нестационарности многолетних рядов характеристик стока. Анализ данных наблюдений за речным стоком показывает наличие резких изменений отдельных характеристик стока в период с 1970 по 1980 гг., что послужило основной причиной нарушения его однородности. Режим речного стока, сформировавшийся за последние 35-45 лет, на современном уровне изученности проблемы межгодовой изменчивости водности рек, можно рассматривать как квазистационарный и соответствующий новым климатическим условиям. Следует отметить, что многолетний период, предшествующий резкому изменению водного режима рек, также является квазистационарным.

В связи с этим возникает задача определения расчетных параметров различных характеристик речного стока по неоднородным рядам наблюдений, характеризующимся наличием двух квазистационарных периодов с различными климатическими условиями. Формальное использование аналитических кривых распределения, без учета указанного факта, может привести как к завышению, так и к занижению расчетных характеристик речного стока.

# СТАНДАРТ ОРГАНИЗАЦИИ

# ОСНОВНЫЕ ГИДРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИ НЕСТАЦИОНАРНОСТИ ВРЕМЕННЫХ РЯДОВ, ОБУСЛОВЛЕННОЙ ВЛИЯНИЕМ КЛИМАТИЧЕСКИХ ФАКТОРОВ

# Рекомендации по расчету

Дата введения – 2017–12–01

### 1 Область применения

- 1.1 Настоящий стандарт организации устанавливает порядок выполнения расчетов основных характеристик стока рек (годовой и сезонный сток, максимальные расходы воды, слои стока весеннего половодья, минимальные расходы за периоды летне-осенний и зимней межени) при нарушении однородности многолетних рядов в условиях происходящих климатических изменений.
- 1.2 Настоящий стандарт предназначен для практической деятельности в ФГБУ «ГГИ» и в других организациях и учреждениях Росгидромета при определении расчетных статистических характеристик стока рек с целью оценки количественных показателей состояния водных ресурсов в условиях изменяющегося климата.

Стандарт может быть рекомендован к использованию специалистами изыскательских, научно-исследовательских, проектных организаций и учреждений водохозяйственного комплекса при инженерно-гидрологических изысканиях и проведении гидрологического обоснования проектных работ. Применение стандарта другими организациями и учреждениями возможно только по согласованию с ФГБУ «ГГИ» на основе внутренних распоряжений и приказов.

#### 2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ 19179-73 Гидрология сущи. Термины и определения

СП 33-101-2003 Определение основных расчетных гидрологических характеристик

#### Примечания

- 1 При пользовании настоящим стандартом целесообразно проверять действие ссылочных нормативных документов:
- национальных стандартов в информационной системе общего пользования на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года;
- нормативных документов Росгидромета и типовых нормативных документов по РД 52.18.5–2012.
- 2 Если ссылочный нормативный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) нормативным документом. Если ссылочный нормативный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

# 3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 19179, а также следующие термины с соответствующими определениями:

- 3.1 Априорное (предполагаемое) распределение: первоначальная версия распределения вероятностей изучаемой совокупности, полученная путем оценки расчетных параметров до последующего изменения этой совокупности во времени (до получения новой информации).
- 3.2 **Апостериорное распределение:** Распределение вероятностей изучаемой совокупности, полученное путем оценки расчетных параметров распределения после учета новой информации на основе априорного распределения.
- 3.3 **Внутригодовое распределение стока:** Распределение величины стока по календарным периодам или сезонам года (раздел 63 ГОСТ 19179).
- 3.4 **Гидрологические расчеты:** Раздел инженерной гидрологии, в задачи которого входит разработка методов, позволяющих рассчитать значения различных характеристик гидрологического режима.
- 3.5 **Гидрологические характеристики:** Количественные оценки элементов гидрологического режима (годовой и сезонный сток, максимальные расходы воды, слои стока весеннего половодья, минимальные расходы за периоды летне-осенний и зимней межени).

- 3.6 **Дисперсия:** Мера разброса значений случайной величины относительно ее среднего значения.
- 3.7 **Доверительный интервал:** Область допустимых значений, вероятность попадания в которую при принятии гипотезы однородности, равна уровню значимости.
- 3.8 **Дождевой сток:** Сток, возникающий в результате дождей (раздел 58 ГОСТ 19179).
- 3.9 **Квазистационарность:** Стационарность гидрологических рядов, имеющих ограниченный период наблюдений во времени.
- 3.10 **Коэффициент асимметрии:** Безразмерный статистический параметр, характеризующий степень несимметричности рассматриваемой случайной величины относительно его среднего значения.
- 3.11 **Коэффициент вариации:** Безразмерный статистический параметр, характеризующий изменчивость случайной величины и представляет собой отношение среднего квадратического отклонения ряда к его среднему значению.
- 3.12 **Коэффициент корреляции:** Мера линейной взаимосвязи двух случайных величин.
- 3.13 **Кривая обеспеченности (вероятность превышения):** интегральная кривая, показывающая обеспеченность превышения (в % или в долях единиц) случайной величины среди общей совокупности ряда.
- 3.14 **Кривая распределения вероятностей**: Графическое или аналитическое выражение функции, характеризующей вероятность появления того или иного значения рассматриваемого ряда случайной величины.
- 3.15 **Критерии однородности:** Статистические критерии, подтверждающие принадлежность выборки или ее параметров к одной генеральной совокупности.
- 3.16 **Максимальный сток:** Речной сток, наблюдавшийся в половодье или паводки (раздел 75 ГОСТ 19179).
- 3.17 **Межень:** Ежегодно повторяющаяся фаза водного режима реки, характеризующаяся малой водностью, длительным стоянием низкого уровня, и возникающая вследствие уменьшения питания реки (раздел 78 ГОСТ 19179).
  - 3.18 Меженный сток: Речной сток, наблюдавшийся в меженный период.
- 3.19 **Минимальный сток:** Наименьший по величине речной сток, обычно наблюдающийся в межень (раздел 79 ГОСТ 19179).
- 3.20 **Многолетние циклические колебания:** Изменения величин стока, характеризующиеся чередованием маловодных и многоводных группировок лет

различной продолжительности и различным отклонением от их средних многолетних значений (раздел 68 ГОСТ 19179).

- 3.21 **Нестационарный процесс:** Процесс, распределение вероятности которого зависит от времени.
- 3.22 Обеспеченность гидрологической величины: Вероятность того, что рассматриваемое значение гидрологической величины может быть превышено среди совокупности всех возможных значений (раздел 68 ГОСТ 19179).
- 3.23 **Паводок:** Фаза водного режима, которая может многократно повторяться в различные сезоны года, характеризуется интенсивным обычно кратковременным увеличением расходов и уровней воды и вызывается дождями или снеготаянием во время оттепелей (раздел 73 ГОСТ 19179).
- 3.24 **Половодье:** Фаза водного режима, ежегодно повторяющаяся в данных климатических условиях в один и тот же сезон, характеризующаяся наибольшей водностью, высоким и длительным подъемом уровня воды, и вызываемая снеготаянием или совместным таянием снега и ледников (раздел 72 ГОСТ 19179).
- 3.25 **Разностная интегральная кривая стока:** Кривая, представляющая собой нарастающую сумму отклонений модульных коэффициентов от среднего многолетнего значения временного ряда на конец каждого года.
- 3.26 **Расчетная гидрологическая характеристика:** Статистическая оценка гидрологических характеристик.
- 3.27 **Расчетная обеспеченность:** Обеспеченность гидрологической характеристики, принимаемая при строительном проектировании для установления значения параметров гидрологического режима, определяющих проектные решения.
  - 3.28 Речной сток: Сток, происходящий по речной сети (раздел 56 ГОСТ 19179).
- 3.29 **Статистическая однородность рядов:** Принадлежность элементов гидрологических характеристик и их параметров отдельных частей временного ряда к одной совокупности.
- 3.30 **Стационарность:** Статистическая однородность выборочных параметров и функций распределения во времени.
- 3.31 **Суммарная интегральная кривая стока:** Последовательность нарастания значений стока за рассматриваемый период времени.
- 3.32 **Тренд:** Однонаправленное, монотонное изменение средней многолетней величины.
- 3.33 **Уровень значимости:** Достаточно малое значение вероятности (назначаемое условно), характеризующее практически невозможное событие.

# 4 Общие положения

- 4.1 Режим речного стока, сформировавшийся за последние 35-45 лет, на современном уровне изученности проблемы межгодовой изменчивости водности рек, можно рассматривать как квазистационарный и соответствующий новым климатическим условиям.
- 4.2 Настоящий стандарт устанавливает порядок определения основных гидрологических характеристик стока рек по неоднородным временным рядам наблюдений, которые характеризуются наличием двух квазистационарных периодов, связанных с различными климатическими условиями.

Стандарт разработан в развитие СП 33-101, а также Методических указаний [6] и Методических рекомендаций [7].

### 5 Расчет основных гидрологических характеристик

Расчет основных гидрологических характеристик при наличии однородных данных гидрометрических наблюдений достаточной продолжительности согласно СП 33-101 осуществляется путем применения аналитических функций распределения ежегодных вероятностей превышения — кривых обеспеченностей.

Неоднородность многолетних рядов характеристик речного стока может быть вызвана результатом воздействия:

- хозяйственной деятельности на водосборах и в руслах рек;
- изменяющихся климатических условий.

На начальном этапе, до определения расчетных значений гидрологических характеристик, данные гидрологических наблюдений должны быть подвергнуты проверке и тщательному анализу их полноты и качества.

Анализу также подлежат данные, характеризующие динамику факторов хозяйственной деятельности на водосборах и в руслах рек, влияющих на условия формирования речного стока и его количественные параметры. Ряды речного стока, подверженные влиянию этих факторов, приводятся к естественным, с ненарушенным влиянием хозяйственной деятельности условиям, воднобалансовыми и регрессионными методами в соответствии с Методическими указаниями [6].

В случае установления влияния факторов хозяйственной деятельности на различные характеристики речного стока и после приведения гидрологических рядов к

естественному режиму, производится оценка однородности рядов стока с целью выявления влияния климатической составляющей на характеристики стока.

### 5.1 Оценка однородности гидрологических рядов

Оценка однородности рядов речного стока осуществляется на основе генетического и статистического анализов.

Статистические методы оценки однородности гидрологических данных наблюдений количественными показателями дополняют качественный анализ исходных данных.

#### 5.1.1 Генетический анализ

5.1.1.1 Генетический анализ заключается в изучении структуры многолетних колебаний стока и выявлении физических причин, обусловливающих неоднородность исходных данных гидрологических наблюдений.

Основные приемы, позволяющие выявить возможную неоднородность характеристик стока до применения статистических методов:

- построение хронологических графиков основных характеристик стока;
- построение разностных и суммарных интегральных кривых;
- построение комплексных графиков гидрометеорологических элементов.
- 5.1.1.2 Указанные приемы позволяют проанализировать структуру многолетних колебаний речного стока и определить изменение средних значений и изменчивости ряда во времени для дальнейшего анализа с применением статистических методов.

# 5.1.2 Статистический анализ однородности

5.1.2.1 Под статистической однородностью понимается принадлежность элементов гидрологических характеристик и их параметров (среднего значения, дисперсии, коэффициентов вариации, асимметрии и автокорреляции отдельных частей ряда) к одной совокупности. Однородность выборочных статистических параметров во времени называется стационарностью.

В настоящем стандарте использованы статистические критерии однородности, адаптированные к специфике гидрологических рядов наблюдений (учет автокорреляции, асимметрии и длительности рядов наблюдений).

Оценка однородности гидрологических рядов наблюдений по статистическим критериям Стьюдента (для средних значений) и Фишера (для дисперсий) состоит в

сравнении расчетного значения статистики критерия для однородных последовательных частей ряда, полученной по эмпирических данным, с ее критическим обобщенным значением, при заданном уровне значимости, объеме выборки, коэффициентах автокорреляции и асимметрии.

Как правило, уровень значимости задается равным 5%, что соответствует принятию нулевой гипотезы об однородности временного ряда с вероятностью 95%.

### 5.1.2.2 Критерии однородности средних значений

Расчетное значение статистики критерия Стьюдента t определяется по формуле:

$$t = \frac{Y_{cp1} - Y_{cp2}}{\sqrt{n_1\sigma_1^2 + n_2\sigma_2^2}} \sqrt{\frac{n_1n_2(n_1 + n_2 + 2)}{n_1 + n_2}} ; \qquad (5.1)$$

где  $Y_{op1}; Y_{op2}; \sigma_1^{\ 2}; \sigma_2^{\ 2}$  средние значения и дисперсии двух последовательных выборок, соответственно;

n<sub>1</sub> и n<sub>2</sub> - объемы выборок.

Оценка однородности (стационарности) по критерию Стьюдента осуществляется путем сравнения расчетных значения t и критических значений статистики t\*.

Если расчетное значение t, полученное по формуле (5.1) больше критического значения t\* при заданном уровне значимости, то гипотеза об однородности (в данном случае для 2-х частей неоднородного ряда) отклоняется и ряд рассматриваемой гидрологической характеристики признается неоднородным.

Критические значение критерия t\* определяется в соответствии с приложением Б Методических рекомендаций [7].

#### 5.1.2.3 Критерии однородности дисперсий гидрологических характеристик

Расчетные значения статистики Фишера F для оценки однородности дисперсий для двух последовательных частей ряда определяются по формуле:

$$F = \frac{\sigma_j^2}{\sigma_{j+1}^2} \qquad \text{при } \sigma_j^2 > \sigma_{j+1}^2, \tag{5.2}$$

где  $\sigma_j^{\,2},~\sigma_{j+1}^{\,2}$  - дисперсии 2-х следующих друг за другом частей выборок (j , j+1) объемом  $n_1$  и  $n_2$  , соответственно.

Гипотеза о однородности (стационарности) дисперсий принимается при заданном уровне значимости  $\alpha$ ,%, если расчетное значение статистики критерия F меньше критического F\* при заданных степенях свободы, соответствующих объемам выборок  $n_1$  и  $n_2$ .

Критические значения статистик Стьюдента t\* и Фишера F\* в зависимости от уровня значимости α ,%, коэффициента внутрирядной корреляции, г(1) и коэффициентах асимметрии определяются в соответствии с приложением Б Методических рекомендаций [7].

Таким образом, применение статистических критериев оценки однородности или стационарности временных гидрологических рядов позволяют подтвердить или опровергнуть выдвигаемую гипотезу однородности.

# **5.1.3 Критерии однородности экстремальных значений гидрологических характеристик**

5.1.3.1 Для оценки однородности резко отклоняющихся экстремальных значений речного стока в эмпирическом распределении следует применять критерии Смирнова-Граббса и Диксона согласно Методическим рекомендациям [7].

Причинами неоднородности резко отклоняющихся точек в эмпирическом ряду наблюдений могут быть следующие:

- экстремальное значение стока имеет повторяемость более редкую, чем она определена по эмпирической формуле анализируемого ряда;
- резко отклоняющиеся значения стока сформированы особыми гидрометеорологическими условиями.

Объективная проверка ряда наблюдений, содержащего один или несколько членов ряда, резко выделяющихся из общей совокупности, осуществляется с применением статистических критериев на основе анализа соответствия эмпирических и аналитических кривых распределения.

5.1.3.2 Статистика критерия Смирнова-Граббса G для максимального члена ранжированной последовательности Y<sub>n</sub> рассчитывается по формуле:

$$G_{n} = \frac{(Y_{n} - \overline{Y})}{\overline{\sigma}} ; \qquad (5.3)$$

для минимального члена ранжированной последовательности Y<sub>1</sub>:

$$G_1 = \frac{(\overline{Y} - Y_1)}{\overline{G}} ; \qquad (5.4)$$

где  $\overline{Y}$  ,  $\overline{\sigma}$  - среднее значение и среднее квадратическое отклонение анализируемой выборки, соответственно.

5.1.3.3 Статистики критериев Диксона D для объема выборки n, ранжированной в возрастающем порядке, рассчитываются на основании эмпирических данных по следующим формулам:

- для максимального члена выборки Y<sub>n</sub>:

$$D_{1n} = \frac{(Y_n - Y_{n-1})}{(Y_n - Y_1)} \tag{5.5}$$

$$D_{2n} = \frac{(Y_n - Y_{n-2})}{(Y_n - Y_2)}; (5.6)$$

$$D_{3n} = \frac{(Y_n - Y_{n-2})}{(Y_n - Y_2)} \tag{5.7}$$

$$D_{4n} = \frac{(Y_n - Y_{n-2})}{(Y_n - Y_3)},$$
(5.8)

$$D_{5n} = \frac{(Y_n - Y_{n-2})}{(Y_n - Y_1)}; (5.9)$$

- для минимального члена выборки Y1:

$$D_{1_1} = \frac{(Y_1 - Y_2)}{(Y_1 - Y_n)}; (5.10)$$

$$D_{2_1} = \frac{(Y_1 - Y_2)}{(Y_1 - Y_{n-1})}; \tag{5.11}$$

$$D_{3_1} = \frac{(Y_1 - Y_3)}{(Y_1 - Y_{n-1})}; (5.12)$$

$$D_{4_1} = \frac{(Y_1 - Y_3)}{(Y_1 - Y_{n-2})}; (5.13)$$

$$D_{5_1} = \frac{(Y_1 - Y_3)}{(Y_1 - Y_n)}; (5.14)$$

где

$$Y_1 < Y_2 < ... < Y_n$$
.

Примеры оценки однородности с применением генетического и статистического анализа приведены в приложениях A и Б.

#### 5.2 Расчет гидрологических характеристик по неоднородным данным

# 5.2.1 Расчет кривой распределения по составным однородным совокупностям

Метод определения расчетных значений стока по составным кривым распределения применим для неоднородного общего ряда наблюдений, включающего две однородные выборки различной длины. При неоднородности исходных данных гидрологических наблюдений эмпирические и аналитические кривые распределения определяют отдельно для каждой однородной части ряда.

Во всем интервале изменения исходных данных наблюдений для каждой однородной части ряда с аналитических кривых снимаются соответствующие им обеспеченности  $P_1$ ,  $P_2$ . Далее определяется суммарная (составная) кривая распределения, для которой общая обеспеченность каждого члена этого ряда рассчитывается с учетом весовых коэффициентов по формуле:

$$P = \frac{(n_1 P_1 + n_2 P_2)}{(n_1 + n_2)}\% ; (5.15)$$

где n<sub>1</sub>, n<sub>2</sub> - число членов в каждой из двух однородных совокупностей.

Весовые коэффициенты каждой однородной совокупности (однородной во времени части ряда) равны:

- для первой части ряда: n<sub>1</sub> / (n<sub>1</sub>+ n<sub>2</sub>);
- для второй части ряда:  $n_2/(n_1+n_2)$ , соответственно.

Примеры расчета составных кривых распределения для различных характеристик речного стока даны в приложениях A.1 - A.6.

# 5.2.2 Определение расчетной кривой распределения по «сумме распределений» на основе байесовских подходов

Для расчетов речного стока в качестве математического вероятностного аппарата допускается использовать байесовскую методологию решения статистических задач для двух условно-стационарных периодов.

В отличие от метода «составных кривых обеспеченности», где в окончательном решении учитываются только весовые коэффициенты отдельных однородных совокупностей, при баейсовском решении, кроме длины однородных отрезков, учитываются также погрешности выборочных оценок среднего значения.

Основной принцип байесовского подхода заключается в переходе от априорных (предполагаемых) предпосылок к апостериорным (окончательным) с учетом новых данных, поступающих в результате наблюдений согласно [8] и [9].

Исходная информация представлена в виде некоторого априорного (предполагаемого) распределения вероятностей анализируемого параметра по первой однородной части общего ряда наблюдений, который принимает определенное значение до поступления дополнительной информации (по второй однородной части ряда).

По мере дополнения исходной информации от априорного распределения переходим к окончательному (апостериорному) распределению по формуле апостериорной плотности распределения параметра с использованием теоремы Байеса:

$$p(\theta/\{x\}) \sim p(\theta)p(\{x\})/\theta$$
 (5.16)

где θ - искомый параметр распределения;

{x} - наблюденная выборка;

 $p(\theta), \ p(\theta/\{x\})$  - априорная и апостериорная плотность параметра распределения, соответственно.

В методике байесовского оценивания параметр  $\theta$  определяется отношением  $\overline{Q}_1/\overline{Q}_2$ , где  $\overline{Q}_1$  и  $\overline{Q}_2$ - средние значения гидрологической характеристики первой и второй частей ряда.

В случае расчета параметров распределения стока в результате климатических изменений рассматриваются два состояния гидрологического процесса (условностационарных периода), с весовыми коэффициентами  $n_1/N$  и  $n_2/N$ , где  $N=n_1+n_2$ .

$$p(\theta/x) = \frac{n_1}{N} \cdot \eta_1(\theta, x) + \frac{n_2}{N} \eta_2(\theta, x),$$
 (5.17)

где  $\eta_i(\theta, X)$  - выборочное распределение среднего значения для  $\dot{\textbf{r}}$ го условностационарного периода с весом  $\mathbf{n}_i$ ,

 $p(\theta/x)$  - окончательное распределение оценки параметра  $\theta$  с учетом новых климатических условий.

Построение суммарной кривой распределения с учетом всего ряда наблюдений осуществляется в соответствии с рекомендациями [9].

Пример применения методики байесовского оценивания приведен в приложении A.6.

# 5.2.3 Расчет суммарной кривой обеспеченности с учетом средних квадратических погрешностей расчетных значений стока заданных обеспеченностей

Для неоднородных рядов наблюдений, подверженных влиянию климатических изменений, расчетное значение заданной обеспеченности  $Q_{\text{общ}}$  допускается определять по формуле:

$$Q_{o6iii} = \frac{\sum_{i=1}^{k} \frac{1}{\sigma_i^2} Q_i}{\sum_{i=1}^{K} \frac{1}{\sigma_i^2}},$$
 (5.18)

где Q<sub>і</sub> – значение расчетной гидрологической характеристики, полученное по каждой однородной части ряда;

k - число однородных частей ряда;

 $\sigma_{\rm i}^2$ - дисперсия расчетных значений для каждой однородной части ряда определяется согласно приложению 1 [10].

Для каждой однородной совокупности ряда рассчитываются кривые обеспеченности и средние квадратические погрешности значений стока во всем диапазоне заданных обеспеченностей. Окончательное расчетное значение заданной обеспеченности  $Q_p$  определяется по формуле:

$$Q_{p} = \frac{\sum_{i=1}^{2} \left(\frac{1}{\sigma_{p1}^{2}} Q_{p_{1}} + \frac{1}{\sigma_{p2}^{2}} Q_{p_{2}}\right)}{\sum_{i=1}^{2} \left(\frac{1}{\sigma_{p1}^{2}} + \frac{1}{\sigma_{p2}^{2}}\right)},$$
(5.19)

где  $Q_{p1}$ ,  $Q_{p2}$  — расчетное значение стока заданной обеспеченности для первой и второй однородных частей ряда, соответственно;

 $\sigma_{p1}^2,~\sigma_{p2}^2$ - дисперсии расчетных значений стока для каждой однородной части ряда, соответственно.

# 5.3 Расчет параметров и кривых обеспеченности стока с учетом экстремальных значений

Происходящие в последние десятилетия климатические изменения влияют на увеличение числа экстремальных гидрологических характеристик. В частности, на эмпирических кривых распределения наблюдаются отдельные значительные отклонения максимальных расходов воды, сформированных особыми погодными условиями, значения которых превышают наблюденные максимальные расходы.

Выдающиеся (экстремальные) значения речного стока необходимо учитывать при расчетах параметров и построении аналитических кривых распределения гидрологических характеристик в соответствии с СП 33-101, [11], [12].

В этом случае параметры кривых распределения: среднее арифметическое значение  $\overline{Q}$  и коэффициент вариации  $C_{v}$  рассчитываются с учетом выдающегося значения расхода воды  $Q_{N}$  методом моментов.

При учете одного выдающегося значения гидрологической характеристики, входящего в n-летний период наблюдений,  $\overline{Q}$  и  $C_v$  определяются по формулам:

$$\overline{Q} = \frac{1}{N} \left( Q_N + \frac{N-1}{n-1} \sum_{i=1}^{n-1} Q_i \right) , \qquad (5.20)$$

$$C_{v} = \sqrt{\frac{1}{N} \left[ \left( \frac{Q_{N}}{\overline{Q}} - 1 \right)^{2} + \frac{N-1}{n-2} \sum_{i=1}^{n-1} \left( \frac{Q_{i}}{\overline{Q}} - 1 \right)^{2} \right]} , \qquad (5.21)$$

При учете одного выдающегося значения гидрологической характеристики, не входящего в n- летний период наблюдений,  $\overline{Q}$  и  $C_v$  определяются по формулам:

$$\overline{Q} = \frac{1}{N} \left( Q_N + \frac{N-1}{n} \sum_{i=1}^n Q_i \right),$$
 (5.22)

$$C_{v} = \sqrt{\frac{1}{N} \left[ \left( \frac{Q_{N}}{Q} - 1 \right)^{2} + \frac{N - 1}{n - 1} \sum_{i=1}^{n} \left( \frac{Q_{i}}{Q} - 1 \right)^{2} \right]},$$
 (5.23)

где Q<sub>N</sub> - выдающееся значение расхода воды;

п - число лет непрерывных наблюдений:

 N - число лет, в течение которых выдающееся значение гидрологической характеристики не было превышено.

Использование формул (5.20) - (5.23) допускается лишь в том случае, когда исторические сведения о выдающемся гидрологическом значении  $Q_N$  и числе лет его непревышения N достаточно обоснованы. Произвольное задание этих величин недопустимо.

Пример расчета параметров распределения с учетом экстремального значения максимального стока приведен в приложении Б.

# Примеры расчета основных характеристик стока по неоднородным рядам речного стока

# А.1 Расчет годового и сезонного стока

В качестве примера приводится расчет годового и сезонного стока для г/ст. р.Ока - г.Калуга (площадь водосбора 54900 км²). Для реализации данного примера использовалась данные о средних месячных расходах воды за многолетний период с 1882 по 2014 год включительно.

Годовой сток рассчитывался по средним месячным расходам стока за весь год, с I по XII месяцы, а расчет сезонного стока (зимнего, весеннего и летне-осеннего стока) осуществлялся за периоды:

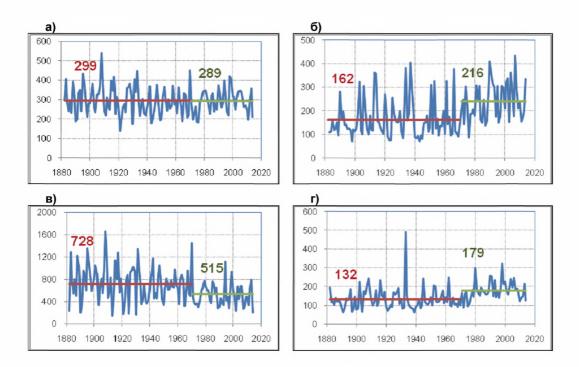
- XI и XII месяцы предшествующего года и за I и II месяцы текущего года зимний сток;
- с III по V месяцы весенний сток;
- с VI по X месяцы летне-осенний сток.

Результаты расчета приведены в таблице А.1.1.

Таблица A.1.1 — Значения средних месячных, годовых и сезонных расходов воды,  $\mathbf{m}^3/\mathbf{c}$ , по г/ст. р.Ока - г.Калуга за период с 1882 по 2014 год

|      |      |      |      | _            |      | B to a |      |      |      |      |      |      |        | •      |             | Лето- |
|------|------|------|------|--------------|------|--------|------|------|------|------|------|------|--------|--------|-------------|-------|
| Год  |      |      |      |              |      | Med    | яц   |      |      |      |      |      | Год    | Зима   | Весна       | осень |
|      | ı    | II   | III  | IV           | ٧    | VI     | VII  | VIII | ΙX   | Х    | ΧI   | XII  | I- XII | XI- II | III- V      | VI- X |
| 1882 | 110  | 99,6 | 1650 | 371          | 148  | 165    | 364  | 210  | 106  | 99,6 | 155  | 107  | 299    |        | 228         | 195   |
| 1883 | 87,5 | 91,4 | 105  | 3080         | 603  | 183    | 166  | 106  | 89,5 | 104  | 116  | 161  | 408    | 109    | 1289        | 116   |
| 1884 | 109  | 95,2 | 84,6 | 717          | 1400 | 268    | 129  | 133  | 115  | 122  | 117  | 97,8 | 282    | 113    | 795         | 125   |
| 1885 | 92,2 | 103  | 375  | 1280         | 247  | 111    | 82,8 | 87,7 | 122  | 117  | 164  | 107  | 241    | 157    | 546         | 102   |
| 1886 | 112  | 102  | 106  | 1880         | 264  | 257    | 159  | 189  | 102  | 107  | 122  | 180  | 298    | 118    | 800         | 139   |
| 1887 | 105  | 86,1 | 132  | 1270         | 164  | 96,1   | 100  | 100  | 91,8 | 186  | 105  | 335  | 231    | 125    | 510         | 119   |
| 1888 | 124  | 96,5 | 94,1 | 3150         | 398  | 126    | 211  | 108  | 86,7 | 99,5 | 96,4 | 117  | 392    | 151    | 1225        | 126   |
| 1889 | 72,5 | 90   | 103  | 2740         | 278  | 91,1   | 91,2 | 99,6 | 132  | 159  | 173  | 118  | 346    | 95,8   | 1036        | 120   |
| 1890 | 74,7 | 81,6 | 959  | 370          | 101  | 143    | 137  | 74,5 | 73,8 | 81,3 | 89,5 | 64,5 | 187    | 281    | 205         | 91,7  |
| 1891 | 63,6 | 69,6 | 536  | 817          | 142  | 85,7   | 68,7 | 62,3 | 62   | 63,7 | 65,3 | 341  | 198    | 165    | 348         | 64,2  |
| 1892 | 129  | 144  | 309  | 2620         | 162  | 93,9   | 95,7 | 95,1 | 74,2 | 84,4 | 99,7 | 76,1 | 332    | 198    | <b>9</b> 59 | 87,4  |
| 1893 | 75,9 | 84,5 | 356  | 1700         | 808  | 145    | 199  | 105  | 126  | 120  | 251  | 235  | 350    | 138    | 884         | 138   |
| 1894 | 68,6 | 76,3 | 84,4 | 1430         | 134  | 234    | 114  | 115  | 119  | 164  | 216  | 121  | 240    | 143    | 599         | 128   |
| 1895 | 94,9 | 89,4 | 94,9 | 2730         | 1210 | 120    | 227  | 97   | 96,6 | 101  | 252  | 105  | 435    | 123    | 1353        | 130   |
| 1896 | 75,7 | 91,2 | 106  | 1900         | 1210 | 132    | 210  | 287  | 130  | 113  | 130  | 81,4 | 372    | 126    | 1081        | 185   |
| 1897 | 89,3 | 105  | 188  | <b>2</b> 520 | 162  | 90,7   | 85,2 | 64,2 | 60,3 | 60,6 | 57,9 | 62,5 | 295    | 119    | 924         | 67,6  |
| 1898 | 67,9 | 80,2 | 84,7 | 1420         | 263  | 84,2   | 138  | 65,6 | 58,1 | 76,6 | 90,4 | 88,8 | 210    | 70,6   | 589         | 84,6  |
| 1899 | 129  | 84,6 | 210  | 1800         | 115  | 103    | 91,2 | 83,8 | 197  | 214  | 201  | 141  | 281    | 121    | 673         | 147   |
| 1900 | 74,6 | 75,9 | 82,2 | 2080         | 300  | 162    | 96,6 | 63,4 | 65,8 | 80,7 | 86,3 | 202  | 281    | 115    | 847         | 77    |
| 1901 | 75,4 | 69,1 | 200  | 2760         | 272  | 110    | 98,2 | 72,1 | 78,6 | 84,5 | 82,1 | 97,4 | 333    | 127    | 1047        | 83,4  |
| 1902 | 107  | 88,3 | 600  | 2140         | 324  | 188    | 338  | 178  | 168  | 211  | 147  | 96,8 | 382    | 195    | 884         | 224   |
| 1903 | 103  | 134  | 1140 | 632          | 192  | 173    | 186  | 86   | 72,1 | 103  | 124  | 169  | 260    | 324    | 332         | 112   |
| 1904 | 76,8 | 94,7 | 121  | 1630         | 217  | 139    | 89,9 | 59,1 | 53,9 | 62,1 | 121  | 156  | 235    | 117    | 662         | 66,3  |
| 1905 | 94,2 | 62,2 | 69,2 | 2180         | 176  | 87,8   | 58,2 | 60,2 | 162  | 418  | 331  | 212  | 326    | 101    | 815         | 175   |

Продолжение таблицы А.1.1


|              |                     |             |                    |              |            |            |               |            |            |                     |                              |             |            |            |            | Лето-      |
|--------------|---------------------|-------------|--------------------|--------------|------------|------------|---------------|------------|------------|---------------------|------------------------------|-------------|------------|------------|------------|------------|
| Год          |                     |             |                    |              |            | Med        | <del></del> - |            |            |                     |                              |             | Год        | Зима       | Весна      | осень      |
|              | <u> </u>            | ll _        |                    | IV           | V          | VI         | VII           | VIII       | IX         | Х                   | ΧI                           | XII         | I- XII     | XI- II     | III- V     | VI- X      |
| 1906         | 92,2                | 86,8        | 808                | 1370         | 170        | 138        | 206           | 167        | 128        | 139                 | 297                          | 351         | 329        | 306        | 559        | 160_       |
| 1907         | 143                 | 106         | 111                | 2560         | 368        | 141        | 357           | 202        | 146        | 115                 | 128                          | _157        | 378        | 202        | 1023       | 205        |
| 1908         | 99,2                | 108         | 122                | 3540         | 934        | 503        | 524           | 139        | 138        | 167                 | 120                          | 93,4        | 541        | 123        | 1659       | 242        |
| 1909         | 89,4                | 91,5        | 111                | 1750         | 800        | 824        | 388           | 138        | 109        | 107                 | 136                          | 129         | 389        | 101        | 1125       | 186        |
| 1910         | 117                 | 110         | 404                | 1090         | 206        | 111        | 116           | 173        | 121        | 100                 | 184                          | 155         | 241        | 179        | 469        | 128        |
| 1911         | 90,4                | 84,9        | 95,8               | 1480         | 184        | 134        | 134           | 87,4       | 87,3       | 87,1                | 90,1                         | 72          | 219        | 122        | 599        | 99,0       |
| 1912         | 68,4                | 85,4        | 268                | 1820         | 509        | 170        | 133           | 88,7       | 113        | 149                 | 178                          | 145         | 311        | 117        | 833        | 121        |
| 1913         | 70,1                | 61,2        | 1360               | 232          | 99,7       | 97,2       | 282           | 194        | 125        | 121                 | 250                          | 239         | 261        | 363        | 143        | 181        |
| 1914         | 132                 | 389         | 773                | 775          | 176        | 115        | 103           | 99,8       | 93,6       | 97,4                | 105                          | 105         | 247        | 357        | 355        | 98,5       |
| 1915         | 90                  | 212         | 257<br>267         | 2980<br>2070 | 304        | 138<br>119 | 108<br>170    | 124<br>144 | 133<br>154 | 99,9                | 210                          | 120         | 398        | 154        | 1141       | 116        |
| 1916         | 83,7                | 97,9        |                    | 3370         | 212        | 138        | 138           |            | 144        | 463                 | 208                          | 179         | 347        | 156        | 800        | 233        |
| 1917         | 102                 | 87,5        | 78,4<br>92,8       | 1360         | 329<br>154 | 169        | 138           | 203<br>129 | 180        | 124                 | 168                          | 138         | 418        | 131        | 1279       | 152        |
| 1918         | 83<br>93,2          | 90,8        | 144                | 2080         | 233        | 130        | 165           | 272        | 124        | 120<br>120          | _102<br>147                  | 89,3<br>153 | 226        | 115        | 561<br>814 | 142<br>170 |
| 1919<br>1920 | 93, <u>2</u><br>169 | 91,9<br>105 | 775                | 1280         | <u></u>    | 104        | 94,9          | 98,7       | 88,1       | 86,5                | 80,4                         | 64,3        | 313<br>258 | 104<br>270 | 513        | 92,1       |
| 1920         | 75                  | 63,4        | 593                | 310          | 108        | 98,2       | 86,6          | 65,6       | 65,3       | 66,4                | 59,4                         | 59,7        | 138        | 175        | 172        | 71,0       |
| 1922         | 51,9                | 51,5        | 233                | 926          | 167        | 199        | 122           | 72,7       | 65,6       | 81,2                | 188                          | 50,8        | 184        | 91,1       | 431        | 85,4       |
| 1923         | 43,8                | 40          | 59,3               | 2000         | 234        | 126        | 125           | 108        | 96,3       | 81,8                | 111                          | 95,2        | 260        | 76,4       | 787        | 103        |
| 1924         | 68,8                | 48,8        | 52,1               | 2170         | 365        | 103        | 105           | 97,3       | 86,2       | 79,3                | 92,6                         | 82          | 279        | 75,2       | 879        | 92,0       |
| 1925         | 119                 | 127         | 860                | 321          | 107        | 119        | 183           | 149        | 169        | 176                 | 290                          | 190         | 234        | 256        | 182        | 169        |
| 1926         | 245                 | 113         | 107                | 2280         | 357        | 146        | 140           | 156        | 150        | 177                 | 308                          | 139         | 360        | 189        | 928        | 156        |
| 1927         | 98,9                | 91,6        | 159                | 2030         | 522        | 331        | 206           | 151        | 110        | 204                 | 319                          | 124         | 362        | 159        | 961        | 168        |
| 1928         | 120                 | 105         | 98,7               | 1550         | 1140       | 382        | 173           | 192        | 212        | 185                 | 210                          | 219         | 382        | 153        | 1024       | 191        |
| 1929         | 134                 | 87,3        | 114                | 1120         | 1540       | 153        | 180           | 98,3       | 76,9       | 83,3                | 102                          | 95,8        | 315        | 153        | 938        | 110        |
| 1930         | 73,7                | 71,5        | 653                | 313          | 113        | 81,7       | 118           | 128        | 119        | 167                 | 151                          | 118         | 176        | 199        | 169        | 133        |
| 1931         | 87,2                | 78,5        | 129                | 3100         | 824        | 122        | 98,7          | 62,4       | 81,8       | 89                  | 102                          | 71,7        | 404        | 113        | 1349       | 83,0       |
| 1932         | 98,1                | 75,3        | 75,5               | 2620         | 417        | 188        | 117           | 84,7       | 69,9       | 82,6                | 95,6                         | 122         | 337        | 84,5       | 1075       | 88,6       |
| 1933         | 69,1                | 72,4        | 550                | 1010         | 507        | 656        | 444           | 407        | 791        | 324                 | 433                          | 123         | 449        | 182        | 724        | 492        |
| 1934         | 98,5                | 104         | 1150               | 745          | 176        | 155        | 189           | 201        | 109        | 121                 | 138                          | 109         | 275        | 382        | 359        | 155        |
| 1935         | 78,3                | 94,5        | 374                | 980          | 223        | 128        | 114           | 106        | 97,2       | 116                 | 164                          | 125         | 217        | 159        | 444        | 108        |
| 1936         | 156                 | 130         | 372                | 1782         | 222        | 123        | 85            | 83,5       | 89,3       | 109                 | 117                          | 107         | 281        | 189        | 709        | 91,7       |
| 1937         | 80,4                | 74,4        | 1640               | 1020         | 154        | 100        | 94,7          | 98,9       | 73,8       | 80,1                | 90,1                         | 137         | 304        | 404        | 425        | 86,9       |
| 1938         | 2,66                | 91,8        | 978                | 668          | 305        | 109        | 87,2          | 76,5       | 74,4       | 83                  | 94,3                         | 65,6        | 228        | 279        | 361_       | 80,3       |
| 1939         | 127                 | 274         | 537                | 940          | 219        | 99,9       | 69,3          | 60,8       | 57,1       | 62,6                | 74                           | 89,6        | 218        | 220        | 420        | 62,5       |
| 1940         | 54,1                | 58,8        | 172                | 1940         | 146        | 86,1       | 99,3          | 89,9       | 82,4       | 93,2                | 111                          | 94,2        | 252        | 89,7       | 724        | 91,2       |
| 1941         | 68                  | 68,7        | 82,5               | 1940         | 539        | 181        | 115           | 93,3       | 98,6       | 92                  | 132                          | 86          | 291        | 84,9       | 887        | 100        |
| 1942         | 89_                 | 79,1        | 82,6               | 2600         | 530        | 386        | 181           | 175        | 85,2       | 89,9                | 75,2                         | 53,8        | 369        | 93,7       | 1172       | 133        |
| 1943         | 51,7                | 54,3        | 125                | 1110         | 161        | 120        | 99,9          | 94,5       | 72,2       | 74,5                | 77,3                         | 81,4        | 177        | 72,0       | 464        | 85,3       |
| 1944         | 86,7                | 86,9        | 144                | 1150         | 369        | 148        | 126           | 102        | 80,7       | 79,6                | 96,9                         | 77,9        | 212        | 95,3       | 556        | 97,1       |
| 1945         | 72,4                | 70,2        | 97,9               | 976          | 254        | 139        | 116           | 272        | 218        | 357                 | 247                          | 117         | 245        | 83,1       | 456        | 241        |
| 1946         | 108                 | 95,6        | 168                | 2250         | 296        | 123        | 101           | 98,9       | 125        | 154                 | 126                          | 93,4        | 312        | 147        | 890        | 120        |
| 1947         | 80,3                | 81,6        | 369                | 2710         | 252        | 194        | 106           | 97,6       | 119        | 116                 | 173                          | 215         | 376        | 150        | 1052       | 110        |
| 1948         | 204                 | 172         | 139                | 1760         | 225        | 162        | 121           | 97,3       | 99,3       | 101                 | 113                          | 109         | 275        | 181        | 716        | 105        |
| 1949         | 86,9                | 88,3        | 159                | 1070         | 162        | 101        | 143           | 130        | 94,8       | 92,1                | 98, <b>4</b><br>1 <b>7</b> 8 | 109<br>143  | 195        | 111        | 444        | 115        |
| 1950         | 87,9                | 81,9        | 261                | 779          | 126        | 112        | 127           | 192        | 130        | 127<br>93,7         | 84,1                         | 120         | 195<br>310 | 128<br>310 | 339<br>631 | 144        |
| 1951         | 90,8                | 79,1        | 1060               | 1420         | 308        | 164        | 95,9          | 104        | 102        | 93, <i>1</i><br>354 | 517                          | 320         | 367        | 105        |            | 98,9       |
| 1952<br>1953 | 115<br>163          | 101         | 104                | 1950         | 313        | 164        | 166           | 139        | 157<br>215 | 223                 | 146                          | 136         | 309        | 326        | 809<br>611 | 204        |
| 1953         |                     | 128<br>96 9 | 501                | 1250         | 401        | 182        | 191           | 170        | 113        | 145                 | 125                          | 110         | 244        | 126        | 623        |            |
| 1955         | 98,3<br>112         | 96,9<br>149 | 155                | 1360         | 362<br>500 | 205        | 109<br>138    | 104<br>124 | 100        | 104                 | 96,4                         | 95,3        | 301        | 167        | 785        | 118<br>117 |
| 1956         | 97,5                | 85,6        | 3 <b>40</b><br>107 | 1640<br>1410 | 509<br>303 | 205<br>198 | 120           | 149        | 125        | 107                 | 106                          | 130         | 252        | 96,4       | 667        | 125        |
| 1957         | 108                 | 164         | 179                | 1480         | 393        | 208        | 153           | 148        | 133        | 163                 | 113                          | 114         | 269        | 137        | 651        | 149        |
| 1957         | 127                 | 136         | 180                | 2300         | 266<br>455 | 166        | 141           | 163        | 203        | 204                 | 183                          | 199         | 371        | 134        | 974        | 178        |
| 1959         | 167                 | 130         | 315                | 1680         | 218        | 152        | 129           | 100        | 103        | 113                 | 101                          | 85,4        | 274        | 199        | 683        | 111        |
| 1960         | 118                 | 93,8        | 115                | 1620         | 270        | 117        | 112           | 124        | 179        | 156                 | 307                          | 370         | 298        | 103        | 669        | 143        |
|              |                     | 0.00        | <u>∟ ध⊻</u>        | 1040         | <i>~(U</i> | "          |               | 1 = 7      | L          | <u> </u>            |                              |             | <u></u>    | L 100      |            | 170        |

# СТО ГГИ 52.08.41-2017

# Окончание таблицы А.1.1

|      |      |      |       |             |      | Med | <br>ЭГЦ |      |      |      |      |      | Год         | Зима   | Весна  | Лето-        |
|------|------|------|-------|-------------|------|-----|---------|------|------|------|------|------|-------------|--------|--------|--------------|
| Год  | 1    | II   | III   | IV          | V    | VI  | VII     | VIII | IX   | Х    | ΧI   | ΧII  | I- XII      | XI- II | III- V | VI- X        |
| 1961 | 216  | 150  | 584   | 721         | 217  | 133 | 121     | 105  | 139  | 103  | 104  | 156  | 229         | 325    | 357    | 117          |
| 1962 | 137  | 116  | 207   | 1690        | 315  | 390 | 320     | 274  | 211  | 183  | 274  | 225  | 362         | 144    | 798    | 247          |
| 1963 | 127  | 118  | 126   | 2170        | 330  | 142 | 109     | 94,6 | 97,9 | 101  | 107  | 92,6 | 301         | 174    | 881    | 101          |
| 1964 | 99,4 | 83,5 | 94,6  | 1820        | 301  | 166 | 105     | 98,6 | 88,6 | 87,2 | 79,3 | 113  | 261         | 95,4   | 762    | 94,9         |
| 1965 | 85   | 74,8 | 166   | 600         | 217  | 147 | 189     | 159  | 106  | 100  | 92,5 | 304  | 187         | 104    | 321    | 139          |
| 1966 | 135  | 160  | 1200  | 1500        | 204  | 132 | 121     | 104  | 97,2 | 98,8 | 130  | 116  | 333         | 378    | 612    | 105          |
| 1967 | 95,1 | 88,1 | 140   | 2470        | 245  | 148 | 112     | 112  | 107  | 102  | 98,5 | 94,7 | 318         | 114    | 954    | 108          |
| 1968 | 92,2 | 96,5 | 142   | 1320        | 156  | 107 | 94,3    | 93,7 | 84,4 | 93,2 | 88   | 109  | 206         | 105    | 528    | 91,4         |
| 1969 | 91   | 73,4 | 93    | 1190        | 186  | 144 | 109     | 170  | 108  | 103  | 175  | 192  | 220         | 90,9   | 507    | 123          |
| 1970 | 123  | 99,6 | 123   | 3950        | 281  | 122 | 105     | 87   | 93,7 | 117  | 180  | 120  | 450         | 143    | 1451   | 101          |
| 1971 | 177  | 171  | 371   | 1070        | 233  | 159 | 135     | 117  | 143  | 261  | 288  | 240  | 280         | 204    | 487    | 164          |
| 1972 | 127  | 86,6 | 489   | 806         | 161  | 121 | 121     | 70,7 | 72,9 | 94,5 | 107  | 96,8 | 196         | 246    | 363    | 89,8         |
| 1973 | 81,3 | 86,3 | 341   | 700         | 220  | 113 | 107     | 182  | 160  | 204  | 317  | 146  | 221         | 142    | 344    | 163          |
| 1974 | 133  | 302  | 616   | 447         | 326  | 324 | 303     | 149  | 113  | 119  | 163  | 169  | 264         | 303    | 366    | 171          |
| 1975 | 180  | 149  | 450   | 622         | 143  | 126 | 94,1    | 93,6 | 94,7 | 93,3 | 86,4 | 95   | 186         | 222    | 297    | 94           |
| 1976 | 85,8 | 81,5 | 92,7  | 767         | 267  | 202 | 111     | 112  | 99,4 | 107  | 118  | 143  | 182         | 88,3   | 412    | 107          |
| 1977 | 108  | 98,3 | 468   | 1410        | 208  | 204 | 162     | 142  | 134  | 133  | 209  | 189  | 289         | 187    | 607    | 143          |
| 1978 | 148  | 122  | 270   | 1290        | 348  | 274 | 210     | 171  | 156  | 185  | 216  | 162  | 296         | 188    | 637    | 181          |
| 1979 | 126  | 236  | 298   | 1930        | 278  | 117 | 151     | 146  | 145  | 142  | 207  | 245  | 335         | 208    | 775    | 146          |
| 1980 | 176  | 149  | 126   | 1250        | 509  | 285 | 385     | 317  | 298  | 199  | 214  | 230  | 345         | 181    | 681    | 300          |
| 1981 | 236  | 202  | 652   | 1280        | 351  | 170 | 137     | 129  | 204  | 249  | 272  | 265  | 346         | 307    | 600    | 180          |
| 1982 | 210  | 166  | 338   | 1180        | 452  | 188 | 179     | 158  | 150  | 163  | 190  | 267  | 303         | 250    | 607    | 163          |
| 1983 | 244  | 239  | 593   | 949         | 218  | 163 | 162     | 146  | 145  | 153  | 135  | 187  | 278         | 307    | 443    | 152          |
| 1984 | 181  | 134  | 167   | 779         | 172  | 178 | 256     | 177  | 160  | 184  | 172  | 145  | 225         | 161    | 376    | 194          |
| 1985 | 139  | 144  | 155   | 1840        | 299  | 168 | 184     | 151  | 164  | 194  | 202  | 189  | 319         | 151    | 769    | 173          |
| 1986 | 147  | 138  | 557   | 1710        | 269  | 171 | 185     | 153  | 168  | 177  | 175  | 152  | 334         | 247    | 717    | 171          |
| 1987 | 107  | 126  | 124   | 951         | 415  | 243 | 146     | 156  | 154  | 169  | 113  | 135  | 237         | 137    | 536    | 156          |
| 1988 | 136  | 122  | 275   | 1370        | 416  | 180 | 216     | 141  | 142  | 137  | 126  | 126  | 282         | 156    | 655    | 159          |
| 1989 | 156  | 243_ | 738   | 431         | 191  | 204 | 229     | 155  | 134  | 166  | 157  | 186  | <b>24</b> 9 | 278    | 275    | 171          |
| 1990 | 176  | 343_ | 1180  | 414         | 226  | 271 | 172     | 170  | 373  | 311  | 517  | 317  | 373         | 408_   | 304    | 257          |
| 1991 | 241  | 189  | 526   | 629         | 411_ | 330 | 238     | 184  | 194  | 399  | 346  | 227  | 326         | 358    | 457_   | 254_         |
| 1992 | 256  | 228  | 518   | 701         | 243  | 161 | 144     | 130  | 145  | 169  | 225  | 197  | 260         | 315    | 368    | 147          |
| 1993 | 215  | 217  | 648   | <b>59</b> 6 | 227_ | 184 | 238     | 257  | 197  | 244  | 190  | 165  | 282         | 300    | 336    | 234          |
| 1994 | 178  | 144  | 197   | 2670        | 411_ | 284 | 159     | 137  | 133  | 142_ | 167  | 153  | 398         | 175    | 1122   | <b>_14</b> 3 |
| 1995 | 163  | 189  | 854   | 691         | 362  | 209 | 173     | 160  | 179  | 176_ | 195  | 140  | 291         | 305    | 421    | <u> 172</u>  |
| 1996 | 135  | 136  | 146   | 1020        | 289  | 164 | 151     | 135  | 138  | 141  | 174  | 173  | 234         | 150    | 491_   | 141          |
| 1997 | 120  | 121  | 293   | 418         | 201  | 209 | 210     | 149  | 136  | 271  | 289  | 192  | 217         | 176    | 276    | 192_         |
| 1998 | 193  | 197  | 658   | 1160        | 599  | 253 | 241     | 215  | 352  | 480  | 476  | 209  | 419         | 306    | 671    | 322          |
| 1999 | 220  | 226  | 358   | 2210        | 387  | 223 | 187     | 249  | 195  | 219  | 216  | 202  | 408         | 298    | 940    | 213          |
| 2000 | 182  | 194  | 261   | 1280        | 259  | 210 | 245     | 227  | 240  | 188  | 257  | 263  | 317         | 211    | 583    | 225          |
| 2001 | 258  | 242  | 580   | 1010        | 273  | 300 | 188     | 163  | 176  | 180  | 195  | 197  | 314         | 320    | 528    | 177_         |
| 2002 | 152  | 440  | 705   | 313         | 215  | 162 | 145     | 141  | 153  | 188  | 208  | 151  | 248         | 338    | 230    | 157_         |
| 2003 | 138  | 134  | _130  | 1410        | 408  | 180 | 173     | 176  | 234  | 221  | 235  | 265  | 309         | 152    | 666    | 201          |
| 2004 | 231  | 240  | 840   | 659         | 417  | 279 | 362     | 217  | 183  | 192  | 235  | 244  | 342         | 362    | 452_   | 239          |
| 2005 | 419  | 280  | 243   | 1260        | 442  | 339 | 251     | 180  | 169  | 177  | 187  | 200  | 346         | 284    | 680    | _194_        |
| 2006 | 176  | 152  | _175_ | 1400        | 313  | 330 | 174     | 229  | 326  | 246  | 311  | 271  | 342         | 178    | 681    | 244          |
| 2007 | 354  | 260  | 971_  | 338         | 299  | 181 | 170     | 175  | 174  | 190  | 195  | 224  | 294         | 433    | 273    | 177          |
| 2008 | 161  | 203  | 676   | 391         | 286  | 203 | 231     | 164  | 179  | 173  | 193  | 272  | 261         | 292    | 293    | 187          |
| 2009 | 181  | 179  | 236   | 835         | 361  | 262 | 172     | 165  | 154  | 183  | 318  | 199  | 270         | 212    | 486    | 169          |
| 2010 | 159  | 144  | 386   | 1010        | 264  | 187 | 126     | 113  | 125  | 128  | 147  | 164  | 246         | 241    | 487    | 123          |
| 2011 | 166  | 154  | 148   | 612         | 269  | 128 | 154     | 138  | 131_ | 139  | 142  | 173  | 196         | 156    | 336_   | 141          |
| 2012 | 208  | 147  | 196   | 1390        | 292  | 208 | 146     | 126  | 142  | 175  | 302  | 213  | 295         | 173    | 630    | 147          |
| 2013 | 157  | 156  | 176   | 1680        | 448  | 265 | 206     | 155  | 278  | 219  | 271  | 283  | 358         | 201    | 798    | 215          |
| 2014 | 374  | 311  | 436   | 275         | 183  | 162 | 129     | 117  | 129  | 131_ | 139  | 141  | 211         | 335    | 207    | 127_         |

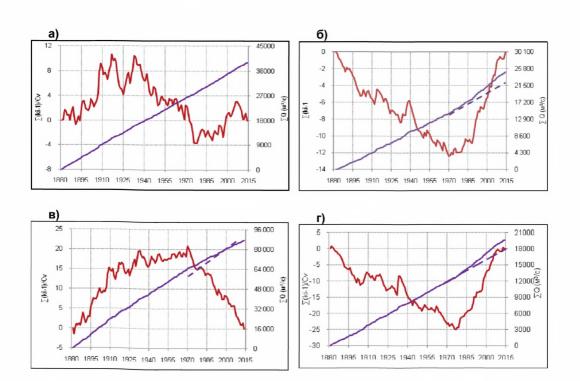
На рисунке А.1.1 приведены хронологические графики многолетних изменений годового и сезонного стока. Анализ этих данных показывает, что с начала 1970 годов наблюдается увеличение зимнего и летне-осеннего стока и уменьшение весеннего стока. Многолетних изменений в годовом стоке не набюдается.



а) год; б) зима; в) весна; г) лето-осень

Рисунок А.1.1 — Многолетние колебания годового и сезонного стока по г/ст. р.Ока-г.Калуга, м³/с за период с 1882 по 2014 год

Анализ суммарных и разностных интегральных кривых годового и сезонного стока (рисунок А.1.2) показал, что ряды сезонного стока можно разбить на две квазиоднородные совокупности с переломной точкой в 1970 году.


Ряды речного стока проверены на однородность с использованием рекомендаций подраздела 5.1 (формулы (5.1) - (5.2)). Результаты расчетов, приведенные в таблице А.1.2, показали неоднородность рядов сезонного стока по среднему значению, а весеннего стока - еще и по дисперсии. Ряд годового стока является однородным.

В связи с этим определение расчетных характеристик сезонного стока выполняется с использованием составных кривых распределения вероятностей.

Таблица А.1.2 – Оценка однородности годового и сезонного стока по критериям Стьюдента и Фишера по г/ст. р.Ока-г.Калуга

| Сезон      | Период     | Среднее  | Дисперсия, | Крите       | ерии*       |
|------------|------------|----------|------------|-------------|-------------|
| 000011     | наблюдений | значение | дисперсия, | Стъюдента   | Фишера      |
| 1          | 2          | 3        | 4          | 5           | 6           |
|            | 1882-1970  | 299      | 78,2       | 0,84        | <u>1,56</u> |
| Год        | 1971-2014  | 289      | 61,8       | 2,38        | 1,57        |
|            |            |          |            | однороден   | однороден   |
|            | 1883-1970  | 162      | 79,3       | 3,66        | 1,29        |
| Зима       | 1971-2014  | 239      | 90,0       | 2,53        | 1,61        |
|            |            |          |            | неоднороден | однороден   |
|            | 1882-1970  | 728      | 339        | 3,20        | 2,09        |
| Весна      | 1971-2014  | 515      | 235        | 2,31        | 1,57        |
|            |            |          |            | неоднороден | неоднороде  |
|            | 1882-1970  | 132      | 63,7       | 2,97        | <u>1,57</u> |
| Лето-осень | 1971-2014  | 179      | 50,8       | 2,46        | 1,58        |
|            |            |          |            | неоднороден | однороден   |

<sup>\*</sup> В столбцах 5 и 6 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение



а) год; б) зима; в) весна; г) лето-осень — суммарная кривая; — разностная интегральная кривая

Рисунок А.1.2 – Суммарные и разностные интегральные кривые годового и сезонного стока по г/ст. р.Ока-г.Калуга:

После разделения временного ряда на две выборки с периодами 1882-1970 гг. и 1971-2014 гг. для каждой из них произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_s/C_v$  и рассчитаны параметры составной кривой распределения.

Результаты расчетов для рядов средних месячных, годовых и сезонных расходов воды,  $м^3/c$ , по г/ст. р.Ока - г.Калуга представлены в таблицах A.1.3 - A.1.5 и показаны на рисунке A.1.3.

Таблица А.1.3 — Параметры распределения, расчетные значения весеннего стока заданной обеспеченности по однородным и составной кривым распределения

| Период     | Средний                     |      |                                | Обеспеченные значения стока, ${\bf m}^3/{\bf c}$ |      |      |      |     |     |  |  |  |
|------------|-----------------------------|------|--------------------------------|--------------------------------------------------|------|------|------|-----|-----|--|--|--|
| наблюдений | <u>р</u> асход,<br>Q,м³ / с | C^   | C <sub>s</sub> /C <sub>v</sub> | 1%                                               | 2%   | 5%   | 10%  | 25% | 50% |  |  |  |
| 1882-1970  | 728                         | 0,43 | 0,77                           | 1510                                             | 1410 | 1260 | 1130 | 917 | 703 |  |  |  |
| 1971-2014  | 515                         | 0,45 | 3,35                           | 1340                                             | 1120 | 1010 | 858  | 651 | 479 |  |  |  |
| 1882-2014  | 658                         | 0,46 | 1,42                           | 1490                                             | 1370 | 1210 | 1070 | 848 | 620 |  |  |  |

Таблица А.1.4 — Параметры распределения, расчетные значения зимнего стока заданной обеспеченности по однородным и составной кривым распределения

| Период     | Средний                     |      |                                |     | Обеспеч | енные зн | ачения ст | гока, <b>м</b> ³/с |      |
|------------|-----------------------------|------|--------------------------------|-----|---------|----------|-----------|--------------------|------|
| наблюдений | <u>р</u> асход,<br>Q,м³ / с | Cν   | C <sub>s</sub> /C <sub>v</sub> | 50% | 75%     | 80%      | 90%       | 95%                | 98%  |
| 1883-1969  | 162                         | 0,50 | 3,15                           | 144 | 103     | 95,3     | 78,6      | 68,3               | 59,6 |
| 1970-2014  | 239                         | 0,34 | 1,13                           | 234 | 182     | 171      | 140       | 116                | 90,4 |
| 1882-2014  | 189                         | 0,47 | 1,80                           | 174 | 119     | 108      | 86,4      | 73,1               | 62,3 |

Таблица А.1.5 — Параметры распределения, расчетные значения летне-осеннего стока заданной обеспеченности по однородным и составной кривым распределения

| Период     | Средний                                    |      |                   |     | Обеспеч | енные зн | ачения с | тока, м <sup>3</sup> /с | -    |
|------------|--------------------------------------------|------|-------------------|-----|---------|----------|----------|-------------------------|------|
| наблюдений | $\frac{\text{расход,}}{Q, \text{м}^3 / c}$ | Cv   | C₅/C <sub>v</sub> | 50% | 75%     | 80%      | 90%      | 95%                     | 98%  |
| 1883-1969  | 132                                        | 0,44 | 6,77              | 109 | 96,2    | 95,0     | 93,8     | 93,5                    | 93,5 |
| 1970-2014  | 179                                        | 0,28 | 2,94              | 171 | 141     | 135      | 120      | 109                     | 97,7 |
| 1882-2014  | 148                                        | 0,40 | 4,76              | 130 | 101     | 97,7     | 94,4     | 93,2                    | 92,3 |

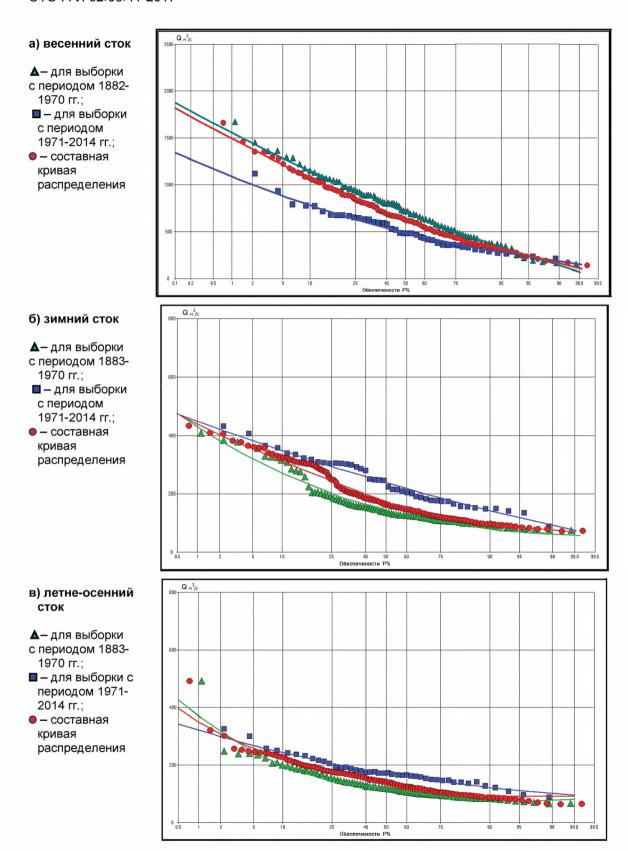



Рисунок А.1.3 - Эмпирические и аналитические кривые распределения а) весеннего, б) зимнего и в) летне-осеннего стока по г/ст. р.Ока - г.Калуга, м³/с

# А.2 Расчет максимальных расходов воды

Расчет максимальных расходов воды весеннего половодья проведен на примере для р. Ловать в створе г/ст. Великие Луки (площадь водосбора 3270 км²). Для реализации примера использовались данные о максимальных расходах воды за многолетний период с 1929 по 2014 год включительно (таблица А.2.1).

| Таблица А.2.1 –          | Значения   | максимальных | расходов | воды, | м <sup>3</sup> /с, | ПО | г/ст. | р.Ловать | - |
|--------------------------|------------|--------------|----------|-------|--------------------|----|-------|----------|---|
| г.Великие Луки за период | цс 1929 по | 2014 год     |          |       |                    |    |       |          |   |

| Год  | Q    | Год  | Q    | Год  | Q    | Год  | Q    |
|------|------|------|------|------|------|------|------|
| 1929 | 177  | 1955 | 151  | 1975 | 79,7 | 1995 | 59,2 |
| 1930 | 38,2 | 1956 | 189  | 1976 | 63,3 | 1996 | 48,4 |
| 1931 | 238  | 1957 | 72,7 | 1977 | 55,3 | 1997 | 45,2 |
| 1932 | 123  | 1958 | 145  | 1978 | 105  | 1998 | 66,9 |
| 1933 | 121  | 1959 | 121  | 1979 | 93,2 | 1999 | 135  |
| 1935 | 117  | 1960 | 76,7 | 1980 | 62,6 | 2000 | 67,8 |
| 1936 | 104  | 1961 | 57,7 | 1981 | 77,6 | 2001 | 76,1 |
| 1937 | 103  | 1962 | 203  | 1982 | 59,5 | 2002 | 84,3 |
| 1938 | 174  | 1963 | 123  | 1983 | 102  | 2003 | 99   |
| 1939 | 59,7 | 1964 | 71,3 | 1984 | 59,1 | 2004 | 133  |
| 1940 | 77   | 1965 | 106  | 1985 | 91,6 | 2005 | 84,1 |
| 1941 | 168  | 1966 | 128  | 1986 | 121  | 2006 | 75,4 |
| 1945 | 123  | 1967 | 68,7 | 1987 | 90,7 | 2007 | 66,6 |
| 1946 | 154  | 1968 | 109  | 1988 | 89   | 2008 | 88,7 |
| 1947 | 168  | 1969 | 77,3 | 1989 | 75,9 | 2009 | 90,8 |
| 1948 | 124  | 1970 | 141  | 1990 | 94,8 | 2010 | 128  |
| 1949 | 91,2 | 1971 | 69,4 | 1991 | 85,7 | 2011 | 110  |
| 1952 | 36   | 1972 | 47,6 | 1992 | 103  | 2012 | 109  |
| 1953 | 150  | 1973 | 67,4 | 1993 | 66   | 2013 | 108  |
| 1954 | 67,2 | 1974 | 18,5 | 1994 | 165  | 2014 | 32,5 |

На рисунке A.2.1 приведен хронологический график многолетних колебаний максимальных расходов воды по г/ст. р.Ловать - г.Великие Луки.

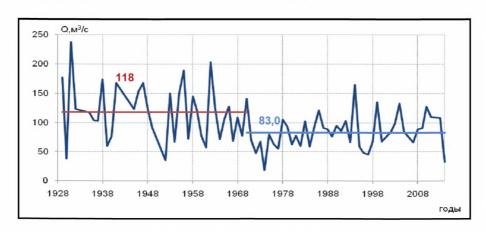
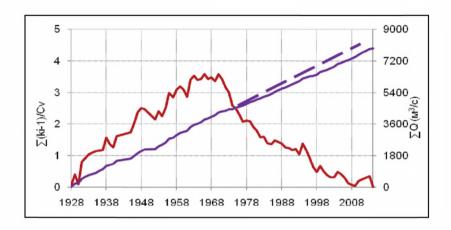




Рисунок А.2.1 – Многолетние колебания максимального стока по г/ст. р.Ловать - г.Великие Луки за период с 1929 по 2014 год

Анализ хронологического хода (см. рисунок А.2.1) показывает, что с начала 1970 годов наблюдается уменьшение максимальных расходов воды и снижение их изменчивости, что указывает на возможную неоднородность стокового ряда.

Анализ суммарной и разностной интегральных кривых максимальных расходов воды (рисунок А.2.2) показал, что рассматриваемый ряд можно разбить на две квазиоднородные совокупности с переломной точкой в 1970 году.



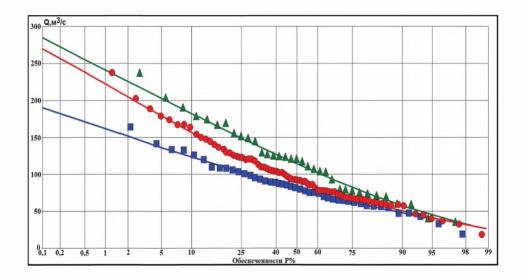
суммарная кривая;
 разностная интегральная кривая

Рисунок A.2.2 – Суммарная и разностная интегральные кривые максимальных расходов воды по г/ст. р.Ловать - г.Великие Луки

После разделения временного ряда на две выборки с периодами 1929-1970 гг. и 1971-2014 гг., произведена проверка однородности рядов по критериям Стьюдента и Фишера - таблица А.2.2. Анализ однородности показал, что рассматриваемый ряд неоднороден, как по среднему, так и по дисперсии. В связи с этим определение расчетных характеристик максимального стока выполняется с использованием составной кривой распределения вероятностей.

Таблица А.2.2 – Оценка однородности максимальных расходов воды, по критериям Стьюдента и Фишера по г/ст. р. Ловать - г.Великие Луки

| Период     | Среднее  | Дисперсия, | Крите       | ерии*       |
|------------|----------|------------|-------------|-------------|
| наблюдений | значение | σ          | Стъюдента   | Фишера      |
| 1          | 2        | 3          | 4           | 5           |
| 1929-1970  | 118      | 47,5       | 3,75        | 2,73        |
| 1971-2014  | 83,0     | 28,7       | 2,03        | 1,96        |
|            |          |            | неоднороден | неоднороден |


<sup>\*</sup> В столбцах 4 и 5 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение

Для каждой выборки за периоды 1929 - 1970 гг. и 1971 - 2014 гг. произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_{\rm s}/C_{\rm v}$  и рассчитаны параметры составной кривой распределения.

Результаты расчетов представлены в таблице А.2.3 и показаны на рисунке А.2.3.

Таблица А.2.3 – Параметры распределения, расчетные значения максимального стока заданной обеспеченности по однородным и составной кривым распределения

| Период     | Средний расход,              |      |       |      |     | Обес | печеннь | іе значеі | ния, м <sup>3</sup> /с |      |      |
|------------|------------------------------|------|-------|------|-----|------|---------|-----------|------------------------|------|------|
| наблюдений | расход,<br>м <sup>3</sup> /с | Cv   | Cs/Cv | 0,1% | 1%  | 5%   | 10%     | 20%       | 25%                    | 30%  | 50%  |
| 1929-1970  | 118                          | 0,40 | 0,9   | 290  | 241 | 201  | 181     | 157       | 148                    | 141  | 115  |
| 1971-2014  | 83,0                         | 0,34 | 1,3   | 189  | 158 | 133  | 121     | 106       | 101                    | 96,2 | 80,8 |
| 1929-2014  | 98,8                         | 0,42 | 2,0   | 275  | 223 | 179  | 156     | 131       | 122                    | 115  | 92,6 |



Для выборки с периодом 1929 -1970 гг.;
 ■ – для выборки с периодом 1971-2014 гг.;
 ● – составная кривая распределения

Рисунок А.2.3 – Эмпирические и аналитические кривые распределения максимальных расходов воды весеннего половодья для г/ст. р.Ловать - г.Великие Луки

# А.3 Расчет слоя стока весеннего половодья

В качестве примера выполнен расчет слоя стока весеннего половодья для р.Кема в створе г/ст. д.Левково (площадь водосбора 4160 км²). Для реализации данного примера использовались данные по слоям стока весеннего половодья за многолетний период с 1947 по 2012 год - таблица А.3.1.

| Таблица А.3.1         | - Значения с   | лоев стока | весеннего | половодья | h, мм, | по г/ст. | р.Кема - |  |
|-----------------------|----------------|------------|-----------|-----------|--------|----------|----------|--|
| д.Левково за период с | 1947 по 2012 г | год        |           |           |        |          |          |  |

| Год  | h, мм |
|------|-------|------|-------|------|-------|------|-------|
| 1947 | 133   | 1964 | 147   | 1981 | 238   | 1998 | 169   |
| 1948 | 163   | 1965 | 157   | 1982 | 189   | 1999 | 124   |
| 1949 | 131   | 1966 | 318   | 1983 | 152   | 2000 | 170   |
| 1950 | 111   | 1967 | 165   | 1984 | 200   | 2001 | 165   |
| 1951 | 132   | 1968 | 214   | 1985 | 149   | 2002 | 149   |
| 1952 | 165   | 1969 | 211   | 1986 | 124   | 2003 | 133   |
| 1953 | 185   | 1970 | 125   | 1987 | 155   | 2004 | 195   |
| 1954 | 136   | 1971 | 240   | 1988 | 122   | 2005 | 166   |
| 1955 | 332   | 1972 | 135   | 1989 | 123   | 2006 | 99    |
| 1956 | 120   | 1973 | 137   | 1990 | 141   | 2007 | 109   |
| 1957 | 202   | 1974 | 183   | 1991 | 199   | 2008 | 141   |
| 1958 | 278   | 1975 | 129   | 1992 | 156   | 2009 | 137   |
| 1959 | 177   | 1976 | 192   | 1993 | 142   | 2010 | 152   |
| 1960 | 141   | 1977 | 198   | 1994 | 171   | 2011 | 139   |
| 1961 | 219   | 1978 | 167   | 1995 | 183   | 2012 | 119   |
| 1962 | 149   | 1979 | 149   | 1996 | 94    |      |       |
| 1963 | 122   | 1980 | 147   | 1997 | 164   |      |       |

На рисунке А.З.1 приведен хронологический график многолетних колебаний слоя стока весеннего половодья по г/ст. р.Кема - д.Левково.

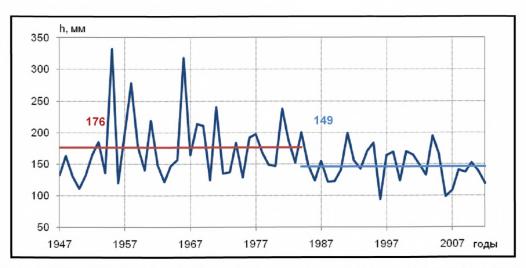



Рисунок А.3.1 – Многолетние колебания слоя стока весеннего половодья по г/ст. р.Кема - д.Левково за период с 1947 по 2012 год

Хронологический ход слоя стока весеннего половодья (см. рисунок А.З.1) показывает, что с 1984 года наблюдается тенденция уменьшения слоя стока, и снижение его изменчивости, что указывает на возможную неоднородность стокового ряда.

Анализ суммарной и разностной интегральных кривых слоя стока (рисунок А.3.2) показал, что рассматриваемый ряд можно разбить на две квазиоднородные совокупности с переломной точкой в 1984 году.



Рисунок А.3.2 – Суммарная и разностная интегральные кривые слоев весеннего половодья по г/ст. р.Кема - д.Левково

Проверка однородности по критериям Стьюдента и Фишера для периодов 1947 - 1984 гг. и 1985 - 2012 гг. (таблица А.З.2) показала, что рассматриваемый ряд неоднороден, как по среднему, так и по дисперсии. В связи с этим определение расчетных характеристик слоя стока весеннего половодья выполняется с использованием составной кривой распределения вероятностей.

Таблица A.3.2 – Оценка однородности слоя стока весеннего половодья по критериям Стьюдента и Фишера по г/ст. р.Кема - д.Левково

| Период     | Среднее  | Дисперсия, | Критерии*   |             |  |  |
|------------|----------|------------|-------------|-------------|--|--|
| наблюдений | значение | σ          | Стъюдента   | Фишера      |  |  |
| 1          | 2        | 3          | 4           | 5           |  |  |
| 1947-1984  | 176      | 52,3       | 2,45        | 3,51        |  |  |
| 1985-2012  | 149      | 27,9       | 2,05        | 2,10        |  |  |
|            |          |            | неоднороден | неоднороден |  |  |

<sup>\*</sup> В столбцах 4 и 5 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение

# СТО ГГИ 52.08.41-2017

Для каждой выборки за периоды 1947 - 1984 гг. и 1985 - 2012 гг. произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_{\rm s}/C_{\rm v}$  и рассчитаны параметры составной кривой распределения.

Результаты расчетов представлены в таблице А.З.З и показаны на рисунке А.З.З.

Таблица А.3.3 – Параметры распределения, расчетные значения слоя стока весеннего половодья заданной обеспеченности по однородным и составной кривым распределения

| Период<br>наблюдений | Средний расход, м³/с | Cv   | Cs/Cv | Обеспеченные значения, м³/с |     |     |     |     |     |     |     |
|----------------------|----------------------|------|-------|-----------------------------|-----|-----|-----|-----|-----|-----|-----|
|                      |                      |      |       | 0,1%                        | 1%  | 5%  | 10% | 20% | 25% | 30% | 50% |
| 1947-1984            | 176                  | 0,30 | 4,7   | 446                         | 349 | 279 | 246 | 213 | 201 | 192 | 164 |
| 1985-2012            | 149                  | 0,19 | 0,4   | 238                         | 215 | 195 | 184 | 171 | 166 | 162 | 148 |
| 1947-2012            | 163                  | 0,28 | 5,9   | 423                         | 323 | 252 | 220 | 191 | 182 | 175 | 155 |

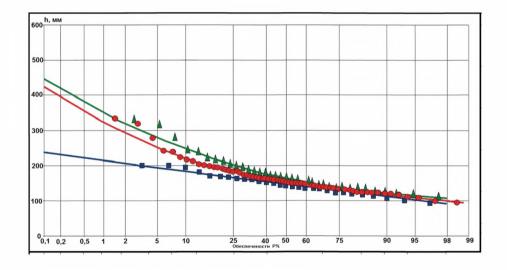



Рисунок А.3.3 – Эмпирические и аналитические кривые распределения слоя стока весеннего половодья для г/ст. р.Кема - д.Левково

# А.4 Расчет минимальных 30-ти суточных зимних расходов воды

Рассмотрим динамику многолетних колебаний минимальных 30-ти суточных зимних расходов воды р.Тихвинки в створе г/ст. д.Горелуха (площадь водосбора 2070 км²). Для анализа использовались данные по минимальным 30-ти суточным зимним расходам воды за многолетний период с 1936 по 2014 год включительно (таблица А.4.1).

| Таблица А.4.1 – Значения минимальных 30-ти суточных зимних расходов воды, м | ı <sup>3</sup> /с, |
|-----------------------------------------------------------------------------|--------------------|
| по г/ст. р.Тихвинка - д.Горелуха за период с 1936 по 2014 год               |                    |

| Год  | Q    | Год  | Q    | Год  | Q    | Год  | Q    |
|------|------|------|------|------|------|------|------|
| 1936 | 5,51 | 1956 | 4,31 | 1976 | 6,21 | 1996 | 5,74 |
| 1937 | 3,15 | 1957 | 8,73 | 1977 | 4,82 | 1997 | 8,19 |
| 1938 | 3,32 | 1958 | 9,20 | 1978 | 7,23 | 1998 | 8,98 |
| 1939 | 2,99 | 1959 | 8,56 | 1979 | 7,45 | 1999 | 7,26 |
| 1940 | 1,47 | 1960 | 3,50 | 1980 | 5,14 | 2000 | 7,19 |
| 1941 | 3,94 | 1961 | 6,46 | 1981 | 9,51 | 2001 | 9,27 |
| 1942 | 2,50 | 1962 | 6,27 | 1982 | 7,65 | 2002 | 7,07 |
| 1943 | 6,96 | 1963 | 4,63 | 1983 | 10,0 | 2003 | 2,28 |
| 1944 | 7,08 | 1964 | 5,00 | 1984 | 13,4 | 2004 | 7,74 |
| 1945 | 2,72 | 1965 | 7,44 | 1985 | 6,27 | 2005 | 14,2 |
| 1946 | 4,35 | 1966 | 6,18 | 1986 | 6,23 | 2006 | 3,14 |
| 1947 | 3,20 | 1967 | 5,25 | 1987 | 8,35 | 2007 | 8,68 |
| 1948 | 5,37 | 1968 | 6,29 | 1988 | 6,48 | 2008 | 8,97 |
| 1949 | 8,55 | 1969 | 5,67 | 1989 | 12,2 | 2009 | 8,69 |
| 1950 | 4,04 | 1970 | 6,63 | 1990 | 7,82 | 2010 | 8,25 |
| 1951 | 4,92 | 1971 | 6,55 | 1991 | 9,98 | 2011 | 9,55 |
| 1952 | 4,22 | 1972 | 4,45 | 1992 | 15,6 | 2012 | 6,45 |
| 1953 | 6,61 | 1973 | 4,12 | 1993 | 9,14 | 2013 | 7,05 |
| 1954 | 6,07 | 1974 | 5,84 | 1994 | 5,02 | 2014 | 9,7  |
| 1955 | 7,33 | 1975 | 11,2 | 1995 | 11,6 |      |      |

На рисунке А.4.1 приведен хронологический график многолетних колебаний минимальных 30-ти суточных зимних расходов воды по г/ст. р.Тихвинка - д.Горелуха.

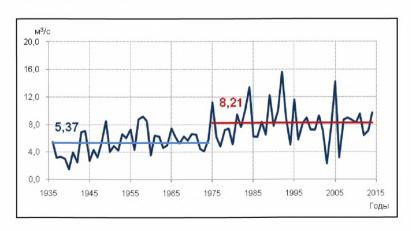
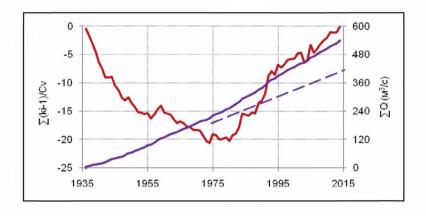




Рисунок А.4.1 – Многолетние колебания минимальных 30-ти суточных зимних расходов воды по г/ст. р.Тихвинка - д.Горелуха за период с 1936 по 2014 год

Анализ хронологического хода (рисунок А.4.1) показывает, что, начиная с 1970 года в колебаниях стока реки наблюдается значительное увеличение минимальных 30-ти суточных зимних расходов воды, что указывает на возможную неоднородность стокового ряда.

На основе анализа суммарной и разностной интегральных кривых распределения (рисунок А.4.2) сделан вывод о том, что рассматриваемый ряд можно разбить на две относительно однородные совокупности с переломной точкой в 1974 году.



— суммарная кривая; — разностная интегральная кривая

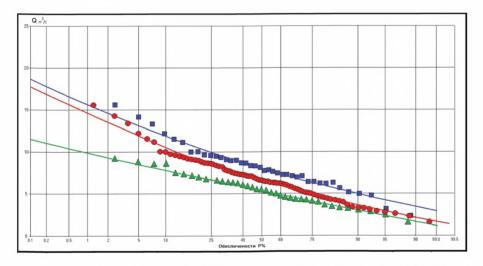
Рисунок А.4.2 – Суммарная и разностная интегральные кривые минимальных 30-ти суточных зимних расходов воды по г/ст. р.Тихвинка - д.Горелуха

Проверка однородности по критериям Стьюдента и Фишера (таблица А.4.2) произведена после разделения временного ряда на две однородные выборки с периодами 1936 - 1974 гг. и 1975 - 2014 гг.

Установлено, что рассматриваемый ряд неоднороден по среднему значению и на грани неоднородности - по дисперсии. В связи с этим определение расчетных значений минимальных 30-ти суточных зимних расходов воды выполняется с использованием составной кривой распределения вероятностей.

Таблица А.4.2 – Оценка однородности минимальных 30-ти суточных зимних расходов воды по критериям Стьюдента и Фишера по г/ст. р.Тихвинка - д.Горелуха

| Период     | Среднее  | Дисперсия, | Крит        | ерии*     |
|------------|----------|------------|-------------|-----------|
| наблюдений | значение | σ          | Стъюдента   | Фишера    |
| 1          | 2        | 3          | 4           | 5         |
| 1936-1974  | 5,37     | 2,06       | 4,85        | 1,79      |
| 1975-2014  | 8,21     | 2,76       | 2,17        | 1,80      |
|            |          |            | неоднороден | однороден |


<sup>\*</sup> В столбцах 4 и 5 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение

Для каждой выборки за периоды 1936 - 1974 гг. и 1975 - 2014 гг. произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_{\rm s}/C_{\rm v}$  и рассчитаны параметры составной кривой распределения.

Результаты расчетов представлены в таблице А.4.3 и показаны на рисунке А.4.3.

Таблица А.4.3 – Параметры распределения, расчетные значения минимальных 30-ти суточных зимних расходов воды заданной обеспеченности по однородным и составной кривым распределения по г/ст. р.Тихвинка - д.Горелуха

| Период     | Средний                      |      |       | Обеспеченные значения, м³/с |      |      |      |      |      |      |      |
|------------|------------------------------|------|-------|-----------------------------|------|------|------|------|------|------|------|
| наблюдений | расход,<br>м <sup>3</sup> /с | Cv   | Cs/Cv | 50%                         | 60%  | 70%  | 75%  | 80%  | 90%  | 95%  |      |
| 1936-1974  | 5,37                         | 0,35 | 0,5   | 5,32                        | 4,85 | 4,35 | 4,08 | 3,78 | 3,01 | 2,40 | 1,70 |
| 1975-2014  | 8,21                         | 0,33 | 1,0   | 8,09                        | 7,42 | 6,7  | 6,32 | 5,92 | 4,85 | 4,03 | 3,11 |
| 1936-2014  | 6,82                         | 0,40 | 1,0   | 6,49                        | 5,85 | 5,21 | 4,86 | 4,49 | 3,58 | 2,86 | 2,11 |



Для выборки с периодом 1936-74 гг.; ■ – для выборки с периодом 1975-2014 гг.;
 — составная кривая распределения

Рисунок А.4.3 – Эмпирические и аналитические кривые распределения минимальных 30-ти суточных зимних расходов воды по г/ст. р.Тихвинка - д.Горелуха

# А.5 Расчет минимальных 30-ти суточных летних расходов воды

Рассмотрим динамику многолетних колебаний минимальных 30-ти суточных летних расходов воды р.Великая в г/ст. д.Пятоново (площадь водосбора 20000 км²). Для анализа использовались данные по минимальным 30-ти суточным летним расходам воды за многолетний период с 1935 по 2014 год (таблица А.5.1).

| Таблица А.5.1 — Значения минимальных 30-ти суточных летних расходов воды, м <sup>3</sup> /с, п | 0 |
|------------------------------------------------------------------------------------------------|---|
| г/ст. р.Великая - д.Пятоново за период с 1935 по 2014 год                                      |   |

| Год  | Q    | Год  | Q    | Год  | Q    | Год  | Q    |
|------|------|------|------|------|------|------|------|
| 1935 | 41,7 | 1955 | 44,6 | 1975 | 25,8 | 1995 | 24,3 |
| 1936 | 13,3 | 1956 | 61,5 | 1976 | 25,9 | 1996 | 22,4 |
| 1937 | 27,7 | 1957 | 51,2 | 1977 | 61,9 | 1997 | 29,3 |
| 1938 | 14,6 | 1958 | 14,0 | 1978 | 30,5 | 1998 | 140  |
| 1939 | 7,40 | 1959 | 39,0 | 1979 | 32,1 | 1999 | 21,9 |
| 1940 | 13,1 | 1960 | 24,2 | 1980 | 40,4 | 2000 | 32,2 |
| 1941 | 28,8 | 1961 | 102  | 1981 | 37,0 | 2001 | 59,8 |
| 1942 | -    | 1962 | 23,6 | 1982 | 31,0 | 2002 | 28,8 |
| 1943 | -    | 1963 | 22,1 | 1983 | 29,9 | 2003 | 20,2 |
| 1944 | -    | 1964 | 29,9 | 1984 | 60,0 | 2004 | 54,0 |
| 1945 | 25,5 | 1965 | 38,1 | 1985 | 53,5 | 2005 | 45,4 |
| 1946 | 33,4 | 1966 | 24,6 | 1986 | 136  | 2006 | 33,0 |
| 1947 | 17,7 | 1967 | 40,1 | 1987 | 54,9 | 2007 | 33,5 |
| 1948 | 40,5 | 1968 | 24,8 | 1988 | 49,8 | 2008 | 29,1 |
| 1949 | 50,8 | 1969 | 25,1 | 1989 | 48,5 | 2009 | 26,0 |
| 1950 | 20,4 | 1970 | 19,5 | 1990 | 50,3 | 2010 | 60,2 |
| 1951 | 16,0 | 1971 | 27,0 | 1991 | 25,1 | 2011 | 40,4 |
| 1952 | 40,1 | 1972 | 17,4 | 1992 | 35,9 | 2012 | 26,4 |
| 1953 | 19,0 | 1973 | 36,5 | 1993 | 43,9 | 2013 | 29,6 |
| 1954 | 29,9 | 1974 | 21,9 | 1994 | 25,8 | 2014 | 28,6 |

На рисунке А.5.1 приведен хронологический график многолетних колебаний минимальных 30-ти суточных летних расходов воды по г/ст. р.Великая - д.Пятоново.

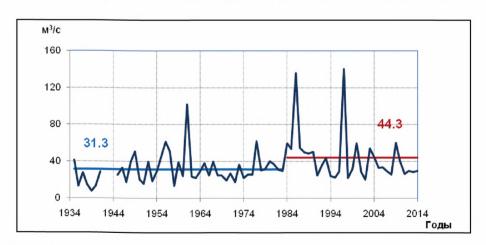
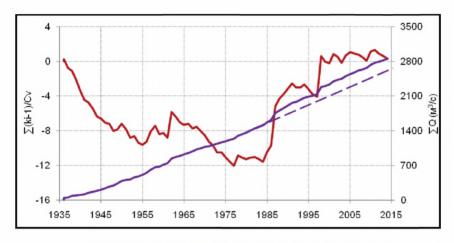




Рисунок А.5.1 – Многолетние колебания минимальных 30-ти суточных летних расходов воды по г/ст. р.Великая - д.Пятоново за период с 1935 по 2014 год

Анализ хронологического хода (см. рисунок А.5.1) показывает, что в колебаниях стока реки наблюдается увеличение минимальных летних расходов воды, начиная с 80-х годов, что указывает на возможную неоднородность стокового ряда.

На основе анализа суммарной и разностной интегральных кривых (рисунок А.5.2) сделан вывод о том, что рассматриваемый ряд можно разбить на две относительно однородные совокупности с переломной точкой в 1984 году.



суммарная кривая;
 разностная интегральная кривая

Рисунок А.5.2 – Суммарная и разностная интегральные кривые минимальных 30-ти суточных летних расходов воды по г/ст. р.Великая - д.Пятоново

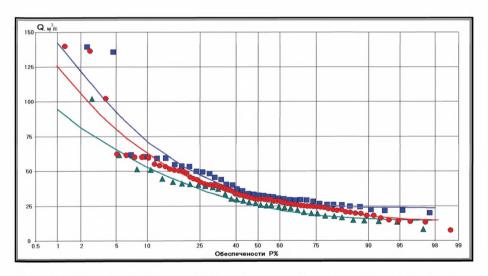
Проверка однородности по критериям Стьюдента и Фишера для двух периодов 1935 - 1983 гг. и 1984 - 2014 гг. (см. таблица А.5.2) показала, что рассматриваемый ряд неоднороден по среднему и дисперсии. В связи с этим определение расчетных характеристик минимального 30-ти суточного летнего расхода воды выполняется с использованием составной кривой распределения вероятностей.

Таблица А.5.2 – Оценка однородности минимальных 30-ти суточных летних расходов

воды по критериям Стьюдента и Фишера по г/ст. р.Великая - д.Пятоново

| Период     | Среднее  | Дисперсия, | Крит        | ерии*       |
|------------|----------|------------|-------------|-------------|
| наблюдений | значение | σ          | Стъюдента   | Фишера      |
| 1          | 2        | 3          | 4           | 5           |
| 1935-1983  | 31,3     | 16,4       | 2,50        | 2,93        |
| 1984-2014  | 44,3     | 28,0       | 2,17        | 2,00        |
|            |          |            | неоднороден | неоднороден |

<sup>\*</sup> В столбцах 4 и 5 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение


#### СТО ГГИ 52.08.41-2017

Для каждой выборки за периоды 1935 - 1983 гг. и 1984 - 2014 гг. произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_{\rm s}/C_{\rm v}$  и рассчитаны параметры составной кривой распределения.

Результаты расчетов представлены в таблице А.5.3 и показаны на рисунке А.5.3.

Таблица А.5.3 – Параметры распределения, расчетные значения минимальных 30-ти суточных летних расходов воды заданной обеспеченности по однородным и составной кривым распределения по г/ст. р.Великая - д.Пятоново

| Период     | Средний         |      |       | Обеспеченные значения, м³/с |      |      |      |      |      |      |      |
|------------|-----------------|------|-------|-----------------------------|------|------|------|------|------|------|------|
| наблюдений | расход,<br>м³/с | Cv   | Cs/Cv | 50%                         | 60%  | 70%  | 75%  | 80%  | 90%  | 95%  |      |
| 1935-1983  | 31,3            | 0,52 | 4,0   | 26,2                        | 23,3 | 21,0 | 20,0 | 18,9 | 17,2 | 16,4 | 16,0 |
| 1984-2014  | 44,3            | 0,63 | 4,0   | 34,1                        | 30,0 | 27,2 | 25,7 | 24,5 | 23,1 | 22,6 | 22,4 |
| 1935-2014  | 36,5            | 0,61 | 4,5   | 29,2                        | 26,0 | 23,6 | 22,8 | 21,8 | 18,4 | 16,9 | 16,2 |



Для выборки с периодом 1935-83 гг.; ■ – для выборки с периодом 1984-2014 гг.;
 Составная кривая распределения

Рисунок А.5.3 – Эмпирические и аналитические кривые распределения минимальных 30-ти суточных летних расходов воды по г/ст. р.Великая - д.Пятоново

# А.6 Расчет максимального стока по составной кривой и по «сумме распределений» на основе байесовских подходов

Рассмотрим динамику многолетних колебаний максимальных расходов весеннего половодья воды р.Шемша в г/ст. с.Петропавловская Слобода (площадь водосбора 3110 км²). Исходный ряд максимальных расходов весеннего половодья за многолетний период с 1934 по 2014 год включительно приведен в таблице А.6.1.

Таблица А.6.1 — Значения максимального стока весеннего половодья, м³/с, по г/ст. р.Шешма - с.Петропавловская Слобода за период с 1934 по 2014 год

| Год  | Q    | Год  | Q    | Год  | Q    | Год  | Q    |
|------|------|------|------|------|------|------|------|
| 1934 | 67   | 1955 | 242  | 1976 | 89,6 | 1997 | 151  |
| 1935 | 52,9 | 1956 | 111  | 1977 | 159  | 1998 | 173  |
| 1936 | 143  | 1957 | 398  | 1978 | 127  | 1999 | 239  |
| 1937 | 54,7 | 1958 | 204  | 1979 | 460  | 2000 | 192  |
| 1938 | 264  | 1959 | 292  | 1980 | 160  | 2001 | 219  |
| 1939 | 205  | 1960 | 153  | 1981 | 128  | 2002 | 60,1 |
| 1940 | 320  | 1961 | 351  | 1982 | 339  | 2003 | 122  |
| 1941 | 226  | 1962 | 201  | 1983 | 160  | 2004 | 54,2 |
| 1942 | 411  | 1963 | 524  | 1984 | 60,8 | 2005 | 194  |
| 1943 | 306  | 1964 | 215  | 1985 | 265  | 2006 | 116  |
| 1944 | 37,5 | 1965 | 169  | 1986 | 163  | 2007 | 66,9 |
| 1945 | 311  | 1966 | 243  | 1987 | 217  | 2008 | 77,2 |
| 1946 | 205  | 1967 | 151  | 1988 | 305  | 2009 | 85,7 |
| 1947 | 625  | 1968 | 157  | 1989 | 59,3 | 2010 | 97,6 |
| 1948 | 371  | 1969 | 544  | 1990 | 133  | 2011 | 200  |
| 1949 | 189  | 1970 | 188  | 1991 | 248  | 2012 | 251  |
| 1950 | 455  | 1971 | 212  | 1992 | 144  | 2013 | 163  |
| 1951 | 235  | 1972 | 250  | 1993 | 114  | 2014 | 27,2 |
| 1952 | 49,8 | 1973 | 71,6 | 1994 | 197  |      |      |
| 1953 | 174  | 1974 | 85,2 | 1995 | 185  |      |      |
| 1954 | 148  | 1975 | 115  | 1996 | 99   |      |      |

На рисунке A.6.1 приведен хронологический график максимальных расходов воды весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода.

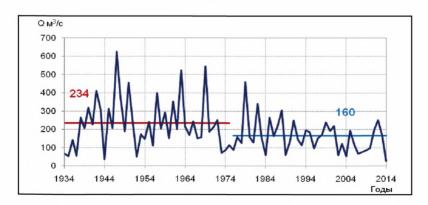
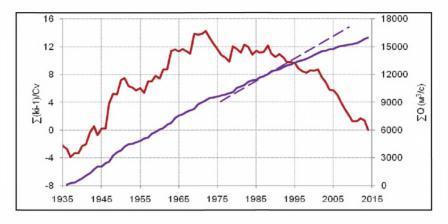




Рисунок А.6.1 – Многолетние колебания максимальных расходов воды весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода за период с 1934 по 2014 год

Анализ хронологического хода (рисунок А.6.1) показывает, что в многолетних колебаниях стока весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода наблюдается уменьшение максимальных расходов весеннего половодья, начиная с 70-х годов, что указывает на возможную неоднородность стокового ряда.



суммарная кривая;
 разностная интегральная кривая

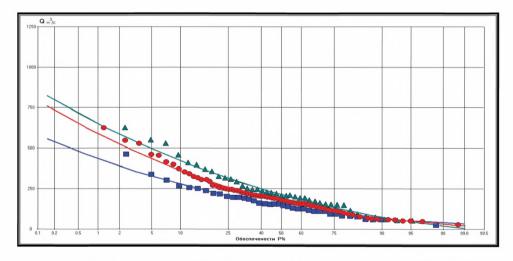
Рисунок А.6.2 – Суммарная и разностная интегральные кривые максимальных расходов весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода

На основе анализа суммарной и разностной интегральных кривых (рисунок А.6.2) сделан вывод о том, что рассматриваемый ряд можно разбить на две относительно однородные совокупности с переломной точкой в 1975 г.

Оценка однородности по критериям Стьюдента и Фишера (таблица А.6.2) выполнена при разделении временного ряда на две квазиоднородные выборки с периодами 1934 - 1975 гг. и 1976 - 2014 гг. Рассматриваемый ряд неоднороден как по среднему значению, так и по дисперсии, что говорит о правомерности использования составных кривых обеспеченности. В связи с этим определение расчетных характеристик слоя стока весеннего половодья выполняется с использованием составной кривой распределения вероятностей.

Таблица А.6.2 – Оценка однородности максимальных расходов весеннего половодья расходов воды по критериям Стьюдента и Фишера по г/ст. р.Шешма - с.Петропавловская Слобода

| Период     | Среднее  | Дисперсия, | Критерии*   |             |  |  |  |
|------------|----------|------------|-------------|-------------|--|--|--|
| наблюдений | значение | σ          | Стъюдента   | Фишера      |  |  |  |
| 1          | 2        | 3          | 4           | 5           |  |  |  |
| 1934-1975  | 234      | 141        | 2,56        | 2,74        |  |  |  |
| 1976-2014  | 160      | 84,9       | 2,21        | 1,97        |  |  |  |
|            |          |            | неоднороден | неоднороден |  |  |  |


<sup>\*</sup> В столбцах 4 и 5 в числителе приводится расчетное значение критерия, а в знаменателе - его критическое значение

Для каждой выборки за периоды 1934 - 1975 гг. и 1976 - 2014 гг. произведены расчеты и построены эмпирические кривые обеспеченностей, а также выполнен подбор аналитических кривых обеспеченностей, соотношений  $C_{\rm s}/C_{\rm v}$  и рассчитаны параметры составной кривой распределения.

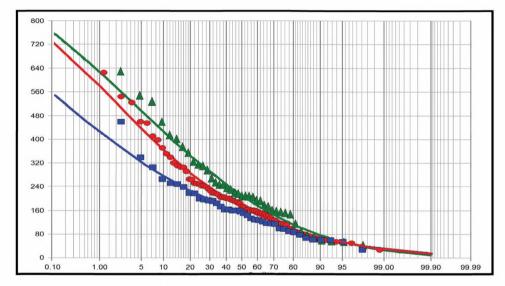
Результаты расчетов представлены в таблице А.6.3 и показаны на рисунке А.6.3.

Таблица А.6.3 – Параметры распределения, расчетные значения максимальных расходов весеннего половодья расходов воды заданной обеспеченности по однородным и составной кривым распределения по г/ст. р.Шешма - с.Петропавловская Слобода

| Период     | Средний расход, м³/с |      | Cs/Cv |      |     | Обеспе | еченные | значен | ия, м <sup>3</sup> /с |     |     |  |  |  |  |  |  |
|------------|----------------------|------|-------|------|-----|--------|---------|--------|-----------------------|-----|-----|--|--|--|--|--|--|
| наблюдений |                      | Cv   |       | 0,1% | 1%  | 5%     | 10%     | 20%    | 25%                   | 30% | 50% |  |  |  |  |  |  |
| 1934-1975  | 234                  | 0,59 | 1,58  | 853  | 649 | 495    | 421     | 341    | 312                   | 289 | 213 |  |  |  |  |  |  |
| 1976-2014  | 160                  | 0,54 | 2,28  | 580  | 435 | 327    | 276     | 223    | 205                   | 190 | 144 |  |  |  |  |  |  |
| 1934-2014  | 198                  | 0,61 | 2,08  | 799  | 592 | 435    | 363     | 286    | 260                   | 238 | 172 |  |  |  |  |  |  |



Для выборки с периодом 1934-75 гг.; ■ – для выборки с периодом 1976-2014 гг.;
 Составная кривая распределения


Рисунок А.6.3 – Эмпирические и аналитические кривые распределения максимальных расходов весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода

Для сравнения результатов был произведен расчет максимальных расходов по «сумме распределений» на основе байесовских подходов (5.2.2).

В таблице А.6.4 и на рисунке А.6.4 и представлены результаты этих расчетов.

Таблица А.6.4 — Параметры распределения, расчетные значения максимальных расходов весеннего половодья расходов воды заданной обеспеченности по байесовскому подходу по г/ст. р.Шешма - с.Петропавловская Слобода

| Период     | Средний         |      |       | Обеспеченные значения, м <sup>3</sup> / |     |     |      |     |     |     |     |
|------------|-----------------|------|-------|-----------------------------------------|-----|-----|------|-----|-----|-----|-----|
| наблюдений | расход,<br>м³/с | Cv   | Cs/Cv | 0,1%                                    | 1%  | 5%  | 10%  | 20% | 25% | 30% | 50% |
| 1934-1975  | 234             | 0,53 | 1,43  | 760                                     | 628 | 497 | 427  | 346 | 291 | 247 | 210 |
| 1976-2014  | 160             | 0,58 | 2,07  | 554                                     | 424 | 323 | 2476 | 224 | 191 | 165 | 144 |
| 1934-2014  | 198             | 0,61 | 1,98  | 728                                     | 580 | 437 | 365  | 286 | 237 | 201 | 171 |



Для выборки с периодом 1934-75 гг.;□ – для выборки с периодом 1976-2014 гг.;□ – весь ряд

Рисунок А.6.4 – Комбинированная байесовская кривая распределения максимальных расходов весеннего половодья по г/ст. р.Шешма - с.Петропавловская Слобода

Сравнительный анализ расчетных значений максимальных расходов весеннего половодья, полученный на основе этих методов, показал их сходимость в пределах погрешностей расчетов.

# Пример расчета максимальных расходов воды с учетом экстремального значения расхода

В качестве примера рассмотрим определение расчетных значений максимальных расходов воды р. Амур - г. Хабаровск с учетом экстремального значения расхода в 2013 году.

Расчет максимальных расходов воды осуществлялся за период с 1896 по 2014 год включительно (см. таблицу Б.1).

На рисунке Б.1 приведен многолетний ход максимальных расходов воды. Отмечено, что максимальный расход в 2013 г. резко отклоняется от остальных значений стока исследуемого ряда наблюдений. Результаты оценки статистической значимости однородности резко отклоняющихся экстремальных значений по критериям Смирнова-Граббса и Диксона даны в таблице Б.2.

Таблица Б.1 – Значения максимальных расходов воды, м³/с, по г/ст. р. Амур – г. Хабаровск за период с 1896 по 2014 год

|      |       |      | _     |      |       |      |       |      |       |
|------|-------|------|-------|------|-------|------|-------|------|-------|
| Год  | Q     | Год  | Ø     | Год  | Q     | Год  | Q     | Год  | Q     |
| 1896 | 33100 | 1920 | 23200 | 1944 | 18800 | 1968 | 17900 | 1992 | 18200 |
| 1897 | 40000 | 1921 | 13900 | 1945 | 23800 | 1969 | 22800 | 1993 | 23200 |
| 1898 | 24000 | 1922 | 21000 | 1946 | 26700 | 1970 | 19100 | 1994 | 24200 |
| 1899 | 19700 | 1923 | 20800 | 1947 | 25000 | 1971 | 26000 | 1995 | 20400 |
| 1900 | 23400 | 1924 | 19700 | 1948 | 24200 | 1972 | 32900 | 1996 | 22800 |
| 1901 | 30100 | 1925 | 16700 | 1949 | 23800 | 1973 | 25200 | 1997 | 20700 |
| 1902 | 38200 | 1926 | 14300 | 1950 | 18300 | 1974 | 22200 | 1998 | 31800 |
| 1903 | 19800 | 1927 | 22400 | 1951 | 38200 | 1975 | 17700 | 1999 | 18500 |
| 1904 | 23600 | 1928 | 34500 | 1952 | 18900 | 1976 | 16400 | 2000 | 19500 |
| 1905 | 18000 | 1929 | 28700 | 1953 | 35300 | 1977 | 21200 | 2001 | 16600 |
| 1906 | 23600 | 1930 | 21000 | 1954 | 13900 | 1978 | 18800 | 2002 | 14100 |
| 1907 | 27200 | 1931 | 24200 | 1955 | 27300 | 1979 | 13500 | 2003 | 21600 |
| 1908 | 25000 | 1932 | 37200 | 1956 | 34200 | 1980 | 17800 | 2004 | 24700 |
| 1909 | 21200 | 1933 | 20900 | 1957 | 35500 | 1981 | 31000 | 2005 | 22400 |
| 1910 | 30800 | 1934 | 22300 | 1958 | 30100 | 1982 | 19800 | 2006 | 21100 |
| 1911 | 35000 | 1935 | 24000 | 1959 | 38900 | 1983 | 20400 | 2007 | 16800 |
| 1912 | 20900 | 1936 | 27000 | 1960 | 34300 | 1984 | 32900 | 2008 | 8560  |
| 1913 | 18600 | 1937 | 24600 | 1961 | 29400 | 1985 | 28600 | 2009 | 29400 |
| 1914 | 20600 | 1938 | 29400 | 1962 | 25500 | 1986 | 19400 | 2010 | 25900 |
| 1915 | 32800 | 1939 | 22200 | 1963 | 25500 | 1987 | 23600 | 2011 | 18100 |
| 1916 | 29700 | 1940 | 21700 | 1964 | 23200 | 1988 | 22900 | 2012 | 19000 |
| 1917 | 27500 | 1941 | 26400 | 1965 | 22200 | 1989 | 25800 | 2013 | 46100 |
| 1918 | 19300 | 1942 | 22100 | 1966 | 25300 | 1990 | 23300 | 2014 | 19500 |
| 1919 | 20400 | 1943 | 22800 | 1967 | 20900 | 1991 | 29300 |      |       |

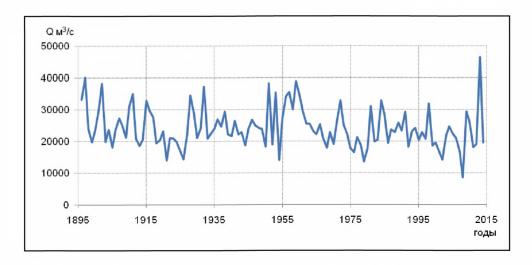


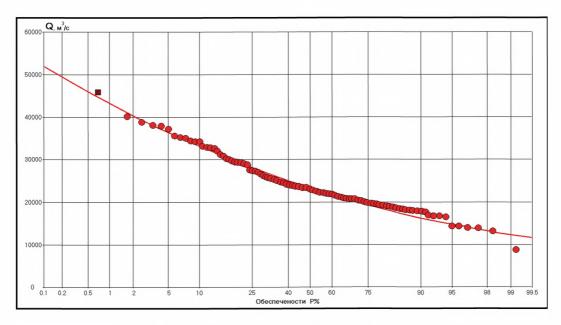

Рисунок Б.1 – Хронологический ход значений максимальных расходов воды, м<sup>3</sup>/с, по г/ст. р. Амур – г. Хабаровск за период с 1896 по 2014 год

Таблица Б.2 – Оценка однородности максимального стока по критериям Диксона и Смирнова-Граббса максимальных расходов воды, м³/с, по г/ст. р. Амур – г. Хабаровск

|                       | Критерии Диксона |     |     |     |     |     |     |     |                |                | ерии<br>нова-<br>ббса |
|-----------------------|------------------|-----|-----|-----|-----|-----|-----|-----|----------------|----------------|-----------------------|
| D1n                   | D2n              | D3n | D4n | D5n | D11 | D21 | D31 | D41 | D51            | Gn             | G1                    |
| <u>0,169</u><br>0,267 |                  |     |     |     |     |     |     |     | 3,467<br>4,312 | 2,442<br>2,113 |                       |
| -                     | -                | -   | -   | -   | +   | +   | +   | +   | +              | -              | +                     |

### Примечания

Результаты анализа таблицы Б.2 показали, что, согласно статистики Диксона неоднородными относительно эмпирических данных наблюдений являются первые пять значений ряда. Экстремальное значение стока за 2013 г. также неоднородно относительно всей совокупности ряда.


Кривая распределения максимальных расходов с учетом исторического максимума 2013 года представлена на рисунке Б.2. Расчетные параметры распределения определены по формулам (5.20) и (5.21).

Максимальному расходу 2013 года определена повторяемость раз в 142 года, так как известно, что имелось еще одно выдающееся наблюдение за уровнем воды в 1872 году.

<sup>1</sup> В 3 строке в числителе приведено расчетное значение критерия, а в знаменателе - критическое значение.

<sup>2</sup> В 4 строке дан результат анализа однородности:

<sup>«-» -</sup> значение ряда однородно; «+» - значение ряда неоднородно.



● – эмпирические точки;■ исторический максимум

Рисунок Б.2— Эмпирическая и аналитическая кривые распределения максимальных расходов воды, м³/с, по г/ст. р. Амур – г. Хабаровск с учетом исторического максимума

Таблица Б.3 – Параметры распределения кривой обеспеченности, расчетные значения заданной обеспеченности по г/ст. р. Амур – г. Хабаровск с учетом исторического максимума 2013 года

| Максимальный<br>расход, | Cv   | CalCy | Обеспеченные значения, м <sup>3</sup> /с |                      |               |               |               |              |              |  |
|-------------------------|------|-------|------------------------------------------|----------------------|---------------|---------------|---------------|--------------|--------------|--|
| $\overline{Q}, M^3/c$   | CV   | Cs/Cv | 0,1%                                     | 0,5%                 | 1%            | 5%            | 10%           | 25%          | 50%          |  |
| 24200                   | 0,28 | 2,70  | 52000<br>4220                            | <u>46000</u><br>3150 | 43200<br>2630 | 36100<br>1640 | 33100<br>1300 | 28100<br>919 | 23300<br>696 |  |

Примечание - В числители 3-й строки даны расчетные заданной обеспеченности, а в знаменателе - их средние квадратические погрешности.

Анализ таблицы Б.3 показывает, что по г/ст. р. Амур – г. Хабаровск измеренный максимальный расход воды  $Q_{\text{макс}}$  = 46100 м³/с и имеет повторяемость раз в 200 лет.

# Библиография

- [1] Водные ресурсы России и их использование /под ред. И.А. Шикломанова. СПб., Государственный гидрологический институт, 2008. 600 с.
- [2] Оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации, I том. Изменения климата. 227 с.; II том. Последствия изменений климата. М.: Изд. Росгидромета, 2008. 288 с.
- [3] Георгиевский В.Ю. Водные ресурсы рек Российской федерации. Сб. Фундаментальные проблемы воды и водных ресурсов, Тр.IV Всероссийской научной конференции, - М., 2015. С. 5-8
- [4] Болгов М.В. Экстремальные гидрологические явления: оценки и принятие решений в условиях неопределенности факторов формирования. Сб. Фундаментальные проблемы воды и водных ресурсов, Тр.IV Всероссийской научной конференции. - М., 2015. С.13-19
- [5] Лобанова А.Г. Особенности расчета основных гидрологических характеристику в условиях их временной нестационарности /А.Г.Лобанова и др. // Сб. Фундаментальные проблемы воды и водных ресурсов. Сб. науч. тр. Тр.IV Всероссийской научной конференции. - М., 2015. С.313-315
- [6] Методические указания по оценке влияния хозяйственной деятельности на сток средних и больших рек и восстановлению его характеристик Л.: Гидрометеоиздат, 1986. 80 с.
- [7] Методические рекомендации по оценке однородности гидрологических характеристик и определение их расчетных значений по неоднородным данным- С-Пб., Нестор-История, 2010 г. 162 с.
- [8] Рождественский А.В. Оценка точности гидрологических расчетов / А.В.Рождественский, А.В.Ежов, А.В.Сахарюк. - Л., Гидрометеоиздат. - 1990. 276 с.
- [9] Болгов М.В. Байесовские оценки расчетных характеристик минимального стока рек в нестационарных условиях/М.В.Болгов, Н.И.Сенцова // М., Метеорология и гидрология. №11. С. 70-80
- [10] Рождественский А.В. Оценка точности кривых распределения гидрологических характеристик.- Л., Гидрометеоиздат.1977. 270 с.
- [11] Крицкий С.Н. О построении кривой обеспеченности при наличии в составе наблюденных расходов, повторяемость которых выходит за пределы ряда/С.Н. Крицкий, М.Ф. Менкель // Метеорология и гидрология.- 1940. М., №12. С.70-72
- [12] Лобанова А.Г. Расчет параметров распределения при наличии нескольких выдающихся значений гидрологической характеристики Тр. ГГИ.- 1983.- Вып.294. С.23-29

**Ключевые слов**а: основные гидрологические характеристики, климатические факторы, критерии однородности, неоднородность, кривые распределения, расчетные характеристики

# Лист регистрации изменений

| Номер   |                 | Номер           | страниць | ol                  | Номер           |         | Да                    | та        |
|---------|-----------------|-----------------|----------|---------------------|-----------------|---------|-----------------------|-----------|
| измене- | изме-<br>ненной | заме-<br>ненной | новой    | аннулиро-<br>ванной | документа (ОРН) | Подпись | внесения<br>изменений | введения  |
| нения   | неннои          | неннои          |          | ваннои              | (UPII)          |         | изменении             | изменений |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |
|         |                 |                 |          |                     |                 |         |                       |           |