МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП 311.1325800.2017

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ИЗ ВЫСОКОПРОЧНЫХ БЕТОНОВ

Правила проектирования

Издание официальное

Предисловие

Сведения о своде правил

- 1 ИСПОЛНИТЕЛЬ АО «НИЦ «Строительство» НИИЖБ им. А.А. Гвоздева
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
- 4 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом Министерства строительства и жилищнокоммунального хозяйства Российской Федерации от 9 ноября 2017 г. № 1518/пр и введен в действие с 10 мая 2018 г.
- 5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
 - 6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет

[©] Стандартинформ, 2018

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	1
4 Общие требования к бетонным и железобетонным конструкциям	2
5 Требования к расчету бетонных и железобетонных конструкций	
6 Материалы для бетонных и железобетонных конструкций	
6.1 Бетон	
6.2 Арматура	
7 Расчет железобетонных конструкций без предварительного напряжения арматуры	
7.1 Расчет железобетонных конструкций по предельным состояниям первой группы	7
7.2 Расчет железобетонных конструкций по предельным состояниям второй группы	8
8 Расчет предварительно напряженных железобетонных конструкций	8
8.1 Предварительные напряжения арматуры	8
8.2 Расчет предварительно напряженных железобетонных конструкций	
по предельным состояниям первой группы	8
8.3 Расчет предварительно напряженных железобетонных конструкций	
по предельным состояниям второй группы	9
9 Поверочный расчет монолитных железобетонных конструкций с учетом неоднородной	
прочности бетона	9
10 Конструктивные требования	10
11 Требования к изготовлению, возведению и эксплуатации железобетонных конструкций	11
Библиография	12

Введение

Настоящий свод правил разработан с учетом обязательных требований, установленных в федеральных законах от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» и содержит требования к расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений с применением высокопрочного бетона класса по прочности на сжатие В60 ... В150.

Свод правил разработан авторским коллективом АО «НИЦ «Строительство» — НИИЖБ им. А.А. Гвоздева (руководитель работы — д-р техн. наук *Т.А Мухамедиев;* д-ра техн. наук *С.Б. Крылов, С.С. Каприелов,* С.А. Мадатян, А.В. Шейнфельд; кандидаты техн. наук В.В. Дьячков, С.А. Зенин, Д.В. Кузеванов, Б.С. Соколов, Р.Ш. Шарипов; инженер С.О. Слышенков).

СВОД ПРАВИЛ

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ ИЗ ВЫСОКОПРОЧНЫХ БЕТОНОВ

Правила проектирования

High strength concrete and reinforced high strength concrete structures.

Design guidline

Дата введения — 2018—05—10

1 Область применения

Настоящий свод правил распространяется на проектирование сборных и монолитных бетонных и железобетонных конструкций из высокопрочных бетонов классов по прочности при сжатии В60 и выше для зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России (при систематическом воздействии температур не выше 50 °C и не ниже минус 70 °C), в среде с неагрессивной степенью воздействия.

Свод правил устанавливает требования к проектированию бетонных и железобетонных конструкций, изготовляемых из высокопрочных тяжелых бетонов классов В110—В150, мелкозернистых бетонов классов В60—В100 и напрягающих бетонов классов В80—В100. Проектирование бетонных и железобетонных конструкций и изделий, изготовляемых из высокопрочных тяжелых бетонов классов В60—В100 и напрягающих бетонов классов В60. В70 следует выполнять по СП 63.13330.

Требования настоящего свода правил не распространяются на проектирование сталежелезобетонных конструкций, фибробетонных конструкций, сборно-монолитных конструкций, бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений, конструкций, изготовляемые из бетонов средней плотностью менее 2000 и свыше 2500 кг/м³, а также конструкций из бетонополимеров и полимербетонов.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие нормативные документы: СП 63.13330.2012 «СНиП 52-01—2003 Бетонные и железобетонные конструкции. Основные положения» (с изменениями №1, №2)

ГОСТ 31914—2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценка качества

П р и м е ч а н и е — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил приняты термины и определения в соответствии с СП 63.13330, а также следующие термины с соответствующими определениями:

- 3.1 **бетонные конструкции:** Конструкции, выполненные из высокопрочного бетона с арматурой, устанавливаемой по конструктивным соображениям и не учитываемой в расчете.
- 3.2 **высокопрочный бетон:** Тяжелый, мелкозернистый или напрягающий бетон класса В60 и выше, приготовленный с применением вяжущего на основе портландцементного клинкера.

4 Общие требования к бетонным и железобетонным конструкциям

- 4.1 Бетонные и железобетонные конструкции из высокопрочных бетонов должны удовлетворять требованиям раздела 4 СП 63.13330.2012 и пункта 4.2.
- 4.2 Для бетонных конструкций из высокопрочных бетонов класс бетона рекомендуется принимать не выше B60.

5 Требования к расчету бетонных и железобетонных конструкций

- 5.1 Расчеты бетонных и железобетонных конструкций из высокопрочных бетонов следует производить по разделу 5 СП 63.13330.2012 и пунктам 5.2—5.4.
- 5.2 Нагрузку от собственного веса конструкции из высокопрочного бетона следует принимать по приведенной плотности конструкции. При отсутствии таких данных допускается значение приведенной плотности конструкции принимать по таблице 5.1.

Таблица 5.1 — Приведенная плотность конструкций

Коэффициент арми- рования конструкции	Приведенная плотность конструкций, кг/м ³ , при классе высокопрочного бетона по прочности на сжатие						
μ, %	B60	B100	B150				
0	2400	2450	2500				
1	2450	2500	2550				
2	2500	2550	2600				
4	2600 2650 2700						
4		2650 ий классов бетона и коэффици					

П р и м е ч а н и е — Для промежуточных значений классов бетона и коэффициентов армирования значения следует определять по линейной интерполяции.

При содержании арматуры свыше 4% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции.

- 5.3 Расчет бетонных конструкций из высокопрочных бетонов класса B60 следует производить по разделу 7 СП 63.13330.2012.
- 5.4 Для монолитных железобетонных конструкций, у которых установленная по ГОСТ 31914 прочность бетона поверхностных и глубинных слоев сечения различается на 15% и больше, и фактическая прочность бетона поверхностных слоев ниже проектной, следует производить поверочные расчеты прочности их нормальных сечений с учетом неоднородности прочности бетона. Поверочные расчеты следует производить по разделу 9.

6 Материалы для бетонных и железобетонных конструкций

6.1 Бетон

- 6.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с настоящим сводом правил, следует предусматривать следующие высокопрочные конструкционные бетоны:
 - тяжелый средней плотности от 2350 до 2500 кг/м³ включительно;
 - мелкозернистый средней плотности от 2000 до 2350 кг/м³ включительно;
 - напрягающий.
- 6.1.2 При проектировании бетонных и железобетонных конструкций в зависимости от их назначения и условий работы следует устанавливать нормируемые показатели качества высокопрочного бетона, основные из которых приведены ниже:
 - класс по прочности на сжатие В;
 - класс по прочности на осевое растяжение В;
 - марка по морозостойкости F₁;
 - марка по водонепроницаемости W;
 - марка по самонапряжению $S_{\rm p}$ для напрягающих бетонов.
- 6.1.3 Для бетонных и железобетонных конструкций, проектируемых в соответствии с настоящим сводом правил, следует предусматривать высокопрочные бетоны классов и марок, приведенных в таблицах 6.1—6.5.

Таблица 6.1 — Классы высокопрочного бетона по прочности на сжатие

Бетон	Классы по прочности на сжатие
Тяжелый бетон	B110; B120; B130; B140; B150
Мелкозернистый бетон	B70; B80; B90; B100
Напрягающий бетон	B80; B90; B100; B110; B120; B130; B140; B150

Т а б л и ц а 6.2 — Классы высокопрочного бетона по прочности на осевое растяжение

Бетон	Класс прочности на осевое растяжение
Тяжелый, напрягающий и мелкозернистый бетоны	B ₂ ,0; B ₂ ,4; B ₂ ,8; B ₃ ,2; B ₃ ,6; B ₄ ,0; B ₄ ,4; B ₄ ,8

Таблица 6.3 — Марки высокопрочного бетона по морозостойкости

Бетон	Марки по морозостойкости
Тяжелый, напрягающий и мелкозернистый бетоны	F ₁ 150; F ₁ 200; F ₁ 300; F ₁ 400; F ₁ 500; F ₁ 600; F ₁ 700; F ₁ 800; F ₁ 1000

Таблица 6.4 — Марки высокопрочного бетона по водонепроницаемости

Бетон	Марки по водонепроницаемости
Тяжелый, напрягающий и мелкозернистый бетоны	W8; W10; W12; W14; W16; W18; W20

Таблица 6.5 — Марки высокопрочного бетона по самонапряжению

Бетон	Марки по самонапряжению
Напрягающий бетон	S _p 0,6; S _p 0,8; S _p 1; S _p 1,2; S _p 1,5; S _p 2; S _p 3; S _p 4

- 6.1.4 Возраст высокопрочного бетона, соответствующий его классу по прочности на сжатие и осевое растяжение, значение нормируемых отпускной и передаточной прочности бетона в элементах сборных конструкций следует назначать согласно пунктам 6.1.5 и 6.1.6 СП 63.13330.2012.
- 6.1.5 Для железобетонных конструкций, подвергающихся воздействию многократно повторяющейся нагрузки, не допускается применять мелкозернистый высокопрочный бетон без специального экспериментального обоснования.
 - 6.1.6 Основные прочностные характеристики высокопрочного бетона нормативные значения:
 - сопротивления бетона осевому сжатию $R_{b,n}$;
 - сопротивления бетона осевому растяжению $R_{bt,n}$.

Нормативные значения сопротивления высокопрочного бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса бетона на прочность на сжатие) принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.6.

Таблица 6.6

Вид Бетон		Нормативные сопротивления бетона $R_{b,n}$ и $R_{bt,n}$ МПа, и расчетные сопротивления бетона для предельных состояний второй группы $R_{\rm ser}$ и $R_{bt,ser}$ МПа при классе высокопрочного бетона по прочности на сжатие								
		B70	B80	B90	B100	B110	B120	B130	B140	B150
Сжатие осевое (при-	Тяжелый и напрягающий		57	64	71	78	85	92	99	106
зменная прочность) <i>R_{b,n}</i> и <i>R_{b,ser}</i>	Мелкозернистый	50	57	64	71	_	_	_	_	_

СП 311.1325800.2017

Окончание таблицы 6.6

Вид	Бетон	Нормативные сопротивления бетона $R_{b,n}$ и $R_{bt,n}$ МПа, и расчетные сопротивления бетона для предельных состояний второй группы R_{ser} и $R_{bt,ser}$ МПа при классе высокопрочного бетона по прочности на сжатие									
		B70	B80	B90	B100	B110	B120	B130	B140	B150	
Растяжение осевое	Тяжелый и напрягающий	_	3,30	3,60	3,8	4,00	4,20	4,40	4,60	4,80	
$R_{bt,n}$ и $R_{bt,ser}$	Мелкозернистый	3,0	3,30	3,60	3,8	_	_	_	_	_	
П р и м е ч а н и е — Для напрягающего бетона значения $R_{bt,n}$ и $R_{bt,ser}$ следует принимать с умножением на коэффициент 1,2.											

6.1.7 Расчетные значения сопротивления высокопрочного бетона осевому сжатию R_b и осевому растяжению R_{ht} определяют по формулам:

$$R_{b} = \frac{R_{b,n}}{\gamma_{b}} \cdot \gamma_{b,br};$$

$$R_{bt} = \frac{R_{bt,n}}{\gamma_{bt}} \cdot \gamma_{b,br};$$
(6.1)

$$R_{bt} = \frac{R_{bt,n}}{\gamma_{bt}} \cdot \gamma_{b,br}; agen{6.2}$$

где γ_b и γ_{bt} — коэффициенты надежности по бетону при его сжатии и растяжении; $\gamma_{b,br}$ — коэффициент, учитывающий увеличение хрупкости высокопрочных бетонов.

Значение коэффициентов γ_b и γ_{bt} принимают по таблице 6.7.

Значение коэффициента $\gamma_{b,br}$ определяют по формуле

$$\gamma_{b,br} = \frac{360 - B}{300} \,, \tag{6.3}$$

где В — класс высокопрочного бетона по прочности на сжатие.

Таблица 6.7

	Коэффициенты надежности по бетону при сжатии и растяжении γ_b и γ_{bt} для расчета конструкций по предельным состояниям						
Pur Sereus							
Вид бетона	γ_b	γ _{bt} при назначе по пр	Второй группы γ_b и γ_{bt}				
	на сжатие		на растяжение				
Тяжелый, мелкозернистый и напрягающий бетон	1,3	1,5	1,0				

Расчетные значения сопротивления высокопрочного бетона $R_b, R_{bt}, R_{b,ser}$ $R_{bt,ser}$ в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены (с округлением): для предельных состояний первой группы — в таблице 6.8, второй группы — в таблице 6.6.

Таблица 6.8

Вид	Бетон	Расчетные сопротивления бетона R_b и R_{bt} МПа, для предельных состояний первой группы при классе высокопрочного бетона по прочности на сжатие									
23.4		B70	B80	B90	B100	B110	B120	B130	B140	B150	
Сжатие осевое (призменная	Тяжелый и напряг ающи й		41	44	47,5	50	52	54	55,5	57	
прочность) R_b	Мелкозернистый	37	41	44	47,5	_	_	_	_	_	
Растяжение осевое <i>R_{bt}</i>	Тяжелый и напрягающий		2,1	2,1	2,2	2,2	2,25	2,25	2,25	2,25	
	Мелкозернистый	1,9	2,1	2,1	2,2	_	_	_	_	_	
Примечани	е — Для напрягающ	его бето⊦	на значен	ия Рысг	едует при	инимать с	умноже	нием на к	оэффици	ент 1,2.	

6.1.8 В необходимых случаях расчетные значения прочностных характеристик высокопрочного бетона принимаются с учетом коэффициентов условия работы γ_{bi} , учитывающих особенности работы бетона в конструкции (вид бетона, характер нагрузки, условия окружающей среды и т.д.). Значения коэффициентов γ_b следует принимать по таблице 6.9.

Таблица 6.9

Факторы, обусловливающие введение коэффициента	Коэффициен работы (
условий работы бетона	условное обо- значение	числовое значение
1 Длительность действия нагрузки:	γ _{b1}	
- при непродолжительном (кратковременном) действии нагрузки		1,00
- при продолжительном действии нагрузки		0,90
2 Бетонирование в вертикальном положении (высота слоя бетонирования свыше 1,5 м)	γ _{b2}	0,85

- 6.1.9 Основными деформационными характеристиками высокопрочного бетона являются значения: предельных относительных деформаций бетона при осевом сжатии и растяжении при однородном напряженном состоянии бетона ε_{b0} и ε_{bt0} , начального модуля упругости E_b , модуля сдвига G, коэффициента (характеристики) ползучести ϕ_{b,C^p} коэффициента поперечной деформации бетона (коэффициента Пуассона) $v_{b,P}$, коэффициента линейной температурной деформации бетона α_{bt} .
- 6.1.10 Значения предельных относительных деформаций для тяжелого, мелкозернистого и напрягающего бетонов принимают:
 - при непродолжительном действии нагрузки:
- ε_{b0} = 0,002 при осевом сжатии для бетонов классов B100 и ниже и по линейному закону от 0,002 при B100 до 0,0025 при B150 для бетонов классов B110—B150;
- ϵ_{bt0} = 0,0001 при осевом растяжении для бетонов класса В100 и ниже и по линейному закону от 0,0001 при В100 до 0,00012 при В150 для бетонов классов В110—В150;
 - при продолжительном действии нагрузки:
- ε_{b0} принимают для бетонов класса B100 и ниже по таблице 6.10 СП 63.13330.2012, а для бетонов классов B110—B150 по линейному закону от их значения для B100 до значения ε_{b2} для B150, определяемого по 6.1.15;
- ε_{bt0} принимают для бетонов класса В100 и ниже по таблице 6.10 СП 63.13330.2012, а для бетонов классов В110—В150 по линейному закону от их значения для В100 до значения ε_{bt2} для В150, определяемого по 6.1.15.
- 6.1.11 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.10. Значения модуля сдвига бетона принимают равным $0.4E_h$.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле

$$E_{b,\tau} = \frac{E_b}{1 + \varphi_{b,cr}},\tag{6.4}$$

где $\varphi_{b,cr}$ — коэффициент ползучести бетона, принимаемый согласно 6.1.11.

Таблица 6.10

Бетон	Значения начального модуля упругости бетона при сжатии и растяжении E_b , МПа·10 ⁻³ , при классе бетона по прочности на сжатие								
	B70	B80	B90	B100	B110	B120	B130	B140	B150
Тяжелый	_	42	42,5	43	43,5	44,0	44,5	45,0	45,5
Мелкозернистый	33	34,5	36,0	37,5	_	_	_	_	_

П р и м е ч а н и е — Для напрягающего бетона значения E_b принимаются как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006B.

6.1.12 Значения коэффициента ползучести для высокопрочного бетона $\varphi_{b,cr}$ в зависимости от относительной влажности воздуха принимают по таблице 6.11.

Таблица 6.11

Относительная влажность воздуха окружающей среды,	Значения коэффициента ползучести бетона $\phi_{b,cr}$ при классе тяжелого бетона на сжатие					
76	B60—B100	B110—B120	B130—B150			
Выше 75	1,0	1,0	1,0			
40—75	1,4	1,3	1,2			
Ниже 40	2,0	1,6	1,4			

- 6.1.13 Значение коэффициента поперечной деформации высокопрочного бетона принимают равным $v_{b,P} = 0,2.$
- 6.1.14 Значение коэффициента линейной температурной деформации для высокопрочных бетонов при изменении температуры от минус 40 °C до плюс 50 °C следует принимать равным $\alpha_{nf} = 1 \cdot 10^{-5}$ °C-1.
- 6.1.15 В качестве рабочих диаграмм высокопрочного бетона, определяющих связь между напряжениями и относительными деформациями используют упрощенную двухлинейную диаграмму по типу диаграмм Прандтля.

Для двухлинейной диаграммы осевого сжатия значения относительных деформаций ε_{b1} и ε_{b2} для высокопрочных бетонов классов B60—B100 при продолжительном и непродолжительном действии нагрузки принимают по СП 63.13330, а для высокопрочных бетонов классов B110—B150 принимают:

- по линейному закону от 0,0015 при B100 до 0,0023 при B150 — относительные деформации ε_{b1} при непродолжительном действии нагрузки, а при продолжительном действии нагрузки — по формуле

$$\varepsilon_{b1} = 0.005(B + 100) \varepsilon_{b1 \ red},$$
 (6.5)

где $\varepsilon_{b1,red}$ принимают по таблице 6.10 СП 63.13330.2012;

- по линейному закону от 0,0028 при B100 до 0,0025 при B150 — относительные деформации ε_{b2} при непродолжительном действии нагрузки, а при продолжительном действии нагрузки — по формуле

$$\varepsilon_{b2} = 0.001(1100 - B) \varepsilon_{b2,B100},$$
 (6.6)

где $\varepsilon_{b2, \text{B100}}$ принимают по таблице 6.10 СП 63.13330.2012 для бетона класса B100 с учетом указанного в этой таблице примечания 2.

В формулах (6.5), (6.6) В — класс высокопрочного бетона по прочности на сжатие.

Для двухлинейной диаграммы осевого растяжения значения относительных деформаций ϵ_{bt1} и ϵ_{bt2} для высокопрочных бетонов классов B60—B100 принимают по СП 63.13330, а для высокопрочных бетонов классов B110—B150 принимают:

- по линейному закону от 0,0001 при В100 до 0,00011 при В150 относительные деформации ε_{bt1} при непродолжительном действии нагрузки, а при продолжительном действии нагрузки по формуле (6.5), в которую вместо параметра $\varepsilon_{b1,red}$ следует подставлять $\varepsilon_{bt1,red}$ значение которого принимают по таблице 6.10 СП 63.13330.2012;
- по линейному закону от 0,00015 при В100 до 0,00012 при В150 относительные деформации ε_{bf2} при непродолжительном действии нагрузки, а при продолжительном действии нагрузки по таблице 6.10 СП 63.13330.2012 с корректировкой приведенных в ней значений путем умножения на соотношение (775 В)/675.

6.2 Арматура

6.2.1 Для железобетонных конструкций из высокопрочных бетонов следует применять арматуру по СП 63.13330.

Допускается применять: термомеханически упрочненную арматуру периодического профиля класса А600С из стали марки 20Г2СФБА [1], в том числе в сварных сетках и каркасах — для железобетонных конструкций из высокопрочных бетонов без предварительного напряжения арматуры в качестве рабочей арматуры, устанавливаемой по расчету;

термомеханически упрочненную арматуру периодического профиля класса A600C из стали марки 20Г2СФБА [1] — для предварительно напряженных железобетонных конструкций из высокопрочных бетонов.

- 6.2.2 Для конструкций, эксплуатируемых при температуре ниже минус 55 °C, рекомендуется применять арматуру класса Ас500С [2] и А600С из стали марки 20Г2СФБА [1].
- 6.2.3 Нормативные и расчетные значения прочностных и деформационных характеристик арматуры, диаграммы состояния арматуры для расчетов по предельным состояниям первой и второй групп следует принимать по СП 63.13330.

7 Расчет железобетонных конструкций без предварительного напряжения арматуры

7.1 Расчет железобетонных конструкций по предельным состояниям первой группы

- 7.1.1 Железобетонные элементы из высокопрочных бетонов следует рассчитывать по прочности на действие изгибающих моментов, крутящих моментов, поперечных сил, продольных сил и на местное действие нагрузки (продавливание, местное сжатие).
- 7.1.2 Расчет по прочности нормальных сечений железобетонных элементов при действии изгибающих моментов и продольных сил (внецентренное сжатие или растяжение) следует производить на основе нелинейной деформационной модели согласно 8.1.20—8.1.30 СП 63.13330.2012 и 6.1.10—6.1.16.

Расчет по прочности нормальных сечений железобетонных элементов прямоугольного, двутаврового и таврового сечений с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при действии усилий в плоскости симметрии нормальных сечений методом предельных усилий следует производить по СП 63.13330 и 7.1.3.

7.1.3 При расчете по прочности нормальных сечений на действие изгибающих моментов и продольных сил методом предельных усилий значение граничной относительной высоты сжатой зоны бетона ξ_R следует определять по формуле

$$\xi_R = \frac{x_R}{h_0} = \frac{\omega}{1 + \frac{\varepsilon_{s,el}}{\varepsilon_{h2}}},\tag{7.1}$$

где о — коэффициент полноты эпюры напряжений в бетоне сжатой зоны сечения, принимаемый равным 0,7 — для высокопрочных бетонов класса В100 и ниже, а для бетонов класса В110 и выше - вычисляемый по формуле

$$\omega = 0.7 - 0.003 \cdot (B - 100), \tag{7.2}$$

здесь В — числовое значение класса бетона;

 ϵ_{h2} — относительная деформация сжатого бетона при напряжениях, равных R_h , принимаемая в соответствии с 6.1.15;

 $arepsilon_{ ext{s el}}$ — относительная деформация растянутой арматуры при напряжениях, равных $R_{ ext{s}}$

$$\varepsilon_{s,el} = \frac{R_s}{E_s}; (7.3)$$

 R_{s} — расчетное сопротивление арматуры растяжению; E_{s} — модуль упругости арматуры.

- 7.1.4 Расчет центрально и внецентренно растянутых элементов из высокопрочных бетонов следует производить по пунктам 8.1.18, 8.1.19 СП 63.13330.2012 и 7.1.3.
- 7.1.5 Расчет по прочности железобетонных элементов при действии поперечных сил следует производить по пунктам 8.1.31—8.1.35 СП 63.13330.2012.
- 7.1.6 Расчет по прочности железобетонных элементов при действии крутящих моментов следует производить по пунктам 8.1.36—8.1.42 СП 63.13330.2012.
- 7.1.7 Расчет по прочности железобетонных элементов на местное сжатие (смятие) производят при действии сжимающей силы, приложенной на ограниченной площади нормально к поверхности железобетонного элемента производить по пунктам 8.1.43—8.1.45 СП 63.13330.2012.
- 7.1.8 Расчет по прочности на продавливание плоских железобетонных элементов (плит) при действии на них (нормально к плоскости элемента) местных, концентрированно приложенных усилий — сосредоточенных силы и изгибающего момента следует производить по пунктам 8.1.46—8.1.52 СП 63.13330. 2012. При этом в расчете прочность бетона на растяжение принимается не более 2,2 МПа.

7.2 Расчет железобетонных конструкций по предельным состояниям второй группы

- 7.2.1 Расчеты железобетонных конструкций из высокопрочного бетона по предельным состояниям второй группы (расчет элементов по образованию и ширине раскрытия трещин нормальных к продольной оси элемента, по прогибам и деформациям) следует проводить по СП 63.13330 и 7.2.2—7.2.4.
- 7.2.2 При определении кривизны жесткость железобетонных элементов на участке без трещин определяют принимая значения модуля деформации бетона классов B60—B100 при продолжительном и непродолжительном действиях нагрузки по пункту 8.2.26 СП 63.13330.2012, а для бетона классов B110—B150:

при непродолжительном действии нагрузки — по формуле

$$E_{b1} = k \cdot E_b, \tag{7.4}$$

где *k* — коэффициент, определяемый по линейному закону от значения 0,85 для B100 до значения 1,0 для B150;

при продолжительном действии нагрузки — по пункту 8.2.26 СП 63.13330.2012 принимая при этом значение коэффициента ползучести бетона $\phi_{b,cr}$ в соответствии с 6.1.12.

7.2.3 Для прямоугольных сечений и тавровых сечений с полкой, расположенной в сжатой зоне, значение упругопластического момента сопротивления сечения для крайнего растянутого волокна бетона $W_{\rm pl}$, при действии момента в плоскости оси симметрии допускается принимать равным

$$W_{pl} = k \cdot W_{red}, \tag{7.5}$$

- где W_{red} упругий момент сопротивления приведенного сечения по растянутой зоне сечения, определяемый в соответствии с пунктом 8.2.12 СП 63.13330.2012;
 - к коэффициент, принимаемый для высокопрочного бетона класса В100 и ниже равным 1,3, а для бетонов классов В110—В150 — определяемый по линейному закону от значения 1,3 для В100 до значения 1,0 для В150.

8 Расчет предварительно напряженных железобетонных конструкций

Расчет предварительно напряженных конструкций следует проводить в соответствии с CП 63.13330 и 8.1—8.3.

8.1 Предварительные напряжения арматуры

Предварительные напряжения арматуры следует принимать в соответствии с пунктами 9.1.1—9.1.12 СП 63.13330.2012 и приведенным ниже:

- потери от усадки высокопрочного бетона при натяжении арматуры на упоры следует определять по формуле (9.8) СП 63.13330.2012, в которой деформации усадки бетона $\varepsilon_{b,sh}$ для бетона классов В110—В150 следует принимать равными 0,0003; для бетона, подвергнутого тепловой обработке при атмосферном давлении, потери от усадки бетона $\Delta\sigma_{sp5}$ следует вычислять по формуле (9.8) СП 63.13330.2012 с умножением полученного результата на коэффициент, равный 0,85;
- потери от усадки бетона $\Delta\sigma_{sp5}$ при натяжении арматуры на бетон следует определять по формуле (9.8) СП 63.13330.2012 с умножением полученного результата независимо от условий твердения бетона на коэффициент, равный 0,75;
- потери от ползучести следует определять по формуле (9.9) СП 63.13330.2012, в которой коэффициент ползучести бетона $\varphi_{b,cr}$ назначают согласно 6.1.

8.2 Расчет предварительно напряженных железобетонных конструкций по предельным состояниям первой группы

- 8.2.1 Расчет предварительно напряженных элементов из высокопрочного железобетона для стадии эксплуатации на действие изгибающих моментов и поперечных сил от внешних нагрузок и для стадии предварительного обжатия на действие усилий от предварительного натяжения арматуры и усилий от внешних нагрузок, действующих в стадии обжатия следует производить по пункту 9.2 СП 63.13330.2012 и 8.2.2.
- 8.2.2 Значения граничной высоты сжатой зоны бетона ξ_R следует определять по 7.1.3, при этом в формуле (7.1) относительные деформации арматуры растянутой зоны $\mu_{s,t}$ для арматуры с условным пределом текучести вычисляют по формуле

$$\varepsilon_{s,el} = \frac{R_s + 400 - \sigma_{sp}}{E_s} , \qquad (8.1)$$

где σ_{sp} — предварительное напряжение в арматуре с учетом всех потерь, принимаемое при значении коэффициента γ_p =0,9.

8.3 Расчет предварительно напряженных железобетонных конструкций по предельным состояниям второй группы

- 8.3.1 Расчеты предварительно напряженных элементов из высокопрочного бетона по предельным состояниям второй группы следует производить по пункту 9.3 СП 63.13330.2012 и 8.3.2—8.3.4.
- 8.3.2 При расчете по образованию трещин в элементах прямоугольных сечений и тавровых сечений с полкой, расположенной в сжатой зоне, значение упругопластического момента сопротивления сечения для крайнего растянутого волокна бетона W_{pl} при действии момента в плоскости оси симметрии следует определять по 7.2.3.
- 8.3.3 При определении кривизны жесткость предварительно напряженных железобетонных элементов на участке без трещин следует определять принимая значения модуля деформации бетона классов B60—B100 при продолжительном и непродолжительном действии нагрузки по пункту 8.2.26 СП 63.13330.2012, а для бетона классов B110—B150 по 7.2.2.

9 Поверочный расчет монолитных железобетонных конструкций с учетом неоднородной прочности бетона

- 9.1 Поверочные расчеты монолитных железобетонных конструкций по прочности их нормальных сечений с учетом неоднородной прочности бетона следует производить в зависимости от степени неоднородности прочности бетона по 9.2 и 9.3.
- 9.2 В случае, когда в поверхностных слоях конструкции прочность бетона на сжатие ниже прочности бетона глубинных слоев не более, чем на 20 %, расчет следует производить по 7.1.2—7.1.4. При этом, в расчетных зависимостях значение расчетного сопротивления бетона сжатию для всего сечения следует принимать равным установленному по ГОСТ 31914 значению расчетного сопротивления сжатию бетона глубинных слоев с учетом 6.1.7. 6.1.8 и с дополнительным понижающим коэффициентом 0,95.
- 9.3 В случае, когда установленная по ГОСТ 31914 прочность на сжатие бетона в глубинных слоях конструкции более, чем на 20% выше прочности на сжатие бетона поверхностных слоев, расчет следует производить по деформационной модели с прямым учетом неоднородной прочности бетона по сечению элемента. При этом, значения жесткостных характеристик D_{ij} (i, j = 1,2,3) в приведенных в СП 63.13330.2012 уравнениях (8.39) (8.41) следует определять по следующим формулам (рисунок 9.1):

$$D_{11} = \sum_{i} A_{b1i} Z_{b1xi}^{2} E_{b1} v_{b1i} + \sum_{i} A_{sj} Z_{sxj}^{2} E_{sj} v_{sj} + \sum_{i} A_{b2j} Z_{b2xj}^{2} E_{b2} v_{b2j};$$

$$(9.1)$$

$$D_{22} = \sum_{i} A_{b1i} Z_{b1yi}^{2} E_{b1} v_{b1i} + \sum_{j} A_{sj} Z_{syj}^{2} E_{sj} v_{sj} + \sum_{j} A_{b2j} Z_{b2yj}^{2} E_{b2} v_{b2j};$$

$$(9.2)$$

$$D_{12} = \sum_{i} A_{b1i} Z_{b1xi} Z_{b1yi} E_{b1} v_{b1i} + \sum_{i} A_{sj} Z_{sxj} Z_{syj} E_{sj} v_{sj} + \sum_{i} A_{b2j} Z_{b2xj} Z_{b2yj} E_{b2} v_{b2j}; \quad (9.3)$$

$$D_{13} = \sum_{i} A_{b1i} Z_{b1xi} E_{b1} v_{b1i} + \sum_{j} A_{sj} Z_{sxj} E_{sj} v_{sj} + \sum_{i} A_{b2j} Z_{b2xj} E_{b2} v_{b2j};$$
(9.4)

$$D_{23} = \sum_{i} A_{b1i} Z_{b1yi} E_{b1} v_{b1i} + \sum_{i} A_{sj} Z_{syj} E_{sj} v_{sj} + \sum_{i} A_{b2j} Z_{b2yj} E_{b2} v_{b2j};$$
(9.5)

$$D_{33} = \sum_{i} A_{b1i} E_{b1} v_{b1i} + \sum_{i} A_{sj} E_{sj} v_{sj} + \sum_{i} A_{b2j} E_{b2},$$
(9.6)

где A_{b1i} , Z_{b1xi} , Z_{b1yi} — площадь и координаты центра тяжести *i*-го участка глубинных слоев бетона;

 A_{b2j} , Z_{b2xj} , Z_{b2xj} — площадь и координаты центра тяжести *j*-го участка поверхностного слоя бетона; A_{sj} , Z_{sxj} , Z_{syj} — площадь и координаты центра тяжести *j*-го стержня арматуры;

 E_{b1} — начальный модуль упругости глубинных слоев бетона;

 ${\it E}_{\it b2}$ — начальный модуль упругости поверхностного слоя бетона;

 E_{si}^{-} — модуль упругости *j*-го стержня арматуры;

 v_{b1i} — коэффициент упругости бетона *i-*го участка глубинных слоев бетона в сечении элемента;

 v_{b2i} — коэффициент упругости бетона *j*-го участка поверхностного слоев бетона в сечении элемента;

 v_{si} — коэффициент упругости *j*-го стержня арматуры.

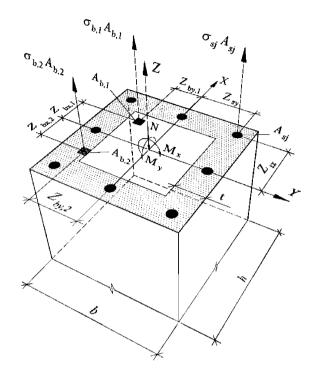


Рисунок 9.1 — Расчетная схема нормального сечения железобетонного элемента с неоднородной прочностью бетона

Коэффициенты v_{b1i} и v_{b2j} принимают по соответствующим диаграммам состояния бетона поверхностных и глубинных слоев сечения конструкции.

Глубину поверхностного слоя бетона с пониженной прочностью на сжатие по всему периметру сечения следует принимать равной 50 мм.

10 Конструктивные требования

10.1 Конструктивные требования к геометрическим размерам и армированию конструкций из высокопрочных бетонов для обеспечения их безопасности и эксплуатационной пригодности следует принимать по разделу 10 СП 63.3330.2012 и 10.2 — 10.7.

10.2 В железобетонных колоннах наибольшие расстояния между осями стержней продольной арматуры должны быть не более:

- 300 мм в направлении, перпендикулярном к плоскости изгиба;
- 400 мм в направлении плоскости изгиба.

10.3 Диаметр поперечной арматуры (хомутов) в вязаных каркасах внецентренно сжатых элементов следует принимать не менее 0,25 наибольшего диаметра продольной арматуры и не менее 8 мм.

Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов принимают не менее 8 мм.

10.4 В железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном, следует предусматривать установку поперечной арматуры с шагом не более $0.5\ h_0$ и не более $250\ \text{мм}$.

В балках и ребрах высотой 150 мм и более, а также в часторебристых плитах высотой 300 мм и более, на участках элемента, где поперечная сила по расчету воспринимается только бетоном, следует предусматривать установку поперечной арматуры с шагом не более $0.75 h_0$ и не более 400 мм.

10.5 Во внецентренно сжатых линейных элементах, а также в изгибаемых элементах при наличии необходимой по расчету сжатой продольной арматуры в целях предотвращения выпучивания продольной арматуры следует устанавливать поперечную арматуру с шагом не более 15 *d* и не более 400 мм (*d* — диаметр сжатой продольной арматуры).

Если площадь сечения сжатой продольной арматуры, устанавливаемой у одной из граней элемента, более 1,5 %, поперечную арматуру следует устанавливать с шагом не более 10 *d* и не более 250 мм.

- 10.6 Поперечную арматуру в плитах в зоне продавливания в направлении, перпендикулярном к сторонам расчетного контура, устанавливают с шагом не более 1/3 h_0 и не более 250 мм.
- 10.7 Для соединения стержней ненапрягаемой арматуры следует принимать один из типов стыков согласно пунктам 10.3.30—10.3.32 СП 63.13330.2012. Соединения стержней ненапрягаемой арматуры следует проектировать в соответствии с пунктами 10.3.29—10.3.32 СП 63.13330.2012.

11 Требования к изготовлению, возведению и эксплуатации железобетонных конструкций

- 11.1 При изготовлении, возведении и эксплуатации железобетонных конструкций из высокопрочных бетонов следует выполнять требования раздела 11 СП 63.13330.2012 и 11.2—11.4.
- 11.2 Технологические требования к укладке и уплотнению высокопрочного бетона должны быть указаны в проекте производства работ или рабочей документации (проекте).
- 11.3 Требования по обеспечению твердения и уходу за высокопрочным бетоном конструкций должны быть указаны в проекте производства работ.
- 11.4 Расположение температурно-усадочных швов и границ захваток (технологических швов) при бетонировании монолитных конструкций из высокопрочных бетонов следует назначать из условия обеспечения термической трещиностойкости при перепадах температуры окружающей среды и в конструкциях как на стадии изготовления, так и на стадии эксплуатации конструкций.

Библиография

- [1] ТУ 14-1-5596—2010 Прокат термомеханически упрочненный класса А600С для армирования железобетонных конструкций. Технические условия
- [2] ТУ 14-1-5543—2006 Прокат термомеханически упрочненный класса Ас500С повышенной хладостойкости для армирования железобетонных конструкций

Технический редактор В.Н. Прусакова Корректор И.А. Королева Компьютерная верстка Е.О. Асташина

Сдано в набор 23.01.2018. Подписано в печать 14.02.2018. Формат $60\times84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,68. Тираж 37 экз. Зак. 296.

Подготовлено на основе электронной версии, предоставленной разработчиком свода правил