Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Микробиологическое измерение концентрации *Trichoderma asperellum* OPF-19 в воздухе рабочей зоны

Методические указания МУК 4.2.3437—17

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Микробиологическое измерение концентрации *Trichoderma asperellum* OPF-19 в воздухе рабочей зоны

Методические указания МУК 4.2.3437—17 ББК 51.21 М59

М59 Микробиологическое измерение концентрации *Trichoderma asperellum* OPF-19 в воздухе рабочей зоны: Методические указания.—М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2017.—8 с.

- 1. Разработаны и подготовлены ФГБОУ ВО «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова» Минздрава России (Н. И. Шеина).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормпрованию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 22 декабря 2016 г. № 2).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 22 февраля 2017 г.
 - 4. Введены впервые.

ББК 51.21

Ответственный за выпуск Н. В. Карташева

Редактор Л. С. Кучурова Компьютерная верстка Е. В. Ломановой

Подписано в печать 09.10.17

Формат 60х84/16

Тираж 125 экз.

Печ. л. 0,5 Заказ

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделением издательского обеспечения отдела научно-методического обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а
Реализация печатных изданий, тел./факс: 8 (495) 952-50-89

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

22 февраля 2017 г.

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Микробиологическое измерение концентрации Trichoderma asperellum OPF-19 в воздухе рабочей зоны

Методические указания МУК 4.2.3437—17

1. Назначение и область применения

- 1.1. Настоящие методические указания устанавливают порядок применения метода микробиологического количественного анализа концентрации *Trichoderma asperellum* OPF-19 в воздухе рабочей зоны в диапазоне концентраций от 50 до 500 000 клеток в 1 м³ воздуха.
 - 1.2. Методические указания носят рекомендательный характер.

2. Биологическая характеристика штамма Trichoderma asperellum OPF-19 и его гигиенический норматив в воздухе рабочей зоны

Мицелиальный гриб *Trichoderma asperellum* OPF-19 является действующей субстанцией фунгицида «Оргамика Φ , Ж» (титр не менее 1×10^8 KOE/мл).

Источником выделения штамма является поверхность корней томатов, выращенных в условиях открытого грунта в Высокогорском районе Республики Татарстан.

Штамм отличается наличием широкого спектра антагонистической активности по отношению к фитопатогенным грибам, является быстрорастущим как в условиях *in vitro*, так и в естественной среде. Штамм проявляет способность эффективно колонизировать поверхность корней растений.

Систематическое положение микроорганизма

Класс Fungi imperfecti
Порядок Hyphomycetales
Род Trichoderma
Вид asperellum
Штамм OPF-19

Культурально-морфологические признаки. Растет на агаризованных средах (Мальц-агар, среда Чапека с дрожжевым автолизатом, суслоагар, глюкозо-картофельный агар, среда Сабуро) при температуре 29—34 °C в течение 7 суток, pH 3,5—5,0.

После 72 часов роста на глюкозо-картофельном агаре при температуре 30 °C колония штамма *Т. asperellum* OPF-19 имеет максимальный диаметр 55—65 мм. Колонии образуют несколько концентрических колец, на поверхности которых заметно интенсивное спороношение.

В центральной части колония более темная, она раньше, чем периферия приобретает зеленую окраску. По мере удаления от центра формируется воздушный мицелий. При культивировании при температуре 25 °C в отсутствии света, конидии формируются через 35—45 часов. Диффузии пигмента в агар не происходит, у старых колоний присутствует слабый специфический запах.

При росте на агаризованной среде Сабуро в течение 5 суток при температуре 25 °С конидиальная зона сформирована конидиеносцами, сгруппированными в коремии и спородохии, имеющими вид многочисленных компактных подушечек диаметром до 2 мм, изначально белого цвета, с возрастом — зеленого. Подушечки образуются по всей поверхности колонии, обильно.

Конидиеносцы чаще формируются в подушечках и редко на воздушном мицелии, конидиеносцы симметричные, завершаются четырьмя фиалидами. Парные ответвления формируются ниже верхушки конидиеносца и располагаются под углом около 90° по отношению к основной оси. Первичные ветки по мере удаления от верхушки удлиняются, парные ответвления имеют одинаковую длину, на боковых ветвях первого порядка формируются неветвящиеся боковые ветви второго порядка. Ширина конидиеносца – 2,1—5,0 мкм.

Фиалиды образуются на концах ветвей первого и второго порядка, образуются скопления из 2—4 фиалид. Фиалиды прямые, колбовидные, немного расширенные в середине, длина — 5—10 мкм, ширина — 2,2—5,7 мкм. Интеркалярные фиалиды не формируются. Конидии имеют темно-зеленый цвет, форма — немного яйцевидная, часто ближе к шаровидной, диаметр — 3,5—4 мкм.

Штамм *Trichoderma asperellum* OPF-19 по критериям вирулентности, токсичности, токсигенности и диссеминации относится к непатогенным для теплокровных животных микроорганизмов.

Предельно допустимая концентрация (Π ДК) в воздухе рабочей зоны — 50 000 кл/м³.

3. Пределы измерений

Методика обеспечивает выполнение измерений количества клеток в воздухе рабочей зоны в диапазоне концентраций от 50 до 500 000 клеток в 1 $^{\rm M}$ воздуха при доверительной вероятности 0,95.

4. Методы измерений

Метод основан на аспирации из воздуха производственных помещений бактерий на среду Сабуро и подсчете количества выросших колоний по типичным культурально-морфологическим признакам.

5. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и материалы, реактивы и питательные среды.

5.1. Средства измерений

Барометр-анероид с диапазоном измерения атмосферного давления 5—790 мм рт. ст. и с пределом допустимой погрешности \pm 2,5 mm pt. ct. ТУ 2504-1799---75 Весы лабораторные аналитические, наибольший предел взвешивания 110 г, предел допустимой погрешности ± 0,2 мг ГОСТ Р 53228—08 ГОСТ 1770-74 Колбы мерные 2-100-2, 2-250-2, 2-1000-2 Пипетки градуированные 2-го класса точности вместимостью 1,0; 2,0; 5,0; 10 см³ ГОСТ 29227—91 Цилиндры мерные 2-го класса точности вместимостью 25 и 50 см3 ΓΟCT 1770—74 Термометр лабораторный шкальный, пределы измерения 0-55 °C TV 25-2021.003-88 Аспирационный аппарат и устройство для отбора проб воздуха

Примечание. Допускается использование средств измерения с аналогичными или лучшими характеристиками.

5.2. Вспомогательные устройства и материалы

Шкаф сушильный стерилизационный, позволяющий поддерживать температуру (160 ± 5) °C Термостаты, позволяющие поддерживать рабочую температуру (27 ± 2) °C и (37 ± 2) °C Автоклав электрический Стерилизаторы паровые медицинские

Дистиллятор
Облучатель бактерицидный настенный
Холодильник бытовой
Микроскоп биологический с иммерсионной
системой

ТУ 9452-010-00141798---02

TY 9452-002-00141798—97 FOCT 9586—75 FOCT P EH 13060—11, FOCT P 51935—02 TY 4952-007-33142130—2000 TY 9444-015-03965956—08 FOCT 26678—85 Тетрациклин

ГОСТ 25706—83
ГОСТ 25336—82
ГОСТ 23932—90
ГОСТ 23932—90
ГОСТ 25336—82
ТУ 9398-005-0576-9082—03
ГОСТ 9412—77
ГОСТ 25556—81
ГОСТ 12026—76

Примечание. Допускается применение оборудования и материалов с аналогичными или лучшими техническими характеристиками.

5.3. Реактивы и питательные среды

Среда Сабуро	ГОСТ 10444.12—18
Вода дистиллированная	ГОСТ 6709—90
Натрий хлористый, хч	ГОСТ 4233—77
Спирт этиловый ректификованный	ГОСТ Р 51652—2000 или
1 1	ΓΟCT 18300—87
Спирт этиловый технический	ГОСТ 17299—78
Бензилпенициллина натриевая соль	

Примечание. Допускается использование других питательных сред и диагностических препаратов с аналогичными характеристиками.

6. Требования безопасности

При выполнении измерений концентрации клеток в воздухе рабочей зоны соблюдают следующие требования.

- 6.1. Безопасность работы с микроорганизмами III —IV групп патогенности (опасности) и возбудителями паразитарных болезней: СП 1.3,2322—08.
- 6.2. Безопасность работы с микроорганизмами III —IV групп патогенности (опасности) и возбудителями паразитарных болезней. Дополнения и изменения № 1 к СП 1.3.2322—08: СП 1.3.2518—09.
- **6.3.** Правила техники безопасности при работе с химическими реактивами по ГОСТ 12.1.005—88.
- **6.4.** Электробезопасность при работе с электроустановками по ГОСТ 12.1.019—79 и инструкции по эксплуатации прибора.

Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции, работа с биологическим материалом осуществляется в боксе, оборудованном бактерицидными лампами.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, прошедших соответствующую подготовку и имеющих навыки работы в области микробиологических исследований.

8. Условия измерений

Приготовление сред, подготовку к анализу проводят в следующих условиях:

- температура воздуха (20 ± 5) °C:

- атмосферное давление (760 ± 20) мм рт. ст.;

– влажность воздуха не более 80 %.

9. Приготовление питательных сред

Для приготовления агаризованной среды Сабуро 62 г препарата размешивают в 1 дм 3 воды, кипятят до полного растворения препарата и фильтруют через ватно-марлевый тампон. Стерилизуют среду в течение 15 мин при температуре (121 ± 1) °C. Для подавления роста посторонней микрофлоры в готовую и охлажденную до температуре (48 ± 2) °C среду добавляют по 100 мг бензилпенициллина и тетрациклина, после чего разливают в чашки Петри.

Среду хранят в герметично закрытой упаковке в помещении с относительной влажностью не более 60 % и температурой от 5 до 25 °C.

10. Проведение измерения

10.1. Отбор проб воздуха

Отбор проб воздуха проводят с учетом требований ГОСТ 12.1.005—88 с изменением № 1 «ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ГОСТ 8.563—96. «ГСИ. Методики выполнения измерений».

Для этого воздух аспирируют при помощи пробоотборника на поверхность плотной питательной среды в соответствии с технической документацией (инструкцией) на прибор. Время аспирации и объем отбираемого воздуха зависит от предполагаемой концентрации микроорганизма.

Аппарат перед каждым отбором пробы воздуха тщательно протирают 96%-м этиловым спиртом. Особенно тщательно обрабатывают поверхность подвижного диска и внутреннюю стенки прибора, наружную и внутреннюю стенки крышки. На подвижный диск устанавливают подготовленную чашку Петри со средой, одновременно снимая с нее крышку. Прибор закрывают. Соприкосновение крышки прибора со средой недопустимо (количество питательной среды в чашки вносят в соответствии с инструкцией к прибору). После отбора пробы воздуха и остановки диска прибор открывают, быстро снимают чашку Петри и закрывают крышкой от данной чашки. На дне чашки Петри стеклографом отмечают точку контроля, время аспирации и дату отбора пробы.

10.2. Выполнение анализа

При выполнении анализа воздуха стерильную среду Сабуро расплавляют, остужают до температуры (48 ± 2) °C и разливают в чашки Петри.

Контроль чистоты розлива проводят в соответствии с п. 7.1.1 МУК 4.2.2316—08. Для этого чашки с застывшей средой помещают в термо-

стат при температуре 37 °C не менее чем на 18 часов. Проросшие чашки бракуют, стерильные чашки используют для контроля воздуха. Разлитую в чашки питательную среду хранят при температуре (2—8) °C не более 10 лней.

После отбора проб воздуха чашки Петри помещают в термостат с температурой (27 ± 2) °C. Через 1—2 суток проводят подсчет выросших колоний по культурально-морфологическим признакам.

Ростовые свойства используемой питательной среды должны быть проверены до проведения анализа воздуха в соответствии с требованиями к ростовым свойствам питательных сред, руководствуясь МУК 4.2.2316—08. Для этого эталонный музейный штамм *Trichoderma* asperellum OPF-19 высевается на 2—3 чашки используемой среды.

Лиофилизованную культуру музейного штамма необходимо использовать 2—3 пассажа во избежание потери заданных ей ростовых свойств.

11. Вычисление результатов измерения

Расчет концентрации клеток производят по формуле:

$$K = \frac{\Pi \cdot 1000}{C \cdot T}$$
 кл./м³, где

K – концентрация *Trichoderma asperellum* OPF-19 в воздухе, кл/м³;

 Π – количество типичных колоний, выросших на чашке Петри;

1 000 – коэффициент пересчета на 1 м³ воздуха;

C – скорость аспирации воздуха, л/мин;

T — время аспирации, мин.

12. Оформление результатов измерений

Результаты измерений оформляют протоколом по нижеприведенной форме.

Протокол № ____ количественного микробиологического анализа *Trichoderma asperellum* OPF-19 в воздухе рабочей зоны

1. Дата прове	дения анализа
2. Рабочее ме	сто (профессия работающего)
3. Место отбо	ра пробы (название и адрес организации, производство, технологическая ка отбора пробы)
4. Вид пробос	этборника
	ней метрологической поверки оборудования для отбора проб
6. Питательна	вя среда, время инкубации
7. Результаты	испытания ростовых свойств питательной среды
ных колони	енная и качественная характеристика выросших колоний (количество типич- ій)
9. Результаты (морфологі	идентификации микроорганизмов Trichoderma asperellum OPF-19 неские признаки)
10. Результат	ы расчета концентрации штамма
11. Соотноше	ние полученных результатов с уровнем ПДКв.р.з.
	бы проведен (Ф. И. О., должность, дата, подпись)
13. Идентифи	кация штамма и расчет концентрации проведены (Ф. И. О., должность, дата,