МЕТОДИЧЕСКИЕ УКАЗАНИЯ НА ГАЗОХРОМАТОГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ БЕНЗОЛА, ТОЛУОЛА, ЭТИЛБЕНЗОЛА И КСИЛОЛОВ В АТМОСФЕРНОМ ВОЗДУХЕ

МЕНИСТЕРСТВО 2ДРАВООХРАНЕННЯ СССР Главное санитарно-эпицемиологическое управление

УТВЕРЖДАЮ

Заместитель Главного Государственного санитарного врача СССР

Мвасету Э.М. Саанъянц
"13 " августа 1982 г.

13 26/3-82

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

НА ГАЗОХРОЛАТОГРА-МЧЕССОЕ ОПРЕДЕЛЕНИЕ

БЕНЗОЛА, ТОЛУОЛА, ЭТИЛБЕНЗОЛА И КСИГОЛОВ

В АТ.,;;; ВОЗДУКЕ

Настоящие методические указания предназначени для санитарно-эпидемнологических станиий, научно-исследовательских учреждений Минздрава СССР, контрольно-токсикологических лабораторий
других министерств и ведометв, занимающихся анализом инкроконцентраций ароматических углеводородов в воздухе.

Методические уназания подготовлени ШШ Хими Ленинградского государственного университета им. А.А.Дданова, г. Ленинград. Автори: А.Г.Витенберг, М.А.Дмбульская

МЕТОДИЧЕСКИЕ УКАЗАНИЯ НА ГАЗОХРОМАТОГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ БЕНЗОЛА, ТОЛУОЛА, ЭТИЛЕЕНЗОЛА И КСИЛОЛОВ В АТМОСФЕРНОМ ВОЗЛУХЕ

Бензол, толуол, этилбензол и ксилоли относятся к простейшим арсматическим углеводородам и являются постоянными компонентами органических загрязнений атмосфери промышленных городов.

Структурные формули:
$$_{\text{CH}_3}$$
 $_{\text{CH}_3}$ $_{\text{CH}$

Химически чистие препарати представляют собой прозрачные жинкости с сильным жарактерным запахом. Порог восприятия запажа для бензола — 0.005, толуола — 0.0018, этилбензола — 0.01 и ксилола — 0.0007 мг/л.

Название (формула)	М.масса	Температура кин., °С	Плотность г/см ³	Давление пара, мм рт. ст.	Раствори- мость в воде, %
Бензол (^С 6 ^Н 6)	78	80,1	0,879	74,8	0, I8(25°)
Толуол (С ₇ Н ₈)	92	110,6	0,867	22,5	0,05(22 ⁰)
Этилбензол (С ₈ Н _{ТО})	106	136,2	0,867	I5 , 3	0,0175(250)
М-Ксилол П-Ксилол О-Ксилол (С ₆ Н _{ІО})	106 106 106	I39,7 I38,35 I44,4	0,8642 0,86II 0,88I	6,4 16,35 10,05	0,196(25°) 0,198(25°) 0,013(22°)

Пари ароматических уплеводородов в високих концентрациях обладают наркотическим действием. К работе с бензолом не допускаытся беремениее женщини и подростки до 18 лет.

1. Общая часть

- І.Метод основан на равновесном концентрировании примесей воздуха в уксусной кислоте, нейтрализации концентрата щелочью в замкнутом объеме и газохроматографическом анализе равновесной паровой фази над полученным водно-солевым раствором.
- 2. Предел обнаружения ароматических углеводородов в атмосферном воздухе 0,002-0,008 мг/м³.
- 3. Диапазон измеряемых концентраций 0,005 15 мг/м³.
- 4.Погрешность определения составляет 7-14 %.
- 5. Определению не мешают другие органические соединения, присутст вукщие в воздухе.
- 6. Время выполнения анализа 55 мин (отбор проби 20 мин, подготовка проби-18 мин, газохроматографический анализ — 12 мин, расчет результатов — 5 мин).
- 7. Предельно допустимие концентрации в воздухе бензола 1.5 мг/м^3 , толуола 0.6 мг/м^3 , этилбензола 0.02 мг/м^3 , ксилолов 0.2 мг/м^3

П. Реактивн и аппаратура

8. Применяемые реактивы и растворы

Уксусная кислота, ледяная, х.ч.,ГОСТ 61-75, дополнительно очищенная вымораживанием; 80% и 65%-ные водные растворы (см.п.п. IУ.IO и IУ.II).

Кали едкое, х.ч., ГОСТ 4203-65, в гранулах и 40%-ный водный раствор.

Бензол, толуол и этилоензол для хроматографии, ТУ-6П-70-68. Мета-, пара- и орто-ксилоли для хроматографии, ТУ-6-09-915-76. Стандартние раствори ароматических углеводородов в 80% и 65%-ной уксусной кислоте (см. п. ІУ.12).

Наполнитель для хроматографической колонки — 20% апиезона L на хромосорбе W (60-80 меш) или сферохроме-I (0,2-0,25 мм), ТУ 38—40I242-78, или любой другой наполнитель, обеспечивающий разделение ароматических упиеводородов C_6 - C_8 .

9. Применяемые приборы и посуда

Газовый хроматограф с пламенно-ионизационным детектором и колонкой длиной I,5-2 м и диаметром 3 мм из нержавеющей стали мли стекла.

Азот технический в баллонах с редуктором, ГОСТ 2993-59. Водород технический в баллонах с редуктором, ГОСТ 3022-70.

доздух в баллонах с редуктором

Аспирационное устройство, ТУ 64-І-862-74, модель 822.

Аналитические весы ВЛА-200г-М.

Стандартные пеницилиновые флаконы емкостью I6 мл с резиновыми пробками, прокладками из пленки полиэтиленовой, ГОСТ 10354-79, или фторопластовой, ГОСТ 24222-80, и алюминиевыми колпачками. Приспособление для обжима колпачков на флаконах, ТУ 42-2-2442-73. Стеклянные стаканчики или пробирки емкостью I,5-2 мл, внешним пиаметром IO-I2 мм.

Стеклянные медицинские шприцы на 1 и 2 мл, ГОСТ 18137-77.

Потлотительный прибор со стеклянной пористой пластинкой.

Колон мернне, емкостью 10 и 100 мл, ГОСТ 1770-59.

Пипетки мерные на I и 2 мл, ГОСТ 1770-74.

Трубка стеклянная 200 х 30 мм с оттянутыми концами диаметром IOмм Воронки кимические, IOCT 8613-75

Амичлы стеклянные емкостью 2.5 и 100 мл.

Лабораторная спиртовка.

Иинцет медицинский, IOCT 2I24I-77.

Груша резиновая.

Ш. Отбор пробы воздуха

С помощью аспиратора через поглотительный прибор с пористой пластинкой с 2 мл 80%-ной уксусной кислоты (при положительных температурах окружающего воздуха) или 65%-ной (при температуре от 0° С до -20° С) пропускают исследуемый воздух в течение 20 мин со скоростью $450^{\pm}50$ мл/мин. Точное измерение объема пропущенного воздуха не требуется. Рекомендуемые условия отбора пробы обеспечивают достижение равновесной концентрации ароматических углеводородов в уксусной кислоте при температуре воздуха от -20° до $+40^{\circ}$ С.

Между аспиратором и поглотительным прибором помещают трубку 200х x30 мм с гранулированной щелочью для поглощения паров уксусной кислоти (во избежание порчи аспиратора).

После отбора пробы открытые концы поглотительного прибора закрывают заглушками и доставляют его в лабораторию. При необходимости длительного хранения отобранной пробы уксуснокислый концентрат переносят в стеклянную амиулу на 2 мл и запанвают на спиртовке.

ІУ. Подготовка к измерению

- 10.0чистка уксусной кислоти производится медленным витаиванием при 18-20°C замороженной ледяной уксусной кислоти (10 л) с частым сливанием порций (150-200 мл) оттаявшей жидкости. Последние 1,5-2 л кислоти, оставшейся в бутыли, пригодны для приготовления стандартных растворов. Хранят ее в ампулах на 100мл.
- II.Для приготовления 80% и 65%-ных растворов уксусной кислоты используют очищенную кислоту и свежеперегнанную дистиллированную воду.
- 12. Приготовление градуировочных растворов ароматических углеводородов в 80% (или 65%)-ной уксусной кислоте. Раствор № 1. В мерную колбу емкостью 10 мл вносят 5 мл 80%-ной уксусной кислоти, взвешивают, прибавляют 2-3 капли бензола, взвешивают, прибавляют 3-4 капли толуола, взвешивают, добавляют 4-5 капель ют 4-5 капель этилбензола, взвешивают, добавляют 4-5 капель мета- (или пара-)ксилола, взвешивают, добавляют 5-6 капель орто-ксилола, взвешивают. Содержимое колби доводят до метки 80%-ной уксусной кислотой. По разности 1 и 2, 2 и 3, 3 и 4, 4 и 5, 5 и 6 взвешивают его концентрацию в растворе (мг/л). Растворы № 2, № 3, № 4 и № 5, содержащие по 100, 10, 1 и 0,1 мг/л каждого углеводорода готовят в мерных колбах на 100 мл последовательным разбавлением 80%-ной кислотой предыдущих растворов.

У. Описание определения

І мл уксуснокислого концентрата из поглотительного прибора переносят в стаканчик, емкостью I,5-2 мл (внешним диаметром I0-I2 мм). В пенициллиновый флакон пипеткой вводят 2 мл 40%-ного раствора едкого кали. Затем пинцетом опускают стаканчик во флакон таким образом, чтобы их содержимое не соприкасалось. Флакон закрывают резиновой пробкой и герметизируют его с помощью алюминиевого колпачка и приспособления для обжима колпачков. Между фланцами флакона и резиновой пробкой прокладивают кружок диаметром 20 км из полиэтиленовой или фторопластовой пленки для устранения сорбщим углеводородов резиновой пробкой. После этого флакон переворачивают, чтобы кислота и щелочь полностью смещались и оставляют на I5 мин для установления постоянной (комнатной) температуры.

Газовую фазу из флакона отбирают медицинским шприцем на 2 ми и вводят в испаритель хроматографа. Отбор следует производить мно-гократной прокачкой шприца (5-7 раз) для устранения сорбции паров анализируемых веществ стенками шприца.

Аналогичным образом анализируют нейтрализованные в замкнутих флаконах стандартные растворы ароматических углеводородов в уксусной кислоте, а также проверяют чистоту исходной уксусной кислоты.

Условия газохроматографического анализа: Хроматограф с пламенно-ионизационным детектором. Колонка стальная или стеклянная 2 м х 3 мм с 20% апиезона L на хромосорое W или сферохроме-I. Температура колонки 90° С, испарителя 180° С. Расход газа-носителя (азота) 20 мл/мин, водорода 30 мл/мин, воздуха 300 мл/мин. Доза 2 мл. При анализе образцов атмосферного воздуха с содержанием ароматических углеводородов на уровне 0,I-I ПДК рабочая шкала электрометра хроматографа I-5 х 10^{-II} A, самописца 10 мв.

УІ. Обработка результатов

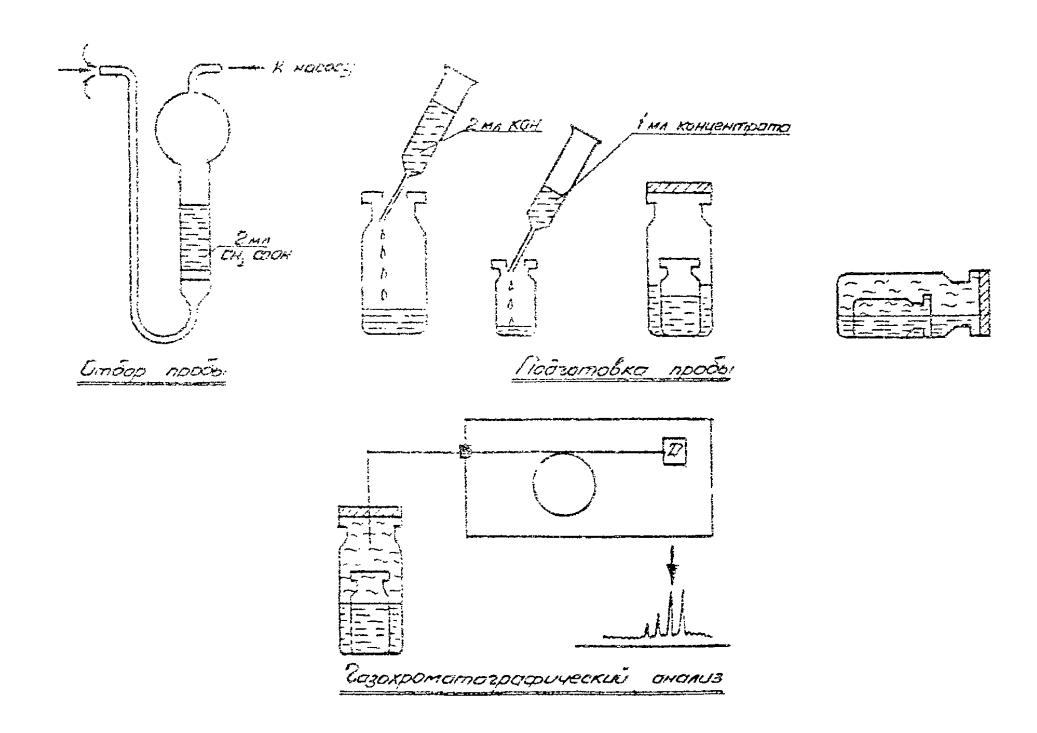
Количественний анализ проводят по методу абсолютной калибровки. Градуировочний график строят в координатах: висота пика на хроматограмме паровой фази над нейтрализованним уксуснокислим раствором (мм) — концентрация ароматического углеводорода в уксуснокислом растворе (мг/л).

Концентрацию ароматического углеводорода в исследуемом воздуже С $_{\Gamma}$ (мг/м 3) рассчитывают по формуле

$$C_r = I0^3 \cdot C_\kappa / K$$
,

где $C_{\rm M}$ — концентрация ароматического углеводорода в уксуснокислом концентрате, определяемая по градуировочному графику, мг/л; К — коэффициент распределения ароматического углеводорода между уксусной кислотой и воздухом при температуре отбора пробн (Значения К приведени в таблице); 10^3 — коэффициент пересчета.

Потрешность определення ароматических углеводородов в воздухе (включая погрешности приготовления стандартных растворов, построения градуировочного графика и воспроизводимость дозирования газовых проб в ироматограф с помощью шприца типа "Рекорд") составляет 7-14%. При проверке методики на модельных паро-газовых смесях раскомдение методу введенными и нейменными концентрациями углеводородов составило в среднем 3-6% и не пременяла 13% в диапазоне определяемих составильной 4,50-0,02 мм/м³.


Таблина

Температура, ^О С	Коэффициенти распределения ароматических углевод годов в системе "уксусная кислота - воздух"						
	бензол	толуол	этилбензол	м-ксилол	о-ксилол		
		80%-ная	уксусная ки	слота			
0	680	1720	2280	3680	3970		
I 5	390	850	I280	1880	2220		
20	310	670	1130	I580	I890		
25	270	520	980	1300	1560		
30	220	420	780	IIIO	1300		
35	190	350	580	880	1040		
		65%-ная	уксусная ки	слота			
-20	790	1810	2440	3060	4150		
- I5	615	I420	1910	2390	3270		
- IO	440	1020	1370	1720	2380		
- 5	360	8I0	IIIO	1370	1900		
0	280	600	850	1010	1410		

Примечание. В указанных условиях анадиза пики м- и п-ксилолов на хроматограмме не разделяются. Их содержание рассчитывается суммарно, в формуле используются значения К для м-ксилола.

УП. Техника безопасности

Все работи с реактивами (уксусной кислотой и ароматическими углеводородами) необходимо проводить в вытяжном шкайу. При работе на газовом хроматографе необходимо выполнять обичние требования, рекомендуемие при эксплуатации этих приборов.

