4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентрации вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.1575—4.1.1614—03

Выпуск 38

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентрации вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.1575—4.1.1614—03

Выпуск 38

ИЗМерение концентрации вредных веществ в воздухе рабочей зоны: Сборник методических указаний. Вып. 38—М.: Федеральный центр госсанэпиднадзора Минздрава России. 2003.—198 с.

Настоящий сборник содержит копии оригиналов методических указаний по измерению концентраций вредных веществ в воздухе рабочей зоны (МУК 4.1.1575—4.1.1614—03).

Утверждены Первым заместителем Министра здравоохранения Российской Федерации, Председателем Комиссии по государственному санитарно-эпидемиологическому нормированию, Главным государственным санитарным врачом Российской Федерации Г. Г. Онишенко в июне 2003 г.

Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны (сборник 38) разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочным безопасным уровням воздействия (ОБУВ) — санитарногигиеническим нормативам и являются обязательными при осуществлении санитарного контроля.

Включенные в данный сборник 40 методик контроля вредных веществ в воздухе рабочей зоны разработаны и подготовлены в соответствии с требованиями ГОСТ 12.1.005—88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования».

Методики выполнены с использованием современных методов исследования, метрологически аттестованы и дают возможность контролировать концентрации химических веществ на уровне и меньше их ПДК и ОБУВ в воздухе рабочей зоны установленных в ГН 2.2.5.686—98 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» и ГН 2.2.5.687—98 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны».

ББК 51.21

MVK 4.1.1601-03

УТВЕРЖДАЮ

Первый заместитель Министра здравосхранения Российской Федерации Главный государственный санитарный зрач Российской Федерации

79.000

29 ULDHR 200 3 I. MVK 4.1. 1601-03

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЧ.

методические указания

по измерению концентрации ортофосфористой и ортофосфорной кислот в воздухе рабочей зоны методом ионной хроматографии

м.м. 82,0

Ортофосфористая кислота (о-фосфористая кислота) — кристаллическое вещество белого или желтоватого цвета, очень гигроскопичное, поглощает кислород из воздуха с образованием ортофосфорной кислоты, плотность I,65I г/см³, Т плавл. 74°C, Т кип. 200°C (с разложением). Смешивается с водой в любых соотношениях.

В воздухе находится в виде аэрозоля.

Оказывает раздражающее действие на кожу и слизистые оболочки, 2-ой класс опасности.

 \mathbb{Z} К в воздухе 0,4 мг/м³.

 $^{\mathrm{H}_3\mathrm{O}_4\mathrm{P}}$

л.м. 98.0

Ортофосфорная кислота (о-фосфорная кислота) — кристаллическое вещество белого цвета, очень гигроскопичное, плотность 1,370 г/см³, Т. плавл. 42,35°C, Т кип. 213°C с образованием пирофосфорной кислоты. Смешивается с водой в любых соотношениях.

В воздухе находится в виде аэрозоля.

Оказывает раздражающее действие на кожу и слизистые оболочки. Оду в в воздухе I мг/м 3 .

Характеристика метода

Метод основан на использовании ионной хроматографии с применением кондуктометрического детектора.

Отбор проб проводится с концентрированием на фильтр.

нижний предел измерения ортофосфорной и ортофосфористой кислот в хроматографируемом объеме раствора 0,1 мкг.

Нижний предел измерения у ортофосфористой и ортофосфорной кислот в воздухе 0,2 мг/м³ (при отборе 50 л воздуха).

Диапазон измеряемых концентраций в воздухе от 0,2 до 30 мг/м 3 . Определению не медают другие соединения фосфора.

Суммарная погрешность измерения не превышает + 20 %.

Время выполнения измерения (включая отбор проб) составляет $30\,$ мин.

Приборы, апнаратура и посуда

Хроматограф ионный с кондуктометрическим детектором.

Хроматографическая колонка разделяющая стальная длиной 200 мм внутренним диаметром $\frac{1}{2}$ мм, заполненная анионообменником $\overline{\text{BT}}$ I AN.

Хроматографическая колонка подавляющая, стальная длиной 150 см, внутренним диаметром 6 мм, заполненная катионобменником "Домг», 50х8".

Аспирационное устройство, OOCT /4.2.6.0/-86 Фильтродержатель, TS 95.7.2.05-77 Бесы аналитическте БЛР-200, OOCT 24I04-88E. Колбы мерные вместимостью 50, IOO и IOOO мл, FOCT 1770-74E Пробирки со шлифом градуированные вместимостью $10\,$ мл, Γ ОСТ 1770-74.

Пипетки вместимостью IO, 5, 2, 0,5 и 0,2 мл ГОСТ 29227-91. цилиндры мерные вместимостью IOO мл, ГОСТ I770-74E.

Реактивы, растворы и материалы

Ортофосфористая кислота, 87 % раствор. *ТУ 6-09-4229-76*. Калий фосфорнокислый однозамещенный чда, ГОСТ II773-76. Натрий углекислый чда, ГОСТ 83 - 63. Фильтры бумажные "Миллипор".

Стандартный раствор * I ортофосфористой кислоты готовится весовым методом. В колбу вместимостью 50 мл вносят 5-10 мл воды и взвешивают. Добавляют 3-5 капель раствора кислоты в воде, взвешивают снова и доводят до метки водой. Рассчитывают концентрацию полученного раствора, учитывая содержание ортофосфористой кислоты в исходном растворе.

Стандартный раствор № 2 с концентрацией 250 мкг/мл готовят соответствующим разбавлением стандартного раствора № I водой. Растворы устойчивы в течение недели.

Стандартный раствор # I с концентрацией 250 мкг/мл ортофосфорной кислоты готовится весовым методом. Навеску 0,0347 г калия фосфорнокислого однозамещенного растворяют в воде в колбе вместимостью IOO мл. Раствор устойчив в течение недели.

Раствор элюента. Раствор натрия углекислого с концентрацией I,5 ммоль готовится весовым методом. Навеску 0,1590 г растворяют в колбе вместимостью I000 мл. Раствор устойчив в течение месяца.

Подготовка к измерению

Общую подготовку прибора осуществляют согласно инструкции по эксплуатации.

Количественный анализ вещества проводят по методу абсолотной калибровки с использованием градуировочных растворов ортофосфорной и ортофосфористой кислот с концентрацией I, 4, I0, 25 и I50 мкг/мл, которые готовят путем соответствующего разбавления стандартного раствора \$ 2 ортофосфористой кислоты и стандартного раствора \$ 1 ортофосфорной кислоты водой.

Условия хроматографирования растворов:

состав элюента I,5 ммоль $n_{2}\text{CO}_{3}$ скорость потока элюента I,4 мл/мин объем вводимой проби I00 мкл время удерживания ортобосбористой кислоты $n_{2}\text{CO}_{3}$

время удерживания ортофосфорной кислоты 12 мин
Из каждого градуировочного раствора по 100 мкл (что соот-

Из каждого градуировочного раствора по 100 мкл (что соответствует $0,1;\ 0,4;\ 1,0;\ 2,5$ и 15 мкг вещества) вводят в ионообменную колонку.

Регистрируют значения площадей пиков с помощью интегратора хроматографа (в условных единицах) при анализе 5-и растворов каждой кислоты разных концентраций, проводя не менее 5-и параллельных определений для каждого раствора. Вычисляют среднее значение площади при анализе каждого раствора и строят градуировочную кривую зависимости площади пика от количества компонента в пробе (в мкг).

Проверка градуировочного графика проводится при изменении условий анализа, но не реже I раза в месяц.

Отбор пробы воздуха

Боздух с объемным расходом 5 л/мин аспирируют через фильтр. Для измерения I/2 :ЩК ортофосфористой кислоты достаточно отобрать 50 л воздуха, для измерения I/2 ОБУВ ортофосфорной кислоты достаточно отобрать 20 л воздуха. Пробы можно хранить в течение суток.

проведение измерения

Фильтр с отобранной пробой помещают в пробирку и приливают пипеткой IO мл воды. Периодически встряхивая, выдерживают раствор в течение 5 мин. Степень десорбции вещества с фильтра 97 %.

Хроматографирование растворов проб проводят в тех же условиях, что и хроматографирование градуировочных растворов. Количественное определение содержания кислот проводят по предварительно построенному градуировочному графику.

Расчет концентрации

(в мг/м³) в воздухе вычисляют по формуле:

$$C = \frac{a \cdot B}{6 \cdot \sqrt{}}$$
, где

- а содержание анализируемого вещества в объеме пробы, найденное по градуировочному графику, мкг;
- б объем пробы, взятый для хроматографирования, мл;
- в общий объем раствора пробы, мл ;
- объем воздуха, отобранный для анализа и приведенный к стандартным условиям, л (см. Приложение I).

MYK 4.I.

Приложение I

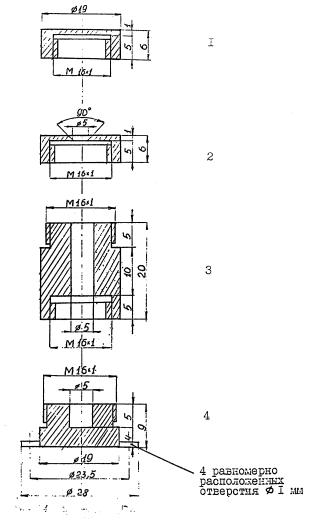
Приведение объёма воздуха к стандартным условиям (температура 20° С и давление 760 мм рт.ст.) проводят по формуле:

$$V_{20} = \frac{V_{2} \cdot (273 + 20) \cdot P}{(273 + 2) \cdot IOI, 33}, \text{ rge}$$

V₂ - объём воздуха, отобранный для анализа, л;

Р - барометрическое давление, кПа (IOI,33 кПа=760 мм рт.ст.);

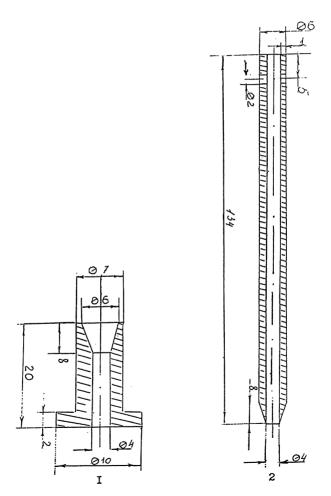
∠ - температура воздуха в месте отбора пробы, ос.


Для удобства расчёта V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_{χ} на соответствующий коэффициент.

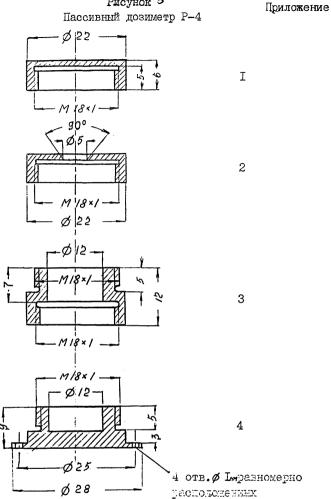
 $\hbox{ Триложение Σ} \\ \hbox{ Коэффициенты для приведения объема воздуха к стандартным условиям }$

				Давление Р	, klia/mm p	T.CT.				
°C.	97,33/ 730	97,66/ 734	96.4/ 735	98,93/ 742	99,46/ 746	100/ 730	100,53/ 754	101,06/ 730	101,33/ 760	101,86/ 764
-30	1,1582	I,I646	1,1709	1,1772	1,1836	I,Ib99	1,1963	1,2026	I,2056	I,ŁIŻŁ
-26	I,1393	I,1456	1,1519	I,1 5 8I	1,1644	I,1705	I,1765	1,1631	1,1062	1,1925
-22	1,1212	1,1274	1,1336	1,1396	I, I450	1,1319	1,1581	I,1643	1,1673	د1,173
-18	1,1036	1,1097	1,1158	I,IZIc	I,1278	1,1338	1,1399	1,1460	1,1490	I,IááI
-I4	I ,0 866	1,0926	1,0986	I,1045	1,1105	I,II64	1,1224	I.I284	1,1313	1,1373
-I0	I,070I	1,0760	1,0819	I,0377	I , U9 86	I,0994	1,1053	1,1112	1,1141	1,1200
- 6	1,0540	I,0599	I,0657	1,0714	1,0772	1,0629	I,0887	1,0945	1.0974	1,1032
- 2	1,0385	1,0442	I,0499	I,0556	1,0613	1,0669	1,0726	1,0764	1,0612	I,0869
0	1,0309	1,0366	I,0423	I,0477	I,0535	1,0591	1,0648	1,0705	1,0733	I,0789
+ 2	1,0234	1,0291	1,0347	I,0402	1.0459	1,0514	1,0571	1,0627	1,0635	1.0712
+ ő	1,0067	1,0143	1,0198	1,0253	1,0309	1.0363	1.0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0064	1,0108	1,0162	1,0216	1.0272	1,0326	1,0353	I.0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1.012b	I,0Ib3	1,0209	1,0263
81+	0,9671	0,9725	0,977 8	0,9830	0,9684	0,9936	0,9959	1,0043	1,0069	1,0122
+20	0 ,9 60ა	0 , 9658	0,9711	0,9763	0,9816	0,9868	0,9921	0.9974	1,0000	I,0053
+22	0,9539	0,9592	0,9645	0,9696	0.9749	0,9600	0,9853	0,9906	0,3932	0.998ა
+24	0,9475	0,9527	0,9379	0,9631	0,9683	د973ء	0,9787	0,9639	0,963	0.9917
+26	0,9412	0,9464	0,9516	0,9566	0,9616	0,9669	0,9721	0,9773	0,9799	0,9051
+28	0,9349	0,9401	0,9453	0,9503	0 ,95 55	د 960 0	0,9657	0.9700	0,9734	0,9765
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0.9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0.9416	0.9466	0,9319	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,942I	0,9471

Рисунок І


Пассивный дозиметр Р-Т

- I сплошная крышка
- 2- крышка с диффузным отверстием
- 3 диффузная камера
- 4 камера для сорбента


Рисунок 2

Устройство для концентрирования и ввода проб

І-пята , 2-концентрационная трубка

I - сплошная кришка

2 - крышка с диффузным отверстием

3 - дифуузная камера

4 - камера для сорбента

Материал для изготовления дозиметра — дюраль или нержаверщая сталь.

Приложение 6.

$y_{\text{казатель}}$ основных синонимов, технических, торговых и бирменных названий ведеств.

	Стр.
Белая магнезия	87
Бромгексин	9
Бура	I4I
Гидразинобензол солянокислый	151
Глибенкламиц	I55
Диэтиламинопропиламин	77
Иминодибензил	30
Лидокаин	46
Метаран	50
МЦ-100	102
Масло "Турбомас"	73
Неопентилгликоль	68
Нимодипин	59
Нитрендипин	54
Нитроглицерин	131
Оксипропилметилцеллюлоза	21
Ондансетрон	I45
Ранитидин гидрохлорид	35
Реагент ААК или Таллактам	II8
СМБА	137
Сульфаметоксазол	12,15
Тамоксифен основание	40
Тамоксифен цитрата	40
Тиаприд	82
Триметоприм	27
Хладон14	148
Ципрофлоксацин гидрохлорида моногидрат	164
Экосорб	108
Эналаприла малеат	176
Этиниловый спирт	ISI

MYK 4.I.

Приложение 7.

Вещества, определяемые по ранее утверждённым Методическим указаниям по измерению концентраций вредных веществ в воздухе рабочей зоны.

Наименование вещества	Методические указания
I. Ароматизатор из мяты перечной 16433	МУ по газохроматографическому измерению концентраций ментола (/ - 2-изопропил-5-метициклогек-санола) в воздухе рабочей зоны. Вып.30. М. 2000, с.189, МУК 4.1.240-96.
2. Ванадий-алюминиевая лигатура	Измерение концентрации ванадия методом атомно-абсорбционной спектрофотометрии. Сб. "МУ по определению вредных веществ в сварочном аэрозоле". М. 1992 г., стр.67, МУ № 4945-
3. Мультиинзимная композиция МЭК-СХ-I	МУ по спектрофотометрическому измерению концентраций амилазы в воздухе рабочей зоны. Вып. 38.
4. Мультиинзимная композиция МЭК-СХ-2	МУ по спектрофотометрическому измерению концентрации целлюлазы в воздухе рабочей зоны. Вып. 38.
5. Опаспрей белый	МУ по газохроматографическому измерению метилового спирта в воздухе рабочей зоны. Вып.19, М.1984, стр.102, МУ

Наименование вещества	Методические указания
	№ 2902 - 83.
Э. Опаспрей жёлтый	МУ по газохроматографическому измерению метилового спирта в воздухе рабочей зоны. Вып.19, М.1984, стр.102, МУ № 2902-83.
7. Пыль периклазохромитовых и хромитопериклазовых огнеупорных изделий	МУ на гравиметрическое определе- ние пыли в воздухе рабочей зоны и в системах вентиляционных ус- тановок. Вып.І-5, М.1981, стр.235, МУ № 1719-77.
8. Хладон СМ-I	МУ по газохроматографическому измерению концентраций I,I,I,2тетрафторэтана в зоздухе рабочей зоны. Вып.35, МУК 4.I.860-99 утв. 30.I2.99 г.
9. Биовит-160	МУ по фотометрическому измерению концентраций хлортетрациклина в воздухе рабочей зоны. Вып. II переработ., М.1992, стр.149. № 5868-91.
IO. МОЗЗАМ смесь (смесь чет- вертичных аммониевых соединений)	МУ по фотометрическому измерению концентраций диалкилдиметиламмоний хлорида (C_{17} - C_{20}) и алкилбензилдиметиламмоний хлорида (C_{10} - C_{16})-дон-2, диалкилламинопропионитрила (C_{7} - C_{9})-ифхангаз, алкилтриметиламмоний хлорида (C_{10} - C_{16}), дон-52 в воздухе рабочей зоны. Вып.25, М.,1989, стр.49,МУ24905-88.

Приложение 6.

? войёт карактаристик погращности на осите вечных, приватечних в 333.034.

्रवी ्राच्यास्त्रम्य च	ентоноГ тумековорие	30009T 30009T 30009T 70009TT30TT
Δ (инбормация о структуре пограшности отсутствует)	$\Delta_{\rm o}$ - незначимо	$\sigma\left(\frac{\Delta}{\Delta}\right) = \Delta / T,93$

 Δ - характеристика результатов КХА (суммарная погрещность). $\Delta_{\rm c}$ - характеристика систематической составляющей погрещности. δ (Δ) - характеристика случайной составляющей погрещности.

Расчёт норматива оперативного контроля погрешности (точности) МВИ КХА.

16	Авгорити	вид контроля	
#	ONEDATIVE- HOLD KOE- TPOAR	Внутренний оперативный контроль во скеме оперативного контроля	Прилатые обозначения
ı	С примене-	K _{ic} = x - c < κ	К _и -результат контроль- кой процедуры;
	Pasitos Tir (OK)	K = O,84 Δ	X-результат аламаа прсом: С-аттестованное значе-
		где Δ - характеристика погрешности, соответствующая содержанию компонента в ОК	ние ОК. К-вориатив оперативного контрожн
2	С примене- нием мето-	K _K - X' - X - C < K	Кревультат контроль- ной процедуры;
1	да добавок		X-результат анализа пробы без добавки;
1		$K = 0.84 \sqrt{(\Delta_{\overline{X}}^2)^2 + (\Delta_{\overline{X}}^2)^2}$ $K = \sqrt{(\Delta_{\overline{X}}^2)^2 + (\Delta_{\overline{X}}^2)^2}$	Х'-результат анализа пробы с добавуой; С-величина добавки
		где $\Delta \overline{\chi}$. ($\Delta \overline{\chi}$) — характеристика погрешности, соответствующая содержанию исмпонента в пробе с добавкой (просе без добавки)	К-ворнатив Сперативного Новтровя
3	С примене-	K _i c = ΕΚ' - Σ ← Κ	X-результат контроль- нов процедуры;
	да разбав-		X-результат анализа рассчей пробы;
		$K = 0.84 \sqrt{R^2 (\Delta_{\overline{X}}^2)^2 + (\Delta_{\overline{X}}^2)^2}$, $K = \sqrt{R^2 (\Delta_{\overline{X}}^2)^2 + (\Delta_{\overline{X}}^2)^2}$	Х'-результат авализа разбазренной просы R-козофициент разбавие-
	<u> </u>	гле Ат. (AT) - характеристика погрешности, соответствующая содержания компонента в разбавленной пробе (разбией пробе) соответственно	ния; К-ворматив сперативного контроля
4	С примене-	K _{IC} = X − X _{IC} < K	К _к -результат контроль-
	трольной) методики	$K = 0.84 \sqrt{(\Delta_{\overline{M}_{1}})^{2} + (\Delta_{\overline{M}})^{2}} \qquad K = \sqrt{(\Delta_{\overline{M}_{2}})^{2} + (\Delta_{\overline{M}})^{2}}$	X - результат авализа пробы по контрожируемой методиже анализа;
		$K = 0.84 \text{ V} (\Delta_{X})^{-1} + (\Delta_{X})^{-1}$ где $\Delta_{X}^{-1} (\Delta_{X}^{-1})^{-1} + (\Delta_{X}^{-1})^{-1}$	X _K — результат явализа пробы во контрольной методике авализа: К-нормат:а оперативвого контроля

Оперативный контроль погрешности (точности) проводят в одинаковых условиях, т.е. результаты анализа получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т.д.

Поидожение 10.

Разийт чорматива внутритабораториото одеративного составлятивного составлятивного воставлятимости начасти.

700 эсопромавоничести посветит с мого възгланизм рамомих пром титби сравизния результата компретней произвития, разноте расуржания компонента в отнот и той же пробе, с морчатизом 30% воспроизволимости θ .

$$\bar{x}_1 - \bar{x}_2 \leqslant 1.$$

Чорматив 30% воспроизводичести рассчитывает по формуле:

$$T = Q(P, m) \sigma(\Delta)$$

гле δ (Δ) - похазатель воспроизводимости (характерисика случайной составляющей пограшности, соответствуюпла соответствую проберати в пробератированию соответствую пробератированию соответствую пробератированию соответствую пробератированию соответствую пробератированию соответствующих пробератированию соответствующих пробератированию соответствующих пробератированию соответствующих пробератированию соответствующих профессионального соответствующих простистивности (характерисика соответствующих профессионального соответствующих професси

$$\vec{x}_{cn} = \frac{\vec{x}_1 + \vec{x}_2}{2}$$
,

$$Q(P,m) = 2,77$$
 now $m = 2, P = 0,95$.

При осуществлении вок воспроизводимости отбирают пве пробы, объём которых равен объёму, необходимому пля проведения анализа по метолике, и анализируют в точном соответствии с прописью мето-пики, максимально варьируя условия проведения анализа, т.е. получают пва результата анализа, используя разные наборы мероной посущы, разные партим реактивов. В работе должны участвовать два аналитика.

повторают. При повторном превышении указанного норматива выяснявопричично, приводящие к неудовлетворительным результатам контроля, и устраняют их.

СОДЕРЖАНИЕ

I. Методические указания по спектрофотометрическому измерению
концентрации амилазы в воздухе рабочей зоны
(PГМУ, г. Москва) МУК 411575 — 03 3
2. Методические указания по измерению концентрации И - (2-2)
3,5-дибромбензил)-Л-метилциклогексиламина гипрохиорина (брак
гексина) в воздухе рабочей зоны методом высокоэффективной
жилкостной хроматографии
(PPMV, r. Mockba) MYK 4.1. 1576 -039
3. Методические указания по измерению концентраций 4. амиче
N -(5-метил-3-изоксазолил)-бензолсульфонамила (сульфаметок-
сазола) в воздухе рабочни зоны методом высокоэффективной
жилкостной хроматограйии
(PFMV, r. Mockba) MYK 4.1. 1577-03 12
4. Методические указания по спектрофотометрическому измерению
концентрации 4-амино-Л - (5-метил-3-изоксазолил) бензол-суль-
фонамида (сульфаметоксазола) в воздухе рабочей зоны
(ВИЦ БАВ, г. Москва) МУК 4.1.1578-03 I5
5. Методические указания по спектрофотометрическому измерению
концентраций гидроксипропилметилцеллюлозы (оксипропилметил-
целлилозы) в воздухе рабочей зоны
(ВНЦ БАВ, г. Москва) <i>МУК 4.1.1579 — 03</i> 2I
б. Методические указания по измерению концентрации 2,4-диамино-
5-(3,4,5-триметоксибензил)-пиримидина (триметоприма) в воз-
духе рабочей зоны методом высокоэффективной жидкостной хрома-
тографии
(PPMV, r. Mockba) MUK 4.1. 1580 - 03 27
7. Методические указания по газохроматографическому измерению
концентраций [I0, II-дигидро-5-Н-дибенз (b, f)] азепина (имино-
дибензила) в воздухе рабочей зоны
(ВНЦ БАВ, г. Москва) МУК 4. 1. 1581-03 30
В. Методические указания по спектрофотометрическому измерению
концентрации Л - 2- [(5-(диметиламино)метил]-фуранил метил] тио
этил]-N-метил-2-нитро-I,I-этилендиамина гидрохлорида (рани-
тидина гидрохлорида) в воздухе рабочей зоны
(ВИЦ БАВ, г. Москва) <i>МУК 4. 1.1582 — 03</i> 35

- 9. Методические указания по измерению концентраций 2 -[4 (1,2-Дифения-І-бутения) ренокси] NN -диметия занамина (Z) 2-гидрокси I,2,3 пропантрикарбоксия (тамоксифен цитрат и 2 [4 (I,2 Дифения-1-бутения)фенокси] NN -диметия этанамина (тамоксифен основания) в воздухе рабочей зоны методо высокозфективной жидкостной хфоматографии. (ВНЦ ЗАВ, г.Москва) МУК 4.1.15-83 03...40
- Методические указания по спектрофотометрическому измерению концентраций 2,6-диметил- №-диэтиламиноацетанилида гидрохлорида (лидокаина) в воздухе рабочей зоны (Латвийская медицинская академия, г.Рига) № № 1.1584-03 43
- II. Методические указания по газохроматографическому измерению концентраций 0,0-диметилметилфосфоната (метаран) в воздухе рабочей зоны (СЭС, г.Волгоград)
 МУК 4.1.1585-03

- 13. Методические указания по спектрофотометрическому измерению концентраций 2,5-диметил-3-(2 метоксиэтоксикарбонил)-4-(3-нитрофенил)-5-изопропоксикарбонил-1,4-дигидропиридина (нимодипина) в воздухе рабочей зоны (НИИ ГТ и ПЗ, г.Санкт-Петербург) МУК У. 1537-05, 59
- 15. Методические указания по спектрофотометрическому измерению концентраций 2,2-диметил-пропандиола-I,3 (неопентилгликоля) в воздуже рабочей зоны (НПЦ "Экос", г. Москва) МУК У. 1.1589 03
- 15. Методические указания по газохроматографическому измерению концентраций дифенил (п-третбутилфенил)фосфата (основного компонента масла "Турбомас") в воздухе рабочей зоны (НИИ ГТ и ПЗ, г.Санкт-Петербург) ОМУК 4.1.1592... 73

195	
MJK 4.1.1875-	
17. Методические указания по спектрофотометрическому измерению	
концентраций 3-диэтиламино-пропил-амина-І (диэтиламинопро-	
пиламина) в воздухе рабочей зоны	
(НПЦ "Экос", г. Москва) <i>МУК. Ч.1. 1591—03</i> 77	,
18. Методические указания по экстракционно-фотометрическому	
измерению концентраций $N - [2 - (диэтиламино) - этил] - 2 - метогои-$	
-5-(метилсульфонил)-бензамида гидрохлорида (тиаприд) з воз-	
духе рабочей зоны	
(НИХ№, г.Новокуэнецк) <i>МУК 4.1.1592-03</i> 82	2
19. Методические указания по спектрофотометрическому измерения	
концентраций магния углекислого основного (белая магнезия)	
в воздухе рабочей зоны	
(ВНЦ БАВ, г. Москва) МУК 4.1.1593 — 03 87	,
20. Методические указания по газохроматографическому измерению	
концентраций метилметакрилата в воздухе рабочей зоны с при-	
менением для отбора пассивных дозиметров P-I мук 4.1. 1594-03	
(Нижегородский НИИ гигиены и профпатологии г.Н-Новгород)92	2
21. Методические указания по газохроматографическому измерению	
концентраций метилметакрилата в воздухе рабочей зоны с при-	
менением для отбора пассивных дозиметров P-4 мук 4.1. 1595-оз	
(Нижегородский НИИ гигиены и профпатологии, г. Н-Новгород)97	,
22. Методические указания по спектрофотометрическому измерению	
концентраций метилцеллюлозы водорастворимой (МЦ-100) в	
воздухе рабочей зоны	
(ВНЦ БАВ, г. Москва) МУК 4.1.1596 — 03 IC)2
23. Методические указания по газохроматографическому измернию	
концентрации смеси метоксигликолей (ди-, три-, тетрагликолей)	
(экосорба) в воздухе рабочей зоны	
(НИИ гигиены, профпатологии и эколгии человека, Лениградская	
область) <i>МУК 4.1.1597</i> — 03 IC	8
24. Методические указания по спектрофотометрическому измерению	
концентраций надуксусной кислоты в воздухе рабочей зоны	
(НИИ гигиены, профпатологии и экологии человека, Лениградская	
область) <i>ФИУК 4.1. 1598 — 0</i> 3 II	4
25. Методические указания по измерению концентраций натриевой	
соли б-амино-гексановой кислоты и натриевой соли б-аминогек-	
сановой кислоты, ацилированной высшими кислотами (реагент	

ААК или Таллактам), в воздухе рабочей зоны методом бумажной

(Мосгорцентр Госсанэпиднадзора, г. Москва) оИЗИ 4.1.1539-03.. II8

хроматографии

- Методические указания по измерению концентраций октафторпропана в воздухе рабочей зоны методом газовой хроматограйми (РГМУ. г. Москва) MYK 9.1. 1600 - 02... 123
- Методические указания по измерению концентрации ортофосфористой и ортофосфорной кислот в воздухе рабочей зоны метолом ионной хроматографии

(PГМУ, НПЦ "Экос", г. Москва) оМУК 4. 1. 1601 — 03 123 Методические указания по спектрофотометрическому измеренир 28.

концентраций Пропан-1.2,3-триола тринитрата (нитроглицерина) в воздухе рабочей зоны

Myk4, 1, 1602-03, 131 (BHII BAB, r. Mockba) Методические указания по спектрофотометрическому измерению

концентраций сульфата 3-броманилина (СМБА) в воздухе рабочей зоны

(НИХФИ, г. Новокузнецк)

MYK 4.1. 1603-03 137

Методические указания по спектрофотометрическому измерению концентраций тетрабората натрия (бура) в воздухе рабочей зоны

(Донецкий мединститут, г.Донецк) МИКУ. Р. 1604-03 тат

- Метолические указания по измерению концентрации 1,2,3,9тетрагидро-9-метил-3-[(2-метил-ІН-имидазол-І-ил)метил]-4Нкарбазол-4-она хлоргидрата дигидрата (ондансетрона) в возду е рабочей зоны методом жидкостной хроматографии (PTMY, r.MockBa) MUR 4. 1. 1605-03 ... 145
- Методические указания по газохроматографическому измерению 32. концентраций тетрафторметана (хладона-14) в воздухе рабочей зоны

(НИИ гигиены профпатологии и экологии человека, Ленигранская MYK 4.1.1606 -02 I48 область)

- 33. Методические указания по спектрофотометрическому измерению концентраций фенилгидразина солянокислого (гидразинобензол солянокислый) в воздухе рабочей зоны (М.п. "Экологический центр, НИИБП, г. Москва) *МУК Ч.1. 1607-0*3 151
- Метопические указания по хроматографическому измерению 34. концентраций $N = \{4 - (5 - \mathsf{x}\mathsf{л}\mathsf{o}\mathsf{p} - 2 - \mathsf{мет}\mathsf{o}\mathsf{k}\mathsf{c}\mathsf{u}\mathsf{d}\mathsf{e}\mathsf{H}\mathsf{3}\mathsf{a}\mathsf{m}\mathsf{u}\mathsf{n}\mathsf{o}) - \mathsf{3}\mathsf{T}\mathsf{u}\mathsf{n}\}$ бензол-сульфонил(- У-циклогексилмочевины (глибенкламип) в возпухе рабочей зоны MYK 4.1.1608 -03 155 (НИХФИ, г.Новокузнецк)

35.	Методичес	ские у	казания по спектрофотометрическому изі	иерен	OF I
7	концентрации	и целл	олазы в воздухе рабочей зоны		
(РГМУ, г.Мо	осква	MYK 4.1. 1609-	23.	I59
35.	Методичес	ские у	казания по измерению концентрации цип	00-	
Ş	рлоксацина г	идрох.	порида моногидрата в воздухе рабочей :	30HH	
N	иетод <mark>ом жи</mark> дн	состно	й хроматографии		
(ЕНЦ БАВ, г	. Mock	Ba) MYK 4.1.1610-03		Iò4
37.	Методичес	ские уп	казания по газохроматографическому изз	ерен	1:0
P	онц <mark>ентраци</mark> й	й этил	вого эфира $oldsymbol{oldsymbol{\mathcal{L}}}$ -бромизовалериановой кис	СЛОТЫ	
E	в во здухе ра	абочей	зоны рук 4. 1. 1611—	02	
(Донецкий го	судар	ственный медицинский институт, г. Донеца	()	861
88.	Методичес	ские ул	казания по газохроматографическому изы	иерени	110
F	онцентраци	i 17人・	-этинилэстратриен-I,3,5(I0)-диола-3,I $^\circ$	7B	
(этинилэстра	диол)	в воздухе рабочей зоны		
(ВНЦА-ВНИИЛ				-
39.			казания по спектрофотометрическому изм		110
			-I $-$ { \mathcal{N} $ igl[ext{I} - (ext{Этоксикарбонил}) - ext{З}$ фенилпрог		
			лина малеат (I:I) (эналаприла малеат))	
E	в воздухе ра	абочей	30HH 11111 11 P 1C12 02		
(ВНЦБАВ, г	. Mock	MYK 4. 1. 1613-03.		[76
₩.		-	казания по спектрофотометрическому изм	_	110
F	онцентраций	i I-(-2	2-этоксиэтил)-4-этинил-4-оксипиперидин	t a	
(этиниловый	спирт	в воздухе рабочей зоны	_	
(НИХФИ, г.Н	Іовоку:	энецк) МУК 4.1.1614-03.		[8I
ſ	Іриложение	I	Приведение объема воздуха к стандартн		
			условиям (температура 20°C и давление	;	TOE
	_	_	760 MM pt.ct.)	• • • •	I85
Γ	еине ж окиф!	2	Коэффициенты для приведения объема		TOC
	_		воздуха к стандартным условиям	• • • •	186
	Іриложение	3	Нисунок %I. Пассивный дозиметр P-I	• • • •	187
Γ	Іриложение	4	Рисунок W2. Устройство для концен-		700
			трирования и ввода проб	• • • •	188
	Іриложение	5	Рисунок ¥3. Пассивный дозиметр Р-4	• • • •	189
Ι	еинежолиф	6	Указатель основных синонимов, техни-		
			ческих, торговых и фирменных названий	_	
			веществ]	190
Γ	Іриложение	7	Вещества, определяемые по ранее утвер) -	TO -
			THOURS MOMORISTOCKING WEGGENIGH		191

Приложение	9.	Расчёт характеристик погрешности на		
		основе данных, призеденных в МУП ККА	•	192a
Поиложение	9.	RECOTECT CTORENTEGERO BENTAMOOR TEVORES AXX VEW (HTSORPOT) NTSORESCICE	_	T925
Припожение	Τ0	. Расчёт норматива оперативного кочтроля	•	32 1.7 12 13
TONVIONOTINO	15,	(304) воспроизволимости МВН ЧХА		192a