

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕЛЕРАНИИ

(МИНСТРОЙ РОССИИ)

ПРИКАЗ

от" 16 " декабря 2016г.

Nº 948/np

Москва

Об утверждении СП 128.13330 «СНиП 2.03.06-85 Алюминиевые конструкции»

В соответствии с Правилами разработки, утверждения, опубликования, изменения и отмены сводов правил. Утвержденными постановлением Правительства Российской Федерации от 1 июля 2016 г. № 624, подпунктом 5.2.9 пункта 5 Положения о Министерстве строительства и жилишно-коммунального хозяйства Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 18 ноября 2013 г. № 1038, пунктом 242 Плана разработки и утверждения сводов правил и актуализации ранее утвержденных сводов правил, строительных норм и правил на 2015 г. и плановый период до 2017 г., утвержденного приказом строительства Министерства И жилищно-коммунального Российской Федерации от 30 июня 2015 г. № 470/пр с изменениями, приказом Министерства строительства внесенными жилишнокоммунального хозяйства Российской Федерации от 14 сентября 2015 г. № 659/пр, приказываю:

- 1. Утвердить и ввести в действие через 6 месяцев со дня издания настоящего приказа прилагаемый СП 128.13330 «СНиП 2.03,06-85 Алюминиевые конструкции».
- С момента введения в действие СП 128.13330 «СНиП 2.03.06-85 Алюминиевые конструкции» признать не подлежащим применению 128.13330.2012 СП «СНиП 2.03.06-85 конструкции», Алюминиевые утвержденный приказом Министерства регионального развития Российской Федерации от 29 декабря 2011 № 619.

- 3. Департаменту градостроительной деятельности и архитектуры в течение 15 дней со дня издания приказа направить утвержденный СП 128.13330 «СНиП 2.03.06-85 Алюминиевые конструкции» на регистрацию в национальный орган Российской Федерации по стандартизации.
- 4. Департаменту градостроительной деятельности и архитектуры обеспечить опубликование на официальном сайте Минстроя России в информационно-телекоммуникационной сети «Интернет» текста утвержденного СП 128.13330 «СНиП 2.03.06-85 Алюминиевые конструкции» в электронно-цифровой форме в течение 10 дней со дня регистрации свода правил национальным органом Российской Федерации по стандартизации.
- 5. Контроль за исполнением настоящего приказа возложить на заместителя Министра строительства и жилищно-коммунального хозяйства Российской Федерации Х.Д. Мавлиярова.

И.о. Министра

le 1

Е.О. Сиэрра

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП 128.13330.2016

АЛЮМИНИЕВЫЕ КОНСТРУКЦИИ

Актуализированная редакция

СНиП 2.03.06-85

Издание официальное

Москва 2016

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ – АО «НИЦ «Строительство» ЦНИИСК им. В.А. Кучеренко, институт ЦНИИПСК им. Мельникова, ЗАО «МЕТАКОН ЦЕНТР»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

- 3 ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
- 4 УТВЕРЖДЕН Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 16 декабря 2016 г. № 948/пр и введен в действие с 17 июня 2017 г.

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 128.13330.2012 «СНиП 2.03.06-85 Алюминиевые конструкции»

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования— на официальном сайте разработчика (Минстрой России) в сети Интернет

О Минстрой России, 2016

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Общие положения
5 Материалы для конструкций и соединений
6 Расчетные характеристики материалов и соединений
7 Расчет элементов алюминиевых конструкций при центральном растяжении, сжатии
и изгибе
7.1 Расчет элементов сплошного сечения
7.2 Расчет элементов сквозного сечения
7.3 Расчет изгибаемых элементов
7.4 Расчет элементов, подверженных действию осевой силы с изгибом
7.5 Проверка устойчивости стенок и поясных листов изгибаемых и сжатых элементов.
8 Расчетные длины и предельные гибкости элементов алюминиевых конструкций
8.1 Расчетные длины элементов плоских ферм и связей
8.2 Расчетные длины элементов пространственных решетчатых конструкций
8.3 Расчетные длины колонн (стоек)
8.4 Предельные гибкости элементов
9 Расчет элементов конструкций с применением тонколистового алюминия
9.1 Элементы, работающие на сжатие и изгиб
9.2 Элементы мембранных конструкций
10 Расчет соединений конструкций из алюминиевых сплавов
10.1 Сварные соединения
10.2 Заклепочные и болтовые соединения
10.3 Монтажные соединения на высокопрочных стальных болтах
10.4 Соединения с фрезерованными торцами
10.5 Поясные соединения в составных балках
11 Проектирование алюминиевых конструкций
11.1 Общие указания по проектированию
11.2 Проектирование ограждающих конструкций
12 Конструктивные требования
12.1 Общие указания
12.2 Сварные соединения
12.3 Заклепочные и болтовые соединения
13 Противопожарные требования
Приложение А Основные буквенные обозначения величин
Приложение Б Физические характеристики алюминия
Приложение В Плотность алюминия
Приложение Г Коэффициенты ф для расчета на устойчивость центрально
сжатых элементов
Приложение Д Коэффициент устойчивости при изгибе фь
Приложение Е Расчет внецентренно сжатых и сжато-изгибаемых элементов
Приложение Ж Виды креплений ограждающих конструкций
Приложение И Конструирование сварных соединений
TIDIDIOMERNO II RUHCIOTADORANO CRADNEIX CHENNHEHNN

Введение

Настоящий свод правил составлен с целью повышения уровня безопасности людей в зданиях и сооружениях и сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений», повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами, применения единых методов определения эксплуатационных характеристик и методов оценки.

СП 128.13330.2012 Пересмотр выполнен следующим авторским коллективом: AO «НИЦ «Строительство» Центральный научно-исследовательский институт строительных конструкций им. В.А. Кучеренко в составе специалистов: д-ра техн. наук. профессоры И.И. Ведяков, П.Д. Одесский, Ю.В.Кривцов, канд. техн. наук М.И. Гукова, Б.С. Цетлин, Е.Р. Мацелинский, инженеры Л.С. Сошникова, П.П. Колесников; ЗАО «Метакон центр» инженер Е.Б. Алексеева, ЦНИИПСК им. Мельникова: д-р техн. наук В.К. Востров, канд. техн. наук И.Л. Ружанский.

СВОД ПРАВИЛ

АЛЮМИНИЕВЫЕ КОНСТРУКЦИИ

Aluminium structures

Дата введения 2017-06-17

1 Область применения

1.1 Настоящий свод устанавливает правила проектирования строительных алюминиевых конструкций (далее — конструкции из алюминия и алюминиевых сплавов) зданий и сооружений.

Правила не распространяются на проектирование алюминиевых конструкций мостов и конструкций зданий и сооружений, подвергающихся многократному воздействию нагрузок (усталостная прочность), а также непосредственному воздействию подвижных или динамических нагрузок или воздействию температуры свыще 100 °C.

1.2 При проектировании конструкций, находящихся в особых условиях эксплуатации, конструкций уникальных зданий и сооружений, а также специальных видов конструкций необходимо соблюдать требования, предусмотренные соответствующими нормативными документами, в которых отражены особенности работы этих конструкций.

В настоящем своде правил использованы нормативные ссылки на следующие

2 Нормативные ссылки

В паотоище	м ородо привил непользовани пормативные совыки на следующие
документы:	
ΓΟCT 4.221-82	Система показателей качества продукции. Строительство. Строительные
	конструкции и изделия из алюминиевых сплавов. Номенклатура
	показателей
ΓΟ CT 9.303-84	Единая система защиты от коррозии и старения. Покрытия металлические
	и неметаллические неорганические. Общие требования к выбору
ΓΟCT 1583-93	Сплавы алюминиевые литейные. Технические условия
ΓOCT 1759.0-87*	Болты, винты, шпильки и гайки. Технические условия
(CT C3B 4203-83)	•
ΓΟCT 4784-97	Алюминий и сплавы алюминиевые деформируемые. Марки
ΓOCT 5915-70	Гайки шестигранные класса точности В. Конструкция и размеры
ΓΟCT 6402-70	Шайбы пружинные. Технические условия
(CT C3B 2665-80)	
ΓΟCT 7751-2014	Надежность строительных конструкций и оснований. Основные
	положения
ΓΟCT 779870	Болты с щестигранной головкой класса точности В.
(CT C3B 4728-84)	Конструкция и размеры
ΓOCT 787175	Проволока сварочная из алюминия и алюминиевых сплавов. Технические
	условия
ΓΟCT 8617-81	Профили прессованные из алюминия и алюминиевых сплавов.
(CT C3B 3843-82,	Технические условия
CT C3B 3844-82)	·
FOCT 10157-79	Аргон газообразный и жидкий. Технические условия
ΓΟCT 10299-80	Заклепки с полукруглой головкой классов точности В и С. Технические
	условия
ΓΟCT 10300-80	Заклепки с потайной головкой классов точности В и С.
	Технические условия

ΓΟCT 10301-80	Заклепки с полупотайной головкой классов точности В и С. Технические условия
ГОСТ 10304-80	Заклепки классов точности В и С. Общие технические условия
FOCT 10618-80	Винты самонарезающие для металла и пластмассы. Общие технические условия
FOCT 10619-80	Винты самонарезающие с потайной головкой для металла и пластмассы. Конструкция и размеры
ΓΟCT 10621-80	Винты самонарезающие с полукруглой головкой для металла и пластмассы. Конструкция и размеры
ΓΟCT 1090678	Шайбы косые. Технические условия
FOCT 11371-78	Шайбы. Технические условия
ΓOCT 11771-78	· · · · · · · · · · · · · · · · · · ·
(ИСО 4762–77)	углублением под ключ класса точности А. конструкция и размеры
ГОСТ 14806-80	Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные. Основные типы,
ΓΟCT 14838-78	конструктивные элементы и размеры Проволока из алюминия и алюминиевых сплавов для холодной высадки. Технические условия
ГОСТ 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия
	эксплуатации, хранения и транспортирования в части
	воздействия климатических факторов внешней среды
ГОСТ 17473-80	Винты с полукруглой головкой классов точности А и В. Конструкция и размеры
ΓΟCT 17475-80	Винты с потайной головкой классов точности A и B. Конструкция и размеры
ΓΟCT 18123-82	Шайбы. Общие технические условия
FOCT 21488-97	Прутки прессованные из алюминия и алюминиевых сплавов. Технические условия
ГОСТ 22233-2001	Профили прессованные из алюминиевых сплавов для
	светопрозрачных ограждающих конструкций. Технические условия
ΓOCT 28778–90	Болты самоанкерующиеся распорные для строительства. Технические условия
ГОСТ 32484.3-2013	Болтокомплекты высокопрочные для предварительного
(EN 14399-3:2005)	натяжения конструкционные. Системы HR - комплекты шестигранных болгов и гаек
ГОСТ Р ИСО 898-1-2011	Механические свойства крепежных изделий из
1 OCT 1 MCO 898-1-2011	
	углеродистых и легированных сталей. Часть 1. Болты,
	винты и шпильки установленных классов прочности с
	крупным и мелким шагом резьбы
ГОСТ Р ИСО 898-2-2013	Механические свойства крепежных изделий из
	углеродистых и легированных сталей. Часть 2. Гайки
	установленных классов прочности с крупным и мелким
	шагом резьбы
ГОСТ Р 52643-2006	Болты и гайки высокопрочные и шайбы для
	металлических конструкций. Общие технические условия
ГОСТ Р 52644-2006	Болты высокопрочные с шестигранной головкой с
(ИСО 7411:1984)	увеличенным размером под ключ для металлических
(FICO /TII.1704)	конструкций. Технические условия
EOOT D 52645 2006	
ΓΟCT P 52645–2006	Гайки высокопрочные шестигранные с увеличенным
(ИСО 4775:1984)	размером под ключ для металлических конструкций.

	Технические условия
ΓΟCT P 52646-2006	Шайбы к высокопрочным болтам для металлических
(ИСО 7415:1984)	конструкций. Технические условия
СП 16.13330.2011	«СНиП II-23-81*Стальные конструкции» (с изменением № 1)
СП 20.13330.2011	«СНиП 2.01.07-85* Нагрузки и воздействия»
CH 28.13330.2012	«СНиП 2.03.11-85 Защита строительных конструкций от коррозии» (с изменением № 1)
СП 43.13330.2012	«СНиП 2.09.03-85 Сооружения промышленных предприятий»
СП 131.13330.2011	«СНиП 23-01-99* Строительная климатология» (с изменением № 2)

Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на і января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонле стандартов.

3 Термины и определения

Термины, использованные в настоящем СП, применены в соответствии с ГОСТ 1583.

4 Общие положения

4.1 Алюминиевые конструкции следует применять при строительстве и реконструкции зданий и сооружений для ограждающих и несущих конструкций в следующих случаях:

при необходимости значительного снижения массы ограждающих и несущих конструкций зданий и сооружений;

с целью обеспечения повышенных архитектурных требований к конструкциям зданий или сооружений;

при необходимости обеспечения повышенной коррозионной стойкости, сохранения прочностных характеристик при низких температурах, отсутствия искрообразования и магнитных свойств.

4.2 При проектировании алюминиевых конструкций необходимо:

выбирать конструктивные схемы, а также сечения элементов и марки деформируемых алюминиевых сплавов и технического алюминия (условно названных «алюминий») и литейных сплавов (условно названных «литейный алюминий»), обеспечивающие прочность и устойчивость конструкций;

максимально использовать широкие возможности получения профилей оптимального сечения при прессовании;

учитывать технологические возможности предприятий-изготовителей профилей и конструкций;

соблюдать требования по защите строительных конструкций от коррозии согласно СП 28.13330;

соблюдать требования нормативных документов по пожарной безопасности:

учитывать требования национальных стандартов и пользоваться каталогами алюминиевых профилей.

- 4.3 Расчет алюминиевых конструкций должен удовлетворять требованиям настоящего СП.
- 4.4 Буквенные обозначения величин, использованные в настоящем СП, приведены в приложении А.

5 Материалы для конструкций и соединений

5.1 Выбор марки сплава и состояния поставки полуфабрикатов для алюминиевых конструкций следует проводить в зависимости от:

характера и интенсивности нагрузки, напряженного состояния элементов конструкций, расчетных температур и требуемых механических свойств алюминия;

стойкости к коррозии;

технологичности изготовления полуфабрикатов;

технологии изготовления и монтажа конструкций;

архитектурных требований.

5.2 Для алюминиевых конструкций следует применять алюминий марок и состояний, указанных в таблице 1.

По химическому составу алюминий поставляется по ГОСТ 4784. Марка алюминиевого сплава в стандарте и в таблице 1, кроме буквенного, имеет цифровое обозначение, в котором первая цифра — основа сплава (1 — алюминий), вторая — главный легирующий компонент или группа основных легирующих компонентов, две последние — порядковый номер в своей группе.

Состояние полуфабрикатов из алюминиевых деформируемых сплавов обозначаются буквенно-цифровой маркировкой: M-мягкий, отожженный; T- закаленный и естественно состаренный; T1- закаленный и искусственно состаренный; T4- не полностью закаленный и естественно состаренный; T5- не полностью закаленный и искусственно состаренный; T5- не полностью закаленный и искусственно состаренный; T5- не полумагартованный.

5.3 В зависимости от назначения зданий и сооружений при использовании алюминия конструкции разделяются на четыре группы. Примерный состав групп:

группа I — ограждающие конструкции (кровли, витрины, витражи, фонарные переплеты, подвесные потолки, перегородки) и заполнение проемов (окна, двери, ворота);

группа II - конструкции, совмещающие несущие и ограждающие функции:

- пространственные листовые покрытия зданий, в том числе купольные или висячие;
- крупноблочные и решетчатые покрытия с предварительно напряженной кровельной общивкой;
 - резервуары и силосы;
- кровельные и стеновые панели общественных и промышленных зданий, в том числе со взрывоопасным производством, а также при наличии высокой влажности внутреннего возлуха;

кровельные панели общественных зданий, к которым предъявляются высокие архитектурные требования;

группа III - несущие сварные конструкции:

- стационарные несущие конструкции: фермы, колонны, прогоны покрытий, пространственные решетчатые конструкции покрытий промышленных большепролетных зданий; зданий при наличии агрессивных сред; покрытий общественных зданий: выставочных павильонов, аэровокзалов и т.п.;
- элементы стволов и башен антенных сооружений; опоры высоковольтных линий электропередач, в том числе возводимые в удаленных или труднодоступных районах;
- сборно-разборные конструкции каркасов зданий и сооружений, блоки покрытия и др.;

группа $\overline{\text{IV}}$ – конструкции, относящиеся к группе III, не имеющие сварных соединений.

- 5.4 Виды алюминиевых полуфабрикатов для строительных конструкций следует принимать по таблице 1. Применять другие виды полуфабрикатов из сплавов, обеспечивающих требуемые характеристики прочности, жесткости, долговечности и др. свойств, следует по согласованию с металлургическими заводами.
- 5.5 Для изготовления алюминиевых отливок, а также для соединительных элементов, опорных элементов конструкций следует применять литейный сплав марки АК8МЗч (ВАЛ8), удовлетворяющий по химическому составу требованиям ГОСТ 1583. При необходимости повышения коррозионной стойкости следует применять сплавы АК7ч (АЛ9) или АК9ч (АЛ4).

Применять отливки из материалов, указанных в СП 16.13330, следует при соответствующей защите от контактной коррозии.

5.6 При аргонодуговой сварке алюминиевых конструкций следует в зависимости от свариваемого сплава (см. таблицу 8) применять сварочную проволоку по ГОСТ 7871 из алюминия марок СвА5, СвАМг3 и Св1557, удовлетворяющих по химическому составу требованиям ГОСТ 4784, и аргон марки А по ГОСТ 10157.

Таблица I

Химический состав	Обозна- чение	Состояние поставки	Обозначение с полуфабрикато		вку по механическим	свойствам
	марок		Лист	Профиль	Труба	JIента
Al	ΑДΙ	М	21631		18475	13726
	1013		_ (I; IV)	_	(I; IV)	(I; IV)_
			Сплавы, терми	чески не упрочі	няемые	
AlMn	АМц*	м	21631		18475	13726
	1400	L IVI	(I; II)	_	(l; II)	(1; 11)
		H2	21631			13726
		п2	_ (11)	_	_	(II) _
	AMr2**	м	21631			13726
1520	IVI	(1; 11)	į		(I; II)	
Ì		H2	21631	_	_	13726
Al Mg			(II)			(11)
	АМг3	М	21631			13726
	1530	171	(I; II)			(I; II)
		H2	21631	_	_	13726
			(II)		1	(11)

Окончание таблицы 1

Окончиние п	1		Сплавы теп	мически упрочня	entie -	
	АД31***			8617;	18482;	
	1310	T		22233	22233	
				(I; II)	(1; 11)	1
	АД31		7	18482;	18482;	†
	1310	Tl		22233	22233	_
			_	(II)	(11)	
		T5;	7	8617;		1
		T4		22233	_	
				(I; <u>I</u> 1)		_
'	АД33	T	Τ	8617;		
	1330	-		22233		}
				(II)	-	i –
Al Mg Si				8617;		
		Tl		22233		
				(II; IV)		
	AB		21631;		18475;	
	1340	M	22233		22233	
ı	-		(11)	0615	(11)	
	1		21631;	8617;	18482;	1
		T	22233	22233	18475;	-
			(II)	(11)	22233	
	}		21631;	8617	(II) 18482;	
]	Tl	(IV)	(IV)	18475	
		11	(14)	(1*)	(IV)_	
	6060		 	22233	22233	
	6063	#4	_	(I; II; III; IV)	(I; II; III; IV)	-
	1915***	T	21631	8617	18482) ———
		•	(11; 111)	(II; III)	(11; 111)	_
Al Zn Mg	Ī	Tl		1	(
ľ	1925***	т		8617	18482	
		I	<u> </u>	(11; 111)	(11; 111)	
	B95*5			8617	_	
Al Zn Mg Cu	1950		↓ _	(IV)		_
		 T1		8617	18482	
	<u> </u>		<u> </u>	(IV)	(VI)	

Примечание – В скобках указаны группы конструкций, в которых применяется данный сплав (см. пункт 5.3)

- 5.7 Следует применять болты из алюминия марок AMrSn, Д18T, В65T по ГОСТ 14838, марок ABT1, AД33T1 по ГОСТ 21488. Болты из алюминия марки В94T1 следует применять при соответствующем обосновании.
- 5.8 Стальные болты в алюминиевых конструкциях следует применять согласно требованиям СП 16.13330. Для соединений с использованием стальных болтов необходимо предусматривать мероприятия по защите их от контактной коррозии в соответствии с ГОСТ 9.303.
- В случае применения болтов из нержавеющей стали дополнительные мероприятия по защите алюминия от контактной коррозии не требуются.

^{*} Алюминий марки АМцМ следует применять прсимущественно для листовых конструкций декоративного назначения, подлежащих анодированию в черный цвст.

^{**} Кроме указанных в таблице 1. из данной марки алюминия изготавливают полуфабрикат в виде плиты.

^{***} Кроме указанных в таблице 1, из данных марок алюминия изготавливают полуфабрикат в виде прутка.

^{*4} Зарубежные сплавы (аналоги сплаву АД31). В стандарте указаны состояния поставки по зарубежному обозначению. где Т4 соответствует отечественному Т. а Т6 – Т1.

^{*5} Алюминий марки В95 следует примсиять для сжатых элементов конструкций, принимая меры для снижения концентрации напряжений.

Для болговых соединений следует применять стальные болты, удовлетворяющие техническим требованиям ГОСТ 1759.0, ГОСТ Р ИСО 898-1, ГОСТ Р ИСО 898-2, и шайбы, удовлетворяющие требованиям ГОСТ 18123. Шайбы следует применять: круглые — по ГОСТ 11371, косые — по ГОСТ 10906 и пружинные нормальные — по ГОСТ 6402; гайки — по ГОСТ 5915.

Для фрикционных и фланцевых соединений следует применять высокопрочные болты (болты в исполнении XЛ класса прочности не ниже 10.9 с предварительным напряжением):

для фрикционных соединений – удовлетворяющие требованиям ГОСТ Р 52643 и ГОСТ Р 52644, а их конструкцию и размеры – по ГОСТ Р 52644, гайки и шайбы к ним – по ГОСТ Р 52645, ГОСТ Р 52646 и ГОСТ Р 52643;

для фланцевых соединений — удовлетворяющие требованиям ГОСТ Р 52643 и ГОСТ Р 52644, а их конструкцию и размеры — по ГОСТ Р 52644, гайки и шайбы к ним — по ГОСТ Р 52643, ГОСТ Р 52644 и ГОСТ Р 52645.

Винты нормальной точности следует применять по ГОСТ 17473, ГОСТ 17475, ГОСТ 10618, ГОСТ 10619 и ГОСТ 10621.

Заклепки из стали и алюминия следует применять по ГОСТ 10299, ГОСТ 10300, ГОСТ 10301 и ГОСТ 10304.

Следует применять следующие алюминиевые сплавы для поставленных в холодном состоянии заклепок:

нагартованных - АД1Н;

термически неупрочняемых - АМц и АМг;

отожженных - АМг5пМ;

закаленных и искусственно состаренных — сплавы повышенной пластичности и коррозионной стойкости — АДЗЗТ1 и АВТ1 и высокопрочный заклепочный сплав — В94Т1;

«сырых» (без термической обработки) - Д18п:

закаленных и естественно состаренных (с термической обработкой) — дуралюминиевый заклепочный сплав повышенной пластичности Д18Т и дуралюминиевый заклепочный сплав повышенной прочности В65Т.

В целях повышения коррозионной стойкости следует не допускать расхождения в содержании меди в основном металле и металле заклепок.

- 5.9 В конструкциях из алюминиевых сплавов анкерные болты следует выполнять из стали при соответствующей защите от контактной коррозии. Анкерные болты следует применять согласно требованиям СП 43.13330.
- 5.10 Физические характеристики алюминия для строительных конструкций следует принимать по приложениям Б и В.

6 Расчетные характеристики материалов и соединений

6.1 Расчетные значения сопротивления (расчетные сопротивления) для расчетных температур* наружного воздуха от плюс 50° до минус 65 °С для деформируемых алюминиевых сплавов, не упрочняемых термической обработкой, приведены в таблице 3, а упрочняемых термической обработкой – в таблице 4, при этом расчетные сопротивления сдвигу и смятию установлены в соответствии с таблицей 2 с округлением значений расчетных сопротивлений до 5 Н/мм².

Таблица 2

Напряженное состояние	Расчетные сопротивления
Растяжение, сжатие и изгиб Сдвиг	$R \\ R_s = 0.6R$
Смятие: торцевой поверхности (при наличии пригонки) местное при плотном касании	$R_{p} = 1.6R$ $R_{lp} = 0.75 R$

^{*} Для положительных температур знак не указывается (за исключением диапазонов температур)

Таблица3

		Расчетное сопротивление, Н /мм². термически не упрочняемого алюминия марок							
Напряженное	Ofo-						АМг2Н2. АМг3Н2		
состояние	3Н <u>8</u> -	АДІМ	АМцМ	АМиН2	AMr2M	плиты. прутки. профили. трубы	листы	литейного АК8М3ч (ВАЛ8)	
Растяжение. сжатие и изгиб	R	25	40	100	70	120	140	135	
Сдвиг	R_s	15	25	60	40	75	85	80	
Смятис торцевой поверхности (при наличии пригонки)	R_{μ}	40	65	160	110	190	220	215	
Местное смятие при плотном касании	Rip	20	30	75	50	90	105	105	
Растяжение в направлении толщины прессованных полуфабрикатов	Ra	25	40	100	70	120	-		

Таблица 4

	Расчетное сопротивление, H /мм², термически упрочняемого алюминия марок									
Напряженное состояние	Обо- зна- чение	АДЗІТ; АДЗІТ4	АДЗІТ5	АДЗІТІ	АД33Т	АД33Т1	АВМ (листы)	ABT1*	1925T	1915 T**
Растяжение, сжатие и изгиб	R	55	100	120	95	160	70	170	175	195
Сдвиг	R_s	35	60	75	60	100	45	105	105	120
Смятие торцевой поверхности (при наличии пригонки)	R_{p}	90	160	190	155	255	115	270	280	310
Местное смятие при плотном касании	R_{lp}	40	75	90	75	120	55	130	130	145
Растяжение в направлении толщины прессованных полуфабрикатов	R _{th}	55	100	120	95	160	70	170	50	50

* Для труб следует принимать $R = 175 \text{ H/мм}^2$ ** Для профилей и труб через 3 мес после прессования следует принимать $R = 220 \text{ H/мм}^2$; а через 6 и более месяцев — $R = 230 \text{ H/мм}^2$.

Окончание	พศติทยน	4

OKONTAINE MAONA		Расчетное сопротивление, Н /мм², термически упрочняемого алюминия марок							
			AB	B95T1					
Напряженное состояние	Обо- зна- чение	листы (0,5-4)	листы (5-25); прутки; профили	глиты (26- 40)	трубы	листы* (5-10); прутки; профили (≤10)**; трубы	листы (0,5-4); плиты* (26-40)		
Растяжение, сжатие и изгиб	R	110	100	90	115	300	290		
Сдвиг	R_s	70	60	55	70	180	175		
Смятие торцевой поверхности (при наличии пригонки)	R_p	175	160	145	185	480	465		
Местное смятие при плотном касании	R_{lp}	85	75	70	90	225	220		
Растяжение в направлении толщины прессованных полуфабрикатов	R _{th}	110	100	90	115	300	290		

^{*} Листы и плиты плакированные.

Значение расчетного сопротивления алюминия при растяжении, сжатии и изгибе R следует принимать равным меньшему из значений расчетного сопротивления по условному пределу текучести $R_{\rm y}$ и расчетного сопротивления по временному сопротивлению $R_{\rm u}$. При этом

$$R_y = R_{yn}/\gamma_m$$
;
 $R_u = R_{un}/\gamma_m\gamma_u$,

- где $R_{\rm yn}$ нормативное сопротивление алюминия, принимаемое равным значению условного предела текучести сечения $\sigma_{0,2}$ по национальным стандартам и техническим условиям на алюминий;
 - R_{un} нормативное сопротивление алюминия разрыву, принимаемое равным минимальному значению временного сопротивления σ_{n} по национальным стандартам и техническим условиям на алюминий;

$$y_m = 1,1;$$

 $y_u = 1,45.$

При проектировании ограждающих конструкций из алюминиевых сплавов марок АМц и АМг (состояние поставок М и Н2) расчетные сопротивления при изгибе, растяжении и сжатии следует увеличить на 10 % для:

профилированных листов и замкнутых погонных элементов, у которых плоские прямолинейные участки не превышают 50 толщин исходной заготовки;

профилированных, холодногнутых погонных элементов, если они заканчиваются деформированным участком и плоские участки не превышают 50 толщин исходной заготовки.

^{**} Для профилей из сплава B95T1 толщиной от 10 до 20 мм. -R = 320 H/мм²: от 20 до 40мм. -R = 340 H/мм².

Примечание – Значения в скобках приведены в мм

При расчете конструкций следует учитывать коэффициенты влияния изменения температуры γ и коэффициенты условий работы элементов алюминиевых конструкций γ_c , приведенные соответственно в таблицах 5 и 6, а также коэффициенты надежности по назначению γ_n , принимаемые согласно требованиям [2].

Таблица 5

	Значения коэффициента у при расчетной температуре, °C							
Марка алюминия	ниже минус 65	от минус 65 до 50	от 51 до 100					
АДІ, АМц	1		0,85					
АМг2, АМг3	1,05							
АД31, АД33, АВ	1,1	L.	0,9					
B95, 1915, 1925,	1.05							
АК8М3ч (ВАЛ8)	7 1,05							

Таблица 6

Элементы конструкций	Коэффициенты условий работы, ус
1 Корпуса и днища резервуаров	0,80
2 Колонны жилых и общественных зданий при постоянной нагрузке.	
составляющей не менее 0,8 от расчетной	0,90
3 Сжатые элементы решетки плоских ферм при гибкости:	
$\lambda \leq 50$	0,90
<i>λ</i> > 50	0,75
4 Сжатые раскосы и стойки пространственных решетчатых конструк-	
ций из одиночных уголков, прикрепляемых к поясам одной полкой	
(для неравнополочных уголков – большей полкой):	
а) сварными швами или двумя и более болтами (заклепками),	0,75
установленными вдоль уголка:	
б) одним болтом	0,60
5 Сжатые элементы из одиночных уголков, прикрепляемых одной	
полкой (для неравнополочных уголков – меньшей полкой), за исклю-	
чением элементов конструкций, указанных в пункте 4 настоящей	
таблицы	
и плоских ферм из одиночных уголков	0,60

Примечания

Отнесение объекта к конкретному уровню ответственности осуществляет генеральный проектировщик по согласованию с заказчиком и в соответствии с ГОСТ 27751.

Приведенные в таблице 5 значения коэффициентов γ_i не зависят от состояния поставки алюминия (см. таблицу 1).

При непрерывном действии нормативной нагрузки свыше одного года, а также при непрерывном действии свыше двух лет нормативной нагрузки, составляющей свыше 0,9 расчетной, для конструкций, эксплуатируемых при расчетных температурах выше 50 °C, коэффициенты у₁ следует уменьшать на 10 %.

Коэффициенты условий работы в соответствии с пунктами 3 и 5 при расчете совместно учитывать не следует.

² Коэффициенты условий работы в соответствии с пунктами 3 и 4 нс распространяются на крепления соответствующих элементов в узлах.

³ Для сжатых раскосов пространственных решетчатых конструкций из одиночных уголков при треугольной решетке с распорками (см. рисунок 8,a) коэффициент условий работы в соответствии с пунктом 4 не учитывается.

⁴ Для случаев, не оговоренных настоящей таблицей, в формулах следует принимать ус= 1.0.

За расчетную температуру в районе строительства следует принимать температуру наружного воздуха наиболее холодных суток обеспеченностью 0,98, определенную согласно нормативным документам по климатологии.

Расчетная технологическая температура устанавливается заданием на разработку строительной части проекта.

6.2 Расчетные сопротивления растяжению алюминия R_{pl} из листов для элементов конструкций, эксплуатация которых возможна и после достижения алюминием условного предела текучести, следует принимать по таблице 7.

Таблица 7

Марка и состояние алюминия	АДІМ	AMuM	AMr2M	AMr3M
Расчетное сопротивление R_{pl} , H/мм ²	35	55	85	100

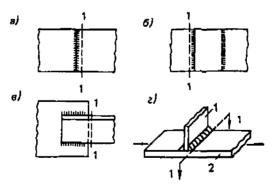
- 6.3 Расчетные сопротивления сварных соединений для расчетных температур от 50 °C до минус 65 °C приведены в таблицах 8 и 10.
- 6.4 Расчетное сопротивление R_w сварных соединений, выполненных аргонодуговой сваркой с физическим контролем качества шва (рентгено- или гаммаграфированием, ультразвуковой дефектоскопией и др.), следует принимать для термически не упрочняемого алюминия по таблице 8 и для термически упрочняемого алюминия по таблице 9.

Для сварных стыковых растянутых швов, качество которых не контролируется физическими методами, значения расчетных сопротивлений по таблицам 8 и 9 следует умножать на 0,8.

Таблипа 8

Сварные соединения и швы		O60-	Расчетное сопротивление сварных швов Н/мм², термически не упрочняемого алюминия марок			
	Напряженное состояние	зна- чение	АДІМ	АМцМ	АМг2М; АМг2Н2	AMr3M; AMr3H2
		TORNO	при сварке с применением электродной или присадочной проволоки марок			
			СвА5	СвАМц	СвАМг3	СвАМг5
Встык	Сжатие, растяжение	R _{ir}	25	40	65	70
	Изгиб		30*	45*	65	70
	Сдвиг	Rus	15	25	40	45
Угловые швы	Срез	Ruf	20	30	45	50

^{*} Для конструкций, эксплуатация которых возможна и после достижения алюминием предела текучести.


Таблипа 9

		Обозна-	Расчетное сопротивление сварных швов, H/мм ² , термически упрочняемого алюминия марок					
Сварные соединения и швы			4 W21T	АД31Т5	АДЗІТІ	АДЗЗТ; АВТ	1915T*	
	Напряженное		АД31Т; АД31Т4			при толщине		
	состояние	чение				4 – 10	ла, мм 5 — 12	
			с применением электродной или присадочной проволоки марок					
					3; 1557		1557	
Встык	Сжатие, растяжение, изгиб**	R	55	65	80	100	155	
	Сдвиг	Rws	35	40	50	60	105	
Угловые швы (фланговые и лобовые)	Срез	Ruf		45		55	110	

^{*} Сварку алюминия марки 1915Т при толщине металла 4 мм проводят только вольфрамовым электродом, при этом следует принимать $R_{ws} = 110 \text{ H/мм}^2$.

Примечания

6.5 Расчетное сопротивление R_{WZ} алюминия в околошовной зоне (рисунок 1, сечение 1 — 1) при аргонодуговой сварке и использовании электродной или присадочной проволоки следует принимать по таблице 10.

a – встык; δ – внахлест лобовыми швами; s – внахлест фланговыми швами; s – схема прикрепления поперечного элемента 1 к элементу 2, не имеющему стыка; 1-1 – расчетное сечение

Рисунок 1 - Схемы сварных соединений конструкций

^{**} При сварке плавящимся (автоматическая и механизированная сварка) или вольфрамовым (ручная и механизированная сварка) электродом.

Расчетные сопротивления сварных соединений алюминия марки 1915Т указаны для прессованных профилей и листов.

² Расчетные сопротивления сварных соединений могут быть повышены повторной закалкой и старением (после сварки соединения), при этом для сплава AД31 следует принимать $R_w = 0.9R$; для сплава 1915Т — $R_w = R$ (где R — расчетное сопротивление, определяемое по таблице 6).

³ В сварных нахлесточных соединениях из сплава АДЗ! применять лобовые швы не допускается.

Таблипа 10

			Расчетное сопротивление, Н/мм ² , в околошовной зоне алюминия								
Вид сварного соединения	Напряженное состояние		термически не упрочняемого марок			термически упрочняемого марок			рок		
		•		Обозна- чение		АДІМ	АМцМ	АМг3М; АМг3Н2	АД31Т; АД31Т4	АД 31 Т 5	АДЗІТІ
			_	11	ри сварке с пр	онменением п	роволоки ма	врок			
			СвА5	Св.	АМг3	C	BAMr3; 155	7	1557		
Встык и внахлест лобовыми швами (сечение I – I на рисунках 1,а и 1,6)	Растяжение, сжатие и изгиб	Ruz	25	40	65	55	65	80	160		
	Сдвиг	R _{wzs}	15	25	40	35	40	50	105		
Внахлест фланговыми швами (сечение <i>l – l</i> на рисунке 1,в)	Растяжение, сжатие и изгиб	Ruz	25	40	65	50	60* 75*	<u>80*</u> 105*	140* 155*		

* Для соединения прессованных профилей внахлест.

Примечания

1 Расчетное сопротивление R_{wz} алюминия марки 1915Т указано для профилей толщиной 5 — 12 мм. Для профилей толщиной 4 мм при сварке вольфрамовым электродом $R_{wz} = 165 \text{ H/мм}^2$.

2 Влияние продольных сварных швов элементов конструкций (в обшивках, кровельных полотнищах и т.п.) на разупрочнение алюминия в околошовной зоне не учитывают.

3 Над чертой указаны расчетные сопротивления при сварке алюминия вольфрамовым электродом, под чертой – плавящимся электродом.

- 6.6 При расчете на прочность сварных конструкций с элементами без стыка, к которым прикрепляются сваркой поперечные элементы (рисунок 1, г), следует учитывать ослабление этих элементов в зоне термического влияния путем снижения расчетного сопротивления алюминия R до значения R_w , принимаемого по таблицам 8 и 9.
- 6.7 В алюминиевых тонколистовых конструкциях применяют аргонодуговую точечную сварку плавящимся электродом. Расчетная несущая способность на срез сварных точек, выполненных аргонодуговой точечной сваркой плавящимся электродом, указана в таблице 11.

Таблица 11

Сварка	Толщина элементов, мм	Расчетная несущая способность точки на срез. <i>Н</i>
Аргонодуговая точечная	1,0 + 1,0	1950
плавящимся электродом (алюминий марок AMr2H2	1,0 + 2,0	2350
и АМг3Н2;	1,5 + 1,5	2950
сварочная проволока марки СвАМг3 или 1557)	2,0 + 2,0	3350
Примечание – Первая цио	рра в графе «толщина элементов»	 толщина верхного элемента.

6.8 Расчетные сопротивления срезу сварных соединений внахлест $R_{\text{изм}}$, выполненных контактной роликовой сваркой, для алюминия марок АД1М, АМцМ, АМг2М и АМг3М следует принимать равными расчетным сопротивлениям R (см. таблицы 3 и 7).

Для алюминия марок АМг2Н2 или АМг3Н2 $R_{wsm} = (0.9 - 0.11) R (t - тоящина более тонкого из свариваемых элементов, мм).$

6.9 Расчетные сопротивления заклепочных и болтовых соединений для расчетных температур от 50 °C до минус 65 °C приведены в таблицах 12 и 13.

Таблипа 12

Соединение	Напряженное	Обозна-	Расчетное сопротивление соединский на болтах <i>R</i> ь. Н/мм². из алюминия марок					
на болтах	состояние	ченис	AMr5n	АДЗЗТ1; ABT1	Д18Т	B65T	B94T1	
Повышенной	Растяжение	Rht	125	160	145	200	250	
точности	Срез	R_{h}	90	95	95	130	150	
Нормальной и	Растяжение	R _{hi}	125	160	145	200	250	
грубой точности	Срез	Rhs	80	85	85	115	135	
Соединение на	Расчетное сопротивление срезу соединений на заклепках R_{rs} , $H/мм^2$, из алюминия марок							
заклепках	АДІН	АМцН	АМг2Н	АМг5пМ; АД33Т1; АВТ1; Д18п	Д18Т	B65T	B94TI	
	35	40	70	100	110	145	170	

Примечания

Для соединений на болтах и заклепках расчетные сопротивления растяжению и срезу следует принимать по материалу заклепок или болтов (см. таблицу 12), смятию – по материалу соединяемых элементов (см. таблицу 13).

¹ Расчетное сопротивление на растяжение болтов с обжимными кольцами следует принимать равным $0.9R_{tot}$

² В продавленные отверстия ставить заклепки не долускается.

³ Расчетные сопротивления соединений на заклепках с потайными или полупотайными головками следует снижать на 20 %. Указанные заклепки растягивающие усилия не воспринимают.

- 6.10 Расчетные сопротивления растяжению R_{bi} и срезу R_{bs} соединений на болтах, поставленных в сверленые или рассверленные отверстия, приведены в таблице 12.
- 6.11 Расчетные сопротивления срезу R_{rs} соединений на заклепках, поставленных в холодном состоянии в сверленые и затем рассверленные отверстия, приведены в таблице 12.
- 6.12 Расчетные сопротивления смятию элементов конструкций для соединений на заклепках R_{rp} и болтах R_{bp} , поставленных в сверленые или рассверленые отверстия, следует принимать по таблице 13.

Таблица 13

Марка алюминия элементов конструкций	Расчетное сопротивление смятию элементов конструкций, Н/мм², для соединений				
конструкции	на заклепках R_{rp}	на болтах Rbn			
АДІМ	40	35			
АМиМ	65	60			
АМцН2; АВТ	160	145			
АМг2М; АМг3М; АВМ	110	100			
АМг2Н2; АМг3Н2; АД31Т1	195	175			
АДЗ1Т; АДЗ1Т4	90	80			
АДЗІТ5	155	140			
АД33Т	140	125			
ABTI	270	255			
B95T1	460	420			
1915T	315	285			
1925T1	275	245			

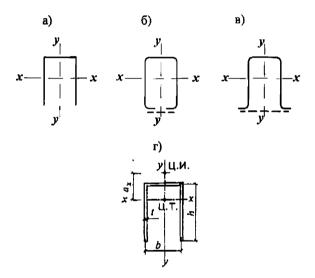
Примечани и е — Расчетные сопротивления привсдены для соединений на болтах, поставленных на расстоянии 2d от их оси до края элемента. При сокращении этого расстояния до 1.5d приведенные расчетные сопротивления следует понижать на 40 %.

- 6.13 Расчетные сопротивления алюминия и литейного алюминия, соединений сварных и на болтах для конструкций, эксплуатируемых при расчетных температурах свыше 50 °C, необходимо умножать на коэффициент γ , указанный в таблице 5.
- 6.14 При расчете элементов и соединений алюминиевых конструкций следует учитывать коэффициенты условий работы κ , принимаемые по таблице 6.

7 Расчет элементов алюминиевых конструкций при центральном растяжении, сжатии и изгибе

7.1 Расчет элементов сплошного сечения

7.1.1 Расчет на прочность элементов, подверженных центральному растяжению или сжатию силой N, следует выполнять по формуле


$$\frac{N}{A_n R \gamma_c} \le 1. \tag{1}$$

7.1.2 Расчет на устойчивость элементов сплошного сечения (приведенных в таблице $\Gamma.1$), подверженных центральному сжатию силой N, следует выполнять по формуле

$$\frac{N}{\varphi A R \gamma_c} \leq 1. \tag{2}$$

Численные значения коэффициента φ приведены в таблицах $\Gamma.2$ и $\Gamma.3$.

- 7.1.3 При расчете стержней из одиночных уголков на центральное сжатие радиус инерции сечения i следует принимать:
 - а) минимальным, если стержни прикреплены только по концам:
- б) относительно оси, параллельной одной из полок уголка при наличии промежуточного закрепления (распорок, шпренгелей, связей и т.п.), предопределяющего направление вышучивания уголка в плоскости, параллельной второй полке.
- 7.1.4 Сжатые элементы со сплошными стенками открытого П-образного сечения (рисунок 2), не усиленные и усиленные отбортовками или утолщениями (бульбами), при $\lambda_x < 3\lambda_y$ (λ_x и λ_y расчетные гибкости элемента в плоскостях, перпендикулярных к осям x-x и y-y) следует укреплять планками или решеткой, при этом должны быть выполнены требования 7.2.2 и 7.2.6.

а – открытое; б, в – укрепленные планками или решетками; г – расчетное сечение

Рисунок 2 - П-образные сечения элементов

При отсутствии планок или решеток такие элементы, помимо расчета по формуле (2) в главных плоскостях x - x и y - y, следует проверять на устойчивость при изгибно-крутильной форме потери устойчивости по формуле

$$\frac{N}{c\varphi_{\nu}AR\gamma_{c}} \leq 1, \tag{3}$$

где c — коэффициент, вычисляемый по формуле

$$c = \frac{2}{1 + \delta + \sqrt{(1 - \delta)^2 + \frac{16}{\mu}\alpha^2}},$$
 (4)

где $\delta = 4\rho / \mu$; $\mu = 8\omega + 0.156 I_t \lambda_v^2 / (Ah^2)$;

$$\rho = (I_x + I_y) / (Ah^2) + \alpha^2;$$

 $\alpha = a_x / h$ – относительное расстояние между центром изгиба и центром тяжести; $\omega = I_{\omega} / (I_{\omega} h^2)$ – здесь I_{ω} – секториальный момент инерции сечения;

 $I_i = 0.37 \Sigma b_i t_i^3$ — момент инерции сечения при свободном кручении, здесь b_i и t_i — соответственно ширина и толщина листов, образующих сечение, включая стенку.

Для сечения, приведенного на рисунке $2, \Gamma$, при $\eta = b / h$:

$$A = h t (2 + \eta);$$

$$I_{\omega} = t h^{3}b^{2} (3 + 2 \eta) / [12 (6 + \eta)] = A h^{2}b^{2} (3 + 2 \eta) / [12 (6 + \eta)(2 + \eta)];$$

$$I_{y} = h t b^{2} (6 + \eta) / 12 = A b^{2} (6 + \eta) / [12 (2 + \eta)];$$

$$I_{x} = t h^{3} (1 + 2 \eta) / [3 (2 + \eta)] = A h^{2} (1 + 2 \eta) / [3 (2 + \eta)^{2}];$$

$$\omega = \frac{3 + 2\eta}{(6 + \eta)^{2}}; \quad \alpha = \frac{4(3 + \eta)}{(2 + \eta)(6 + \eta)}.$$
(5)

При наличии утолщений круглого сечения (бульб) момент инерции при кручении L следует увеличить на $n \pi D^4/32$, где n – число бульб в сечении; D – диаметр бульб.

7.2 Расчет элементов сквозного сечения

- 7.2.1 Расчет на прочность элементов сквозного сечения при центральном растяжении и сжатии следует выполнять по формуле (1), где A_n площадь сечения нетто всего стержня.
- 7.2.2 При расчете на устойчивость по формуле (2) для составных сжатых стержней сквозного сечения, ветви которых соединены планками или решетками, коэффициент φ относительно свободной оси (перпендикулярной к плоскости планок или решеток) следует определять по таблице Γ .2 с заменой $\overline{\lambda}$ на $\overline{\lambda}_{ef}$. Значение $\overline{\lambda}_{ef} = \lambda_{ef} \sqrt{R/E}$ условную гибкость стержня следует определять в зависимости от значений λ_{ef} , приведенных в таблице 14 для стержней с числом панелей не менее шести.
- 7.2.3 В сквозных стержнях с планками условная гибкость отдельной ветви $\overline{\lambda}_{bl}$, $\overline{\lambda}_{b2}$ или $\overline{\lambda}_{b3}$, (см. таблицу 14) на участке между сварными швами или крайними болтами (заклепками), прикрепляющими планки, должна быть не более 1,4.

При наличии в одной из плоскостей сплошного листа вместо планок (см. рисунок 2,6, в) гибкость ветви следует вычислять по радиусу инерции полусечения относительно его центральной оси, перпендикулярной к плоскости планок.

7.2.4 В сквозных стержнях с решетками помимо расчета на устойчивость стержня в целом следует проверять устойчивость отдельных ветвей на участках между узлами. При необходимости следует учитывать влияние моментов в узлах, например от расцентровки элементов решетки.

В сквозных стержнях с решетками условная гибкость отдельных ветвей между узлами должна быть не более 2,7 и не должна превышать условную приведенную гибкость $\bar{\lambda}$ $_{ef}$ стержня в целом.

Таблица 14

Тип	Схема сечения	Приведениая гибкость λ_{cf} стеря	кня сквозного сечения
		с планками	с решетками
1		$\lambda_{ef} = \sqrt{\lambda_y^2 + 0.82(1+n)\lambda_{b1}^2}$, (6) где $n = \frac{I_{b1}b}{I_s I_b}$	$\lambda_{ef} = \sqrt{\lambda_y^2 + \alpha \frac{A}{A_{d1}}}$, (9) где $\alpha = 10 \frac{d^3}{b^2 l_b}$
2		$\lambda_{ef} = \sqrt{\lambda_{max}^2 + 0.82 \left[(1 + n_1) \lambda_{b1}^2 + (1 + n_2) \lambda_{b2}^2 \right]},$ (7) где $n_1 = \frac{I_{b1} b_1}{I_{s1} I_b};$ $n_2 = \frac{I_{b2} b_2}{I_{s2} I_b}$	$\lambda_{ef} = \sqrt{\lambda_{\max}^2 + \left(\alpha_1 + \alpha_2 \frac{A_{d1}}{A_{d2}}\right) \frac{A}{A_{d1}}},$ (10) где $\alpha_1 = 10 \frac{d_1^3}{b_1^2 l_b};$ $\alpha_2 = 10 \frac{d_2^3}{b_2^2 l_b}$ (d_1 и d_2 относятся к сторонам соответственно b_1 и b_2)
3	1 1 - 1	$\lambda_{ef} = \sqrt{\lambda_{max}^2 + 0.82(1 + n_3)\lambda_{b3}^2}$, (8) где $n_3 = \frac{I_{b3}b}{I_s I_b}$	$\lambda_{ef} = \sqrt{\lambda_{max}^2 + 0.67 \alpha \frac{A}{A_{d3}}}$, (11) где $\alpha = 10 \frac{d^3}{b^2 l_b}$

Окончание таблицы 14

Обозначения, принятые в таблице 14:

 λ_0 — гибкость сквозного стержня в целом в плоскости, перпендикулярной к оси y-y;

 λ_{\max} — наибольшая из гибкостей сквозного стержня в целом в плоскостях, перпендикулярных к осям x-x или y-y;

 λ_{b1} , λ_{b2} , λ_{b3} — гибкости отдельных ветвей при изгибе в плоскостях, перпендикулярных к осям соответственно 1-1, 2-2 и 3-3, на участках между сварными плами или храйними болтами, прикрепляющими планки;

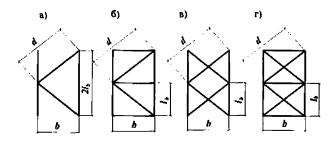
 $b_1(b_1, b_2)$ — расстояние между осями ветвей;

 $d, l_b =$ размеры, определяемые по рисункам 3 и 4;

площадь сечения всего стержия;

 A_{d1} , A_{d2} — площади сечений раскосов решеток (при крестовой решетке — двух раскосов), расположенных соответственно в плоскостях, перпендикулярных к осям 1-1 и 2-2;

А_d – площадь сечения раскоса решетки (при крестовой решетке – двух раскосов), лежащей в плоскости одной грани (для трехгранного равностороннего стержня);


I_{b1}, I_{b3} → моменты инерции сечения ветвей относительно осей соответственно 1-1 и 3-3 (для сечений типов 1 и 3);

 I_{b1} , I_{b2} — то же, двух уголков относительно осей соответственно 1-1 и 2-2 (для сечения типа 2);

 I_s — момент инерции сечения одной планки относительно собственной оси x - x (рисунок 4; для сечений типов 1 и 3);

 I_{si} , I_{s2} — момент инершии сечения одной из планок, расположенных в плоскостях, перпендикулярных к осям соответственно 1-1 и 2-2 (для сечения типа 2).

П р и м е ч а н и е — К типу I также следует относить сечения, у которых вместо швеллеров применены двутавры, трубчатые и другие профили для одной или обеих ветвей; при этом оси y - y и I-1 должны проходить через центры тяжести соответственно сечения в целом и отдельной ветви, а значения n и λ_{b1} в формуле (6) должны обеспечивать наибольшее значение λ_{c1} .

а – треугольная: 6 – треугольная с распорками;
 в – крестовая;
 г – крестовая с распорками
 Рисунок 3 – Схемы решеток сквозных стержней

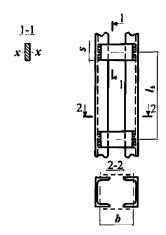


Рисунок 4 - Сквозной стержень с планками

7.2.5 Расчет стержней составных сечений из уголков, швеллеров и др., соединенных вплотную или через прокладки, следует выполнять как сплошностенчатых при условии, что участки между соединяющими сварными швами или центрами крайних болтов не превышают для сжатых элементов 30*i* и для растянутых 80*i*. Здесь радиус инерции сечения *i* уголка или швеллера следует принимать для тавровых или двутавровых сечений относительно оси, параллельной плоскости расположения прокладок, а для крестовых сечений – минимальный.

При этом в пределах длины сжатого элемента следует предусматривать не менее двух промежуточных связей (прокладок).

7.2.6 Расчет соединительных планок и элементов решеток сжатых стержней сквозного сечения следует выполнять на условную поперечную силу Q_{fic} , принимаемую постоянной по всей длине стержня и вычисляемую по формуле

$$Q_{Rc} = 4.2 \cdot 10^{-6} (4000 - E/R) N/\varphi, \tag{12}$$

где N – продольное усилие в сквозном стержне;

 φ — коэффициент устойчивости при центральном сжатии, принимаемый при расчете сквозного стержня в плоскости планок или решеток.

Условную поперечную силу $Q_{\theta c}$ следует распределять:

при наличии только соединительных планок (решеток) — поровну между планками (решетками), лежащими в плоскостях, перпендикулярных к оси, относительно которой проводят проверку устойчивости;

при наличии сплошного листа и соединительных планок (решеток) - пополам между листом и планками (решетками), лежащими в плоскостях, парадлельных листу;

при расчете равносторонних трехгранных сквозных стержней - по 0,8 Q_{fic} для каждой системы соединительных планок (рещеток), расположенной в одной грани.

7.2.7 Расчет соединительных планок и их прикреплений (см. рисунок 4) следует выполнять, как расчет элементов безраскосных ферм, на совместное действие силы F₂, срезывающей планку, и момента M_s , изгибающего планку в ее плоскости, значения которых следует вычислять по формулам:

$$F_s = Q_s l_b / b;$$
 (13)
 $M_s = O_s l_b / 2,$ (14)

$$M_s = Q_s l_b / 2, (14)$$

где Q_s — условная поперечная сила, приходящаяся на планку одной грани.

7.2.8 Расчет элементов соединительных решеток составных стержней следует выполнять как расчет элементов решеток плоских ферм. При расчете раскосов решеток по рисунку 3 усилие в раскосе следует вычислять по формуле

$$N_d = \alpha_i Q_s d / b, \tag{15}$$

где α_i – коэффициент, принимаемый равным: 1,0 для решетки по рисунку 3,а, б и 0,5 - по рисунку 3,в;

 Q_s – условная поперечная сила, приходящаяся на одну плоскость решетки.

При расчете раскосов крестовой решетки с распорками (рисунок 3,г) следует учитывать дополнительное усилие N_{ad} , возникающее в каждом раскосе от обжатия ветвей и вычисляемое по формуле

$$N_{ad} = \alpha_2 N_b A_d / A_b \,, \tag{16}$$

 $\alpha_2 = d l_+^2 / (2b^3 + d^3) -$ здесь b, l_b, d – размеры, указанные на рисунке 3; гле

 N_b — усилие в одной ветви стержня;

 A_d , A_b – площадь сечения раскоса и ветви соответственно.

7.2.9 Расчет стержней, предназначенных для уменьшения расчетной длины сжатых элементов, следует выполнять на усилие, равное условной поперечной силе в основном сжатом элементе, определяемой по формуле (12).

7.3 Расчет изгибаемых элементов

7.3.1 Расчет на прочность элементов следует выполнять по формулам: при действии момента в одной из главных плоскостей

$$\frac{M}{W_{n,min} R \gamma_c} \le 1; \tag{17}$$

при действии в сечении поперечной силы

$$\frac{QS}{I_{l_w}R_s\gamma_c} \le 1; \tag{18}$$

при действии моментов в двух главных плоскостях (и наличии бимомента)

$$\frac{M_x}{I_{xx}R_y\gamma_c}y \pm \frac{M_y}{I_{yx}R_y\gamma_c}x \pm \frac{B\cdot\omega_k}{I_{\omega}R_y\gamma_c} \leq 1, \tag{19}$$

где х и у - расстояния от главных осей до рассматриваемой точки сечения;

B – бимомент:

І₀ – секториальный момент инерции сечения;

 ω_k — секториальная координата.

7.3.2 Для стенок балок при одновременном действии момента и поперечной силы должны быть выполнены условия:

$$\frac{1}{R\gamma_c}\sqrt{\sigma_x^2 - \sigma_x\sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \le 1, \qquad \tau_{xy}/(R_s\gamma_c) \le 1, \tag{20}$$

где $\sigma_{\!x} = M_{x} y / I_{xx}$ – нормальное напряжение в срединной плоскости стенки, параллельное продольной оси балки;

 $\sigma_y = M_y x / I_{yn}$ — то же, перпендикулярное к продольной оси балки, в том числе σ_{loc} , определяемое по формуле (42);

 $\tau_{xy} = QS / (It_w)$ - касательное напряжение в стенке.

Напряжения σ_x и σ_y , принимаемые в формуле (20) со своими знаками, а также τ_{xy} следует определять в одной и той же точке стенки балки.

В балках, рассчитываемых по формуле (19), значения напряжений в стенке балки должны быть проверены по формуле (20) в двух главных плоскостях изгиба.

При ослаблении стенки отверстиями для болтов левую часть формулы (18), а также значение τ_{xy} в формуле (20), следует умножать на коэффициент α , вычисляемый по формуле

$$\alpha = s / (s - d), \tag{21}$$

где s — шаг отверстий в одном ряду;

d – диаметр отверстия.

7.3.3 Расчет на устойчивость балок двугаврового сечения следует выполнять по формулам:

при изгибе в плоскости стенки, совпадающей с плоскостью симметрии сечения

$$\frac{M_x}{\varphi_b W_{cr} R \gamma_c} \le 1; \tag{22}$$

при изгибе в двух главных плоскостях (и наличии бимомента)

$$\frac{M_x}{\varphi_b W_{cx} R_y \gamma_c} + \frac{M_y}{W_y R_y \gamma_c} + \frac{B}{W_{\alpha} R_y \gamma_c} \le 1.$$
 (23)

В формулах (22) и (23) обозначено:

 ϕ_b – коэффициент устойчивости при изгибе, определяемый по приложению Д;

 $W_{\rm cx}$ — момент сопротивления сечения относительно оси x - x, вычисленный для сжатого пояса:

 W_y – момент сопротивления сечения относительно оси y - y, совпадающей с плоскостью изгиба;

 W_{ω} – секториальный момент сопротивления сечения.

- 7.3.4 При определении значения φ b за расчетную длину балки l_{ef} следует принимать расстояние между точками закреплений сжатого пояса от поперечных смещений (узлами поперечных связей, точками крепления жесткого настила); при отсутствии связей $l_{ef}=l$ (l пролет балки); за расчетную длину консоли следует принимать: $l_{ef}=l$ при отсутствии закрепления сжатого пояса на конце консоли в горизонтальной плоскости (в данном случае l длина консоли) или расстояние между точками закрепления сжатого пояса в горизонтальной плоскости при закреплении пояса на конце и по длине консоли.
 - 7.3.5 Устойчивость балок следует считать обеспеченной:
- а) при передаче нагрузки на балку через сплощной жесткий настил (железобетонные плиты из тяжелого, легкого и ячеистого бетона, плоский, профилированный и волнистый металлический настилы и т.п.), непрерывно опирающийся на сжатый пояс балки и с ним связанный с помощью сварки, болгов, самонарезающих винтов и др; при этом силы трения учитывать не следует;
- б) при значениях условной гибкости сжатого пояса балки $\overline{\lambda}_b = (l_{sf} / h) \sqrt{R / E}$, не превышающих ее предельных значений $\overline{\lambda}_{bh}$, определяемых по формулам таблицы 15

для балок симметричного двутаврового сечения или асимметричного — с более развитым сжатым поясом, рассчитываемых по формуле (22), и имеющих отношение ширины растянутого пояса к ширине сжатого пояса не менее 0,75.

Таблица 15

Место приложения нагрузки	Условная предельная гибкость сжатого пояса сварной или прессованной балки $\overline{\lambda}_{ub}$					
К верхнему поясу	$0,45[0,35+0,0032 \ b/t + (0,76-0,02 \ b/t) \ b/h]$	(24)				
К нижнему поясу	$0,45[0,57+0,0032 \ b/t + (0,92-0,02 \ b/t) \ b/h]$	(25)				
Независимо от уровня приложения нагрузки при расчете участка балки между связями или при чистом изгибе	$0,45[0,41+0,0032 \ b/t + (0,73-0,016 \ b/t) \ b/h]$	(26)				

Обозначения, принятые в таблице 15:

b и t - соответственно ширина и толшина сжатого пояса:

h - расстояние (высота) между осями поясных листов.

Примечания

- 1 Значения λ_{ub} определены при $1 \le h/b \le 6$ и $15 \le b/t \le 35$; для балок с отношением b/t < 15 в формулах таблицы 15 следует принимать b/t = 15.
- 2 Для балок с поясными соединениями на заклепках или высокопрочных болтах значения $\overline{\lambda}_{uh}$ следует умножать на 1,2.

При выполнении требований 7.3.5 а) балки, изгибаемые в двух плоскостях, на устойчивость не проверяются.

7.4 Расчет элементов, подверженных действию осевой силы с изгибом

7.4.1 Расчет на прочность сплошностенчатых внецентренно сжатых (сжатоизгибаемых) и внецентренно растянутых (растянуто-изгибаемых) элементов следует выполнять по формуле

$$(N/A_n \pm M_x y/I_{xn} \pm M_y x/I_{yn} \pm B \omega_k/I_{\omega n})/(R_y \gamma_c) \le 1,$$
 где x, y – расстояния от главных осей до рассматриваемой точки сечения.

7.4.2 Расчет на устойчивость внецентренно сжатых и сжато-изгибаемых элементов при действии момента в одной из главных плоскостей следует выполнять как в этой плоскости (плоская форма потери устойчивости), так и из этой плоскости (изгибно-крутильная форма потери устойчивости).

Расчет на устойчивость внецентренно сжатых и сжато-изгибаемых элементов постоянного сечения в плоскости действия момента, совпадающей с плоскостью симметрии, следует выполнять по формуле

$$N/(\varphi_{\varepsilon}AR\gamma_{\varepsilon}) \le 1. \tag{28}$$

В формуле (28) коэффициент устойчивости при сжатии с изгибом ϕ_{ϵ} следует определять:

а) для сплошностенчатых стержней по таблице E.1 в зависимости от условной гибкости $\overline{\lambda}$ и приведенного относительного эксцентриситета m_{ef} , определяемого по формуле

$$m_{ef} = \eta m, \tag{29}$$

где η — коэффициент влияния формы сечения, определяемый по таблице E.3; $m = eA / W_c$ — относительный эксцентриситет (здесь e = M / N — эксцентриситет, при

вычислении которого значения M следует принимать согласно требованиям 7.4.3; W_c — момент сопротивления сечения, вычисленный для наиболее сжатого волокна).

При значениях $m_{ef} > 10$ расчет на устойчивость сплошностенчатых стержней выполнять не требуется.

б) для сквозных стержней с решетками или планками, расположенными в плоскостях, парадлельных плоскости изгиба, — по таблице Е.2 в зависимости от условной приведенной гибкости, вычисляемой по формуле

$$\overline{\lambda}_{ef} = \lambda_{ef} \sqrt{R/E} \,, \tag{30}$$

и относительного эксцентриситета т, вычисляемого по формуле

$$m_x = e_x \frac{A y_1}{I_x}$$
 или $m_y = e_y \frac{A x_1}{I_x}$, (31)

где x_1, y_2 – расстояния соответственно от оси y-y или x-x до оси наиболее сжатой ветви, но не менее расстояния до оси стенки ветви.

В составных сквозных стержнях каждую ветвь необходимо проверять по формуле (27) при соответствующих значениях N, M_x , M_y , вычисленных для данной ветви.

7.4.3 Расчетные значения изгибающих моментов M, необходимые для вычисления эксцентриситета e = M / N в элементе (для одного и того же сочетания нагрузок), следует принимать равными:

для стержней постоянного сечения рамных систем — наибольшему моменту в пределах длины стержней;

для ступенчатых стержней – наибольшему моменту на длине участка постоянного сечения;

для консолей – моменту в заделке, но не менее момента в сечении, отстоящем на треть длины стержня от заделки;

для сжатых стержней с шарнирно-опертыми концами и сечениями, имеющими одну ось симметрии, совпадающую с плоскостью изгиба, — моменту, определяемому по формулам таблицы 16 в зависимости от относительного эксцентриситета $m_{max} = M_{max} A / (NW_c)$ и принимаемому равным не менее $0.5 M_{max}$.

Таблина 16

Относительный	Момент М при условной гибкости стержня				
эксцентриситет m_{max}	λ̄<4	\(\overline{\lambda} \in 4			
$m_{max} \le 3$	$M = M_2 = M_{max} - 0.25 \overline{\lambda} (M_{max} - M_1)$	$M = M_1$			
$3 \le m_{max} \le 10$	$M = M_2 + (m_{max} - 3)(M_{max} - M_2) / 7$	$M = M_1 + (m_{max} - 3)(M_{max} - M_1) / 7$			

 M_1 — наибольший изгибающий момент в пределах средней трети длины стержня, принимаемый равным не менее $0.5\ M_{max}$.

Для сжатых стержней с шарнирно-опертыми концами и сечениями, имеющими две оси симметрии, приведенные относительные эксцентриситеты $m_{\rm ef}$ следует определять по таблице E.4.

7.4.4 Расчет на устойчивость внецентренно сжатых стержней сплошного постоянного сечения из плоскости действия момента при изгибе их в плоскости наибольшей жесткости ($I_x > I_y$), совпадающей с плоскостью симметрии, а также швеллеров спедует вычислять по формуле

$$N/(c \varphi_{Y} A R \gamma_{c}) \le 1, \tag{32}$$

где c – коэффициент, вычисляемый по формуле

$$c = \beta / (1 + \alpha m_x) \le 1, \tag{33}$$

здесь α, β - коэффициенты, вычисляемые по таблице 17.

Т	à	б	л	и	TT	a	1	7

	Схема сечения	Значения коэффициентов		
Тип		α при	β при	
ия ия	и эксцентриситет	1 < m _x ≤ 5	$\overline{\lambda}_y \le 3.8$	$\overline{\lambda}_y > 3.8$
ì	x x			
2	x y y x	0,75 + 0,05 m _x	l	$\sqrt{arphi_c/arphi_y}$
3	x x			
4		$I = (0.25 - 0.05m_x)I_2/I_1$	1	$1-(1-\sqrt{\varphi_c/\varphi_y})(2I_2/I_1-1$ $\beta=1$ при $I_2/I_1<0.5$
5	Замкнутое или сквозное с решетками или планками	$0,55 + 0,05 m_x$	1	$\sqrt{\varphi_c/\varphi_y}$

Обозначения, принятые в таблице 17:

 I_{1} и I_{2} — моменты инерции соответственно большей и меньшей полок относительно оси симметрии сечения y-y;

 ϕ_c – значение ϕ_y при $\overline{\lambda}_v = 3.8$.

П римечания

1 При значениях b/h < 0.3 следует принимать b/h = 0.3.

2 При значениях $m_x < 1$ или $m_x > 5$ следует принимать соответственно $m_x = 1$ или $m_x = 5$.

Значения коэффициентов α и β для сквозных стержней с решетками или планками следует принимать только при наличии не менее двух промежуточных диафрагм по длине стержня. В противном случае следует принимать коэффициенты, установленные для стержней открытого двугаврового сечения.

При определении относительного эксцентриситета m_x за расчетный момент M_x следует принимать:

для стержней с шарнирно-опертыми концами, закрепленными от смещения перпендикулярно к плоскости действия момента, — максимальный момент в пределах средней трети длины, но не менее половины наибольшего момента по длине стержня;

для консолей – момент в заделке, но не менее момента в сечении, отстоящем на треть длины стержня от заделки.

При гибкости $\overline{\lambda}_y > 3,8$ коэффициент c не должен превышать для стержней: замкнутого сечения — единицы;

двугаврового сечения - значений, вычисляемых по формуле

$$c_{max} = \frac{2}{1 + \delta + \sqrt{\left(1 - \delta\right)^2 + \frac{16}{\mu} \left(\frac{M_x}{Nh}\right)^2}}$$
(34)

где $\delta = 4\rho / \mu$;

 $\mu = 2 + 0.156I_1 \lambda_v^2 / (Ah^2);$

 $\rho = (I_x + I_y) / (Ah^2);$

 $I_i = \frac{\kappa}{3} \Sigma b_i \ t_i^3$; где $\kappa = 1,29$ — для двутаврового сечения с двумя осями

симметрии; $\kappa = 1,25$ – для двугаврового сечения с одной осью симметрии; $\kappa = 1,20$ – для таврового сечения;

h - расстояние между осями поясов.

7.4.5 Внецентренно сжатые элементы постоянного сечения, изгибаемые в плоскости наименьшей жесткости ($I_y < I_x$ и $e_y \ne 0$), следует рассчитывать по формуле (28), а при гибкости $\lambda_x > \lambda_y$ – также проверять расчетом на устойчивость из плоскости действия момента как центрально сжатые элементы по формуле

$$N/(\varphi_x A R \gamma_0) \le 1, \tag{35}$$

где ϕ_x — коэффициент устойчивости при центральном сжатии, определяемый согласно требованиям 7.1.2.

При $\lambda_x \leq \lambda_y$ проверки устойчивости из плоскости действия момента не требуется.

7.4.6 При проверке на устойчивость внецентренно сжатых стержней сквозного сечения с соединительными планками или решетками следует выполнять расчет как стержня в целом, так и отдельных вствей.

При расчете стержня в целом относительно свободной оси по формуле (28), когда решетка или планки расположены в плоскостях, параллельных плоскости действия момента, коэффициент φ_e следует определять по таблице E.2 в зависимости от условной приведенной гибкости $\overline{\lambda}_{ef}$ и относительного эксцентриситета m, вычисляемого по формуле

$$m = e Aa / I, (36)$$

где e = M / N – эксцентриситет, при вычислении которого значения M следует принимать согласно требованиям 7.4.3;

а – расстояние от главной оси сечения, перпендикулярной к плоскости действия момента, до оси наиболее сжатой ветви, но не менее расстояния до оси стенки ветви.

I – момент инерции сечения сквозного стержня относительно свободной оси.

При значениях m > 10 расчет на устойчивость стержня в целом не требуется; в этом случае расчет следует выполнять как для изгибаемых элементов.

При расчете отдельных ветвей сквозных стержней с решетками по формуле (2) продольную силу в каждой ветви следует определять с учетом дополнительного усилия N_{ad} от момента. Значение этого усилия следует вычислять по формулам:

 $N_{ad} = M_y / b$ – при изгибе стержня в плоскости, перпендикулярной к оси y - y, для сечений типов 1 и 3 (см. таблицу 14);

 $N_{ad} = 0.5 M_{Y} / b_{1}$ — то же, для сечений типа 2 (см. таблицу 14);

 $N_{ad} = 1,16M_x / b$ — при изгибе стержня в плоскости, перпендикулярной к оси x - x, для сечений типов 1 и 3 (см. таблицу 14);

 $N_{ad} = 0.5 M_x / b_2$ — то же, для сечений типа 2 (см. таблицу 14).

В данном случае b, b_1 , b_2 – расстояния между осями ветвей (см. таблицу 14).

При изгибе стержня сквозного сечения типа 2 (см. таблицу 14) в двух плоскостях усилие N_{ad} следует вычислять по формуле

$$N_{ad} = 0.5 (M_{\nu}/b_1 + M_{\chi}/b_2). \tag{37}$$

При расчете отдельных ветвей сквозных стержней с планками в формуле (28)

следует учитывать дополнительное усилие N_{ad} от момента M и местный изгиб ветвей от фактической или условной поперечной силы (как в поясах безраскосной фермы).

7.4.7 Расчет на устойчивость стержней сплошного постоянного сечения, подверженных сжатию и изгибу в двух главных плоскостях, при совпадении плоскости наибольшей жесткости ($I_x > I_y$) с плоскостью симметрии, а также при сечении типа 3 (см. таблицу 14) следует выполнять по формуле

$$N/(\varphi_{\rm exp} A R \gamma_c) \le 1, \tag{38}$$

где $\varphi_{\rm exy} = \varphi_{\rm ey} (0.6\sqrt[3]{c} + 0.4\sqrt[4]{c}).$

Здесь следует определять:

 ϕ_{ey} — согласно требованиям 7.4.2, принимая в формулах вместо m и $\bar{\lambda}$ соответственно m_y и $\bar{\lambda}_y$;

c — согласно требованиям 7.4.4.

Если $m_{ef,y} < 2m_x$, то кроме расчета по формуле (38), следует провести дополнительную проверку по формулам (28) и (32), принимая $e_y = 0$.

Если $\lambda_x > \lambda_y$, то кроме расчета по формуле (38), следует провести дополнительную проверку по формуле (28), принимая $e_y = 0$.

Значения относительных эксцентриситетов следует вычислять по формулам:

$$m_x = e_x A / W_{cx} \times m_y = e_y A / W_{cy},$$
 (39)

где W_{cx} и W_{cy} – моменты сопротивления сечений для наиболее сжатого волокна относительно осей соответственно x-x и y-y.

Если плоскость наибольшей жесткости сечения стержня ($I_x > I_y$) не совпадает с плоскостью симметрии, то расчетное значение m_x следует увеличить на 25 %.

7.4.8 Расчет на устойчивость сквозных стержней из двух сплошностенчатых ветвей, симметричных относительно оси x - x (рисунок 5), с решетками в двух параллельных плоскостях, подверженных сжатию и изгибу в обеих главных плоскостях, следует выполнять:

для стержня в целом – в плоскости, параллельной плоскостям решеток, согласно требованиям 7.4.2, принимая $e_r = 0$:

для отдельных ветвей — как внецентренно сжатых элементов по формулам (28) и (32); при этом продольную силу в каждой ветви следует определять с учетом дополнительного усилия от момента M_y (см. 7.4.6), а момент M_x распределять между ветвями пропорционально их жесткостям I_{xe} (см. рисунок 5); если момент M_x действует в плоскости одной из ветвей, то следует считать его полностью передающимся на эту ветвь.

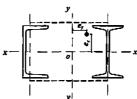


Рисунок 5 - Схема стержня сквозного сечения из двух сплошностенчатых ветвей

При расчете отдельной ветви по формуле (32) ее гибкость определяют по максимальному расстоянию между узлами решетки.

7.4.9 Расчет соединительных планок или решеток сквозных внецентренно сжатых стержней согласно требованиям 7.2.6 и 7.2.8 следует выполнять на поперечную силу, равную большему из двух значений: фактической поперечной силы Q или условной поперечной силы Q_{fic} , вычисляемой согласно требованиям 7.2.6.

В случае, когда фактическая поперечная сила больше условной, ветви сквозных внецентренно сжатых элементов следует соединять решетками.

7.5 Проверка устойчивости стенок и поясных листов изгибаемых и сжатых элементов

Стенки балок

7.5.1 Стенки балок для обеспечения их устойчивости следует укреплять двусторонними ребрами:

поперечными, поставленными на всю высоту стенки:

поперечными и продольными, а также поперечными промежуточными, расположенными в сжатой зоне стенки балки.

7.5.2 Расчет на устойчивость стенок балок следует выполнять с учетом всех компонентов напряженного состояния: σ , τ и σ_{loc} . Напряжения σ , τ и σ_{loc} следует вычислять в предположении упругой работы материала по сечению брутто без учета коэффициента ϕ_b .

Сжимающее (краевое) напряжение σ у расчетной границы стенки, принимаемое со знаком «плюс», и среднее касательное напряжение τ следует вычислять по формулам:

$$\sigma = M y / I_x; \tag{40}$$

$$\tau = O/(t_{w} h_{w}), \tag{41}$$

- где M и Q средние значения соответственно изгибающего момента и поперечной силы в пределах отсека; если длина отсека a (расстояние между осями поперечных ребер жесткости) больше его расчетной высоты h_{ef} , то значения M и Q следует вычислять как средние для более напряженного участка с длиной, равной h_{ef} ; если в пределах отсека момент или поперечная сила меняют знак, то их средние значения следует вычислять на участке отсека с одним знаком;
 - h_{ef} расчетная высота стенки, равная: в балках с поясными соединениями на высокопрочных болтах расстоянию между ближайшими к оси балки краями поясных уголков; в клепаных балках расстоянию между ближайшими к оси балки рисками поясных уголков; в сварных балках полной высоте стенки; в прессованных профилях высоте в свету между полками (рисунок 6):
 - h_{w} полная высота стенки:
 - t_{10} толщина стенки.

Местное напряжение σ_{loc} (σ_{loc} ,) в стенке под сосредоточенной нагрузкой следует определять согласно требованиям 7.5.4.

7.5.3 Устойчивость стенок балок следует считать в соответствии с требованиями, если условная гибкость стенки $\vec{\lambda}_w = (h_{ef}/t)\sqrt{R/E}$ не превыплает предельных значений:

75 (1 – 95
$$R/E$$
) $\sqrt{R/E}$ – для сварных или прессованных балок:

115 (1 – 123 R/E) $\sqrt{R/E}$ — для балок на болтах и высокопрочных болтах.

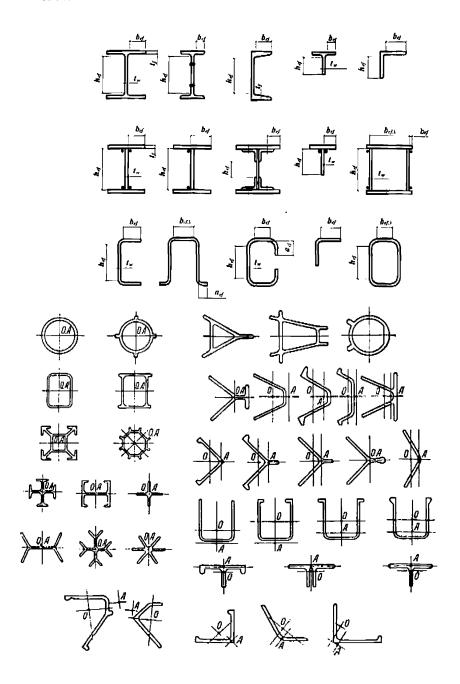


Рисунок 6 — Расчетные размеры стенок, свесов полок, поясных листов в прессованных, составных и гнутых профилях и типы прессованных профилей

Стенки балок следует укреплять поперечными ребрами жесткости (см. 7.5.6) при $\overline{\lambda}_w > 2,5.$

При сосредоточенной нагрузке на верхнем поясе балки в местах, не укрепленных ребрами, местное напряжение в стенке под грузом σ_{loc} следует вычислять по формуле

$$\sigma_{loc} = \frac{F}{t I_{ar} R \gamma_o} < 1, \tag{42}$$

F — расчетное значение сосредоточенной нагрузки (силы); t — толщина стенки;

 $l_{ef} = c \sqrt[3]{\frac{I_f}{f}}$ — условная длина распределения сосредоточенной нагрузки;

- коэффициент, принимаемый равным 3,25 для сварных балок и 3,75 для балок на высокопрочных болтах;

- момент инерции пояса балки относительно собственной оси.

В отсеках, где местная нагрузка приложена к растянутому поясу, одновременно учитывают только два компонента – σ и τ или σ_{loc} и τ .

Расчет на устойчивость стенок балок симметричного сечения, укрепленных только поперечными ребрами жесткости, при наличии местного напряжения ($\sigma_{loc} \neq 0$) следует выполнять:

а) при
$$\frac{a}{h_{cf}} \le 0.8$$
 — по формуле
$$\sqrt{(\sigma/\sigma_{cr} + \sigma_{loc}/\sigma_{loc,cr})^2 + (\tau/\tau_{cr})^2} / 0.99 \le 1, \tag{43}$$

где σ , σ_{loc} и τ — значения, определяемые согласно требованиям 7.5.2;

 σ_{cr} и τ_{cr} — значения, определяемые по формулам (50) и (51);

 $\sigma_{loc,cr}$ — критическое напряжение смятия стенки под нагрузкой, определяемое по формуле

$$\sigma_{loc,cr} = c_l R / \overline{\lambda}_a^2, \tag{44}$$

здесь c_i – коэффициент, принимаемый по таблице 18, $\overline{\lambda}_a^2 = \frac{a}{\epsilon} \sqrt{\frac{R}{E}}$;

3 – значения, определяемые согласно требованиям 7.5.5;

Таблина 18

INUMERIC								
Отношение $\frac{a}{h_{ej}}$	0,5	0,8	1,0	1,2	1,4	1,6	1,8	2,0
Коэффициент с	11,28	14,52	17,77	21,86	26,80	32,30	38,35	45,00
Обозначения, принят	ые в табл	ице 18, –	см. 7.5.2.					

б) при
$$\frac{a}{h_{e^{f}}} > 0.8$$
 — по формуле (43) два раза:

при первой проверке σ_{cr} следует вычислять по формуле

$$\sigma_{cr} = c_2 R / \overline{\lambda}_w^2, \tag{45}$$

где c_2 — коэффициент, принимаемый по таблице 19;

при второй проверке σ_{cr} следует определять по формуле (50), а $\sigma_{loc,cr}$ – по формуле (44) с подстановкой значения a/2 вместо a.

Таблица 19

Отношение $\frac{a}{h_{ef}}$	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6
Коэффициент с2	33,70	38,77	45,26	53,16	62,18	72,20	83,75	96,16	109,56
Обозначения, приняп	ые в таб	пице 19, –	см. 7.5.2	<u>. </u>					

В стенке, укрепленной продольным ребром жесткости, расположенным на расстоянии h_l от сжатой кромки отсека, обе пластинки, на которые ребро разделяет отсек, следует проверять отдельно:

первую пластинку, расположенную между сжатым поясом и продольным ребром, — по формуле

$$\frac{1}{0.99} \left[\sigma / \sigma_{cr,1} + \sigma_{loc} / \sigma_{loc,cr,1} + (\tau / \tau_{cr,1})^2 \right] \le 1, \tag{46}$$

где

$$\sigma_{cr,1} = \frac{1,19}{1 - h_1 / h_{cf}} \cdot \frac{\left(1 + \mu_1^2\right)^2}{\mu_1^2} \cdot \frac{R}{\overline{\lambda}_{h_1}^2},\tag{47}$$

$$\sigma_{loc,cr,1} = \left(1,24 + 0,476\mu_1\right) \cdot \frac{\left(1 + \mu_1^2\right)^2}{\mu_1^2} \cdot \frac{R}{\lambda_a^2},\tag{48}$$

в данном случае $\overline{\lambda}_{h1} = (h_1/t) \sqrt{R/E}$; $\overline{\lambda}_a = (a/t) \sqrt{R/E}$;

 μ_1 – параметр, равный: a/h_1 при $a/h_1 \le 2$ и $\mu_1 = 2$ при $a/h_1 > 2$;

 $\tau_{cr,1}$ – напряжение, определяемое по формуле (51);

9 – значения, определяемые согласно требованиям 7.5.5;

вторую пластинку, расположенную между растянутым поясом и продольным ребром, – по формуле

$$\sqrt{\left[\frac{\sigma(1-2h_1/h_{ef})}{\sigma_{cr,2}}+\frac{\sigma_{loc,2}}{\sigma_{loc,cr,2}}\right]^2+\left(\frac{\tau}{\tau_{cr,2}}\right)^2} \leq 1,$$

где $\sigma_{cr,2}$ и $\tau_{cr,2}$ — напряжения, определяемые соответственно по формулам (57) и (51); $\sigma_{loc,2} = 0.4 \sigma_{loc}$;

 $\sigma_{loc,cr,2}$ — напряжение, определяемое по формуле (44) и таблице 18, принимая $a/(h_{\rm ef}-h_{\rm i})$ вместо $a/h_{\rm ef}$.

Если первая пластинка укреплена дополнительно короткими поперечными ребрами, то их следует доводить до продольного ребра. При этом для проверки первой пластинки необходимо применять формулы (46) и (48), в которых α следует заменять величиной a_i (где a_i — расстояние между осями соседних коротких ребер).

Проверка второй пластинки в этом случае остается без изменений.

7.5.5 Устойчивость стенок балок симметричного сечения, укрепленных только поперечными ребрами жесткости, при отсутствии местного напряжения ($\sigma_{loc} = 0$) следует считать обеспеченной, если выполнено условие

$$\frac{1}{g\gamma_c}\sqrt{\left(\sigma/\sigma_{cr}\right)^2 + \left(\tau/\tau_{cr}\right)^2} \le 1,\tag{49}$$

где $\sigma_{cr} = 30 R / \overline{\lambda}_w^2;$ (50)

$$\tau_{cr} = 10.3 (1 + 0.76/\mu^2) R_s / \overline{\lambda}_d^2;$$
 (51)

$$g = 1 - \frac{11\left(\frac{\sigma_t}{R} - 0.7\right)^2}{1 + 507\frac{R}{E}}$$
 (52)

(здесь при $\frac{\sigma_i}{R} \le 0.7$ следует принимать $\theta = 1$. Значения $\frac{\sigma_i}{R} > 1$ не допускаются);

 γ_c — следует принимать по таблице 6;

 $B \phi ормулах (49) - (52):$

 $\mu-$ отношение большей стороны отсека стенки к меньшей;

 $\widetilde{\lambda}_d = (d/l_w) \sqrt{R/E}$ — условная гибкость отсека стенки высотой d;

d — ме́нышая из сторон отсека стенки (h_{ef} или a);

$$\sigma_i = \sqrt{\frac{4}{9}\sigma^2 + 3\tau^2} \ . \tag{53}$$

В стенке балки симметричного сечения (при отсутствии местного напряжения), укрепленной кроме поперечных ребер одним продольным ребром, расположенным на расстоянии h_i от расчетной (сжатой) границы отсека, обе пластинки, на которые это ребро разделяет отсек, следует рассчитывать отдельно:

 а) пластинку, расположенную между сжатым поясом и продольным ребром, по формуле

$$\frac{1}{g_{\gamma_{\epsilon}}} \left[\frac{\sigma}{\sigma_{c,l}} + \left(\frac{\tau}{\tau_{c,l}} \right)^{2} \right] \leq 1, \tag{54}$$

где

$$\sigma_{cr,1} = \frac{4,76}{1 - \frac{h_1}{h_{er}}} \cdot \frac{R}{\bar{\lambda}_1^2} \tag{55}$$

(здесь $\overline{\lambda}_1 = (h_1/t_w) \sqrt{R/E}$ — условная гибкость пластинки высотой h_t);

 $\alpha_{r,i}$ — следует определять по формуле (51) с подстановкой размеров проверяемой пластинки;

9 — следует определять по формуле (52), принимая при этом

$$\sigma_{i} = \sqrt{\left(1 - \frac{h_{i}}{h_{ef}}\right)^{2} \sigma^{2} + 2.43\tau^{2}};$$

 γ_c — следует принимать по таблице 6;

б) пластинку, расположенную между растянутым поясом и продольным ребром, – по формуле

$$\frac{1}{\gamma_{c}} \sqrt{\frac{\sigma^{2} \left(1 - 2\frac{h_{l}}{h_{cf}}\right)^{2}}{\sigma_{cr}^{2}} + \left(\frac{\tau}{\tau_{cr,2}}\right)^{2}} \le 1,$$
(56)

где

$$\sigma_{cr,2} = \frac{5.43}{\left(0.5 - \frac{h_1}{h_{cf}}\right)^2} \cdot R / \overline{\lambda_w^2};$$
 (57)

 $\tau_{cr,2}$ — следует определять по формуле (51) с подстановкой размеров проверяемой пластинки;

 γ_c — следует принимать по таблице 6.

7.5.6 В стенке, укрепленной только поперечными ребрами жесткости, ширина

их выступающей части b_r должна быть для парного симметричного ребра не менее -

 $\frac{h_{ef}}{30}$ + 40 мм; толщина ребра t_r — не менее b_r / 12; расстояние между ребрами не должно превышать $2h_{ef}$.

7.5.7 При укреплении стенки поперечными ребрами и одним парным продольным ребром жесткости места расположения и моменты инерции сечений этих ребер должны соответствовать требованиям 7.5.6 и формулам таблицы 20.

	T	a	б	л	И	п	a	20
--	---	---	---	---	---	---	---	----

h		Моменты инерг	ции ребра	
$\frac{h_{\rm l}}{h_{\rm ef}}$	поперечного	про	одольного (Іл)	
h _{ef}		требуемое	преде	льное
	(17)	требуемое	минимальное	максимальное
0,20		$(2.5-0.5 \ a/h_{ef}) \ a^2 t_w^3/h_{ef}$	$1.5h_{ef}t_{w}^{3}$	7hef t 3
0,25	$\geq 3 h_{ef} t_w^3$	$(1,5-0,4a/h_{ef}) a^2 t_w^3/h_{ef}$	$1,5h_{\rm ef}t_{\rm in}^3$	8,5hef t 3
0,30		1,5hef 1 3	_	-

При расположении продольного и поперечных ребер жесткости с одной стороны стенки моменты инерции сечений каждого из них следует вычислять относительно оси, совпадающей с ближайшей к ребру гранью стенки.

7.5.8 Участок стенки балки над опорой следует рассчитывать на устойчивость при центральном сжатии из плоскости балки как стойку, нагруженную опорной реакцией.

При укреплении стенки балки опорными ребрами жесткости с шириной выступающей части b_r (не менее $0.5b_{fh}$, b_{fh} — ширина нижнего пояса балки) в расчетное сечение этой стойки следует включать сечение опорных ребер и полосы стенки шириной не более $0.5\ t_w$ $\sqrt{E/R}$ с каждой стороны ребра.

Толщина опорного ребра жесткости t_r должна быть не менее 3 b_r $\sqrt{R/E}$, где b_r — ширина выступающей части.

Расчетную длину стойки следует принимать равной расчетной высоте стенки балки $h_{\it ef}$.

Нижние торцы опорных ребер жесткости должны быть плотно пригнаны или приварены к нижнему поясу балки и рассчитаны на воздействие опорной реакции.

Стенки центрально сжатых, внецентренно сжатых и сжато-изгибаемых элементов

7.5.9 Для центрально сжатых элементов условную гибкость стенки $\overline{\lambda}_w = (h_{ef}/t_w)\sqrt{R/E}$ следует принимать не более значений, определяемых по формулам таблицы 21.

При назначении сечения элемента по предельной гибкости наибольшие значения $\overline{\lambda}_w$ следует умножать на коэффициент $\sqrt{\frac{R\varphi}{\sigma}}$ ($\sigma=\frac{N}{A}$), но не более чем в 1,5 раза. При этом значения $\overline{\lambda}_w$ следует принимать не более 5,3.

Таблица 21

	Наибольшие значения	$\overline{\lambda}_{w}$ при значениях			
Сечение элемента	условной гибкости стержня				
		$\overline{\lambda} \geq 5$			
Двутавровое	$\frac{52}{\sqrt{\frac{E}{R} + 507}}$	3,1			
Н-образное	$\frac{46}{\sqrt{\frac{E}{R} + 507}}$	3,5			
Швеллерное, трубчатое прямоугольное (<i>h_{ef}</i> – для большей стенки)	$\frac{42}{\sqrt{\frac{E}{R} + 507}}$	2,5			
Трубчатое квадратное	$\frac{37}{\sqrt{\frac{E}{R} + 507}}$	2,25			

Примечания

- 1 Приведенные в таблице 21 данные относятся к сварным и прессованным профилям.
- 2 При вычислении $\overline{\lambda}_w$ промежуточные значения $\overline{\lambda}_w$ определяются линейной интерполяцией между значениями при $\overline{\lambda}=1$ и $\overline{\lambda}=5$.
- 7.5.10 Для внецентренно сжатых и сжато-изгибаемых элементов условную гибкость стенки $\overline{\lambda}_{w}$ следует определять в зависимости от значения $\alpha = \frac{\sigma \sigma_{1}}{\sigma}$ (σ наибольшее сжимающее напряжение у расчетной границы стенки, принимаемое со знаком «плюс» и вычисленное без учета коэффициентов φ_{e} , φ_{exy} или $c\varphi$; σ_{1} —соответствующее напряжение у противоположной расчетной границы стенки) и принимать не более значений, определяемых при:

 $\alpha \le 0.5 - \text{no } 7.5.9;$

 $\alpha \ge 1$ — по формуле

$$\overline{\lambda}_{w} \leq 3,1\sqrt{\frac{R}{\sigma}(2\alpha-1)};$$
 (58)

- $0.5 < \alpha < 1$ линейной интерполяцией между значениями, вычисленными при $\alpha = 0.5$ и $\alpha = 1$.
- 7.5.11 При укреплении стенки внецентренно сжатого или сжато-изгибаемого элемента продольным ребром жесткости с моментом инерции $I_{rl} \ge 6h_{ef} t^3$, расположенным посередине стенки, наиболее нагруженную часть стенки между поясом и осью ребра следует рассматривать как самостоятельную пластинку и проверять согласно требованиям 7.5.10,

Продольные ребра жесткости следует включать в расчетные сечения элементов. Если устойчивость стенки не обеспечена, то в расчет следует вводить два крайних участка стенки шириной по $0.6 t_W \sqrt{E/R}$, считая от границ расчетной высоты.

7.5.12 Стенки внецентренно сжатых элементов сплоциюго сечения (колонн, стоек, опор и т.п.) при $\vec{\lambda}_w \geq 2,5$ следует укреплять поперечными ребрами жесткости, расположенными на расстоянии $2h_{ef}$ одно от другого; на каждом отправочном элементе должно быть не менее двух ребер. При наличии продольного ребра расстояние между поперечными ребрами следует увеличивать, но не более чем в 1,5 раза.

Минимальные размеры выступающей части поперечных ребер жесткости следует принимать согласно требованиям 7.5.6.

Поясные листы и полки центрально сжатых, внецентренно сжатых, сжатоизгибаемых и изгибаемых элементов

- 7.5.13 Расчетную ширину свеса поясных листов (полок) b_{ef} следует принимать равной расстоянию (см. рисунок 6):
- в прессованных, составных и сварных элементах без поясных листов от грани стенки до края полки;
- в болтовых элементах с поясными листами от ближайшей риски болтов до свободного края листа.

При наличии вута, образующего со свесом угол не менее 30°, расчетную ширину свеса следует измерять до начала вута (в случае выкружки— принимать вписанный вут).

7.5.14 В центрально сжатых, внецентренно сжатых и сжато-изгибаемых элементах значение гибкости свеса поясного листа (полки) $\overline{\lambda}_f = (b_{ef}/t) \sqrt{E/R}$ следует принимать не более значений, указанных в таблице 22 в зависимости от условной гибкости $\overline{\lambda}$ и типа сечений (b_{ef} следует принимать в соответствии с 7.5.13; t – толщина свеса).

В случае недонапряжения элемента наибольщие значения $\overline{\lambda}_f$ из таблицы 22 следует увеличивать в $\sqrt{\frac{R\varphi_m}{\sigma}}$ раз, но не более чем в 1,5 раза, при этом значения $\overline{\lambda}_f$ необходимо принимать не более 1,3 (φ_m — меньшее из значений φ , φ_e , φ_{exy} , $c\varphi$, использованное при проверке устойчивости стержня; $\sigma = \frac{N}{4}$).

7.5.15 В изгибаемых элементах наибольшую гибкость свеса поясного листа (полки) прессованных и сварных балок следует назначать с учетом предельных размеров свесов, приведенных в таблице 22 для $\overline{\lambda} \le 1$.

Таблица 22

Характеристика полки (поясного листа)	Наибольшие значения $\overline{\lambda}_{r}$ при значениях условной гибкости стержня				
и сечения элемента	$\overline{\lambda} \leq 1$	$\overline{\overline{\lambda}} \geq 5$			
Неокаймленная полка двутавра и тавра	$\frac{14}{\sqrt{\frac{E}{R} + 507}}$	0,8			
Неокаймленная большая полка неравнополочного уголка, стенка тавра и полка швеллера	$\frac{15}{\sqrt{\frac{E}{R} + 507}}$	0,8			
Неокаймленная полка равнополочных уголков	$\frac{14}{\sqrt{\frac{E}{R} + 507}}$	0,7			

П р и м е ч а н и е — При вычислении $\overline{\lambda}_1$ промежуточные значения $\overline{\lambda}_2$ определяются линейной интерполяцией между значениями при $\overline{\lambda}_2 = 1$ и $\overline{\lambda}_2 = 5$.

В случае недонапряжения элемента наибольшую гибкость свеса поясного листа (полки) следует увеличить в $\sqrt{\frac{R}{\sigma}}$ раз, но не более чем в 1,5 раза; здесь σ — большее из двух значений:

$$\sigma = \frac{M}{\varphi_b W}$$
 или $\sigma = \left| \frac{M_x y}{I_{xn}} \pm \frac{M_y x}{I_{yn}} \right|$ (59)

7.5.16 При усилении свободных свесов утолщениями (бульбами) наибольшее значение гибкости свеса $\overline{\lambda}_{f,i} = (b_{efl} / t) \sqrt{R/E} \left[b_{efl} -$ расчетная ширина свеса поясных листов или полок, измеряемая от центра утолщения до грани примыкающей стенки (полки) или до начала вута (см. 7.5.13)] следует определять по формуле

$$\bar{\lambda}_{\ell,l} = k \; \bar{\lambda}_{\ell}, \tag{60}$$

где $\overline{\lambda}_f$ — наибольшее значение условной гибкости свеса при отсутствии утолщения, принимаемое по таблице 22;

k — коэффициент, определяемый по таблице 23 в зависимости от $\overline{\lambda}_f$, γ_t и $\overline{\lambda}$; $\gamma_t = D/t$,

где D — размер утолщения, принимаемый равным диаметру круглой бульбы; в квадратных и трапециевидных утолщениях нормального профиля D — высота утолщения при ширине бульбы не менее 1,5 D в трапециевидных (рисунок 7) и не менее D — в прямоугольных утолщениях.

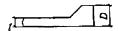


Рисунок 7 — Схема утолщения (бульбы)

Таблица 23

	_	Ī _f γι	Значение коэффициен	та k в формуле (60)
Сечение	$ar{\pmb{\lambda}}_f$		при гибкости	λ̄, равной
			1	5
	$0.35 \le \overline{\lambda}_f \le 0.60$	2,5	1,06	1,35
	, s,22 2, s2, 2 4,00	3,0	1,24	1,69
Швеллер,		3,5	l,46	2,06
двутавр	$0.75 \le \overline{\lambda}_{f} \le 0.90$	2,5	1,04	1,28
	0,70 = 10 = 0,70	3,0	1,20	1,59
	į.	3,5	1,40	1,94
	$0.35 \le \overline{\lambda}_f \le 0.60$	2,5	1,06	1,17
3/	1,22 = 11, = 1,25	3,0	1,24	1,47
Уголок,		3,5	1,46	1,67
тавр,	$0.75 \leq \overline{\lambda}_{f} \leq 0.90$	2,5	1,04	1,13
крестовое	2,12 = 10,12	3,0	1,20	1,35
		3,5	1,40	1,67

 Π р и м с ч в н и е — Коэффициент k для промежуточных значений λ_f от 0,6 до 0,75 и гибкости $\overline{\lambda}$ от 1 до 5 следует определять линейной интерполяцией.

7.5.17 Расчет на устойчивость замкнутых круговых цилиндрических оболочек вращения, равномерно сжатых параллельно образующим, следует выполнять по формуле

$$\frac{\sigma_{\rm i}}{\sigma_{\rm cl}\gamma_{\rm c}} \le 1,\tag{61}$$

где σ_i – расчетное напряжение в оболочке;

 $\sigma_{cr,1}$ – критическое напряжение, при $r/t \le 300$ равное меньшему из значений ψR или cEt/r, а при r/t > 300 равное cEt/r (здесь r – радиус срединной поверхности оболочки; t – толщина оболочки).

Значения коэффициентов ψ и c следует определять соответственно по таблицам 24 и 25.

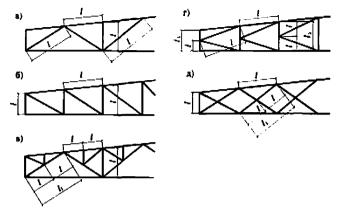
Таблица 24

Значение		Коэффициент <i>ψ</i> при r / t								
<i>R</i> , Н/мм ²	0	25	50	75	100	125	150	200	250	
R ≤ 140	1,00	0,98	0,88	0,79	0,72	0,65	0,59	0,45	0,39	
$R \ge 280$	1,00	0,94	0,78	0,67	0,57	0,49	0,42	0,29	-	
Прим	Примечание — Значения коэффициентов ψ при 140 Н/мм ² < R < 280 Н/мм ² и дл									
промежуточн	ых значени	<u>й r / t след</u>	ует опреде	лять линей	ной интер	поляцие	Ħ			

Таблина 25

Значение r/t	≤50	100	150	200	250	500
Коэффициент с	0,30	0,22	0,20	0,18	0,16	0,12
Примечание -	– Для пром	ежуточных	значений	r/t коэффи	щиенты <i>с</i> с	педует
определять линейной	интерполяц	шей.				

В случае внецентренного сжатия параллельно образующим или чистого изгиба в диаметральной плоскости при касательных напряжениях в месте наибольшего момента, не превышающих значения $0.07E(t/r)^{3/2}$, напряжение $\sigma_{cr,1}$ должно быть увеличено в $(1,1-0,1)\sigma_1'/\sigma_1$ раза, σ_1'/σ_1 наименьшее напряжение (растягивающие напряжения считать отрицательными).


7.5.18 В круглых трубах, рассчитываемых как сжатые или сжато-изгибаемые стержни по разделу 7, при условной гибкости $\overline{\lambda} = \lambda \sqrt{R/E} \ge 0,65$, должно быть выполнено условие $r/t \le \frac{280}{1+1400\frac{R}{E}}$.

Кроме этого, устойчивость стенок таких труб должна быть проверена по 7.5.17. Расчет на устойчивость стенок бесшовных труб не требуется, если r/l не превыплает значений $1.7\sqrt{R/E}$ или 35.

8 Расчетные длины и предельные гибкости элементов алюминиевых конструкций

8.1 Расчетные длины элементов плоских ферм и связей

8.1.1 Расчетные длины сжатых элементов плоских ферм и связей в их плоскости l_{ef} и из плоскости $l_{ef,1}$ (рисунок 8,а, 5, в, г), за исключением элементов, указанных в 8.1.2 и 8.1.3, следует принимать по таблице 26.

а – треугольная со стойками; б – раскосная; в – треугольная со шпренгелями;
 г – полураскосная треугольная; д – перекрестная

Рисунок 8 — Схемы для определения расчетных длин сжатых элементов (обозначения — см. таблицу 26) решеток ферм

Таблица 26

	Расчети	ые длины l_{cf}	и <i>l_{ef.}</i>)
Направление продольного изгиба элемента фермы	поясов	опорных раскосов и опорных стоск	прочих элементов решетки
1 В плоскости фермы lef:			_
а) для ферм, кроме указанных в позиции 1,6;	1	1	0,8/
б) для ферм из одиночных уголков и ферм с	1	1	0,91
прикреплением элементов рещетки к поясам впритык			
2 В направлении, перпендикулярном к плоскости фермы (из плоскости фермы) $l_{ef,1}$:			
а) для ферм, кроме указанных в позиции 2,6	l_1	I_1	I_1
б) для ферм с прикреплением элементов решетки к поясам впритык	I_1	$\int_{\Gamma} d\Gamma$	0,9/1
3 В любом направлении $l_{e'} = l_{e',1}$ для ферм из одиночных уголков при одинаковых расстояниях между точками	0,85/	1	0,85/
закрепления элементов в плоскости и из плоскости фермы	<u> </u>		

Обозначения, принятые в таблице 26 (см. рисунок 8):

8.1.2 Расчетные длины l_{ef} и $l_{ef,l}$ верхнего пояса фермы (неразрезного стержня) постоянного сечения с различными сжимающими или растягивающими усилиями на участках (число участков равной длины $\kappa \geq 2$) в предположении шарнирного сопряжения (рисунок 9,а) элементов решетки и связей, определяют по формулам:

в плоскости пояса фермы

$$l_{ef} = (0.17\alpha^3 + 0.83) l \ge 0.8 l, \tag{62}$$

где α — отнощение усилия, соседнего с максимальным, к максимальному усилию в панелях фермы; при этом $1 \ge \alpha \ge -0.55$;

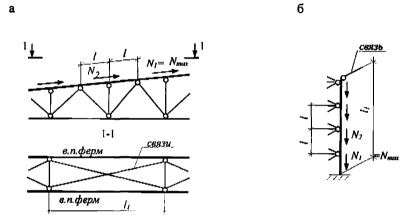
из плоскости пояса фермы

$$l_{ef,l} = \{0.75 + 0.25 | [\beta/(\kappa - 1)]^{2\kappa - 3}\} l_l \ge 0.5 l_l$$
 (63)

где β — отношение суммы усилий на всех участках (рассматриваемой длины между точками закрепления пояса из плоскости), кроме максимального,

I – геометрическая длина элемента (расстояние между центрами ближайших узлов) в плоскости фермы;

^{/1 —} расстояние между узлами, закрепленными от смещения из плоскости фермы (поясами ферм. специальными связями, жесткими плитами покрытий, прикрепленными к поясу свариыми швами или болтами и т.п.).


к максимальному усилию; при этом $(\kappa-1) \ge \beta \ge -0.5$. При вычислении параметра β в формуле (63) растягивающие усилия в стержнях необходимо принимать со знаком «минус».

Расчетные длины l_{ef} и $l_{ef,I}$ ветви сквозной колонны постоянного сечения (неразрезного стержня) с различными сжимающими усилиями на участках (число участков равной длины $\kappa \ge 2$) с граничными условиями, когда один конец стержня (нижний) жестко закреплен, а другой — шарнирно оперт в плоскости решетки при шарнирном креплении к нему элементов решетки (рисунок 9,6), вычисляются по формулам:

в плоскости ветви

$$l_{ef} = l\sqrt{0.36 + 0.59\alpha^3} \ge 0.6l, \tag{64}$$

где α – отношение усилия, соседнего с максимальным, к максимальному усилию в месте заделки; при этом $1 \ge \alpha \ge 0$;

а – пояс фермы; б – ветвь колонны
 Рисунок 9 – Схемы для определения расчетной длины элементов

из плоскости ветви

$$l_{qf,1} = (0.6\sqrt{k} + 0.54\beta)\frac{l_1}{k} \ge 0.5l_1,$$
 (65)

где β – отношение суммы усилий на всех участках, кроме максимального, к максимальному усилию в месте заделки; при этом $(\kappa - 1) \ge \beta \ge 0$.

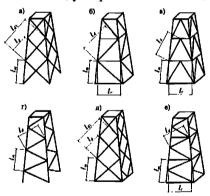
В обоих случаях l — длина участка (см. рисунки 8 и 9); l_1 — расстояние между точками связей из плоскости стержня (см. рисунок 9), и расчет на устойчивость следует выполнять на максимальное усилие.

8.1.3 Расчетные длины $l_{ef.1}$ (при допущении, что они не зависят от соотношения усилий) элементов перекрестной решетки, скрепленных между собой (см. рисунок 8,д), следует принимать по таблице 27.

Таблипа 27

Конструкция узла пересечения элементов рещетки	Расчетная длина $l_{ef,1}$ из плоскости фермы (связи) при поддерживающем элементе				
	растянутом	неработающем	сжатом		
Оба элемента не прерываются	1	0,7/1	$\overline{l_1}$		
Поддерживающий элемент прерывается и		1			
перекрывается фасонкой:					
рассматриваемый элемент не прерывается	0,711) h	1,41		
рассматриваемый элемент прерывается и перекрывается фасонкой	0,711	-	-,,		

I – расстояние от центра узла фермы (связи) до точки пересечения элементов;


8.1.4 Радиусы инерции i сечений элементов из одиночных уголков при определении гибкости следует принимать:

при расчетной длине элемента не менее $0.85\ l\ (l-$ расстояние между центрами ближайших узлов) – минимальными ($i=i_{min}$);

в остальных случаях — относительно оси уголка, перпендикулярной к плоскости фермы или параллельной ей ($i=i_x$ или $i=i_y$ в зависимости от направления продольного изгиба).

8.2 Расчетные длины элементов пространственных решетчатых конструкций

8.2.1 Расчетные длины l_{ef} и радиусы инерции сечений i сжатых, растянутых и ненагруженных элементов пространственных конструкций (рисунок 10) из одиночных уголков при определении гибкости следует принимать по таблицам 28, 29 и 30.

а, б, в – с совмещенными в смежных гранях узлами; г, д – с не совмещенными в смежных гранях узлами; е – с частично совмещенными в смежных гранях узлами

Рисунок 10 - Схемы пространственных решетчатых конструкций

8.2.2 Для определения расчетных длин раскосов по рисунку 10,в, при прикреплении их без фасонок к распорке и поясу сварными швами или болтами (не менее двух), расположенными вдоль раскоса, значение коэффициента расчетной длины μ_d следует принимать по строке таблицы 30 при значении n «Не более 2». В случае прикрепления их концов одним болтом значение μ_d следует принимать по

 l_1 — полная геометрическая длина элемента.

СП 128.13330.2016

строке таблицы 30 «Одним болтом без фасонки», а при вычислении значения l_{ef} по таблице 28 вместо μ_d следует принимать $0.5(1 + \mu_d)$.

- 8.2.3 Расчетные длины l_{ef} и радиусы инерции i элементов из труб или парных уголков следует принимать согласно требованиям 6.1.1 6.1.3.
- 8.2.4 Расчетные длины сжатых элементов пространственных решетчатых конструкций определяют из расчета с использованием сертифицированных вычислительных комплексов (в предположении упругой работы алюминия и недеформированной схемы).

Таблица 28

Элементы пространственных	Сжатые и нег	нагруженные снты	Растянутые элементы		
конструкций	l _{ef}	i	- lej	$\frac{1}{i}$	
Пояса по рисунку:					
10,а,б,в	l _m	imm	l _m	i _{min}	
10,г,д	0,731 _m	i _{min}	0,73 <i>l</i> _m	imm	
10,e	0,641,,	İ _{min}	$0,64l_{m}$	i _{min}	
Раскосы по рисунку:		1			
10,а,д	14 lac	i _{min}	ld (ldi)	$i_{min}\left(i_{z}\right)$	
10,б,в,г,е	μιl _{de} μ _d l _d	i _{min}	l_d	i _{min}	
Распорки по рисунку:	""				
10,6,e	0,80/c	i _{min}	•	-	
10, a	0,731 _c	İmin			

Обозначения, принятые в таблице 28 (см. рисунок 10):

la: - условная длина, принимаемая по таблице 29;

ди - коэффициент расчетной длины раскоса, принимаемый по таблице 30.

Примечания

- 1 Раскосы по рисунку 10,а, д в точках пересечения должны быть скреплены между собой.
- 2 Значение $l_{\rm ef}$ для распорок по рисунку 10 приведено для равнополочных уголков.
- $3~{
 m B}$ скобках приведены значения $l_{\rm ef}$ и $i~{
 m для}$ раскосов из плоскости грани конструкции.

Таблица 29

Конструкция узла пересечения	Условная длина раскоса <i>la</i> : при поддерживающем элементе					
элементов рещетки	растянутом	неработающем	сжатом			
Оба стержня не прерываются Поддерживающий элемент прерывается и перекрывается фасонкой; рассматриваемый элемент не прерывается — в конструкциях по рисунку:	l _d	1,3 <i>l</i> _d	0,8141			
10,а 10,д Узел пересечения элементов закреплен о смещения из плоскости грани (диафрагмой т.п.)	.	1,6 l_d (1,9 - 0,1 n) l_d l_d	lai lai la			

Обозначение, принятое в таблице 29 (см. рисунок 10); $n = l_{m,\min} ld / (ld,\min lm)$,

где $l_{m,\min}$ и $l_{d,\min}$ — наименьшие моменты инерции ссчения соответственно пояса и раскоса.

Примечание - При n < 1 и n > 3 в формулах таблицы следует принимать соответственно n = 1 и n = 3

Таблица 30

Прикрепление раскоса	Значение	Значение да при / / імів. равном		
к поясам	n	не более 60	св. 60 до 160	св. 160
Сварными швами, болтами или	До 2	1,14	0,54+36 imin / I	0,765
заклепками (не менее двух), расположенными вдоль раскоса	Св. 6	1,04	0,54+28,8 i _{min} //	0,740
Одним болтом без фасонки	При любых значениях	1,12	0,64+28,8 i _{min} / /	0,820

Обозначения, принятые в таблице 30:

8.3 Расчетные длины колонн (стоек)

8.3.1 Расчетные длины $l_{\it ef}$ колонн (стоек) постоянного сечения следует вычислять по формуле

$$l_{ef} = \mu l, \qquad (66)$$

где l — длина колонны, ее отдельного участка или высота этажа.

Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в таблице 31.

Таблица 31 Схема закрепления колонны (стойки) и вил нагрузки 1.0 0.7 0.5 2.0 1.0 2.0 0.725 1.12 μ

8.3.2 Коэффициенты расчетной длины µ колонн постоянного сечения в плоскости одноэтажных рам при жестком креплении ригелей к колоннам и при одинаковом нагружении верхних узлов, расположенных в одном уровне, следует определять по формулам таблицы 32.

При шарнирном креплении ригелей к колоннам в формуле (68) следует принимать n=0.

8.3.3 Расчетную длину колонн рам в направлении вдоль здания (из плоскости рамы) спедует принимать равной расстоянию между точками, закрепленными от смещения из плоскости рамы (опорами колонн, подкрановых балок и подстропильных ферм, узлами крепления связей и ригелей и т.п.).

n – по таблице 29:

I – длина. принимаємая равной: l_d – для раскосов по рисунку 10,6,8,г,е; l_d с по таблице 29 – для раскосов по рисунку 10,а, д.

Примечания

і Значенис μ_i при 2 ≤ n ≤ 6 следует определять линейной интерполяцией.

² При прикреплении одного конца раскоса к поясу без фасонок сваркой или болтами, а второго конца – через фасонку коэффициент расчетной длины раскоса следует принимать равным $0.5(1 + \mu t)$; при прикреплении обоих концов раскосов через фасонку – $\mu t = 1.0$.

CII 128.13330.2016

Расчетную длину следует определять на основе расчетной схемы, учитывающей фактические условия закрепления концов колонн.

Таблипа 32

Схема рамы	I	Тараметры	Коэффициент
	p	n	расчетной длины
	p = 0	$\frac{\frac{I_s I_c}{I_c I}}{\frac{k(n_1 + n_2)}{k+1}};$ $k \ge 2$	$\mu = 2 \sqrt{1 + \frac{0.38}{n}} \tag{67}$
N I. N I. N I. N I. N I. N I. N I. N I.	$p = \infty$	$\frac{I_{x1}l_c}{I_cl_1}$ $\frac{k(n_1+n_2)}{k+1};$ $k \ge 2$	$\mu = \sqrt{\frac{n+0.56}{n+0.14}} \tag{68}$

Обозначения, принятые в таблице 32:

Ізі, Із- моменты инерции сечения ригелей, примыкающих к всрхнему концу проверяемой колонны;

 l_c, l_c — соответственно момент инерции сечения и длина проверяемой колонны;

 l, l_1, l_2 – пролеты рамы;

k — число пролетов;

$$n_1 = \frac{I_{s1} l_c}{I_c l_1}$$
 ; $n_2 = \frac{I_{s2} l_c}{I_c l_2}$; $p-$ относительная жесткость нижних узлов

 Π р и м е ч а н и е — Для крайней колонны свободной многопролетной рамы коэффициент μ следует определять при значениях p и n как для колони однопролетной рамы.

8.4 Предельные гибкости элементов

8.4.1 Гибкости элементов $\lambda = l_{ef} / i$ не должны превышать предельных значений λ_{H} , приведенных в таблице 33 для сжатых элементов и в таблице 34 — для растянутых. При этом гибкость растянутых элементов проверяют только в вертикальной плоскости. Таблица 33

Элементы конструкций	Предельная гибкость сжатых элементов λ_u
1 Пояса, опорные раскосы и стойки, передающие опорные реакции	100
2 Прочие элементы ферм	
3 Колонны второстепенные (стойки фахверка, фонарей и т.п.), элементы	120
решетки колонн	120
4 Элементы связей, а также стержни, служащие для уменьшения расчетной	
длины сжатых стержней, и другие ненагруженные элементы	150
5 Элементы ограждающих конструкций:	
симметрично нагруженные	100
несимметрично нагруженные (крайние и угловые стойки витражей и т.д.)	70

П р и м е ч а н и е — Приведенные в таблице 33 данные относятся к элементам с сечениями, симметричными относительно действия сил. При сечениях, несимметричных относительно действия сил, предельную гибкость надлежит уменьшать на 30 %.

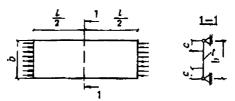
Таблица 34

Элементы конструкций	Предельная гибкость растянутых элементов λ_{μ}
1 Пояса и опорные раскосы плоских ферм	300
2 Прочие элементы ферм	300
3 Связи (кроме элементов, подвергающихся предварительному натяжению)	300

- 8.4.2 При проверке гибкости растянутых стержней перекрестной решетки из одиночных уголков радиус инерции следует принимать относительно оси, параллельной полке уголка. Стержни перекрестной решетки в месте пересечения должны быть скреплены между собой.
- 8.4.3 Для растянутых раскосов стропильных ферм с незначительными усилиями, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов, при этом соединительные прокладки следует устанавливать не реже чем через 40*i*.

9 Расчет элементов конструкций с применением тонколистового алюминия

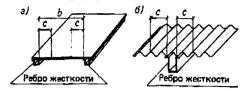
Тонколистовой алюминий следует применять в качестве элементов ограждающих и несущих конструкций:


- а) мембран;
- б) плоских листов, укрепленных ребрами или специальной штамповкой;
- в) плоских листов и лент, предварительно напряженных как в одном, так и в двух направлениях;
 - г) гофрированных листов без укреплений или со специальными укреплениями.

9.1 Элементы, работающие на сжатие и изгиб

9.1.1 При расчете на прочность сжатого в одном направлении плоского листа, шарнирно опертого по контуру (рисунок 11), в рабочую площадь следует включать часть листа размером 2*c*, определяемым по формуле

$$c = 1.16t\sqrt{\frac{E}{R}},\tag{69}$$


где 1 — толшина листа.

b - полная ширина сечения; c - рабочая ширина сечения

Рисунок 11 — Расчетная схема сжатого тонколистового элемента

9.1.2 При расчете тонколистовых конструкций, усиленных продольными ребрами, в которых лист подвержен действию продольной и поперечной нагрузок, в рабочую площадь ребер следует включать часть листа размером *с* (рисунок 12), определяемым по формуле (69).

а - плоский лист; б - гофрированный лист

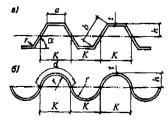
Рисунок 12 — Расчетная схема тонколистовых конструкций, усиленных продольными ребрами

9.1.3 При расчете на прочность листов с волнистыми и трапециевидными гофрами, шарнирно опертых по контуру и сжимаемых в направлении гофров, при отношении $\frac{a}{b} \ge 3$ (рисунок 13,а) в рабочую площадь следует включать часть листа размером 2c:

$$c = 1,04 \sqrt{\frac{K}{t dR}} \left(\sqrt{D_x D_y} + D_{xy} \right), \tag{70}$$
 где $D_y = EI_x$; $D_y = \frac{K}{d} \frac{Et^3}{12(1-v^2)}$; $D_{xy} = vD_y + \frac{d}{K} \frac{Gt^3}{6}$; $I_x = \frac{I_{x1}}{2K}$,

здесь $K_i d$ — соответственно циаг и длина по периметру одной полуволны (рисунок 14);

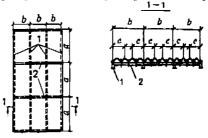
 I_{xt} — момент инерции одной волны;


 ν = 0,3 – коэффициент поперечной деформации;

G - модуль сдвига.

а – без поперечных ребер жесткости; б – с поперечными ребрами жесткости

Рисунок 13 — Расчетная схема сжатого гофрированного листа


а – трапециевидный гофр; б – волнистый гофр
 Рисунок 14 – Геометрические параметры для гофра

Когда отношение $\frac{a}{b} < 3$ или гофрированный лист разделяется поперечными ребрами, имеющими момент инерции I_s (см. 9.1.4), на ряд ячеек с соотношением сторон $\frac{a}{b} < 3$ (см. рисунок 13, б), значение c следует вычислять по формуле

$$c = 0.74 \sqrt{\frac{K}{tdR} \left(D_x \frac{b^2}{a^2} + 2D_{xy} + D_y \frac{a^2}{b^2} \right)}.$$
 (71)

В формуле (71) обозначения те же, что в формуле (70); значения a и b следует принимать по рисунку 13.

При наличии продольных ребер (рисунок 15) в рабочую площадь следует включать площадь этих ребер и часть листа размером c в каждую сторону от ребра.

1 – продольные ребра; 2 – поперечные ребра
 Рисунок 15 – Схема плиты из гофрированного листа с продольными и поперечными ребрами

9.1.4 При расчете по формуле (40) момент инерции поперечных ребер жесткости не должен быть меньше величины

$$I_s \ge \frac{I_x b^4}{4a^3}. (72)$$

Если гофрированный лист и поперечные ребра имеют различные модули упругости, то

$$I_s \ge \frac{D_s b^4}{4E a^3},\tag{73}$$

где E_s — модуль упругости материала ребра.

Обозначения в формулах (72) и (73) те же, что в формуле (70).

В случае, если значения I_3 меньше указанных в формулах (72) и (73) величин, то значение c подсчитывается по формуле (70).

При этом значение D_{ν} следует принимать

$$D_{y} = \frac{K}{d} \frac{Et^{3}}{12(1-\mu)} + \frac{EI_{s}}{a}.$$

9.1.5 Гофрированный лист, не имеющий усиливающих ребер, при действии поперечной нагрузки следует рассчитывать на изгиб по формулам (17) и (18) как балку.

Для листов с трапециевидным гофром размер сжатых полок, включаемых в расчетное сечение, следует определять по формуле (69). При этом в формулах (17) и (18) W_x и I_x следует вычислять для рабочей площади сечения.

9.1.6 Прогиб f свободно опертых гофрированных листов при изгибе следует вычислять по формуле

$$f = \alpha f_0, \tag{74}$$

где α – коэффициент, учитывающий увеличение прогиба вследствие деформации поперечного сечения гофрированного листа под нагрузкой и принимаемый:

для волнистых листов и листа с трапециевидным гофром с приклеенным жестким утеплителем (типа пенопласта) равным 1; для трапециевидных — по таблице 35;

 f_0 — прогиб гофрированного листа, работающего как балка, при вычислении которого I_x принимается согласно 9.1.5.

Таблина 35

Отношение	Значе	ние 🗷 при угле накл	она боковых граней го	рра, град
b/a	45	60	75	90
≥2,0	1,10	1,14	1,20	1,30
1,5	1,15	1,20	1,30	1,40
1,0	1,20	1,25	1,35	1,45
0,5	1,25	1,30	1,40	1,50

Обозначения, принятые в таблице 35:

b – размер наклонной грани;

а – размер сжатой горизонтальной грани (см. рисунок 14).

Примечание — Значения α для промежуточных отношений b/a следует определять линейной интерполяцией.

- 9.1.7 Изгибаемые тонколистовые конструкции с гофрированным листом, усиленным продольными ребрами, следует рассчитывать на прочность и прогиб с учетом включения в работу ребер и части листа размером с в каждую сторону от ребра (см. рисунок 12,6), определяемым по формуле (70) независимо от наличия поперечных ребер.
- 9.1.8 При расчете сжато-изгибаемых и растянуто-изгибаемых гофрированных листов с трапециевидным гофром (общивок трехслойных панелей с закладным утеплителем) на прочность при обеспечении совместной работы общивок и продольных ребер, кроме моментов инерции гофрированных листов относительно их нейтральных осей, следует учитывать момент инерции сечения, в которое входят продольные ребра и часть общивок размером c, мм (рисунок 16):

$$c = 47 + 30 \frac{b}{a} - 3.3 \frac{E\bar{I}_s}{10^5}, \tag{75}$$

где $\frac{b}{a}$ — отношение ширины панели к шагу поперечных ребер;

 $Ear{I}_x$ — жесткость гофра относительно его нейтральной оси, деленная на длину по периметру, к ${
m H\cdot m}$.

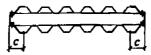


Рисунок 16 - Сечение трехслойной панели

9.1.9 Местную устойчивость сжатых горизонтальных граней изгибаемых листов с трапециевидным гофром (см. рисунок 14,а) следует проверять с учетом упругого защемления продольных кромок по формуле

$$\sigma \le k_{loc} \zeta E \left(\frac{t}{a}\right)^2,\tag{76}$$

где σ – сжимающие напряжения в грани от внешней нагрузки:

 k_{loc} — коэффициент, принимаемый по таблице 36;

Таблица 36

Отношение $\frac{b}{a}$	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,4
Коэффициент k _{loc}	5,22	5,15	5,10	5,05	5,00	4,95	4,88	4,84	4,80	4,72
Обозначения, принят	бозначения, принятые в таблице 36:									
b - размер наклонной грани;										
а – размер сжатой г	оризонта.	льной гр	ани (см.	рисунок	14).					

Таблица 37

Отношение $\frac{\sigma}{R}$	0,7	0,8	1,0	1,2	1,4	1,6	1.8	2,0	2,5	3,0
Коэффициент ζ	1,00	0,86	0,76	0,67	0,61	0,56	0,52	0,48	0,41	0,35
П р и м е ч а н и с — Напряжение σ следует определять в зависимости от напряженного состояния по формулам (76) — (79) при $\zeta = 1$.										

9.1.10 Местную устойчивость волнистых листов при изгибе (см. рисунок 14,6) следует проверять по формуле

$$\sigma \le 0.22 \zeta E \frac{t}{r}. \tag{77}$$

- 9.1.11 Общую устойчивость центрально сжатого гофрированного листа следует проверять в соответствии с требованиями 7.1.3 и таблицы Г.2. За расчетную длину следует принимать расстояние между закреплениями, препятствующими смещению гофрированного листа из его плоскости, независимо от наличия поперечных ребер.
- 9.1.12 Местную устойчивость элементов листа трапециевидной формы при центральном сжатии следует проверять по формуле

$$\sigma \le 3.6 \zeta E \left(\frac{t}{b}\right)^2,\tag{78}$$

где b — ширина большей грани.

Местную устойчивость волнистого гофрированного листа при центральном сжатии следует проверять по формуле

$$\sigma \le 0.12 \zeta E \frac{t}{r}.\tag{79}$$

9.1.13 Местную устойчивость наклонных граней листов с трапециевидным гофром (см. рисунок 14) в местах опирания на прогоны или ригели проверяют по формуле (43) с заменой коэффициента $\gamma_c = 0.9$ на $\gamma_c = 0.7$. При этом значения напряжения τ и критических напряжений $\sigma_{loc,cr}$, τ_{cr} , σ_{cr} следует вычислять по формулам:

$$\tau = \frac{Q}{2bt}; \tag{80}$$

$$\sigma_{loc,cr} = \frac{7.25R}{\overline{\lambda}_b^2}; \tag{81}$$

$$\tau_{cr} = \frac{8,25R_s}{\lambda^2}; (82)$$

$$\sigma_{cr} = \frac{3.6R}{\overline{\lambda}_b^6} \left[1 + 1.4 \, I \left(1 - \frac{\sigma_1 - \sigma_2}{\sigma_1} \right)^2 \right]; \tag{83}$$

$$\overline{\lambda}_b = \frac{b}{t} \sqrt{\frac{R}{E}} \,, \tag{84}$$

где σ_i , σ_2 — нормальные напряжения соответственно у верхней и нижней границ наклонной грани листа, взятые со своими знаками:

b – размер наклонной грани, принимаемый по рисунку 14;

О – поперечная сила в проверяемом сечении волны листа.

Кроме наклонных граней необходимо проверять на устойчивость горизонтальные сжатые грани профилированного листа, при этом местные напряжения O_{loc} следует определять с учетом ослабления сечения по формуле

$$\sigma_{loc} = \frac{F}{2t(b_f + 2r)\sin\alpha},\tag{85}$$

где F — опорная реакция, приходящаяся на одну волну листа;

b - ширина полки прогона или ригеля;

r - радиус сочленения наклонной и горизонтальной граней листа;

а – угол наклона грани (см. рисунок 14).

9.2 Элементы мембранных конструкций

- 9.2.1 Для пролетной конструкции мембранных систем следует применять поставляемый в рулонах алюминиевый лист марок АМг2Н2, АМг3Н2.
- 9.2.2 Расчет элементов мембранных конструкций следует проводить на основе совместной работы мембраны и контура с учетом их деформированного состояния, геометрической нелинейности мембраны, начального (имеющегося до нагружения) провиса мембраны.
- 9.2.3 При расчете опорного контура мембранных конструкций следует учитывать:

осевое сжатие:

сжатие, вызываемое усилиями сдвига по линии контакта мембраны с элементами контура;

изгиб в горизонтальной и вертикальной плоскостях.

- 9.2.4 При прикреплении мембраны с эксцентриситетом относительно центра тяжести сечения контура кроме факторов, указанных в 9.2.3, при расчете контура следует учитывать его кручение.
- 9.2.5 При расчете пространственных блоков (панелей) с одноосным предварительным напряжением верхней (кровельной) общивки при наличии торцевых элементов жесткости общивку следует вводить в работу верхнего (сжатого) пояса каркаса блока при условии обеспечения их надежной совместной работы.

При контроле процесса натяжения по силовым параметрам и возможности регулирования растягивающих усилий их величину следует назначать с учетом коэффициента условий работы $\gamma_c = 1$. При контроле только по геометрическим параметрам напряжения в общивке должны удовлетворять условиям:

где σ_p , σ_F — напряжения в листе соответственно от предварительного натяжения и от внешней нагрузки.

- 9.2.6 Величина предварительного натяжения общивки, расположенной в сжатой зоне, определяется из условия равенства нулю суммарных напряжений (без учета мембранных) при действии нормативной нагрузки.
- 9.2.7 При расчете элементов мембранных конструкций с одноосным предварительным напряжением обшивок следует учитывать дополнительное воздействие мембранных (цепных) усилий в общивке на продольные элементы каркаса.
- 9.2.8 Мембранные конструкции следует рассчитывать на температурные воздействия с учетом разности коэффициентов линейного расширения материалов мембраны и контура.

10 Расчет соединений конструкций из алюминиевых сплавов

10.1 Сварные соединения

10.1.1 Сварные швы следует рассчитывать по формулам таблицы 38.

Таблица 38

Сварные швы	Напряженное состояние	Расчетная формула
Стыковые, расположенные перпендикулярно к действующей силе	Сжатие, растяжение	$\frac{N}{l_w t R_w \gamma_c} \le 1$
Угловые	Срез	$\frac{N}{\beta_f k_f l_w R_{wf} \gamma_c} \le 1$

Обозначения, принятые в таблице 38:

- N расчетная продольная сила;
- I_W расчетная длина шва, равная его полной длине за вычетом 3 t или 3 ky (при выводе шва за пределы соединения на подкладки за расчетную длину шва следует принимать его полную длину);
- наименьшая толщина соединяемых элементов;
- β_f козффициент, принимаємый равным: 0,9 при автоматической одно- и двухпроходной сварке; 0,7 при автоматической многопроходной сварке, при ручной и механизированной сварке с любым числом проходов;
- катет углового шва, принимаемый равным катету вписанного равнобедренного треугольника

Сварные соединения внахлест двумя лобовыми швами (см. рисунок 1,6) имеют расчетное сопротивление, равное расчетному сопротивлению сварного соединения встык (см. рисунок 1,а) при условии, что лобовые швы выполнены с катетом не менее толщины привариваемого элемента и их концы выведены за пределы соединения.

- 10.1.2 Сварные стыковые соединения, работающие на изгиб, следует рассчитывать по формулам для расчета целого сечения с расчетными сопротивлениями, принятыми по таблицам 8 и 9.
- 10.1.3 Сварные стыковые соединения, работающие одновременно на изгиб и срез, следует проверять по формуле

$$\frac{\sigma_w}{2} + \sqrt{\frac{\sigma_w^2}{4} + r_w^2} \le R_w \gamma_c , \qquad (87)$$

где σ_w — напряжение в сварном соединении от изгиба;

т_w - напряжение в сварном соединении от среза.

10.1.4 При одновременном действии срезывающих напряжений в двух направлениях в одном и том же сечении углового шва расчет следует проводить на равнодействующую этих напряжений.

10.1.5 Угловые швы, прикрепляющие элемент, на который действуют одновременно осевое усилие и изгибающий момент, следует рассчитывать по формуле (27), в которой:

 $A_n = A_{wf}$ — расчетная площадь швов;

 I_{xn} , I_{yn} — момент инерции расчетной площади швов соответственно относительно осей x-x и y-y;

 $R = R_{wf}$ — расчетное сопротивление углового шва.

10.2 Заклепочные и болтовые соединения

 $10.2.1~\mathrm{B}$ болтовых соединениях при действии продольной силы N, проходящей через центр тяжести соединения, распределение этой силы между болтами следует принимать равномерным.

Болтовые или заклепочные соединения, воспринимающие продольные силы, следует рассчитывать на срез болтов или заклепок, смятие основного металла и на растяжение болтов (во фланцевых соединениях) по формулам таблицы 39.

Таблипа 39

Напряженное состояние	Расчетная формул соединения на бол		Расчетная формул соединения на закл	
Срез	$\frac{N}{nn_s \frac{\pi d^2}{4} R_{bs}} \le 1$	(88)	$\frac{N}{nn_s \frac{\pi d^2}{4} R_{rs}} \le 1$	(88,a)
Смятие соединяемых элементов	$\frac{N}{nd R_{bp} \Sigma t} \le 1$	(89)	$\frac{N}{n d R_{rp} \Sigma t} \le 1$	(89,a)
Растяжение	$\frac{N}{n \frac{\pi d_0^2}{4} R_{bi}} \le 1$	(90)	-	
Отрыв головки заклепки	-		$\frac{N}{n\pidhR_{ps}}\leq 1$	(90,a)

Обозначения, принятые в таблице 39:

N – расчетная продольная сила, действующая на соединение;

и – число болтов или заклепок в соединении;

n₅ - число рабочих срезов одного болта или заклепки;

 д – диаметр заклепки (или отверстия для заклепки) или наружный диаметр стержня болта;

 Ет – наименьщая суммарная толщина элементов, сминаемых в одном направлении;

 d_{o} – внутренний диаметр резьбы болта;

h = 0.4d- высота поверхности отрыва головки.

- 10.2.2 Болты, работающие одновременно на срез и растяжение, следует проверять отдельно на срез и растяжение.
- 10.2.3 В креплениях одного элемента к другому через прокладки или иные промежуточные элементы, а также в креплениях с односторонней накладкой число болгов или заклепок должно быть увеличено против расчетного числа на 10 %.

При прикреплении выступающих полок уголков или цивеллеров с помощью коротышей количество болтов, прикрепляющих коротыш к этой полке, должно быть увеличено против расчетного числа на 50 %.

10.3 Монтажные соединения на высокопрочных стальных болтах

10.3.1 Монтажные соединения на высокопрочных стальных болтах следует рассчитывать в предположении передачи действующих в стыках и прикреплениях 52

усилий через трение, возникающее по соприкасающимся плоскостям соединяемых элементов от натяжения высокопрочных болтов. При этом распределение продольной силы между болтами следует принимать равномерным.

10.3.2 Расчетное усилие Q_{bh} , которое может быть воспринято каждой поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом, следует вычислять по формуле

$$Q_{bh} = R_{bh} \gamma_b A_{bn} \mu / \gamma_h , \qquad (91)$$

где R_{bh} — расчетное сопротивление растяжению высокопрочного болта, определяемое по соответствующим нормативным документам;

уь - коэффициент условия работы соединения, принимаемый равным 0,8;

 A_{bn} — площадь сечения болта нетто, определяемая по соответствующим нормативным документам;

μ – коэффициент трения, принимаемый по таблице 40;

у - коэффициент, принимаемый по таблице 42 СП 16.13330.

Таблица 40

Способ обработки соединяемых поверхностей	Пескоструйная очистка	Травление поверхности	Без обработки (после обезжиривания)
Коэффициент трения µ	0,45	0,4	0,15

Количество n высокопрочных болтов в соединении при действии продольной силы следует вычислять по формуле

$$n \ge \frac{N}{k_1 \gamma_c Q_{hh}},\tag{92}$$

где k_{l} — количество поверхностей трения соединяемых элементов.

Натяжение высокопрочного болта следует производить осевым усилием $P = R_{bh} \ A_{bn}$.

10.3.3 Расчет на прочность соединяемых элементов, ослабленных отверстиями под высокопрочные болты, следует выполнять с учетом того, что половина усилия, приходящегося на каждый болт, в рассматриваемом сечении уже передана силами трения. При этом проверку ослабленных сечений следует проводить по площади сечения брутто A при $A_n \ge 0.85$ A или по условной площади $A_c = 1.18$ A_n при $A_n < 0.85$ A.

10.4 Соединения с фрезерованными торцами

В соединениях с фрезерованными торцами сжимающую силу следует считать полностью передающейся через торцы.

Во внецентренно сжатых и сжато-изгибаемых элементах сварные швы и болты, включая высокопрочные, указанных соединений следует рассчитывать на максимальное растягивающее усилие от действия момента и продольной силы при наиболее неблагоприятном их сочетании, а также на сдвигающее усилие от действия поперечной силы.

10.5 Поясные соединения в составных балках

10.5.1 Сварные швы, заклепки и высокопрочные болты, соединяющие стенки и пояса составных двугавровых балок, следует рассчитывать по формулам таблицы 41.

Таблица 41

Нагрузка	Вид соединения	Формулы для расчета поясных соединений в составных балках
Неподвижная (распределенная и сосредоточенная)	Угловые швы	$\frac{T}{2\beta_{f} k_{f} R_{uf} \gamma_{c}} \le 1 \tag{93}$

Окончание таблииы 41

экончиние тиолицы	71		
	Угловые швы	$\frac{T}{2\beta_{j} k_{j} R_{nj} \gamma_{c}} \leq 1$	(93)
Неподвижная (распределенная и сосредоточенная)	Высокопрочные болты	$\frac{aT}{Q_{hh}\gamma_{c}k_{1}} \leq 1$	(94)
сосредоточениях	Заклепки	$\frac{aT}{Q_n\gamma_n n_n} \le 1$	(94,a)
Местная сосредоточенная	Угловые швы	$\frac{1}{R_{u_f}\gamma_c}\sqrt{\frac{T^2+1'^2}{2\beta_f k_f}} \le 1$	(95)
	Высокопрочные болты	$\frac{a\sqrt{T^2 + \alpha V^2}}{Q_{hh}\gamma_c k_1} \le 1$	(96)
	Заклепки	$\frac{a\sqrt{T^2 + \alpha V^2}}{Q_{ts}\gamma_c n_s} \le 1$	(96,a)

В формулах (93) - (96,а) приняты следующие обозначения:

- T = QS/I сдвигающее пояс усилие на единицу длины, вызываемое поперечной силой Q (здесь S статический момент брутто пояса балки относительно нейтральной оси);
 - а шаг поясных заклепок или высокопрочных болтов;
 - Q_{bh} расчетное усилие одного высокопрочного болта, вычисляемое по формуле (91);
 - k_{l} количество поверхностей трения соединяемых элементов;

$$Q_{rs} = R_{rs}n_s \frac{\pi d^2}{4}$$
 — расчетное усилие одной заклепки на срез;

ns - число расчетных срезов одной заклепки;

- $V = \gamma_f F / l_{ef}$ давление от сосредоточенного груза F (здесь γ_f коэффициент, принимаемый согласно СП 20.13330);
 - l_{ef} условная длина распределения сосредоточенной нагрузки, принимаемая по 7.5.4;
 - α коэффициент, принимаемый при нагрузке по верхнему поясу балки, в которой стенка пристрогана к верхнему поясу, α = 0,4; при отсутствии пристрожки стенки или при нагрузке по нижнему поясу α = 1.
- 10.5.2 В балках с соединениями на заклепках или высокопрочных болтах с многолистовыми поясными пакетами прикрепление каждого из листов за местом своего теоретического обрыва следует рассчитывать на половину усилия, которое может быть воспринято сечением листа. Прикрепление каждого листа на участке между действительным местом его обрыва и местом обрыва предыдущего листа следует рассчитывать на полное усилие, которое может быть воспринято сечением листа.

11 Проектирование алюминиевых конструкций

- 11.1 Общие указания по проектированию
- 11.1.1 При проектировании алюминиевых конструкций необходимо предусматривать:
- а) связи, обеспечивающие в процессе монтажа и эксплуатации устойчивость и пространственную неизменяемость сооружения в целом и его элементов, назначая их в зависимости от основных параметров и режима эксплуатации сооружения (конструктивной схемы пролетов, температурных воздействий и т.д.);
- б) возможность укрупнения элементов конструкций на строительной площадке для монтажа их крупными блоками и обеспечения устойчивости отдельных элементов и блоков сооружения в процессе монтажа;

- в) монтажные крепления элементов, обеспечивающие возможность их легкой сборки и удобного выполнения соединений на монтаже (устройство монтажных столиков и т.п.), а также быстроту выверки конструкций;
- г) монтажные соединения элементов болтовыми; сварные монтажные соединения применять лишь в случаях, когда болты нерациональны или не разрешены нормативными документами.
- 11.1.2 Прогибы изгибаемых элементов следует определять без учета коэффициентов динамичности и ослабления сечений отверстиями для заклепок и болтов.

Относительные прогибы элементов алюминиевых конструкций не должны превышать значений, приведенных в СП 20.13330.

11.1.3 Температурные климатические воздействия на алюминиевые конструкции следует учитывать путем соблюдения наибольших расстояний между температурными швами в соответствии с таблицей 42.

Таблипа 42

I GONNIGUIZ						
	Наибольшие расстояния, м					
Характеристика	между температу	от температурного шва				
зданий и сооружений	(вдоль здания) блока до		или торца здания до оси ближайшей вертикальной связи			
Отапливаемые здания	144	120	72			
Неотапливаемые	96	90	48			
здания и горячие цехи						
Открытые эстакалы	72	. .	36			

Примеча в ис — Наибольшие расстояния указаны для зданий и сооружений, в которых конструкции покрытий или (и) стен выполнены из алюминия, а колонны — из стали или алюминия,

- 11.1.4 Коррозионную стойкость алюминиевых конструкций, подвергающихся воздействию агрессивных сред, следует обеспечивать путем выбора марки и состояния алюминия, назначения рациональных конструктивных форм и минимальных толіцин в соответствии с СП 28.13330.
- 11.1.5 Для повышения коррозионной стойкости стальные болты подлежат оцинковке или кадмированию. Для исключения местного повреждения алюминиевых сплавов в момент стягивания болта под головки и гайки болтов следует устанавливать шайбы. При выполнении шайб из стали они должны быть оцинкованы или кадмированы.

11.2 Проектирование ограждающих конструкций

- 11.2.1 Ограждающие конструкции зданий (стены и покрытия, отдельные панели, настилы и их стыки), а также детали крепления ограждений к каркасу здания следует проектировать с учетом изменения температуры в течение года, обеспечивая при этом свободу температурных деформаций при сохранении теплотехнических свойств и герметичности ограждений.
- 11.2.2 При расчете ограждающих конструкций значения перепадов температуры наружных поверхностей следует определять исходя из расчетных значений температуры наружного воздуха в летнее и зимнее время года в соответствии с СП 131.13330.

При этом в летнее время должно быть учтено воздействие солнечной радиации.

- 11.2.3 Расчетные перепады температуры между наружными и внутренними поверхностями ограждающих конструкций следует принимать с учетом внутреннего температурного режима эксплуатации здания.
- 11.2.4 Выбор материала для утеплителя, клея и герметиков при проектировании ограждающих конструкций следует проводить с учетом расчетных перепадов

температуры между наружными и внутренними поверхностями ограждающих конструкций.

- 11.2.5 При применении в конструкциях алюминия в сочетании с другими строительными материалами (дерево в оконных и дверных конструкциях, полимеры в стеновых и кровельных конструкциях, сталь и др.) необходимо учитывать различие в значениях модулей упругости и коэффициентов линейного расширения материалов, а также предусматривать мероприятия по защите алюминия от контактной коррозии.
- 11.2.6 Крепление панелей ограждающих конструкций к несущему каркасу и конструкции стыков должны обеспечивать: необходимую прочность надежность и долговечность; восприятие монтажных и эксплуатационных нагрузок; исключение контактной коррозии; компенсацию температурных деформаций с сохранением необходимой герметизации; возможность проводить ремонт и демонтаж панелей.
- 11.2.7 Наиболее распространенными видами крепления ограждающих конструкций к несущему каркасу являются разъемное болтовое соединение, крепление анкерным болтом, фасадным дюбелем, заклепочное или на винтах (приложение Ж).

Другие соединения: с использованием профилей специальной формы, в том числе в замок, шпунт, паз и др.; осуществляемые за счет пластических деформаций алюминия, в том числе в фальц, запрессовкой, пистонного типа; защелкиванием (разъемные и неразъемные); осуществляемые за счет упругих деформаций алюминия; болтами с обжимными кольцами (болт-заклепки или «лок-болты»); фрикционные; сшиванием; клеевые, клеесварные и клеезаклепочные и др. следует применять с учетом специфики свойств алюминия и изготовления алюминиевых профилей.

- 11.2.8 В фасадных ограждающих конструкциях не допускается применение алюминиевых сплавов без защитно-декоративного покрытия. Для защитно-декоративной отделки ограждающих алюминиевых конструкций и изделий архитектурного назначения надлежит применять покрытия, предусмотренные ГОСТ 9.303, ГОСТ 15150 и ГОСТ 22233. В зависимости от условий эксплуатации в качестве защитно-декоративных следует применять покрытия с физико-механическими показателями, толщиной и стойкостью в соответствии с требованиями ГОСТ 22233.
- 11.2.9 При проектировании ограждающих алюминиевых конструкций необходимо обеспечить возможность легкой замены элементов, подверженных ускоренному старению, износу или ремонту (например, уплотнительных прокладок, стекла и др.)

12 Конструктивные требования

12.1 Общие указания

12.1.1 Выбор вида соединения (сварное, болтовое и др.) следует проводить в зависимости от характера работы соединения и с учетом степени ослабления алюминия, определяемого видом соединения.

Для термически не упрочняемых сплавов (особенно в отожженном состоянии) основным способом соединения следует выбирать сварку.

Сварные соединения элементов несущих конструкций следует выполнять в заводских условиях. При проектировании сварных конструкций необходимо предусматривать применение кондукторов.

- 12.1.2 Тонколистовые ограждающие конструкции и их соединения следует проектировать сварными или клепаными (заводские и монтажные крепления общивок к каркасам, стыки для укрупнения тонколистовых элементов, стыки в кровельных покрытиях), а также с применением соединений на фальцах, защелках и др.
- 12.1.3 При проектировании сварных тонколистовых конструкций необходимо обеспечить сохранение внешнего вида конструкции путем: выбора способа сварки,

обеспечивающего требуемый внешний вид сварных соединений; применения жестких кондукторов; проковки сварных швов для уменьшения сварочных деформаций и др.

12.1.4 Минимальную толщину несущих и ограждающих алюминиевых конструкций следует назначать по расчету и в зависимости от условий их перевозки, монтажа и эксплуатации.

Толщина элементов ограждающих конструкций при нормальных условиях их эксплуатации должна быть не менее 0.8 мм.

- 12.1.5 Комбинированные соединения, в которых часть усилий воспринимается заклепками, а часть сварными швами, применять запрещается.
- 12.1.6 При сочетании в одной конструкции элементов из алюминия и стали должны быть обеспечены меры по предотвращению контактной коррозии.
- 12.1.7 Соединения элементов ограждающих конструкций (витрин, витражей, окон, дверей и др.), выполняемые на вкладышах, должны быть проверены в опытных конструкциях.

Непосредственное соприкосновение заполнения из стекла с элементами алюминиевого каркаса не допускается.

12.2 Сварные соединения

12.2.1 При проектировании конструкций со сварными соединениями следует: применять высокопроизводительные механизированные способы сварки;

предусматривать возможность сварки без кантовки конструкций при изготовлении;

обеспечивать свободный доступ к местам наложения швов с учетом выбранного способа и технологии сварки;

назначать размеры и взаимное расположение швов и выбирать способ сварки исходя из требований обеспечения наименьших собственных напряжений и деформаций при сварке;

избегать сосредоточения большого числа швов в одном месте;

принимать количество и размеры сварных швов минимально необходимыми.

- 12.2.2 Разделку кромок под сварку следует назначать с учетом способа и технологии сварки, положения шва в пространстве и толщины свариваемых элементов и заводским нормалям.
- 12.2.3 При проектировании сварных соединений и узлов в несущих конструкциях следует предусматривать снижение концентрации напряжений, применяя для этого соответствующие конструктивные решения и технологические мероприятия.

Сварные соединения встык следует предусматривать с обязательной подваркой корня шва или с использованием формирующих подкладок. Концы швов встык следует выводить за пределы стыка (например, с помощью выводных планок).

При сварке встык двух листов разной толщины следует осуществлять переход от толстого листа к тонкому устройством скоса.

Число стыков в расчетных элементах должно быть минимальным.

- 12.2.4 Сварные соединения следует располагать в менее напряженных местах элементов конструкции.
- 12.2.5 В узлах несущих конструкций из прессованных профилей следует предусматривать сварные соединения встык и в тавр.
- 12.2.6 Размеры и форма сварных угловых швов должны удовлетворять следующим требованиям:

катет швов k_f следует принимать не менее толщины наиболее тонкого элемента. Если в соединении более тонкий элемент имеет бульбу, то предельное значение катета шва k_f может быть увеличена до 1,5t (t — наименьшая толщина соединяемых элементов):

расчетная длина флангового и лобового швов должна быть не менее 40 мм;

расчетная длина флангового шва должна быть не более 50 k_b

в соединениях внахлест размер нахлестки должн быть не менее пяти толщин наиболее тонкого элемента.

Рекомендации по конструированию сварных соединений приведены в приложении И.

12.2.7 Сварные соединения тонколистовых конструкций следует проектировать с учетом технологических особенностей применяемых способов сварки:

приварку тонких листов общивок к более толстым элементам каркаса выполнять аргонодуговой точечной сваркой, в том числе с рассверливанием перед сваркой листа и подкрепляющего элемента со стороны листа;

укрупнение тонколистовых элементов в заводских условиях выполнять сваркой аргонодуговой точечной и аргонодуговой непрерывным швом.

При сварке стыков кровельных покрытий в монтажных условиях следует применять аргонодуговую сварку вольфрамовым или плавящимся электродом с импульсивным питанием дуги. Основными видами соединений при этом являются нахлесточное и бортовое.

При применении аргонодуговой точечной сварки в монтажных условиях для соединения тонколистовых элементов основным видом соединения является нахлесточное; значение нахлестки должно быть не менее 30 мм.

12.3 Заклепочные и болтовые соединения

12.3.1 Размещение заклепок и болтов, в том числе высокопрочных, следует проводить согласно таблице 43.

Т	•	ĸ	**	**	43

Характеристика расстояния	Расстояния при размещении болтов
Между центрами заклепок и болтов в любом	
направлении:	
минимальное для заклепок	3 <i>d</i>
минимальное для болтов	3,5d
максимальное в крайних рядах при отсутствии	5d или 10t
окаймляющих уголков при растяжении и сжатии	
максимальное в средних и крайних рядах при	1
наличии окаймляющих уголков	
при растяжении	12d или 20t
при сжатии	10 <i>d</i> или 14 <i>t</i>
От центра заклепки или болта до края элемента:	
минимальное вдоль усилия и по диагонали	2,5 <i>d</i>
минимальное поперек усилия при обрезных кромках	2,5 <i>d</i>
то же, при прокатных или прессованных кромках	2 <i>d</i>
максимальное	6d

Соединительные болты, располагаемые вне узлов и стыков, следует размещать на максимальных расстояниях.

- 12.3.2 В рабочих элементах конструкций число расположенных по одну сторону стыка заклепок, прикрепляющих элемент в узле, должно быть не менее двух.
- 12.3.3 При заводской холодной клепке толщина склепываемого пакета на скобе не должна превышать четырех диаметров заклепок.

- 12.3.4 Конструкция соединения тонких алюминиевых лент с контуром должна иметь регулируемое предварительное натяжение и не допускать контакта между алюминием, сталью и бетоном.
- 12.3.5 Диаметр заклепки должен быть не более пяти толщин наиболее тонкого элемента. За расчетный диаметр заклепки следует принимать диаметр отверстия.
- 12.3.6 Форма заклепки и ее размеры для холодной клепки устанавливаются техническими условиями на изготовление строительных конструкций из алюминия.
- 12.3.7 В конструкциях из профилированных листов ребра жесткости или диафрагмы следует соединять в каждой точке касания с гофром и элементом, усиливающим конструкцию.
- 12.3.8 Стыки мембранной общивки следует выполнять внахлест, при этом стык должен быть соединен не менее чем двумя рядами сварных точек или заклепок.

13 Противопожарные требования

- 13.1 Алюминиевые конструкции должны сохранять несущую и (или) ограждающую способность при пожаре в течение времени, установленного в документах, приведенных в 4.2.
- 13.2 В зависимости от выполняемых функций огнестойкость (предел огнестойкости в минутах) алюминиевых конструкций определяется в соответствии с действующим законом [1]:

для ограждающих конструкций – потерей целостности и, если требуется, потерей теплоизолирующей способности;

для несущих конструкций – потерей несущей способности;

для совмещающих функции несущих и ограждающих конструкций – потерей несущей способности, потерей целостности и, если требуется, потерей теплоизолирующей способности.

- 13.3 Пределы огнестойкости алюминиевых конструкций должны соответствовать требуемой степени огнестойкости зданий и сооружений, в которых они применяются. Собственные пределы огнестойкости следует определять по результатам испытаний или расчетным путем (в отдельных случаях).
- 13.4 Для обеспечения требуемого предела огнестойкости алюминиевых конструкций следует использовать:
- огнезащитные напыляемые составы, обмазки, облицовки огнестойкими плитными, листовыми и другими материалами;
- нанесение на обогреваемую поверхность конструкции тонкослойных вспучивающихся покрытий (специальных огнезащитных составов с толщиной сухого слоя, не превышающей 3 мм и многократно увеличивающих свою толщину при огневом воздействии);
 - комбинации способов защиты.
- 13.5 При применении огнезащитных составов к конструкциям, имеющим защитное покрытие поверхности, огнезащитные характеристики следует определять с учетом поверхностного слоя, используемого в качестве гидроизоляционного или декоративного.
- 13.6 Применение средств огнезащиты следует осуществлять в соответствии с проектом огнезащиты.
- 13.7 Нагрузки от средств огнезащиты следует учитывать в нагрузках при расчетах алюминиевых конструкций.

Приложение А Основные буквенные обозначения величин

- A площадь сечения брутто; A_d площадь сечения раскосов; A_b площадь сечения ветви:
- Af- площадь сечения полки (пояса);
- A_n площадь сечения нетто;
- B- бимомент;
- D размер утолщения;
- E модуль упругости;
- F сила;
- І_f момент инерции пояса балки относительно собственной оси;
- I_{b} момент инерции сечения ветви;
- $I_m; I_d$ моменты инерции сечения пояса и раскоса фермы;
 - I_s момент инерции сечения ребра жесткости, планки;
 - I_r момент инерции сечения поперечного ребра;
 - Irl- момент инерции сечения продольного ребра;
 - I_{l} момент инерции при свободном кручении балки;
- I_x ; I_y моменты инерции сечения брутто относительно осей x x и y y соответственно;
- I_{xn} ; I_{vn} то же, сечения нетто;
 - I_{w} секториальный момент инерции сечения;
 - M момент, изгибающий момент;
- M_x ; M_y моменты относительно осей x x и y y соответственно;
 - N продольная сила;
 - N_{ad} дополнительное усилие;
 - N_b усилие в одной ветви колонны;
 - О поперечная сила, сила сдвига;
 - O_{6c} условная поперечная сила для соединительных элементов:
 - Q_s условная поперечная сила, приходящаяся на систему планок, расположенных в одной плоскости;
 - R расчетное сопротивление алюминия растяжению, сжатию, изгибу;
 - R_{bo} расчетное сопротивление смятию болтовых соединений;
 - R_{bs} расчетное сопротивление срезу болтов;
 - R_{bt} расчетное сопротивление растяжению болтов;
 - R_{rs} расчетное сопротивление срезу заклепок;
 - R_{ro} расчетное сопротивление смятию заклепочных соединений;
 - R_{bh} расчетное сопротивление растяжению высокопрочных болтов;
 - $R_{
 ho}$ расчетное сопротивление алюминия смятию торцевой поверхности (при наличии пригонки);
 - R_{lp} расчетное сопротивление алюминия смятию при плотном касании;
 - R_{pl} расчетное сопротивление растяжению алюминия после достижения алюминием предела текучести;
 - R_s расчетное сопротивление алюминия сдвигу;
 - R_{th} расчетное сопротивление растяжению алюминия в направлении толщины прессованного полуфабриката;
 - R_{un} нормативное сопротивление алюминия разрыву, принимаемое равным минимальному значению временного сопротивления σ_b по национальным стандартам и техническим условиям на алюминий;
 - R_{yn} нормативное сопротивление алюминия, принимаемое равным минимальному значению условного предела текучести $\sigma_{0,2}$ по национальным стандартам и техническим условиям на алюминий;

```
R_{\rm w} — расчетное сопротивление стыковых сварных соединений растяжению,
            сжатию, изгибу:
     R_{\text{nex}} — расчетное сопротивление стыковых сварных соединений сдвигу;
    R_{wzz} — расчетное сопротивление стыковых и нахлесточных сварных соединений
     R_{wf} — расчетное сопротивление угловых швов срезу по металлу шва;
    R_{wsm}- расчетное сопротивление соединений, выполненных контактной роликовой
            сваркой;
     R_{wz} — расчетное сопротивление алюминия в околошовной зоне;

    S – статический момент сдвигаемой части сечения брутто относительно

            нейтральной оси:
     W_{\nu} — момент сопротивления сечения для наиболее сжатого волокна;
 W_x: W_y — моменты сопротивления сечения брутто относительно осей x-x и y-y
            соответственно:
W_{xn}; W_{yn} — моменты сопротивления сечения нетто относительно осей x-x и y-y
            соответственно;
    W_{om} — секториальный момент сопротивления сечения нетто:
       b — ширина:
     b_{ef} — расчетная ширина свеса полки (поясного листа);
      b_r — ширина выступающей части ребра, свеса;
       d -  диаметр отверстия болта:
      d_b — наружный диаметр стержня болта;
       e — эксцентриситет силы;
       f — прогиб;
       h — высота;
     h_{ef} — расчетная высота стенки;
     h_{w} – высота стенки;
       i - радиус инерции сечения;
     ітт — наименьший радиус инерции сечения;
    i_x; i_y = - радиусы инерции сечения относительно осей x - x и y - y соответственно;
      k_f =  катет углового шва;
       l = длина, пролет, расстояние;
      l_c — длина стойки, колонны, распорки;
      l_d — длина раскоса;
      L_{ef}— расчетная длина;
      l_m — длина панели пояса фермы или колонны;
      l_{m} — расчетная длина сварного шва;
    l_{x},\ l_{y} — расчетные длины элемента в плоскостях, перпендикулярных к осям x-x и
            y - y соответственно;
      m — относительный эксцентриситет, m = Ea / W_c;
     m_{ef} — приведенный относительный эксцентриситет, m_{ef} = \eta m;
      r — радиус;
       t - толщина;
      t_r — толщина ребра;
          толщина стенки;
    g<sub>r</sub> — коэффициент для расчета углового шва по металлу шва;
          коэффициент условий работы болтового соединения;
          коэффициент условий работы;
          коэффициент надежности по материалу;
          коэффициент влияния изменения температуры:
     yı —
```

ул - коэффициент надежности по ответственности;

коэффициент влияния формы сечения;

уи - коэффициент надежности в расчетах по временному сопротивлению;

СП 128.13330.2016

```
\lambda — гибкость, \lambda = l_{ef}/i;
     \bar{\lambda} – условная гибкость, \bar{\lambda} = \lambda \sqrt{R/E}:

условная гибкость отдельной ветви;

   дет — приведенная гибкость стержня сквозного сечения:
   \bar{\lambda} of — условная приведенная гибкость стержня сквозного сечения, \bar{\lambda}_{ef} = \lambda_{ef} \sqrt{R/E};
            условная гибкость свеса пояса, \lambda_{\ell} = (b_{e\ell}/t_{\ell}) \sqrt{R/E};
            условная гибкость свесов с утолщением (бульбой);
   λ̄α -
   \bar{\lambda}_{w} – условная гибкость стенки, \bar{\lambda}_{w} = (h_{ef}/t_{w})\sqrt{R/E};
   λ., -
            предельная условная гибкость свеса пояса (поясного листа);
   1 uh -
            условная гибкость сжатого пояса балки;
   \overline{\lambda}_{\mu} — предельная гибкость;
\bar{\lambda}_{x}; \bar{\lambda}_{y}— расчетные гибкости элемента в плоскостях, перпендикулярных осям x-x и
            y - y соответственно;
    \sigma_I – расчетное напряжение в оболочке;
   \sigma_{cr.l} - критическое напряжение в оболочке;
   \sigma_{loc} — местное напряжение;
 \sigma_x; \sigma_y — нормальные напряжения, параллельные осям x-x и y-y соответственно;
    от – напряжение в сварном соединении от изгиба;
      \tau – касательное напряжение;
    т - напряжение в сварном соединении от среза;

    ф – коэффициент устойчивости при центральном сжатии;

   \varphi_{x(y)} — коэффициент устойчивости при сжатии;
```

Приложение Б Физические характеристики алюминия

Таблица Б.1 – Физические характеристики

Характеристика	Значение
Модуль упругости E , $H/мм^2$, при температуре, ${}^{\circ}C$:	
минус 70	0,735·105
от минус 40 до 50	0,700 105
100	0,640·10 ⁵
Модуль сдвига G, Н/мм², при температуре, °C:	
минус 70	0,274-105
от минус 40 до 50	0,265.105
100	0,255·10 ⁵
Коэффициент поперечной деформации (Пуассона) и	0,3
Коэффициент линейного расширения α, ° С ⁻¹ , при температуре от минус 70 до 100 °C	0,23·10 ⁻⁴
Среднее значение плотности $ ho$, кг/м 3	2700

определять линейной интерполяцией.

Приложение В Плотность алюминия

Таблица В.1 – Плотность алюминия

Марка алюминия	AMr	AB	АД1; АД31; АД33	АМц	1925; 1915	B95	АК8М3ч
Плотность, кг/м ³	2680	2700	2710	2730	2770	2850	2550

Приложение Г

Коэффициенты устойчивости ф для расчета центрально сжатых элементов

В таблице Γ .1 приведены схемы сечений, для которых в таблицах Γ .2 и Γ .3 приведены значения коэффициента ϕ .

Таблица Г.1 – Схемы сечений для определения коэффициента ф

	Номер таблицы	
Обозначение	Форма	
1	+++	Γ.2
2		Γ.3

Таблица Г.2 – Коэффициенты ф устойчивости центрально сжатых элементов для сечений типа 1

		ция сечени	in iniia i						
Гибкость		Коэффициенты ϕ для элементов из алюминия марок							
элементов	АДІМ	АМцМ	АД31Т;	АМг2М	АД31Т5	АДЗІТ1;	1925;	1915T	
Α.			А Д31Т4	_		AMr3H2	1915		
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
10	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
20	1,000	1,000	0,995	0,982	0,946	0,936	0,915	0,910	
30	0,985	0,955	0,930	0,915	0,880	0,865	0,838	0,830	
40	0,935	0,900	0,880	0,860	0,818	0,802	0,770	0,758	
50	0,887	0,860	0,835	0,812	0,763	0,740	0,696	0,676	
60	0,858	0,820	0,793	0,766	0,705	0,675	0,615	0,590	
70	0,825	0,782	0,750	0,717	0,644	0,605	0,530	0,500	
80	0,792	0,745	0,706	0,665	0,590	0,542	0,440	0,385	
90	0,760	0,710	0,656	0,608	0,510	0,450	0,348	0,305	
100	0,726	0,665	0,610	0,555	0,432	0,367	0,282	0,246	
110	0,693	0,625	0,562	0,506	0,382	0,313	0,233	0,204	
120	0,660	0,530	0,518	0,458	0,330	0,262	0,196	0,171	
130	0,630	0,545	0,475	0,415	0,290	0,227	0,167	0,146	
140	0,595	0,505	0,435	0,362	0,255	0,197	0,144	0,126	
150	0,562	0,470	0,400	0,313	0,212	0,168	0,125	0,110	

		4D1 00 1911								
Гибкость		Коэффициенты ϕ для элементов из алюминия марок								
элементов	АДІМ	АМиМ	АДЗІТ;	АМг2М	АД31Т5	АД 31 Т 1;	1925;	1915T		
λ			АД31Т4			AMr3H2	1915			
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
10	1,000	1,000	1,000	1,000	0,990	0,983	0,967	0,960		
20	0,975	0,950	0,940	0,920	0,885	0,880	0,867	0,860		
30	0,922	0,895	0,878	0,862	0,820	0,808	0,790	0,775		
40	0,877	0,842	0,822	0,807	0,760	0,742	0,715	0,695		
50	0,832	0,796	0,773	0,750	0,700	0,678	0,638	0,613		
60	0,795	0,752	0,725	0,698	0,635	0,607	0,560	0,530		
70	0,757	0,713	0,680	0,647	0,574	0,538	0,482	0,450		
80	0,720	0,670	0,635	0,597	0,520	0,480	0,413	0,380		
90	0,690	0,632	0,588	0,545	0,466	0,422	0,348	0,305		
100	0,657	0,593	0,543	0,498	0,410	0,360	0,282	0,246		
110	0,625	0,553	0,500	0,450	0,362	0,310	0,233	0,204		
120	0,590	0,515	0,460	0,408	0,316	0,263	0,196	0,171		
130	0,560	0,480	0,420	0,370	0,280	0,228	0,167	0,146		
140	0,527	0,445	0,385	0,333	0,237	0,194	0,144	0,126		
150	0,497	0,412_	0,352	0,300	0,205	0,166	0,125	0, <u>11</u> 0		

Приложение Д Коэффициент устойчивости при изгибе ф в

Д.1 Коэффициент ϕ_b для расчета на устойчивость изгибаемых элементов двугаврового, таврового и швеллерного сечения следует определять в зависимости от расстановки связей, раскрепляющих сжатый пояс, вида нагрузки и места ее приложения. При этом предполагается, что нагрузка действует в плоскости наибольшей жесткости $(I_x > I_y)$, а опорные сечения закреплены от боковых смещений и поворота.

Д.2 Для балки двутаврового сечения с двумя осями симметрии для определения коэффициента φ_b необходимо вычислить коэффициент φ_1 по формуле

$$\varphi_1 = 1.41 \psi \frac{I_y}{I_x} \left(\frac{h}{l_{ef}}\right)^2 \frac{E}{R},$$
(Д.1)

где ψ – коэффициент, вычисляемый согласно требованиям Д.3;

 $l_{\rm ef}$ — расчетная длина балки или консоли, определяемая согласно требованиям 7.3.4

h – полная высота сечения.

Д.3 Значение коэффициента ψ в формуле (Д.1) следует вычислять по формулам таблиц Д.1, Д.2 и Д.3 в зависимости от количества закреплений сжатого пояса, вида нагрузки и места ее приложения, а также от параметра α , равного:

а) для прессованных двутавров

$$\alpha = 1.54 \frac{I_t}{I_u} \left(\frac{I_{ef}}{h}\right)^2, \tag{J.2}$$

где $I_t = 0.42 \Sigma \, b_t \, t_t^{-3}$ — момент инерции сечения при свободном кручении (здесь b_t и t_t — соответственно ширина и толщина прямоугольников, образующих сечение).

При наличии утолщений круглого сечения (бульб)

$$I_t = 0.42 \Sigma b_t t_t^3 + n \frac{\pi D^4}{32}$$
,

где D – диаметр бульб;

и – число бульб в сечении.

б) для сварных двутавровых балок при отсутствии отбортовок, утолщений по краям и значительных утолщений в углах параметр α следует вычислять по формуле

$$\alpha = 8 \left(\frac{l_{ef} t_f}{h b_f} \right)^2 \left(1 + \frac{a t^3}{b_f t_f^3} \right), \tag{II.3}$$

где для сварных и прессованных двугавровых балок:

 t_f и b_f — соответственно толщина и ширина пояса балки;

h – расстояние между осями поясов;

a = 0.5h;

для составных клепаных двугавровых балок:

// – суммарная толіцина листов пояса и горизонтальной полки поясного уголка;

 b_f – ширина листов пояса;

h – расстояние между осями пакетов поясных листов;

а – сумма высоты вертикальной полки поясного уголка с толщиной пакета

горизонтальных листов;

суммарная толщина стенки и вертикальных полок поясных уголков.

Значение коэффициента ф в формуле (22) следует принимать:

при φ₁≤ 0,667

 $\varphi_b = \varphi_1$;

при $\phi_1 > 0,667$ $\phi_b = 0,5 + 0,25\phi_1$ для алюминия всех марок, указанных в таблице 1, за исключением АМг3Н2, АД31Т1 и АД31Т5, и $\phi_b = \phi_1$, но не более 1,0 – для алюминия марок АМг3Н2, АД31Т1 и АД31Т5.

Д.4 Для разрезной балки двутаврового сечения с одной осью симметрии (рисунок Д.1) для определения коэффициента φ_b необходимо вычислить коэффициенты φ_1 и φ_2 по формулам:

$$\phi_1 = 1.41 \psi \frac{I_y}{I_x} \cdot \frac{2\zeta h h_1}{l_{ef}^2} \cdot \frac{E}{R};$$
(Д.4)

$$\varphi_2 = 1.41 \psi \frac{I_y}{I_x} \cdot \frac{2\zeta h h_2}{l_{ef}^2} \cdot \frac{E}{R};$$
 (Д.5)

$$\Psi = 2.6 \left[\sqrt{(0.5\bar{y}_{p} + \beta_{y})^{2} + c^{2}} + (0.5\bar{y}_{p} + \beta_{y}) \right]. \tag{II.6}$$

В формулах (Д.4) – (Д.6):

 ζ — коэффициент, зависящий от вида нагрузки и принимаемый по таблице Д.4; h_l , h_2 — размеры, указанные на рисунке Д.1;

 $\overline{y}_p = \frac{y_p}{h}$ — относительная координата точки приложения нагрузки со своим знаком

(см. рисунок Д.1);

$$\beta_y = \left[0.43 - 0.065 \left(\frac{b_1}{h}\right)^2\right] (2n-1);$$

здесь $n = \frac{I_1}{I_1 + I_2}$ (где I_1, I_2 — моменты инерции соответственно сжатого и растянутого

поясов относительно оси симметрии сечения);

$$c^{2} = \frac{1}{I_{y}} \left(\frac{I_{1}I_{2}}{I_{y}} + 0.04I_{t} \frac{l^{2}}{h^{2}} \right);$$

 I_t — момент инерции при кручении [см. обозначения к формуле (Д.2)].

Значение коэффициента φ_b в формуле (22) следует принимать:

при φ₂ ≤ 0,667

 $\varphi_b = \varphi_i$

при
$$\varphi_2 > 0,667$$
 $\varphi_b = \varphi_1 \left[0.5 + 0.25 \left(\frac{n}{\varphi_1} + \frac{1-n}{\varphi_2} \right) \right]$ для алюминия всех марок,

указанных в таблице 1, за исключением АМг3Н2, АД31Т1 и АД31Т5, для которых φ_2 следует вычислять по формуле (Д.5) и принимать не более 1.0.

Табляца Д.1 – Коэффициент у для балок двугаврового сечения с двумя осями симметрии

			Коэффициент	ค 🗽 🖳	
Коэффициент		при наличии не менее двух промежуточных			
α	при сосредоточен приложенно		при равномерно нагрузке, прилоз	•	закреплений верхнего пояса, делящих пролет на равные части, независимо от места
	верхнему	нижнему	верхнему	нижнему	приложения нагрузки
1	2	3	4	5	6
0,1	0,98	2,80	0,91	2,14	1,20
0,4	0,98	2,84	0,91	2,14	1,23
1,0	1,05	2,87	0,95	2,17	1,26
4,0	1,26	3,05	1,12	2,35	1,44
8,0	1,47	3,29	1,30	2,56	1,65
16,0	1,89	3,75	1,68	2,94	1,96
24,0	2,24	4,10	2,00	3,22	2,24
32,0	2,56	4,45	2,28	3,50	2,49
48,0	3,15	4,97	2,73	3,99	2,91
64,0	3,64	5,50	3,15	4,45	3,33
80,0	4,10	5,95	3,50	4,80	3,64
96,0	4,48	6,30	3,89	5,15	3,96
128,0	5,25	7,04	4,48	5,78	4,50
160,0	5,92	7,77	5,04	6,30	5,01
240,0	7,35	9,17	6,30	7,56	6,09
320,0	8,54	10,40	7,32	8,40	7,00
400,0	9,63	11.48	8,16	9,38	7,77

Таблица Д.2 — Коэффициент ψ для балок двутаврового сечения с двумя осями симметрии при одном закреплении балки в середине пролета

Место приложения Вид нагрузки Коэффициент и нагрузки Сосредоточенная В середине пролета (независимо от уровня $\psi = 1.75 \psi_I$ приложения) Сосредоточенная В четверти пролета к верхнему поясу $\psi = 1,14\psi_I$ Равномерно К верхнему поясу распределенная Сосредоточенная В четверти пролета $\psi = 1.6 \psi_I$ к нижнему поясу Равномерно К нижнему поясу $\psi = 1.3 \psi_I$ распределенная Примечание - Здесь значение ф / следует принимать по графе 6 таблицы Д.1.

Таблица Д.3 – Коэффициент у для консолей двутаврового сечения с лимия осями симметрии

Коэффициент	Коэффициснт ψ при нагрузке, приложенной к поясу					
α	верхнему	нижнему				
4	0,875	3,640				
6	1,120	3,745				
8	1,295	3,850				
10	1,505	3,920				
12	1,680	4,025				
14	1,855	4,130				
16	2,030	4,200				
24	2,520	4,550				
32	2,975	4,830				
40	3,290	5,040				
100	5,040	6,720				

Таблица Д.4 – Коэффициент ζ для балок двутаврового сечения

Вид нагрузки	Чистый изгиб	Равномерно	Сосредоточенная сила	Момент на одном								
		распределенная	в середине пролета	конце балки								
Коэффициент <i>ζ</i>	1,00	1,12	1,35	1,75								

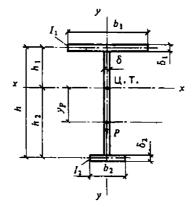


Рисунок Д.1 - Схема двутаврового сечения с одной осью симметрии

Д.5 Устойчивость балок швеллерного сечения следует проверять так же, как балок двутаврового сечения, при этом α вычислять по формуле (Д.2); найденные значения φ_b умножать на 0,7.

Значения I_x , I_y и I_t в формулах (Д.1) и (Д.2) следует принимать для швеллера.

Приложение Е Расчет внецентренно сжатых и сжато-изгибаемых элементов

Таблица Е.1 – Коэффициенты устойчивости φ_e для проверки устойчивости внецентренно сжатых (сжато-изгибаемых) сплошностенчатых стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная			начение			ом относи	тсльном э	сцентрис	итсте те		
гибкость $\overline{\lambda}$	1,0	0,2	0,3	0,4	0,5	0,6	0,7	0,8	1,0	1,2	1,5
0,5	990	980	973	937	905	880	850	920	767	725	657
1,0	947	907	872	837	807	778	752	725	680	637	583
1,5	880	832	793	758	726	700	507	647	607	570	518
2,0	817	765	723	687	656	627	457	580	540	507	463
2,5	750	695	652	617	587	560	410	515	482	452	413
3,0	677	618	578	545	517	495	472	455	425	400	367
3,5	593	542	505	475	453	434	415	398	374	355	325
4,0	505	436	435	412	393	378	362	350	327	312	288
4,5	425	395	374	356	342	328	315	306	288	275	255
5,0	358	338	320	307	295	285	275	268	253	242	227
5,5	303	287	276	265	257	248	242	235	225	215	202
6,0	257	246	238	230	223	218	213	208	198	192	180
6,5	222	212	207	202	197	191	187	183	175	170	161
7,0	192	187	18]	177	172	168	165	161	155	150	145
8,0	148	145	142	139	137	134	132	129	126	123	120
9,0	120	117	115	113	111	110	108	107	105	102	100
10,0	097	095	093	092	091	090	088	087	085	084	082

Окончание	таблины	EI

Условная		3н	ачение ф _е	при прив	е денном о	тносител	ьном эксц	е нтри сите	re m _{ef}	
гибкость Х	2,0	2,5	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0
0,5	567	500	445	360	302	257	225	203	182	165
1,0	505	445	394	323	272	235	205	186	167	151
1,5	452	398	355	292	247	215	188	171	153	140
2,0	405	358	320	265	227	197	175	158	142	130
2,5	362	322	290	242	208	182	162	146	132	121
3,0	323	290	262	220	192	167	150	135	123	114
3,5	288	260	236	202	175	155	140	126	116	108
4,0	257	233	214	184	159	144	130	117	109	101
4,5	230	210	193	167	146	132	121	110	102	095
5,0	205	190	175	152	135	123	113	103	096	090
5,5	185	172	160	140	125	115	105	097	090	085
6,0	166	155	145	128	115	106	097	090	085	080
6,5	148	141	132	117	107	097	090	085	080	075
7,0	135	128	120	108	098	090	085	080	075	070
8,0	112	107	100	091	085	080	077	072	067	062
9,0	094	090	086	080	076	072	067	063	059	055
10,0	080	077	075	070	067	062	060	056	052	048

Примечания

¹ Значения коэффициентов фе в таблице увеличены в 1000 раз.

² Значения ф следует принимать не более значений ф.

Таблица Е.2 – Коэффициенты устойчивости φ_e для проверки устойчивости внецентренно сжатых (сжато-изгибаемых) сквозных стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная		31	начение ф	е при пр	иведенно	и относит	сльном э	ксцентри	ситете п	lef	
гибкость λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	1,0	1,2	1,5
0,5	950	888	825	755	718	660	635	605	540	495	436
1,0	882	810	756	693	660	609	582	548	496	453	405
1,5	872	753	684	643	607	568	534	507	458	420	375
2,0	773	700	640	593	558	523	492	468	423	390	347
2,5	712	637	585	543	508	477	450	427	390	358	320
3,0	640	575	530	488	458	430	408	387	355	327	294
3,5	565	507	467	432	410	385	365	350	321	297	270
4,0	490	442	410	382	363	343	327	313	290	269	247
4,5	418	382	357	335	320	304	290	280	260	243	223
5,0	353	328	309	293	280	268	257	249	233	219	202
5,5	300	282	267	256	245	237	228	222	208	197	183
6,0	256	242	233	223	216	210	202	197	187	178	166
6,5	220	210	205	197	190	185	182	175	167	160	150
7,0	192	186	180	173	169	165	162	157	150	145	136
8,0	150	145	142	139	135	133	130	127	122	120	112
9,0	120	117	115	112	110	108	107	105	101	098	095
10,0	097	096	095	093	092	091	090	087	085	083	082

Окончание	พศกิทยน	E2
UNURSURAC	muumaaa	4.4

Условная	<u> </u>	311	ачение φε	при приво	денном о	тноситслі	ыюм эксц	ентрисите	re mef	
гибкость λ	2,0	2,5	3,0	4.0	5,0	6,0	7,0	8.0	9,0	10,0
0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 8,0	370 342 318 294 273 253 232 213 195 178 163 150 136 125 105	320 296 275 257 240 222 206 190 177 162 150 138 127 117	282 262 243 227 213 197 185 172 160 148 137 128 118 108	323 213 198 185 173 164 155 145 135 127 120 112 103 096 086	196 182 170 159 150 142 133 125 117 110 105 098 094 090 082	170 155 144 135 127 121 115 110 105 098 094 090 085 081	157 145 134 125 117 111 106 100 094 089 084 080 076 072 065	143 130 120 112 105 100 095 090 086 082 077 073 070 067	122 113 105 100 095 092 087 083 080 076 072 068 065 062	110 096 090 084 079 075 072 070 067 064 062 060 058 052
9,0 10,0	090 080	087 076	081 071	077 068	072 064	065 057	058 052	055 048	050 044	044

Примечания

¹ Значения коэффициентов фе в таблице увеличены в 1000 раз.

² Значения ф е следует принимать не более значений ф.

СП 128.13330.2016

Таблица Е.3 – Коэффициенты влияния формы сечения п

Тип	и ца к.3 — Коэффициенты влияния фор и Схема сечения и эксцентриситет								
сечения		$\frac{A_f}{A_w}$	$0 \le \overline{\lambda} \le 5$		$\overline{\lambda}$	> 5			
_		A	$0,1 \le m \le 5$	5 < m ≤ 20	$0, 1 \le m \le 5$	5 < m ≤ 20			
1		-		1,0					
2	$\frac{1}{h} = 0.25$	_		0,85	0,85				
3		-	$0.75 + 0.02\overline{\lambda}$	0,85					
4	$\frac{t}{h} = 0.25$	-	$(1,35-0,05m)-0,01(5-m)\overline{\lambda}$	1,1					
5	5 A, 0 5 A, 0 0,5A, 0 A, 0		$(1,45-0,05m)-0,01(5-m)\overline{\lambda}$	1,2					
	A. 4. 10.5A. 10.5A.	0,5	$(1,75-0,1m)-0,02(5-m)\overline{\lambda}$	1,25					
	$\frac{a_1}{h} \leq 0.15$	≥1,0	$(1,90-0,1m)-0,02 (6-m)\overline{\lambda}$	$1.4-0.02\overline{\lambda}$	1	,3			
6	$\frac{a_1}{A_n} = \frac{a_1}{h} \leq 0.15$	-	$\eta_5 \left[1 - 0.3 \left(5 - m \right) \frac{a_1}{h} \right]$		$\eta_{\scriptscriptstyle 5}$				
7	$\frac{a_1}{h} \leq 0.15$	-		$\eta_{s}\left(1-0.8\frac{a_{1}}{h}\right)$					
8		0,25	$(0.75 + 0.05m) + 0.01(5 - m)\overline{\lambda}$		1,0				
	0.54	0,5	$(0.5+0.1m)+0.02(5-m)\vec{\lambda}$	1,0					

Окончание	таблицы	E.3

	Consumue machinga E.S	≥1	$(0.25+0.15m)+0.03(5-m)\overline{\lambda}$		1,0				
9	0,5A+1 1 1	0,5	$(1,25-0,05m)-0,01(5-m)\overline{\lambda}$						
			$(1,5-0,1m)-0,02(5-m)\overline{\lambda}$		1,0				
10	10	0,5		1,4					
		1,0	$1,6-0,01(5-m)\bar{\lambda}$	1,6	1,35+0,05m	1,6			
	0.54; 0.254;	2,0	$1.8-0.02(5-m)\overline{\lambda}$	1,8	1,3+0,1 <i>m</i>	1,8			
11	A ₁ , 0.5A ₁	0,5	1,45+0,04m	1,65	1,45+0,04m	1,65			
	0.54	1,0	1,8+0,12m	2,4	1,8+0,12m	2,4			
		1,5	$2,0+0,25m+0,1\overline{\lambda}$	_	_	<u></u>			
		2,0	$3.0 + 0.25m + 0.1\overline{\lambda}$	_	_	_			

Примечания

¹ Для типов сечений 5 –7 при подсчете значений A_f/A_w площадь вертикальных элементов полок не следует учитывать.

² Для типов сечений 6 –7 значения η_5 следует принимать равными значениям η для типа 5 при тех же значениях A_f/A_w .

CII 128.13330.2016

Т а б л и ц а E.4 — Приведенные относительные эксцентриситеты m_{ef} для внецентренно

хиткжэ	стержней с шарнирно-опертыми концами

	UMCa.	тых ст	opmiro.	r o mar								
Элюры	Ī	Значение m_{vf} при $m_{vf,1}$, равном										
моментов		0,1	0,5	1,0	1,5	2,0	3,0	4,0	5,0	7,0	10,0	20,0
	1	0,10	0,30	0,68	1,12	1,60	2,62	3,55	4,55	6,50	9,40	19,40
S =-1,0	2	01,0	0,17	0,39	0,68	1,03	1,80	2,75	3,72	5,65	8,60	18,50
	3	0,10	0,10	0,22	0,36	0,55	1,17	1,95	2,77	4,60	7,40	17,20
M ₁ 9 M ₂	4	0,10	0,10	0,10	0,18	0,30	0,57	1,03	1,78	3,35	5,90	15,40
	5	0,10	0,10	0,10	0,10	0,15	0,23	0,48	0,95	2,18	4,40	13,40
	6	0,10	0,10	0,10	0,10	0,10	0,15	0,18	0,40	1,25	3,00	11,40
	7	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,50	1,70	9,50
	1	0,10	0,31	0,68	1,12	1,60	2,62	3,55	4,55	6,50	9,40	19,40
S = −0.5	2	0,10	0,22	0,46	0,73	1,05	1,88	2,75	3,72	5,65	8,60	18,50
δ = −0,5 M,	3	0,10	0,17	0,38	0,58	0,80	1,33	2,00	2,77	4,60	7,40	17,20
М,	4	0,10	0,14	0,32	0,49	0,66	1,05	1,52	2,22	3,50	5,90	15,40
	5	0,10	0,10	0,26	0,41	0,57	0,95	1,38	1,80	2,95	4,70	13,40
	6	0,10	0,16	0,28	0,40	0,52	0,95	1,25	1,60	2,50	4,00	11,50
	7	0,10	0,22	0,32	0,42	0,55	0,95	1,10	1,35	2,20	3,50	10,80
	1	0,10	0,32	0,70	1,12	1,60	2,62	2,55	4,55	6,50	9,40	19,40
δ=0	2	0,10	0,28	0,60	0,90	1,28	1,96	2,75	3,72	5,65	8,40	18,50
	3	0,10	0,27	0,55	0,84	1,15	1,75	2,43	3,17	4,80	7,40	17,20
M ₁ 😨 M ₂	4	0,10	0,26	0,52	0,78	1,10	1,60	2,20	2,83	4,00	6,30	15,40
	5	0,10	0,25	0,52	0,78	1,10	1,55	2,10	2,78	3,85	5,90	14,50
	6	0,10	0,28	0,52	0,78	1,10	1,55	2,00	2,70	3,80	5,60	13,80
	7	0,10	0,32	0,52	0,78	1,10	1,55	1,90	2,60	3,75	5,50	13,00
	1	0,10	0,40	0,80	1,23	1,68	2,62	3,55	4,55	6,50	9,10	19,40
δ=0,5	2	0,10	0,40	0,78	1,20	1,60	2,30	3,15	4,10	5,85	8,60	18,50
	3	0,10	0,40	0,77	1,17	1,55	2,30	3,10	3,90	5,55	8,13	18,00
M, 9 M,	4	0,10	0,40	0,75	1,13	1,55	2,30	3,05	3,80	5,30	7,60	17,50
	5	0,10	0,40	0,75	1,10	1,55	2,30	3,00	3,80	5,30	7,60	17,00
	6	0,10	0,40	0,75	1,10	1,50	2,30	3,00	3,80	5,30	7,60	16,50
	7	0,10	0,40	0,75	1,10	1,40	2,30	3,00	3,80	5,30	7,60	16,00
06			una E de									

Обозначения, принятые в таблице Е.4:

$$m_{ef.1} = \eta \frac{M_1}{N} \cdot \frac{A}{W_c}; \quad \delta = \frac{M_2}{M_1}$$

Приложение Ж

Виды креплений ограждающих конструкций

Таблица Ж.1

Описание крепления	Назначение продукции	Нормативные документы
Вытяжная алюминиевая заклепка с сердечником из нержавеющей стали или коррозионно-стойкие заклепки различного диаметра	Для крепления элементов примыкания и элементов конструкций между собой	FOCT 10299; FOCT 10300; FOCT 10301; FOCT 10304
Болтовое соединение (в том числе шайба, гайка)	Для крепления элементов к несущей конструкции, а также элементов конструкций между собой	FOCT 7798; FOCT 5915
Винтовое соединение	Для крепления элементов конструкций между собой	ГОСТ 11738 ГОСТ 10618
Болты самоанкерующиеся распорные для строительства	Для крепления к стене	FOCT 28778

Приложение И

Конструирование сварных соединений

Таблица И

№ <u>№</u> пп	Вид сварного соединения	Рекомендации
1	Стыковое соединение	Должна быть обязательной разлелка кромок, вырубка и полварка шва. При соединении листов разной толинны более толстый должен быть скошен, в соответствии с ГОСТ 14806-80. Для более уенениюго сопротивления усталостным напряжениям, выступ сварного шва над илоскостью соединяемого элемента необходимо устранить. По возможности не рекомендуется применять пересекающихся швов
2	Соединение вияхлестку	Во избежание изгибающих напряжений в еварном шве необходима постановка швов с явух сторон. Как правило, разделка кромок не требуется
3	Тавровое соединение 21 min	Необходима тнательная подгонка торна вертикального элемента к пластине. Сварка должна осуществляться в кондукторе. Как правило, разделка кромок не требуется. Если возможен изгиб стенки, необходимо предусмотреть сварной шов с авух сторон
4		При оппрании листа на ребро жесткости, в случае сели лист подвергается изгибу, рекоменлуется переместить сварной шов в сторону от действия максимального изгибающего момента
5		Для восприятия момента тавровое соединение дояжно быть усилено угловыми ребрами жесткости. Ребро дояжно быть прикреплено так, чтобы угловой шов быд непрерывен во избежание образования кратеров
6		Отбортованные элементы в резервуарах полжны быть расположены под прямым углом к привариваемому элементу е целью синжения изгибающих напряжений в сварном шве. Не допускается приварка закругленного конша элемента

Окончание таблицы И

NeNe	ичание таблицы И Вид сварного соединения	Рекомендации
nn		, onononaum
7		Рекомендуется применять двойные угловые швы, предусматривающие соединение встык или внажлестку
8		Усплительная стыковая накладка лучше всего может быть выполнена из эдемента ромбовидной формы со швами, прохолящими за конпевые точки листа. Это спижает максимальные срезающие папряженця в угловых швах по сравнению с прямоугольной накладкой
9		При пересечении главных балок с элемента- ми переборок и перегородок, во избежание возникновения в месте их пересечения вы- соких местных напряжений необходима по- становка поперечных ребер
10		Ребра жесткости, предотвращающие деформацию из плоскости стенки балки, должны иметь конструкцию крепления к полкам, с целью передачи усилий от стенки к полкам балки
11		Вырезы должны быть закругленными во из- бежание концентраторов напряжений в уг- лах. Если в месте выреза предусматривается усиление, то исобходимо предусмотреть, чтобы сварной шов являлся достаточным для восприятия всей нагрузки, которая передает- ся на усилительный элемент. Для небольших вырезов следует предпочесть случай «Б» случаю «А», что облегает пол- гонку усилительного элемента и улучшает противодействие усталостным напряжениям
12		В кроиштейнах, прикрепленных к полкам, части нодок отдаленные от степки, воепринимают меньшие усилия, чем часть, примыкающая к стенке. Это приводит к высоким значениям напряжений в неитральной части полки. Чтобы распределить напряжения по шву более равномерно, необходима постановка ребер жесткости, передающих нагрузку на стенку основного элемента

Библиография

- [1] Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»
- [2] Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений».