министерство угольной промышленности ссср

УКАЗАНИЯ

по технологическому проектированию узлов главного корпуса обогатительных фабрик - отсадка, подготонительная классификация и обезвоживание продуктов отсадки.

министерство угольной промышленности ссер

CUTJIACOBAHO

Госстроем СССР 03.01.75 г.

УТВЕРЪЛЕНО

Министерством угольной промышленности СССР 22.10.74 г.

УКАЗАНИЯ

по технологическому проектированию узлов главного корпуса обогатительных фабрик - отсадка, подготонительная классификация и обезвоживание продуктов отсадки.

Введены в действие с 01.07.75 г.

"Указания" разработаны институтом Центрогипрошахт в соответствии с Постановлением Госстроя СССР # 9 от 19.01.73 г. и тематическим планом работ института Центрогипрошахт, утвержденным Шахтопроектом Минуглепрома СССР 14.02.73 г., с учетом предложений институтов Гипрошахт, Сибгипрошахт, Южгипрошахт, Ростовгипрошахт, Днепрогипрошахт, УкрНИИУглеобогащение, ИОТТ.

Целью "Указаний" является обеспечение проектных организапий необходимыми данными для расчета технологических схем обогащения угля по узлам главного корпуса обогатительной фабрики: отсадка, подготовительная классификация и обезвоживание продуктов отсадки.

I.00. Общие положения

- I.OI. При выборе схемы технологического процесса обогащения углей руководствоваться действующими "Основными направлениями и нормами технологического проектирования угольных шахт, разрезов и обогатительных фабрик," "Типовыми технологическими схемами обогащения углей", разработанными Центрогипрошахтом и утвержденными Минуглепромом СССР.
- 1.02. Оборудование подготовительной классификации, дешламации мелкого класса, отсадки и обезвоживания продуктов отсадки принимать в соответствии с "Перечнем оборудования, рекомендуемого для применения в проектах новых и реконструируемых углеобогатительных фабрик", утвержденным Управлением Шахтопроекта и согласованным Управлением Углеобогащения Министерства угольной промышленности СССР.

Выбор основного оборудования должен производиться с учетом следующих соображений:

- обеспечения эффективности процесса;
- надежной работоспособности по технологическим и механическим факторам;
- возможности обеспечения высокой степени механизации и автоматизации процессов;
 - применения лучших образцов машин отечественного произволства:
- возможности изготовления оборудования ко времени начала монтажа;
- рекомендаций проектно-конструкторских институтов и авторов машин и заводов-изготовителей.

2.00. Подготовительная классификация

- 2.01. Гранулометрический состав исходного угля и дробленого продукта и их зольность и влажность принимать по результатам исследований, промышленных испытаний рядовых углей шахт и разрезов, входящих в сырьевую базу фабрики, или по аналогам в соответствии с рекомендациями научно-исследовательских институтов.
- 2.02. Предусматривать следующие схемы классификации и дешлама-
 - сухая классификация без пешламации:
 - сухая классификация с депламацией;
 - мокрая классификация.

- 2.03. Для подготовительной классификации каменного угля и антрацита (разделения угля на машинные классы) принимать:
- О.І. при обогащениия угля до 13 мм с влажностью не более 7% и содержанием в нем мелочи (менее I мм) до 20% как правило, сухую классификацию без дешламации угля крупного машинного класса, при большей влажности сухую классификацию с последующей дешламацией угля крупного машинного класса;
- 0.2 при глубине обогащения до 6 мм и влажности угля до 7%сухую классификацию с последующей дешламацией угля крупного машинного класса;
- 0.3 при глубине обогащения 0,5 и 0 мм мокрую классификацию с последующей дешламацией угля.
- 2.04. Для подготовительной классификации применять следующие типы грохотов:
- О.І при сухой классификации ГИЛ и ГРД при соответствующем обосновании;
 - 0.2 при мокрой классификации ГСЛ.
 - 2.05. Эффективность грохочения определять по формулам:
- 0.2 в случае, когда имеет место засорение подрешетного про-

$$? = \frac{100 (\angle - \beta) (\delta - \omega)}{(\delta - \beta) (100 - \omega) \cdot \omega} 100\%,$$

- где: \mathcal{L} содержание подрешетного класса в исходном, %
 - eta допустимый остаток подрешетного в надрешетном, % δ содержание подрешетного класса в подрешетном продукте, %
- 2.06. Для определения оптимальной эффективности грохочения допустимый остаток подрешетного в надрешетном продукте грохочения, направляемом на обогащение в тяжелосредные сепараторы, принимать:

		ы отверс			
	! <u>5</u> 0_ !	<u>2</u> 5!_	_I <u>3</u> _!	_IO_!_	_ 6
Допустимый остаток под- решетного, В %	I 4	10	7-9	6–8	4-5

Примечание: Приведенные в таблице значения допустимого остатка для применяемых типов грохотов применимы только для операций мокрой классификации с дешламацией.

2.07. Производительность грохотов при сухой классификации каменных углей и антрацитов определять по методике института ИОТТ "Определение производительности резонансных и инерционных грохотов при грохочении каменных углей, антрацитов и горючих сланцев", утвержденной Главшахтопроектом и Главуглеобогащением Министерства угольной промышленности СССР.

При мокром грохочении производительность грохотов, рассчитанную по методике ИОТТ, увеличивать при классификации на ситах с отверстиями:

- 25 mm B I,5 pasa,
- I3 мм в 2,0 раза,
- IO MM B 2,5 pasa,
 - 6 мм в 2,8 раза.
- 2.08. Расход воды при мокрой классификации и дешламации надрешетного продукта после сухой классификации на I тонну угля принимать:

Размер отверстий сит, мм	! Мокрая классификация! Т — Расход воды, м 3/т	! Дешламация надрешет- ного продукта сухой классификации
25	0,8	0,5
13	1,2	0,8-1,0
10	I,4	1,0-1,2
6	I,8	I,2 - I,6

Большие расходы воды при классификации принимаются при высоком содержании мелочи в угле, поступающем на грохот.

- 2.09. При мокрой классификации расход воды на контрольную мокрую классификацию (дешламацию) надрешетного продукта, направляемого на обогащение в тяжелосредные сепараторы, принимать 0,5 м3/т.
- 2.10. Влажность надрешетного продукта после мокрой классификации или дешламации (перед обогащением в сепараторах) принимать аналогичной влажности обезвоженных продуктов обогащения.
- 2.11. Шламообразование в процессе подготовительной мокрой классификации принимать 1,0-1,5%.

3. 00. Отсадка

- 3.01. Обогащение в отсадочных машинах рекомендуется для коксующихся и энергетических углей, в основном, легкой и средней обогатимости, определяемой в соответствии с ГОСТ ом 10100-62, а также для антрацитов.
- 3.02. Обогащение в отсадочных машинах рекомендуется для следующих нашинных классов; крупных, мелких и в ширококлассифицированном виде. В ширококлассифицированном виде — только для углей с содержанием класса +13 мм менее 20% и углей, добываемых гидроспособом.
- 3.03. Верхний предел крупности обогащаемого в отсадочной машине угля принимать 125 или 250 мм в зависимости от типа машины (ОМ или ОМА).
- 3.04. Нижний предел крупности угля, обогащаемого в отсадочной машине, принимать, как правило, 0,5 мм.
- 3.05. Нижний предел крупности при обогащении углей крупного машинного класса 13 мм (реже 6 мм).
- 3.06. При обогащении коксующихся углей рекомендуется, как правило, выделение промпродукта.
- ОІ. Переобогащение перемывочного продукта предусматривать при соответствующем технико-экономическом обосновании.
- 02. Для углей легкой обогатимости допускается циркуляция перемывочного продукта и выделение двух конечных продуктов.
- 3.07. При обогащении энергетических углей выделение промпродукта не предусматривать.
- 3.08. для обогащения каменных углей и антрацитов рекомендуются отсадочные машины тина ОМ (ОМА). На перспективу высокопроизводительные отсадочные комплексы после освоения их в промышленном

производстве.

Рекомендуется применять отсадочные машины: типа ОМ — для обогащения каменных углей всех классов и антрацитов крупностью 0,5+13 и 0,5+125 мм; типа ОМА — для обогащения антрацитов крупностью 6+250 мм.

- 3.09. Для равномерного распределения нагрузки по ширине отсадочного отделения, спокойного ввода исходного угля в машину, отвода избытка транспортной воды и одновременной дешламации угля рекомендуется перед отсадочными машинами применять специальные загрузочные устройства.
- 3.IO. Нормы удельной производительности отсадочных машин по исходному углю принимать:

Легкая I2-I5 I5-20	
Средняя } 8-12 12-15	

- 0.1. Минимальную удельную производительность принимать при наличии осложняющих факторов: высоком содержании мелочи и породных фракций в исходном угле, повышенных требованиях к качеству концентрата.
- 0.2. В случае высокого содержания породных фракций в исходном угле, необходимо проверить производительность отсадочной машины по породе.
- 3.II. Расчет практических показателей обогащения в отсадочных машинах производить, как правило, по вероятностным показателям: средневзвешенному отклонению плотностей граничных фракций от плотности разделения ($\mathcal F$).
- 3.12. Значения вероятностных показателей разделения принимать:

Крупность, мм	! При низко разде		! При высокої раз	й плотности целения
	E _p	! 7	! Ep	! 7
0,5-13	∠ 0,08	∠ 0, I6	∠ 0,I6	∠ 0,20
13-100	∠ 0,07	∠ 0,10	∠0,10	∠ 0.I2

3.13. Для расчета практических балансов продуктов обогащения применять формулы: $x = x^2$

EHATE COPMYTH:
$$\int_{K} = \sum_{i=1}^{n} u_{i} \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x_{i}} e^{-\frac{x_{i}^{2}}{2}} dx$$

$$A_{R}^{C} = \sum_{i=1}^{n} a_{i} u_{i} \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x_{i}} e^{-\frac{x_{i}^{2}}{2}} dx$$

$$\int_{\Pi} = 100 - \int_{K}$$

$$A_{\Pi}^{C} = \frac{100}{\sqrt{n}} \cdot A_{R}^{C} - \int_{R} A_{R}^{C}$$

где: A^{C} - зольность исходного угля, %

Ук - выход концентрата, %

 A_{κ}^{C} - зольность концентрата, %

— выход породы, %

Ап - зольность породы, %

л - количество элементарных фракций

 \mathcal{U}_i - выход элементарных фракций, %

 \mathcal{Q}_i - зольность элементарных фракций, %

 \mathfrak{X} - квадратическое отклонение

OI. Значение квадратического отклонения (x) определять по формуле:

$$X = (g \frac{\delta_{p} - 1}{\delta_{m} - 1}) \frac{0.6744}{(g (J + V J^{2} + 1))}$$

02. Погрешность разделения (${\mathcal J}$) определять по формуле:

$$\mathcal{J} = \frac{E_p}{\delta_p - I} .$$

где: δ_p - плотность разделения, δ_m - средняя плотность,

Ер - вероятное отклонение.

3.14. Для приентировочных расчетов увеличение выхода мелочи (0-0,5 мм) за счет измельчения в отсадочной машине и неполноты отсева при классификации угля и антрацита принимать: для крупных машинных классов 8-10%, для мелких 12-14% от поступающего на операцию.

Меньшие значения принимать для более крепких углей и антрапитов.

3.15. Удельный расход воды на тонну обогащаемого угля принимать в соответствии с рекомендациями института УкрНИ "Углеобогащение:

	тика обогаща	eworo !	Удел	вым расход м3/т	воды,
Odoratu- !		Содержание породы, %	Транс- портной	! Подрешет-! ! ной !	Орщий
IIIII!	<u> </u>		4	I	6
Легкая)	до 13	до 15	I,I	0,9	2,0
и /		15-25	1,3	I,I	2,4
средняя >		свыше 25	I,6	I,4	3,0
	свыше 13	до 15	1,3	I,I	2,4
}		15-25	1,5	1,3	2,8
J		свыше 25	I,9	1,6	3,5
Трудная	до 13	до 15	1,2	1,0	2,2
и		15-25	I,4	1,2	2,6
очень /	•	свыше 25	I,7	I,6	3,3
трудная \	свыше ІЗ	до I5	I,4	1,2	2,6
)		I5-25	I , 6	I,4	3,0
,		свыше 25	2,0	I,6	3,6

- OI. При сухой подаче угля в отсадочную машину расход добавочной воды для смачивания угля принимать 0,5 м3/т.
- 3.16. Для антрацитов, характеризующихся повышенной плотностью, и для углей, отличающихся крупностью от приведенных в таблице, рекомендуется пользоваться номограммой для определения удельного расхода воды на отсадку.
- 3.17. Для отсадочных машин типа ОМ и ОМА рекомендуются центробежные воздуходувки типа ТВ.
- 3.18. Ориентировочную объемную производительность воздуходувок определять, исходя из удельного расхода воздуха на I м2 площади решета отсадочной машины:

Тип отсадочной машины и крупность	
т. Ом - для мелкого угля (O,5-13	мм) 180
2. ОМА - для антрацита (6-250 мм)	350

- 3.19. Для создания избыточного давления перепад высоты бака подрешетной воды над отсадочной машиной должен быть 5-6 м.
- 3.20. При выборе воздуходувок рекомендуются следующие значения давления воздуха в воздухосборнике машины:

Класс угля, мм	! Давление воздуха в воздухо- дувке, ати
I. Крупный +IO (I3)	0,28-0,30
2. Мелкий - IO (I3)	0,24-0,26
3. Ширококлассифицированный	
0,5-80 (100)	0,26-0,28
4. Ahtpanutu 6-100 (250)	0,40-0,60

- 3.21. Как правило, воздуходувки располагать в непосредственной близости от отсадочных машин в изолированном помещении.
- 3.22. Для сглаживания колебаний давления и для регулирования максимального значения давления воздуха в системе следует устанавливать общий воздухосборник, располагаемый непосредственно у воздуходувки.

- 01. Объем общего воздухосборника определять из расчета 0,7-1,0 м3 объема воздухосборника на I м2 решета отсадочной машины.
- 02. В случае подключения нескольких отсадочных машин к общему воздухосборнику увеличивать его объем на 15-20%.

4.00. Обезвоживание продуктов отсадки

- 4.01. Для продуктов обогащения отсадочных машин принимать следующие схемы обезвоживания:
- OI.Для крупного концентрата (более 13 мм) обезвоживание на грохотах.
- 02. Для мелкого концентрата (менее 13 мм) предварительное обезвоживание в багер-зумпфах с последующим обезвоживанием в центрифугах и термической сушкой; в случае обогащения антрацита или угля в ширококлассифицированном виде перед багер-зумпфами предусматривать грохота для выделения и обезвоживания класса +6(13) мм. направляемого в отгрузку.

По мере освоения, для предварительного обезноживания мелкого концентрата отсадочных машин, могут применяться криволинейные сита по типу ОСО.

- 03. Для крупного промпродукта обезвоживание в элевато-
- 04. Для мелкого промпродукта обезвоживание в элеваторах с последующим обезвоживанием в центрифугах и ,в случае необходимости, термической сушкой.
- Об. Для крупной и мелкой породы обезвоживание в элеваторах, как правило, с последующим обезвоживанием на грохотах.
- В случае обогащения антрацитов обезвоживание породы только в элеваторах.
- 4.02. В качестве оборудования для обезвоживания продуктов отсадки принимать: багер-элеваторы, обезвоживающие элеваторы, фильтрующие центрифуги и самобалансные грохоты.
- 4.03. При обогащении крупного и ширококлассифицированного угля перед обезвоживающими грохотами рекомендуется применять сита (щелевидные) для сброса воды.

4.04. **М**инимально допустимую длину пути обезвоживания (ℓ) породы или промпродукта в элеваторе определять, исходя из нормированного времени дренирования (t_{min}) по формуле:

$$\ell \ge 0.28 \frac{Q \cdot a \cdot t \, min}{d \cdot n \cdot i}$$
, M

 Q - производительность элеватора , соответствующая rge: максимальному выходу продукта (породы или промпродукта). т/час:

а - шаг ковшей. м:

t - время дренирования. ceк:

 δ - насыпная масса материала, т/м3:

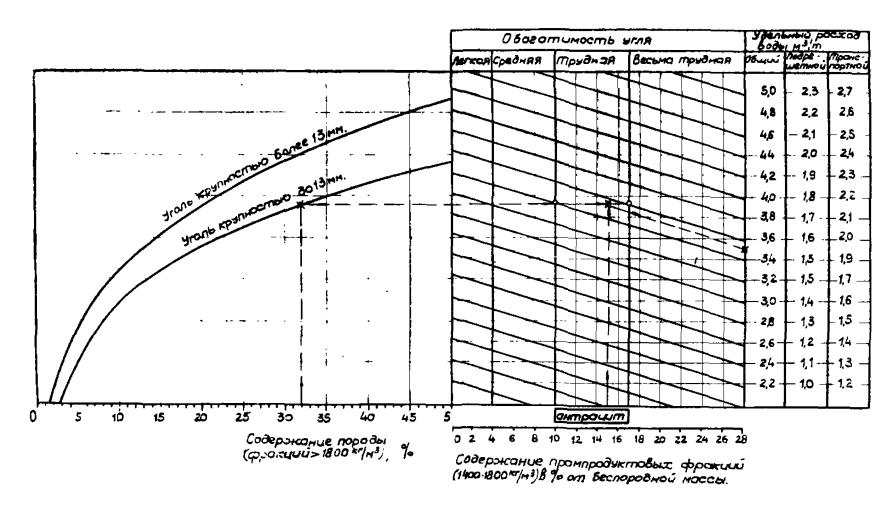
ћ - коэффициент заполнения ковшей:

i- емкость ковша, л.

ОІ. Скорость движения ковшей обезвоживающего элеватора определять по формуле:

$$\mathcal{V} \leq \frac{\ell}{t_{min}}$$
, м/сек 02. Нормирование время дренирования воды (t_{min}) на

элеваторах принимать:


Крупность продукта, мм	Продукт !	Минимальн ния <i>tm</i> нормальные ковши (30)	<u>ic, CθK</u>
Более I3(25)	промпродукт	17	10
	порода	15	9
0,5-13(25)	промпродукт	29	16
	пород а	27	14
0,5-100(80)	промпродукт	24	15
	порода	22	12

4.05.]	Топустимые	нагрузки	на обе	звоживающи	е грохоты	B	3abn-
CUMOCTU OT	крупности	обезвожив	аемого	пролукта	принимать	:	

Крупность пр дукта, мм	о- !Нагрузка,т/час ! на Ім2	! Крупность пр ! дукта, мм	о-! Нагрузка, т/час ! на I м2
0,5-6	3,3-3,7	I3 -\$ 0	7,0-10,0
0,5-10	3,7-4,2	13-100	8,3-10,0
0,5-13	4,0-4,5	13-150	9,2-10,8
0,5 -2 0	4,3-4,7	25-100	9,5-11,3
6-25	5,8-6,7	25-200	11,3-13,3
6-50	6,7-7,5	25-300	12,5-15,0

- 4.06. Ширину щелей сит обезвоживающих грохотов принимать:
 - OI. для обезвоживания концентрата 0,5-0,75 мм;
 - 02. для породы и промпродукта 0,75-1.0 мм.
- 4.07. Шламообразование от истирания при обезвоживании на грохотах принимать I_* 0% от поступающего на грохот угля.
- 4.08. Предусматривать опола кивание на обезвоживающих грохотах концентрата отсадки, при этом расход добавочной свежей воды на I т принимать:
 - ОІ. для крупного концентрата 0,2-0,25 м3/час;
 - 02. для мелкого концентрата 0,25-0,3 м3/час.
- 4.09. Допускается ополаскивание на обезвоживающих грохотах промпродукта и **по**роды, при этом расход оборотной воды на I т принимать:
 - OI. для промпродукта 0,25-0,3 м3/час;
 - 02. для породы 0,5-0,6 м3/час.
- 4.10. Влажность продуктов обогащения отсадки после обезвожи-вания принимать:
- OI. для угольного концентрата класса +13 мм и антрацитового концентрата класса 6-13 мм после грохотов - 6-7%;

- 02. для мелкого концентрата класса 0,5-13 мм; после багер-элеваторов до 22%; после центрифуг 7-9%.
- 03. для крупного промпродукта (более I3 мм) после элеваторов I0-I3%;
 - О4. для мелкого промпродукта класса 0,5-13 мм: после элеваторов 18-22%, после центрифуг 10-11%;
 - 05. для крупной породы (более I3 мм) после элеваторов 7-10%;
 - Об. для мелкой породы класса 0,5-13 мм: после элеваторов 20-25%, после грохотов IO-II%.

Номограмма для определения удельного расжода воды на этсадку угля.

Примечание: Номограмма, для определения удельного расхода воды на отсадку угля, составлена для двух классов крупности: до 13 мм и более 13 мм. Кривая класса < 13 мм может также использоваться для определения расходов воды при отсадке угля крупностью ниже 6,10 и 25 мм. По кривой крупного угля можно определять расходы воды при отсадке неклассифицированного или ширококлассифицированного угля, а также антрацита любой крупности. Для антрацита на шкале обогатимости выделен специальный диапазон, смещенный в сторону трудной обогатимости с учетом его повышенной плотности (обогатимость антрацита в большинстве случаев может быть оценена как средняя).

Порядок определения расхода воды по номограмме следующий:

I/ на кривой данной крупности угля (левая часть номограммь) находится точка, отвечающая содержанию породы в данном
угле. Для этого с соответствующей засечки на оси абсцисс восстанавливается перпендикуляр до пересечения с той или иной кривой:

2/ от точки пересечения на кривой вправо проводится горизонталь до пересечения с вертикальной линией, которая отвечает содержанию промпродуктовых фракций в исходном угле, рассчитанному на беспородную массу:

$$S = \frac{\sqrt{1400 - 1800}}{100 - \sqrt{1800}} = 100\%;$$

3/ от полученной точки пересечения на правой части номограммы проводится линия вправо наклонно вниз (параллельно косым линиям), дающая отсчет на шкале общего расхода воды;

4/ расходы подрешетной и транспортной воды читаются на соответствующих вспомогательных шкалах в правой части номограммы.

Если вместо конкретного содержания промпродуктовых фракций для данного угля известна лишь обогатимость, тогда горизонталь с кривей на левой части номограммы проводится до пересечения с вертикальными линиями, ограничивающими данный диапазон обогатимости. Обе точки пересечения визируются вдоль косых линий вправо на шкалу расхода, где находят два крайних значения удельного расхода воды.

Отпечатано ротапринтной ул. Казакова, 8. Заказ 20.	мастерской л 28651	ЦГШ. / ИО2.75.Ти	Москва 325	к -	84
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Дена 14 коп	•			