Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пиклорама в семенах и масле рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2545—09

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.2. МЕТОДЫ КОНТРОЛЯ, БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пиклорама в семенах и масле рапса методом капиллярной газожидкостной хроматографии

> Методические указания МУК 4.1.2545—09

ББК 51.21 Об0

- Обо Определение остаточных количеств пиклорама в семенах и масле рапса методом капиллярной газожидкостной хроматографии:.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—18 с.
 - 1. Разработаны Московской сельскохозяйственной академией им. К. А. Тимирязева, Учебно-научным консультационным центром «Токси-кология пестицидов и агрохимикатов», Минсельхоза России (Калинин В. А. профессор, канд. с-х. наук, Калинина Т. С. ст. н. сотр., канд. с-х. наук, Рыбакова О. И. науч. сотр., Третьякова О. А. инженер).
 - 2. Рекомендованы к утверждению Комиссией по санитарноэпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 25 июня 2009 г. № 2).
 - 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 9 сентября 2009 г.
 - 4. Введены в действие с 1 декабря 2009 г.
 - 5. Введены впервые.

ББК 51.21

[©] Роспотребнадзор, 2009

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

Содержание

1. Метрологическая характеристика метода	5
2. Метод измерения	
3. Средства измерений, реактивы, вспомогательные устройства и материалы	6
3.1. Средства измерений.	6
3.2. Реактивы	
3.3. Вспомогательные устройства, материалы	7
4. Требования безопасности	9
7. Подготовка к определению	
7.1. Подготовка колонки, заполненной флоризилом, для очистки проб	
масла рапса7.2. Проверка хроматографического поведения пиклорама на колонкат	
флоризилом	
7.3. Приготовление рабочих растворов	
7.4. Бутилирование пиклорама из стандартного раствора	
7.5. Приготовление градуировочных растворов	
7.6. Установление градуировочной характеристики	
8. Отбор проб и хранение	12
9. Проведение определения	
9.1. Семена рапса	
9.2. Масло ранса	
9.3. Условия хроматографирования	
10. Обработка результатов анализа	
11. Проверка приемлемости результатов параллельных определений	
12. Оформление результатов.	
13. Контроль качества результатов измерений	
14. Разработчики	

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

9 сентября 2009 г.

Дата введения: 1 декабря 2009 г

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пиклорама в семенах и масле рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2545—09

Настоящие методические указания устанавливают метод газожидкостной хроматографии для определения в семенах и масле рапса массовой концентрации пиклорама в диапазоне 0,1—0,01 мг/кг.

Название действующего вещества по ИСО: пиклорам.

Название по ИЮПАК: 4-амино-3,5,6-трихлорпиридил-2-карбоновая кислота.

$$CI$$
 N
 CO_2F
 CI
 NH_2

Эмпирическая формула: С₆H₃Cl₃N₂O₂.

Молекулярная масса: 241,5.

Агрегатное состояние: порошок.

Цвет, запах: бесцветный, со слабым запахом хлора. Давление насыщенного пара: 8.4 × 10⁻² мПа при 25 °C.

Коэффициент распределения в системе октанол/вода при 20 °C: K_{ow} lgP=1,9 (0,1H HCl).

Растворимость в воде: 430 мг/л (при 20 °C). В ацетоне – 19,8, ацетонитриле – 1,6, диэтиловом эфире – 1,2 (все в г/кг, при 25 °C).

Пиклорам стабилен в кислотой и щелочной средах с DT_{50} при рН 5—9 (25 °C) в стерильной воде > 30 дней. В водных растворах разрушается под действием солнечной радиации с DT_{50} 2,6 дней (при 25 °C).

Краткая токсикологическая характеристика. Пиклорам относится к мало опасным веществам по острой пероральной (ЛД₅₀ (крысы) $> 5\,000\,$ мг/кг), к чрезвычайно опасным веществам по ингаляционной (ЛК₅₀ (4 ч) для крыс $> 35\,$ мг/м³ воздуха) и к мало опасным веществам по накожной (ЛД₅₀ для кроликов $> 2\,000\,$ мг/кг) токсичности. Умеренно раздражает глаза, слабо раздражает кожу. Не раздражает кожу.

В России установлены следующие гигиенические нормативы:

ДСД - 0,02 мг/кг/сутки;

МДУ мг/кг: семена и масло рапса – 0,01.

Пиклорам — гербицид из группы производных карбоновых кислот системного действия, нарушает ауксиновый обмен, вызывая сильное искривление стеблей и черенков листьев. Применяется для борьбы с двудольными и трудноискореняемыми сорняками в посевах зерновых культур и кукурузы, а также для уничтожения горчака розового и других многолетних сорняков.

Предлагается в России для применения в посевах рапса ярового и озимого с нормой расхода 90 г. д.в. на га путем опрыскивания посевов в фазе 3—4 листьев культуры.

1. Метрологическая характеристика метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0,95 не превышает значений, приведенных в табл. 1 для соответствующих диапазонов концентраций.

Таблица 1. Метрологические параметры для пиклорама

Анализи- руемый объект	Диапазон определяе- мых концен- траций, мг/кг	Показатель точности (граница относительной погрешности), $\pm \delta$, % $P = 0.95$	Стандартное отклонение по- вторяемости, о, %	Предел повторяе- мости, r, %	Предел воспроиз- водимости, <i>R</i> , %
Семена рапса	0,010,06	50	3	8	10
Масло рапса	0,01—0,06	50	3	8	10

Полнота извлечения вещества, стандартное отклонение, доверительные интервалы среднего результата для полного диапазона концентраций (n = 20) приведены в табл. 2.

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для пиклорама

	Метрологические параметры, $P = 0.95$, $n = 20$				
Анализи- руемый объект	Предел обнаруже- ния, мг/кг	Диапазон определяемых концентраций, мг/кг	Среднее значение определения, %	Стандарт- ное откло- нение, S, %	Доверитель- ный интервал среднего ре- зультата, ±, %
Семена рапса	0,01	0,010,06	77,0	2,4	± 0,9
Масло рапса	0,01	0,010,06	83,5	3,1	± 1,2

2. Метод измерения

Метод основан на извлечении пиклорама из семян и масла рапса ацетонитрилом, подкисленным концентрированной соляной кислотой до pH=1, переэкстракции в эфир, содовый раствор с последующим бутилированием и очистки пробы на колонках с флоризилом. Окончательное определение пиклорама проводится методом ГЖХ с использованием детектора по захвату электронов.

Идентификация проводится по времени удерживания. Количественное определение – методом абсолютной калибровки.

В предлагаемых условиях анализа метод специфичен. Избирательность обеспечивается путем подбора капиллярной колонки и условий программирования температуры.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений.

Весы аналитические «ОНАUS», Σ 11140 Весы лабораторные общего назначения с наибольшим пределом взвешивания до 600 г и пределом допустимой погрешности \pm 0,038 г «ACCULAB» V600

Колбы мерные на 25, 50, 100 мл	ГОСТ 1770—74
Мерные цилиндры на 10, 25 и 50 мл	ΓΟCT 1770—74
Микрошприц на 10 мкл	TY 2.833.106.
Пипетки мерные на 1,0; 2,0; 5,0 мл	ΓΟCT 20292—74
Хроматограф газовый «Кристалл 2000м»	
с детектором по захвату электронов (ЭЗД)	
с пределом детектирования по Линдану	
$4 \times 10^{-14} \text{ г/см}^3$ и приспособлениями	
для капиллярной колонки	
Цилиндры мерные на 10, 25 и 50 см ³	ΓΟCT 1770—74

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Аналитический стандарт Пиклорама с содержа-	
нием д.в. более 95 % (фирма Дау АгроСаенсес)	
Азот особой чистоты	ΓΟCT 9293—74
Ацетон х.ч.	ТУ 6-09-3513—86
Ацетонитрил	ТУ 6-09-3534—87
н-Бутанол, х.ч., свежеперегнанный	ΓΟCT 600678
Вода дистиллированная	ΓΟCT 7602—72
н-Гексан, ч.	ТУ 6-09-3375—78
Гелий, очищенный марки «А»	ТУ 51-940—80
Кислота серная концентрированная, ч.	ΓΟCT 4204—77
Кислота соляная концентрированная, х.ч.	ΓΟCT 311877
Натрий сернокислый, безводный, х.ч.	ΓΟCT 416676
Натрия гидрокарбонат, х.ч.	ГОСТ 4201—89
Натрия хлорид, х.ч.	ΓΟCT 4233—77
Флоризил для колоночной хроматографии	
с размером частиц 60-80 меш, фирма «Агрос	
Органикс», Бельгия, код 205450010	
Стандартный раствор Пиклорама в ацетоне -	
1 мг/мл (хранить в холодильнике, срок годности	
120 суток).	
**	

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Аппарат для встряхивания проб «SKLO UNION TYP LT1»

МУК 4.1.2545--09

Блок нагревательный, сухой с регулируемой температурой с пределом 100 °C, Dri-Block, DB-3, фирма Techna (Cambridge) Limited, Великобритания Ванна ультразвуковая «UNITRA» UNIMA **OLSZTYN UM-4** Виалы с тефлоновыми прокладками, Aldrich, cat. № Z27,702-9 Воронки химические для фильтрования, Стеклянные ΓOCT 8613—75 Воронки делительные на 250 мл ΓΟCT 10054---75 Вакуумный ротационный испаритель МР-1М, ТУ 25-11-917-74. Испаритель ротационный Rota vapor R110 Buchi или ИР-1М, с водяной баней TY 25-11-917-74 Колбы конические плоскодонные на 100 и 250 мл, КПШ-100, КПШ-250 ΓOCT 10394---72 Концентраторы грушевидные ΓΟCT 10394-72 (конические) 250 мл Колонка хроматографическая капиллярная кварцевая HP-5, (Crosslinked 5 % фенилсилоксана и 95 % метилсилоксана), длина 30 м. внутренний диаметр 0,25 мм, толщина пленки 0,25 мкм, фирмы Хьюлетт Паккард Насос диафрагменный FT.19 фирмы KNF Neu Laboport Мельница лабораторная электрическая TY 46-22-236-84 или аналогичная Стаканы стеклянные на 100 мл ΓΟCT 6236--72 Фильтры бумажные «Красная лента» ТУ 6-09-1678—86 Центрифуга MPW-350e с набором полипропиленовых банок емкостью 200 мл

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками.

MPW Med.instruments

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313—03 «Предельно-допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на газовом хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %.
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к определению

7.1. Подготовка колонки, заполненной флоризилом, для очистки проб семян и масла panca

На дно пластиковой хроматографической колонки (высота 15 см, диаметр 1,5 см) помещают пробочку из стекловаты и заполняют колонку Флоризилом на высоту 10 см. На слой флоризила насыпают слой безводного сернокислого натрия толщиной 1,0 см. В день очистки экстракта колонку промывают последовательно 15 см³ ацетона и 15 см³ гексана, смывы отбрасывают. После промывки колонка готова к работе.

7.2. Проверка хроматографического поведения пиклорама на колонках с флоризилом

При отработке методики или поступлении новой партии флоризила проводят изучение поведения пиклорама на колонке. В концентратор вносят 1 см³ стандартного раствор № 3 бутилового эфира пиклорама с концентрацией по пиклораму 0,06 мкг/см³, выпаривают на ротационном вакуумном испарителе при температуре не выше 35 °С. К сухому остатку добавляют 5 см³ гексана, растворяют содержимое концентратора и наносят на колонку. Промывают колонку 30 см³ гексана, смыв отбрасывают. Наносят на колонку 10 см³ смеси гексан:ацетон — 4:1, смыв отбрасывают. Пропускают через колонку 15 см³ смеси гексан:ацетон — 1:1, отбирая последовательно по 5 см³ элюента. Каждую фракцию собирают отдельно в концентраторы и выпаривают на ротационном вакуумном испарителе при температуре бани не выше 35 °С досуха.

Сухой остаток в концентраторах растворяют в 5 см³ гексана и вводят в хроматограф 1 мм³. По результатам обнаружения Пиклорама в каждой фракции определяют объем смеси гексан:ацетон – 1:1, необходимый для полного вымывания пиклорама.

7.3. Приготовление рабочих растворов

7.3.1. Приготовление подкисленного ацетонитрила. Раствор готовят под тягой, строго соблюдая технику безопасности.

В емкость, содержащую 1 дм 3 ацетонитрила, добавляют 10 см 3 1н раствора хлороводородной кислоты до рH - 1 и перемешивают содержимое.

7.3.2. Приготовление раствора для бутилирования. Раствор готовят под тягой, строго соблюдая технику безопасности.

В мерную колбу объемом 100 мл осторожно приливают 2 мл концентрированной серной кислоты к н-бутанолу. Перемешивают раствор и доводят объем до метки бутанолом. Бутилирующую смесь хранят под тягой в течение одного месяца. Перед приготовлением раствора н-бутанол перегоняют.

7.3.3. Приготовление раствора 4н раствора серной кислоты. Раствор готовят под тягой, строго соблюдая технику безопасности.

В мерную колбу объемом 1 литр осторожно приливают 112 мл концентрированной серной кислоты к дистиллированной воде. Осторожно перемешивают раствор, добавляют воды, но не до метки. Когда раствор остынет, его доводят водой до метки.

- 7.3.4. Приготовление раствора 5 % гидрокарбоната натрия. В стакан на 500 мл помещают 50 г гидрокарбоната натрия. Доливают около 200 мл воды и растворяют соду при помощи ультразвуковой ванны, помешивая стеклянной палочкой. Раствор переливают в бутылку. При необходимости процедуру повторяют. Раствор в бутылке доводят водой до 1 л.
- 7.3.5. Приготовление стандартных растворов. 100 мг Пиклорама (аналитического стандарта) вносят в мерную колбу вместимостью 100 мл, растворяют навеску в ацетоне и доводят объем до метки ацетоном (стандартный раствор № 1, концентрация 1 мг/мл). Раствор хранится в холодильнике около 120 суток.

Методом последовательного разбавления исходного раствора № 1 ацетоном готовят стандартный раствор № 2 с концентрацией 10,0 мкг/мл, который может храниться в холодильнике не более 30 суток.

Для построения градуировочного графика отбирают 1 мл стандартного раствора № 2 в виал, удаляют растворитель током теплого воздуха и проводят бутилирование, как указано в разделе 7.4. Получают стандартный раствор № 3 бутилового эфира Пиклорама с концентрацией по Пиклораму 1,0 мкг/см³.

7.4. Бутилирование пиклорама из стандартного раствора

Для приготовления градуировочных растворов отбирают 1 мл стандартного раствора № 2 (концентрация — 10 мкг/см³) в виалу и удаляют растворитель током теплого воздуха. К сухому остатку в виале добавляют 1 см³ 2 % раствора концентрированной серной кислоты в бутаноле. Плотно закрывают виалу крышкой и помещают в нагревательный блок для виал, нагретый до 100 °C. Бутилирование проводят в течение 30 мин.

Далее виалу охлаждают до комнатной температуры и добавляют в нее 10 см³ гексана и 20—25 см³ дистиллированной воды. Смесь интенсивно встряхивают и выстаивают до полного разделения фаз. Верхний гексановый слой используют для приготовления градуировочных растворов, которые применяют при построении градуировочного графика. Концентрация Пиклорама в гексановом растворе составляет 1,0 мкг/см³ (раствор № 3).

7.5. Приготовление градуировочных растворов

Методом последовательного разбавления раствора бутилового эфира Пиклорама № 3 гексаном в мерных колбах готовят рабочие растворы с концентрациями по Пиклораму: 0,01; 0,02; 0,04; 0,06 мкг/см³, которые могут храниться в холодильнике не более 10 суток.

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади (высоты) пика от концентрации Пиклорама в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки с концентрацией 0,01; 0,02; 0,04; 0,06 мкг/см³.

В испаритель хроматографа вводят по 1 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.3. Осуществляют не менее 3 параллельных измерений.

По полученным данным строят градуировочный график зависимости площади хроматографического пика в мВ от концентрации пиклорама в растворе в мкг/см³.

8. Отбор проб и хранение

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051—79 от 21.08.79) а также в соответствии с ГОСТ 8988—77 «Масло рапсовое. ТУ», ГОСТ 10852—86 «Семена масличные. Правило приемки и методы отбора проб».

Семена рапса, подсушенные до стандартной влажности, хранят в тканевых мешочках, в сухом, защищенном от света месте при комнатной температуре не более 6-ти месяцев. Влажные семена замораживают и хранят в морозильной камере при – 14 °C до 1 года.

Пробы масла хранят в плотно закрытой стеклянной или полиэтиленовой таре в холодильнике при температуре 0—4 °C в течение 10 суток.

Для исследовательских целей допускается получение масла в лаборатории из проб семян методом экстракции горячим растворителем при температуре не выше 40 °C.

9. Проведение определения

9.1. Семена рапса

9.1.1. Экстракция. Навеску размолотых семян рапса 10 г помещают в центрифужную банку объемом 250 см³, добавляют 50 см³ подкисленного ацетонитрила и проводят экстракцию на ультразвуковой ванне в течение 10 мин. По окончании экстракции пробу центрифугируют 10 мин при 4 000 об/мин. Фильтруют экстракт в концентратор емкостью

250 см³ через воронку с бумажным фильтром. Повторяют экстракцию еще дважды, используя по 30 см³ подкисленного ацетонитрила, используя ультразвуковую ванну каждый раз по 5 мин. Объединенный экстракт выпаривают на ротационном вакуумном испарителе при температуре водяной бани не выше 35 °C до капель масла.

К масляному остатку в концентраторе добавляют 5 см³ ацетона, омывают концентратор и помещают на 5 мин на ультразвуковую ванну. В концентратор двумя порциями добавляют 100 см³ воды, ополаскивают стенки концентратора и переносят в делительную воронку.

9.1.2. Очистка методом перераспределения между двумя несмешивающимися растворителями. Добавляют в воронку 5 г хлорида натрия, растворяют его путем встряхивания. Водную фазу подкисляют 4н раствором серной кислоты до рН 1 (2 см³), добавляют 50 см³ эфира и интенсивно встряхивают смесь в течение 1—2 мин. После разделения слоёв нижний водный слой сливают в тот же концентратор, а верхний эфирный собирают в плоскодонную колбу емкостью 100 см³. Водную фракцию возвращают в делительную воронку. Экстракцию повторяют ещё трижды, используя для этого каждый раз 30 см³ эфира. После этого водную фракцию отбрасывают, эфир переливают в ту же делительную воронку.

К эфиру в воронку добавляют 50 см³ 5 % раствора гидрокарбоната натрия, интенсивно встряхивают смесь в течение 1—2 мин. После разделения слоев нижний слой соды собирают в плоскодонную колбу на 100 см³. Экстракцию повторяют еще раз, используя 50 см³ раствора гидрокарбоната натрия. Эфир отбрасывают.

Объединенный содовый экстракт переносят обратно в делительную воронку, дают отстояться, отбрасывают отстоявшийся эфир. После этого экстракт в делительной воронку подкисляют 4н раствора серной кислоты, до рН 1 (2 см³). Смесь дегазируют. (Осторожно! Возможно разбрызгивание раствора!)

ты, до рН 1 (2 см³). Смесь дегазируют. (Осторожно! Возможно разбрызгивание раствора!)

Приливают 50 см³ эфира, интенсивно встряхивают смесь в течение 1—2 мин. После разделения слоёв нижний водный слой собирают в плоскодонную колбу, а верхний эфирный переносят в чистый концентратор емкостью 250 см³, пропуская через воронку с безводным сульфатом натрия. Содовую фракцию возвращают в делительную воронку. Экстракцию повторяют ещё трижды, используя для этого каждый раз 30 см³ эфира. Эфирные экстракты объединяют в концентраторе и выпаривают на ротационном вакуумном испарителе при температуре бани не выше 35 °С досуха. Сухой остаток переносят одной порцией 3 см³ аце-

тона и тремя порциями по 5 см³ диэтилового эфира в виалу и высушивают током теплого воздуха. Проводят бутилирование, как указано в п. 9.1.1.

- 9.1.3. Бутилирование. К сухому остатку в виале добавляют 1 см³ 2 % раствора концентрированной серной кислоты в бутаноле. Плотно закрывают виалу крышкой и помещают в блок для виал, нагретый до 100 °С. Бутилирование проводят в течение 30 мин. Далее, виалу охлаждают до комнатной температуры, добавляют 10 см³ гексана, 20—25 см³ дистиллированной воды. Смесь интенсивно встряхивают.
- 9.1.4. Очистка экстракта на колонке с флоризилом. После разделения слоев из верхнего гексанового слоя пипеткой отбирают аликвоту 5 см³ и наносят на колонку с флоризилом, подготовленную, как указано в разделе 7.1. Промывают колонку 30 см³ гексана, смыв отбрасывают. Наносят на колонку 10 см³ смеси гексан:ацетон 4:1, смыв отбрасывают. Пропускают через колонку 15 см³ смеси гексан:ацетон 1:1, собирая элюат в концентратор емкостью 100 см³. Содержимое концентратора выпаривают на ротационном вакуумном испарителе при температуре бани не выше 35 °C досуха.

Сухой остаток в концентраторе растворяют в 5 см³ гексана и вводят в хроматограф 1 мм³.

9.2. Масло рапса

Навеску масла 10 г растворяют в 100 см³ гексана и переносят в делительную воронку. Добавляют в делительную воронку 50 мл подкисленного ацетонитрила и встряхивают смесь в течение 2 мин. После полного разделения слоев, нижний (ацетонитрильный) слой собирают в концентратор 250 см³. Повторяют экстракцию еще дважды, используя по 30 см³ ацетонитрила, встряхивая смесь каждый раз по 2 мин. Объединенный экстракт выпаривают на ротационном вакуумном испарителе при температуре водяной бани не выше 35 °С до капель масла.

Далее проводят очистку пробы с последующим бутилированием и очисткой на колонке с флоризилом, как указано в разделе 9.1.2; 9.1.3 и 9.1.4.

9.3. Условия хроматографирования

Высокоэффективный газовый хроматограф «Кристалл 2 000м» с детектором по захвату электронов (ЭЗД) с пределом детектирования по Линдану 4×10^{-14} г/см³ и приспособлениями для капиллярной колонки.

Колонка хроматографическая капиллярная кварцевая HP-1, Methyl Siloxane, длина 30 м, внутренний диаметр 0,25 мм, толщина пленки 0.25 мкм.

Температура детектора – 340 °C, испарителя – 260 °C, программированный нагрев колонки с 220 °C (выдержка 2 мин) по 10 °C/мин до 260 °C (выдержка 5 мин).

Газ 1: тип регулятора расхода газа РРГ 11, режим нормальный, скорость 25 см/с, давление 137,6 кПа.

 Γ аз 2 (гелий) – 75 см³/мин: расход 0,5 см³/мин, сброс 1:150.

Газ 3 (азот, поддув детектора) – 45 см³/мин.

Абсолютное время удерживания Пиклорама – 5 мин 2 сек \pm 2 %.

Линейность детектирования сохраняется в пределах – 0,01—0,06 нг.

Каждую анализируемую пробу вводят в хроматограф 3 раза и вычисляют среднюю площадь пика.

Образцы дающие пики больше, чем стандартный раствор с концентрацией Пиклорама 0,06 мкг/см³ соответственно разбавляют.

Количественное определение Пиклорама проводят по методу абсолютной калибровки посредством сравнения с хроматограммами стандартных растворов Пиклорама с концентрацией 0,01—0,06 мкг/см³.

10. Обработка результатов анализа

Для обработки результатов хроматографического анализа используется программа сбора и обработки хроматографической информации «Хроматэк Аналитик», версия 1.20.

Альтернативная обработка результатов.

Содержание Пиклорама рассчитывают по формуле:

$$X = \frac{S_{\mathit{\PiP}} \times A \times V \times D}{100 \times S_{\mathit{CT}} \times m} \times P$$
, где

Х - содержание Пиклорама в пробе, мг/кг;

 S_{CT} – высота (площадь) пика стандарта, мВ;

 $S_{\it ПP}\,$ – высота (площадь) пика образца, мВ;

A – концентрация стандартного раствора, мкг/мл;

V - объем экстракта, подготовленного для хроматографирования, мл;

D – коэффициент аликвоты (= 2);

m — масса анализируемого образца, г;

Р - содержание пиклорама в аналитическом стандарте, %.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \times \left| X_1 - X_2 \right| \times 100}{\left(X_1 + X_2 \right)} \le r \text{ , где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости (табл. 1), при этом r = 2,8 $\sigma_{\rm r}$.

При невыполнении условия (1) выясняют причины превышения предел повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$\overline{X} \pm \Delta$$
 мг/кг при вероятности $P = 0.95$, где

 \overline{X} — среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ – граница абсолютной погрешности, мг/кг.

$$\Delta = \frac{\delta \times \overline{X}}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

В случае если содержание компонента меньще нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе менее 0,01 мг/кг»*

* - 0,01 мг/кг - предел обнаружения.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.

13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится методом добавок.

Величина добавки C_{a} должна удовлетворять условию:

$$C_{\delta} = \Delta_{\pi \ \bar{Y}} + \Delta_{\pi \ \bar{Y}'}$$
, где

 $\pm \Delta_{\pi,\bar{X}} \left(\pm \Delta_{\pi,\bar{X}'} \right)$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг, при этом:

$$\Delta_{x} = \pm 0,84\Delta$$
, где

∆ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\delta \times \bar{X}}{100},$$

 δ — граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_k = \overline{X}' - \overline{X} - C_a$$
, где

 \overline{X}' , \overline{X} , C_{δ} среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11), содержания компонента в образце с добавкой, испытуемом образце и концентрация добавки, соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{\pi,\bar{X}'}^2 + \Delta_{\pi,\bar{X}}^2} \ .$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию:

$$|K_{k}| \le K \tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \times |X_1 - X_2| \times 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (3)

 X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций, табл. 1), %.

14. Разработчики

Калинин В.А., профессор, канд. с-х. наук, Калинина Т.С., ст.н.сотр., канд. с-х. наук, Рыбакова О.И., науч. сотр., Третьякова О.А., инженер.

Российский государственный аграрный университет- MCXA имени К.А. Тимирязева.

Учебно-научный консультационный центр «Агроэкология пестицидов и агрохимикатов». 127550, Москва, Тимирязевская ул., д. 53/1. Телефон: (495) 976-37-68. факс: (495) 976-43-26.

Определение остаточных количеств пиклорама в семенах и масле рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2545—09

Технический редактор А. В. Терентьева

Подписано в печать 11.11.09

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1,25

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89