МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ (ФГУП «ВНИИР»)
ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

УТВЕРЖДАЮ
Директор
ОТУП ВЕМИР
« 2009 г.

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений

МАССА И ОБЪЕМ НЕФТЕПРОДУКТОВ

Методика измерений в вертикальных резервуарах

МИ 3252-2009

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ

ГОСУДАРСТВЕННЫЙ НАУЧНО-МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

СВИДЕТЕЛЬСТВО № 24107-09 об аттестации МИ

Методика измерений	масса и объем нефтепродуктов наименование измеряемой величины				
разработанная	ОАО «НК «Роснефть»				
	наименование организации (предприятия), разработавшей МИ				
и регламентированная врекомендации «Государственная система обеспечения един-					
vovenovuč Mesee v obs	обозначение и наименование				
	ьем нефтепродуктов. Методика изм	мерении в вс	ртикальных		
резервуарах»					
аттестована в соответстви	и с ГОСТ Р 8.563-96.				
			001101100		
Аттестация осуществлена	по результатам метрологической з				
по разработке, теоретически	их и экспериментальных исследований	•	периилов		
	пеоретическое или экспериментальное исследование МИ				
	И было установлено, что МИ соответст				
метрологическим требован характеристиками: пределы относительной пог	И было установлено, что МИ соответст ниям и обладает следующими осно решности измерений массы и объема но дарактеристики погрешности измерений (неопределен	вными метролефтепродуктов	погическим		
метрологическим требован характеристиками: пределы относительной пог диапазоп измерений	ниям и обладает следующими осно решности измерений массы и объема не	вными метро. ефтепродуктов июсть измерений)	погическим		
метрологическим требован характеристиками: пределы относительной пог диапазоп измерений	ниям и обладает следующими осно решности измерений массы и объема не	овными метро. ефтепродуктов пость измерений) до 120 т	±0,65 %;		
метрологическим требован характеристиками: пределы относительной пог диапазоп измерений	ниям и обладает следующими осно решности измерений массы и объема не	овными метрол ефтепродуктов <i>шость измерений)</i> до 120 т 120 т и более	±0,65 %; ±0,50 %;		
метрологическим требован характеристиками: пределы относительной пог диапазоп измерений а) массы нефтепродуктов:	ниям и обладает следующими осно решности измерений массы и объема не	ефтепродуктов ность измерений) до 120 т 120 т и более до 120 т	±0,65 %; ±0,50 %; ±0,60 %;		
метрологическим требован характеристиками: пределы относительной пог диапазоп измерений а) массы нефтепродуктов:	ниям и обладает следующими осно решности измерений массы и объема не , характеристики погрешности измерений (неопределен	ефтепродуктов ность измерений) до 120 т 120 т и более	±0,65 %; ±0,50 %; ±0,50 %;		

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА ОАО «Нефтяная компания «Роснефть»

(ОАО «НК «Роснефть»)

2 ИСПОЛНИТЕЛИ М.П. Естин, С.А. Абрамов, С.Г. Башкуров

3 УТВЕРЖДЕНА ФГУП «ВНИИР» ГНМЦ 12 ноября 2009 г.

4 ATTECTOBAHA ФГУП «ВНИИР» ГНМЦ

Свидетельство об аттестации № 24107-09

от 10 декабря 2009 г.

5 ЗАРЕГИСТРИРОВАНА ФГУП «ВНИИМС» ГНМЦ 18 декабря 2009 г.

Код регистрации методики измерений в Федеральном

реестре методик измерений ФР.1.29.2009.06689

6 ВВЕДЕНА ВПЕРВЫЕ

Настоящая Рекомендация не может быть полностью или частично воспроизведена, тиражирована и (или) распространена без разрешения ОАО «НК «Роснефть»

СОДЕРЖАНИЕ

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Обозначения и сокращения	3
5	Общие требования к методам измерений и вычислений и порядок применения	3
	методики измерений	
6	Требования к погрешности измерений	4
7	Средства измерений и вспомогательные устройства	5
8	Условия измерений	7
9	Квалификация операторов, требования охраны труда и окружающей среды	7
10	Подготовка к выполнению измерений	8
11	Выполнение измерений и вычислений	9
12	Определение массы нефтепродукта, отпущенного из резервуара или принятого в	15
	резервуар	
13	Оценивание погрешности измерений	15
14	Обработка результатов измерений	18
15	Оформление результатов аттестации методики измерений	18
	Библиография	20
	Приложение А. Соотношение допустимых значений уровней нефтепродукта в РВС	21
	при приеме и отпуске, при которых обеспечиваются погрешности измерений	
	массы по ГОСТ Р 8.595	
	Приложение Б. Расчет объема и плотности нефтепродукта с учетом поправок	23
	Приложение В. Примеры расчета объема, массы и оценки погрешности	24
	Приложение Г. Алгоритмы приведения объема и плотности к стандартным и	41
	рабочим условиям	

РЕКОМЕНДАЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ	
МАССА И ОБЪЁМ НЕФТЕПРОДУКТОВ	МИ 3252-2009
Методика измерений в вертикальных резервуарах	

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая Рекомендация распространяется на массу и объем нефтепродуктов и устанавливает методику измерений в резервуарах вертикальных стальных.

Методика измерений разработана в соответствии с положениями ГОСТ Р 8.563 и ГОСТ Р 8.595.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей Рекомендации использованы ссылки на следующие стандарты:

ΓΟCT 12.0.004 -9 0	Система стандартизации безопасности труда. Организация обучения безопасности труда. Общие положения
ΓΟCT 12.1.005 -88	Система стандартизации безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны
ΓΟCT 12.4.111-82	Система стандартизации безопасности труда. Костюмы мужские для защиты от нефти и нефтепродуктов. Технические условия
ГОСТ 12.4.112-82	Система стандартизации безопасности труда. Костюмы женские для защиты от нефти и нефтепродуктов. Технические условия
ГОСТ 12.4.137-84	Обувь специальная кожаная для защиты от нефти, нефтепродуктов, кислот, щелочей, нетоксичной и взрывоопасной пыли. Технические условия
ΓΟCT 400-80	Термометры стеклянные для испытаний нефти. Технические условия
ΓΟCT 2477 – 65	Нефть и нефтепродукты. Метод определения содержания воды
ΓΟCT 2517 – 85	Нефть и нефтепродукты. Методы отбора проб
ΓΟCT 3900-85	Нефть и нефтепродукты. Методы определения плотности
ΓΟCT 6370 – 83	Нефть, нефтепродукты и присадки. Методы определения механических примесей
ΓΟCT 7502-98	Рулетки измерительные металлические. Технические условия
ΓΟCT 18481-81	Ареометры и цилиндры стеклянные. Общие ТУ
ΓΟCT 22782.0-81	Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний
ΓΟCT 28498-90	Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний
ΓΟCT P 8.563-96	ГСИ. Методики выполнения измерений
ΓΟCT 8.570-2000	ГСИ. Резервуары стальные вертикальные цилиндрические.
	Методика поверки
ΓΟCT P 8.595-2004	ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений

ΓΟCT P 8.596-2002	ГСИ. Ме	грологическое	обеспечение	измерителі	ьных	систем.
	Основные і	положения				
ΓΟCT P 51069-97	Нефть и	нефтепродук	ты. Метод	определения	я пло	отности,
	относитель	ной плотности :	и плотности в	градусах АРІ	ареом	етром
ΓΟCT P 51330.0-99	Электрообо	рудование вз	<mark>зры</mark> возащищен	ное. Часть	0.	Общие
(MЭK 60079-0-98)	требования					
ΓΟCT P 51330.9-99	Электрообо	рудование	взрывозащиц	ценное.	Часть	10.
	Классифик	ация взрывоопа	сных зон			

<u>Примечание</u> — при пользовании настоящей Рекомендации целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящей Рекомендацией следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяют в части, не затрагивающей эту ссылку.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей Рекомендации использованы следующие термины с соответствующими определениями:

- 3.1 измерительная система: совокупность измерительных, связующих, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое.
- 3.2 **испытательная лаборатория (испытательный центр):** химико-аналитическая лаборатория, выполняющая контроль качества (параметров).
- 3.3 **методика измерений**: совокупность конкретно описанных операций, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности
- 3.4 **персональный компьютер:** универсальная ЭВМ, предназначенная для индивидуального использования.
- 3.5 **программное обеспечение:** совокупность программ, системы обработки информации и программных документов, необходимых для эксплуатации этих программ.
- 3.6 **система обработки информации:** вычислительное устройство, принимающее и обрабатывающее информацию о количественно-качественных параметрах продукта, измеренных первичными преобразователями, и включающие в себя блоки индикации и регистрации результатов измерений.
 - 3.7 средство измерений: техническое средство, предназначенное для измерений.
- 3.8 **стандартные условия:** условия, соответствующие температуре нефтепродукта 15 °C или 20 °C и избыточному давлению, равному нулю.

- 3.9 **температура измерения объема:** температура нефтепродукта в мере вместимости, мере полной вместимости при измерении уровня.
- 3.10 **условия измерений объема** (при косвенном методе статических измерений): условия, соответствующие температуре нефтепродукта в мере вместимости при измерении уровня и избыточному давлению, равному нулю.

4 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей Рекомендации приняты следующие сокращения:

- ИЛ (ИЦ) испытательная лаборатория (испытательный центр);
- ИС измерительная система;
- ПК персональный компьютер;
- ПО программное обеспечение к методикам измерений объёма и массы нефти и нефтепродуктов;
- PBC резервуар вертикальный стальной;
- СИ средство измерений;
- СОИ система обработки информации.

5 ОБЩИЕ ТРЕБОВАНИЯ К МЕТОДАМ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ И ПОРЯДОК ПРИМЕНЕНИЯ МЕТОДИКИ ИЗМЕРЕНИЙ

- 5.1 Определение объема и массы в настоящей Рекомендации выполняется в соответствии с ГОСТ Р 8.595.
- 5.2 Массу нефтепродукта в РВС вычисляют как произведение объема и плотности нефтепродукта, приведенных или к стандартным условиям, или к условиям измерений объема.
- 5.3 Объем нефтепродукта определяют, используя результат измерений уровня нефтепродукта в РВС, по градуировочной таблице, составленной по ГОСТ 8.570.
- 5.4 Объём, плотность и температуру нефтепродукта определяют по результатам измерений с использованием СИ согласно требований раздела 7 настоящей Рекомендации.
- 5.5 Массу нефтепродукта, отпущенного из резервуара или принятого в резервуар, вычисляют как разность результатов измерений массы нефтепродукта в резервуаре, полученных до и после отпуска (приема) нефтепродукта.
- 5.6 Измерения должны проводиться в соответствии с требованиями настоящей Рекомендации.

- 5.7 Алгоритмы методики измерений реализованы в программном обеспечении¹. Вычисления должны выполняться с помощью ПО.
- 5.8~ В исключительных случаях, до инсталляции ПО на персональные компьютеры или до переинсталляции в случае выхода из строя ПО, допускается выполнение вычислений без применения ПО.

Вычисления массы для таких случаев выполняются на основе примеров, приведенных в приложении В настоящей Рекомендации. При этом следует руководствоваться следующими требованиями:

- 5.8.1 Результаты измерения плотности и объема нефтепродукта приводят к стандартным условиям или результат измерений плотности приводят к условиям температуры измерения его объема.
- 5.8.2 Приведение плотности и объема к стандартным условиям выполняется по следующим таблицам²:

плотности:

к 15 °C по таблице 53В АСТМ Д 1250 [7];

к 20 °C по таблице 59В ИСО 91/2 [6]:

объема:

к 15 °C по таблице 54В [7];

к 20 °C по таблице 60В [6].

5.8.3 При температуре измерения объема нефтепродукта измерение плотности должно осуществляться в лабораторных условиях в термостате при температуре измерения его объема. Иные методы определения плотности для данного случая не допустимы.

6 ТРЕБОВАНИЯ К ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

6.1 Пределы допускаемой относительной погрешности измерений массы и объема нефтепродукта в резервуаре не должны превышать значений, приведенных в таблице 1.

Таблина 1

	Пределы допускаемой относительной погрешности измерений			
Метод измерений	массы нефтепродукта, %	объема нефтепродукта, приведенного к стандартным условиям, %		
Косвенный метод статических измерений до 120 т	± 0,65	± 0,60		
Косвенный метод статических измерений от 120 т и выше	± 0,50	± 0,40		

6.2 Пределы допускаемой относительной погрешности измерений массы нефтепродукта, отпущенного из резервуара или принятого в резервуар, не должны превышать значений, приведенных в таблице 2.

Таблица 2

² Таблицы в электронном виде входят в поставочный комплект методик измерений.

¹ Программное обеспечение к методикам измерений объёма и массы нефти и нефтепродуктов разработано OAO «НК «Роснефть» и аттестовано ФГУП «ВНИИМС».

Метод измерений	Пределы допускаемой относительной погрешности измерений массы нефтепродукта, отпущенного из резервуар, %
Косвенный метод статических измерений до 120 т	± 0,65
Косвенный метод статических измерений от 120 т и выше	± 0,50

7 СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

- 7.1 При выполнении измерений массы и объема нефтепродукта применяют следующие меры вместимости, СИ и технические средства:
 - резервуары стальные вертикальные цилиндрические, с теплоизоляцией и без теплоизоляции, с понтоном или плавающим покрытием, или со стационарной крышей, с относительной погрешностью определения вместимости по ГОСТ 8.570.
 - 7.2 СИ и технические средства, не образующие измерительные системы:

7.2.1 Неавтоматизированные СИ:

- рулетка измерительная с грузом (лотом) 2-го класса точности по ГОСТ 7502;
- термометры ртутные стеклянные по ГОСТ 28498 или ГОСТ 400 с пределами допускаемой абсолютной погрешности не более ± 0,5 °C, используемые для определения температуры нефтепродукта в РВС;
- СИ и технические средства, используемые для определения плотности нефтепродукта по ГОСТ 3900 или по ГОСТ Р 51069. Требования к ним изложены в 7.6.

7.2.2 Автоматизированные СИ:

- переносной электронный измеритель уровня (электронная рулетка) с пределами допускаемой абсолютной погрешности не более ± 3 мм;
- переносной погружной электронный термометр с разрешающей способностью 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,5 °C;
- переносной погружной измеритель плотности нефтепродуктов с пределами допускаемой абсолютной погрешности не более $\pm 0.5 \text{ кг/м}^3$;
- комбинированные СИ, обеспечивающие выполнение функций, указанных в 7.2.2, в любых комбинациях, предусмотренных конструкцией данных СИ.
- 7.2.3 Персональные компьютеры или другие технические средства для обработки и вычисления результатов измерений.
 - 7.3 Водочувствительная лента или паста.
 - 7.4 Переносной пробоотборник по ГОСТ 2517.
 - 7.5 Измерительные системы в составе:
 - канала (каналов) измерения уровня с использованием уровнемеров с пределами допускаемой абсолютной погрешности не более ± 3 мм;
 - канала (каналов) измерения температуры с пределами допускаемой абсолютной погрешности не более ± 0,5 °C;
 - канала (каналов) измерения плотности нефтепродукта в РВС:

- с использованием преобразователей плотности стационарных с пределами допускаемой относительной погрешности не более ± 0.03 %;
- с использованием преобразователей дифференциального давления с пределами допускаемой относительной погрешности не более ± 0,25 %;
- СОИ с пределом допускаемой относительной погрешности не более ± 0,05 %.

7.6 СИ и технические средства в ИЛ (ИЦ):

7.6.1 При определении плотности ареометром по ГОСТ 3900:

- стационарный или переносной пробоотборник по ГОСТ 2517;
- ареометры по ГОСТ 18481 типа АН, АНТ-1. Допускается применять аналогичные ареометры, отградуированные по нижнему мениску;
- цилиндры для ареометров стеклянные по ГОСТ 18481 или металлические соответствующих размеров;
- термометры ртутные стеклянные типа ТЛ-4 № 4 по техническим условиям ТУ 25-2021.003 [15] или термометры стеклянные для испытаний нефтепродуктов типа ТИН-5 по ГОСТ 400 при использовании ареометров типа АН. Термометр должен быть откалиброван на полное погружение с ценой деления 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,2 °C;
- термостат или водяная баня для поддержания температуры с пределами допускаемой абсолютной погрешности не более ± 0,2 °C.

7.6.2 При определении плотности ареометром по ГОСТ Р 51069:

- стационарный или переносной пробоотборник по ГОСТ 2517;
- ареометры по ГОСТ 18481;
- цилиндры для ареометров стеклянные по ГОСТ 18481 или металлические соответствующих размеров;
- термометры ртутные стеклянные типа ТЛ-4 № 2 и № 3 по техническим условиям [15] или термометры стеклянные для испытаний нефтепродуктов типа ТИН-5 по ГОСТ 400 при использовании ареометров типа АН. Термометр должен быть откалиброван на полное погружение с ценой деления 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,2 °C;
- термостат или водяная баня для поддержания температуры с пределами допускаемой абсолютной погрешности не более ± 0,2 °C.

<u>Примечание</u> — Метрологические характеристики ареометров и термометров выбираются по таблицам № 1 и № 2 ГОСТ Р 51069.

- 7.7 Допускается применять другие аналогичные по назначению СИ, ИС и технические средства, допущенные к применению в установленном порядке, если их характеристики не уступают указанным в настоящей Рекомендации.
- 7.8 СИ и ИС должны иметь сертификаты об утверждении типа в соответствии с правилами по метрологии ПР 50.2.009 [9].

Измерительные системы, собираемые на месте эксплуатации (ИС-2 согласно ГОСТ Р 8.596), должны быть внесены в Государственный реестр, как СИ единичного типа.

7.9 СИ и ИС, участвующие в измерении массы нефтепродукта, подлежат поверке в соответствии с правилами по метрологии ПР 50.2.006 [8] и должны иметь действующие свидетельства о поверке или оттиски поверительных клейм.

- 7.10 Программное обеспечение, применяемое в составе СОИ ИС, должно быть аттестовано в установленном порядке в соответствии с МИ 2955 [11], МИ 2676 [12], МИ 2174 [13].
- 7.11 Периодичность поверки СИ, применяемых при измерениях массы нефтепродукта в PBC, должна соответствовать межповерочному интервалу, установленному при утверждении типа. Изменение межповерочного интервала проводится органом Государственной метрологической службы по согласованию с метрологической службой юридического лица.
 - 7.12 Поверку резервуаров проводят не реже одного раза в пять лет.
- 7.13 Технологические трубопроводы должны быть отградуированы (определена вместимость) в соответствии с МИ 2800 [14]. Градуировочную таблицу на технологический трубопровод составляют суммированием вместимостей отдельных трубопроводов. Градуировочную таблицу на отдельный трубопровод составляют суммированием вместимостей его участков. Периодичность градуировки не реже одного раза в десять лет.

8 УСЛОВИЯ ИЗМЕРЕНИЙ

- 8.1 При выполнении измерений соблюдают следующие условия:
- температура окружающего воздуха

or - 40 °C до + 50 °C;

скорость ветра

не более 12,5 м/с.

<u>Примечание</u> — Технические характеристики применяемых СИ и технических средств должны соответствовать вышеуказанным условиям.

- 8.2 Измерение плотности нефтепродукта в отобранной пробе должно проводиться в лаборатории или специально оборудованном помещении.
- 8.3 Для обеспечения указанных в 6.2 настоящей Рекомендации пределов допускаемой относительной погрешности измерений массы принятого и отпущенного нефтепродукта значения уровней нефтепродукта в резервуаре до и после приема, до и после отпуска должны соответствовать допустимым значениям, приведенным в таблицах A.1, A.2 приложения A.
- 8.4 Для обеспечения указанных в 6.1 и 6.2 настоящей Рекомендации пределов допускаемой относительной погрешности измерений при использовании в составе ИС датчиков гидростатического давления уровень нефтепродукта должен быть не менее 3,0 метров над нижним датчиком гидростатического давления.

9 КВАЛИФИКАЦИЯ ОПЕРАТОРОВ, ТРЕБОВАНИЯ ОХРАНЫ ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ

9.1 К выполнению измерений и обработке их результатов допускают лиц, достигших 18 лет, имеющих квалификацию оператора не ниже 4-го разряда, прошедших обучение и проверку знаний требований охраны труда в соответствии с ГОСТ 12.0.004, годных по состоянию здоровья и ознакомленных с настоящей Рекомендацией.

Лица, выполняющие измерения, должны:

 соблюдать требования по охране труда, промышленной и экологической безопасности и правила пожарной безопасности, распространяющиеся на объект, на котором проводят измерения;

- выполнять измерения в специальной одежде и обуви в соответствии с ГОСТ 12.4.111, ГОСТ 12.4.112, ГОСТ 12.4.137.
- 9.2 Выполнение измерений проводят в соответствии с утвержденными действующими правилами и нормативными документами:
 - в области охраны труда и промышленной безопасности ПБ 09-560 [1],
 ПОТ РМ 021 [2];
 - в области соблюдения безопасной эксплуатации электроустановок ПОТ Р М-016
 [3];
 - в области охраны окружающей среды и атмосферного воздуха Федеральными законами «Об охране окружающей среды» [4], «Об охране атмосферного воздуха» [5] и другими действующими законодательными актами на территории РФ.
- 9.3 Содержание вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций, установленных в ГОСТ 12.1.005.
- 9.4 Площадка, на которой установлены резервуары, должна содержаться в чистоте, без следов нефтепродукта, и быть оборудована первичными средствами пожаротушения. Не допускается выбросов и выделений нефтепродуктов в окружающую среду.
- 9.5 Для освещения применяют светильники во взрывозащищенном исполнении. Переносные светильники включают и выключают за земляным валом или ограждением резервуарного парка. Защита от статического электричества должна соответствовать требованиям правил [16].
- 9.6 При выполнении работ по отбору проб следует соблюдать требования безопасности, регламентируемые ГОСТ 2517, в том числе:
 - переносные пробоотборники должны быть изготовлены из материала, не образующего искр при ударе (алюминия, бронзы, латуни и др.);
 - для крепления переносного пробоотборника используют гибкие, не дающие искр, металлические тросики. При применении шнуров (веревок и т.д.) из неэлектропроводных материалов на их поверхности должен быть закреплен многожильный, не дающий искр, неизолированный металлический проводник, соединенный с пробоотборником. Перед отбором проводник должен заземляться с элементами РВС.
- 9.7 Электрооборудование (СИ, ИС и вспомогательные устройства), применяемое при выполнении измерений, должно быть изготовлено во взрывозащищенном исполнении, соответствующем классу взрывоопасной зоны по ГОСТ Р 51330.9 места применения, отвечать требованиям ГОСТ 22782.0, ГОСТ Р 51330.0, иметь разрешение Ростехнадзора, полученное на основании заключения экспертизы промышленной безопасности на применение во взрывоопасных зонах.

10 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

- 10.1 Перед наливом (сливом) проверяют исправность технологической обвязки и запорной арматуры резервуаров и трубопроводов, отсутствие утечек и механических повреждений, целостность пломб и клейм.
- 10.2 Подготовка к выполнению измерений проводится в соответствии с технической документацией на СИ и другие технические средства, применяемые при измерениях.

При подготовке к выполнению измерений выполняют следующее:

- 10.2.1 Проверяют включенное состояние оборудования и наличие напряжения питания.
- 10.2.2 Проверяют исправность пробоотборника и его комплектность. При наличии загрязнения переносной пробоотборник протирают бензином и просушивают.
 - 10.2.3 Проверяют исправность СИ и технических средств.
- 10.3 При приеме нефтепродукта в резервуар измерения выполняют после 2-х часового отстоя нефтепродукта по завершении приема. При несоблюдении сроков отстоя в документе, регламентирующем учет движения нефтепродукта на предприятии, делается отметка о фактическом времени отстоя.
- 10.4 Перед началом измерений проверяют исправность лестниц и перил резервуара и заземление резервуара.

11 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ

11.1 Измерение массы нефтепродукта неавтоматизированными средствами измерений.

<u>Примечание</u> – В случае, если плотность измеряется ареометром, в результат измерения плотности вносится поправка на температурное расширение стекла для ареометров, рассчитываемая по формулам Б.3 или Б.4 приложения Б.

11.1.1 Определение объема нефтепродукта в резервуаре.

Объем нефтепродукта в резервуаре определяют по градуировочной таблице резервуара с использованием результата измерения уровня нефтепродукта и уровня подтоварной воды.

11.1.1.1 Измерение уровня нефтепродукта.

Проверяют базовую высоту (высотный трафарет) резервуара, как расстояние по вертикали между днищем резервуара в точке касания лота рулетки и риски планки измерительного люка. Полученный результат сравнивают с величиной базовой высоты, указанной в градуировочной таблице резервуара или в последнем акте ее ежегодного измерения и нанесенной на трафарете.

Если измеренное значение базовой высоты отличается от значения, нанесенного на трафарете, более чем на 0,1 %, выявляют причину изменения базовой высоты и устраняют ее. На период, необходимый для выяснения и устранения причин изменения базовой высоты, измерения уровня нефтепродукта проводят по высоте пустоты резервуара.

<u>Примечание</u> – Измерение уровня **нефтепродукта** в **резервуаре по высоте пустоты** резервуара проводят также в случае, если в **резервуаре образовался** лед.

Измерения уровня нефтепродукта по высоте пустоты резервуара проводят в следующей последовательности:

- опускают рулетку с лотом ниже уровня нефтепродукта. Первый отсчет (верхний) по рулетке проводят на уровне риски планки измерительного люка. Затем рулетку с лотом поднимают строго вверх без смещения в стороны и проводят второй отсчет (нижний) по линии смачивания с точностью до 1 мм;
- определяют высоту пустоты как разность верхнего и нижнего отсчетов;

 определяют уровень нефтепродукта в резервуаре как разность величины базовой высоты (высотного трафарета) данного резервуара и полученного значения высоты пустоты резервуара.

Если измеренное значение базовой высоты совпадает со значением, нанесенным на трафарете или отличается от него менее чем на 0,1 %, измерения уровня нефтепродукта в резервуаре проводят в следующей последовательности:

- опускают ленту рулетки с лотом медленно до касания лотом днища или опорной плиты, не допуская отклонения лота от вертикального положения, не задевая за внутреннее оборудование резервуара, не допуская волн на поверхности нефтепродукта и ударов о днище резервуара. Лента рулетки должна находится все время в натянутом состоянии, а место касания лота о днище резервуара горизонтальное и жесткое;
- поднимают ленту рулетки строго вертикально, не допуская смещения в сторону, чтобы избежать искажения линии смачивания;
- показания рулетки отсчитывают с точностью до 1 мм сразу после появления смоченной части над измерительным люком.

Измерения уровня нефтепродукта в резервуаре (высоты пустоты) проводят дважды. Если результаты измерений отличаются не более чем на 1 мм, то в качестве результата измерений уровня принимают большее значение. Если полученное расхождение измерений более 1 мм, измерения повторяют ещё дважды и берут среднее по трём наиболее близким измерениям с округлением до 1 мм.

Ленту рулетки до и после измерений протирают мягкой тряпкой насухо.

<u>Примечание</u> — Измерения уровня нефтепродукта и уровня подтоварной воды проводят измерительной рулеткой с лотом только через измерительный люк. Во время опускания рулетки внутрь резервуара операторы находятся с наветренной стороны люка и не должны наклоняться над измерительным люком. Лента измерительной рулетки должна плавно и непрерывно скользить по направляющему пазу планки измерительного люка.

11.1.1.2 Измерение уровня подтоварной воды.

Уровень подтоварной воды измеряют с помощью рулетки с лотом с применением водочувствительной ленты или пасты:

- водочувствительную ленту в натянутом виде прикрепляют к лоту рулетки с двух противоположных сторон;
- водочувствительная паста тонким слоем наносится на поверхность лота рулетки с двух противоположных сторон;
- для резкого выделения грани между слоями воды и нефтепродукта рулетку выдерживают неподвижно в резервуаре в течение времени, рекомендуемого инструкцией по применению водочувствительной ленты или пасты. Отсчет уровня подтоварной воды проводят с точностью до 1 мм;
- если межслойный уровень на ленте или пасте обозначается нечетко, косой линией или на неодинаковой высоте с обеих сторон, то измерение следует повторить, нанеся новый слой пасты или прикрепив новую ленту:
- наличие размытой границы раздела «вода-нефтепродукт» свидетельствует о наличии водоэмульсионного слоя. В этом случае необходимо повторить измерение после отстоя и расслоения эмульсии.

11.1.1.3 Определение объема нефтепродукта при температуре его измерения.

По измеренному уровню нефтепродукта (см. 11.1.1.1) по градуировочной таблице резервуара определяют общий объем нефтепродукта и подтоварной воды в резервуаре. По измеренному уровню подтоварной воды (см. 11.1.1.2) по градуировочной таблице определяют объем подтоварной воды в резервуаре.

Объем нефтепродукта при температуре его измерения в резервуаре V, M^3 , вычисляют по формуле:

$$V = V_{u} \cdot \left[1 + \left(2\alpha_{cm} + \alpha_{s} \right) \cdot \left(t_{v} - 20 \right) \right], \tag{1}$$

где $V_{\scriptscriptstyle H}$ - объем нефтепродукта в резервуаре, м³. Вычисляют по формуле: $V_{\scriptscriptstyle H} = V_{\scriptscriptstyle O} - V_{\scriptscriptstyle B}$ (2)

 V_o - общий объем нефтепродукта и подтоварной воды в резервуаре м³;

 V_e - объем подтоварной воды, м³;

α_{ст} - температурный коэффициент линейного расширения материала стенки резервуара, значение которого принимают равным 12,5·10⁻⁶, 1/°C;

 α_s - температурный коэффициент линейного расширения материала рулетки, значение которого принимают равным 12,5·10⁻⁶ для нержавеющей стали и 23·10⁻⁶ для алюминия, 1/°C;

 t_{v} - температура измерения объема, °С.

<u>Примечание</u> — При проведении измерений в резервуаре с понтоном или плавающим покрытием, вместо значения объема (V) в формулах (10) и (Γ .57) используется значение объема (V^*), определяемое по формуле:

$$V^* = V + \Delta V, \tag{3}$$

где V - объем нефтепродукта, рассчитываемый по формуле (1);

△V - поправка на изменение объема нефтепродукта, вытесненного понтоном или плавающим покрытием, в зависимости от плотности нефтепродукта, вычисляется по Б.1 приложения Б.

11.1.2 Отбор проб нефтепродукта для определения температуры и плотности нефтепродукта в резервуаре для расчета массы.

Отбор проб нефтепродукта из PBC при измерении температуры проводят в соответствии с Γ OCT 2517.

Измерение температуры проводят непосредственно в пробоотборнике в каждой точечной пробе согласно 11.1.3.

Измерение плотности проводят в объединенной пробе, составленной по ГОСТ 2517 из точечных проб. При высоте уровня нефтепродукта менее 1000 мм (остаток после опорожнения) в точечной пробе. Измерение плотности проводят согласно 11.1.4.

- 11.1.3 Измерение температуры нефтепродукта в РВС для определения массы.
- 11.1.3.1 Температуру нефтепродукта измеряют стеклянным ртутным термометром в каждой точечной пробе. Термометр выдерживают в пробе в течение 1-3 минут после ее извлечения до принятия столбиком ртути постоянного положения. Отсчет температуры проводят, не вынимая термометр из нефтепродукта.
- 11.1.3.2 Среднюю температуру нефтепродукта в резервуаре (t_v) вычисляют по формулам:

В общем случае:

$$t_{v} = \frac{t_{H} + 3 \cdot t_{cp} + t_{g}}{5},\tag{4}$$

где t_n - температура нефтепродукта, измеренная на нижнем уровне - на 250 мм выше днища резервуара (при измерении стеклянным термометром - температура нефтепродукта в точечной пробе, отобранной по ГОСТ 2517 с нижнего уровня), °С;

 t_{cp} - температура нефтепродукта, измеренная на среднем уровне - с середины

высоты столба нефтепродукта (при измерении стеклянным термометром - температура нефтепродукта - в точечной пробе, отобранной по ГОСТ 2517 со среднего уровня), °С;

 t_e - температура нефтепродукта, измеренная на верхнем уровне - на 250 мм ниже поверхности нефтепродукта (при измерении стеклянным термометром - температура нефтепродукта в точечной пробе, отобранной по ГОСТ 2517 с верхнего уровня), °C.

Для нефтепродукта, который компаундируется в резервуаре, среднюю температуру рассчитывают, как среднее арифметическое значение температур точечных проб:

$$t_{v} = \frac{t_{1} + t_{2} + \dots + t_{n}}{n},\tag{5}$$

где t_{l_i} , t_n - температура нефтепродукта, измеренная на уровнях, соответствующих уровням отбора проб нефтепродукта, который компаундируется в резервуаре, по ГОСТ 2517, °С;

и - число точечных проб.

При уровне нефтепродукта в резервуаре не выше 2000 мм:

$$t_{v} = \frac{t_{n} + t_{e}}{2} \quad . \tag{6}$$

При уровне нефтепродукта в резервуаре не выше 1000 мм:

$$t_{v} = t_{H} . ag{7}$$

- 11.1.4 Определение плотности нефтепродукта в резервуаре.
- 11.1.4.1 Отбор проб нефтепродукта из PBC при измерении плотности проводят в соответствии с ГОСТ 2517.

Плотность нефтепродукта измеряют ареометром в объединенной или точечной пробах согласно ГОСТ 2517. Измерения проводят по ГОСТ Р 51069 или по ГОСТ 3900, в лаборатории или в специально оборудованном месте, защищенном от ветра, осадков, солнечной радиации и оснащенном столиком с ровной горизонтальной поверхностью. По результатам измерений фиксируют, в том числе, значение температуры, при которой проведено измерение плотности.

11.1.5 Вычисление массы нефтепродукта в резервуаре.

При приведении плотности и объема нефтепродукта к 20 $^{\circ}$ C массу нефтепродукта, кг, вычисляют по формуле:

$$m = V_{20} \cdot \rho_{20}$$
, (8)

где V_{20} - объем нефтепродукта, приведенный к 20 °C, м³; ρ_{20} - плотность нефтепродукта, приведенная к 20 °C, кг/м³.

При приведении плотности и объема нефтепродукта к 15 $^{\circ}$ C массу нефтепродукта, кг, вычисляют по формуле:

$$m = V_{15} \cdot \rho_{15}, \tag{9}$$

где V_{I5} - объем нефтепродукта, приведенный к 15 °C, м³; - плотность нефтепродукта, приведенная к 15 °C, кг/м³.

При приведении плотности к температуре измерений объёма массу нефтепродукта, кг, вычисляют по формуле:

$$m = V \cdot \rho_{m}, \tag{10}$$

где V - объем нефтепродукта, при температуре его измерений, м³, рассчитанный по формуле (1);

 ho_{tv} - плотность нефтепродукта, приведённая к температуре измерений объёма, кг/м 3 .

Примечания:

- I. Алгоритмы вычислений объема и плотности реализованы в IIO и изложены в приложении $\Gamma.$
- 2. При проведении измерений плотности ареометром вместо значения плотности (ρ_{tv}) в формуле (10) используется значение плотности (ρ^*), определяемое по формуле (Б.2).
- 3. Значение (ρ_{tv}) автоматически рассчитывается в ΠO или определяется в лабораторных условиях в термостате при температуре измерения объема, кг/м³.

11.2 Измерение массы нефтепродукта автоматизированными средствами измерений, не образующими измерительные системы.

11.2.1 Определение объема нефтепродукта в резервуаре.

Объем нефтепродукта в резервуаре определяют по градуировочной таблице резервуара с использованием результата измерения уровня нефтепродукта и уровня подтоварной воды.

- 11.2.1.1 Измерения уровня проводят с использованием переносного электронного измерителя уровня (электронной рулетки) в соответствии с инструкцией по эксплуатации прибора по высоте пустоты резервуара с учетом требований 11.1.1.1.
- 11.2.1.2 Объем нефтепродукта при температуре измерения объема определяют по формуле (1) настоящей Рекомендации. При проведении измерений в резервуаре с понтоном или плавающей крышей используется формула (3).
 - 11.2.2 Измерение температуры нефтепродукта в резервуаре.

Температуру нефтепродукта измеряют переносным погружным электронным термометром непосредственно в PBC:

- при взливе до 5 м включительно, через каждые 50 см, начиная от верхней границы нефтепродукта;
- при взливе свыше 5 м через каждый 1 метр, начиная от верхней границы нефтепродукта.

Среднюю температуру нефтепродукта в резервуаре (t_v) вычисляют по формуле:

$$t_{v} = \frac{t_{1} + t_{2} + \dots + t_{n}}{n},\tag{11}$$

где $t_{l,},t_{n}$ - температура нефтепродукта, измеренная на соответствующих уровнях, ${}^{\circ}C$.

n - число измерений для конкретного взлива.

Измерение температуры проводят в соответствии с инструкцией по эксплуатации термометра.

11.2.3 Определение плотности нефтепродукта в резервуаре.

Плотность нефтепродукта измеряют переносным погружным электронным плотномером непосредственно в PBC:

- при взливе до 5 м включительно, через каждые 50 см, начиная от верхней границы нефтепродукта:
- при взливе свыше 5 м через каждый 1 метр, начиная от верхней границы нефтепродукта.

Плотность нефтепродукта в резервуаре ρ_{v} вычисляют по формуле:

$$\rho_{v} = \frac{\rho_{1} + \rho_{2} + \dots + \rho_{n}}{n},\tag{12}$$

Измерение плотности проводят в соответствии с инструкцией по эксплуатации плотномера.

Вычисление массы нефтепродукта в резервуаре. 11.2.4

Массу нефтепродукта в резервуаре вычисляют согласно 11.1.5.

11.3 Измерение массы нефтепродукта измерительными системами.

- Определение объема нефтепродукта в резервуаре. 11.3.1
- 11.3.1.1 Объем нефтепродукта в резервуаре определяют с использованием градуировочной таблицы резервуара по результатам измерений уровня нефтепродукта и уровня подтоварной воды с помощью канала измерения уровня в составе измерительной системы
- 11.3.1.2 При отсутствии канала измерения уровня в составе ИС, уровень нефтепродукта и подтоварной воды измеряют в соответствии с 11.1.1.1 или 11.2.1.1.
- 11.3.1.3 Объем нефтепродукта при температуре измерения объема определяют по формуле (1) настоящей Рекомендации. При проведении измерений в резервуаре с понтоном или плавающей крышей используется формула (3).
 - Измерение температуры нефтепродукта в резервуаре.

Температуру нефтепродукта в резервуаре измеряют термометрами цифровыми в составе канала измерения температуры ИС. За температуру нефтепродукта в резервуаре принимается средняя температура, рассчитанная ИС.

При отсутствии канала измерения температуры в составе ИС, температуру нефтепродукта измеряют в соответствии с 11.1.3 или 11.2.2.

Определение плотности нефтепродукта в резервуаре.

Плотность нефтепродукта в резервуаре измеряют с помощью канала измерения плотности ИС:

- с использованием преобразователей плотности стационарных;
- с использованием преобразователей дифференциального давления.
- При использовании преобразователей плотности стационарных за значение плотности в резервуаре принимается значение средней плотности, рассчитанное ИС.
- При использовании преобразователей дифференциального давления при уровне нефтепродукта выше 3-х метров от нижнего датчика значение плотности в резервуаре принимают равным средней плотности, рассчитанной ИС.

11.3.3.3 При уровне нефтепродукта ниже 3-х метров от нижнего датчика показания канала плотности ИС (преобразователей дифференциального давления) не используют. Измерения проводят в соответствии с 11.1.2 и 11.1.4 для ручных СИ или 11.2.3 для автоматизированных СИ.

При отсутствии канала измерения плотности в резервуаре плотность нефтепродукта измеряют в соответствии с 11.1.2 и 11.1.4 для ручных СИ или 11.2.3 для автоматизированных СИ.

11.3.4 Вычисление массы нефтепродукта в резервуаре. Массу нефтепродукта в резервуаре вычисляют согласно 11.1.5.

12 ОПРЕДЕЛЕНИЕ МАССЫ НЕФТЕПРОДУКТА, ОТПУЩЕННОГО ИЗ РЕЗЕРВУАРА ИЛИ ПРИНЯТОГО В РЕЗЕРВУАР

12.1 При проведении отпуска (приема) нефтепродукта массу отпущенного (принятого) нефтепродукта вычисляют как разность результатов измерений массы нефтепродукта в резервуаре, полученных до и после отпуска (приема) нефтепродукта, по формуле:

$$M = m_1 - m_2, \tag{13}$$

где M - масса нефтепродукта, отпущенного из резервуара или принятого в резервуар, кг;

 m_1, m_2 - массы нефтепродукта в резервуаре до (после) отпуска нефтепродукта из резервуара или до (после) приема нефтепродукта из резервуара, соответственно, кг.

- 12.2 Вычисление массы нефтепродукта в резервуаре до (после) отпуска нефтепродукта из резервуара или до (после) приема нефтепродукта из резервуара (m_1 , m_2) осуществляется:
 - согласно 11.1 при использовании неавтоматизированных СИ;
 - согласно 11.2 при использовании автоматизированных СИ, не образующих ИС;
 - согласно 11.3 при использовании ИС.

13 ОЦЕНИВАНИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

13.1 Пределы относительной погрешности измерений массы нефтепродукта (δm) в PBC, %, вычисляются по формуле:

$$\delta m = \pm 1, 1\sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2(\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2}, \qquad (14)$$

где δK - относительная погрешность составления градуировочной таблицы PBC, %;

 K_{ϕ} - коэффициент, учитывающий геометрическую форму РВС, принимается равным 1;

 относительная погрешность измерений уровня нефтепродукта (величина уровня жидкости в РВС за вычетом величины уровня подтоварной воды), %:

$$\delta H = \sqrt{\left(\frac{\Delta H^{"}}{H} \cdot 100\right)^{2} + \left(\frac{\Delta H^{s}}{H} \cdot 100\right)^{2}} , \qquad (15)$$

уровень нефтепродукта (величина уровня жидкости в РВС за вычетом

величины уровня подтоварной воды), мм:

$$H = H_o - H_s, \tag{16}$$

 H_o - уровень жидкости в РВС (уровень нефтепродукта + уровень подтоварной воды), мм;

 H_{e} - уровень подтоварной воды, мм;

 $\Delta H^{"}$ - абсолютная погрешность измерений уровня жидкости в РВС (уровень нефтепродукта + уровень подтоварной воды), мм;

 ΔH^{e} - абсолютная погрешность измерений уровня подтоварной воды, мм;

Коэффициент, вычисляемый по формуле:

$$G = \frac{1 + 2\beta t_{\nu}}{1 + 2\beta t_{\rho}},\tag{17}$$

κοэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595;

 t_{v}, t_{ρ} - температура нефтепродукта при измерении объема и при измерении плотности соответственно, °C;

 Δt_{ρ} , Δt_{v} - абсолютные погрешности измерений температуры нефтепродукта при измерениях его плотности и объема соответственно, °C;

 $\delta
ho$ - относительная погрешность измерений плотности нефтепродукта, %, вычисляют по формуле:

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100, \tag{18}$$

 $\Delta \rho$ - абсолютная погрешность определения плотности, кг/м³;

 ρ - значение результата измерения плотности нефтепродукта, кг/м³;

δN - предел допускаемой относительной погрешности средства обработки результатов измерений, %.

Примечания:

1 Если для применяемых СИ и каналов ИС заданы как абсолютные, так и относительные погрешности, то для вычисления относительной погрешности измерений массы нефтепродукта применяют формулу (14).

2 Если заданы только относительные погрешности (как правило, для ИС), то для вычисления относительной погрешности измерений массы нефтепродукта применяют следующую формулу:

$$\delta m = \pm 1, 1\sqrt{\delta V^2 + \delta \rho^2 + \delta t^2 + \delta N^2}.$$

13.2 Пределы относительной погрешности измерений объема нефтепродукта (δV) в РВС при условиях измерений объема, %, вычисляют по формуле:

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} \ . \tag{19}$$

13.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям (δV_{cv}), %, вычисляют по формуле:

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} \,. \tag{20}$$

13.4 Пределы допускаемой относительной погрешности измерений массы отпущенного/принятого нефтепродукта (δM), % вычисляют по формуле:

$$\delta M = \pm 1.1 \sqrt{\frac{m_1^2}{M^2} \cdot (A_1^2 + B_1^2) + \frac{m_2^2}{M^2} \cdot (A_2^2 + B_2^2) + (\delta N)^2},$$
 (21)

где
$$A_{1} = \sqrt{(\delta K)^{2} + (K_{\phi 1} \delta H_{1}^{2}) + (G_{1} \cdot \delta \rho_{1})^{2}}$$
, (22)

$$B_{1} = \sqrt{(G_{1} \cdot \beta \cdot 10^{2} \cdot \Delta t_{\rho_{1}})^{2} + (\beta \cdot 10^{2} \cdot \Delta t_{\nu_{1}})^{2}},$$
(23)

$$A_{2} = \sqrt{(\delta K)^{2} + (K_{d2}\delta H_{2}^{2}) + (G_{2} \cdot \delta \rho_{2})^{2}},$$
(24)

$$B_2 = \sqrt{(G_2 \cdot \beta \cdot 10^2 \cdot \Delta t_{\rho_2})^2 + (\beta \cdot 10^2 \cdot \Delta t_{\nu_2})^2},$$
 (25)

где δK - относительная погрешность составления градуировочной таблицы РВС, %;

 $K_{\phi l}, K_{\phi 2}$ - коэффициенты, учитывающие геометрическую форму РВС при измеряемых уровнях наполнения резервуара H_1 и H_2 , принимаются равными 1;

 $\delta H_1, \, \delta H_2$ - относительные погрешности измерений уровней нефтепродукта в резервуаре (величина уровня жидкости в PBC за вычетом величины уровня подтоварной воды), вычисляют по формулам:

$$\delta H_1 = \sqrt{\left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2 + \left(\frac{\Delta H^s}{H_1^n} \cdot 100\right)^2} , \qquad (26)$$

$$\delta H_2 = \sqrt{\left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2 + \left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2},$$
 (27)

∆H^H - абсолютная погрешность измерений уровня жидкости в РВС (уровень нефтепродукта + уровень подтоварной воды), мм;

 AH^{B} - абсолютная погрешность измерений уровня подтоварной воды, мм;

 H_{l}^{H} - уровень нефтепродукта (величина уровня жидкости в PBC за вычетом величины уровня подтоварной воды) до отпуска (приема), мм;

 H_2^H - уровень нефтепродукта (величина уровня жидкости в PBC за вычетом величины уровня подтоварной воды) после отпуска (приема) нефтепродукта из резервуара, мм:

$$H_i^n = H_i^o - H_i^e, i=1, 2;$$
 (28)

 $H_{1,2}^{\ \ 0}$ - уровень жидкости в РВС (уровень нефтепродукта + уровень подтоварной воды) до отпуска (приема), после отпуска (приема) соответственно, мм;

 $H_{1,2}{}^B$ уровень подтоварной воды до отпуска/приёма, после отпуска/приёма соответственно, мм;

 $\delta \rho_l, \ \delta \rho_2$ - относительные погрешности измерения плотности нефтепродукта до и после отпуска соответственно, %, вычисляют по формулам:

$$\delta \rho_1 = \frac{\Delta \rho}{\rho_1} \cdot 100, \tag{29}$$

$$\delta \rho_2 = \frac{\Delta \rho}{\rho_2} \cdot 100,\tag{30}$$

 $\Delta \rho$ - абсолютная погрешность измерений плотности нефтепродукта ареометром, кг/м 3 ;

 ρ_1, ρ_2 - результаты измерений плотности нефтепродукта до и после отпуска соответственно. кг/м³:

 G_1, G_2 - коэффициенты, вычисляют по формулам:

$$G_{1} = \frac{1 + 2\beta \cdot t_{V1}}{1 + 2\beta \cdot t_{o1}},\tag{31}$$

$$G_{2} = \frac{1 + 2\beta \cdot t_{V2}}{1 + 2\beta \cdot t_{o2}},\tag{32}$$

β - коэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595;

 t_{VI}, t_{V2} - температура нефтепродукта при измерении объема до и после отпуска соответственно. °С:

 Δt_{vI} , Δt_{v2} - абсолютные погрешности измерения температуры нефтепродукта при измерении ее объема, °C;

 $t_{
ho l},\,t_{
ho 2}$ - температура нефтепродукта при измерении плотности соответственно, °C;

 $\Delta t_{\rho l}, \ \Delta t_{\rho 2}$ - абсолютные погрешности измерения температуры нефтепродукта при измерении ее плотности, °С;

оN - предел допускаемой относительной погрешности средства обработки результатов измерений, %.

14 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- Значение массы нефтепродукта, кг, округляют до целых значений.
 Значение объема нефтепродукта, м³, округляют до трех знаков после запятой.
- 14.2 Для учета нефтепродукта принимается значение массы в килограммах с округлением до целых значений.

15 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АТТЕСТАЦИИ МЕТОДИКИ ИЗМЕРЕНИЙ

- 15.1 Аттестацию методики измерений проводят в соответствии с ГОСТ Р 8.563.
- 15.2 Аттестация методики измерений осуществляется на основе результатов метрологической экспертизы материалов разработки методики измерений, включающих документ (раздел, часть документа), регламентирующий методику измерений, применяемую предприятием на конкретной учетной операции, и результаты экспериментального или расчетного оценивания характеристик погрешности методики измерений (относительных погрешностей измерений массы и объема нефтепродукта).
- 15.3 Аттестацию методик измерений, применяемых в сфере государственного регулирования обеспечения единства измерений, осуществляют метрологические службы предприятий, аккредитованные на право проведения аттестации методик измерений в соответствии с ПР 50.2.13 [10], государственные научные метрологические центры, органы Государственной метрологической службы.

При положительных результатах аттестации:

- оформляют свидетельство об аттестации методики измерений согласно форме ГОСТ Р 8.563;
- регистрируют методику измерений в Федеральном реестре методик измерений;

- документ, регламентирующий методику измерений, утверждают в порядке, установленном на предприятии (приказ, распоряжение);
- в документе, регламентирующем методику измерений, указывают «методика измерений аттестована» с обозначением предприятия, метрологическая служба которого осуществляла аттестацию, либо государственного научного метрологического центра или органа Государственной метрологической службы, выполнивших аттестацию методики измерений.

Примечания:

- 1. При разработке методик измерений на основе настоящей методики не допускается внесение изменений в формулы и алгоритмы расчета.
- 2. Допускается разработка одного документа на методику измерений для нескольких мест проведения учетных операций при использовании в них:
- идентичных мер вместимости (РВС);
- СИ одного типа;
- ИС одного типа, реализующих один физический принцип измерений, с идентичным перечнем и составом измерительных каналов, идентичным программным обеспечением.

БИБЛИОГРАФИЯ

- [1] ПБ 09-560-03 Правила промышленной безопасности нефтебаз и складов нефтепродуктов
- [2] ПОТ РМ 021-2002 Межотраслевые правила по охране труда при эксплуатации нефтебаз, складов ГСМ, стационарных и передвижных автозаправочных станций, утвержденные Постановлением Минтруда РФ от 6 мая 2002 г. № 33
- [3] ПОТ Р М-016-2001 РД 153-34.0-03.150-00 Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (с изменениями 2003 г.)
- [4] Федеральный закон «Об охране окружающей среды» от 10 января 2002 г. № 7-ФЗ
- [5] Федеральный закон «Об охране атмосферного воздуха» от 04 мая 1999 г. № 96-ФЗ
- [6] ИСО 91/2-1991 Рекомендация ИСО по применению таблиц измерения параметров нефти и нефтепродуктов, основанных на измерении при 20 °С (таблицы 59В, 60В)
- [7] АСТМ Д 1250-2007 Стандартное руководство по применению таблиц измерения параметров нефти и нефтепродуктов (таблицы 53B, 54B)
- [8] ПР 50.2.006-94 Правила по метрологии. ГСИ. Порядок проведения поверки средств измерений (с изменениями № 1)
- [9] ПР 50.2.009-94 Правила по метрологии. ГСИ. Порядок проведения испытаний и утверждения типа средств измерений
- [10] ПР 50.2.013-97 Правила по метрологии. ГСИ. Порядок аккредитации метрологических служб юридических лиц на право аттестации методик выполнения измерений и проведения метрологической экспертизы документов
- [11] МИ 2955-2005 Рекомендация. ГСИ. Типовая методика аттестации программного обеспечения средств измерений и порядок её проведения
- [12] МИ 2676-2001 Рекомендация. ГСИ. Методика метрологической аттестации алгоритмов и программ обработки данных результатов измерений при определении объёма и массы нефти и нефтепродуктов. Общие положения
- [13] МИ 2174-91 Рекомендация. ГСИ. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения
- [14] МИ 2800-2003 Рекомендация. ГСИ. Вместимость технологических нефтепроводов. Методика выполнения измерений геометрическим методом
- [15] ТУ 25-2021.003-88 Термометры ртутные стеклянные лабораторные
- [16] Правила защиты от статического электричества в производстве химической, нефтехимической и нефтеперерабатывающей промышленности, утвержденные Министерством нефтеперерабатывающей и нефтехимической промышленности 31.01.72 г.

Приложение А

Соотношение допустимых значений уровней нефтепродукта в РВС при приёме и отпуске, при которых обеспечиваются погрешности измерения массы по ГОСТ Р 8.595

Таблица А.1 Соотношения допустимых значений уровней нефтепродукта при приеме

Уровень				
до приема нефтепродукта, мм	после приема нефтепродукта, не менее, мм			
100	1100			
300	1300			
500	1700			
700	1900			
900	2100			
1100	2300			
1300	2500			
1500	2900			
1700	3100			
1900	3300			
2100	3700			
2300	3900			
2500	4100			
2700	4500			
2900	4700			
3100	4900			
3300	5300			
3500	5500			
3700	5700			
3900	6100			
4100	6300			

	Уровень				
до приема нефтепродукта, мм	после приема нефтепродукта, не менее,				
4300	6700				
4500	6900				
4700	7100				
4900	7500				
5100	7700				
5300	8100				
5500	8300				
5700	8700				
5900	8900				
6100	9100				
6300	9500				
6500	9700				
6700	10100				
6900	10300				
7100	10700				
7300	10900				
7500	11100				
7700	11500				
7900	11700				
8100	12100				
8300	12300				

Таблица А.2

Уровень				
до отпуска	после отпуска			
нефтепродукта,	нефтепродукта,			
MM	не более,			
	MM			
1100	100			
1500	300			
1700	500			
1900	700			
2100	900			
2300	1100			
2700	1300			
2900	1500			
3100	1700			
3500	1900			
3700	2100			
3900	2300			
4300	2500			
4500	2700			
4700	2900			
5100	3100			
5300	3300			
5500	3500			
5900	3700			
6100	3900			
6500	4100			

	1 аолица А.2			
Уро	Уровень			
до отпуска	после отпуска			
нефтепродукта,	нефтепродукта,			
MM	не более,,			
	MM			
6700	4300			
6900	4500			
7300	4700			
7500	4900			
7900	5100			
8100	5300			
8500	5500			
8700	5700			
8900	5900			
9300	6100			
9500	6300			
9900	6500			
10100	6700			
10500	6900			
10700	7100			
10900	7300			
11300	7500			
11500	7700			
11900	7900			
12100	8100			
12500	8300			

Приложение Б

Расчет объема и плотности нефтепродукта с учетом поправок

Б.1 Расчет поправки на изменение объема нефтепродукта, вытесненного понтоном или плавающим покрытием, в зависимости от плотности нефтепродукта

Поправка (ΔV) определяется по формуле:

$$\Delta V = \frac{M_{nonm}}{\rho_{t_v}} - \frac{M_{nonm}}{\rho_{nos}} , \qquad (E.1)$$

где $M_{\it nonm}$ - масса понтона (плавающего покрытия) по протоколу поверки (градуировки) РВС, кг;

 $ho_{\text{гv}}$ - плотность нефтепродукта при температуре измерения объема; рассчитывается с помощью ПО по приложению Γ или определяется в лабораторных условиях в термостате при температуре измерения объема, кг/м³;

 ρ_{nos} - плотность жидкости, используемая при поверке (градуировке) РВС для расчета объема жидкости, вытесненной понтоном или плавающим покрытием, по протоколу поверки (градуировки) РВС, кг/м³.

Б.2 Расчет плотности с учётом поправки на температурное расширение стекла ареометра

При проведении измерений плотности ареометром значение плотности (ρ^*) вычисляется по формуле:

$$\rho^* = \rho \cdot K_a, \tag{5.2}$$

где ρ^* - плотность с учётом поправки на температурное расширение стекла ареометра;

 ρ - плотность нефтепродукта, измеренная ареометром, кг/м 3 ; - поправочный коэффициент на температурное расширение стекла

 К_а - поправочный коэффициент на температурное расширение стекла ареометра, определяемый по формулам Б.2 или Б.3.

Для ареометров, отградуированных при 15 °C, поправочный коэффициент вычисляют по формуле:

$$K_a = I - 0.000023 (t_0 - 15) - 0.00000002 (t_0 - 15) (t_0 - 15).$$
 (B.3)

Для ареометров, отградуированных при $20~^{\circ}$ С, поправочный коэффициент вычисляют по формуле:

$$K_a = I - 0.000025 (t_0 - 20),$$
 (B.4)

где t_0 - температура продукта в рабочих условиях, °С.

Приложение В

Примеры расчетов объёма, массы и оценки погрешностей

В примерах 1-6 приведен порядок выполнения вычислений при применении ручных расчетов. По таблице В.1 следует выбрать пример, соответствующий применяемым в ДО средствам измерений (ручным или автоматизированным). Порядок вычисления массы отпущенного/принятого нефтепродукта приведен в Примере 7.

Таблица В.1 Измерения и соответствующие им методы вычислений

Измерения в автоматизированном (A) или ручном (P) режиме			Вычисления массы			
Применение	Уровень	Температура	Плотность	Способы приведения плотности и объёма	В РВС с понтоном/пл авающей крышей	В РВС без понтона/плав ающей крыши
Ручные средства из- мерений	P	P	P	Приведение плотности и объёма к стандартным условиям	Пример 1 Возможно только при применении термостата для вычисления поправки на понтон	Пример 2
				Приведение плотности к температуре измерений объема	Пример 3 Возможно только при применении термостата	Пример 4 Возможно только при применении термостата
Автоматизированные средства измерений, не образующие измерительные системы	A	A	Р	Приведение плотности и объёма к стандартным условиям	Пример 1 Возможно только при применении термостата для вычисления	Пример 2
	A	P	P	Приведение	поправки на понтон Пример 3	Пример 4
				плотности к	Возможно	Возможно
	P	A	P	температуре измерений объема	только при применении термостата	только при применении термостата

Измерения в автоматизированном (A) или ручном (P) режиме				Вычисления массы		
Применение СИ	Уровень	Температура	Плотность	Способы приведения плотности и объёма	В РВС с понтоном/пл авающей крышей	В РВС без понтона/плав ающей крыши
	A A	A P	A A	Плотность и	Пример 5	Пример 6
	P	A	A	объём при		
	Р А А температуре измерений объема					
Измерительные системы	A	A	Р	Приведение плотности и объёма к стандартным условиям	и и Возможно _{ным} только при	Пример 2
	A	P	P			
			Приведение плотности к	Пример 3 Возможно	Пример 4 Возможно	
	P	A	P	температуре измерений объема	только при применении термостата	только при применении термостата
	A	A	A	Плотность и	Пример 5	Пример 6
	A	P	A	объём при		
	P	A	A	температуре		
	P	P	A	измерений объема		

В.1 Пример 1

Вычисление массы нефтепродукта в РВС с понтоном при измерении плотности в лаборатории с приведением к стандартным условиям.

В.1.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм
объем РВС	4745985 дм ³
масса плавающего покрытия	$M_{nohm} = 17754 \ \text{к}\Gamma$
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ kg/m}^3$
уровень нефтепродукта с подтоварной водой в РВС	$H_o = 9540 \text{ mm}$
уровень подтоварной воды в РВС	$H_{\rm e} = 0 \mathrm{MM}$
общий объем нефтепродукта и подтоварной воды в РВС,	$V_o = 3900756 \text{ дм}^3 =$
определенный по измеренному уровню и градуировочной таблице	3900,756 м ³
объем подтоварной воды	$V_e = 0 \text{ m}^3$
объем нефтепродукта	$V_{\rm H} = 3900,756 \text{ m}^3$
температурный коэффициент линейного расширения материала стенки PBC	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температурный коэффициент линейного расширения материала	$\alpha_s = 12.5 \cdot 10^{-6} \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РВС	$t_v = 25 ^{\circ}\mathrm{C}$
температура нефтепродукта при измерении плотности	$t_{\rho} = 22 ^{\circ}\text{C}$
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 709 \text{ KF/M}^3$
отградуированным при 15 °C, в термостате при температуре	
измерения объема в РВС	
коэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595	β = 0,00123 1/°C
относительная погрешность составления градуировочной таблицы PBC (геометрический метод поверки)	$\delta K = 0,1 \%;$
предел допускаемой относительной погрешности средства обработки	$\delta N = 0 \%$
результатов измерений	
абсолютная погрешность измерений уровня жидкости в РВС (уровень	$\Delta H^{H} = 2 \text{ MM}$
нефтепродукта + уровень подтоварной воды)	
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^{e} = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ KG/M}^3$
ареометром, отградуированным при 15 °C	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta tv = 0.5 ^{\circ}\text{C}$
измерении его объема	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta t \rho = 0.5 ^{\circ}\text{C}$
измерении его плотности	

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.1.2 Проведение расчета:

В.1.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

 $V = V_n \cdot \left[1 + (2\alpha_{on} + \alpha_s) \cdot (t_v - 20) \right] = 3900,756 \cdot \left[1 + (2 \cdot 12, 5 \cdot 10^{-6} + 12, 5 \cdot 10^{-6}) \cdot (25 - 20) \right] = 3901,487 \text{ m}^3.$

В.1.2.2 Поправку на изменение объема нефтепродукта (ΔV), вытесненного плавающим покрытием, в зависимости от плотности нефтепродукта вычисляют по формуле (Б.1):

$$\Delta V = \frac{M_{\text{nohm}}}{\rho_{t_{tr}}} - \frac{M_{\text{nohm}}}{\rho_{\text{noh}}} = \frac{17754}{709} - \frac{17754}{735} = 0,886 \,\text{m}^3.$$

В.1.2.3 Объем нефтепродукта при температуре его измерения с учетом поправки ΔV вычисляют по формуле (3):

$$V^* = V + \Delta V = 3901.487 + 0.886 = 3902.373 \text{ m}^3$$
.

- В.1.2.4 Плотность вычисляют по формуле (Б.2) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_{\theta} = t_{\rho}$:

$$\rho^* = \rho \cdot K_a = 709 (1 - 0,000023 (22 - 15) - 0,00000002 (22 - 15) (22 - 15)) = 708,9 \text{ kg/m}^3$$
.

- В.1.2.5 Вычисление массы при приведении плотности и объема нефтепродукта к 15 °C. Плотность и объем нефтепродукта приводят к 15 °C по таблицам 53В и 54В [7] в следующей последовательности:
- В.1.2.5.1 По таблице 53В в строке «плотность при температуре измерения» находят величину 709 и на уровне температуры 25 °C отмечают соответствующую ей плотность при 15 °C: $\rho_{15} = 715.4 \text{ кг/м}^3$.

<u>Примечание</u> – При использовании таблицы 53A допускается проводить математическую интерполяцию.

В.1.2.5.2 По таблице 54В в строке «плотность при 15 °С» находят ближайшее к полученному по таблице 53В значению плотности 715,4 кг/м³ значение 716,0 кг/м³ и на уровне температуры 25 °С находят поправочный коэффициент к объему нефтепродукта (K) — 0,9871.

<u>Примечание</u> — При использовании таблицы 54В проводить математическую интерполяцию между температурой и плотностью не допускается.

В.1.2.5.3 Объем нефтепродукта, приведенный к 15 °C, вычисляют по формуле:

$$V_{15} = V^* \cdot K = 3902,373 \cdot 0,9871 = 3852,032 \text{ m}^3.$$

В.1.2.5.4 Массу нефтепродукта вычисляют по формуле (9):

$$m = V_{15} \cdot \rho_{15} = 3852,032 \cdot 715,4 = 2755744$$
 kg.

- В.1.2.6 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В.1.2.6.1 Пределы относительной погрешности измерений массы нефтепродукта вычисляют по формуле (14):

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

где

$$K_{ab}=1$$
,

$$\begin{split} H &= H_o - H_e = 9540 - 0 = 9540 \, \mathrm{mm}, \\ \mathcal{\delta}H &= \sqrt{\left(\frac{\Delta H''}{H} \cdot 100\right)^2 + \left(\frac{\Delta H''}{H} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^2} = 0,02~\%, \\ G &= \frac{1 + 2 \cdot \beta \, t_v}{1 + 2 \cdot \beta \, t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 22} = 1,007, \\ \mathcal{\delta}\rho &= \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{706,1} \cdot 100 = 0,07~\%, \end{split}$$

$$\delta m = \pm 1.1\sqrt{0.1^2 + (1\cdot 0.02)^2 + 1.007^2 \cdot (0.07^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + (0.00123)^2 \cdot 10^4 \cdot 0.5^2 + 0.00123}$$

$$\delta m = \pm 0.18\%$$

В. 1.2.6.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (19):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} = \pm \sqrt{0.01^2 + 0.02^2} = \pm 0.10 \%.$$

В. 1.2.6.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.2 Пример 2

Вычисление массы нефтепродукта в РВС без понтона при измерении плотности в лаборатории с приведением к стандартным условиям.

В.2.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм
объем РВС	4745985 дм ³
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ K}\Gamma/\text{M}^3$
уровень нефтепродукта с подтоварной водой в РВС	Но = 9540 мм
уровень подтоварной воды в РВС	$H_{\theta} = 0$ MM
общий объем нефтепродукта и подтоварной воды в РВС,	$Vo = 3900756 \text{ дм}^3$
определенный по измеренному уровню и градуировочной таблице	$= 3900,756 \text{ m}^3$
объем подтоварной воды	$Ve = 0 \text{ M}^3$
объем нефтепродукта	$V_H = 3900,756 \text{ m}^3$
температурный коэффициент линейного расширения материала	$\alpha_{cm} = 12.5 \cdot 10^{-6} \text{ 1/°C}$
стенки РВС	
температурный коэффициент линейного расширения материала	$\alpha_s = 12.5 \cdot 10^{-6} \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РВС	$t_v = 25 ^{\circ}\mathrm{C}$
температура нефтепродукта при измерении плотности	t_{ρ} = 22 °C
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 709 \text{ kg/m}^3$
отградуированным при 15 °C, при 22 °C	

коэффициент объемного расширения нефтепродукта по таблице А.1 ГОСТ Р 8.595	β = 0,00123 1/°C
относительная погрешность составления градуировочной таблицы РВС (геометрический метод поверки)	$\delta K = 0,1 \%$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
абсолютная погрешность измерений уровня жидкости в РВС (уровень нефтепродукта + уровень подтоварной воды)	$\Delta H^{H} = 2 \text{ MM}$
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^{e} = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта ареометром, отградуированным при 15 °C	$\Delta \rho = 0.5 \text{ kg/m}^3$
абсолютная погрешность измерений температуры нефтепродукта при измерении его объема	$\Delta t_v = 0.5 ^{\circ}\text{C}$
абсолютная погрешность измерений температуры нефтепродукта при измерении его плотности	$\Delta t_{\rho} = 0.5 ^{\circ}\mathrm{C}$

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.2.2 Проведение расчета:

В.2.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_{s} \cdot \left[1 + (2\alpha_{cm} + \alpha_{s})(t_{v} - 20)\right] = 3900,756 \cdot \left[1 + (2 \cdot 12, 5 \cdot 10^{-6} + 12, 5 \cdot 10^{-6})(25 - 20)\right] = 3901,487 \text{ m}^{3},$$

$$V^{*} = V = 3901.487 \text{ m}^{3}.$$

- В.2.2.2 Плотность вычисляют по формуле (Б.2) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_0 = t_{\rho}$:

$$\rho^* = \rho \cdot K_a = 709,0 (1 - 0,000023 (22 - 15) - 0,00000002 (22 - 15) (22 - 15)) = 708,9 \text{ kg/m}^3.$$

- В.2.2.3 Вычисление массы при приведении плотности и объема нефтепродукта к 15 °C. Плотность и объем нефтепродукта приводят к 15 °C по таблицам 53В и 54В [7] в следующей последовательности:
- В.2.2.3.1 По таблице 53В в строке «плотность при температуре измерения» находят значение плотности 708,9 и на уровне температуры 22 °C отмечают соответствующую ей плотность при 15 °C: ρ_{15} = 718,1 кг/м³.

<u>Примечание</u> – При использовании таблицы 53A допускается проводить математическую интерполяцию.

В.2.2.3.2 По таблице 54В в строке «плотность при 15 °C» находят ближайшее к полученному по таблице 53В значению плотности 718,1 кг/м³ значение 719,0 кг/м³ и на уровне температуры 25 °C находят поправочный коэффициент к объему нефтепродукта (K) – 0,98712.

<u>Примечание</u> — При использовании таблицы 54В проводить математическую интерполяцию между температурой и плотностью не допускается.

В.2.2.3.3 Объем нефтепродукта, приведенный к 15 °C, вычисляют по формуле:

$$V_{15} = V^* \cdot K = 3901487 \cdot 0.98712 = 3851236 \text{ m}^3$$
.

В.2.2.3.4 Массу нефтепродукта вычисляют по формуле (9):

$$m = V_{15} \cdot \rho_{15} = 3852,236 \cdot 718,1 = 2765572$$
kg.

- В.2.2.4 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта.
- В.2.2.4.1 Пределы относительной погрешности измерений массы нефтепродукта в РВС вычисляют по формуле (14):

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

где

$$K_{\phi}=1$$
,

$$H = H_0 - H_0 = 9540 - 0 = 9540 \text{ MM}$$

$$\delta H = \sqrt{\left(\frac{\Delta H^{H}}{H} \cdot 100\right)^{2} + \left(\frac{\Delta H^{e}}{H} \cdot 100\right)^{2}} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^{2}} = 0,02 \%,$$

$$G = \frac{1 + 2 \cdot \beta t_{v}}{1 + 2 \cdot \beta t_{\rho}} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 22} = 1,007,$$

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0.5}{709} \cdot 100 = 0.07 \%$$

$$\delta m = \pm 1.1\sqrt{0.1^2 + (1 \cdot 0.02)^2 + 1.007^2(0.07^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + (0.00123)^2 \cdot 10^4 \cdot 0.5^2 + 0} = \pm 0.17\%$$

В.2.2.4.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (19):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} = \pm \sqrt{0.01^2 + 0.02^2} = \pm 0.10 \%$$
.

В.2.2.4.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.З Пример 3

Вычисление массы нефтепродукта в РВС с понтоном при измерении плотности в лаборатории с использованием термостата (для приведения результатов измерения плотности к условиям измерения объема).

В.3.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм

объем РВС	4745985 дм ³
масса плавающего покрытия	$M_{nohm} = 17754 \text{ кг}$
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ KF/M}^3$
уровень нефтепродукта с подтоварной водой в РВС	Ho = 9540 mm
уровень подтоварной воды в РВС	He = 0 MM
общий объем нефтепродукта и подтоварной воды в РВС,	$Vo = 3900756 \text{ дм}^3$
определенный по измеренному уровню и градуировочной таблице	$= 3900,756 \text{ m}^3$
объем подтоварной воды	$Ve = 0 \text{ m}^3$
объем нефтепродукта	$V_H = 3900,756 \text{ m}^3$
температурный коэффициент линейного расширения материала стенки РВС	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температурный коэффициент линейного расширения материала рулетки с лотом	$\alpha_s = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температура нефтепродукта в РВС	$t_v = 25 ^{\circ}\text{C}$
температура нефтепродукта при измерении плотности (с	$t_{\rho} = 25 ^{\circ}\text{C}$
использованием термостата)	<u> </u>
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 706,1 \text{ kg/m}^3$
отградуированным при 15 °C, в термостате при температуре измерения объема в РВС	
коэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595	β= 0,00123 1/°C
относительная погрешность составления градуировочной таблицы PBC (геометрический метод поверки)	$\delta K = 0.1 \%$
предел допускаемой относительной погрешности средства обработки	$\delta N = 0 \%$
результатов измерений	
абсолютная погрешность измерений уровня жидкости в РВС (уровень	$\Delta H^{H} = 2 \text{ MM}$
нефтепродукта + уровень подтоварной воды)	
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^e = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ Ke/m}^3$
ареометром	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta tv = 0.5 ^{\circ}\text{C}$
измерении его объема	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta t \rho = 0.5 ^{\circ}\text{C}$
измерении его плотности	

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.3.2 Проведение расчета:

В.3.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_n \cdot \left[1 + (2\alpha_{cm} + \alpha_s)(t_v - 20)\right] = 3900,756 \cdot \left[1 + (2 \cdot 12,5 \cdot 10^{-6} + 12,5 \cdot 10^{-6})(25 - 20)\right] = 3901,487 \text{ m}^3.$$

В.3.2.1.1 Поправку на изменение объема нефтепродукта (ΔV), вытесненного плавающим покрытием, в зависимости от плотности нефтепродукта вычисляют по формуле (Б.1):

$$\Delta V = \frac{M_{nonm}}{\rho_{t_v}} - \frac{M_{nonm}}{\rho_{noe}} = \frac{17754}{706,1} - \frac{17754}{735} = 0,989 \,\mathrm{m}^3.$$

В.3.2.1.2 Объем нефтепродукта при температуре его измерения с учетом поправки ΔV вычисляют по формуле (3):

$$V^* = V + \Delta V = 3901.487 + 0.989 = 3902.476 \text{ m}^3.$$

- В.3.2.2 Плотность вычисляют по формуле (Б.2) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_0 = t_{\rho}$:

$$\rho^* = \rho \cdot K_a = 706,1 (1 - 0,000023 (25 - 15) - 0,00000002 (25 - 15) (25 - 15)) = 705,9 \text{ kg/m}^3$$
.

В.3.2.3 Массу при приведении плотности к условиям измерения объема вычисляют по формуле:

$$m = V^* \cdot \rho^* = 3902,476 \cdot 705,9 = 2754758 \text{ Kg}.$$

- В.3.2.4 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В. 3.2.4.1 Пределы относительной погрешности измерений массы нефтепродукта в РВС вычисляют по формуле (14):

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

где

$$\begin{split} K_{\phi} &= 1, \\ H &= H_o - H_s = 9540 - 0 = 9540 \, \mathrm{mm}, \\ \delta H &= \sqrt{\left(\frac{\Delta H^n}{H} \cdot 100\right)^2 + \left(\frac{\Delta H^s}{H} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^2} = 0,02 \, \%, \\ G &= \frac{1 + 2 \cdot \beta t_v}{1 + 2 \cdot \beta t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 25} = 1, \\ \delta \rho &= \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{706,1} \cdot 100 = 0,07 \, \%, \end{split}$$

$$\delta m = \pm 1.1\sqrt{0.1^2 + (1\cdot 0.02)^2 + 1^2(0.07^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + (0.00123)^2 \cdot 10^4 \cdot 0.5^2 + 0} = \pm 0.17\%$$

В. 3.2.4.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (19):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^{2}} = \pm \sqrt{0.01^2 + 0.02^2} = \pm 0.10 \%.$$

В. 3.2.4.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.4 <u>Пример 4</u>

Вычисление массы нефтепродукта в РВС без понтона при измерении плотности в лаборатории с использованием термостата (для приведения результатов измерения к условиям измерения объема).

В.4.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм
объем РВС	4745985 дм ³
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ kg/m}^3$
уровень нефтепродукта с подтоварной водой в РВС	Ho = 9540 mm
уровень подтоварной воды в РВС	He = 0 MM
общий объем нефтепродукта и подтоварной воды в РВС,	Vo = 3900756 дм ³
определенный по измеренному уровню и градуировочной таблице	$= 3900,756 \text{ m}^3$
объем подтоварной воды	$Ve = 0 \text{ m}^3$
объем нефтепродукта	$V_H = 3900,756 \text{ m}^3$
температурный коэффициент линейного расширения материала стенки РВС	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температурный коэффициент линейного расширения материала	$\alpha_s = 0 \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РВС	$t_{\nu} = 25 ^{\circ}\text{C}$ $t_{\rho} = 25 ^{\circ}\text{C}$
температура нефтепродукта при измерении плотности (с	$t_{\rho} = 25 ^{\circ}\mathrm{C}$
использованием термостата)	
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 706,1 \text{ kg/m}^3$
отградуированным при 15 °C, в термостате при температуре	
измерения объема в РВС	
коэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595	
относительная погрешность составления градуировочной таблицы PBC (геометрический метод поверки)	$\delta K = 0,1 \%$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
абсолютная погрешность измерений уровня жидкости в РВС (уровень	$\Delta H^{H} = 2 \text{ MM}$
нефтепродукта + уровень подтоварной воды)	-
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^{s} = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ KG/M}^3$
ареометром	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta t_v = 0.5 ^{\circ}\text{C}$
измерении его объема	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta t_{\rho} = 0.5 ^{\circ}\text{C}$
измерении его плотности	

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.4.2 Проведение расчета:

В.4.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_{_{\rm H}} \cdot \left[1 + (2\alpha_{_{\rm OM}} + \alpha_{_{\rm S}})(t_{_{\rm V}} - 20)\right] = 3900,756 \cdot \left[1 + (2 \cdot 12,5 \cdot 10^{-6} + 12,5 \cdot 10^{-6})(25 - 20)\right] = 3901,487 \text{ m}^3,$$

$$V^* = V = 3901,487 \text{ m}^3.$$

- В.4.2.2 Вычисляют плотность по формулам (Б.2) и (Б.3) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_{\theta} = t_{\rho}$:

$$\rho^* = \rho \cdot K_a = 706,1 (1 - 0,000023 (25 - 15) - 0,00000002 (25 - 15) (25 - 15)) = 705,9 \text{ kg/m}^3$$
.

В.4.2.3 Массу при приведении плотности к условиям измерения объема вычисляют по формуле:

$$m = V^* \cdot \rho^* = 3901487 \cdot 7059 = 2754060 \text{kg}.$$

- В.4.2.4 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В.4.2.4.1 Пределы относительной погрешности измерений массы нефтепродукта в РВС вычисляют по формуле (14):

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_\phi \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_\rho^2) + \beta^2 \cdot 10^4 \cdot \Delta t_v^2 + \delta N^2} ,$$

где

$$K_{\phi}=1$$
,

$$H = H_o - H_e = 9540 - 0 = 9540 \text{ mm},$$

$$\delta H = \sqrt{\left(\frac{\Delta H^{\kappa}}{H} \cdot 100\right)^{2} + \left(\frac{\Delta H^{\epsilon}}{H} \cdot 100\right)^{2}} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^{2}} = 0,021\%,$$

$$G = \frac{1 + 2 \cdot \beta t_{\nu}}{1 + 2 \cdot \beta t_{\rho}} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 25} = 1,$$

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{7061} \cdot 100 = 0,07\%,$$

$$\delta m = \pm 1.1 \sqrt{0.1^2 + (1 \cdot 0.02)^2 + 1^2 (0.07^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + (0.00123)^2 \cdot 10^4 \cdot 0.5^2 + 0} = \pm 0.17 \%.$$

В.4.2.4.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (10):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^{2}} = \pm \sqrt{0.01^2 + 0.021^2} = \pm 0.10 \%$$
.

В.4.2.4.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta I_V^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.5 Пример 5

Вычисление массы нефтепродукта в PBC с понтоном при измерении плотности автоматизированными СИ или измерительным каналом плотности в составе ИС (при температуре измерений объёма).

В.5.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм
объем РВС	4745985 дм ³
масса плавающего покрытия	$M_{noнm} = 17754 \ кг$
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ kg/m}^3$
уровень нефтепродукта с подтоварной водой в РВС	Ho = 9540 MM
уровень подтоварной воды в РВС	$H_{\theta} = 0$ MM
общий объем нефтепродукта и подтоварной воды в РВС,	Vo = 3900756 дм ³
определенный по измеренному уровню и градуировочной таблице	$= 3900,756 \text{ m}^3$
объем подтоварной воды	$Ve = 0 \text{ m}^3$
объем нефтепродукта	$V_H = 3900,756 \text{ m}^3$
	$\alpha_{cm} = 12.5 \cdot 10^{-6} \text{ 1/°C}$
стенки РВС	
	$\alpha_s = 12.5 \cdot 10^{-6} \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РВС	$t_v = 25 ^{\circ}\text{C}$
температура нефтепродукта при измерении плотности	$t_{\rho} = 25 ^{\circ}\text{C}$
плотность нефтепродукта в РВС	$\rho_{tv} = 706,1 \text{ kg/m}^3$
коэффициент объемного расширения нефтепродукта по таблице А.1	$\beta = 0.00123 \text{ 1/°C}$
ГОСТ Р 8.595	
относительная погрешность составления градуировочной таблицы	$\delta K = 0.1 \%$
РВС (геометрический метод поверки)	
предел допускаемой относительной погрешности средства обработки	$\delta N = 0 \%$
результатов измерений	
абсолютная погрешность измерений уровня жидкости в РВС (уровень	$\Delta H^{\mu} = 2 \text{ MM}$
нефтепродукта + уровень подтоварной воды)	
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^{e} = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ kg/m}^3$
абсолютная погрешность измерений температуры нефтепродукта	$\Delta t_v = 0.5 ^{\circ}\text{C}$

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.5.2 Проведение расчета:

В.5.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_n \cdot [1 + (2\alpha_{on} + \alpha_s)(t_v - 20)] = 3900,756 \cdot [1 + (2 \cdot 12,5 \cdot 10^{-6} + 12,5 \cdot 10^{-6})(25 - 20)] = 3901,487 \text{ m}^3,$$

В.5.2.1.1 Поправку на изменение объема нефтепродукта (ΔV), вытесненного плавающим покрытием, в зависимости от плотности нефтепродукта вычисляют по формуле (Б.1):

$$\Delta V = \frac{M_{nonm}}{\rho_{tv}} - \frac{M_{nonm}}{\rho_{non}} = \frac{17754}{706,1} - \frac{17754}{735} = 0,989 \,\mathrm{m}^3.$$

В.5.2.1.2 Объем нефтепродукта при температуре его измерения с учетом поправки ΔV вычисляют по формуле (3):

$$V^* = V + \Delta V = 3901.487 + 0.989 = 3902.476 \text{ m}^3.$$

В.5.2.2 Массу при приведении плотности к условиям измерения объема вычисляют по формуле (10):

$$m = V^* \cdot \rho_{t_v} = 3902,476 \cdot 706,1 = 2754840 \text{kr}.$$

- В.5.2.3 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В. 5.2.3.1 Пределы относительной погрешности измерений массы нефтепродукта в РВС вычисляют по формуле:

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

где

$$\begin{split} K_{\phi} &= 1, \\ H &= H_o - H_e = 9540 - 0 = 9540 \,\mathrm{mm}, \\ \delta H &= \sqrt{\left(\frac{\Delta H^u}{H} \cdot 100\right)^2 + \left(\frac{\Delta H^e}{H} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^2} = 0,02 \,\%, \\ G &= \frac{1 + 2 \cdot \beta t_v}{1 + 2 \cdot \beta t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 25} = 1, \\ \delta \rho &= \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{706,1} \cdot 100 = 0,07 \,\%, \end{split}$$

$$\delta m = \pm 1.1\sqrt{0.1^2 + (1\cdot 0.02)^2 + (0.07^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + (0.00123)^2 \cdot 10^4 \cdot 0.5^2 + 0} = \pm 0.17\%$$

В. 5.2.3.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (19):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^{2}} = \pm \sqrt{0.01^2 + 0.021^2} = \pm 0.10 \%.$$

В.5.2.3.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cv} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_v^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.6 Пример 6

Вычисление массы нефтепродукта в РВС без понтона при измерении плотности автоматизированными СИ или измерительным каналом плотности в составе ИС (при температуре измерений объёма).

В.6.1 Исходные данные:

PBC-5000	
базовая высота РВС	12500 мм
объем РВС	4745985 дм ³
плотность нефтепродукта при поверке РВС	$\rho_{noe} = 735 \text{ KF/M}^3$
уровень нефтепродукта с подтоварной водой в РВС	Ho = 9540 MM
уровень подтоварной воды в РВС	$H_{\theta} = 0$ MM
общий объем нефтепродукта и подтоварной воды в РВС,	$Vo = 3900756 \text{ дм}^3$
определенный по измеренному уровню и градуировочной таблице	$= 3900,756 \text{ m}^3$
объем подтоварной воды	$Ve = 0 \text{ m}^3$
объем нефтепродукта	$V_H = 3900,756 \text{ m}^3$
температурный коэффициент линейного расширения материала стенки PBC	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температурный коэффициент линейного расширения материала	$\alpha_s = 0 \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РВС	$t_v = 25$ °C
температура нефтепродукта при измерении плотности	$t_{\rho} = 25 ^{\circ}\text{C}$
плотность нефтепродукта в РВС	$\rho_{tv} = 706,1 \text{ kg/m}^3$
коэффициент объемного расширения нефтепродукта по таблице А.1 ГОСТ Р 8.595	$\beta = 0.00123 \text{ 1/°C}$
относительная погрешность составления градуировочной таблицы PBC (геометрический метод поверки)	$\delta K = 0,1 \%;$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
абсолютная погрешность измерений уровня жидкости в РВС (уровень нефтепродукта $+$ уровень подтоварной воды)	$\Delta H^{\mu} = 2 \text{ MM}$
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^e = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta_{\rho} = 0.5 \text{ kg/m}^3$
ареометром	
абсолютная погрешность измерений температуры нефтепродукта при измерении его объема	$\Delta_{tv} = 0.5 ^{\circ}\mathrm{C}$
абсолютная погрешность измерений температуры нефтепродукта при измерении его плотности	$\Delta_{t ho}=0.5$ °

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

В.6.2 Проведение расчета:

В.6.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_{n} \cdot \left[1 + (2\alpha_{cm} + \alpha_{s})(t_{v} - 20)\right] = 3900,756 \cdot \left[1 + (2 \cdot 12,5 \cdot 10^{-6} + 12,5 \cdot 10^{-6})(25 - 20)\right] = 3901,487 \text{ m}^{3},$$

$$V^{*} = V = 3901487 \text{ m}^{3}.$$

В.6.2.2 Массу при приведении плотности к условиям измерения объема вычисляют по формуле (10):

$$m = V * \cdot \rho_{tv} = 3901,487 \cdot 706,1 = 2754840$$
kg.

- В.6.2.3 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В.6.2.3.1 Пределы относительной погрешности измерений массы нефтепродукта в РВС вычисляют по формуле:

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

где

$$K_{\phi}=1,$$

$$H=H_{o}-H_{e}=9540\cdot0=9540\,\mathrm{mm},$$

$$\delta H=\sqrt{\left(\frac{\Delta H^{u}}{H}\cdot100\right)^{2}+\left(\frac{\Delta H^{e}}{H}\cdot100\right)^{2}}=\sqrt{\left(\frac{2}{9540}\cdot100\right)^{2}}=0,021\,\%,$$

$$G=\frac{1+2\cdot\beta t_{v}}{1+2\cdot\beta t_{\rho}}=\frac{1+2\cdot0,00123\cdot25}{1+2\cdot0,00123\cdot25}=1,$$

$$\delta\rho=\frac{\Delta\rho}{\rho}\cdot100=\frac{0,5}{706,1}\cdot100=0,07\,\%,$$

$$\delta\,m=\pm\,1.1\sqrt{0.1^{2}+(1\cdot0.02)^{2}+(0.07^{2}+0.00123^{2}\cdot10^{4}\cdot0.5^{2})+(0.00123)^{2}\cdot10^{4}\cdot0.5^{2}+0}=\pm\,0.17\,\%$$

В.6.2.3.2 Пределы относительной погрешности измерений объема нефтепродукта в РВС при условиях его измерений вычисляют по формуле (19):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^{2}} = \pm \sqrt{0.01^2 + 0.021^2} = \pm 0.10 \%.$$

В.6.2.3.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (20):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.10^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.13\%$$

В.7 Пример 7

Вычисление массы отпущенного нефтепродукта и погрешности ее определения при учетной операции.

Примечание – Для настоящего примера приняты допущения:

- температура и плотность нефтепродукта до и после отпуска не изменились,
- подтоварная вода отсутствует.

В.7.1. Исходные данные:

масса нефтепродукта в РВС до отпуска	$m_1 = 2755817$ кг
масса нефтепродукта в РВС после отпуска	$m_2 = 819005 \text{ кг}$
температура нефтепродукта в РВС (до отпуска и после отпуска)	$t_v = 25 ^{\circ}\mathrm{C}$
температура нефтепродукта при измерении плотности	$t_{\rho} = 22 ^{\circ}\text{C}$
плотность нефтепродукта (до отпуска и после отпуска), измеренная	ρ = 709 κΓ/ M ³
ареометром при 22 °C	

коэффициент объемного расширения нефтепродукта по таблице А.1 ГОСТ Р 8.595	β = 0,00123 1/°C
коэффициенты, учитывающие геометрическую форму РВС при измеряемых уровнях наполнения резервуара H_1 и H_2	<i>Кф₁, Кф₂,</i> принимаются равными 1
относительная погрешность составления градуировочной таблицы PBC	$\delta K = 0,1 \%$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
уровень нефтепродукта в РВС при измерении (уровень наполнения) — H , объем нефтепродукта в РВС — V и объем нефтепродукта, приходящийся на 1 мм высоты наполнения РВС на измеряемом уровне — ΔV :	
до отпуска	$H_I = 9540 \text{ mm},$ $V_{0I} = 3900,756 \text{ m}^3,$ $\Delta V_I = 0,4067 \text{ m}^3$
после отпуска	$H_2 = 2800 \text{ mm},$ $V_{02} = 1158,576 \text{ m}^3,$ $\Delta V_2 = 0,4071 \text{ m}^3$
абсолютная погрешность измерений уровня нефтепродукта	$\Delta H = 2 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта ареометром	$\Delta \rho = 0.5 \text{ kg/m}^3$
абсолютная погрешность измерений температуры нефтепродукта при измерении его объема	$\Delta t v = 0.5 ^{\circ}\text{C}$
абсолютная погрешность измерений температуры нефтепродукта при измерении его плотности	$\Delta t \rho = 0.5 ^{\circ}\text{C}$

В.7.2 Проведение расчета:

В.7.2.1 Вычисляют массу отпущенного нефтепродукта по формуле (13):

$$M=m_I-m_2,$$
 $M=2755817-819005=1936812$ кг.

В.7.2.2 Вычисляют пределы допускаемой относительной погрешности измерений массы отпущенного нефтепродукта по формуле (21):

$$\delta M = \pm 1, 1 \sqrt{\frac{m_1^2}{M^2}} \cdot (A_1^2 + B_1^2) + \frac{m_2^2}{M^2} \cdot (A_2^2 + B_2^2) + (\delta N)^2 \ ,$$
 где
$$\delta H_1 = \sqrt{\left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2 + \left(\frac{\Delta H^e}{H_1^n} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{9540} \cdot 100\right)^2} = 0,02 \,\% \,,$$

$$\delta H_2 = \sqrt{\left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2 + \left(\frac{\Delta H^e}{H_2^n} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{2800} \cdot 100\right)^2} = 0,07 \,\% \,,$$

$$G_1 = G_2 = \frac{1 + 2\beta \cdot t_V}{1 + 2\beta \cdot t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 22} = 1,007 \,,$$

$$\delta \rho_1 = \delta \rho_2 = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{709} \cdot 100 = 0,07\% \,,$$

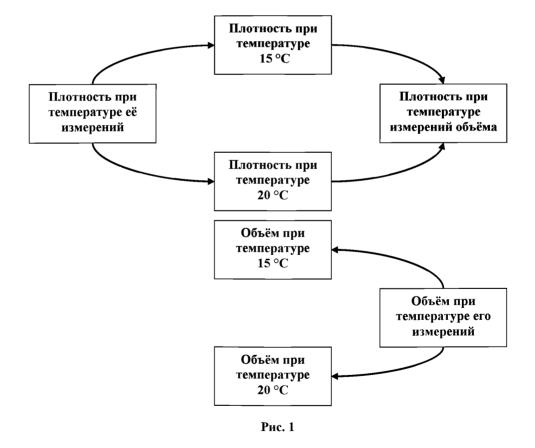
$$A_{1} = \sqrt{(\delta K)^{2} + (K_{\phi 1}\delta H_{1})^{2} + (G_{1} \cdot \delta \rho_{1})^{2}} = \sqrt{0,1^{2} + (1 \cdot 0,02)^{2} + (1,007 \cdot 0,07)^{2}} = 0,124 ,$$

$$B_{1} = \sqrt{(G_{1} \cdot \beta \cdot 10^{2} \cdot \Delta t_{\rho_{1}})^{2} + (\beta \cdot 10^{2} \cdot \Delta t_{\rho_{1}})^{2}} = \sqrt{(1,007 \cdot 0,00123 \cdot 10^{2} \cdot 0,5)^{2} + (0,00123 \cdot 10^{2} \cdot 0,5)^{2}} = 0,087 ,$$

$$A_{2} = \sqrt{(\delta K)^{2} + (K_{\phi 2}\delta H_{2})^{2} + (G_{2} \cdot \delta \rho_{2})^{2}} = \sqrt{0,1^{2} + (1 \cdot 0,07)^{2} + (1,007 \cdot 0,07)^{2}} = 0,141 ,$$

$$B_{2} = B_{1} = 0,087 ,$$

$$\delta M = \pm 1,1\sqrt{\frac{2755817^{2}}{1936812^{2}} \cdot (0,124^{2} + 0,087^{2}) + \frac{819005^{2}}{1936812^{2}} \cdot (0,141^{2} + 0,087^{2}) + 0} = \pm 0,25 \% .$$


Приложение Г (справочное)

Алгоритмы приведения объема и плотности к стандартным и рабочим условиям

Настоящее приложение содержит алгоритмы, реализованные в ΠO^3 :

- приведение плотности продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па);
- приведение объема продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па);
- приведение плотности продукта от стандартных условий (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па) к рабочим условиям;
- приведение плотности продукта от рабочих условий к условиям измерений объёма.

Схема приведения объёма и плотности к стандартным и рабочим условиям представлена на рис. 1:

³ Алгоритмы не предназначены для расчётов вручную.

41

Г.1 Приведение плотности продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па).

Для выполнения вычислений используются значения следующих величин:

 t_0 - температура продукта в рабочих условиях, °С;

 P_{θ} - избыточное давление продукта в рабочих условиях, кПа;

 ρ_0 - плотность продукта в рабочих условиях, кг/м³;

T - стандартная температура (15 °C или 20 °C), °C;

P - стандартное избыточное давление (0 Па), кПа.

<u>Примечание</u> – В случае, если плотность продукта измеряется ареометром, в результат измерения плотности вносится поправка на температурное расширение стекла для ареометров, рассчитываемая по формуле:

— для ареометров, отградуированных при 15 °C, поправочный коэффициент вычисляют по формуле:

$$K_a=1-0.000023 (t_0-15)-0.00000002 (t_0-15) (t_0-15),$$
 (\Gamma.1)

 для ареометров, отградуированных при 20 °C, поправочный коэффициент вычисляют по формуле:

$$K_a = I - 0.000025 (t_0 - 20).$$
 (Γ.2)

В результате расчёта получают значения следующих величин:

 ρ_T - плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;

 C_{TL} - корректирующий фактор на температуру продукта;

 C_{PL} - корректирующий фактор на давление продукта;

 F_P - фактор сжимаемости продукта, кПа⁻¹;

 C_{TPL} - корректирующий фактор на температуру и давление продукта.

Ниже приведён алгоритм вычислений.

Γ .1.1 Температура продукта приводится к °F:

$$t_{0F} = 1.8t_0 + 32$$
 (Γ .3)

Проверяют выполнение условий по температуре:

$$-58 \le t_{OE} \le 302. \tag{\Gamma.4}$$

Если условия не выполняются, то расчет завершается.

Г.1.2 Рассчитывается избыточное давление продукта в psig:

$$P_{PSI} = \frac{P_{O}}{6,894757}. ag{(\Gamma.5)}$$

Проверяют выполнение условий по давлению:

$$0 \le P_{PSI} \le 1500. \tag{\Gamma.6}$$

Если условия не выполняются, то расчет завершается.

Г.1.3 Проверяют выполнение условий по плотности:

$$\rho_{\min} \le \rho_O \le \rho_{\max} \,, \tag{\Gamma.7}$$

где значения максимального и минимального значения плотности:

ρ_{\min} , $\kappa_{\Gamma/M}$	$ ho_{ m max}$, $_{ m K\Gamma/M}$ 3
470,4	1209,5

Если условия не выполняются, то расчет завершается.

 Γ .1.4 Определяют максимальное и минимальное значение плотности при стандартных условиях (60 $^{\circ}$ F):

$\rho_{60\mathrm{min}}$, $_{\mathrm{K\Gamma/M}}{}^{3}$	$\rho_{60\mathrm{max}}$, $\mathrm{K\Gamma/M}^3$
610,6	1163,5

Г.1.5 Определяют первое приближение плотности при стандартных условиях (60 °F):

$$\rho_{60}^{(m)} = \rho_{O}, \tag{\Gamma.8}$$

$$\rho_{60,\min} \quad if \quad \rho_{O} < \rho_{60,\min} \tag{\Gamma.9}$$

$$ho_{60}^{(0)} = egin{cases}
ho_{60, ext{min}} & \emph{if} &
ho_O <
ho_{60, ext{min}} \
ho_{60, ext{max}} & \emph{if} &
ho_O >
ho_{60, ext{max}} \end{cases}$$

 Γ .1.6 Пересчитывают температуру продукта из температурной шкалы ITS-90 в температурную шкалу ITS-68:

$$t = t_0 - \Delta t. \tag{\Gamma.10}$$

Значение Δ_t рассчитывают по формуле:

$$\Delta_{t} = (a_{1} + (a_{2} + (a_{3} + (a_{4} + (a_{5} + (a_{6} + (a_{7} + a_{8}\tau)\tau)\tau)\tau)\tau)\tau)\tau), \qquad (\Gamma.11)$$

где

$$\tau = \frac{t_O}{630} \,. \tag{\Gamma.12}$$

Значения коэффициентов a_i :

i	a_i
1	- 0,148759
2	- 0,267408
3	1,080760
4	1,269056
5	- 4,089591
6	- 1,871251
7	7,438081
8	- 3,536296

 Γ .1.7 Рассчитывают плотность продукта при стандартных условиях (60°F) соответствующую температурной шкале ITS-68:

$$\rho^{*(m)} = \rho_{60}^{(m)} \left\{ 1 + \frac{exp[A(1+0.8A)-1]}{1 + A(1+1.6A)B} \right\}, \tag{\Gamma.13}$$

где

$$A = \frac{\delta_{60}}{2} \left[\left(\frac{K_0}{\rho_{60}^{(m)}} + K_1 \right) \frac{1}{\rho_{60}^{(m)}} + K_2 \right], \tag{\Gamma.14}$$

$$B = \frac{2K_0 + K_1 \cdot \rho_{60}^{(m)}}{K_0 + \left(K_1 + K_2 \cdot \rho_{60}^{(m)}\right) \rho_{60}^{(m)}}.$$
 (Γ.15)

Значение $\delta_{60} = 0.0134979547$.

Значения K_0 , K_1 , K_2 определяют по таблице Γ .1.

Таблица Г.1

Продукт	Плотность	K_{θ}	K_I	K_2
Дизельное топливо	$838,3127 \le \rho_{60} \le 1163,5$	103,8720	0,2701	0,0
Авиационное топливо	$787,5195 \le \rho_{60} < 838,3127$	330,3010	0,0	0,0
Переходная зона	$770,3520 \le \rho_{60} < 787,5195$	1489,0670	0,0	-0,00186840
Бензины	$610,6 \le \rho_{60} < 770,3520$	192,4571	0,2438	0,0

Г.1.8 Рассчитывают коэффициент объемного расширения продукта при 60 °F:

$$\alpha_{60}^{(m)} = \left(\frac{K_0}{\rho^{*(m)}} + K_1\right) \frac{1}{\rho^{*(m)}} + K_2.$$
 (Γ.16)

Г.1.9 Рассчитывают корректирующий фактор на температуру продукта:

$$C_{TL}^{(m)} = exp\left\{-\alpha_{60}^{(m)} \cdot \Delta t \left[1 + 0.8\alpha_{60}^{(m)} \cdot (\Delta t + \delta_{60})\right]\right\},\tag{\Gamma.17}$$

где

$$\Delta t = t - 60,0068749. \tag{\Gamma.18}$$

Значение $\,\delta_{\scriptscriptstyle 60}\,$ берут по $\Gamma.1.7.$

Г.1.10 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P,PSI}^{(m)} = exp\left(-1,9947 + 0,00013427t + \frac{793920 + 2326,0t}{\left(\rho^{*(m)}\right)^2}\right). \tag{\Gamma.19}$$

Г.1.11 Рассчитывают корректирующий фактор на избыточное давление продукта:

$$C_{PL}^{(m)} = \frac{1}{1 - 10^{-5} F_{P,PSI}^{(m)} \cdot P_{PSI}}.$$
 (Γ.20)

Г.1.12 Рассчитывают корректирующий фактор на температуру и избыточное давление продукта:

$$C_{TPL}^{(m)} = C_{TL}^{(m)} \cdot C_{PL}^{(m)}$$
 (Γ.21)

 Γ .1.13 Рассчитывают $\delta \rho_{O}^{(m)}$:

$$\delta \rho_O^{(m)} = \rho_O - \rho_{60}^{(m)} \cdot C_{TPL}^{(m)}$$
 (Γ.22)

Проверяют выполнение условия:

$$\left|\delta\rho_O^{(m)}\right| < 0,000001. \tag{\Gamma.23}$$

Если условие выполняется, то переходят к Г.1.17.

Г.1.14 Рассчитывают поправку к плотности при стандартных условиях:

$$\Delta \rho_{60}^{(m)} = \frac{E^{(m)}}{1 + D_T^{(m)} + D_P^{(m)}},\tag{\Gamma.24}$$

где

$$E^{(m)} = \frac{\rho_O}{C_{TI}^{(m)} \cdot C_{PI}^{(m)}} - \rho_{60}^{(m)}, \tag{\Gamma.}$$

$$D_P^{(m)} = \frac{2C_{PL}^{(m)} \cdot P_O \cdot F_P^{(m)} (7,93920 + 0,02326_O)}{(\rho_{60}^{(m)})^2},$$
 (Γ. 26)

$$D_T^{(m)} = D_a^{(m)} \cdot \alpha_{60}^{(m)} \cdot \Delta t \Big(1 + 1.6 \alpha_{60}^{(m)} \cdot \Delta t \Big), \tag{\Gamma.}$$

где

$$\Delta t = t_O - 60. \tag{\Gamma.}$$

28)

Значения D_a приведены в таблице $\Gamma.2$.

Таблица Г.2

Продукт	Плотность	D_a
Дизельное топливо	$838,3127 \le \rho_{60} \le 1163,5$	1,3
Авиационное топливо	$787,5195 \le \rho_{60} < 838,3127$	2,0
Переходная зона	$770,3520 \le \rho_{60} < 787,5195$	8,5
Бензины	$610,6 \le \rho_{60} \le 770,3520$	1,5

Γ .1.15 Рассчитывают значение $ho_{_{60}}^{_{(m+1)}}$:

$$\rho_{60}^{(m+1)} = \rho_{60}^{(m)} + \Delta \rho_{60}^{(m)}, \tag{\Gamma.}$$

Если
$$\rho_{60}^{(m)} + \Delta \rho_{60}^{(m)} < \rho_{60min}$$
, тогда $\Delta \rho_{60}^{(m)} = \rho_{60min} - \rho_{60}^{(m)}$. (Г.30)

Если
$$\rho_{60}^{(m)} + \Delta \rho_{60}^{(m)} > \rho_{60_{max}}$$
, тогда $\Delta \rho_{60}^{(m)} = \rho_{60_{max}} - \rho_{60}^{(m)}$. (Г.31)

Г.1.16 Рассчитывают номер итерации:

$$m = m + 1. (\Gamma.$$

32)

Проверяют выполнение условия:

$$m \le 15$$
. (Γ . 33)

Если условие выполняется, то переходят к 1.7.

Если условие не выполняется, то расчет завершается.

Г.1.17 Проверяют выполнение условия:

$$\rho_{60\,\text{min}} \le \rho_{60} \le \rho_{60\,\text{max}} \,.$$
(Γ .

Если условие не выполняется, то расчет завершается.

Значения максимальной плотности $\rho_{60\,\mathrm{max}}$ и минимальной плотности $\rho_{60\,\mathrm{min}}$ приведены в $\Gamma.1.4.$

 Γ .1.18 Рассчитывают корректирующий фактор по температуре при приведении плотности продукта от ho_{60} к ho_{T} .

Корректирующий фактор по температуре $C_{TL,60}$ при приведении плотности продукта от ρ_{60} к ρ_T рассчитывают по $\Gamma.1.6$ - $\Gamma.1.9$ при $t_0=T$ и $P_0=P$.

Г.1.19 Рассчитывают плотность при стандартных условиях:

$$\rho_T = \rho_{60} \cdot C_{TPL,60}. \tag{\Gamma.}$$

35)

Г.1.20 Рассчитывают корректирующий фактор по температуре:

$$C_{TL} = \frac{C_{TL}^{(m)}}{C_{TL \neq 0}}.$$
 (C. 36)

Г.1.21 Рассчитывают корректирующий фактор избыточному давлению:

$$C_{PL} = \frac{C_{PL}^{(m)}}{C_{PL,60}} = C_{PL}^{(m)}$$
 (Γ .

Г.1.22 Рассчитывают корректирующий фактор по температуре и избыточному давлению:

$$C_{TPL} = \frac{C_{TL}^{(m)} \cdot C_{PL}^{(m)}}{C_{TL \neq 0}}.$$
 (Γ. 38)

- Г.1.23 Округляют корректирующий фактор по температуре до 0,00001.
- Г.1.24 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P} = \frac{F_{P,PSI}}{6\,894757}.\tag{\Gamma.}$$

Г.2 Приведение объема продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па).

Для выполнения вычислений необходимы значения следующих величин:

 ρ_T - плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;

T - стандартная температура (15 °C или 20 °C), °C;

P - стандартное избыточное давление (0 Па), кПа;

V - объем продукта, м³;

 t_V - температура продукта в рабочих условиях при измерении объема, °С;

 P_{V} - избыточное давление продукта в рабочих условиях при измерении объема, кПа.

В результате расчёта получают значения следующих величин:

 C_{TL} - корректирующий фактор на температуру продукта при приведении объема продукта к стандартной температуре;

 C_{PL} - корректирующий фактор на давление продукта при приведении объема продукта к стандартной температуре;

 C_{TPL} - корректирующий фактор на температуру и давление продукта при приведении объема продукта к стандартной температуре;

V - объем продукта при стандартных условиях, м 3 .

Ниже приведён алгоритм вычислений.

Г.2.1 Рассчитывают плотность продукта при стандартных условиях (60 °F) и корректирующий фактор на температуру продукта при приведении плотности при стандартных условиях (60 °F) к плотности при стандартных условиях (15 °C или 20 °C) $C_{77.60}$.

Расчет проводится по Γ .1.1 - Γ .1.17.

При этом за значения плотности, температуры и избыточного давления принимают:

$$\rho_O = \rho_T,$$

$$t_O = T,$$

$$P_O = 0.$$

 Γ .2.2 Рассчитывают температуру продукта в °F:

$$t_{V,F} = 1.8 t_V + 32$$
. (Γ .

40)

Проверяют выполнение условий:

$$-58 \le t_{V,F} \le 302. \tag{\Gamma}.$$

41)

Если условия не выполняются, то расчет завершается.

Г.2.3 Рассчитывают избыточное давление продукта в psig:

$$P_{PSI} = \frac{P_{V}}{6.894757}.$$
 (Γ . 42)

Проверяют выполнение условий:

$$0 \le P_{PSI} \le 1500. \tag{\Gamma.}$$

43)

Если условия не выполняются, то расчет завершается.

 Γ .2.4 Пересчитывают температуру продукта из температурной шкалы ITS-90 в температурную шкалу ITS-68:

$$t = t_{\nu} - \Delta . \tag{\Gamma.44}$$

Значение Д рассчитывают по формуле:

$$\Delta_{t} = (a_{1} + (a_{2} + (a_{3} + (a_{4} + (a_{5} + (a_{6} + (a_{7} + a_{8}\tau)\tau)\tau)\tau)\tau)\tau)\tau)\tau,$$
 (\Gamma.

где

$$\tau = \frac{t_o}{630}. (\Gamma.$$

Значения коэффициентов (a_i) приведены в Γ .1.6.

 Γ .2.5 Рассчитывают плотность продукта при стандартных условиях (60 °F) соответствующую температурной шкале ITS-68:

$$\rho^* = \rho_{60} \left\{ 1 + \frac{exp[A(1+0.8A)-1]}{1+A(1+1.6A)B} \right\}, \tag{\Gamma.}$$

где

$$A = \frac{\delta_{60}}{2} \left[\left(\frac{K_0}{\rho_{60}} + K_1 \right) \frac{1}{\rho_{60}} + K_2 \right], \tag{\Gamma.48}$$

$$B = \frac{2K_0 + K_1 \cdot \rho_{60}}{K_0 + (K_1 + K_2 \cdot \rho_{60})\rho_{60}}.$$
 (Γ.49)

Значения $\delta_{60} = 0.01374979547$.

Значения K_0 , K_1 , K_2 определяют по таблице Γ .1.

Г.2.6 Рассчитывают коэффициент объемного расширения продукта при 60 °F:

$$\alpha_{60} = \left(\frac{K_0}{\rho^*} + K_1\right) \frac{1}{\rho^*} + K_2.$$
 (Γ. 50)

 Γ .2.7 Рассчитывают корректирующий фактор на температуру продукта при приведении плотности от стандартной плотности (60 °F) к рабочей температуре:

$$C_{TL}^* = exp\{-\alpha_{60} \cdot \Delta t \left[1 + 0.8\alpha_{60} \left(\Delta t + \delta_{60}\right)\right]\},$$
 (Γ. 51)

где

$$\Delta t = t - 60,0068749.$$
 (Γ .

52)

Значение δ_{60} берут по $\Gamma.1.7$.

 Γ .2.8 Рассчитывают корректирующий фактор на температуру продукта при приведении плотности от стандартной плотности (15 °C или 20 °C) к рабочей температуре:

$$C_{TL} = \frac{C_{TL}^*}{C_{TL,60}}$$
 (Γ. 53)

Г.2.9 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P,PSI} = exp\left(-1,9947 + 0,00013427t + \frac{793920 + 2326t}{(\rho^*)^2}\right). \tag{\Gamma.54}$$

Г.2.10 Рассчитывают корректирующий фактор на избыточное давление продукта:

$$C_{PL} = \frac{1}{1 - 10^{-5} F_{P, PN} \cdot P_{PN}}. (\Gamma.$$

Г.2.11 Рассчитывают коэффициент сжимаемости продукта:

$$F_P = \frac{F_{P,PSI}}{6.894757}$$
 (Γ . 56)

Г.2.12 Рассчитывают корректирующий фактор на температуру и избыточное давление продукта:

$$C_{TPL} = C_{TL} \cdot C_{PL} . \tag{\Gamma.}$$
57)

- Г.2.13 Округляют корректирующий фактор по температуре до 0,00001.
- Г.2.14 Рассчитывают объем при стандартных условиях:

$$V_T = C_{TPL} \cdot V . (\Gamma. (58)$$

Г.3 Приведение плотности продукта от стандартных условий (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па) к рабочим условиям.

Для выполнения вычислений необходимы значения следующих величин:

- ρ_T плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;
- T стандартная температура (15 °C или 20 °C), °C;
- P стандартное избыточное давление (0 Па), кПа;
- t_V температура продукта в рабочих условиях, °С;
- P_{V} избыточное давление продукта в рабочих условиях, кПа.

В результате расчёта получают значения следующих величин:

- C_{TL} корректирующий фактор на температуру продукта при приведении плотности продукта к рабочей температуре;
- C_{PL} корректирующий фактор на давление продукта при приведении плотности продукта к рабочей температуре;
- С_{ТР} корректирующий фактор на температуру и давление продукта при приведении плотности продукта к рабочей температуре;
- ρ плотность продукта при рабочих условиях, кг/м³.

Ниже приведён алгоритм вычислений.

 Γ .3.1 Рассчитывают значения корректирующих коэффициентов по температуре и давлению $C_{\mathit{TL}},~C_{\mathit{PL}},~C_{\mathit{TPL}}$.

Значения корректирующих коэффициентов по температуре и давлению C_{TL} , C_{PL} , C_{TPL} рассчитывают по $\Gamma.2.1$ - $\Gamma.2.13$.

Г.3.2 Рассчитывают значения плотности при рабочих условиях:

$$\rho = C_{TPL} \cdot \rho_T. \tag{\Gamma.}$$
59)

Г.4 Приведение плотности продукта от рабочих условий к условиям измерений объёма

Приведение плотности продукта от рабочих условий к условиям измерений объёма выполняется в два этапа:

- решается задача приведения плотности от рабочих к стандартным условиям согласно
 Г.1 настоящего приложения;
- решается задача приведения плотности от стандартных условий к условиям измерений объёма согласно Г.З настоящего приложения.