МИНИСТЕРСТВО НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ СССР ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОРГАНИЗАЦИИ, УПРАВЛЕНИЯ И ЭКОНОМИКИ НЕФТЕГАЗОВОЙ ПРОМЫШЛЕННОСТИ

НОРМАТИВЫ ЧИСЛЕННОСТИ РАБОЧИХ ГАЗОПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

МИНИСТЕРСТВО НЕФТЯНОЙ ПРОМЫШЕННОСТИ СССР ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОРГАНИЗАЦИИ, УПРАВЛЕНИЯ И ЭКОНОМИКИ НЕФТЕТАЗОВОЙ ПРОМЫШЕННОСТИ

УТВЕРЖЛАЮ:

заместитель министра

нефтяной промышленности СССР

НОРМАТИВЫ ЧИСЛЕННОСТИ
РАБОЧИХ ГАЗОПЕРЕРАБАТЫВАКЦИХ ЗАВОДОВ
НЕФТЯНОЙ ПРОМЫШЕННОСТИ

Настоящие нормативы численности рабочих разработаны лабораторией научных основ нормирования труда ВНИИОЭНГ и нормативно-исследовательской станцией Миннибаевского газоперерабатывающего завода по материалам предприятий Министерства нефтяной промышленности СССР.

Нормативи численности рекомендуются для определения численности рабочих, необходимой газоперерабатывающим заводам Министерства нефтяной промышленности СССР для выполнения заданных объемов работ и расстановки исполнителей по рабочим местам.

OFFIAR PACTS

Нормативы численности рабочих газоперерабатывающих заводов нефтяной промышленности разработаны по видам выполинемых работ независимо от организационных структур газоперерабатывающих заводов и охватывают:

- обслуживание технологического оборудования и объектов, технологических установок, товарных парков и магистральных трубопроводов, сливно-наливных эстакад, компрессорных, массеных станций, парокотельных, очистных сооружений, теплопроводных и канализационных сетей, электроустановок, трансформаторных подстанций;
- производство дабораторных аналезов:
- ремонт технологического оборудования (технологических установок, компрессоров, насосов, емкостей, паровых котлов, венталяторов) и грузоподъемного оборудования;
- ремонт электрооборудования:
- обслуживание и ремонт средств контроля и автоматики;
- прочие работы.
- В основу разработки нормативов численности положени:
- фотохромометражине наблюдения, проведениие за рабочным по обслуживанию технологического оборудования на газоперерабатывающих заводях;
- материали, получению в результате изучения организации труда и производства и аттестации рабочих мест на газоперерабативающих заводах;
- типовне норми времени на дабораторине работи в нефтегазпереработке.-М.: ЦНИСнефть, 1982-и результати их корректировки;
- типовне корми времени на лабораторные работи в нефтедобиче.-М.: ПНИСмефтъ, 1987;
- положения НИШигавнереработки о планово-предупредительном ремонте технологического, энергетического оборудования и эмектрических сетей, контрольно-измерительных приборов и средств автоматизации, применяемых на газоперерабативающих заводах;
- типовне корми времени на ремонт КИП в нефтяной промишленмости.-М.: ЦНИСпефть, 1982-и результати их корректировки и другие нормативане материали.

-3 -

Нормативи численности рабочих на обслуживание технологического и вспомогательного оборудования предусматривают обслуживание установки или другого объекта в смену и определени по среднегодовым затратам труда.

Нормативы численности рабочих на ремонт технологического оборудования, электрооборудования, средств контроля и автоматики разработани по видам ремонта (текущий, средний, капитальный, техническое обслуживание) на принятый измеритель при круглосуточной работе оборудования и приборов в расчете на год.

Нормативи численности рабочих (Нч) на ремонт технологического оборудования, электрооборудования и средств контроля и автоматики рассчитани по формуле

$$H\Psi = \frac{\Pi \cdot T}{T_{\bullet} \cdot K_{\mathbf{H}}} ,$$

- где п число ремонтов, приходящихся на год. Определяется делением календарного годового фонда работи оборудования на продолжительность межремонтного цикла;
 - Т трудоемкость одного ремонта (одной условной единици), чел.-ч;
 - $\mathbf{T}_{\hat{\Psi}^-}$ календарный фонд рабочего времени одного рабочего в год, равный 2083 ч:
- ${\rm K_{H^-}}$ коэффициент выполнения норм выработки (принят равным I). При перевыполнении норм выработки нормативная численность корректируется в сторону уменьшения на величину процента перевыполнения норм.

Нормативами предусматривается явочная численность расочих. Для определения списочной численности применяется коэффициент перехода от явочной численности к списочной, учитивающий численность расочих для расоти в выходные и праздничные дни, дни отпуска, болезни, выполнения гособязанностей и другие невыходы на расоту.

Примеры расчета коэффициентов перехода от явочной численности к списочной приводятся в Приложении к сборнику.

Нормативная численность рабочих, занятих ремонтом оборудования, рассчитывается только на ремонти, выполняемые заводом, и предусматривает полную загруженность оборудования. При работе технологического оборудования и электрооборудования не на полную проектную мощность к нормативам численности применяется коэффициент использования оборудования.

Согласно Положению о плановом ремонте энергооборудования и электрических сетей заводов, перерабатывающих нефтяной газ, техническое обслуживание электрооборудования производится дежурным персоналом.

Нормативная численность рабочих на ремонт технологических трубопроводов завода предусматривается в размере 17%, арматури технологических трубопроводов — в размере 15% от нормативной численности рабочих на ремонт аппаратов, печей, машинного оборудования и емисстей.

При наличии на заводе специализирыванной служби по ремонту межцековых трубопроводов, коллекторов и предохранительно-запорной арматтры нормативная численность рабочих определяется в размере 10 % от общей нормативной численности рабочих, завятых ремонтом оборудования технологических установок, насосов, вентилиторов, эмкостей и резервуаров в пределах численности, рассчитанной по пормативам.

Затраты труда по видам ремонтов на ремонт градирен и сливноналивной эстакады определяются сметами. На монтаж и наладку новых контрольно-измерительных приборов и средств автоматизации, расчет сужающих устройств расходомеров нормативная численность определяется применением поправочного коэфициента I,I к общей нормативной численности.

Норматив численности на обслуживание, ремонт и транспортировку контрольно-измерительных приборов и средств автоматизации, установленных на газораспределительных и газомерных пунктах, удаленных от территории завода и других технологических объектов, увеличивается на 0,15 чел. на каждий газораспределительный и газомерный пункт.

Нормативи численности на обслуживание и ремонт определени на объекти, которые введени в эксплуатацию.

В нормативах численности на ремонт учтено время на подготовительно-заключительные работы, обслуживание рабочего места, отдых и личные напабности.

Наименования профессий рабочих в сформике приведени в соответствии с "Единым тарыфно-квалификационным справочником работ и профессий рабочих", вып. 1, 2, 3. — М., 1986; вып. 36. — М., 1985 и "Квалификационным справочником профессий рабочих, которым устанавливаются месячные оклади", —М., 1986. Приведенные в сосрнике пределы числовых значений факторов, в которых указано "до", следует понимать включительно.

С введением настоящих нормативов численности отменяются ранее действовавшие "Нормативы численности рабочих газоперерабатывающих заводов нефтяной промышленности"-М.: ВНИИОЭНГ, 1982.

НОРМАТИВНАЯ ЧАСТЬ

I. Обслуживание технологического и вспомогательного оборудования

Таблица І.І

Установки по ссушке и очистке газа от сероводорода и углекислоти, одоризации газа, осушки твердым поглотителем, комбинированные для природного газа

Обслуживаемое оборудование :	Профессия	:Норматив :численности :на смену
Аппараты колонного типа, тепло- обменно-конденсационные аппара- ты, колодильники, насосы, венти- ляторы, емкости	Оператор технологи- ческих установок	I

Примечание. Если установки осущки и очистки газа обслуживаются по сонмещению рабочими других, рядом расположенных объектов, нормативная численность на эти установки не устанавливается.

Таблица 1.2

Установка низкотемпературной конденсации и осущки газа

	рматив ленности на ну
 Шит управления установки Оператор технологи— (ведение технологического ческих установок режима, руководство бригадой) 	I
2. Аппарати колонного типа, теп- лообиенно -конденсационные аппарати, холодильники, емкости	I
3. Насоси и вентилнтори Машинист технологи-ческих насосов	I
Итого	3
Примечание. При обслуживании насосов оператор гических установок численность ма	

технологических насосов не устанавливается.

Таблипа I.3 Установка низкотемпературной конденсации

и ректификации газа (НТКР)

Обслуживаемое оборудование	Профессия	: ТИ НА СМ : ТАНОНКУ	численнос- ену на ус- ч-:двухпо- :точную
I. Шит управления установки (ведение технологическо- го режима и руководство бригадой)		- I	I
2. Аппарати колонного типа, теплообменно-конденса- пионные аппарати, холо- дильники, емкости, отдели- тели, сепараторы	Оператор технологи- ческих установок	I	2
3. Насоси и вентиляторы	Машинист технологи- ческих насосов	I	I
	Итого	3	4

Примечание. численность операторов, обслуживающих щит управления (п. Т таблици), устанавливается одна единица в смену на комплекс установок, имерщих общий щит управления.

Таблица І.4 Установка деэтанизации газа

Обслуживаемое оборудование: :	Профессия	: Норматив численности : на смену
Аппарати сепараторного от- деления, маслоотделители, сензосепаратори, холодиль- ники, насоси, вентилятори, сымсоги,	Оператор техно- логических ус- тановок	I

Таблица І.5 Установка подучения этана

Обслуживаемое оборудование	Профес	: киэс	Норматив на смену	численности
Аппарати колонного типа, теплообменно-конденса- ционные аппараты, холодиль- ники, сепаратори, насоси, вентилятори, емкости и др.	Оператор гических вок			I

Таблица I.6 Установка сароочистки

	00,000		
Обслуживаемое оборудование	Профессия	Нормативы чис смену на уста однопоточную	
I	: 2	: 3	: 4
 Шит управления установ- ки, анпаратн колонного типа, теплообменно-кон- денсационные аппарати, емкости 	Оператор тех- нологических установок	I	2

Продолжение табл. 1.6

I	: 2		3	: 4
2. Насосы и вентиляторы		техноло- насосов	I	I
	MTOTO		2	3

Примечание. При обслуживании насосов операторами технологаческих установок часленность машинистов технологических насосов не устанавливается.

Таблица I.7 Установка по виработке элементарной серы

Обслуживаемое оборудование :	Профессия	Норматив численности на смену
(ведение технологическо-	Оператор техно- логических ус- тановок	I
сепараторы, конверторы,	Оператор техно- логических ус- тановок	I
	Итого	2

- 3. Площадка разлива серы в **формы**
- Сливщик-разлив- 2 в дневную смену
- Примечания. І. На оператора, обслуживающего щит управления установки, возлагается также руководство бригадой комбинированной установки по очистке и осушке газа, очистке газа твер-пым поглотителем.
 - При обслуживании площадки разлива серы в формы операторами технологической установки численность сливщиков-разливщиков не устанавливается.

Таблица I.8 Установка по переработке газового конденсата

ослуживаемое обор удовани е	Профессия	:Норматив численности :на смену
1. Шит управления установки (ведение технологическо- го режима и руководство бригадой)	Оператор тех- нологических установок	I
2. Аппараты и оборудование блоков абсорбции, ректи- фикации и перегонки конденсата: аппараты колонного типа, теплооб- менно-конденсационные аппараты, холодильники, печи беспламенного горе- ния, емкости, насоси, вен- тиляторы, фильтры	Оператор тех- нологических установок	3
	Итого	4

таблица I.9

Комбинированная установка комплексной подготовки нефти и газа

σ	служиваемое оборудование : : :	Профессия	:	Норматив смену на с блоком сорбщи	установн	у блог	ta
	I :	2	:	3	:	4	
I.	ііит управления установки (ведение технологическо- го режима и руководство бригадой)	Оператор тех- нологических установок	-	I .		Ι	
2.	Аппарати и оборудование блока абсорбции: аппа- рати колонного типа, теп- лообменно-конденсацион- ные аппарати, холодильни- ки, емкости	Оператор технологических установок	-	I		-	
з.	Аппараты и оборудование блока дегидрации: тепло- обменно-конденсационные аппараты, холодильники, емкости, электродегидра- торы, насосы, вентиляторы	Оператор тех- нологических установок	•	I		Ι	
·± •	Аппараты колонного типа,	Оператор тех- - IO -	•	I		I	

I	:	2	:	3	:	4
теплообменно-конденса- ционные аппараты, холо- дильники, печи беспла- менного горения, емкости		нологичес установок				
5. Насосы и вентиляторы	ī	машинист Нологичес Насосов		I		Ι
	1	ITOTO		5		4

П р и м е ч а н и е. Для днух установок, имеющих щит управления подной операторной, численность операторов щита управления устанавливается I единица в смену (руководство работой двух бригад).

Таблица І.10

Маслоабсорбционная установка (МАУ)

Обслуживаемое оборудование	: Профессия :	:Норматив численности :на смену
Аппарати колонного типа, теплообменно-конценса- ционные аппарати, холодиль- ники, емкости, печи беспла- менного горения	Оператор техноло гических установ	

- Примечания. І. При наличий двух установок производитель—
 ностью каждая І млрд м³ в год и более,
 работающих в блоке и выведенных на один
 щит управления в операторной, дополнитель—
 но устанавливается для ведения технологи—
 ческого режима и руководства бригадой один
 оператор в смену.
 - Если маслоабсорбщионная установка работает в одном блоке с газофракционирующей установкой, численность на МАУ не устанавливается.

Газофракционирующая установка (ГФУ)

Обслуживаемое оборудование	Профессия	CMOHY HOCTH		ленности на оизводитель- нки, т/ч : свыше : 100
Шит управления установки (ведение технологичес- кого режима, руководство бригадой)	Оператор техно логических ус- тановок)- I	I	I
Аппарати колонного типа, теплообменно-конденса- ционные аппарати, холо- дильники, печи беспла- менного горения, емкости	Оператор техно логических ус- тановок	<u>-</u> I	2	3
Насосн и вентиляторы (холодная насосная)	Машинист техно догических на- сосов		I	I
Насосн и вентиляторы (горячая насосная)	To xe	I	I	I
-	Итого	4	5	6.

- Примечания. І. Численность операторов, обслуживающих щит управления, устанавливается І единица в смену на комплекс установок, имеющих общий щит управления.
 - 2. Если в одном слоке с газофракционирующей установкой расотает маслоассороционная установка, численность устанавливается только на ГФУ.
 - 3. Есля технологические холодине и горячие насосные расположени на общей площадке комплексных установок, численность машинаютов технологических насосов устанавливается I единица в смену.
 - 4. Если технологические холодине и горячие насосные обслуживаются операторами технологических установок, численность машинистов не устанавливается.

Абсорбционно-газофракционирующая установка (АГФУ)

Обслуживаемое оборудование	: Профессия : Норма : на см	тив численности ену
 Шит управления (ведение технологического режима и руководство бригадой) 	Оператор технологи- ческих установок	I
2. Аппараты и оборудование блоков абсорбийи и рек- тификации: аппараты колонного типа, тепло- обменно-конденсационные аппараты, холодильники, трубчатая печь, емкости	Оператор технологи- ческих установок	2
3. Насосн и вентиляторы (горячая насосная)	Машинист техноло- гических насосов	I
4. Насосн и вентиляторы (холодная насосная)	Машинист техноло- гических насосов	I
	Итого	5

таблица І.ІЗ

Установка по выработке гелия

000	служиваемое оборудование :	Профессия	:Норматив :на смену	численности
		2	: :	3
I.	шит управления установки (ведение технологическо- го режима и руководство бригадой)	Оператор техно- логических ус- тановок]	
2.	Аппараты и оборудование блоков тонкой очистки, азотного блока и разде- ления воздуха	Оператор техно- логических ус- тановок	2	2
3.	Аппарати и оборудование блоков осущки и очистки от водорода, щелочного отделения	Оператор техно- логических ус- тановок]	I
4.	Аппарати и оборудование участка компримирования газообразного азота и воздуха	машинист техно- прессоров	:	2

Продолжение табл. 1.13

	I	: 2 :	3
5.	Аппаратн и оборудование участка компримрования полупродукта и амиач- ного отделения	Машинист техноло- гических компрес- соров	2
6.	Спектограф (про ведение спектральных анализов)	Лаборант спектраль- ного анализа	I
7.	Аппарати и оборудование блоков низкотемператур- ной сепарации	Оператор техноло- гических установок	I
	_	NTOPO	IO
8.	Наполнение баллонов гелием	Наполнитель баллонов	I в смену на 30 баллонов

Таблипа Т.Т4

Пропано-холодильная установка

Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену
Аппарати колонного типа, теп- лообменно-конденсационные аппарати, холопильники, отде- лители жидкости, омкости	Оператор техно- логических уста новок	

Примечание. При обслуживании пропано-холодильной установки машинистами компрессорных установок численность операторов не устанавливается.

Таблица 1.15

Холодильная установка каскадного типа

Обслуживаемое оборудование	Профессия	:Норматив численности :на смену
Конденсаторн, конденсаторниспаричели, соорники, пересхидители, отделители жид- кости, омкости и др.	Оператор техно- логических уста- новок	I

Азотно-кислородная установка, станция

Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену
I. Щит управления, аппарати колонного типа, теплооб- менно-конденсационные аппарати, электроподогре- ватели, туродетандер, ем- кости, рессивери, фильтри	Ашпаратчик воз- духоразделения	I
2. Компрессоры, насосы, вен- тилиторы	Машинист техноле гических компрес соров	
	MTOTO	2
3. Наполнение баллонов кис- лородом вли азотом на- полнительной рампой с соединительными трубка- ми в количестве:		
I - 2	Наполнитель ба лонов	л- Іна 30 бал.
3 - 4	"	I на 65 бал.
5 и болгее	**	I на 100 ба

Примечание. Для станции инертного газа предусматривается норматив численности I чел. (машинист технологических компрессоров) в смену.

Таблица I.I7 Аменачно-холодильная установка

Обслуживаемое оборудование	:	Профессия	:Норматив численности :на смену
Теплообменно-конденсацион- ные аппараты, колодильники, маслоотделетели, емкости, рессиверы и др.		Оператор техно- логических ус- тановок	I

Установка получения пентана

06	служиваемое	оборудование	: Профессия	:Норматив числен :на смену	HOCTH
ī.	теплообмен	олонного типа но-конденса- парати, коло- спарители, ем-	, Оператор тех гических уст вок	снодо— I Рано—	
2.	Насосы и в	ндотялитне	Машинист тех гических нас		
			Итого	2	
				Таблица	I.I9
		-	распределительн , ГЭП)	не и газозамерные пу	HATM
06	служиваемое	оборудование		н :Норматив числен :на смену	ности
-	Газораспре; пункт, нако; территории	оборудование пелительный перийся вне завода, тре-		:HA CMCHY	ности
-	Газораспред пункт, наход территории бующий обя- присутствии	оборудование пелительный плимися вне завода, тре- зательного и оператора наличии да свыше	Профессия Оператор тех логических у	:HA_CMBHY CHO— I CHO— 2	ности

Примечание. Если по условиям организации производства для обслуживания нескольких ГРП, находящихся вне территории завода, за операторами закреплиется транспорт, численность устанавливается I единица в смену на обслуживание всех пунктов ГРП.

Товарные и сырьевые парки, магистральные трубопроводы

Обслуживаемое оборудование	Профессия	:Норматив численности :на смену
I. Парки с количеством ем- костей:		
до 20	Оператор товарны	t I
21-60	**	2
61-100	**	3
101 и более	n	4
2. Пункт сдачи потребителю светлых продуктов, тран- спортируемых по трубо- проводу	Оператор товарны	ı I
3. Магистральный трубопро- вод светлых продуктов (на 30 км трассы)	инйеник лигдохоо	й Івдненную смену
4. Магистрадьный нефтепро-	инвеник лигрохоо	й Івдневную смену

- Примечания. І. Если товарный парк состоит из нескольких обособленных частей, взаимно удаленных на расстояние более 500 м, численность определяется на каждую часть парка отдельно.
 - Если сдача светлих продуктов производится в одну смену, норматив численности операторов устанавливается только на одну смену.
 - Если пункт сдачи и магистральный трубопровод светлых продуктов обслуживаются рабочими близлежащих объектов, численность на их обслуживание не устанавливается.

Сливно-наливная эстакала

Число эстакад	Профессия	:Норматі :ну для :лива и :10-20	эс така ш с ли в	д с фро а цисте	HTOM HA-
Одна	Оператор товарный	2	3	4	7
Две и более, работающие в соответствии с мощ- ностью заводи и техно- логической схемой обес- печения сливно-наливных работ одновременно	Оператор товарный	2	2	3	6

Примечание. Если наливная или сливная эстакада находится в непосредственной бливости к товарному парку (до 200 м), руководство сливно-наливными работами осуществляется товарным оператором товарного парка. Норматив численности на эстакаду соответственно уменьшается на Гединицу в смену.

Компрессорные

Таблица I.22

Профессия: машинист компрессорных установок

00	Обслуживаемое оборудование:Норматив численности на смену при : числе работномих компоессоров в зале										
		<u>ц</u> о		_		_		0:II- I2	_		_
_	I	: 2	:	3	: 4	: 5	: 6	: 7	: 8	: 9	: IO
I.	Газомоторные компрес- соры IOIR	2		2	2	3	3	3	4	5	6
2.	Tasomotophine komitpec- coph: 8IR, PCK, III, MK-8, VSC -3I6, VSC-43I0, 2/II/2, OA/I	2		2	2	2	2	2	2	3	3
3.	Газотуровные компрессоры с алектроприводом: К-380, К-890, "Дами"Тали", "Драва", "Светдана", "Дреслер-Кларк", 7П-100/2м, "Крезо-Луај	•		2	2	2	3	4	4	5	6

	I	: 2	: :	3:	4	: 5	:	6	. 7	:	8	:	9	: I0
	H-280-I27, $2W$ -I50P, V 52-354, $3MCL$ -I008, $8RPA$ -70, $2MCL$ -807, MCL , T3-500													
4.	Аммиачные	-		Ε	I	I		2	2	;	2		2	2
5.	Воздушные	-		<u> </u>	I	I		I	I		I		I	I

- Примечания. І. Нормативами численности предусмотрено обслуживание компрессоров, насосов, вентиля ционных устройств и другого оборудования компрессорной и одиночной площадки охлаж дения и сепарации газа компрессорного зала.
 - 2. Число работающих компрессоров принимается с K = 0,7 для заводов, загруженных не на полную проектную мощность, и с K = 0,8 для заводов, загруженных на проектную мощность, от установленных в зале.
 - 3. Если в одном компрессорном зале вместе с газомоторными компрессорами или электроприводными типа К-380, "Дана", "Драва", "Таля" установлено 5 и более воздушных или аммиачных компрессоров, норматив численности для зала определяется как сумма нормативов на обслуживание всех типов компрессоров.
 - 4. При числе работающих воздушных и еммиачных компрессоров в зале до 4, установленных в обособленном помещении, численность машинистов компрессорных установок устанавливается I елиница в смену.

Площадка охлаждения и сепарации

Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену
 Площадка охлаждения холо- дильной установки и сепа- рации туроскомпрессорных залов 	Оператор техно- логических ус- тановок	- I
2. Площадка охлаждения и се- парации газа газомоторных залов;		
I площадка для сухого газа		служивается машиниста- компрессорного зала
I площадка для сырого газа	Оператор техно логических ус- тановок	- I
2 рядом расположенные площанки	Оператор техно логических ус- тановок	
в ком ность на пл 2. При о парац	прессорном зале операторов тех ощадку охлажден ослуживании пло ии газа машинис	турбокомпрессоров не более 3, числен- нологических установок ия не устанавливается. щадки охлаждения и се- тами компрессорных за- аторов технологических

таблица 1.24

Комплексная технологическая установка, оснащенная комплектным импортным оборудованием фирмы "Флуор"

установок не устанавливается.

Обслуживаемое оборудование	Профессия	:Норматив численности :на смену
I	: 2	: 3
І. Блок управления	Оператор технол гических устан	TO- I OBOR
	Машинист техно. гических компре соров	
2. Пункт замера, сепарации и предварительной очистки	оператор технол гических устан	do- I

Продолжение табж. 1.24

	I :	2	:	3
3.	Машинный зал комприми- рования сырого газа	Машинист гических соров		2
4.	Туроокомпрессоры наружно установки (туроодетан- деры, газодувки и т.д.)		KUX KOM-	I
5.	Блок процанового охлаж- дения	Машинист гических соров		I
		Оператор гических	техноло- установок	I
6.	Блок осушки и очистки скрого газа от серово- дорода и углекислого газа	Оператор гических	техноло- установок	I
7.	Блок осушки углеводоро- дного конденсата	Оператор гических	техноло- установок	I
8.	Блок низкотемператур- ной конденсации (де- этанизации и демета- низации)		техноло- установок	Ι
9.	Блок аминовой очистки (газорегенерации ад- сорберов)		техноло- установок	I
IO	Система нагрева газо- регенерации, теплоноси- теля, гликоля, дожига кислих газов, топливо- снабжения и фикельное хозяйство		техноло- установок	I
II	.Технологические насосы	Гических Машинист	техноло- насосов	I
		M TOTO		I4

Пункт (установка) регенерации масел

Обслуживаемое оборудован	ие: Профессия :Норматив численности : на смену
Центрифуги, отстойники, ем кости, Насоси, вентиляторы	- Регенераторших от- I работанного масла
	При работе установки в одну смену норма- гив численности устанавливается I единица на пункт.
	Всли пункт регенерации масел обслуживается по совмещению рабочими других, рядом рас- положенных объектов, численность регенера- горшиков не устанавливается.

Таблица 1.26 Установка регенерации этилентликоля

Обслуживаемое оборудо	вание	Профессия	:Норматив численности :на смену			
Аппараты колонного ти лосоменно-конденсацио аппараты, холойильники раторы, емкости, насосы ры		Оператор техно логических ус- тановок) – I			
ρa			Таблица 1.27			
Насосные товарных парков, эстакад и водоснабжения						
Обслуживаемое оборудо	вание :	Профессия	:Норматив численности :на смену			
I	:	2	: 3			

I. Насосние, предназначенние для перекачки воды, кислот, щелочей и других невязких жилкостей с числом расотающих насосов

до 9

Машинист насосных установок Ι

I	<u> </u>	2	:	3
10 и более	M	ашинист насос становок	ных	2
2. Насосные предна для перекачки н дуктов и продук расотки газа с расотажим насо	HOLLOM WOLLOW			
до 9		Машинист техн гических насс		I
IO и более		11		2
Примечани				о совмещению Оженных объектов,

- численность на эти насосные не устанавливается.
 - 2. Нормативы численности не распространяются на насосные технологических установок и установок химической очистки и умятчения воды, учтенных нормативами на обслуживание этих установок.

Таблица 1.28. Очистные сооружения, ловушечное хозяйство

Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену
 Очистные сооружения: насосы, нагнетатели, водонатрева- тели, хлораторы, фильтры 	Оператор очист ных сооружения	I I
2. Лонушечное хозяйство: ло- нушки двухсекционные, че- тирехсекционные, восьми- секционные с прудами- накопителями, расположен- ные на расстоянии более I км от других объектов зарода	них сооружении оператор очис	i I
3. Прудн-накопители, расположенные на расстоянии более I км от лонушек и других объектов завода	Оператор очис: ных сооружений	
Примечания. І. При	работе оборудо	вания в одну смену чис-

 Если очистные сооружения обсдуживаются по совмещению рабочими других объектов, численность на очистные сооружения не устанавливается.

Таблица I.29 Реагентное хозяйство

Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену при произ- :водительности очист- :ных сооружений более :2000кгм/сутки
Склад реагентов, кислотные насоси, дозировочный агрегат, смесители, баки, трубопроводи, емкости для хранения серной кислоты	Оператор товар- ный	I

П р и м е ч а н и е. При производительности очистных сооружений до 20000 кГм/сутки реагентное хозяйство обслуживается оператором очистных сооружений.

Таблица 1.30

Установка химической очистки и умягчения воды (оборотное водоснабжение и нейтрализация воды)

0ძ	служиваемое оборудование	Профессия	:Норматив численности :на смену
I.	Установка химической очистки и умичения во- ды: фильтры, отстойники,	Аппаратчик хим- водоочистки	I
	хлораторн, дозаторн, ме- шалки, резервуарн, емкос- ти, известегасители, насо- си, вентиляторы	Машинист насосно установки	й I
2.	Хлораторные установки: хлораторы, аммонизаторы, дежлораторы, баки, раст- ворители, насосы, резер- нуары для воды	Оператор хлора- торной установки	I

Примечания. І. В обязанность аппаратчика химводоочистки входят отбор проб и проведение лабораторных анадизов.

- 2. При расположении установки химводоочистки и насосной станции в одном помещении обслуживание производится одним человеком в смену.
- 3. Если установка химической очистки и котельная расположены в одном помещении и обслуживание установки химводоочистки производится машинистами (кочегарами) котельной, норматив численности аппаратчика химводоочистки не устанавливается.

Таблица 1.31

Imponoroum							
Обслуживаемое оборудование :	Профессия	:Норматив численности :на смену на один ма- :шинный зал котельной :при числе работающих :котлов					
		I	: 2-9	: IO-I2			
Котлы, питательные приборы, насосы, экономайзеры, предо- хранительные клапаны, фильт- ры, конденсационные баки, ар- матура, трубопроводы и т.п.	Машинист (коче- гар) котельной	I	2	3			

Парокотельные

таблица І.32.

Трубопроводы и сети

Обслуживаемое оборудование	Профессия	: на смену протяжен проводов	численности при общей ности трубо- и сетей,км :300 и более
Трубопроводы: продуктовые, водиные, паровые, конденса- ционные, теплофикационные, канали зационные; конденса- ционные дренажи, горшки, градирни, колодин, пароспут- ники	Слесарь-ремонтник	: 2	3

Примечание. Если обслуживание трубопроводов проводится в одну смену, норматив численности слесарей-ремонтников устанавливается только на одну смену.

Артезианские скважины

Обслуживаемое оборудование	Профессия	:на лнег	ив численности вную смену при одновременно одих артезианс- важин : II и более
Артезианские скважини, по- гружные насоси, емкости, си- боны, камеры переключения, хлораторы, баки для хлори- рования	Слесарь-ремонтни	ік І	2

2. Производство лабораторных работ Профессия: лаборант химического анализа

Таблица 2.34

Лабораторине работи

	Виполняемая работа	:Норматив чис- :ленности на :100 работ :(анализов)
	I	: 2
	2.34.1. Подготовительные работы	
I.	Переход для отбора проби (туда и обратно) на Іка	0,019
2.	Переезд для отбора пробы (туда и обратно) на Ікх	a 0,004
3.	Приготовление растворов (трилон "Б" ,пирогаллон "А", буферный раствор, хром темно—синий, хромоген черный дисиний каробзита, КоН, HWO_3 , HCl , $AyVO_3$)2, A_0OH , $BaCl_2$, $CaCl_2$ и др.):	
	а) без взвешивания составляющих компонентов	0,020
	б) со взнешив нием составляющих компонентов	0,022
4.	Приготовление дистиллированной воды	0,011
5.	Отбор проби газа, ГОСТ 5542 - 78:	ü
	а) в бутнику	0,004
	б) в пробостборник, резиновую подушку или сосуд Дьюара	0,009
6.	Отбор проби газа, ГОСТ 18917 - 73:	
	 а) в раствор уксусно-кислотного кадмия в склянки Дрекселя 	0,070
	б) в газовую пипетку	0,005

I	: 2
7. Отбор пробы воды	0,002
8. Отбор пробы сточной воды из колодцев промканали-	0.000
зации 9. Отбор пробы воды с поверхностных водоемов	0,007 0.0I4
Отбор пробы бензина и керосина:	0,014
а) в бутыжу	0,004
б) в пробоотборник	0,005
II. Нагрев воды в термостате для производства анализ	ов 0,004
2.34.2. Анализы газов	
Определение компонентного состава газообразных и жилких углеводородов хроматографическим методого	м:
 а) разделение газа до 4 компонентов с прямой продужкой 	0,009
upon mon	0,016
то же с обратной продункой	0.008
б) разделение газа на 5-6 компонентов с прямой	0,014
продужкой	0.0 <u>15</u> 0.024
то же с обратной продункой	0.011
	0,018
в) разделение газа свыше 6 компонентов с обратно продункой на одной колонне	й <u>0.029</u> 0,051
то же на двух колоннах	0.037
	0,061
2 Определение компонентов состава газа на газо- анализаторе ГХП-3, ВТМ-2, ГОСТ 22387,3-77, при выделении одного компонента	<u>0.004</u> 0.009
то же при выделении двух компонентов	0,007 0,014
3. Определение компонентного состава газа на хрома-	•
тоградах с пламенно-ионизационными детекторами типа ДУП-I, "Геохимик" и др.	0,063
4. Определение плотности газов пикнометрическим способом, ГОСТ 17310-71	0,014
 Определение влагонасыщенности газа (точка роси), ГОСТ 5580-78 	0,019 0,037
6. Определение содержания смолы и пыли в газе, ГОСТ 22387, 4-77:	•

	<u> </u>	22
	а) качественным и количественным методом	0,032
	б) качественным методом	0,002
	в) количественным методом	0,030
7.	Определение содержания механических примесей в газе по заводской инструкции Пермского ГПЗ	0,006
В.	Определение теплоти сгорания газа на калоримет- ре типа ЮнкаАОР, ГОСТ 22387-77	0,056 0,105
9.	Определение коррозии пропана на медную пластинку по методике АЗП	0,004 0,008
10.	Определение жидкого остатка в сжиженных газах методом испарения, ГОСТ 20448-75	0,0II 0,0I4
II.	Определение воды в сжиженном газе качественным методом, ГОСТ 20448-75	0,003
12.	Определение содержания свободной воды и щелочи в газах, IOCT 20448-75, 6307-75	0,002
[3.	Определение давления насыщенных паров сжиженных газов по Рейду, ГОСТ 20448-75	0.0I3 0.022
I4.	Определение содержания влаги в газах на влагометре "Панаметрик" (заводская инструкция Нижневартовского FII3)	0,016
I5.	Определение содержания влаги в газообразных и жилких углеводородах по методу фишера (заводская инструкция Нижневартовского III3)	0.029 0.050
[6.	Определение содержания сероводорода в сжиженных газах,ГОСТ II382-76	0.008 0.017
[7.	Определение содержания общей серы в газах методом сжигания, ГОСТ 20448-75	0.016 0.028
[8.	Определение содержания общей серы в промысловом газе сжиганием в лампе, ГОСТ 19121-73	0.012
[9.	Определение содержания серн в газах, ГОСТ 22986-78	0.03I 0.046
20.	Определение содержания сернистых соединений в газах аргенометрическим методом (приложение № 2 к ТУ на углеводородное сырье)	0,029
SI.	Определение содержания сероводорода и меркаптанов в газе, ГОСТ 17556-72, 22387, 2-77:	
	а) сероводорода	0,014
	б) меркаптанов	0.023
22.	Определение содержания сероводорода в газах фотометрическим методом (Заводская инструкция Казакского III3)	

	T :	2
23.	Определение содержания сероводорода и меркапта- новой серы в газах, ГОСТ 22985-78:	
	 гази, не содержащие сероводород и мерканта- новую серу 	<u>510.0</u> ISO,0
	2) газы, содержащие сероводород и меркаптановую серу	0,04 <u>1</u> 0,061
24.	Определение паров ртути в воздушной среде реактивной бумагой (заводская инструкция Миннибаевского ГПЗ)	0,003
25.	Определение интенсивности запаха бытового газа камерным методом, ГОСТ 22387, 5-77	0,007
26.	Определение интенсивности запаха одориметром "Рига-2" (заводская инструкция по эксплуатации прибора "Рига-2")	0,020
27.	Анализ газовоздушной среди на приборе УТ-2 (инструкция по эксплуатации прибора):	
	 а) сернистого ангидрида, ацетилена, сероводорода, бензина 	0,017
	б) аммиака	0,015
	в) окиси углеводорода	0,022
	 г) двуокиси азота, суммы окиси и двуокиси азота, ацетона, углеводородов нефти 	0 , 020
28.	Спределение содержания углеводородов в воздушной среде с помощью прибора ПГР-2M-ИЗТ	0,003
	Определение микропримесей в гелии на спектрографе ИСП-51, ГОСТ 20461-75	0.002 0,004
30.	Определение влажности гелия на приборе "Байкал", ГОСТ 171142-71	0,002 0,005
31.	Определение содержания малых концентраций гелия на приборе Соколова (заводская инструкция Миннибаевского III3)	0,034 0,055
32.	Определение гелия и аргона на хроматографах с детектором "Катарометр" (УХ-1, ЛХМ-8МД, ЛХМ-80, ПХ-2 и др.)	0,127
33.	Определение содержания сероуглерода и висших ацетиленистих углеводородов в жидком кислороде (заводская инструкция Грозненского ГПЗ)	0.014 0.015
34.	Определение содержания кислорода прибором Гемпеля, ГОСТ 5583-78	0,009 0,016
35.	Определение содержания влаги (точки росы) в сжи- женных газах конденсационным методом (заводская инструкция Грозненского ГПЗ)	0.017 0,021

	I :	2
36.	Определение точки росы углеводородов, ГОСТ 20061-74	0,014
37.	Определение содержания масла в жидком кислороде, ГОСТ 6331-68	0,004 0,007
38.	Определение ацетилена в сжиженных газах конден- сационно-калориметрическим методом, ГОСТ 6331-68	0,032
39.	Определение содержания влаги в воздухе для питания иневматических присоров и средств автоматики, ГОСТ II82-66, II882-73	0,022
40.	Определение содержания масла и механических примесей в воздухе для питания пневматических приборов и средств автоматики, ГОСТ II82-66, II882-73:	
	а) содержание масла	0,016 0,028
	б) содержание мехпримесей	0,008 0,015
4I.	Определение влажности воздуха для питания пнев- матических приборов и средств автоматики (завод- ская инструкция Пермского ITI3)	0,024
42.	Выписка и регистрация паспортов на готовую продукцию	0,001
43.	Определение удельного веса жидких продуктов расчетным методом, ГОСТ 22667-77	0,002
	Обработка картограмм на товарный этан с поточных хроматографов (за пятидневку)	0,022
45.	Определение давления насыщенных паров газов при температуре +45 °C и -20 °C расчетным мете- дом, ГОСТ 20448-75	0,008
	2.34.3. Анализы бензина	
I.	Определение упругости насыщенных паров бензина по Рейду, ГОСТ 1756-78	0,023 0,042
2.	Определение жидкого остатка нестабильного бен- зина при температуре +20 °С испарением (за- водская инструкция Туймазинского 1113)	0,002 0,004
3.	Определение фракционного состава нефтепродуктов методом разгонки, ГОСТ 2177-66	0,029 0,059
4.	Определение коррозии бензина на медную пластинку, ГОСТ 6321-69	0,004 0,008
5.	Определение удельного веса бензина ареометром, ГОСТ 3900-47	0,002
6.	Определение внешнего вида ШЛУ, ГОСТ 38101524-75	0,001

Продолжение табл. 2.34

	<u> </u>	2
7.	Определение содержания воды и щелочи в бензине, ГОСТ 6307-75	0,002
8.	Определение фактических смол по Бударону, ГОСТ 8489-58	0.020 0.00,0
9.	Определение содержания серы в бензине сжиганием в лампе, ГОСТ 19121-73	0,016 0,032
10.	Определение содержания ароматических углеводоро- дов в стабильном бензине весовым методом, ГОСТ 6994-54	0.016 0.08
	Определение содержания аминов в бензине (инструк- ция ВНИШитазпереработки)	0,016 0,015
12.	Определение углеродного состава нестабильного бензина, хранящегося в бензоемкостях на хрома- тографе ЛХМ-8МД, ЛХМ-80	0,037
	2.34.4. Анализы масел и других нефтепродуктов	
I.	Определение механических примесей в масле весовым методом, ГОСТ 6370-59	0.015 0.030
2.	Определение содержания механических примесей в деблепродуктах через мембранный фильтр, ГОСТ 10577-63	0,010 810,0
3.	Определение плотности масла реометром, ГОСТ 3900-47	0,007
4.	Определение условной вязкости масла, ГОСТ 6258-52:	
	а) при температуре до + 20 °С	0,010
	б) при температуре до + 50 °C	0,011
5.	Определение кинематической вязкости масла вис- козиметром, ГОСТ 33-66 (три определения на анализ):	
	а) при нагревании до IOO оС	0,018
	б) при нагревании до 50 °C	0,019
	в) при нагревании до 20 °C	0,022
	г) индустриальное масло при IOO ^о С	0,037
6.	Определение содержания клористых солей в нефте- продуктах, ГОСТ 21534-76	0,009 0,013
7.	Определение водорастворимых кислот и щелочей в масле количественным методом, ГОСТ 6307-75	0,007 0,008
8.	Определение водорастворимых кислот и щелочей в масле качественным методом, ГОСТ 6307-75	
9.	Определение сопержения воды в масле качественным методом, ГОСТ 1547-42	0,002

Продолжение табл. 2.34

	I :	2
I0.	Определение прозрачности масла (заводская инструк- ция Вознесенского ГПЗ)	0,007 0,008
II.	Определение содержания воды в масле количественным методом на аппарате Дина-Старка, ГОСТ 2477-65	0.013
12.	Определение температуры вспышки масла в закрытом тигле, ГОСТ 6356-75	0.012 0.00.0
13.	Определение температуры вспышки масла в открытом тигле, ГОСТ 433-48	0,024 0,043
14.	Определение кислотного числа масла объемным методом, ГОСТ 5985-59	0,012
15.	Определение натровой пробы масла, ГОСТ 19296-73	0,012 0,018
	Определение содержания взвешенного угля в масле (заводская инструкция Нижневартовского III3)	0.024 0,037
I7.	Определение температуры застывания нефтепродуктов, ГОСТ 20287-74:	
	а) с нагревом	$\frac{0.014}{0.022}$
	б) без нагрева	0.010 0,015
18.	Определение содержания серы в масле сжиганием в лампе, ГОСТ 19121-73	0,037
19.	Определение коксуемости и золь ности масла весовым методом, ГОСТ 19932-74, 1461-59:	
	а) коксуемости	0.0II 0,0I6
	б) зольности и коксуемости	0.015 0,024
	2.34.5. Анализы электролита, ГОСТ 667-73	
I.	Определение содержания серной кислоты в электро- лите	0,015 0,026
2.	Определение содержания хлора в электролите	0.004 0.008
3.	Фотоколориметрическое определение железа в электро- лите	0.016 0.032
4.	Определение веществ, восстанавливающих марганцево-кислый калий в электролите	0.003
5.	Определение содержания тяжелых металлов, осаждае- мых сероводородом и сернистым аммонием	0,013 0,020

	I :	2
6.	Определение интенсивности окраски в электролите	0,005 0,008
7.	Определение удельного веса серной кислоти в электролите	0,002
8.	Определение нелетучего остатка в электролите весовым методом	0,015
9.	Определение содержания марганца в электролите объемным методом	0.017 0,027
	2.34.6. Анализи води	
I.	Определение содержания углеводородов в воде на газохроматографе (заводская инструкция Миниибаевского ГПЗ)	0,004 0,008
2.	Определение щелочности воды объемным методом (заводская инструкция Минисбенского ГПЗ)	0.002
3.	Определение общей жесткости воды объемным методом, ГОСТ 4151-72	0.004 0,008
4.	Определение содержания хлоридов в воде, ГОСТ 4245-72	0.005 0,009
5.	Определение остаточного клора в воде объемным методом, ГОСТ 18190-72	0.003 0,005
6.	Определения содержания кальция в воде объемным методом (инструкция Миниковенского IIIS)	0,004 0,008
7.	Определение содержания нитритов в воде методом Грисса (заводская инструкция Отрадненского ГПЗ)	0.002 0,004
8.	Определение содержания карбонатов в воде (заводс- кая инструкция Шкаповского III3)	0.004 0,008
9.	Определение содержания цинка в воде фотометричес- ким методом, ГОСТ 18293-72	0.007 0,014
10.	Определение содержания фосфатнона в воде фотометри- ческим методом (заводская внотрукция Мишнибаевского IIIS)	0.007 0,014
II.	Определение содержания хрома в воде фотомотрическим методом (заводская инструкция Мининбаевского III3)	0.007 0,013
12.	Определение содержания железа в воде методом тит- рования (заводская инструкция Казакского III3)	0.006 0,009
13.	Определение содержания железа в воде колориметрическим методом, ГОСТ 40II-72	0,004
I4.	Определение содержания аммака в воде фотометричес- ким методом, ГОСТ 4192-48	0.006

	I	: 2
	Определение содержания нитритов в воде колоримет- рическим методом с применением реактива Грисса, ГОСТ 4192-48	0,005 0,008
16.	Определение содержания нитритов в воде фотометри- ческим методом, ГОСТ 18826-73	110.0 150,0
17.	Определение солесодержания в воде электрометри- ческим методом (заводская инструкция Казахского III3)	0.002
18.	Определение агрессивной двускиси углерода дейст- вием на мрамор по метолу ^Г ейера (заводская инструкция Миннибаевского ГПЗ)	0,008 0,015
19.	Определение стабильности воды объемным методом (заводская инструкция Отрадненского ГПЗ)	0.007 0.014
20.	Определение содержания сухого остатка в воде весовым методом, ГОСТ 18174-72	0.010 0.019
21.	Определение содержания механических примесей в воде весовым методом (заводская инструкция Отрадненского 1113)	0.014
22.	Определение прокаленного остатка в воде (заводс- кая инструкция Миннибаевского ITIS)	0.009 0,015
23.	Определение минерального остатка в воде расчетным методом	0,001
24.	Определение весового содержания калия и натрия в воде расчетным методом	0,001
25.	Определение концентрации свободной угольной кислотн в воде, ТУ 38IOI494-79	0.0II 810.0
26.	Определение содержания масла в воде качественным методом	0,001
27.	Определение содержания нефтепродуктов в воде методом экстрагирования с применением фильтровальной бумаги "белая лента"	0,003
	Определение содержания нефтепродуктов в воде методом экстрагирования с применением клороформа	0.025 0.041
29.	Определение содержания нефтепродуктов в воде методом экстратирования с применением петролей- ного эфира	0,020 0,036
30.	Определение окисляемости воды	0.006 0,010
31.	Определение бихроматной окисляемости сточных вод (XIK)	0.0I2 0.0I7
32.	Определение сульфатов в воде методом сжигания	0.0II 0.0I7
33.	Определение со держания сульфата в во де с приме- нением бензидина	0.009 0.017
	- 34 -	

		2
34.	Определение содержания сульфат-йода в воде объемным методом	0.007 0.014
35.	Определение содержания сульфидов в воде	0.009 0,017
36.	Определение содержания кислорода в воде методом титрования	0,007 0,013
37.	Определение содержания растворенного кислорода в воде визуальным методом	0,001
38.	Определение биохимического потребления кислорода в сточной воде (БПК-5) методом разбавления:	
	 а) для воды, содержащей нитриты и органические вещества 	0,049 0,065
	б) для води, не содержащей нитрити и органические вещества	0,044 0,058
39.	Бактериологический анализ, ГОСТ 18363-73	0 ,14 3
40.	Определение цвета воды фотоколориметрическим методом	0,001
4I.	Определение цвета води визуально	0,00I
42.	Определение прозрачности воды визуально	0,001
43.	Определение водородного показателя при помощи универсальной индикаторной бумаги	0,001
44.	Определение волотодного показателя при помощи прибора РН- метр а	0.I49 0,I93
	2.34.7. Анализы серы, ГОСТ 127-76	
I.	Определение кислотности сери объемным методом	0.0II 0.022
2.	Определение зольности серы весовым методом	0.017 0.029
3.	Определение содержания органических веществ в сере	0,018 0,030
4.	Определение содержания мышьяка в сере фотомет- рическим методом	0.038 0.055
5.	Определение содержания влаги в сере весовым методом	0.0II 810.0
	2.34.8. Анализи растворителей	
I.	Определение моноэтаноламина (МЭА) в тройной смеси	0.005 0.0II
2.	Определение содержания сероводорода в моноэтано- ламине (МЭА) объемным методом	0.005

<u> </u>	2
Определение содержания воды в растворе моноэта- ноламина (МЭА) методом разгонки	0,009 0,018
Определение плотности раствора моноэтаноламина (MGA)	0,001
Определение щелочности раствора моноэтаноламина (MЭA)	0,003 0,007
Определение крепости моноэтаноламина (МЭА) объемны методом	w <u>0.004</u> 0,005
Определение содержания углекислоти в поглотительном растворе моноэтаноламина (МЭА)	0,005
Определение процентного содержания воды в растворе диэтиленгликоми (ДЭГ)	0,007 0,013
Определение содержания фактических смол в растворе моноэтаноламина (МЭА), ГОСТ 8489-58	0.013
Определение плотности раствора диэтиленгликоля (ДЭГ) ареометром, ГОСТ 3900-47	0,002
Определение содержания воды в растворе диэтилен- гликоля (ДЭГ) на аппарате количественного опреде- ления воды (АКОВ), ГОСТ 2477-65	0,003
2.34.9. Прочие работы	
Определение концентрации щелочи методом титрования	0,010
Определение содержания железа в щелочи методом титрования	0.006 0,009
Определение концентрации ингибитора фотометри- ческим методом	0,005
Определение степени коррозии металла	0, CI8
Определение титра раствора нитрата ртути	0,014
Определение титра реактива Фишера	0,031
Определение титра спиртового раствора едкого калия, ГОСТ 5985-79	0,016
Установка титра раствора азотнокислого аммиаката серебра, ГОСТ 22985-78	0,030
Приготовление эталонного раствора искусственной стандартной калориметрической шкали, ГОСТ 6331-68:.	
а) стандартный раствор азотнокислого кобальта	0,015
б) стандартный раствор азотнокислого хрома	0,017
Приготовление поглотительного раствора (реактива Илесвая), ГОСТ 6331-68	0,020
	ноламина (МЭА) методом разгонки Определение плотности раствора моноэтаноламина (МЭА) Определение щелочности раствора моноэтаноламина (МЭА) Определение крепости моноэтаноламина (МЭА) объемным методом Определение содержания углекислоты в поглотительном растворе моноэтаноламина (МЭА) Определение процентного содержания воды в растворе диэтилентиколя (ДЭГ) Определение содержания бактических смол в растворе моноэтаноламина (МЭА), ГОСТ 8489—58 Определение плотности раствора диэтилентиколя (ДЭГ) ареометром, ГОСТ 3900—47 Определение содержания воды в растворе диэтилентиколя (ДЭГ) на аппарате количественного определения воды (АКОВ), ГОСТ 2477—65 2.34.9. Прочие работы Определение содержания железа в щелочи методом титрования Определение содержания железа в щелочи методом титрования Определение концентрации ингибитора фотометрическим методом Определение титра раствора нитрата ртути Определение титра раствора нитрата ртути Определение титра раствора азотнокислого аммиаката серебра, ГОСТ 22985—78 Приготовление эталонного раствора искусственной стандартной калориметрической шкалы, ГОСТ 6331—68: а) стандартный раствор азотнокислого кобальта б) стандартный раствор азотнокислого хрома

Продолжение табл. 2.34

<u> </u>	: 2
II. Приготовление реактивной бумаги для определения содержания паров ртути	0,030
 Приготовление смесей для проверки газоанализа- тора типа ПТФ-2М, СВК 	0.018 0.024
13. Измельчение сорбентов для заполнения хроматог- рафических колонок;	
 а) на измельчение 30-50 г окиси алюминия, активи- рованного угля, цеолитов (молекулярные сита) 	0,20I
 б) на измелъчение 100-150 г сферохрома или трепел Закеевского каръера или 500 г селикагеля 	a 0,435
в) на измельчение 20-40 г инзенского кирпича	0,161
14. При поступлении в лабораторию готового сорбента (измельченного) на навеску 20-40 г (для контроль- ного рассева материала)	0,020
 Обработка измельченных сербентов реактивами: 	
а) окиси алюминия (30-50 г)	0,209
б) актинированного угли (30-50 г)	0 ,0 80
в) цеолита (молекулярные сита 30-50 г)	0,141
г) инзенского кирпича (20-40 г)	0,141
д) сферохрома или трепела Закеевского карьера (100—150 г) или селикагеля (500 г)	0,563
 Проверка правильности показаний РН-метра по буферным растворам 	0,010
17. Калибровка газометра	0,035
18. Калибронка ротаметра	0,067
19. Определение вместимости пикнометра, ГОСТ 17310-71	0,018
Примечание. При необходимости производства а	нализов с
контрольным замером нормативы чи	СЛОННОСТИ
представлени в виде дроби: в чис	лителе приве-
ден норматив на производство ана	лиза без кон-
трольного замера, в знаменателе	- с контроль-
ным замером.	

3. Ремонт технологического оборудования

Профессии: слесарь по ремонту технологических установок, слесарь-ремонтник, котельщик, электросварщик, газосварщик, кузнец ручной ковки, кузнец на молотах и прессах, токарь, шлифовщик, сверловщик, строгальщик, фрезеровщик

Таслица 3.1.35 Оборудование технологических установок

Техническая ха-:Норматив численности на ремонт единицы оборудова- рактеристика, :ния по видам ремонта						
тип, марка обо- рудования		средний	капитальный	BCOTO		
I	: 2	: 3	: 4	: 5		
3.1.3	35.1. Колонин	насадочного ти	па с диаметром	•		
	корпуса,	MM				
До 800.	0,0064	-	0,0032	0,0096		
85 0 - 950	0,0089	-	0 ,005 I	0, 0I4 0		
I000-I200	0,0121	-	0,0057	8VIO,0		
I300 - I600	0,0153	-	0.0121	0,0274		
1700-2200	9,0326	-	0,0147	0,0473		
2300-2600	0 ,0435	-	0 ,0198	0,0633		
2700-3000	0,0499	-	0,0224	0,0723		
.3.I	.35.2. Колония	тарельчатые с	желобчатыми к	олпачками		
	• • •	тром корпуса,	•	ле) и		
		тарелок (в зна	мен ате ле)			
<u>1000-1400</u> до 30	0,0123		0,0058	0,0181		
<u>I600-I800</u> до I0	0,0065	-	0,0026	0,009I		
<u>I600–2000</u> II – 30	0,0221	-	0,0110	0,033I		
<u> 1800–2200</u> 31 – 40	0,0286	-	0,0136	0,0442		
<u>2400–2600</u> 30 – 40	0,0377	-	0,0169	0,0546		
<u>2800-2900</u> 30 - 40	0,0461	-	0,0221	0,0682		
3000-3400 35 - 40	0,0533	-	0,0240	0,0773		
		- 38 -				

<u> </u>	; 2	: 3	: 4	: 5
3000-3400 1600-200 4I - 45 60 - 80		'8 -	0,0234	0,0812
<u>2000 - 3000</u> 50	0,044	.8 -	0,0208	0,0656
3.1.35.	3. Колонны	тарельчат	не с круглими	колпачками
	с диаме тарелок		са, мм, и чис	MOL
<u>По 1000</u> до 23	0,003	32 -	0,0019	0,005I
<u>1000-1200</u> ; <u>1400-20</u> 24 - 29 до 13	000 0,0II	.0 -	0,0052	0,0162
1200-1300 1600-19 30 - 39 14 - 1	000 0,015 18	56 –	0,007I	0,0227
	<mark>200</mark> 0,020 20)8 -	0,0097	0,0305
1400-1600; 1600-20 40 - 49; 21 - 2	<u>)00</u> 0,026	50 -	0,0117	0,0377
<u>1400–1600</u> ; <u>1800–20</u>	0 <u>00</u> 0,031 35	- 81	0,0143	0,046I
2300-2600 18 - 25 36 - 4	<u>000</u> 0,039	96 -	0,0188	0,0584
<u>2400–2500</u> ; <u>2800–30</u>	000 0,044 25	12 -	0,0201	0,0643
<u>2400–2500</u> ; <u>2600–28</u> 40 – 45 ; <u>30 – 4</u>	<u>300</u> 0,053 40	33 -	0,0240	0,0773
2900-3000; 2800-30 28 - 30 * 35 - 3	222	56 -	0,0305	0,0610
2000-2200 70-80	0,087	7I -	0,0396	0,1267
2000-2200 90-120	0,113	39 -	0,0518	0,1657
<u>I200/I800</u> до I9	0,006	55 -	0,0045	0,0110
1200/1600,1600/20 20 - 30	<u>00</u> 0,020	- 80	0,007I	0,0279
1600/2400,1800/260 31 - 40	0,043	35 -	0,0207	0,0642

Продолжение табл. 3.1.35.

<u> </u>	2 :	3	: 4	: 5
2000/3000,2200/3200 25 - 31	0,0467	_	0,0256	0,0723
3200/3800 34-40	0,0678	- ,	0,0313	0,099I
3.I. 35.	4. Колонны	с клапан	ными тарелка	MMI C
	диам етро тарелок	м корис	а, мм, и чис	IOM
<u>по 900</u>	0,005I	V hora e	0,0025	0,0076
1000-1200 Ho 25	0,0096	Austra	0,00 5 I	0,0147
1000-1400 26-42	0,0115	_	0,0070	0,0185
<u> 1600-2400</u> до 18	0,0160	40.00	0,0070	0,0230
1600-2400 19-35	0,0256	****	0,0121	0,0377
<u>1500–1800, 1900–2000</u> <u>40 – 45 36 – 45</u>	0,03I3	***	0,0134	0,0447
<u>3000–3200</u> ло 18	0,0384	-	0,0166	0,0550
<u>2100–2400</u> , <u>2500–2600</u> 40 – 50 25 – 29	0,0467	-	0,0211	0,0678
2500-2800; <u>1600-1800</u> 30 - 46; 70 - 80	0,0537		0,0230	0,0767
<u> 1600–1800</u> 100 – 120	0,0793	-	0,0358	0,1151
<u>2900–3400</u> IIO – I 3 5	0,2316	_	0,0499	0,2815
1000/II00 30	0,0115	***	0,0057	0,0172
<u> 1120/\$900,1200/1600</u> 20 - 22	0,0153		0,0070	0,0223
1200/2000,1600/2000 30 - 38	0,0288		0,0128	0,0416
<u>I200/2000,I600/3000</u> до I8	0,0288	•••	0,0128	0,0416
1600/2600 - 1800/2600 30 - 35	0,0352	·····	0,0160	0,0512

T	: 2	: 3	· 4	: 5
1400/2400 - 2100/2600 30 - 46	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		0,0198	0,0588
1800/3200 - 2000/3200 30 - 40	0,0512	_	0,0236	0,0748
2400/2700 - 2600/3600 40 - 56	0,0646	-	0,0294	0,0940
3.I.35.5.	Колонны	гар ельчатне	с S- обр азны	м колпачком
	с диамет	ром корпуса,	мм, и число	м тарелок
<u>До 1200</u> до 12	0,0006	-	0,0006	0,0012
1200-1400 13-20	0,0064		0,0025	0,0089
2600-3400 20-35	0,0204	-	0,0089	0,0293
<u>1400–1600</u> 70–80	0,044I	-	0,0211	0,0652
<u>2400/3800 - 2800/3600</u> 25 - 32	0,0198	-	0,0089	0,0287
<u>2600/4000 - 3400/4000</u> 25 - 32	0,0230	-	0,0108	0,0338
<u>2400/3800 - 2600/4000</u> 50 - 55		-	0,0128	0,0390
3.1.35.6.	Колонны	с решетчатам	(имы аелери) и	тарелками
	с диамет	ром корпуса,	мм, и число	OM.
	тарелок			
1400-1800 30-40	0,0147	-	0,0064	0,0211
1600-2000 80-100	0,0531	· -	0,0249	0,0780
3.1.35.		с ситчатыми мм, и числою	тарелками д и тарелок	раметром
<u>1200–1700</u> 30–35	0,0128	.	0,0058	0,0186
ло 500 <u>1200-1500</u> до 45 <u>20-29</u>	0,0058	-	0,0032	0,0090
<u>1800–2800</u> 23–35	0,0160	-	0,0083	0,0243

Продолжение табл. 3.1.35.

	:	2	; 3	: 4	: 5
	0 <u>0-3400</u> 0 0 - 25	,01 85	-	0,0083	0,0268
	3.1.35.8.	Емкости,	сборники,	воздухосборн	ики
		объемом,	мЗ		
До 4	0	,0007	-	0,0003	0,0010
5 - 20	0	,0015	_	0,0007	0,0022
2f - 3 2	0	,0030	-	0,0014	0,0044
33 - 40	O	,0037	_	0,0017	0,0054
4I - 50	ອ	,0043	-	1200,0	0,0063
5I - 63	0	,0058	-	0,0028	0,0086
64 - 80		,0080	_	0,0038	0,0118
8I - IOO		,0088	-	0,0042	0,0130
IOI-125		,0095		0,0045	0.0140
126-160		,0116	-	0,0056	0,0172
161-300	. 0	,0I46		0,0070	0,0216
	3.1.35.9.	Сепарато	оры с диаме	тром корпуса,	MM
∴o 16 00	0,0058		-	0,0019	0,0077
оорт 9001	0,0115		-	0,0038	0,0153
	3.1.35.10.	Маслооч	гделители и	маслосборник	ис
		диамет	ом корпуса	, MIM	
,003I of	0,0025		_	0,0013	0,0038
Свише 1600	0,0051		-	0,0025	0,0076
	3.I.35.II	Влагоот	гделители,	щелочеотделит	ели,
		воздухо	отдели тел и	, отде лител и	жидкости
		с диаме	етром корпу	ca, mm	
до 1600	0,0025		-	0,0025	0,0050
Chime 1600	0,0045		-	0,0058	0,0103
	3.1.35.12.	Дегазаз	горы, одори	заторы объемо	м, м ³
A0 4	0,0006		_	0,0006	0,0012
-	0,0000		-	0,0000	O, OUTS

I		2		3	_:_	4.		5
	3.1.35.13.	Пылеул	OBNTOJ	и, гр	язеу	л овители		
		с диам	етром	корпу	ca,	MM		
До 1600	0,	0058				0,0013		0,007I
Свише 1600	0,	0122		-		9,0025		0,0147
	3.1.35.14.	Электр	одегид	ратор	цил	индричес	кий	
	0,	0050	•	_		0,0024		0,0074
	3.1.35.15.	Подогр	еватеј	исп	аров	ни прост	равг	TBOM
		с диам	етром	корпу	ca,	MM		
I00-400	0,	0012		-		0,0006		3T00,0
401-700	0,	0019		-		0,0006		0,0024
70I-II 00	•	00 3 I		-		0,0012		0,0043
IIOI-I500	0,	0043		-		0,0025		0,0068
	3.1.35.16.	Печи б	еспла	енног	o ro	рения		
IIP - 9	0,	0606		-		0,0210		0,0816
IIP -I6	0,	0990		_		0,0354		0,1344
IIE-20, IIE-22	Ũ,	II65		-		0,0416		0,1581
I 2 B x I52	0,	0664		-		0,0332		0,0996
I8B x I52	0,	0880		-		0,0440		0,1320
IIS - 0,75	0,	0224		-		0,0080		0,0304
	3.1.35.17.	. Печи п	атров	не дву	XCK	тные,		
		теплог	фоизв	цетицс	ьнос	тью, млн	KK) /प
8	0,	0353		_		0,0167		0,0520
12	0,	0353		-		0,0167		0,0520
20	0,	0558		_		0,0267		0,0825
22	0,	0595		-		0,0279		0,0874
	3.1.35.18	. Котел	утили	затор				
CKY-0,5/4	0,	,0223		-		0,003I		0,0254
CKY-1,7/4	0,	,0279				0,0037		0,0316
CKY-60-2	0,	048I		-		0,032I		0.0802

· I	: 2	: 3	: 4	<u>: 5</u>
	3.1.35.19. Tor	ка-подогре ват е	ль	
-	0,0074		0,0074	0,0148
	3.I.35.20. Am	аратн воздушно	ого охлаждения	A.
		оизонтальные с		
	по	оребрению, м2		
I60	0,0050	0,0074	0,0006	0,0130
400	0,0143	0,0186	0,0006	0,0 335
600	0,0223	0,0298	0,0018	0 ,053 9
1250	0,0365	0,0496	0,0037	0,0898
2640	0,0458	0,0620	0,0043	0,1121
400 0	0,0552	0,0750	0,0062	0,I 364
	3.I.35.2I. Ter	илообменники, хо	лодильники, к	он денсаторы
	кож	ку хотрубч атне с	нлавающей г	оловкой с
	дия	аметром корпуса	a, MM	
100-265	0,0012		0,0006	0,0018
2,66-350	0,0019	-	0,0006	0,0025
35I-43 0	0,0026	S -	0,0012	0,0038
43I <i>-</i> 525	0,0032		0,00Iz	0,0044
526-630	0,0051		0,0025	0,0076
63I - 730	0,0064		0,0032	0,0096
73I -8 90	0,0070		0,0032	0,0102
89I - I030	0,0090		0,0045	0,0135
IO3I-I490	0 ,0 II5		0,005I	0,0166
I 49I-I7 50	0,0153		0,0070	0,0223
I 75I-24 50	0,0198		0,0096	0,0294
245I-3 000	0,0269	-	0,0128	0,0397
	3.I.35.22. Ter	иообменники, хо	лоди льники , к	онденсаторы
	кож	ухотрубчатн е с	йонжиедопен :	решеткой с
	диа	иметром корпуса	a, MM	
100-275	0,0025	· -	0,0019	0,0044
276–8 9 0	0,0083		0,0038	0,0121
ვ 9I-56 0	0,0141		0,0064	0,0205
5 6I-6 87	0,0211	-	0,0102	0,0313
688845	0,0275		0,0134	

I	: 2	:	3	:	4	: 5	
846-975	0,0352		-		0,0166	0,0518	
976-1270	0,0467		-		0,0217	0,0684	
1271-1750	0,0698		-		0,0320	0,1018	
1751 –245 0	0,0909		-		0,0416	0,1325	
2451-2800	0,1785		-		0,1606	0,3391	
3.1.35.23. Теплообменники, колодильники, конденсаторы							
	типа .	"трус	авт	рубе"			
TT 7-3	0,0134		-		0,0064	0,0198	
Примечания. І. Нормативами предусмотрено на выполнение							
станочных работ:							
	5 % в текущем и 10 % в капительном ремонте						
	колонн	[;					
	IO % B	TOK	пцем н	Kanut	вавном ре	монте печей,	
	подогр	евате	элей и	котло	в - ути ли з е	aropos;	
	7 % B	Teky	iem m	І5 🖇 в	Kaiim taji	ном ремонте	
	аппара	TOB I	юздуш	HOPO O	хлаж дония	I, теплообмен—	
	HMKOB,	холо	нацидо	nkob n	конденса	aropon.	
:	2. К норм	Sands	am arc	леннос	ти на рез	OLOX THOM	
						CKJIDYOHNOM	
						эффициентн	
						и , мг /экв/л:	
				_	емонта 2,		
	СВ ипе	6 – 1	рт ні	кущего	ремонта	1,33,	
		,	ция ка	intali:	ного - 6,	,67.	

Таблица 3.2.36.

•	•			
Тип и марка компрессора	: ремонт : вилам р	: средний:	мпрессо капитал	ра по
		·	HHM	:ro
I	: 2	: 3	4	: 5
3.2.36.І. Газомото	рные компрес	соры		
IOTKH, IOTKM, IOTK, VSC-316	0,366	0,614	0,150	I,I30
8IK, MK-8	0,340	0,412	0,131	0,883
- Δ	5 -			

Компрессоры

I	: 2	: 3	: 4	: 5				
3.2.36.2. Турбокомпрессоры								
K-380-IOI-I, K-380-IO2-I, MCR-805, 2MCR-807, BCL -354, 2MCL -807, H-280-I27, "Tpec.mep-K.mapak", MCL -805-HCL -355, K-890-I2I-I, "Kpeso-Jyap", 27W -150P	0,471	0,320	0,203	0,994				
"Дана", "Драва", "Галя", "Светлана" 3MCL - 1006, 8RPA 5,188-6,4M9-8 (б- 101./с-106); 55356/256(102/С-103); 3M9-7(с-104); 7ПП-100/2M, ТЭ-500 3.2.36.3. Воадушн	0,288	0,I90	0,144	0,622				
KB-IOOY, KCEY-I-5a, EY-3/8,			anpocoop.	•				
160-B-20/8, BY-06/8, TAPO "K-155"	0,092	0,046	0,033	0,171				
BK-25, BK-259, KV9-60/40, KBJT, KBJT-60, Byctep B-101, KBJ, AK2-150	0,078	0,046	0,026	0,150				
HI-20/6, 2HI-20/8, HI-20/8	0,078	0,059	0,026	0,163				
HU-3/40, 25/ -150P	O,III	0,059	0,039	0,209				
302-HI-IO/8, 2HI-IO/8	0,150	0,059	0,039	0,248				
KC9-5M, IOIIM	0,078	0,046	0,026	0,150				
202HI-6/18, 302HI-6/18, 2CT-50	0,072	0,118	0,033	0,223				
302 HI-6/35 , 2 HI-6/3 5	0,157	0,065	0,039	0,261				
205HI-20/35, 505HI-20/16, 305HI-20/35, УУМУ-2Д200 (С-105)	0,124	0,105	0,039	0,268				
205HI-16/70, 305HI-30/8, 4MA-I2, 7\fli1-20/220, 302HI-5/70,402HI-4/220, 305HI-16/70	0,131	0,III	0,046	0,288				
3.2.36.4. Газовые	поршне	вые комп	Deccodin					
MK-20/200, 2P-3/220, 3P-3/220	0.065	0.033	0.026	0,124				
205ITI-20/18, 0 Z/2V, 3ITI-12/35	0,046	0.059	0.026	0.131				
MK-45/220, YM-0,5/I,5	0.046	0,020	0.013	0,101				
2НП-150Э	0.052	0.033	0.026	0.III				
MK-20-I2/220	0,052	0,036	0,028	0.091				
2CTTI-20	0.052	0.098	0.026	0.176				
2C2CTTI-12/13, 7TTI-100/2M	0,163	0.059	0.039					
5F-I4/220	-	-		0,261				
	0,340	0,144	0,183	0,667				

	: 2	: 3	: 4	5				
3.2.36.5. Холоди	льные пор	шневые к	OMITPECCO	DH.				
AB-300	0,013	0,007	0,026	0,046				
A.HII	0,033	0,013	0,026	0,072				
AO-1200, MIB-7A-I, MTY-2-I	0,078	0,059	0,072	0,209				
Ŋ-300, CJi −20	0,033	0,013	0,020	0,066				
2/I/2, A0/I	0,033	0,020	0,026	0,079				
У-200-6, БАУ-200	0,046	0,033	0.039	0.118				
ДАОНЗ50П, ДАО-750	0,052	0,026	0.033	O.III				
4ΑΓ	0,092	0,052	0,072	0,216				
3.2.36.6. Воздуходувки, газодувки								
PTH-I200	0,013	0,007	0.013	0,033				
PR.	0,033	0.020	0.033	0.086				
B-IO2 A/B (dycrep)	0.092	0.046	0,013	0,151				
3.2.36.7. Ротаци	онный пля	стинчаты	-	-				
PCK	0,092	0,046	0,013	0,151				
3.2.36.8. Детанд	ерн .							
ДВД-80-180, ДВД-70 -18 0	0,092	0,065	-	0,157				
		Тас	5 лиц :	3 3 3 3				
Насосн				3.0.0				
		 						
Тип и марка насоса	Hopmati	ВН ЧИСЛО НАСОСА І	HHOCTH E	DeMOH				
	:Teky-	средний:		RCAT.O				
	теку- щий		TOJIS : Huž	BCGT-C				
			таль- :	5 5				
I 3.3.37.1. Центро	 	3	таль— : ный : 4 :					
ם מוונו	 	3	таль— : ный : 4 :					
НДВ, Н 4НДв, 5НДв, 6НДв, 5НДс, 6НДс,	: щий: : 2 : бежные на	3	таль— : ный : 4 :					
НДВ, Н 4НДВ, 5НДВ, 6НДВ, 5НДС, 6НДС, 6НДС-60,12Д-19, 10Д-9, 12Д-19Б, 300Д-90,200Д-60, 20Д-60А, 32ОД-60	щий: 2 : бежные пи Дн. НДс.	3	таль— : ный : 4 :					
НДВ, Н 4НДВ, 5НДВ, 6НДВ, 5НДС, 6НДС, 6НДС-60,12Д-19, 10Д-9, 12Д-19Б, 300Д-90,200Д-60, 20Д-60А, 32ОД-60	щий: 2 : бежные пи Дн. НДс.	3	таль— : ный : 4 :					
HIB, H 4HIB, 5HIB, 6HIB, 5HIC, 6HIC, 6HIC-60,121-19 101-9, 121-195, 30011-90,2001-60, 2001-60A, 3201-60 FMEI,FMEA,W165/5HW, EBARA 100x80, 5P1914, CMI-6x8, CMI 8x8x9-3,	: щий : 2 : бежные ни Дн., НДс.,	З псосы тик Д	Таль— : ный : 4 : на	5				
HIB, H 4HIB, 5HIB, 6HIB, 5HIC, 6HIC, 6HIC-60,121-19 101-9, 121-195 30011-90,2001-60, 2001-60A, 3201-60 FMRI, FMRA, W165/5HW, EBARA 100x80, 571914, CMI-6x8, CMI 8x8x9-3, EBARA 300x2506WM	щий : 2 :	3 : ROCCH THE II	72.75-: HHZ : 4 : 0,0035	5				
HIB, H 4HIB, 5HIB, 6HIB, 5HIC, 6HIC, 6HIC-60,121-19 101-9, 121-195, 30011-90,2001-60, 2001-60A, 3201-60 FMEI,FMEA,W165/5HW, EBARA 100x80, 5P1914, CMI-6x8, CMI 8x8x9-3,	: щий : 2 : бежные ни Дн., НДс.,	З псосы тик Д	Таль— : ный : 4 : на	5				

I	: 2	3 :	4 :	5
14Д-6,14НДс,20НДн,24НДн,НДВП- -125/6,350Д-90,400Д-190A	0,0037	0,0093	0,0062	0,0192
18ндс,20д-6,20ндсн,2500д-45, 16ндс-1	0,0042	0,0106	0,0071	0,0219
22ндс,24ндс,8нд-I0x5	0,0085	0,0124	0,0085	0,0294
3.3.37.2. Центј перег	обежные з качки холо			
8HII-6xI,8HII-9x2c,8HII-9x2, HK-200-200,HK-65/35-125,HK-200/1 -210,HK-200/120-120,HK-200-210, HK-65/35-240,HK-200/370, HK-200/160-120, EBAR80x50, EBARA 150x100 CWM,EBARA 150x100)			
GCW/27	0,0026	0,0066	0,0044	0,0136
8HII-9x3,14HII-10x1,16HII-10x1, 24HII-14x1,8HII-6x3,4H-5x2,5H-5x2 HK-560/350,HK-560/300,HK-560/33: 3 BLK/68TA,3MR2x3107,1H/2x6,8	5, 0,0032	0,0080	0,0053	O OTES
6HK-6xI.4HK-5xI.4HK-6xI.5HK-5xI.		0,0000	0,0003	0,0165
5HK-9xI,5HK3-9xI	0,0016	0,0040	0,0026	0,0082
4HK-5x2	0,002I	0,0053	0,0035	0,0109
6H-7x2,P3xII65,T6xI365x4, L6xI365,SMK4x6xI3,Y-4xIIx9, SMK-6x8xI3	0,0037	0,0093	0,0062	0.0192
I4H-I2x2,4H-5x4,5H-5x4,4H-I0x4, 6H-I0x4,CEK-CE	0.0042	0.0106	0.007I	0.0219
4H-5x8c,4H-5x8	0.0080	0.0199	0,0133	0.0412
5H-5x8c,5H-5x8	0,0085	0,0212	0,0142	0,0439
3.3.37.3. Цент	обежные з	HACOCH TH	па НГ дж	ī
	сачки гор	турк неўт	епродукто)B
4HT-5x1,6HT-6x1,2HTK-4x1, 6HTK-9x1,4HTK-5x1,4HTK-9x1, 4HTK-4x1,6HTK-6x1,5HTK-5x1,				
5HI'K-5x4	0,0021	0,0047	0,0047	0,0115
4HT-5x2,10HTA-9x1,4HT-5x2,5	0,0032	0, 007I	0,0071	0,0174
5HT-5x2,6HT-7x2	0,0037	0,0082	0,0082	0,0201
IOHT-IOx2	0,0042	0,0094	0,0094	0,0230
4HT-5x4,5HT-5x4,6HT-10x4, 8HT-9x3,8HTH-6x1,6HT-12-2,4x11x x 965	0,0058	0,0130	0,0130	0,0318
	40			

- 48 -

I	; 2 :	3 :	4 :	5
8НГД-9х3,8НГД-9х2	0,0069	0,0153	0,0153	0,0375
IOHT-Iúx4,4M&T-I0x2,Д6xI3V\$У F-615LOP	0,0074	0,0165	0,0165	0,0404
5HT-5x8,4HT-5x8,40PEH-65 <i>tg</i> -427 2x9-0P <i>tg</i> -2	0,0085	0,0189	0,0189	0,0463
3.3.37.4. Had	,			
art	ribhex i ari	Эессивных	MULKOCT	ЭЙ
КНЗ-3/25,КНЗ-5/25,ЯНЗ-6/30, ЯНЗ-8/35	0,0032	0,0033	0,0033	0,0 0 98
I,5XNA-3-K-I,X-90/85,X-8/18-Д, X-8/18-ДОП-2,I;5XT-6-3H-2; I,5XTB-6-3A;I,5XNA-3K-I	0,0033	0,0039	0,0039	0,0111
2XTB-5x24-14-5;2,5XHA,2HX-6K, 2X-9H-I, 3XHA, 3XTB-7x2A-20-4, 3XTB-7x2K	0,0039	0,0052	0,0052	0, 0I43
4XTB-6A-40-4, 4XTB, 9X-9II	0,0059	0,007I	0,007I	0,020I
3x9A-I, 2X-9	0,0053	0,0059	0,0059	0,0171
3.3.37.5. Had	сосы центро	бежные ко	нссльные	ддя.
пеј	рекачки вод	Ħ		
IK-6, I,5K-6, I,5K-6A, 2K-6, 2,5K-6, 2K-6A, 2K-12, 2K-9A, 3K-6, 3K-6A, 3K-9, 3K-9A, 4K-4K-8, 4K-8M, 3K-9H, 4K-12, 4K-18, 4K-16, 4K-180, 6K-8, 6K-12, I,5K-8/19, 2K-20/3C, 4K-30/35, 3K-45/55, 4K-90/55, K-90/55, K-45/55, K-45/56, K-45/6K-12, I,5K-8/19, 2K-20/3C, 4K-30/35, 3K-45/55, K-45/30, IOOAP2O, EBARA50X40YP8M, EBARA40YPW160, OPF A/6844 MOY12-25, EBARA-100X80PH9M,				
MOVI2-25, EBARA-IOOX80PH9M, HOX96\$ 2,5AP24B, H-2-7B\$ 4K-6A, 8K-I2A, 8K-I2, ARMKA,	0,0005	0,0013	0,0009	0,0027
IMRC, PMKE	0,0011	0,0027	0,0018	0,0056
8K-I8	0,0016	0,0040	0,0027	0,0083
3.3.37.6. Цен на	нтробежные соси типа К			
2KM-6, 3KM-6	0,0005	0,0013	0,0009	0,0027
4KM-8, 5KC-5x2, 25KC-5x2, 4KM-12, 6KM-12, H-4KM-12, H-6KM-12	0,00II - 49 -	0,0027	0,0018	0,0056

I	: 2	: 3 :	4	: 5
25KC-5x4, KC-20-60, R250/25G, R300/25G, BI I/2x9L6s	0,0027	0,0067	0,0044	0,0138
KCM-30, K CM-50, KCM-7 0	0,0032	0,0080	0,0053	0,0165
KCM-IOO, KCM-I5O, MC-30M, MC-70, MC-IOO, 4MC-IO, 3MC-IO, MC-50, IIIC 20/25, IIIC-I8/35, IIIC-38/44, IIIC-38/88, IIIC-60/26 IIIC-60/66, IIIC-60/184, IIIC-I05/245, IIIC-I05/294, IIIC-IIIC-I80/85, IIIC-I80/190, IIIC-I8 IIIC-I80/196, IIIC-I8 IIIC-I80/196, IIIC-I8 IIIC-I80/35/247, A/III-75, PDA39FR-I6I, 3B200x2, 6MC-7, ERARA350x200CHM, 4MCT-IO,	U/212,	·	·	·
4MCK-IOx6	0,0037	0,0093	0,0062	0,0192
MC-150, MC-250, AMI3-150, AMI3-3B-200x2, 3B-200x4, 5MC-8, 6MC-4	300, 6 0,0 04 2	0,0106	0,007I	0,0219
3.3.37.7. Цент	робежные и	насосы ти	па НФ дл	T -
взве	пенних вег	цеств		
25H2, 4H2, 4H2r, 4,5H2, 36-II, 30-I2, 2,55H, 5F-29/40, 5F-25,5/14,5, 5F-51/58, 5F-81/18B, 5F-144/46A, 5F-115/3 6C-144/146, THOM-10, IHOM-25/20 5HYAWYPPOW3SSVC, 4x13-622, 3x13-59B, 1/4x11-925, 3x11-485,	8,			
3x13-398, 1/4x11-923, 3x11-463, 3x11-488, 4x13-625	0,0011	0,0027	0,0018	0,0056
5НФ, 24НФм, 8НФ, 6НФ, 5Ф-6, 5Ф-12,0-245 3.3.37.8. Цент	0,00 16 poбежные г	•	0,0027 и перека	•
бенз	ина, сжиже	энных газ	ов, конд	энсата
АСЦЛ-20-24, АСЦЛ-20/I, СЦП-20/I СЦП-20-24, 6НДвб КС-I0-40-4, КС-20-60/2.	0,0033	0,0039	0,0039	0,0111
KC-50-55	0,0039	0,0052	0,0052	0,0143
KC-IO-III-4	0,0052	0,0059	0,0059	0,0170
5HC-6x8	0,0059	0,0124	0,0052	0,0235

3.3.37.9. Насосы объемные роторные и						
поршн	евые для	перекачк	и реагент	OB		
HHI-IM, HHI-I2M, T-15/20, T2-I0/100, P-I2, PAH-Ix30, T-2/163, HP-4/25, XTP-32/40, XTP-20/40, XT-17/5, HT-4/60, TB-42-I,4, XTP-4/100, H-75,						
P-5/20, PIH-Ix30	0,0046	0,0085	0,0033	0,0164		
PIH-2x30, PIH-2x50, PIHT-2x30, IH-60, I-60, HP-2,5-40	0,0059	0,0124	0,0046	0,0229		
PIH-2x65, HP-I,6/63, B-2, HP-0,63/63-I50, XT-I,6/63, XT-4/20	0,0072	0,0150	0,0059	0,028I		
РІН-2x100, ІДВ-16/32, ІДВ-16/20, ІДВ-25/20	0,0085	0,0177	0,0072	0,0334		
PT-IO/64, PT-4/63	0,0222	0.0248	0.0065	0,0535		
PT-4/25	0.0183	0.0209	0.0046	0,0438		
нд-10/100, нд-16/400	0,0111	0,0118	0.0033	0,0262		
THII-13M, THII-2M	0,0124	0,0248	0,0098	0,0470		
IB-354	0,0262	0.0530	0,0201	0,0993		
3.3.37.IO. Hec	еренчасы	е, вихрев	ые типа 1	P3,		
В, 1	3С. ВК для	перекач	ки воды,	масла		
IB-0,9M, IB-I,3, I,5B-I,3, I,5B-5/6, 2B-IM, 2B-I,6, 2,5B-I,8, 2B-I,8M, 3B-2,7, 3B-4/25, P3-3A, P3-3,5, P3-4, P3-4A, P3-5A, P3-6,5A, P3-7,5, P3-47, P3-80, P3-3IIA		-				
	0,0005	0,0013	0,0009	0,0027		
ICID-1,5, II5-2,5, IIE-2,5-3,6/45 IIB-25, IIIO/25, IMMIH-H, 2HB-9x4 2HB-6x16, HB-3x20, 2HB-9x4, 6HB-6x1, 1,58C-1,3M EK-1/16, IK-1/26, BKC-1/10, RKC-1/16, BKC-2/16, BK-4/24, EK-4/25, BK-4/26, BK-2/26,	0,0011	0,0026	0,0018	0,0055		
EK-5/24, EKC-4/24, EKC-2/26, EKC-5/24, IBC-0,9H, I,5BC-A3, SIB-25/IOO, BEK-I2cI2/I6	0,0016	0,0040	0,0027	0,0083		

I	: 2	: 3	: 4	:	5
C-5/I4A, BC-5/40, BC-5/4CA	0,0039	0,0039	0,0013	0,0	091
2,5UB-0,8, 2,5UB-I,5	0.0021	0.0053	0,0035	0,0	109
3B-200x2	0,0037	0,0093	0,0062	0,0	192
3B-200x4	0,0042	0,0106	0,0071	0,0	2I 9
Щ-40/6-70, Щ-40/6-18/46-1,					
%MH-228/46, CW-IOO-35, EBARA 50x40vC∨/M-35	0.0013	0,0020	0,0013	0.0	056
110-450/5, 110-350/5	0,0020	0.0033	-		
3.3.37.II. Had		•	2,700.00	-,-	
31B-4-130, 31B-6-16-50, 31B-8/25-160, 31B-8/25-100, 31B-8/25-150, 31B-10/75, 331B-16-140, EBARA 50x40yCw M2					20 7
		0,0039	0,0013	0,0	09T
12HA-9x4, 12HA-22x6, ATH-8-1-1 8AII-9x6	0,0136	0,0098	0,0013	0,0	247
3.3.37.I2. Had	осы вакуу	NHTHE			
PMK2, KBH-4	0,0016	0,0040	0,0026	0,0	082
PMK-3, PMK-4, BH-46, BH-47, BH-IMT, BBH-I,5, BBH-I,5M, BBH-3, KBH-8	0 800 T	0.000	0.0005	0.0	roo
BBH-3, KBH-8 BH-2. BHN-3	0 ,002 I		-		
BEH-I2, BEH-I2M	0,0026				
BM-46IM. BH-42, BH-454	0,0059	-			
LES TOTAL, DIE 10, DE MOT	0,0000	•	•	•	
Котлы	вентилят	эрн Т	абли	ца 3	•4.38
Тип и марка оборудования	Норм един ремог	ативы чис ицы обору ита	ТООННОСТ. КИНЕЙОД	и на р ио ви	THOME MAL
	теку	пий сред	thny K	TIN-	ECOTO
I	: 2		3 :	4	: 5
3.4.38.I. Hapo	DBHS KOTJIN				
JKBP-2,8/I3	0,096	2 -	- 0,	0743	0,1705
ДКВР-4/I3	0,111	-	- 0,	,0882	0,1994
ДКВР-6,5/I3	0,126	-	- 0,	,1000	0,2261
ЖВ-10/I3, ЖВР-10/I3	0,143			,II3I	0,2567
ДКВР-20/I3	0,172			1357	0,3080
"Вулкан", ДЕ-10;25	0,041	в -	- 0	,0297	0,0715
	- 52 -				

<u> </u>	: 2 :	3	4 :	5
ABA-4;5;6;10; IKTH-4;6;5; IKH-IC	0,0648	-	0,0517	0,1165
3.4.38.2. Водогре	ейные котлы			
HB-4 "Универсал", MT-2	0,0158	_	0,0125	0,0283
3.4.38.3. Вентили	тори центр	обежные		
IIG-45(IIBA)	-12, 0,0090	-	0,0016	0,0106
16-45 16-45 16-45 16-45 16-45 16-45 16-45 16-7-40 16-7-40 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5 16-7-5	0,0I3I	-	0,0025	0,0156
3.4.38.4 Вентил	яторы центр	обежные к	алорифер	HINE
Щ-7 -40# 9-II	0,0221	-	0,0049	0,0270
Ц АГИ (МЦ) 4-5-6, ОВМ-4-5-6	0,0030	- '	0,0023	0,0053
MI7-8-I0-I2, 06-300M3-8, 06-320M5-I0	0,0060	_	0,0046	0,0106
3.4.38.5. Вентил	нторы, дутье:	вые, дымо	COCH	
вд-6	0,0085	, -	0,006I	0,0146
вд-8	0,0103	-	0,0075	0,0178
ДЖЖ8-20, ВДЖЖ10-20	0,0151	-	0,0113	0,0264
3.4.38.6. Вентил	яторы аксиа	льние		
IBT-47, 2BT-50	0,0172	0,0090	0,0057	0,0319
2BT-70, BT-70	0,0353	0,0172	0,0110	0,0635
Примечания. І. Нормати		_	-	
	отрен ремон			
	номе) кинав	-		Harpe-
	и др., кро			
_	ви численно	-		-
	льности ото			
	ением сроко	-		
нормати	вам численн	ости прим	HAROTCA K	os⊄ďa~

T									
<u>+</u> _		<u>i-</u>	<u>2</u>	<u> </u>	<u> 3</u>	<u>-</u> -	4_	<u> </u>	<u> </u>
	циенты периода			олжи:	тельн	ости (OTOII	төл	ьного
	180 - 2 20I - 2	900 E	⊊I,0			- 300 и боле			7.
3.	Нормати станочи вентили	HX I	работ	: дл	H ROT				

Таблица 3.5.39

Резервуари, емкости

Объем емкостей, резервуаров,	:Нормативы чис : омкости по ви	еленности на ремонт идам ремонта	одног	о резервуара,
м ^З	: текущий	: капитальны	# :	BCGLO
I	: 2	: 3	:	4
	3.5.39.1. Цилин	щрические резер ву а	рние	MKOCTH
30	0,001	0,001		0,002
60	0,003	0,003		U , 006
100	0,005	0,004		0,009
200	0,007	0,004		0,0II
300	0,010	0,007		0,017
400	0,015	0,011		0,026
700	0,033	0,014		0,047
1000	0,053	0,027		0,080
2000	0,059	0,033		0,092
3000	0,072	0,036		0,108
5000	0,076	0,040		0,116
8000	0,089	0,045		0,134
10000	0,098	0,049		0,147
20000	0,139	0,071		0,210
	3.5.39.2. Сфери	ческие резервуары		
600	0,035	0,014		0,049
700	0,039	0,016		0,055
1000	0,042	0,018		0,060
3 (A)()	0,044	0,019		0,063

I	:	2	:	3	:	4	
3000		0,058		0,024		0,082	
4600		0,076		0,031		0,107	
6000		0,098		0,04I		0,139	
8300		0,120		0.050		0.170	

Примечание. Нормативами предусмотрено на выполнение станочных работ 3 % при текущем ремонте и 8 % при капитальном ремонте резервуаров и емкостей.

Таблица 3.6.40

Грузоподъемное оборудование

Наименование оборудования	Норматин	н численн рудования	ости на ре по винам	монт еди- ремонта
·	RUSUSES	: текущий	: Капиталь- : ний	BCero
I ·	: 2	: 3	; 4	: 5
I. Кран мостовой двухбалочний с ручным приводом, грузо- польемностью, т: 2	0.0065	0.0085	0.0133	0,0283
5	0.0105	0,0127	0.0222	0,0454
IO	0,0127	0.0157	0.0267	0,0553
2. Кран мостовой однобалочный с ручным приводом грузо-		·	·	
подъемностью, т: 3	0,0042	0,005I	0,0089	0, 0182
5	0,0066	0,0085	0,0133	0,0284
IO	0,0105	0,0127	0,0223	0,0455
3. Кран однобалочный с электрической талью, грузоподъем-	u —	·		
ностью, т:	0,0105	0,0127	0,0223	0,0455
2	0,0127	0,0157	0,0267	0,0552
3	0,0148	0,0183	0,0312	0,0643
5	0,0171	0,0213	0,0357	0,074I
4. Таль электрическая грузо- польемностью, т: I-2	0.004I	0.0050	0.0089	0.0180
3–5	0,0066	0,0085	0,0133	0,0284
5. Таль ручная, грузоподъем- ностью, т: I-2	0,0021	0.0025	0.0045	0,0091
3-5	0,0042	0,0025 0,005I	0,0029	0,0182

Примечание. **Нормативами предусмотрено** IO % на выполнение станочных работ.

Регенерационная установка

Тип, производитель установки	:Нормати: :ки	ви числени	нт одной установ-		
	Bcero	B TOM	исле по видам	Pemorta	
		текущий	: средний	капитальный	
ВИМЭ-2,					
20 rr/4	0,178	0,052	0,037	0,089	

4. Ремонт электрооборудования

Профессии: электромонтер по ремонту и обслуживанию электрооборудования, электромонтер по ремонту электрооборудования, слесарьэлектрик по ремонту электрооборудования

$\begin{tabular}{ll} \bf T & a & b & d & d & 4.1.42. \\ \end{tabular}$

Мощность электродв игателей, кВт	Норматив электрод текущий	вигателей і : ка	сти на ремонт IOOO по видам ремонта питальный ртки: с перемоткой обмоток
I	: 2	: 3	: 4

4.І.42.І. Электродвигатели технологических

насоеных газофракционирующих установок (ГБУ), установок низкотемпературной ректификации (НТР), установок осушки и очистки газа, бензонасосных, питательных насосов и димососов котельных, насосов химической очистки воды (ХВО), насосных гелиевых установок, склада готовой продукции (СПП), воздуховабора, подзарядных агрегатов, насосов очистных сооружений, аппаратов воздушного охлаждения, вентиляторов поддува воздуха для электродвигателей, калориферов, рабочей вентиляции, мостовых кранов, электрифицированных талей

 Λ синхронные обычного исполнения с частотой вращения 1500 об/мин, напряжением до 660 B

до 1,5 1,46 0,48 0,93 - 56 -

Продолжение табл. 4.1.42

I	: 2	: 3	
I,6 - 3,0	2,18	0,56	I,06
3,I - 5,5	2,18	0,65	I, 2 I
5,6 - IO,0	2,91	0,89	I,62
IO,I-I7,0	4,37	1,13	2,18
I7,I-22,0	5,10	I,38	2,50
22,1-30,0	5,83	I,70	3,24
30,I -4 0,0	7,28	2,03	3,80
40,I-55,0	8,75	2,35	4,45
55,I -75, 0	10,93	3,00	5,59
75,0-100,0	I3,II	3,56	6,89
IOI - I25	16,03	4,62	8,90
126-160	19,68	5,51	10,52
161-200	21,86	6,07	II,34
201-250	24,06	6,64	12,55
251-320	26,24	7,45	I4, I7
Асинхронные с фазн	ным ротором в	зривозащищен	ные, крановне,
погружные, многоскорост	ные с частото	й вращения І	500 об/мин, напря-
жением до 660 В			
До I ,5	2,18	0,65	I,2I
I,6 - 3,0	2,91	0,73	I, 3 8
3,I - 5,5	2,91	0,8I	1,62
5,6 - IO,0	3,65	1,13	2,10
IO,I-I7,0	5,83	I,46	2,83
I7,I-22,0	6,56	I,78	3,40
22,1-30,0	7,28	2,18	4,2I
30,I -4 0,0	9,48	2,68	4,94
40,I-55, 0	II,66	3,07	5,83
55,I-75, 0	I4,58	3,89	7,28
75,I - I00	16,76	4,62	8,99
IOI –I25	21,14	5,99	II,58
126-160	25,5I	7,13	I3,6 9
I6I - 200	28,42	7,93	14,73
201-250	31,34	8,66	16,35
251~320	34,26	9,72	18,47

I	: 2	: 3	: 4
4.I.42.2	Электрог	вигатели авари	ийной вентиляции,
маслонсосов компрессо			
вижек, насосных горюч			
и маслохозяйств в це		_	
подзарядных агрегатог	в, электрод	цвигатели стані	ков по обработке
металлов.			
Асинхронные обычного	исполнения	н с частотой в	ращения 1500 об/мин,
напряжением до 660 В			
Д о I , 5	0,67	0 ,4 I	0,78
I,6 - 3,0	I,OI	0,47	0,87
3,I - 5,5	I,OI	0,54	I,OI
5,6 - IO,0	I,35	0,74	I,35
10,1-17,0	2,03	0,94	I,82
I7,I-22,0	2 ,3 6	I,I4	2,16
22,I-30,0	2,70	I,42	2,70
30,I -4 0,0	3,38	I,69	3,17
40,I-55,0	4,04	I,96	3,72
55,I-75,0	5,06	2,49	4,66
75,I-I00	6,07	2,97	5,73
I0I-I25	7,42	3,84	7,42
126-160	9 , II	4,59	8,77
161-200	10,13	5,06	9,45
201–250	II,I4	5,53	I0 ,46
251-320	12,14	6 ,2 I	II,80
Асинхронные с ф азным			
погружные, многоскоро	остные с ч	астотой вращени	ия 1500 об/мин,
напряжением до 660 В			
До 1,5	1,01	0,54	I,OI
I,6 - 3,0	I,35	0,61	I ,I 4
3,I - 5,5	I,35	0,67	I ,3 5
5,6 - 10,0	I,69	0,94	I,76
10,1-17,0	2,70	1,21	2,36
17,1-22,0	3,04	I ,4 8	2,83
22,I-30,0	3,38	I,82	3 ,5 I
30,I -4 0,0	4,38	2,23	4,II
	5	58 -	•

ı	: 2	3	<u>4</u>				
40,I-55,0	5,40	2,56	4,85				
55,I-75,0	6,75	3,24	6,07				
75,I-I00	7,76	3,84	7,49				
IOI-I25	9,79	5,00	9,65				
126-160	II,80	5,94	II,4I				
I6I-200	13,16	6,62	12,28				
201-250	I 4, 5I	7,22	I3,63				
251-320	15,86	8,10	I5, 38				
Синхронные об	ичного исполнения с	частотой в	ращения 1500 об/ми				
напряжением г	to 660 B						
I 25	8,77	4,59	8,90				
200	12,14	6,07	II,34				
	4.1.42.3. Электродв	игатели аси	нхронные с				
синхронным напряжением 6 - 10 кВ							
Асинхронные с	бичного исполнения	с частотой	вращения				
I500 od/mmh,	напряжением 6 - 10	кB					
201-250	46,57	23,2I	44,0I				
251-320	51,30	26,05	49,68				
32I -4 00	56,73	28,89	55,35				
40I-500	62,II	33,05	63,85				
50I - 630	73,5 8	38,33	73,71				
63I - 800	85,06	4I,I8	79,38				
Асинхронные с	э фа зным ротором, вз	Бино защи щен	ные, крановые,				
погружные, м	огоскоростные с чис	тотой враще	ния I500 od/мин,				
напряжением (5 - IO KB						
201-250	60,74	30,23	57,23				
25 I -32 0	66,8I	33,88	64,5 I				
321-400	73,56	37,52	71,94				
40I-500	80,98	44,27	83,0I				
50 I-63 0	95,84	49,8I	95,84				
631-800	II0,68	53,58	103,12				
Синхронные	киненкопои отоничь	с частотой	вращения				
	, напряжением 6 - 10						
251-320	6I, 4 I	31,31	59,53				
321-400	68,16	34,69	66,27				
	- 59	-					

Продолжение табл. 4.1.42

I	: 2	: 3	: 4
40I - 500	74 , 9I	40,76	76,53
50I -63 0	88,4I	45,89	88,4I
63I -100 0	94,49	48,59	90,43
Синхронные в	зр <mark>ивозащищенного исг</mark>	о киненко	астотой вращения
1500 об√мин,	напряжением 6 - 10	RB	
320-400	88,41	45,22	86,39
40I -5 00	97,18	53,19	99 , 6I
50I -100 0	114,73	59,66	115,00
I00I-3700	124,86	63 ,44	122,15
370I -63 00	132,28	68,84	132,28
I5799-I8200	I97 , 58	100,76	197,49

Примечания. І. К нормативам численности на ремонт электродвигателей, работающих в тяжелих условиях (горячие насосные абсорбционно-газоотбензинивающих установок, насосн горячего ДЭГа и электродвигатели градирен) применяются коэфбициенти:

ж нормативам п.4.I.42.I.: на капитальный ремонт —2,50 текущий ремонт —0,83 к нормативам п.4.I.42.3.: на капитальный ремонт —I,50 текущей ремонт —0,90

 К нормативам численности на ремонт электродвигателей применяются коэффициенты при частоте вращения, об/мин:

$$3000 - K = 0.8$$
 $750 - K = I.2$
 $1500 - K = I.0$ $600 - K = I.4$
 $1000 - K = I.I$ $500 \times 1000 \times 1.5$

3. К нормативам численности на ремонт электродвигателей мощностью до 55 кВт, установленных на высоте, в шахтах, вентиляционных коробах применяется коэффициент I,5.

- 4. Нормативами предусмотрено IO % на выполнение станочных работ.
- 5. Нормативная численность на техническое обслуживание электродвигателей устанавливается в размере 10 % от нормативной численности на текущий ремонт.

Таблица 4.2.43

Мощность траз кВА	ю подорматоров,	: TDAHCOODM	численности на второв по видам	ремонта
A41.04		: текуший	: капитальны	i : Bcero
I		: 2	: 3	: 4
			нсформаторы тре	
		двухобмоточ	ные, масляные,	напряжением
		IO KB		
До 63		0,84	0,6I	I ,4 5
100		1,01	0,71	1,72
180		I,I4	0,81	I,95
250		I, 3 5	0,94	2,29
400		I,52	I,05	2,57
630		I,69	I,I8	2,87
I0 0 0		2,03	I,43	3,46
1600		2,71	I,76	4,47
2500		3,05	2,16	5,2I
	4.2.43.2.	Трансформа	ори наружной ус	тановки
		напряжение	135 KB	
до 6300		3,72	3,52	7,24
	4.2.43.3.	Трансформа	горы наружной ус	тановки
		напряжение	# IIO, 220 RB	
до 16000		7,28	7,29	I4,57
25000		7,28	7,29	I4, 57
40000		7,28	7,29	14,57
63000		8,77	8,10	16,87
80000		10,13	10,80	20,93
160000		II,8I	13,49	25,30

I	:	2	:	3	<u>:</u>	4
	4.2.43.4.	Автотранс	рорма:	горы сило	вые	
125000		II,8I	-	13,49		25,30
	4.2.43.5.	Трансформа	аторы	тока про	ходные	
		внутреннеі	й уста	ановки на	пряжени	ем
		I - IO K B				
До 5000		0,04		0,05		0,09
	4.2.43.6.	Трансформа	аторы	тока нар	ужной	
		установки	напр		o IIO I	c B
		0,05		0,06		O,II
	4.2.43.7.		_		-	
		внутренне		ановки на	пряжен	ием
		до IOOO В				
		0,03		0,03		0,06
	4.2.43.8.	Трансформ	-		роенн и	•
		напряжени	ем до			
		0,04		0,05		0,09
	4.2.43.9.	Трансформ	_	-	ия вну	гренней
		установки	до 1			
Однофазные		0,04		0,05		0,09
Трехфазные	4 0 40 70	0,07		0,13		0,20
	4.2.43.10	• Трансфор			ния нај	ружной
		установк	и до			
_		0,05		0,06		0,II
Примечан	-	ē'		-		
		-		•	•	ремонте и
		% при кап				
						теское об-
	CJU To	T SIMBERIAL	рансф	орматоров	устан	авливается
				норматив	NP NOH	сленности на
	Tel	сущий ремо	HT.			

таблица 4.3.44 $\,$ Аппараты напряжением выше 1000 $\,$ $\,$ $\,$

і текущий : капитальный : всег 1 : 2 : 3 : 4 4.3.44.1. Масляные выключатели внутренней установки до IO кВ на номинальный ток, A: До 600 2,16 3,24 5,40 1000 2,70 4,04 6,74 2000 3,24 5,39 8,63 3200 4,86 8,F0 12,96
4.3.44.I. Маслиные выключатели внутренней установки до IO кВ на номинальный ток, A: До 600 2,16 3,24 5,40 I000 2,70 4,04 6,74 2000 3,24 5,39 8,63
установки до 10 кВ на номинальный ток, A: До 600 2,16 3,24 5,40 1000 2,70 4,04 6,74 2000 3,24 5,39 8,63
ток, A: До 600 2,16 3,24 5,40 1000 2,70 4,04 6,74 2000 3,24 5,39 8,63
До 600 2,16 3,24 5,40 1000 2,70 4,04 6,74 2000 3,24 5,39 8,63
I000 2,70 4,04 6,74 2000 3,24 5,39 8,63
2000 3,24 5,39 8,63
-,
3200 4,86 8,E 0 12.96
4.3.44.2. Масляные выключатели напряжением
35 kB
Всех типов 3,24 5,39 8,63
4.3.44.3. Масляные выключатели наружной
установки напряжением IIO кВ типов:
MKTI, y 13,49 20,24 33,73
MIC 5,40 7,96 I3,36
4.3.44.4. Масляные выключатели наружной
установки напряжением до 220 кВ
BCOX THROB I6,20 26,70 42,90
4.3.44.5. Выключатели нагрузки напряжением
до 10 кВ
BCEX THROB I,08 I,2I 2,29
4.3.44.6. Разьединители внутренней устанонки
трехполюсные с номинальным током, А:
До 600 I,08 2,03 3,II
I000 I,62 2,70 4,32
2000 I,89 3,38 5,27
4000 2,43 4,04 6,47
5000 3,5I 6,07 9,58
4.3.44.7. Разъединители наружной установки до
35 кВ на номинальний ток, А:
До 600 I,62 2,70 4,32

I		: 2	: 3	: 4
I00 0		I,89	3,38	5,27
2000		2,43	4,04	6,47
400 0		3,24	5,4 0	8,64
	4.3.44.8.	Разъедините	ли наружной уст	ановки
		напряжением	ı, kB	
IIO		2,43	6 ,4 8	8,91
220		3,78	8,10	II,88
	4.3.44.9.	Отделители	наружной устано	вки
	•	напряжением	ı, ĸB	
CII		2,16	3,38	5,54
220		3,24	4,04	7,28
	4.3.44.IO.	Короткозам	ыкатели напряже	нием
		IIO kB n 2		
На один пол	ЮC	2,43	3,9I	6,34
	4.3.44.II.	Заземляющи	е ножи	
На один пол	IIOC	I,08	I,62	2,70
	4.3.44.I2.	Приводы ру	чные для маслян	IHX
		выключател	ей и разъединит	й эд өй
Всех типов		0,54	0,81	I,35
	4.3.44.I3.	Приводы с	электродвигател	A NMEJ
		электромаг	нитами для масл	иных
		BHRJOYATEJ	юй и разъединит	йелей
Всех типов		0,81	I,35	2,16
	4.3.44.I4.	шиты сборн	не и соединител	тине
		на 10 м (н	а 3 фазы) при т	cke, A:
600		SO,I	I,88	2,96
I600		I,35	2,42	3,77
2400		I,6I	3,25	4,86
400 0		I,88	3,35	5,23
	4.3.44.15.	Реактори с	ухие (токоогран	и эмионие и
			напряжением до	
_		3 фаз ы) на	номинальный то	ж, A:
До I000		I,42	I,OI	2,43
2000		I,77	I,26	3,03
3000		2,12	I,5I	3,63
		- 64 -	•	-

Продолжение табл. 4.3.44

I		2	: 3	: 4
4000		2,83	2,03	4,86
Всех типов	4.3.44.16.	и пуск (на 3	ры сухие (токоо овые) напряжени фазы) сдвоенные льный ток до 30 4.56	ием до IO кВ е на
	A 3 AA 12		ники трубчатые	•
	2.0.44.T.			напряжением, кВ
До 10		I,08	I,07	• .
35		I,6I	I,6J	3,22
IIO		2,14	3,27	5 ,4 I
120		2,69	4,03	6,72
	4.3.44.18.	Предох	ранители напря	жением до
		35 ĸ ₿	(на комплект 3	фаз)
Всех типов		0,53	0,53	I,06
	4.3.44.I9.		азователи тири	-
		номина	ильный выпрямле	нный ток, Л:
100		I,94	1,62	3,56
I6 0		3,24	2,83	6,07
25 0		4,2I	3,64	7,85
500		5,83	4,86	10,69

П р и м е ч а и и я. І. Нормативами предусмотрено на выполнение станочных работ ІО $\mathcal R$ при текущем и 20 $\mathcal R$ при капитальном ремонте.

 Нормативная численность на техническое обслуживание оборудования устанавливается в размере 10 % от нормативной численностя на текущий ремонт.

Аппараты напряжением до 1000 В

Техническая ха тип, марка аппа		: аппаратов	по ви	пам ремонт	<u>a</u>	
		: текущий	: K	апитальный	: 1	cero
I		: 2	<u>:</u>	3	<u>:</u>	4
	4.4.45.I.	Рубильники	сце	нтр ал ьной і	рукоят	гкой,
		трехфазные	, на	номинальны	й ток,	, A:
До 400		0,76		0,23		0,99
600		0,85		0,30		I,I5
800		0,94		0,35		I,29
1000		I,33		0,48		I,8I
1500		I,90		0,7I		2,61
	4.4.45.2.	Рубильника	c do	ковой руко	яткой,	,
		трехфазные	на н	оминальный	TOK,	A:
До 4 00		0,91		0,29		I,20
600		1,03		0,36		I,39
800		I,I4		0,43		I,57
1000		I,59		0,56		2,15
I500		2,27		0,85		3,12
	4.4.45.3.	Переключат	гели с	центральн	ой руг	кояткой,
		трехфазные	на н	оминальный	TOR,	A:
До 200		0 ,5 I		0,23		0,74
400		0,76		0,32		I,08
600		I,02		0,40		I,42
	4.4.45.4.	Переключа	гели с	боковой р	укоят	кой,
		трехфазные	на н	оминальный	TOR,	A:
До 200		0,61		0,28		0,89
400		0,91		0,38		I,29
600		1,21		0,48		I,69
	4.4.45.5.	Выключате	и авт	оматически	е, воз	пушные,
		универсал	рние с	ричажним	и эле	ктро-
		матнитным	приво	дом на ном	иналы	HPN
		TOR, A:				
До 4 00		I,90		0,80		2,70
600		2,27		0,94		3 , 2I
		- 66	_			

	I	:	2	:	3		4
800			3,03		1,26		4,29
1000			3,80		I.67		5,47
I500			5,06		2,21		7,27
2000			6,32		2,53		8,85
		4.4.45.6.	Выключат	оли ат	этоматичес	кие, во	здушные,
			универса	льные	с электро	двигат	эльным
		:	приводом	на н	минальный	t TOR,	A:
До 4 00			6,33		2,37		8,70
800			8,87		3,16		12,03
1000			10,13		3,96		I4,09
I500			12,65		4,75		17,40
2000			I5,8I		5,53		2I,34
		4.4.45.7.					
			ные, трех	сфазны	е на номин	альный	TOK, A:
До 200			I,26		0,62		I,88
400			I,90		0,80		2,70
600			2,53		0,94		3,47
		4.4.45.8.					
_				стродв	игателей і	иощност	ью, кВт:
До 17			I,26		0,48		I,74
3 0			I,5I		0,62		2,13
55			I,90		0,80		2,70
75			2,53		0,94		3,47
		4.4.45.9.					
_			электрод	(Bulat	ониом йоцн	OCTLO,	
До 17			I,90		0,87		2,77
3 0			2,53		I,II		3,64
55			3,48		I,42		4,90
75			4,63		I,74		6,37
		4.4.45.10	. Пускат	ели ма	гнитные ма	аслонап	олненные,
			взрыво	защище	нные для	электро	двигате-
			лей мог	щость	o, kBr:		
До 17			I,90		0,80		2,70
3 0			2,53		0,95		3,48
			- 67	-			

Продолжение табл. 4.4.45

55							
			3,16		I,26		4,42
	4	4.4.45.II.	Контакт	ори пер	еменного	тока :	на
			номинал	ьный то	ж, А:		
До I50			2,53		0,80		3,33
3 00			3,16		I,II		4,27
600			3,80		I,42		5,22
		4.4.45.I2.				тока :	на
		**	номинал	ьный то	ok, A:		
До 150			I,90		0,80		2,70
350			2,53		0,95		3,48
600			3,16		I,I8		4,34
		4.4.45.13.		-			
				не на г	номи нал ьн	ный ток	
до 160			I,59		0,62		2,2I
400			2,2I		0,80		3,0I
630			2,99		I,07		4,06
		4.4.45.I4.				ia	
			номинал	ьный т	ok, A:		
Д о 100			I,07		-		I,07
250			I,42		-		I,42
400			2,13		****		2,13
		4.4.45.15.		_		и на	
			номинал	ьный т	ok, A:		
До 63			I,07		-		I,07
I00			I,42		-		I,42
25 0			2,13		_		2,I3
400			2,53		0,95		3,48
4.4.45.16. Микропереключатели							
			0,28		***		0,28
		4.4.45.17	• Переклю	чатели	барабанн	ные сез	блок-
			-контак	тов на	номинали	ьный то	ĸ, A:
10			1,07		-		I,07

I	<u> </u>	2:	3	: 4		
	4.4.45.I8.	Переключател	ли барабанные	ес блок-		
		ECHTARTAME	Ha TOK 50 A	с числом		
		контактных	элементов			
До 9		I,07	_	I,07		
12		2,13	-	2,13		
15		2,53	-	2,53		
	4.4.45.19. Командоаппараты кулачковые					
		регулируемые с числом рабочих				
		цепей				
До 6		I,90	0,7I	2,61		
8		3,16	I,II	4,27		
16		10,13	3,55	13,6 8		
24		II,39	4,II	I5,5 0		
	4.4.45.20. Командоаппараты кулачковые					
		нерегулируемые с числом рабочих				
		цепей				
До 6		I,26	0,48	I,74		
IO		I,90	0,7I	2,61		
13		2,65	0,95	3,60		
	4.4.45.21. Контроллеры магнитные переменного					
	тока для управления одним					
		двигателем,				
6-36		6,33	2,37	8,70		
20-100		8,87	3,16	12,03		
	4.4.45.22		кулачковые			
		и переменного тока с сопротивлением				
		для электро	одвигателей м	ощностью, кВт:		
До 25		3,16	1,18	4,34		
45		3,80	I,35	5,15		
65		4,42	I,42	5,84		
80		5,06	I,67	6,73		
IIO		5,06	I,98	7,04		

I	<u> </u>	2	:	3	: 4	
	4.4.45.23.	Контро	ллерн	магнитные	крановне	
		переме	нного	тока для у	правления	
		двумя	двигат	елями мощн	остью, кВт	
2x20 - 2x100		15,17		5,53	20,70	
	4.4.45.24.	Контро	ллеры	магнитные	крановые	
				тока для у	_	
			двигат	•	остью, кВт:	
20– 80		7,59		2,76	10,35	
40-150		8,87		3,16	12,03	
	4.4.45.25			матнитные	_	
				тока для у	-	
2 22 2 22		-	двигат		юстью, кВт:	
2x20 - 2x80		13,29		4,74	I8,03	
2x40 - 2xI50		15,17		5,53	20,70	
	4.4.45.20.	_	ллеры	C TRCZOM I	•	
6		I,90		0,62	2,52	
12	4 4 45 97	2,53		0,87	3,40	
	4.4.45.27. Универсальные ключи и переключатели с числом секций					
			OM COR		o ~	
4		0,24		0,08	0,32	
8		0,32		0,08	0,40	
12		0,50		0,16	0,66	
16	4 4 45 00	0,63		0,21	0,84	
	4.4.45.26.	_			переключатели	
		вэрывозащищенные маслонаполненные с числом секций				
4		0.63	cerm		0.70	
8		0,63		0, I6	0,79	
12		•		0,16	0,79	
12 16	••	0,63 I.26		0,23 0,32	0,86 I.58	
10	4.4.45 29		TTTT-0-		иного исполнения прогодивния	
	Z•Z•ZU•&J•	C TRCA			HOLO NCHOHANI	
2		0,01		*******	0.01	
3		0,02		_	0,02	
•		٠, ٠٠٠			-,	

Продолжение табл. 4.4.45

I	•	2		3	: 4		
4		0,03			0,03		
9		0,06		-	0,06		
	4.4.45.30.	Кнопки	управле	ния масл	онаполненные		
		взриво	непронип	(аемине с	числом кнопок		
2		0,02		0,0I	0,03		
3		0,03		0,0I	0,04		
4		0,04		0,0I	0,05		
9		0,13		0,03	0,16		
	4.4.45.3I.	Amaka	шики сопротивления защищенные с				
					и предельным		
			до 200 А		ой мощностью, Вт		
1200		0,88		0,32	1,20		
2000		I,08		0,40	I,48		
2800		1,26		0 ,4 8	I,74		
3600		I,78		0,62	2,40		
4800		2,21		0,80	3,01		
6000		2,53		0,95	3,48		
720 0		3,29		1,18	4,47		
9000		3,80		I,42	5,22		
	4.4.45.32	2. Реостать пусковые масляные для					
=0			елей мо	иностью,			
50		2,53		0,94	3,47		
7 5		3,79		I,42	5 , 2I		
100		4,42		I,58	6,00		
I75		5,69		I,98	7,67		
300		8,86		3,16	12,02		
500		II,39		3,95	I5,34		
	4.4.45.33.				иля генераторов		
					зарядних		
			аторов о		мощностью, Вт:		
300		2,53		0,94	3,47		
550		3,16		I,18	4,34		
84 0		3,79		I,42	5,2I		

I	:	2	: 3	:	4
	4.4.45.34.	Реостать	и пусковые	и пуско-	
			пощие посто		
		перемен	ioro toka e	минималь	и йон
			тыной защит		
y ==		приводом	и на номина		, Λ
40		3,79	I,4	2	5 , 2I
100		5,06	I,7		6,80
200		6,32	2,3		8 ,6 9
	4.4.45.35.		опклионние		
		_	аваемым мом		
100		I,26	0,4		I,74
I6 0		I,90	0,6		2,52
	4.4.45.36.		магнитн тян		лкающие
*			им усилием,		
До 25		I,97	0,6		2,59
	4.4.45.37.		_		цистанцион-
			равления с	MOMEHTOM	сцепления,
		KPC.M:			
1,6 - 6,3		I,26	0,4		I,74
10,0 - 25		I,33	0,5		I,88
40 - 160		I,7I	0,7		2,42
	4.4.45.38		магнитн тор		
			гяговым уси		
35		2,53	0,9		3,48
70		3,80	I,3		5,14
II5		5,06	I,9		7,04
I4 0		6,96	2,3		9,33
	4.4.45.39		распределит		
			мотав хинис	атических	BHKJIO-
4		чателей		•	
4		2,14	2,6		4,83
6		2,69	4,0		6,72
8		3,76	5,3		9,13
IO		4,30	6,7		II,IO
12		5,37	8,0	6	I3,43
		- 72			

Ĺ	:	2			
	4.4.45.40	. Пункты	распре;	целительные	силовне
		с коли	еством	предохрани	гелей, шт.
5		I,35		I,88	3,23
IO		I,6I		2,42	4,03
	4.4.45.4I		изаторы	напряжения	мощностью
		Br:			
160		0,70		I,07	I,77
280		0,80		1,47	2,27
500		I,08		2,15	3,23
900		I,88		2,69	4,57
	4.4.45.42.	Приводи	c Mar	нитным усил	ителем
		трехфа:	зные на	номинальну	ю мощность
		KBT;			
Д о 15		3,23		4,03	7,26
	4.4.45.43	Блоки і	магнитн	ых усилител	ей
		серии 1	50 и БД		
		0,33		0,53	0,86
	4.4.45.44	• Усилит	эли маг	нитные одно	фазные,
		мощнос	тью на	выходе, кВ.	A ;
I,25 - 2,2		0,35		0,6I	0,96
3,6 - 4,8		0,45		0,75	I,20
5 , 0 - 7 , 0		0,56		0,94	I,50
	4.4.45.45	• Усилит	ели маг	нитные трех	: ўазные
		мощнос	тью на	выходе, кВ.	A :
I,04 - 2,7		0,72		1,21	1,93
3,7 - 5,7		0,88		I,47	2,35
8,2 - 9,I		I,I3		I,88	3,0I
12 - 17,7		I,46		2,42	3,88
	4.4.45.46	. Шины с	борные	и соедините	льные
		открыт	не и ши	нопроводы н	a IO m
		при то	ке, А:		
600 ⁻		0,81		I,07	I,88
1600		I,08		I,34	2,42
2400		I,35		I,76	3,11
4000		I,87		2,15	4,02
		- 73		•	•

		modit.	ONT PARCHEOL	e. 4.4.40	
I	:	2 :	3	: 4	
	4.4.45.47.	Шинопроводы	закритие м	агистральны	ie .
		на секцию дл			
1600		_	I,6I	I,6I	
2500		-	2,02	2,02	?
4000			2,42	2,42	
	4.4.45.48.	Шинопроводн	закритие ра	спределител	IPHH6
		на секцию дл	иной 3 м дл	я тока, А;	
25 0		-	0,67	0,67	,
4 00		-	0,94	0,94	L
650		-	1,20	I,20)
п римеч:	2. H 0	ормативами пранитально при капитально ормативная чибслуживание робот порматий ремонт.	от 10 % при о ом ремонте. исленность на истанавливае	текущем и 2 а техничесь тся в разме	coe ope
			Тас	блица 4	.5.46
		борудование (лектрического	•		

Характеристики оборудования	элемент	вы численнос ов (измерены и работ	сти на ремон ий: шт.,м)	т 1000 по видам
	техниче	с-:текущий - :(электро- ие:слесарные	:капитальні -:(электро- Эслесарные)	и: всего
I	: 2	: з	: 4	: 5
4.5.	46.І. Цитки	осветительн	не распредел	штельные
	с числ	ом автомати	юских выклю	чателей,
	mr.:			
	0,60	I,34	I,87	3,81
	0,72	I,6I	2,42	4,75
5	0.97	2.T4	3.35	6.46

Продолжение табл. 4.5.46

I :	2	·	3	:	4	<u>:</u>	5		
20	I,33		2,95	4	1,02		8,30		
30	I,56		3,49	4	1,6 9		9,74		
4.5.46.2.	Трансф	рорма	аторы д	ля мес	rhoro				
и йелетимерине хивонеле винешевоо									
	цепей	упра	а в ления	мощно	стью,	$\mathbf{B}\mathbf{T}$			
До 250	0,48		2,30	() ,3 9		3,17		
630	0,64		2,59	(,48		3,7I		
1000	0,79		3,82	(),64		5,25		
1600	0,97		4,59	(79,79		6,35		
2500	I,6I		7,66		[,20		0,47		
4.5.46.3.		pooc	ветител	ьная а	рмату	pa			
С одной лампой накаливания	0,02		0,09		-		O,II		
С ломинесцентными лампами с числом ламп до двух	0,02		0,II		-		0,I3		
С люминесцентными лампами с числом ламп четыре	0,04		0,17		-		0,2I		
С люминесцентными лампами с числом дамп более четыре: во взрывобезопасном испол- нении	x 0.03		0,II		0.07		0 . 2I		
С ртутными лампами высоког давления, ксеноновые ДРП	0,05		0,20	•	_		0,25		
4.5.46.4.	Освет	ител	ьные се	ти из	кабел	я,про	вода,		
	шнура	по	кирпичн	ни и б	етонн	ным ос	нова-		
	, MRNH	сече	нием, м	м ² (на	I000) M):			
$2xI_{5} - 4$	0,01		0,02	-	0,02		0,05		
3xI,5-4	0,01		0,02	1	0,02		0,05		
4.5.46.5.	Освет	ител	ьные се	EN NT	кабел	я,про	вода,		
	шнура	по	кирпичн	нии и об	етонн	ым ос	нова-		
			скрытой 000 м):		дже с	ечени	ем,		
2xI.5 - 4	0.01		0.02		0.02		0.05		
3x2,5-4	0,01		0,02		0,02		0,05		

Электротехническое оборудование

Ларактеристика	:Нормативы :единиц обс	численности п кинаводую	на ремонт видам рем	I000 юнта
о́орудования	: техничес- : кое обслу- : живание	: текущий ::	капитальный	
I	: 2	: 3 :	4	: 5
And the same of th	4.6.47.І. Электро	опечи сопрот	ивления наг	реватель-
	ные , пла	я да, эннаци ва	сушки возд	уха мощ-
	ностью,	, KBT:		
до 40	4,II	6,72	4,02	I4,85
50	5,64	9,40	5,37	20,4I
90	9,67	16,13	9,39	35,19
120	12,90	21,50	12,09	46,49
I8 0	16,12	26,70	14,76	57,58
240	20,15	33,60	20,13	73, 88
400	24,18	40,33	24,16	88,67
	4.6.47.2. Электро		ивления муф	_{рельные} ,
		тью, кВт:		
<u>1</u> 0 25	4,02	6,72	4,02	14,76
W	4.6.47.3. Шкафы			
ДC 2	I,33	0,99	0,66	2,98
5	2,21	I,67	1,00	4,88
IO	3,10	2,35	I,34	6,7 9
	4.6.47.4. Свароч			
7.00		льный свароч		
160	1,61	7,24	2,42	II,27
300	2,25	10,16	3,22	I5,63
500	3,22	14,51	4,84	22,57
1000	4,84	20,31	7,25	32,40
2000	7,25	32,65	12,09	51,99
	4.6.47.5. Свароч			
	•	редвижных св	-	-
W.A.C.		инальный сва	-	-
12 0	2,73	12,34	4,03	19,10
30 0	3,87	17,41	4,84	26,12

Проможение табл. 4.6.47

	I		2	:	3	:	4	: 5
500			4,5I		20,31		6,45	31,27
1000			7,25		32,65		IO,48	50,38
		4.6.47.6.	Одноп	OCTO	вые сва	арочн	ие прео	бразователи
			на но	мина.	льный (сваро	от йинг	к, А:
120			3,87		I7,4I		5,64	26,92
300			4,5I		20,31		6,45	31,27
500			6,45		29,02		9,68	45,15
1000			9,67		43,55		14,52	67,74
		4.6.47.7	Одноп	осто	вне сва	арочн	не вищ	икетимк
			на но	мина	льный (сваро	чный то	R, A:
125			3,87		17,41		5,64	26,92
300			5,64		25,39		8,06	28,6 9
500			9,67		43,55		14,52	67,74
600			I2,90		58,40		17,74	89,04
1000			14,52		65,3I		20,17	100,00
		4.6.47.8	llkağı	i abt	ритвио	eckor	о охлал	пения
			трано	форм	аторов	ШАОТ		
			3,10		2,35		I,35	6,80
		4.6.47.9.	Перед	DUXH	не авт	омати	зирован	ние
			элект	rpocr	анции	ПАЭС-	2500 RI	Br,
			дизел	тние	элект	роста	нции	
			7,26		32,66		12,09	52,0I

Примечание. Нормативами предусмотрено на выполнение станочных работ 15 % при текущем и капитальном ремонте оборудования.

Установки конденсаторные для повышения коэффициента мощности напряжением до 10,5 кВ

Мощность	установки, кВАр	:ремонта и работ							
			нискатитально оные): (электросы сариме)						
	I	: 2	: 3	: 4					
До 80		3,36	2,02	5,38					
100		4,69	2,69	7,38					
25 0		6 , 7I	4,03	IO,74					
330		8,06	4,70	12,76					
400		9,39	5,38	I4,77					
500		II,76	6,73	I8,4 9					
75 0		13,42	8,08	21,50					
1000		I6,79	9,43	26,22					

Таблица 4.8.49

Батареи аккумуляторные

kymynnioph darapen, a.ч.	нх: <u>батарей по</u> техническое обс луж ивани	: текущи		p- Bcero
I	: 2	: 3	: 4	: 5
	4.8.49	.I. Кислотна	е при напряжении	
		батареи		
До 72	8,93	6,62	4,06	19,61
I 44	10,72	7,95	4.39	23,06
288	I3,4 3	9,93	4,74	28,10
432	I3,43	9,93	5,07	28,43
576	I5,64	II,59	5,25	32.48
720	I7,86	13,25	5,4I	36.52
II52	22,33	16,56	8,13	47,02
I 44 0	26,79	19,87	8.46	55.12

Продолжение табк. 4.8.49.

I	. 2	3	: 4	: 5
I 72 8	26,79	19,87	9,14	55, 80
2304	33,49	24,84	12,53	70,86
	4.8.4	19.2. Кислотны	е при напряжении	darapen 48
До 72	I3,4 0	9,93	5 ,4 I	28,74
I 44	I7,86	13,25	5,93	37,04
288	I7,86	13,25	6,09	37,20
432	17,86	13,25	6,77	37,88
576	I7 , 86	13,25	7,45	38,56
720	I7,86	13 <u>,</u> 25	7,78	38,89
1152	26,79	I9 , 87	Į0,84	57,50
I 44 0	31,17	23,19	II,46	65,82
1 72 8	31,17	23,19	I2,53	66,89
2304	49,13	38,09	I9 ,3 I	106,53
	4.8.4	19.3. Кислотны	е при напряжении	батареи 60
До 72	I7,86	I3 ,2 5	7,45	38,56
I 44	17,86	I3 ,2 5	8,46	39,57
288	I7,86	I3,25	9,15	40,26
432	I7,86	I3 , 25	9,79	40,90
576	20,09	I4,9I	IO, 4 9	45,49
720	22,33	I6,56	II,46	50 ,3 5
1152	29,02	21,51	IO,84	6I,37
I 44 0	31,26	23,19	10,84	65,29
I728	31,26	23,19	12,52	66,97
2304	5I ,3 6	38,09	12,52	IOI,97
	4.8.	49.4. Кислотна	иинежедпан иди е	батареи
		IIO B		
До 72	17,86	13,25	7 ,4 5	38,56
I44	22,33	I6,56	8 ,4 6	47,35
288	24,56	18,24	9,17	51,97
432	26,79	19,84	9,79	56,42
576	26,79	19,84	10,49	57,12
720	31,26	23,19	II, 4 5	65,90
II52	35,72	26,45	13,22	75,39
I 44 0	40,20	29,79	I5,I6	85,15

Продолжение табл. 4.8.49

•	I	: 2	: 3		4	: 5	_
	I728	44,66	33,1	5	I6 , 57	94,38	
	2304	62,53	46,3	132,53			
		4.8.	49.5. Кис	лотные пр	и напряжении	1	
			бат	ареи 220	В		
	Д о 72	31,26	23,1	9	12,16	66 , 6I	
	I 44	35,72	26,4	5	I 4, 97	77,14	
	288	40,20	29,7	9	I5,6I	85,60	
	432	44,66	33,I	5	16,93	94,74	
	576	71,46	52,9		19,31	I43,46	
	72 0	7I,46	52,9		21,34	I 45, 79	
	II52	7I,46	52,9		27,07	151,52	
	I44 0	80,39	68,4		30,16	I78 , 97	
	1728	89,33	66,2		33,86	I89, 4 I	
	2304	125,05	92,7		47,44	265,25	
		4.8.			напряжении		
				ареи I2,5			
	60 - I00	0,66	0,4		0,36	I,5I	
	250-300	0,89	0,6		0,38	I,92	
	400-500	I,34	0,9		0,54	2,86	_
	40 700				напряжении	_	В
	60-100	0,89	0,6		0,72	2,26	
	250-300	I,77	I,3		0,89	3,97	
	400-500	2,23	I,6		1,09	4,97	
		4.8.		-	напряжении	батареи	
	60-100	т оо	32,		٥ ٥٠	0.00	
	250-300	1,33	0,9		0,95	3,27	
	400-500	2,23	I,6		I,I7	5,05	
	400-500	2,67	I,9		I,46	6,10	_
	co roo				напряжении	_	В
	60-I00	2,68	I,9		I,46	6,12	
	250-300	3,I2	2,3		I,75	7,19	
	400-5 00	4,0I	2,9	5	2,20	9,19	

Таблица 4.9.5С

Релейная защита, электроавтоматика и вторичные цепи

Наименование оборудования и види выполняемых работ	:10	JOU BM T	еди Эмэс	ниц об нта	энности орудован	RN	
	: प्र : 00	ecko Sc <i>J</i> ly 1Ba-	e: -:		капитал ный	Б-:	BCGLO
I	:	2	:	3	: 4	:	5
4.9.50.1. Защита фидеров 6 кВ средне сложности (асинхронных дви гателей, трансформаторов до 1600 кВт)	(-	3,	56	2,14	2,14		7,84
4.9.50.2. Защита фидеров 6 кВ со сло ной схемой (синхронных дви гателей до 2000 кВт)	i —	7,	12	4,30	4,30		15,72
4.9.50.3. Защита трансформаторов гла ной понизительной станции	B-	20,	04	IZ,II	I6,II		48,26
4.9.50.4. Защита синхронных двигател мощностью свыше 2000 кВт		ΙΟ,	69	6,45	6,04		2 3,I8
4.9.50.5.Схемы управления и автомат ки компрессорных агрегатов	'M-	IO,	69	6,45	8,05	:	25, I9
4.9.50.6. Защита фидеров 0,4 кВ с пр той схемой на тепловых эле ментах без трансформаторог тока			89	0,53	0,80		2,22
4.9.50.7. Защита фидеров 0,4 кВ с пр той скемой на тепловых эле ментах с трансформаторами	oc-		750	T 00	T ON		2.00
TORA		-	78	I,08			3,93
4.9.50.8 Проверка газового реже	W T	2,	62	I,73	2,14		6,49
4.9.50.9. Дистанционное управление I трансформатора		I,	30	0,86	I,07		3,23
4.9.50.10 Автоматика охлажиения с ко)H-	3,	26	2,14	2,69		8,09
4.9.50.II. Проверка вводов трансформа тора и СМВ	i —	I,	79	I,I8	I,47		4,44
4.9.50.12.Проверка защити минимально		I,	30	0,86	I,07		3,23
4.9.50.I3.Проверка устройств отиска- ния "Земли" в сети 6 кВ	•	2,	29	I,50	I,79		5,58
4.9.50.14.Проверка токовой направленной защити для ЛЭП-35 кВ и	i– Ijin						

Продолжение табж. 4.9.50

<u>I</u>	: 2	: 3	: 4	: 5
междуйазной ненаправленной о пуской минимального напряжен (защиты от подпитки и обратн мощносты)	RM	I .6 0	2,02	6,06
4.9.50.15.Проверка автоматов загрузки по частоте АЧР с частотным АПВ	2,61	I,73	2,14	6,48
4.9.50.16.Проверка ДФЗ - 201	8,49	5,59	6,96	21,04
4.9.50.17.Проверка пистанционной за- щити ЛЭП-110,220 кВ	13,06	8 , 6I	10,87	32,54
4.9.5Q.18.Проверка токовой направлен- ной защати ЛЭП-IIO,220 кВ, являющейся основной и ре- зервной защатой	7,34	4,85	6,04	18,23
4.9.50.19.Проверка токовой резервной защити от междуйских пов- реждений и замыканий на зем- лю ЛЭП-IIO,220кВ	5,71	3,76	4,69	14,16
4.9.50.20.Проверка АПВ, цепей управле- ния, сигнализации ЛЭП-110, 220 кВ	2,61	1,73	2,14	6,48
4.9.50.21.Проверка трансформаторов тока до 10 кВ с двуми сер- дечниками при снятии В/А карактеристики по сложной скеме	I , 22	0,49	0,61	2,32
4.9.50.22.Проверка трансформаторов тока до 10 кВ с днумя сер- дечниками при снятии В/А карактеристики матром	0,74	0,49	0 ,6 I	I,84
4.9.50.23.Проверка поста ПВЯК для ПФЗ-2 (УПЗ-70)	5.88	3,87	4.84	14.59
4.9.50.24.Проверка заградителей	2,61	I,73	2,14	6,48
4.9.50.25.Проверка в/ч каналов без	4.60	2.69	3.35	10.12
заградителей 4.9.50.26.Провержа ДЗП	4,08 5,88	2,69 3.88	3,35 4.84	14,60
4.9.50.27 Проверка ДЭП без фиксации	2,94	I,94	2,41	7,29
4.9.50.28. Проверка УРОВ IIO-220 кВ с пусковные токовные реле- свые 10 присоединателей	II.43	7,53	9.40	28.36
4.9.50.29. Проверка ценей напражания IIO 220 кВ выесте с РПР ключами переключения и кСА	2,94	1,94	2,41	7,29
was seen nobouser setting if the	₽, JE	1,52	٠, حد	1,63

<u> </u>	2:	3 ;	4 :	5
4.9.50.30.Проверка цепей напряжения				
до 35 кВ со схемой конт- роля изоляции	I,95	I,29	I,6I	4,85
4.9.50.31. Проверка автоматического оснежногрефа в комплексной		4 70	5.04	TE 00
схеме H-II, H-I3 4.9.50.32.Проверка щита постоянного тока п/сг до 220 кВ	6,37	4,19	5,24	I5,8 0
тока п/сг до 220 кВ 4.9.50.33. Проверка щита центральной	4,89	3,22	3,87	II,98
ситнали зации	2,29	1,50	1,87	5,66
4.9.50.34. Проверка полукомплектов ДП и КП, устройств ТМ, випрямительных устройств промышленных реле, цепей				
Ty, TC. Onpocobanne TH, TC, Bry		10,76	16,78	43,87
4.9.50.35. Проверка приемников и передатчиков ТН, приемных присоров, градупровки, датчиков ТН типа ТНЧ-2 (ФИП)	-			
ТН типа ТНЧ-2 (ФИП) 4.9.50.36.Проверка регуляторов воз-	4,89	3,22	4,29	12,40
Оуждения на одоках до 100 мВт с испытанием на холостой ход типа PBA-62	10,78	7,10	8,87	2 6,75
4.9.50.37 Проверка таристорного за- радного агрегата системы непрерынного питания	5,23		II.OI	19,68
4.9.50.38.Проверка приборов ВМ с цепями управления	1,31		I,07	3,24
4.9.50.39.Проверка электромагнитних одокировок на 1 разъедини-				
Tear	2,43	•	0,20	2,79
4.9.50.40.Проверка петли "фаза-нуль"	2,29	1,50	I,87	5,66
4.9.50.41.0тоор проб и испытание трансформаторного масла	1,02	0,99	_	2,01
4.9.50.42. Автомат "Электрон"	2,22	2 I,35	1,34	4,91
4.9.50.43. Реле управления и защити общепромышленного назна- чения:				
промежуточное реле	0,44	0,27	0,26	0,97
реде алектромагнитные, реде напряжения и мак-				
CHMBALHOTO TOKA	0,44	0,34	0,53	1,31
реле времени электромеха- ническое — ;	- 0,65 83 -	0,40	0,53	I,58

Продолжение табл. 4.9.50

	2	3	: 4	: 5
реле контроля скорости	0,65	0,40	0,61	I,66
4.9.50.44. Быстродействующие реле мощ-	I,57	0.94	I.34	3,85
4.9.50.45. Реле времени программное	4,45	2,69	4,02	11,16
4.9.50.46. Реле сигнальное	0,65	0,60	_	I,25
4.9.50.47. Реле торможения	0,89	0,80	-	I ,6 9
4.9.50.48. Фотореле	0,65	0,40	0,66	I,7I
4.9.50.49.Реле токовое дифферен- циальное РНТ-565	0,44	-	0,32	0,76
4.9.50.50.Реле токовое дискерен- циальное с тормовом ДЗТ-В	0,65	-	0,66	I,3I
4.9.50.51.Реле частоти ИВЧ-13, РЧ-1	0,44	-	0,40	0,84
4.9.50.52.Комилектн защит КО-I,КО-2, КО-4,КО-4,КО-6	I,57	_	0,94	2,51
4.9.50.53. Дистанционное реле КРС-ТЗТ	0,65	-	0,66	I,3I
4.9.50.54.Устройство блокировки при качении КРЕ-I25,126	0,44	_	0,53	0,97
4.9.50.55. Реле PMC-02M, PMD-58, -258	0,44	-	0,26	0,70

II р и мечание. Нормативами предусмотрено 5% на выполнение станочных работ.

таблица 4.10.51 Электрические сети

Карактер истика	сетей:Нормативы ров прово	и численности Ода по видам		1000 километ
	техничесь оослужива ние	кое: текущий 1-	капитальн	и: всего
I	: 2	: 3	: 4	: 5
		оздушные лин керевянных оп		
До 35	4,23	.0,80	I ,3 5	6,38
50	5,64	I,55	I,79	8, 98
70	7,05	I,35	2,25	10,65
95 и боле е	8,47	I.6I	2.69	12.77

I	: 2	: 3	: 4	: 5
	4.10.51.2.	Воздушные ли	нии до 1000	В на
		металлически	х и железоб	этонных
		опорах, сече	нием, мм2:	
До 35	2,81	0,53	0,90	4,24
50	4,23	0,80	I,35	6,38
7 0	5,64	I,06	I,79	8,49
95 и более	7,05	I,35	2,25	I0 ,6 5
	4.10.51.3.	Воздушные ли	нии свыше І	000 В на
		металлически	х и железоб	етонных
		опорах однол		овода,
		сечением, ма	~ ;	
до 35	4,23		I ,3 5	6,38
50	6,34	_	•	9,59
70	8,47	•	-	12,76
95 и более	I0 ,5 8	•	3 ,3 6	I5,95
	4.10.51.4.	Кабельные л		
			в земле, се	чением, мм
I6 - 35	I,78	•	•	7 , 9I
50~ 70	2,79	•	•	12,15
95 - I20	3,27		•	
I50-I85	4,36	•	•	I9,07
240	5,83	•	4,08	25,46
	4.10.51.5.			В, проложенные
		•	^	основаниям,
		сечением, м		
I6 - 35	2,18	-		9,53
50 - 70	3,65	-		I5,80
95 - I20	4,25	•	•	I8,39
150-185	5,46	•		23,86
24 0	7,28	•	•	31,82
	4.10.51.6			В, проложенные
		в непроходии		и труоах,
T3 - 35	2,91	сечением, ма 7,77	2,05	12,73
50 - 70	2,91 4,37	II,66	2,05 3,05	12,73 19,08
00 - 70	4,57	- 85 -	5,00	±0 g 00

I	:	2	:	3	:	4	;	5		
95 - I20		5,46		I4,58		3,69		23,73		
I50 - I85		6,68		17,82		4,84		29,34		
240	I	I,54		30,77		6,37		48,68		
	4.10.51.7. Внутрицеховые силовые сети,									
								иванием		
		O,I	ного	провод	a,ce		MM	:		
I,5 - 6		2,42		6,48		I,63		I0 , 53		
IO - I6		3,04		8,10		2,16		I3,30		
25 - 35		1,25		II,34		2,99		I8,58		
50 - 70		4,86		13,56		3,79		22,21		
95 - I20		6,07		16,20		4,62		26,89		
	4.10.51			цеховне						
								иванием		
			yx II	роводов	, сече		MM ² :			
I,5 - 6		3,64		9,72		2,44		I5,8 0		
IO - I6		4,25		II,33		2,99		I8,57		
25 - 35		4,86		I3,56		3,79		22,21		
50 - 70		7,28		I9,43		5,42		32,13		
95 - I20		9,II		24,29		6,78		40,18		
	4.10.5			цеховне						
								иванием		
			ex 1	водовод	, сече	нием,	mm":			
I , 5 - 6		4,25		II,66		3,25		19,16		
IO - I6		4,86		I3,6 0		3,80		22,26		
25 - 35		6,07		16,52		4,6 I		27,20		
50 - 70		9 ,6 7		25,92		7,06		42,65		
95 - I20	I	2,09		32,40		8,95		53,44		
	4.10.51	. IO. E	Hytp	ипеховн	есил	ювие с	ети,			
								гиванием		
		ŕ	етыр	ех пров	одов,	сечени	ЮM,	MM [™] :		
I,5 - 6		6,05		16,20		4,34		26,59		
IO - I6		7,25		I9,44		4,89		3I,58		
25 - 35		8,47		22,68		5,97		37,12		
50 - 70		0 ,8 8		29,15		8,68		48,7I		
95 - I20	I	4 , 5I		38,87		II,I3		64,5I		
			-	86 –						

Продолжение табл. 4.10.51

I	: 2	<u>: 3 : </u>	4	<u>: 5</u>					
4.10.5T.II. Внутрицеховые силовые сети,									
проложенные изолированным проводом									
по кирпичным и бетонным основаниям,									
	C	ечением, мм2:	:						
I,5 - 6	7,25	I9,44	4,89	3I,5 8					
IO - I6	9,67	25,92	6,52	42,II					
25 - 35	12,14	32,39	8,14	52,67					
5 0 - 7 0	I4,58	38,87	9,77	63,22					
свыше 70	18,22	48,59	12,21	79,02					
4.10.51.12. Контрольный кабель сечением 1.5 мм^2									
		проложенный н	в земле, с ч	ислом жил					
4 - 7	I,45	3,88	I,08	6 ,4 I					
IO - I9	I,82	4,86	I,36	8,04					
27 - 37	2,18	5,83	1,63	9,64					
	4.10.51.13	Контрольный н	кабель сечет	EMBM I,5 MM2,					
		проложенный	непроходин	иом канале					
		и трубах, с	нислом жил						
4 - 7	2,18	5,83	I,63	9,64					
IO - I9	2,67	7,13	2,03	II,83					
27 - 37	3,28	8,75	2,44	14,47					
	4.10.51.14	Контрольный і	кабель сече	EMBM I,5 MM,					
		проложенный и	по кибиманни	и и бетонным					
		основаниям,	C TUCIOM KU	T.					
4 - 7	I,82	4,86	I,36	8,04					
IO - I9	2,18	5,83	I,63	9,64					
27 - 37	2,55	6,80	I,90	II,25					

Примечание. Нормативами предусмотрено 5% на выполнение станочных работ.

Таблица 4.11.52

Заземляющие устройства

Наименование устройств	:Нормативы численности на ремонт :IOOO заземляющих устройств по :видам ремонта				
	: техническое : обслуживание	: капитальный: Э: ремонт	BCero		
4.11.52.1.Заземляющие устройства технологических установок на один контур	2,35	2,52	4,87		
4.II.52.2. Заземляющие устройства опор линий передач и отдельно стоящих молние— приемников, на один контуг	0.46	0,66	I.I2		
4.11.52.3. Заземляющие устройства электроподстанций, на один контур	2,21	6,71	8,92		

Таблица **4.12.53** Испытание защитных средств

Наименование	:Нормативы численности на :1000 защитных средств
I	:2
Нзолирующие штанги:	
до 10 кВ	0,10
IIO RB	0,12
Указатели високого напряжения:	
до IO к B	0 ,2 0
IIO k B	0,24
Указатели низкого напряжения МНН-І	0,12
Клещи токоизмерительные:	
go I,O mB	0,08
IO RB	0,12
Боти диэлектрические	0,06
Калоши дизлектрические	0,20
Перчатки дизлектрические	0,40
Коврики диэлектрические	0,06
Клещи и ручки для снятия предохранителе	eit 0,12
Измерительные штанги	0,04
Инструменти с изолирующими ручками	0,20
Изолирующие подставки - 88 -	0,20

Обслуживание электрооборудования технологических установок и объектов

Обслуживаемое электрооборудование:	Профессия :Нормативы числен- :ности на смену
4.13.54.1. Технологические установки, товарные парки, котельные и трансформеторные подстании 220/10 кВ, 220/6 кВ, 1110/6 кВ, 35/10 кВ, 35/6кВ при количестве:	Электромонтер по обслужива— нию электро— оборудования
до 5 шт.	I
6 - IO	2
II - I5	3
I6 и более	4
4.13.54.2. Комплексная технологичес- кая установка по перера- ботке газа, оснащенная комплектным ампортным оборудованием фатмы "Флуор"	Электромонтер по обслужева— нию электро— оборудования

- Примечания. І. Для обслуживания технологических установок, выведенных на І щит управления, численность устанавливается как на одну установку.
 - Если подстанция обслуживается дежурными электромонтерами по обслуживанию электроустановок или рабочими других объектов, нормативи на них не распространяются.

5. Обслуживание и ремонт средств контроля и автоматики Профессии: приборист, слесарь по контрольно-измерительным приборам и авт

Таблица .55

Наименование средств КЛПиА	Нарка прибор	.1000 I	EOGODN	пенности			
	•	:техни-	·:rocno-	: Ведомст	-: текущи	1: капи-	:Bcero :des rex-
	:	: ческое	::верка	: венная : поверка		:ны: ре	ническо-
	•	:жива-	:	:	:	MOHT	:ro ooc-
		ние		<u>:</u>		<u>;</u>	:лужива- :ния
I	: 2	: 3	: 4	: 5	; 6	: 7	: 8
55.І.Приборы системы "АУС" и "Старт"	÷						
Приборы вторичные пневматические	ПВ-1,3	-	0.051	0.05I	0,719	I,I98	2,019
	IIB-3.2	_	0,051	0,051	I,334	2,224	3,660
	IIB4-27	_	0,051	0,051	1,133	I,889	3,124
	IIBIO-13	-	0,051	0,05I	2,054	3,422	5,578
	IPTI-29A	-	0,05I	0,05I	C,7I9	I,198	2,839
	2РП-29Д	-	0,051	0,05I	0,821	I,369	2,292
	3PII-29B	-	0,05I	0,05I	I,334	2,224	3,660
Приборы вторичные показывающие	27503-22, 0,3382	_	0,068	0,068	3,183	4,724	8,043
	27522-23	-	0,068	0,068	3,491	5,271	8,898
	OP-18-I5I	****	0,051	0,051	0,719	I,I98	2,019
			0.000	0.000	T 050	0.000	0 740
	РПВ4-2Э	-	0,068	C,068	I,352	2,252	3,740

	Приборы вторичные							
	самопищущие	mib-I,I	-	0,05I	0,05I	0,719	I,198	2,019
		MIB-I,2	-	0,05I	0,05I	I,078	I,797	2,977
		MMB-I,3	_	0,051	0,05I	I,334	2,224	3,660
		PIIB-4JI	_	0,068	0,068	2,054	3,422	5,612
		PIIB4-29	_	0,068	0,068	I,352	2,252	3,740
		PIIB-39	_	0,068	0,068	I,355	2,259	3,750
		4233-5070-B50	_	0,068	0,068	5,065	7,598	12,799
		пкр-1,пкр-2	_	0,068	0,068	2,054	3,422	5,612
		IIKH	_	0,068	0.068	I.334	2,224	3,694
I .	Приборы контроля пневмати-			•	·	•		•
9I	чёский показывающие с ус-	mpo o	_	0.051	0.051	2.054	3,422	5,578
1	тройством сигнализации	IIB2,2	-	•	•	•	•	•
	Приборы вторичные	MKET,MTZE,HAE	-	0,068	0,068	3,183	4,724	8,043
	Приборы вторичные с диф-							
	ференциальной трансформа- торной схемой	КПДІ –0503	-	0,068	0,068	4,278	6,537	10,951
	Приборы вторичные электро-	TOTAL OF		0.000	0.000	0. 700	0.707	0.447
	контактные	ДСРІ-05	_	0,068	0,068	0,130	0,181	0,447
	Приборы вторичные интегри- рующие	пик-і	_	0,068	0,068	0.719	1.198	2,053
	Приборы вторичные электро-	33M,4I33-2000		0,000	-,	-,	_,	,
	ники	MS -E-54		0,068	0,068	5,545	8,3 I8	I3,999
	Приборы вторичные уровня	RNHOIL		0,068	0,068	3,422	5,237	8,795
	Приборы вторичные расхода	49I4-08II	-	0,068	0,068	4,587	6,983	II,706
	Приборы вторичные темпера-							
	туры	TIC	-	0,068	0,068	3,423	5 ,23 7	8,796
	· -							

Регуляторы пневматичес- ПР-3-35;31;27;23 - 0,068 0,068 1,772 2,957 4,865 кие Регуляторы пневматичес-		I	: 2 :	3 :	4	5.	: 6	: 7	<u> 8 </u>
Note -22 -0 0.668 0.668 1.772 2.957 4.865		Блоки регулирующие	4P5-325,IIP3-21, IIP3-22	_	0,068	0,068	3,422	5,237	8,795
Регуляторы 91261/1 - 0,068 0,068 1,772 2,957 4,865 1237 4425-43A-A4, - 0,068 0,068 1,772 2,957 4,865 1237-43A-A4, - 0,068 0,068 1,772 2,957 4,865 1237-43A-		Регуляторы пневматичес-	04,EC-34,HP3-21	,	0.000	0.000	מממ ד	2 057	1 005
Оогорегуляторы 91261/T - 0,068		_		-	•	•	•		
Мицикаторы-регулиторы 444К-7231				_				•	
44273-43A-A4,				_	0,000	4,000	1,776	2,907	4,000
Регуляторы пневыматичес- нае Регуляторы пневыматичес- нае Регуляторы пневыматичес- нае ПР27М — 0,068 0,068 1,772 2,957 4,865 1.55.2. Приборы для измерения темывратуры 55.2.1. Приборы для измерения темывратуры 56.2.1. Посты: Мости самопищуще без дополнительных устройогь Мосты самопищуще много- точечные о везышения ПР27М — 1,546 0,173 — 1,574 2,963 4,110 3ML-109M-8/122, 1,865 0,222 — 1,882 2,772 4,876 Мосты самопищуще о делего- точечные о возышения Мосты показывающие много- точечные о возышения Пр3609 — 2,190 0,239 — 2,160 3,354 5,773 Мосты показывающие о делего- точечные о подслечением в с дистационной перьдачея показывающие делего- точечные о подслечением в с дистационной перьдачея показывающие устройств Мосты описоточение без дополнительных устройств Мосты самопищущие одно- точение без дополнительных устройств Мосты самопищущие одно- точение без дополнительных устройств Мосты самопищущие одно- точение без дополнительных устройством Мосты самопищущие одно- точение без дополнительных устройством Мосты самопищущие без дополнительных устройств Мосты самопищущие без дополнительных устройств МсМ2—004 МсСна самопищущие без дополнительных устройств МсМ2—004 МсСна самопищуще без дополнительных устройств МсМ2—004 МсСна самопищуще без дополнительных устройств МсМ2—004 МсСна самопищуще без дополнительных устройств МсСм2—004 МсСна самопищуще без дополнительных устройств МсСм2—004 МсСна самопищуще без дополнительных устройств МсСм2—004		Huttaka Toha-ber Jan Toha	4420E-43A-A4, 1238	_	0,068	0,068	I,772	2,957	4,865
MOCTH ПОКАЗЫВВЕЩИЕ, МНОГОТОЧЕЧНЫЕ ОВ ДОГОМИТЕТОВНИК УСТРОЙСТВ В ДОГОМИТЕТОВНИК И ДОГОМИТЕТОВНИК УСТРОЙСТВ В ДОГОМИТЕТОВНИЕ В ДОГОМИТЕТОВНИЕ В ДОГОМИТЕТОВ В ДОГОМИ			MP-3-35;31;27;23	3 -	0,068	0,068	I,772		4,865
1.55.2. Приборы для измерения теленратуры 1.55.2. Приборы для измерения теленратуры 1.55.2. Приборы для измерения теленратуры 1.55.2. Проти самопицущие без дополнительных устройсть 3MI_103H_202, 3MI_103H_202, 3MI_103H_202, 3MI_103H_202, 3MI_103H_202, 3MI_103H_203H_203H_203H_203H_203H_203H_203H_2			IIP27M		0,068	0,068	I,772	2,957	4,865
Мости свиопышущие без дип-202, дип-202, дип-202, дип-202, дип-204, дип-204	5.55.2	.Прибори для измерения температуры							
ДОПОЛНИТЕЛЬНЫЙ УСТРОЙСТВ 3ML-4804, 3ML- 1,546 0,173 - 1,574 2,363 4,110 4807, 3ML-109M-8/122, 1,865 0,222 - 1,882 2,772 4,876 мосты самоплицуще, мяюто точечию с независивляет запаниями, позищениям с независивляет запаниями, позищениям с независивляет запаниями, позищениям с независивляет запаниями, позищениям детулиторами и с достанщенным регулитореми и с достанщенным детулитором в дым2-103 2,155 0,239 - 2,180 3,354 5,773 мосты списавывающие, многоточечные с подключением зами-готочечные с недерифирации прибор зами-готочечные с достанщенным детулитором в дым2-103 2,155 0,239 - 2,155 3,097 5,491 мосты описочечные без дополнительных устройств ксм-4 2,139 0,222 - 2,139 3,268 5,62 мосты многоточечные без дополнительных устройств ксм-4 2,405 0,239 - 2,396 3,594 6,22 мосты многоточечные с влектрическим регулитором ксм-4 2,296 0,222 - 2,292 3,491 6,00 мосты многоточечные с влектрическим регулитором ксм-4 2,724 0,238 - 2,720 4,107 7,06 мосты самоплицущие одното- ксм2-003, ксм2-004, ксм2-00	.55.2.	I. Mocth:							
МП-109M-8/122, 1,865 0,222 - 1,882 2,772 4,876 мП-109M-716 1,865 0,222 - 1,882 2,772 4,876 мП-109M-109M 1									
Мости свяющинущие много- гочечные с возывающие много- гочечные с модификация Мости показывающие много- гочечные с подключением ЗНМ-102, с дастанционной передвачей воги одногочечные Мости показывающие, много- точечные с подключением ЗНМ-112, зни-113, зни-112, зни-113, зни-113, зни-113, зни-113, мости показывающие много- точечные с подключением Мости показывающие, много- точечные с подключением ЗНМ-112, зни-113, зни-			4807, 3MT_TONK_8/T22.	1,546	0,173	-	1,574	2,363	4,110
ТОЧЕЧИНЕ С НЕЗЕМЕСЕМИЕМ ЗАГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-1091, ЭМГ-2091, 2,190 0,239 - 2,180 3,354 5,773 МОСТИ ПОКАЗИВАЮЩИЕ, МНОГОТОЧЕКИМИ РЕГУЛИТОРАМИ В ВИЛИТОРИИ С ДИСТИНИЕМ В ВИЛИТОРИИ С ДИСТИНИ В В ВИЛИТОРИИ С ДИСТИНИ В В ВИЛИТОРИИ В ВИЛИТОРИИ В			ЭМП-109И-716	I,865	0,222	-	1,882	2,772	4,876
Мости показывающие, многоточечные с одижений показывающие, многоточечные с подключением одижений показывающие, многоточечные с подключением одижений показывающие, многоточечные с подключением па валисивающий примор одижение с подключением одижением па валисивающий примор одижением одижением одижением па валисивающий примор одижением одижением одижением поставления одижением одижение		точечные с независимым	3MP-109P, 3MP-109	ЭИ,					
Мости показывающие, много- ряческими регуляторами в с дистанционной передачей домогочечиме оподключением показывающие, много- точечные с подключением на записывающий приоор зам2-II2, зам2-II3 з., 190 0,232 - 2,24I 3,234 5,70 мости одноточечные ова дополнительных устройств кСМ-4 2,139 0,222 - 2,139 3,268 5,62 мости одноточечные ова дополнительных устройств кСМ-4 2,405 0,239 - 2,396 3,594 6,22 мости одноточечные о замактрическим регулятором кСМ-4 2,296 0,222 - 2,292 3,491 6,00 мости многоточечные с замактрическим регулятором кСМ-4 2,724 0,238 - 2,720 4,107 7,06 мости одноточенные о замактрическим регулятором кСМ-4 2,724 0,238 - 2,720 4,107 7,06 мости самопишущие одноточеные о дополнительным устройством кСМ2-003, кСМ2-004, кСМ2-004, кСМ2-005 мости самопишущие одноточеные с дополнительным устройством и ситивыя замактрическим регулятором и ситивыя дополнительным устройством кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мости самопишущие обез дополнительных устройств кСМ2-004 I,947 0,232 - 2,173 3,251 5,62		заданиями позиционного ре- гулирования на каждой точ- ке всех модимикации	- 3MP-109PM, 3MP-209	2,190	0,239	-	2,180	3,354	5,773
Мосты показывающие,много- точечные с полключением на записывающие либого ность одногочечные без дополнительных устройств Мосты одногочечные с злектрическим регулятором КСМ-4 Мосты одногочечные с злектрическим регулятором КСМ-4 Мосты самопилущие одно- точечные с злектрическим регулятором КСМ-4 Мосты самопилущие одно- точечные с дополнительных ком-2 Мосты самопилущие с злект- рическим регулятором и ком-2 Мосты самопилущие с злект- рическим регулятором и ком-2 Мосты самопилущие одно- точечные с дополнительных ком-2 Мосты самопилущие одно- точечные			!						
Мости показивающие, многоточечные с подключением 31M2—II2, на записивающий пубор 31M2—II3 2,190 0,232 — 2,24I 3,234 5,70 мости одноточечные без дополнительных устройств кСМ—4 2,139 0,222 — 2,139 3,268 5,60 мости одноточечные без дополнительных устройств кСМ—4 2,405 0,239 — 2,396 3,594 6,20 мости одноточечные с электрическим регулятором кСМ—4 2,296 0,222 — 2,292 3,49I 6,00 мости многоточечные с электрическим регулятором кСМ—4 2,724 0,238 — 2,720 4,107 7,00 мости самопишущие одноточеским устройств кСМ2—003, кСМ2—004, кСМ2—003, устройств кСМ2—004, кСМ2—005 мости самопишущие одноточечные с дополнительных устройством кСМ2—025 мости самопишущие одноточечные с дополнительных устройством кСМ2—024 I,868 0,187 — I,865 2,806 4,80 мости самопишущие с электрическим регулятором и кСМ2—024 I,868 0,187 — I,865 2,806 4,80 мости самопишущие с электрическим регулятором и кСМ2—004 I,947 0,232 — 2,036 2,857 5,12 мости самопишущие без дополнительных устройств кСМ—3 2,177 0,198 — 2,173 3,251 5,62 мости самопишущие без дополнительных устройств кСМ—3 2,177 0,198 — 2,173 3,251 5,62 мости самопишущие без дополнительных устройств кСМ—3 2,177 0,198 — 2,173 3,251 5,62 мости автоматические		с дистанционной передачей	3BM-103 3BM2-103	2,155	0,239		2,155	3,097	5,49
точечные с подключением зім2-II2, на записывающий приоор зім2-II3 2,190 0,232 - 2,24I 3,234 5,70 мосты одноточечные без дополнительных устройств кСМ-4 2,139 0,222 - 2,139 3,268 5,62 мосты многоточечные с злектрическим регулятором кСМ-4 2,405 0,239 - 2,396 3,594 6,22 мосты одноточечные с злектрическим регулятором кСМ-4 2,296 0,222 - 2,292 3,49I 6,00 мосты многоточечные с злектрическим регулятором кСМ-4 2,724 0,238 - 2,720 4,107 7,00 мосты самопишущие одното- кСМ2-003, устройств кСМ2-003, кСМ2-004, кСМ2-005 мосты самопишущие однототочечные с дополнительным устройством кСМ2-024 I,868 0,187 - I,865 2,806 4,86 мосты самопишущие с электрическим регулятором и кСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мосты самопишущие без дополнительных устройств кСМ-3 2,177 0,198 - 2,173 3,251 5,62 мосты автоматические									
дополнительных устройств КСМ-4 2,139 0,222 - 2,139 3,268 5,62 Мосты многоточечные с электрическим регулятором КСМ-4 2,296 0,222 - 2,292 3,491 6,00 мосты многоточечные с электрическим регулятором КСМ-4 2,724 0,238 - 2,720 4,107 7,06 мосты самопишущие одното- КСМ2-002, чечные без дополнительных КСМ2-003, КСМ2-004, устройств КСМ2-004, КСМ2-025 мосты самопишущие однототочечные с дополнительным устройством КСМ2-024 1,868 0,187 - 1,865 2,806 4,86 мосты самопишущие с электрическим регулятором и сигнализацией КСМ2-004 1,947 0,232 - 2,036 2,857 5,12 мосты самопишущие без дополнительных устройств КСМ2-004 1,947 0,232 - 2,036 2,857 5,12 мосты самопишущие без дополнительных устройств КСМ2-004 1,947 0,232 - 2,036 2,857 5,12 мосты самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 мосты автоматические									
дополнительных устройств КСМ-4 2,405 0,239 - 2,396 3,594 6,22 Мостн одноточечные с электрическим регулятором КСМ-4 2,296 0,222 - 2,292 3,491 6,00 мостн многоточечные с электрическим регулятором КСМ-4 2,724 0,238 - 2,720 4,107 7,06 мостн самопишущие одноточечные без дополнительных КСМ2-002, чечные без дополнительных КСМ2-003, КСМ2-004, 2,084 0,173 - 2,070 3,097 5,34 кСМ2-025 мостн самопишущие одноточечные с дополнительным устройством кСМ2-024 1,868 0,187 - 1,865 2,806 4,86 мостн самопишущие с электрическим регулятором и сигнализацией КСМ2-004 1,947 0,232 - 2,036 2,857 5,12 мостн самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 мостн автоматические		точечные с подключением	ЭBM2-II2,	2,190	0,232	_	2,241	3,234	· 5,70
электрическим регулнтором КСМ-4 2,296 0,222 - 2,292 3,491 6,00 Мости многоточечные с электрическим регулнтором КСМ-4 2,724 0,238 - 2,720 4,107 7,00 Мости самопишущие одното- кСМ2-002, КСМ2-003, КСМ2-004, устройств Мости самопишущие одно- точечные с дополнительным устройством КСМ2-024 Мости самопишущие с элект- рическим регулнтором и Сигнализацией КСМ2-004 Мости самопишущие без дополнительных устройств КСМ2-004 Мости самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 Мости автоматические		точечные с подключением на записывающий присор Мости одноточечные без	9HM2-II2, 9HM2-II3			-		-	,
электрическим регулятором КСМ-4 2,724 0,238 - 2,720 4,107 7,06 мости самопишущие одноточеные без дополнительных кСМ2-002, кСМ2-003, кСМ2-004, устройств КСМ2-025 кСМ2-025 мости самопишущие одноточеные с дополнительным устройством кСМ2-024 г,868 0,187 - г,865 2,806 4,86 мости самопишущие с электрическим регулятором и сигнализацией кСМ2-004 г,947 0,232 - 2,036 2,857 5,12 мости самопишущие без дополнительных устройств кСМ-3 2,177 0,198 - 2,173 3,251 5,62 мости автоматические		точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройсты многоточечные без	9HM2-II2, 9HM2-II3 KCM-4	2,139	0,222	- -	2,139	3,268	5,62
Чечные без дойолнительных КСМ2-003, устройств КСМ2-004, КСМ2-004, КСМ2-025 Мосты самопишущие одно-точечные с дополнительным устройством КСМ2-024 I,868 0,187 - I,865 2,806 4,86 мосты самопишущие с элект-рическим регулятором и КСМ2-004 I,947 0,232 - 2,036 2,857 5,12 мосты самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 мосты автоматические		точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройств дополнительных устройств Мосты одноточечные с	SIM2-II2, SEM2-II3 KCM-4 KCM-4	2,139 2,405	0,222	- - -	2,139 2,396	3,268 3,594	5,62
Мости самопишущие одно- точечные с дополнительным устройством КСМ2-024 I,868 0,187 - I,865 2,806 4,86 Мости самопишущие с элект- рическим регулнтором и Сигнализацией КСМ2-004 I,947 0,232 - 2,036 2,857 5,12 Мости самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 Мости автоматические		точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройств Мосты одноточечные с электрическим регуляторо Мосты многоточечные с	SIM2-II2, SIM2-II3 KCM-4 KCM-4	2,139 2,405 2,296	0,222 0,239 0,222	- - -	2,139 2,396 2,292	3,268 3,594 3,491	6,00
рическим регулнтором и сигнализацией КСМ2-004 I,947 0,232 - 2,036 2,857 5,12 Мосты самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 Мосты автоматические	93	точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройств Мосты одноточечные с электрическим регуляторо Мосты самопищущие одноточечные одноточечные одноточечные одноточечные одноточечные одноточечные без дополнительны	91M2-II2, 91M2-II3 KCM-4 KCM-4 KCM-4 M KCM-4 - KCM2-002, KCM2-003, KCM2-004,	2,139 2,405 2,296 2,724	0,222 0,239 0,222 0,238		2,139 2,396 2,292 2,720	3,268 3,594 3,491 4,107	6,00 7,06
Мосты самопишущие без дополнительных устройств КСМ-3 2,177 0,198 - 2,173 3,251 5,62 Мосты автоматические	93	точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройсте Мосты многоточечные с электрическим регуляторо Мосты многоточечные с электрическим регуляторо Мосты самопищущие одноточечные без дополнительны устройств Мосты самопищущие одноточечные с дополнительны устройств	31M2-II2, 31M2-II3, KCM-4 KCM-4 M KCM-4 M KCM-4 — KCM2-002, KCM2-003, KCM2-004, KCM2-025	2,139 2,405 2,296 2,724 2,084	0,222 0,239 0,222 0,238 0,173		2,139 2,396 2,292 2,720 2,070	3,268 3,594 3,491 4,107 3,097	5,62 6,22 6,00 7,06
Мосты автоматические самопишущие МСРІ-03 2,156 0,188 - 2,139 3,252 5,57	93	точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройств Мосты одноточечные с электрическим регуляторо Мосты многоточечные с электрическим регуляторо Мосты самопищущие одноточечные без дополнительны устройств Мосты самопищущие одноточечные с дополнительны устройством Мосты самопищущие одноточечные с дополнительны устройством Мосты самопищущие с элекрическим регулятором и	31M2-II2, 31M2-II3, KCM-4 KCM-4 KCM-4 M KCM-4 — KCM2-002, KCM2-003, KCM2-004, KCM2-025	2,139 2,405 2,296 2,724 2,084 1,868	0,222 0,239 0,222 0,238 0,173 0,187		2,139 2,396 2,292 2,720 2,070	3,268 3,594 3,491 4,107 3,097	5,62 6,00 7,06 5,34
	93	точечные с подключением на записывающий прибор Мосты одноточечные без дополнительных устройсте Мосты многоточечные с электрическим регуляторо Мосты самопищущие одноточечные без дополнительны устройств Мосты самопищущие одноточечные без дополнительны устройств Мосты самопищущие одноточечные с дополнительны устройством Мосты самопищущие с элек рическим регулятором и сигнализацией Мосты самопищущие без	31M2-II2, 31M2-II3, KCM-4 KCM-4 KCM-4 M KCM-4 - KCM2-002, KCM2-003, KCM2-004, KCM2-025	2,139 2,405 2,296 2,724 2,084 1,868 1,947	0,222 0,239 0,222 0,238 0,173 0,187		2,139 2,396 2,292 2,720 2,070 1,865 2,036	3,268 3,594 3,491 4,107 3,097 2,806	5,62 6,22 6,00 7,00 5,34 4,86

	I	: 2	3	: 4	: 5	: 6	: 7	: 8
5.55.2.	.2. Потенциометры:							
	Потенциометры самопишущие оез пополнительных устройств, одноточечные	9, 9IIII-09	I,758	0,164	_	1,813	2,669	4,646
	Потенциометры самопишущие без дополнительных устройств многоточечные	эш-09 эщ-2, эц-480I	I,895 I,604	0,164 0,228		I,899 I,608	2,857 2,429	4,920 4,265
	Потенциометры самопишущие с пневматическим регуля- тором	3IIII-09	2,429	0,187	_	2,382	3,628	6,197
- 94	Потенциометр автоматичес- кий	3111-09/09-3/	2,429	0,187	-	2,382	3,628	6,197
ī	Потенциометры самопишущие с пневматическим регуля- тором	ЭПЛ-4823, ЭПЛ-32, ЭПЛ-4803	2,413	2,413	_	2,139	3,268	7,820
	Потенциометры самопищущие двужкоординатные	ACII-8403,ACII- 8404	2,190	2,190	_	2,207	3,183	7,580
	Потенциометры самопишущие с электрическим регулнтором одноточечные	NCP-OI,NCP-O3	2,019	0,205	_	2 ,0 19	3,097	5 ,32 I
	Потенциометры самонишущие с электрическим регули- тором многоточечные	IICPI-I7(2) IICPI-I8(3)	2,III	0,239	_	2,122	3,217	5,578
	Потенциометры электронные	KIII-I-503 rp.xA	I,763 I,752	0,188 0,188	0,188 0,188	I,763 I,3I4	2,669 2,344	4,808 4,034

	Потенциометри самонишущие без доколнительных устройств	KCII2-004 KCII2-017	2,084	0,205	_	2,07 0	3,II4	5,389
	Потенциометры самопишущие с электрическим регуля- тором	KCII2-005, KCII2-016	2,245	0,205	-	2,241	3,422	5,868
	Потенцисметры одноточеч- ные без дополнительных устройств	KCH-4,IRC	2,292	0,205	_	2,292	3,491	5,988
	Потенциеметри много- точечные с электричес- ким регулитором	KCII-4	2,464	0,205	-	2,464	3,713	6,382
95 -	Потенциометры самопишущие без дополнительных устройства	KCII-3-1000, KCII-3/2000	2,419	0,205	-	2,413	3,628	6,246
	Потенциометры автомати— ческие пожазывающие	KCH-3/1001, KCH-3/2001	2,611	0,205	_	2,601	3,970	6,776
	Потенциометры показывар- щие без дополнительных устройств	IIIM-05,MII-4K	I,560	I,560	_	I,563	2,361	5,484
	Потенциометры показываю— щие с электрическими ре- гудиторами и дистанцион—							
	ной передачей показаний, одноточечные	311155-03(I).	I,790	0,177	_	I,779	2,703	4,659
	потенциометры показываю- щие многоточечные с под- ключением на записываю-	3TB2-I2(6), 3TB2-I3(6), 3TB2-I4(I2)	I,755	0,177	-	I,745	2,618	4,540

I	2 :	3:	4	: 5·	: 6	: 7	: :
іютенциометры показываю— щие без дополнительных устройств	3HB2-0I(I)	I,5 2 2	0,150	_	I,522	2,300	3,972
.55.2.3. Преобразователи:							
Преобразователи на входе	XR-4IIa	0,578	-	0,102	I,745	2,48I	4,328
Преобразователи на выходе	TY-83I	0,578	-	0,102	I,745	2,481	4,328
Преобразователи темпера- туры	NT-111-62	0,578	_	0,102	I,745	2,48I	4,328
Электроизмерительные	694-YAT-AH-82H,						
преобразователи темпера- туры	693-VAT-AH-8 ₂ H	0,578	_	0,102	I,745	2,481	4,328
Электропреобразователи	5502-2103, JT-TC-68	0,578	-	0,102	I,745	2 ,4 8I	4,32
	ЭШI - 63	I,868	-	0,102	I,865	2,669	4,63
Преобразователи	ПЭ-53М, ТП-ФП-26	0,578	_	0,102	I,745	2,481	4,32
Преобразователи памяти	ME-822,III,IIP-5	0,578	-	0,102	I,745	2,481	4,32
Преобразователи аналого- цифровые	Φ4892	0,578	_	0,102	I,745	2,481	4,32
Преобразователи импульсов		0,578	-	0,102	I,745	2,48I	4,328
5.2.4. Лагометри:							
Показывающий шитовой профильный	JIIP-53	0,343	0 ,164	_	0,567	0,856	I,58
Показывающий щитовой водозащитый	JIBT-09,019	0,353	0,164	-	0,584	0,894	I,64

	Показывающий щитовой пройильный с электрорегу- лятором	JP-I-0I	0,480	0,232	_	0,792	I,225	2,249
	шитовой профильный	JI-64	0,445	0,164	-	0,735	I,043	I,942
	Щитовой с 2-хповицяон- ным регулятором	JIP-64	0,560	0,232	-	0,924	I,505	2,661
	Автоматические показы- вающие и самопишущие	JCP-018	0,948	0,393	-	I,565	2,369	4,327
	Самопишущие , профильные щитовые	ЛСШПР-ОІ-18/I/ 02-18/3/, 03-18/ 06-18/6/, МИПР (всех модифика-		0.040		T 000	0.000	
,	П	ций) СЛМ-Г-2-6	0,841	0,348	-	I,389	2,070	3,807
	Лагометры чешские	17-108,41702	0,343	0 ,164	_	0,567	0,856	I ,5 87
97 -	Приборы температуры	TH-I00,3I342, 255II	0,343	0,164	0,164	0,567	0,856	I,75I
5.5	 5.2.5. Термометры сопротивлени и термопары: 	я						
	Термометры сопротивления	TCM	-	0,016	0,016	-	0,715	0,747
		TCH-309,TCH-175	_	0,016	0,016	-	0,530	0,562
		TCM-6095	_	0,016	0,016	-	0.341	0.373
		TCM-4042, TCH-16	5 <u>.</u>	0,016	0,016	_	0,530	0,562
	Термометри манометри- ческие бесшкальные с шневматическим регуля- тором	TM-189∏, TP-189∏	_	0,016	0,016	_	2,498	2,530

	Ţ	: 2 :	3:	4:	5 :	6	: 7	: 8
	Термометры манометри— ческие показывающие с сигнальным устройст— вом	THT-188, THT-278, THT-188, THT-188	-	0,016	0,016	-	I,728	I,760
	Термометри манометри- ческие электроконтакт- ные показывающие с па- рожидкостным наполне- нием	TH2-CK-I, OKT-I, OKT-2	_	0,016	0,016	_	I,077	1,109
	Термометри манометри- ческие показывающие парожидкостные с сиг- нальным устройством	THT-CK,TT-2C	_	0,016	0,016	-	1,621	1,653
- 98	Термометры-индикаторы	TH314x3,TH313x6 TH312x6,TB-316	·,_	0,016	0,016	_	0,082	0,114
	Термометры динамические	e Ех3,ТУДЭ,ТСМ-X	-	0,016	0,016	-	2,128	2,160
·	Термопары, работающие в нормальных условиях	TXK-YXY,XA,XK, SiS	-	0,016	0,016	-	0,085	0,117
	Гильзы дія термометров и термовлементов	ДВ-2Р227 V ;	0,171	0,016	0,016	_	0,088	0,120
	Термопары, работающие в агрессивных средах	TXK-VXY,S.S, X.A,X.K	_	0,016	0,016	-	0,171	0,203
	Термопары, работающие пл температуре свише 800	on TXK-VXY, S.S.	0,136	0,016	0,016	-	0,171	0,203

5 .5 5.3	При боры расхода и у ров- ня, два фрагмы, ре гуляторы уровня							
5.55.3.	І. Дифманометры:							
	Дийманометры мембранные с пневмопередачей	дитк-4,дик-100	_	0,091	0,091	I,703	2,450	4,335
	Дифменометри колоколь- ные с электрической пе- редачей	ЛКОФМ-Р, ДКОФМ-ВТ	_	0,133	0,133	1,917	2,909	5,092
i	Дийманометры кольцевые с электрической пере- дачей	лкэ-вто,дкэ-рр, дкэ-рт	_	0,164	0 .164	2,142	3,25I	5,72I
8	Дифманометры	ДМ-420,ДМ-620	-	0,092	0,092	I,239	3,723	5,146
i	Пийманометры бесшкаль— ные с дийференциально— траноформаторным датчи— ком	ДКО-370I,ДК-I, ДКО-I	-	_	0,036	I,033	3,101	4,170
	Лийманометры попланковые бей дополнительных ус- тройств	ДП-280,ДП-280М, ДПМ-280	_	0,259	0,259	2,881	4,367	7,766
	Пийманометры мембранные с электроконтактным устройством; с иневмати-ческой передачей; с интег-	ЛМ—273, ЛМП—270, ЛМП—280, ДМ—281, ДМ—Ш						
	ратором Дифманометры сильфонные		-	0,088	0,088	1,703	2,450	4,329
	без дополнительных устрой показывающие	с тв Д СП-78 ОВ,ДСП-780	OH -	0,201	0,201	2,327	3,696	6,425

	I	: 2	·	3	:	4 :	5 :	6	: 7	: 8
	Диўманометры	ДС-II3,ДС-II4, ДС-IУ	,	_		0,201	0,201	I,550	4,209	6,161
	Дифманометры силь- фонные показывающие с сигнальным устройствог с интегратором	ЛСП-778В, ДСП-7 ДСП-778Н, М. ЛСП-78ІВ, ДСП-78ІН	776,	_		0,314	0,314	3,251	4,929	8,808
	Дийманометры мембран- ные	ДА-4564, ДМ-3566		_		0,092	0,092	0,913	I,745	2,842
ı	Ди <u>й</u> манометри поплавко вые с пневматическим регулятором	- 04-ЛІ-4ІО 04-ЛІ-4ІО 04-ЛІ-6ІО 04-ЛІ-6ІО	Ĥ,			0,369	0,369	2,844	4,573	8,155
- noi	Дифманометры поплав- ковые без дополнитель- ных устройств	- 加-410,加- - 加-610,加- 加-710,加-	-4IOM -6IOM -7IOT	; _		0,173	0,173	2,413	3,662	6 ,42 I
•	Дифманометры с интегратором	дм—612		_		0,092	0,092	2,683	4,039	6,906
	Дийманометри с дополни тельной записью давлен	и- ния ЛИ-420(620	o)	_		0,092	0,092	2,34I	3,724	6,249
	Дийманометры сильфонні без дополнительных устройств самопищущие	ME ACC-710M, ACC-710B, ACC-710-41	В	_		0,393	0,393	2,926	4,436	8,148
	Дифманометры сильфонны самопишущие с интеграт ром			_		0,444	0,444	3,491	5,237	9,616

		фианометры сильфон- ные с дополнительной записью давления и с интегратором		-	0,482	0,482	3,525	5 ,3 39	9,828
		Дифманометры самопищу- щие	ДСС-734,ДСП-78'	7-	0,092	0,092	0,322	4,664	7,630
		Преобразователи измерительные разности давления пневматичес-							
		KN6	ІЗДД-ІІ	-	0,09I	0,09I	I,7 0 3	2,450	4,335
		Прибор Петрова		-	_	0,208	0,102	0,513	0,823
	5.55.3.2.	Ротаметры:							
		Ротаметры	PC	-	-	0,208	0,050	0,34I	0,599
Ţ	4	Ротаметри электри- ческие дистанцион- ные	РЭД-3101,3-102, Э-103,3-104,	•		0.000	0.000	E 050	0. 740
٠,			9-106,9-107	_	-	0,208	3,679	5,253	9,140
,	5.55.3.3	.Расходомеры и счетчики: Турбинные холодной	BKOC-40	-	0,05I	0,051	1,396	I,745	3,243
		BOAM	BB-50/80,150, 200,300,100, 2-80/YBT-100/IS	50,					
			40-I50I	-	0,075	0,075	5,785	6,948	[2,883
		Нетурбинные	УВТ-100/150, 40-150	_	0,075	0,075	5,785	6,948]	2,883
		Расходомери индук- щиониме, электрические	ЭРИ-М "Норд"	-		0,092 0,123	4,860 4,860	7,325 1 7,325 1	

	I	: 2 :	3	; 4	: 5	; 6	: 7 :	8
		"Сигнал", 07302/2,РВ2101, ПМТ-20	***	0,092	0,092	1,704	2,450	1,338
	Технические пере- падомеры	ДС-65-I43,20К, ДС-57-243	-	-	0,092	2,587	4,2IO 6	3,889
	Перепадомеры	Бартон		-	0,092	I,704	2,450	1,246
5.55.3.4	.Приборы для измерен уровня жидкости	я						
	Уровнемеры	uSA-800	-	-	0,068	2,251	4,209	5,528
	Уровнемеры дистан- ционные	УДО-14	-	-	0,068	2,251	4,209	5,528
- IO2	Уровнемеры поплав- ковые, ферромагнит- ные	УРФ-2			0,068	2,251	4,209	5,528
1	Уровнемеры	CY-I,AO-4,PII-40		_	0,068	2.251		5,528
	• • • • • • • • • • • • • • • • • • • •	"Элраф-Нониуг"		_	0,068	2,289	•	5,656
		УНЦ-ШК, ЭИВ-2		_	0,068	2,252	•	6,530
	Уровнемеры буйк овые Пр яборы для измере -	LC,УБ,УБП,РУБ	-	-	0,068	0,855		2,245
	ния уровня и плот-	УРК-Д,УРТ-Д	-	-	0,068	4,994	9,448 I	4,5 I0
	Присоры для измере- ния уровня с вращаю- щимся тросом	- 12812,12803, 12812-20,12812-E	EB -	-	0,068	3,526	5,032	8,626
	Указатели уровня жидкости для верти- кальных резервуаров	УДУ-5,УДУ-2, УДУ-5М	_	-	0,146	2,337	4,669	7,152

	Регуляторы уровня камерные и цилиндри-РУКЦ- ческие трол.	-II.Левел- . R4075В I,305	_	0,146	1,231	I,766	3,143
	Уровнемеры глинисто- го раствора УП-II	rm –	-	0,146	2,378	3,480	6,004
	Электронные сигна- лизаторы уровня ЭСУ-2	-	-	0,146	2,289	3,299	5,734
	Датчик уровня жид- кости ДУЖЕ-	-200 -	-	0,146	0,855	I,3I7	2,318
	Сигнализаторы уров- ня	-	-	0,146	I,837	4,415	6,398
<u>.</u> ∺	Указатели уровня жид- коста для вертикаль- ных резервуаров УДУ-5	5П,УДУ-2 -	_	0,146	2,433	4,778	7,357
103	Задатчик воздушный	-	-	0,068	I,608	2,259	3,935
1	Задатчик уровня Т	-	-	0,068	0,838	I,I98	2,104
5.55.	3.5. Диафрагмы:						
	Диафрагмы камерные до 100 мм — ДКН	-	0,050	0,050	_	0,513	0,613
	От IOO до 200 мм	-	0,050	0,050	_	0,683	0,783
	От 200 до 300 мм	-	0,050	0,050	-	0,855	0,955
	Свыше 300 мм	-	0,050	0,050		I,7II	I,8II
	Измеритель диафрагмы с фланцами концент— ричные	_	0,050	0,050	_	0,513	0,613

	Ι :	2 ;	3	: 4 :	5 :	6 :	7	8
;	Приборн для измерения давления, регуляторы давления							
	.Манометри:							
	Манометри образцовые Манометри контроль-	M0-250		-	0,082	0,718	1,012	I,852
	ные однострелочные, для точных измерениі		-	-	0,054	0,181	0,283	0,518
	Манометры сверхвысо- кого давления	CB	-	-	0,179	0,667	I,I57	2,003
	Манометры общего пользования	MOH-160,0EM-160	_	_	0,036	0,115	0,164	0,315
 ⊢	Манометры	MTC-7I2	_	-	0,179	0,989	I,640	2,708
I04	Манометры с записью	14ma 000			0 MN0		÷	
1	двух давлений	MTC-730	win	-	0,179	I,06I	1,643	2,883
		MTM-38I	-	-	0,009	0,187	0,283	0,479
	Манометры общего назначения	OEB-160(160E), MT-712	-	-	0,036	0,208	0,328	0,572
	Манометри электро- контактные двух- позиционные	ЭКМ-160-1, ЭКМ-1У, ЭКМ-160-2,						
	Манометры электро-	160-ІУ	-	0,088	-	0,283	0,403	0,774
	контактные во взры-	БЭ - I6 p б	_	0,088	_	0,430	0,592	I,IIO
	Манометры дистан-							
	ционные с пневмо- преобразователем	WILL	_	0,013	0,013	0,961	I,505	2,492
	Манометры кислородн		-	0,013	0,013	0,129	0,191	0,346
	Манометры дистан- ционные с электри- ческим индукцион-	100		0,020	0,010	0,2.00	0,101	0,010
	ным датчиком Манометры импортные	МЭД - 2306 М G-≾- 8/A	-	0,214	-	0,797	I,I57	2,168
1		MG-X-8/A, "Преостат" -Фран Ванаго Кейки, ITM-66410, BE-10-193, PIG-MOME-3ASMA, Чешский 03437	.					
105		Чешский 03437	-	-	0,036	0,115	0,164	0,315
ı	Манометры общего пользования	MT-60	-	-	0,036	0,088	0,143	0,267
	Манометры самони- шущие,общего поль- зования	MT2C,MII-60,MI-4	-	-	0,036	0,115	0,164	0,315
	Манометры сильфон- ные самопишущие без дополнительных устройств	MCC-7II, MCC-4IO, MCC-6IO	-	0,109	0,109	I,067	I,694	2,979
	Манометры сильфон- ные самопишущие с дополнительной за- писью двух давлений	MCC-730,MCC-430, MCC-630	-	0,109	0,109	I,I57	I,807	3,182

	I :	2 :	3	: 4:	5 :	6	: 7 :	8
	Манометры показы- вающие сильфонные с пневматическим выходным сигналом	MC-III8,MC-112, MC-III		0,102	0,102	1,160	1,813	3,177
	Манометры показы- вающие с многовит- ковой пружиной с пневмодатчиком	MIT-270M,PI. PTC,PUIC	-	0,II2	0,II2	1,163	1,919	3,306
	Манометры самопишу- щие с многовитковой пружиной с иневмати- ческим регулирующим устройством		_	0,129	0,129	1,362	2,272	3,892
3	Манометры пружинные с пневматическим выходным сигналом	MII-II2		0,II2	0,112	I,I57	1,813	3,194
	Манометры И-образны	9 ДТ-50,ДТ-25	_	0.047	0.047	0,776	I,293	2,16
	Манометры И-образны ртутные и водяные		_	0.047	0.047	0,776	I,293	2,16
	Микроманометры	MMH-240	-	0,047	0,047	0,776	I,293	2,16
	Моновакуумметры	MBC-II3	_	0.II2	0.112	0.129	0.218	0.57
	Микроманометры	MKB-250-0,02		0,112	0.112	0,136	0,191	0,55
55.4.2.	Датчики:			•	•	•		•
	Датчики перепада	V/BA-HS 20AS FM	_	_	0,047	I,703	2,450	4,20
	Датчики магнитно- индукционные	МиД	_	_	0,047	I,703	2,450	4,20

	Датчики давления импортные	0732, V/IIGM- B52, GAS -PM,						
		611 с м,613д L — L S 2,613ДМ—М S 2	_	-	0,047	1,917	4,107	6,07I
		07132			0,047	I,I60	1,813	3,020
		PT	-		0,047	2,772	4,210	7,029
	Датчики реле дав- ления	Щ	-	_	0,068	0,464	0,776	I,308
		РД-26-02 РД-18M-01, РД-23M-03	_		0,068	2,272	3,785	6,125
1	Датчики реле напора	ДН-40,ДН-100. ДН-600,ДН-160-II	-	_	0,068	0,793	1,321	2,182
107	Датчики реле тяги	ДТ	-	-	0,068	0,776	I,293	2,137
15.55.4.3	.Напоромеры и тятоме	ры:						
	Напоромеры сильфон-							
	ние	HCII-I	-	-	0,068	0,776	1,293	2,137
	Напоромеры	HM-ITT,HMII-52	-	-	0,068	0,680	I,I35	I,883
	Тягомеры дифферен- циальные, тягомеры меморанные дифферен- циальные	- ТД-50,ТДМ	_	_	0.102	0.855	1.303	2.260
	Тягомеры стрелочные напоромеры меморан-	TM-III, TH-III,			•	• • • • •		·
	ние	HM-III	-		0,088	0,749	I,I35	1,972

	I:	2 :	3	: 4 :	5 :	6	: 7	: 8
	Тягомеры однотруб-							
	ные, настенные и щитовые	тна-н(щ)	_	_	0,057	0,441	0,663	I,I
	Тягомеры дифферен-	11/m/	_	-	0,007	O., 441	0,000	т 9 л
	циальные (одно и	ענים דעס)			D 054	0.4***	0.000	7 7
	двухточечние)	ТДЕ-І(2)	-		0,054	0,417	0,629	Ι,Ι
	Тягомери меморан- ние	THC-III, THM-IOO	_	_	0,068	0,776	1,293	2,
55.4.4	. Редукторы давления				•	·	•	-
	Редукторы кислород-	******	0.000				_ ~~~	
	нце	KPP-50/61/	0,820	-	0,068	I,150	I,578	2,
	Редукторы кислород- ные, водородные, уг-	PK-50(53), PB-53(55),yP-2						
	лекислотные	PB-53(55), YP-2	0,256	-	0,068	0,488	0,766	Ι,
	Редукторы д авле ния с фильтром	РДФ-3	0,280	_	0,068	0,533	0,889	I,
	Фильтры воздуха	BD(HHP),BD-I	0,086	_	0,068	0,164	0,273	
	Стабилизаторы дав-	(),			3,300	0,202	0,	,
	ления воздуха	СДВ-І,6,25	0,889	-	0,068	0,615	I,026	I,
	Редукторы ацетиле- новые	РД-2A,РД-Ia, ДЭД-I-59M.	0.277	_	0,068	0.369	0.551	່ ດ •
	TOTHE	PKII5-61"	0,277 0,427	-	0,068	0 ,36 9 0 ,835	0,55I 0,992	0, I,
55.4.5	5.Регуляторы давления:	:						
	Регуляторы давления пневматические	РД, ВВ	1,163	_	0,068	0,410	0,683	I,
	Регуляторы низкого					-	-	
	павления	РД-32М	I,06I	-	0,068	0,677	1,129) I,
	Регуляторы давления воздуха	РДВ, ВНР	0,393	_	0,068	0,318	0,530	0.
	Регуляторы	"Кристалл"	0,478	_	0,068	0 ,4 I0	0,683	I,I
	Регуляторы прямого			_	•			
	Регуляторы прямого действия	РДУК-150	0,478 0,478	- -	0,068	0, 4 I0 0, 4 I0	0,683 0,683	
	Регуляторы прямого	- РДУК-150 оуй-		- - -	•			I,I
	Регуляторы прямого действия Регуляторы масло -гр струйны Регуляторы показы-	- PHYK-150 DYH- Mom.081591 5341-3501.	0,478 0,478	- - -	0,068	0,4I0 0,4I0	0,683	I,]
	Регулиторы прямого действия Регуляторы масло- гр струйны	РДУК-150 ХУЙ- Мод.081591 5341-3501, МИМ,МТ-Э12Р	0,478	- - -	0,068	0,410	0,683	I,]
	Регуляторы прямого действия Регуляторы масло -гр струйны Регуляторы показы-	РДУК-150 руй- Мод.081591 5341-3501, мим,мТ-Э12Р 4И2RF.	0,478 0,478 0,889	- - - -	0,068	0,4I0 0,4I0	0,683	I,I I,I
	Регуляторы прямого действия Регуляторы масло -гр струйны Регуляторы показы-	РДУК-150 ХУЙ- Мод.081591 5341-3501, МИМ,МТ-Э12Р	0,478 0,478	- - - -	0,068 0,068 0,068	0,4I0 0,4I0 0,6I5	0,683 0,683 I,026	I,: I,: I,:
	Регуляторы прямого действия Регуляторы касло-гр струйные Регуляторы показывающие Приборы качества, газосигнализаторы	РДУК-150 ХУЙ- МОД.081591 5341-3501, МИМ,МТ-Э12Р 4И2КГ, "Сублист"	0,478 0,478 0,889 1,395	- - - -	0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8	0,683 0,683 I,026 2,053	I,: I,: I,:
	Регуляторы прямого действия Регуляторы касло-гр струйны Регуляторы показывающие Приборы качества, газосигнализаторы Т. Хроматографы	РДУК-150 DУЙ- МОД.081591 5341-3501, МИМ,МТ-312Р 4И2RF, "Сублист" РТС	0,478 0,478 0,889 1,395	- - - -	0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8	0,683 0,683 I,026 2,053	I,I I,I I,7
.55.5 1	Регуляторы прямого действия Регуляторы касло-гр струйные Регуляторы показывающие Приборы качества, газосигнализаторы	РДУК-150 ХУЙ- МОД.081591 5341-3501, МИМ,МТ-Э12Р 4И2КГ, "Сублист"	0,478 0,478 0,889 1,395	-	0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8 I,026	0,683 0,683 I,026 2,053 I,7II	I,1 I,1 I,7 2,5 2,8
.55.5	Регуляторы прямого действия Регуляторы касло-гр струйны Регуляторы показывающие оприсоры качества, газосигнализаторы хроматографы хасо-	PUVK-150 DYÄ- MOJ.081591 5341-3501, MUM,MT-312P 442RF, "Cyonner" PTC JIXM-8MI JIXM-80 JIXM-72	0,478 0,478 0,889 1,395 1,348		0,068 0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8 I,026	0,683 0,683 I,026 2,053 I,7II	1,1 1,1 2,5 2,8
i.55.5	Регуляторы прямого действия Регуляторы касло-гр струйные Регуляторы показывающие Оприборы качества, газоситнализаторы Хроматографы дабораторные	PUVK-150 DYÜ- MOJ.081591 5341-3501, MUM,MT-312P 442RF, "Cyonner" PTC JIXM-8MII JIXM-80 JIXM-72 JIX-3	0,478 0,478 0,889 1,395 1,348	- - - -	0,068 0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8 I,026	0,683 0,683 I,026 2,053 I,7II	1,1 1,1 2,5 2,8
5.55.5 	Регуляторы прямого действия Регуляторы масло-гр стружны Регуляторы показывающие О Приборы качества, газосигнализаторы Кроматографы дабораторные Хроматографы про-	РДУК-150 DYЙ- МОД.081591 5341-3501, МИМ,МТ-312Р 4И2КГ, "Сублист" РТС ЛХМ-8МІ ЛХМ-80 ЛХМ-72 ЛХ-3 ХПА-2	0,478 0,478 0,889 1,395 1,348		0,068 0,068 0,068 0,068 0,068	0,4I0 0,4I0 0,6I5 0,4I8 I,026	0,683 0,683 I,026 2,053 I,7II	1,1 1,1 2,5 2,8
5.55.5 	Регуляторы прямого действия Регуляторы касло-гр струйные Регуляторы показывающие Оприборы качества, газоситнализаторы Хроматографы дабораторные	PAVK-150 DYÄ- MOJ.081591 5341-3501, MMM,MT-312P 44/2RF, "CyOJNCT" PTC JXM-8MI JXM-80 JXM-72 JX-3 XIIA-2 XIIA-2 XIIA-4 XIIA-499	0,478 0,478 0,889 I,395 I,348 8,72I 2,423	-	0,068 0,068 0,068 0,068 0,068	0,410 0,410 0,615 0,418 1,026	0,683 0,683 I,026 2,053 I,7II I2,29I 3,863	1,1 1,1 2,5 2,8 2,8
5.55.5 1	Регуляторы прямого действия Регуляторы касло-гр струйные Регуляторы показывающие О Приборы качества, газосигнализаторы Хроматографы дабораторные Хроматографы промышленные, автоматические	PAVK-150 DYÄ- MOA.081591 5341-3501, MMM,MT-312P 44/2RF, "CyOARCT" PTC AXM-8MI AXM-80 AXM-72 AXM-72 AXM-2 AXMA-2 AXMA-2 AXMA-4 AXMA-4 AXMA-499 AXMA-3-150	0,478 0,478 0,889 I,395 I,348 8,72I 2,423		0,068 0,068 0,068 0,068 0,068 I,368 I,368	0,410 0,410 0,615 0,418 1,026 8,595 2,402	0,683 0,683 I,026 2,053 I,7II I2,29I 3,863	1,1 1,1 1,1 2,5 2,8 22,2 7,6
5.55.5 	Регуляторы прямого действия Регуляторы масло-гр струйные Регуляторы показывающие Приборы качества, газосигнализаторы Кроматографы лабораторные Хроматографы про-мыщиенные, автома-	PHVK-150 DYT- MOH.081591 5341-3501, MMM,MT-312P 44/2RF, "CyONICT" PTC IXM-8MI JIXM-80 JIXM-72 JIX-3 XIIA-2 XIIA-4 XIIA-499 XIIA-3-150 XJ-4,6,63,7	0,478 0,478 0,889 I,395 I,348 8,72I 2,423		0,068 0,068 0,068 0,068 0,068	0,410 0,410 0,615 0,418 1,026	0,683 0,683 I,026 2,053 I,7II I2,29I 3,863	1,1 1,1 1,7 2,5 2,8 22,2 7,6

Хроматографы

"Нефтехим-200"

4,162

- I,368 4,I24 7,7I8 I3,2II

	I :	2	: 3	: '	4	: 5	: 6	: 7	: 8
	Хроматографи пор- тативные	XT-8	I,840		_	I,368	1,317	2,135	4,82I
	Хроматографы	XJI-69	3,682		-	I,368	3,251	6,373	10,992
		XT-2MY	2,149		_	I,368	2,48I	5,733	9,582
		XT-IT	6,907		-	I,368	4,559	II,63I	17,558
		C4CPT	8,72I		-	I,368	8,595	12,291	22,254
	Хроматографы мно-	8IIO	8,721		_	I,368	8,595	12,291	22,254
	Хроматографы газо- вые		8,721		_	I,368	8,595	12,291	22,254
	Хроматографи	MC 8/5-ASSA	8,721		-	I,3 6 8	8,595	12,291	22,254
OII		MI 8/5	8,72I		-	I,368	8,595	12,291	22,254
1	Монохроматографы	УМ-2	2,149		-	I,368	2,48I	5,733	9,582
	Хроматографи	Нимадзу	3,682		-	I,368	3,251	6,373	IO,992
		6ACH-2I3	8,72I		-	I,368	8,595	12,291	22,254
		"Виру-хром"	8,72I		-	I,368	8,595	12,291	22,254
		Газохром	8,72I			I,368	8,595	12,291	22,254
	Хроматограф лабо- раторный	"Цвет-ІОО"	10,636	•	_	I,368	10,482	14,482	26,840
5.55.5.2	2.Влагомеры								
	Влагомеры	Байкал-2	I,08I		-	0,126	3,367	6,407	9,900
	Сигнальное устройс- тво	CILY	1,081	•	-	0,126	3,367	6,407	9,900

5.55.5	З.Газоанализаторы							
	Газоанализаторы химические пере-	TXII-2	0.007		0.050	0.000		
	носние	MH-5130	0,801	-	0,253	2,382	3,936	6,571
	Газоанализаторы	ЛГД-2М	0,916	-	0,252	0,952	1,571	2,775
		ΤΙΌ - 45 ΦΚΤ - 3	0,547	-	0.253	0,478	0.684	I.4I5
		BHP	I,368	_	0,252	2,330	3,330	5,912
		HTD, TKT-4,			•		•	-
		MTK-14	0,547	-	0,253	0,478	0,684	I,4I5
		ФЛ 550I	6,099	-	0,253	6,068	7,993	14,314
III	Анализаторы по физическому свойству	MK-AII	I.4I6	_	0,253	I.399	2,122	3,774
ı		Schilling	I,4I6	_	0,253	I,399	2,122	3,774
	Анализаторы по сероводороду	722 AEX	I ,4I 6	-	0,253	1,399	2,122	3,774
	Анализаторы импор	тные	I,416	-	0,253	I,399	2,122	3,774
	Анализаторы влаги	56 0	0,916	-	0,252	0,952	1,571	2,775
	Анализаторы элект рические	Laak-si	1,416	-	0,253	I,399	2,122	3,774
	P - Н метры пере- носные	· II-4,II-6, IIII-ÿ	2,396	-	0,410	2,361	3,251	6,022
	Р - Н метры пере- носные	IIIIM-O3M	2,792	-	0 ,3 83	2,737	4,176	7,296

	I :	2	3	: 4	: 5 :	6	; 7	: 8
	Р - Н метри лабо- раторные	JIII-58 JIIV-0I	2,4I6 3,929	-	0,4I0 0,4I0	2,368 3,85I	3,265 5,826	6,043 I0,087
	Р - Н метры высо- коомные		4,819	-	0,479	4,723	7,120	12,322
	Рефрактометры дисперсионные универсальные	I ДУ	4,3I3	_	0,253	3,183	4,313	7,749
5.55.5.4	1. Газосигнализатор	н						
1	Сигнализаторы вэрывной концент- рации	CBK-3M,KCA	I,I20	-	4,929	1,714	3,386	10,029
II2	Сигнализаторы го- рючих газов	CIT-2,CIT-2M, ПГД-7	I,47I	-	4,929	I,35I	2,757	9,017
ı	Сигнализаторы пе-	III D-2M	0,187	-	4,929	0,348	0,787	6,064
	Сигнализаторы маг нитные		'I,34I	-	4,929	2,053	4,104	II,086
	Сигнализатор па- дения давления	CHIC, CHIM, CHC-13	0,856	-	4,929	0,478	0,684	6,091
	Сигнализатор мем- бранный	CM-I	I,I08	-	4,929	1,020	I,454	7,403
	Сигнализатор тем- пературы	CT-136M	2,757	-	4,929	3,860	6,2QI	14,990
	Сигнализатор уте- чек из насоса	CYH-I	0,352	-	4,929	1,297	1,855	8,08I

	Сигнализаторы уровня электрон-							
	HHe	M Э C y- IB	0,478	-	4,929	0,359	0,513	5,801
		ЭСУ-2,КСФМА	I,547		4,929	I,297	I,85I	8,077
	Сигнализаторы уровня жидкости	CAR-1'CAR-5	0,958	_	4,929	3,091	4,415	12,435
	Сигнализаторы уровня жидкости	ЖХД	0,958		4,929	3,09I	4,415	12,435
	уровня поплавковые	cy-I	0,390	_	4,929	0,324	0 ,46 I	5,714
1	Сигнелизаторы уровня утечки с поплавком	СУ-4	0,523	_	4,929	0,527	0,752	6 ,208
ĮI3 –	Сигнализатори уровия электри- ческие	ЭРСУ-2 ; 3	0,821	_	4,929	0.838	I.I98	6,965
	Сигн ализаторы по ложения	NCN	0,335	_	4,929	0,821	I,I74	6,924
	Реле сигнализации уровня в искробезо пасном исполнении) -						
	типа	VIKC-2H	0,656	_	4,929	0,615	0,684	6,228
	Газосигнализатор	CTH-I	I,I20	-	4,929	I,7I4	3,386	10,029
	Сигнализаторы кнопочные	KC I-I2	I,266	_	4,929	5 , 0 45	I,848	II,822
	Газосигнализатор	CTH-2	I,34I	-	4,929	2,053	4,104	II,086
	Сигнализаторы горючих газов	Япония, США	3,279	_	4,929	5,045	8,769	18,743

	:	2	; 3	; 4	; 5 :	6	7	: 8
	Сигнализаторы по сернистому	CIIIA	3,279	_	4,929	5,045	8,769	18,743
	газу Кислородосигна-	Япония, "Э л юорит						
	лизаторы Пневмосигнализа-	MM 5130 -	3,213	-	4,929	5,045	8,769	18,743
	торы	0708I ПЭСУ-4	0 ,335 0 ,335	_	4,929 4,929	0,270 0,270	0,382 0,382	5,58I 5,58I
	Сигнализатор	CTH	-		4,929	1,714	3,386	10,029
5.55.6.	Исполнительние	Щит-194	3,279		4,929	5,045	8 ,7 69	18,743
	механизмы							
5.55.6.	Грегулирующие кла- пани, работающие и нормальных услови	9						
ş i -	Малогабаритные регулирующие кла-		0 470					
	паны Клапаны электро-	NPK,NP-I ONK-IO,ONK-I3,	0,410	-	0,068	0,307	0,513	0,888
	пневматические Клапаны регули- рующие:	эпкд-вэг	0,239	-	0,068	0,205	0,34I	0,615
	с условным диаметром	MPK,EP,MPJF4						
	до 50 мм		0 ,444	~	0,068	0,307	0,513	0,888
ı	от 50 до 125 м		0,496	_	0,068	0,410	0,683	I,16I
	от 125 до 200 свыца 200 мм	25C32HX	0,674 0,697	-	0,068 0,068	0,513 0,615	0,855 I,026	I,436 I,709
		25C3H)K	0,468	_	0,068	0,46I	0,769	I,298
	рующие рующие	K-40-40-B0 K-20-40-B0	0,444 0,444	Ξ	0,068 0,068	0,307 0,307	0,5I3 0,5I3	0,888 0,888
- IT2	Клапани регули- ружене с инсимо- приводом Клапани пусковог	3551 MLV-1000- 1500, FLAN-PC-71,	0,650	-	0,068	0,417	0,598	I,083
i I	ного газа) -	0,239	-	0,068	0,205	0,34I	0,614
	Клапаны солино- клапаны авторе-	JEI,24015 630-103,	0,239	-	0,068	0,205	0,34I	0,614
	пулирующие ре- дукционно-пре- дохренительные	25316-LN 2511 NLB	0,674	-	0,068	0,513	0,855	I,436
	Клапан электро- магнитный	22К-480/он	0,239	-	0,068	0,205	0,34I	0,614
	Отсекатели газа	00-2	I,444	***	0,068	I,077	1,796	2,941
	Серопривод Исполнительный м	ЧКД В—	I,444	-	0,068	I,077	I,796	2,941
	ханизм гилравли ческий	LINW-STIH	1,061	-	0,068	0,911	I ,5 I9	2,498

	I	2 :	3:	4	: 5 :	. 6 :	7:	8
5.55.6.	2. Позициометры					·		
	Поемпиомотры	TOT COM To Attack To	() 005		0.000	C TEC	0.050	U VIIIG
	лневматические	PIGN INESA	0,205		0,068	0,153	0,256	0,477 0,477
E EE 6	Позициометры 3.Задвижки	HP-7,HP-IO	0,205	-	0,963	0,183	0,256	0,477
5.55.6.	Запвички элект-							
	роприведние	ЭПС, Ex3-50	0,393	-	0,068	0,256	0,427	0,751
	Вентили запорине	B34	0.021	-	0,068	U,035	0,043	U.I46
	Вентили регули-	DE ARRE T	2 000		0.000	0.050	O OPT	() IC:
	ровочные	PB-MMM-I	0,028	-	0,068	0,053	0,071	0,192
	Бентили распре- делительние	PP-5	0,035	-	0,068	0,055	0.079	0,202
	Вентили чголь- чатие	ВИ	0,039	_	0,048	.0,058	180,0	0,207
5.55.6.	4. Регулирующие кла		0,000		0,0.0	0,000	0,001	0,
0.30101	расотсющие в агре средах	COMBHHX						
	Малогабаригные регулирукцию							
	ka manin	IIPK,IIP-I	-	-	0,067	0,615	1,0%6	I,708
	Клацаны электро- пнэвметические	OHK-IO, OHK-TS, OHKA-COF	_	•,	0,068	U,4I0	0,683	I,161
	Клапаны регули-							
	с услогным руюшче:							
	диамэтром цо 50 мм	MKP, KP, MPKU		_	0,068	0.615	1,026	1,70
	от 50 до 125 мм		-	_	0,063	0,820	I,367	2,25
	ot 125 nc 200 n	1 01 25050HM	_		.0.068	I.026	I. 7 T0	2.80
	ot 125 ga 200 n annes 200 nm			<u>-</u>	0,068 0,068	I,026 I,23I	1,7I0 2.053	
	, T. T.	an 25050HM 25032HM 2503HM	- -	- - -	0,068	1,231	2,053	3,35
	, T. T.	25032HE 2503HE 4461-105 RC	- -	- - -				3,35
	свине 200 мм Клапани регули- рующие с пневмо-	25032HI 2503HII 44GL-14S RC, AND-25-10 FLAN-PRA,	- - -	- - -	0,068 0,068	I,23I 0,923	2,053 1,539	3,35 2,53
	свище 200 мм Клипаны регули— рующие с пнеямо- прыводом	25032HI 2503HI 44GL-1AS RC, Min 35-10 FLAW-PCA, VIIC, 3531 MLW-1000-1500	- - -	- - -	0,068	1,231	2,053	3,35 2,53
	свине 200 мм Клапаны регули- рующие с пненмо- приводом Клапаны пускового воздуха и топлив-	25032HI 2503HI 44GL-145 RC, /NH-25-10 FLAN-PCA, YIJC,3531 MLV-1000-1000			0,068 0,068 0,068	1,231 0,923 0,834	2,053 1,539 1,197	3,35; 2,530 2,099
	свине 200 мм Клапани регули- рующае с пненмо- приводом Клапани пускового воздуха и топлив-	25032HI 2503HI 44GL-145 RC, /NH-25-10 FLAN-PCA, YIJC,3531 MLV-1000-1000	- - -	-	0,068 0,068	I,23I 0,923	2,053 1,539	3,35; 2,530 2,099
	свине 200 мм Клапаны регули- рующие с пненмо- приводом Клапаны пускового воздуха и топлив-	25032HI 2503HI 44GL-145 RC, /NH-25-10 FLAN-PCA, YIJC,3531 MLN-1000-1000	- - -		0,068 0,068 0,068	1,231 0,923 0,834	2,053 1,539 1,197	3,352 2,530 2,099
	СВИЩЕ ЗОО ММ Клапаны регули— ругом с невимо- моровиди и какиков от вакука и отом всего отом – импраниям импраниям Клапани встр-	25032HM 2503HM 49GL-149 RC, /KN -25-10 FLAN-RCA, VIIC, 3531 MLX-1000-1500	-		0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0	2,053 1,539 1,197 0,583	3,35; 2,539 2,099 I,I63
- 4	СВИЩЕ 200 мм Клапани регули- рующие с иненмо- прыводом Клапани пускового воздуха и топлив- ного геза клапани соли- ноцинае Клапани авто- регулирующие	25032HI 2503HI 44GL-14S RC, /NH-35-10 FLAW-PCA, YIJC, 3531 MLW-1300-1500 TEI, 240I5	- - -	-	0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0	2,053 1,539 1,197 0,583	3,35; 2,539 2,099 I,I63
177	СВИЛЕ 200 мм Клапани регули- рующае с иненмо- приводом Клапани пускового воздуха и топлив- ного геза Клапани соли- ноциние Клапани авто- регулирующае редукционно- предохранитель-	25032HM 2503HM 49GL-149 RC, /KN -25-10 FLAN-RCA, VIIC, 3531 MLX-1000-1500	-		0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0	2,053 1,539 1,197 0,583	3,35; 2,530 2,099 1,161
44	СВИЩЕ ЗОС ММ Клапани регули— руковое с иненмо- приводом Клапани ирукового воздуха и голина- ного геза клапани авто- ного привим видине с иненмина регулирустине регулирустине ное с иненмина ного предодрагата ние отдельные ветоматим ветоматим вуковом в предодрагата в привиденти в привиден	25032HI 2503HI 44GL-14S RC, /MI-35-10 FLAW-PCA, YJC, 3531 MLW-1300-1500 3 TEI, 24015 630-103, 25316-1W, 2511 MLB	-		0,068 0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0 0,4I0	2,053 1,539 1,197 0,583 0,683	3,35; 2,539 2,099 1,163
-177	СВИЩЕ ЗОС ММ Клапаны регули— рующие с иненмо- приводом Клапаны пускового воздуха и топлив- ного гэза Клапаны соли— клапаны авто— регулирующие редукционно— предохранитель— ные сситемы автоматики	25032HI 2503HI 44GL-14S RC, /MI-35-10 FLAW-PCA, YJC, 3531 MLW-1300-1500 3 TEI, 24015 630-103, 25316-1W, 2511 MLB			0,068 0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0 0,4I0	2,053 1,539 1,197 0,583 0,683	3,355 2,530 2,093 1,161 1,161 2,804
777	СВИЩЕ ЗОС ММ Клапани регули— рующие с инеямо- приводом Клапани пускового воздуха и топлив- ного геза Клапани соли— ноидине Клапани авто- регулиционно- предохранитель— ние одиматими Слементи бес- контектава	25032HM 2503HM 49GL-14S RC, /KM -25-10 FLAN-RCA, VIJC, 3531 MLX-1000-1500 DEI, 24015 630-103, 25316-LN, 2511 MLB			0,068 0,068 0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0 0,4I0 1,026	2,053 1,539 1,197 0,583 0,683 1,710	3,352 2,530 2,099 1,161 1,161 2,804
; T7 5.55.7	СВИПО ЗОО ММ Клапани регули— рующие с инеямо- прыводом Клапани пускового воздуха и топлив- ного геза Клапани авто- регулирующия регулирующия регулирующия система элементи система элемтронная система обез- воживалия гоза Четирехканольная	25032HM 2503HM 496L-4AS RC, AND -25-40 FLAM-RCA, YUC, 3531 MLW-1000-1500 DEI, 24015 630-103, 25316-1N, 2511 WLB E ECT8-2 Memoroh	-		0,068 0,068 0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0 0,4I0 1,026	2,053 1,539 1,197 0,583 0,683	3,352 2,530 2,099 I,161 I,161 2,804
177 -	СВИЩЕ ЗОС ММ Клапани регули— рукцие с иненмо- приводом Клапани пускового воздуха и топлив- ного геза Клапани авто- регулирукцие с сидения авто- препумирукцие редухирукцие отнематия Слабана вес- контектия система	25032HM 2503HM 496L-4AS RC, AND -25-40 FLAM-RCA, YUC, 3531 MLW-1000-1500 DEI, 24015 630-103, 25316-1N, 2511 WLB E ECT8-2 Memoroh			0,068 0,068 0,068 0,068 0,068	1,23I 0,923 0,834 0,4I0 0,4I0 1,026	2,053 1,539 1,197 0,583 0,683 1,710	2,804 3,352 2,630 2,099 1,161 1,161 2,804 15,710 28,890 14,064

-					miranima animajanje allebe			
_	<u>:</u>	<u> 2 : </u>	3:	4:	<u>5:</u>	<u>6</u> :	7 :	8
	Система элект- ронного зажи- гания	Байтис	_		0,410	4,888	8,766	I4,064
	Система управ- ления принодом задвижек	Компрессор-3, Цикл-2	_	_	0,410	4,888	8,766	I4,064
	Комплект	ДМС,ДС-05	***	_	0,410	4,278	8,283	12,981
	Термодизельный комплект	TKU-3M, TKU-50M	-	_	0,410	3,86I	6,202	10,473
	Автомат контроля пламени	АКП-П, Сигнал, Пламя		-	0,273	1,321	2,200	3,794
1	Датчики пламени	Φ-24,Φ-34	_	_	0,273	-	0,814	I,087
	Автоматы	A-63	_		0,273		0,814	I,087
- 8II		5V-ZUR, JL 2V,	_	_		_		
•		VIJE, VI-VE	-	-	0,410	-	0,814	I,087
	Автоматы ыключе- ния	S-4I-KBF- NA	-		0,410	-	0,814	I,087
	Регуляторы	P-25,I;P-25,I,I P-25,I,2	;_		0,102	1,745	2,481	4,328
	кинатип итамотал			-	0,410	-	0,814	I,224
	Кнопки с ключом Кнопки четырех-	WISCVIIZ2	-	-	0,410	0,851	I,420	2,681
	полюсные Переключатели		-	-	0,410	0,851	I,420	2.681
	многоточеные	IIMT FLMA, F304763P3,	-	-	0,273	U , 85I	I,420	2,544
		F308765P2	-	-	0,410	0,851	I,420	2,681
	Переключатели газовые	III-I	_	_	0,273	0 , 85I	T ,42 0	2,544
	исетародина по					•	_,	
	тока Переключатели	П-308	••	-	0,273	0,85I	I,420	2,544
	потоков Переключатели	-	-	-	0,273	0,851	I,420	2,544
	кнопочные Переключатели	-	-	-	0,273	0,85I	I,420	2,544
	уровня	614 1 FW, FIC-150 WP,	-	-	0,410	0,85I	I, 42 0	2,681
	Выключатели потока	3057-36A	-	-	0,410	0,851	I,420	2,681
	Выключатели конечные	F x3Д, Seropluc 5LST ,Лепувела	-	-	0,410	0,851	I,420	2,681
	Выключатели тревожные электронные	FKY-61 BW/BH 5352-24-21	-	_	0,410	0,85I	I,42C	2,681
	Виключатели	BII-4	_		0,273	0,85I	I,420	2,544
	ПУТОВНЭ К почи управлени		_	- -			2,054	
	Ключи управлени		-	-	0,410	I,437	£,∪04	3,901
	Ключи управлени автоматические	^н F0₩/C, ДF22RI5 gR УП-5316Ф456	rB, -	-	0,410	I,437	2,054	3,90I
	имеритель импероме	PR9266/52	-	-	0,410	3,635	6,058	10,103

Преобразов									
ымдрации	атель РК РК	7413. JLJPS	-		U ,4 IO	3,635	6,058	IO,163	
Рело		-21		_	0,068	0,179	0,300	0,547	
Реле зазем			-	_	0,068	0,196	0,327	0,591	
Реле уровн		56-2240			0,068	0,196	0,327	0,591	
Реме позиц		00 2020			-,	0,200	-,	-,	
нке		-10-100		-	0,068	0,308	0,513	0,889	
	ИН	S22JJI(,_					6. 600	0 = 113	
-		-3P,PP-3P	-	-	0,068	0,179	0,300	0,547	
Реле време	ни РП	B,6C-IO-34, V-48,98248,							
	MT	-I	-	_	0,068	0,196	0,327	0,591	
Реле Тайми	p P2	25 EZTIP			·	•	·		
·	MM	4xPOMRON	_	-	0,068	·0,196	0,327	0 ,5 9I	
Реле врема		P-I,PE-250			0.000	0 100	0.000	2 607	
компрессор		-130	-	-	0,068	0,196	0,327	0,591	
Реле темпеј туры	المناف	25			0,068	0,612	0,872	I,552	
Реле расхо		5 4-2 300	_		0,068	0,283	0,403	0,754	
Реле тока		-25,PT-40/06.			5,000	0,200	0,400	0,705	
A W		-230y	-		0,068	0,179	0,300	0,547	
Геле тока	ДP	Ц		_	0,068	0,196	0,327	0,591	
Реле сигна	ли-								
зации		C-3M, NC-37A	-	-	0,038	0,308	0;513	0,889	
Реле защит: перегрузок	иот Ар-	_T			0,068	U ,30 8	0,513	0,839	
Рела пере чэний	0	К П-2,5	<u>-</u>	- -	0,068 0,068	0,308 0,308	0,5I3 0,5I3	0,389 0,889	
	ние П	T-2,5	<u>-</u>	<u>-</u>	0,068	0,308	0.513	0,889	
чэний: Рэле счэт сигнальны	0 11 ные е 6	П-2,5 6ДГ,351.2	- - -	- - -	0,068 0,068	0,308 0,308	0,5I3 0,5I3	0,889 0,889	
чений Рэле счет сигнальны Реле авар	0 П энне 6 6 Мийные М	П-2,5 6ДГ,3512 ИК-2	- - - -		0,068	0,308	0.513	0,889	
чэний Рэле счет сигнальны Реле авар Реле разн	0 П энне 6 6 Мийные М	П-2,5 6ДГ,3512 ИК-2	- - - -		0,068 0,068	0,308 0,308 0,308	0,513 0,513 0,513	0,889 0,889	
чений Рэле счет сигнальны Реле авар Реле разн давления	HHE HHE OTIN C	N-2,5 6AT,3512 KK-2 A3I-143-0-5000 A2I-243-P24-%-	- - - - - -	-	0,068 0,068 0,068	0,308 0,308 0,308	0,513 0,513 0,513 0,403	0,889 0,889 0,754	
чений Рэле счет сигнальны Реле авар Реле разн давления Реле врем	O II O O O O O O O O O O O O O O O O O	П-2,5 6ДГ,3512 ИК-2	- - - - - - -		0,068 0,068	0,308 0,308 0,308	0,513 0,513 0,513	0,889 0,889	
чений Рэле счет сигнальны Реле авар Реле разн давления Реме врем Реле темп	HHO HO COTY COMMENT COTY COMMENT COTY COMMENT	N-2,5 6AT,3512 NK-2 A31-143-0-5000 A21-243-P24-2 E-250,RM-130	- - - - - - - - - - - - - - - - - - -		0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196	0.513 0.513 0.513 0.403 0,327	0,889 0,889 0,754 0,591	
чений Рэле счет сигнальны Реле авар Реле разн давления Реле врем Реле темп	HHUE 6 6 C C C C C C C C C C C C C C C C C	N-2,5 6AT,3512 KK-2 A3I-143-0-5000 A2I-243-P24-%-	- - - - 		0,068 0,068 0,068	0,308 0,308 0,308	0,513 0,513 0,513 0,403	0,889 0,889 0,754	
чений: Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры геле темп туры диам	HNO OCTA COTA COTA COTA COTA COTA COTA COT	n-2,5 6AT,3512 KK-2 A3I-143-0-5000 M2I-243-P24-%- E-250,RM-I30	- - - - - - - - -		C,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283	0,513 0,513 0,513 0,403 0,327 0,404	0,889 0,889 0,754 0,591	
чений: Рэле счет сигнальны Реле авар Реле разн давления Реле прем Темп туры Реле темп туры дава раческие	HNO 6 6 MITHE MOOTA COMMENT CO	N-2,5 6AT,3512 KK-2 A31-143-0-5000 A21-243-P24-%- E-250,RM-130 A-50	- - - - - - - -		0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196	0.513 0.513 0.513 0.403 0,327	0,889 0,889 0,754 0,591	
чений: Рэле счет сигнальны Реле авар Реле разн данления Реле темп туры Реле темп туры дазметер данаметер данаметер запь	HHE 6 6 MATHE M COTA C C C C C C C C C C C C C C C C C C C	II-2,5 6AI,3512 IK-2 131-143-0-5000 IZ1-243-P24-2- E-250,RM-I30 IJ-50 VI3	- - - - - - -		C,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283 1,509	0.513 0,513 0.513 0,403 0,327 0,404	0,889 0,889 0,754 0,59I 0,755	
чений: Рэле счет сигнальны Реле авар Реле разн данления Реле темп туры Реле темп туры диам раческие Реле защь от перегр	O III HNO O G O TI O C O TI O C O C O C O C O C O C O C O C O C O C	N-2,5 6AT,3512 KK-2 A31-143-0-5000 A21-243-P24-%- E-250,RM-130 A-50	- - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283	0,513 0,513 0,513 0,403 0,327 0,404	0,889 0,889 0,754 0,591	
чений: Рэле счет сигнальны Реле авар Реле разн данления Реле темп туры Реле темп туры дазметер данаметер данаметер запь	HHOE 6 OCTA C OC	II—2,5 6,IIT,3512 IX—2 131—143—0—5000 IXI—243—P24—7— E—250,RM—130 II—50 II—50 II—60,RMCm—L	- - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283 1,509	0.513 0,513 0.513 0,403 0,327 0,404	0,889 0,889 0,754 0,59I 0,755	
Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры Реле темп туры дав разност перегр Реле перегр	HHOE 6 OCTA C OC	II—2,5 6AIT,3512 IXX—2 A31—143—0—5000 A21—243—P24—2— E—250,RM—130 A—50 A—50 A—50 A—50,RM—130 A—140,RMCm—1	- - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 6,283 I,509 I,608	0.513 0,513 0,513 0,403 0,327 0,404 2,156 3,430	0,889 0,889 0,754 0,59I 0,755 3,733 5,106	
Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры Реле темп туры дава разноскае Реле запь от перегр Реле перегу	HHOE 6 OUTH C COTH C C C C C C C C C C C C C C C C C C C	II—2,5 6,IIT,3512 IX—2 131—143—0—5000 IXI—243—P24—7— E—250,RM—130 II—50 II—50 II—60,RMCm—L	- - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068 0,063 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283 1,509 1,608 1,608 1,608	0.513 0,513 0,513 0,403 0,327 6,404 2,156 3,430 3,430 3,430	0,889 0,889 0,754 0,591 0,755 3,733 5,106 5,106	
Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры Реле темп туры Реле авар от перегр Реле перегр Реле перегр Реле нклю сирень	HHE 6 6 MATHE M COTA C COTA C C C C C C C C C C C C C C C C C C C	II-2,5 6AI,3512 IK-2 A31-143-0-5000 A21-243-P24-2- E-250,RM-130 A-50 FAGA, Magnetic, IHO, RMCm-L	- - - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068 0,063	0,308 0,308 0,308 0,283 0,196 6,283 1,509 1,608	0,513 0,513 0,513 0,403 0,327 0,404 2,156 3,430 3,430	0,889 0,889 0,889 0,754 0,59I 0,755 3,733 5,106	
Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры диам раческие Реле защь от перегр Реле пере чений Реле псжа сигнализа	HHOE E E E E E E E E E E E E E E E E E E	II-2,5 6AI,3512 IK-2 A31-143-0-5000 A21-243-P24-2- E-250,RM-130 A-50 FAGA, Magnetic, IHO, RMCm-L	- - - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068 0,063 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283 1,509 1,608 1,608 1,608	0.513 0,513 0,513 0,403 0,327 6,404 2,156 3,430 3,430 3,430	0,889 0,889 0,754 0,591 0,755 3,733 5,106 5,106	
чений: Рэле счет сигнальны Реле авар Реле разн давления Реле темп туры диам раческие Реле запь от перегр Реле неде реле неде реле неде реле пежа	HHOE E E E E E E E E E E E E E E E E E E	II-2,5 6AI, 351.2 VK-2 A31-143-0-5000 U21-243-P24-%- E-250, RM-130 A-50 VI3 nrach, Magnelic, 140, RMCm-L BABYT Vela	- - - - - - - - -	-	C,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068	0,308 0,308 0,308 0,283 0,196 0,283 1,509 1,608 1,608 1,608	0,513 0,513 0,513 0,403 0,327 0,404 2,156 3,430 3,430 3,430 3,430	0,889 0,754 0,591 0,755 3,733 5,106 5,106 5,106	

0,068

0,.79

0,299

0,546

3

_								
_	J.	: 2 :	3	: 4	: 5	: 6	: 7	: 8
	Установка пр	00- YBIIT2Y,						
	Ридо та ки деа водоб иси хи к	— УВПТ-2М, У-303		_	0,410	7,598	11,981	I9,989
	Испитательна					-	-	
	установка	ип-дсвк, Бэп-дсвк	-	-	0,410	7,598	II,98X	I9,989
	Байпасная па нель управле		_	_	0,410	I;266	1,813	3,489
	Панель управле		_	_	0,410	1,200	1,013	3,403
	ния	PA	-	-	0,410	I,266	1,813	3,489
	Панель диста	н- ШШ-ТП-24,						
	ционного пер	е- ПДДУ-А	-	_	0,410	I,266	1,813	3,489
1	Намоточный							
⁷ 22 5.5	CTPHOK	СРН-05У	-	-	0,410	0,512	0,855	I,778
2 5.5	5.8. Мамерительны присорга заме- трических до- трических до- присорга замери присорга замери	- -						
5,55.8	в.1. Щитовые грибо	ры						
	Вольтметры,							
	миллиамперметрн		-	-	0,643	1,112	I,026	2,781
	Вольтметры, ампер метры, миллием-) -						
	перметры, микро-	V040	_		0.640	0.040		
	амперметры Вольтметры, ампер	M340 _		_	0,643	0,842	0,924	2,409
	метры, миллиямиеї) 						
	метры	M330,M367		-	0,643	0,879	0,934	2,458
		M362	-	-	0,643	0,859	0,917	2,419
	Микроампер-	MII3I,MI400,			0.642	0.010	T 200	2 052
	метры Микровольт-	MI4OI	-	-	0,643	0,810	I,399	2,852
	метри	M2016	-	-	0,643	3,491	5,065	9,199
	Амперметры,	930H,930/2,		_	0,643	Ò,588	0,876	2,107
	вольтметры Вольтметры	930II	_	_	0,040	0,000	0,070	2,107
	Вольтметри, килоамперметри Вольтметри,	ы эзэо	-	-	0,643	0,640	0,957	2,240
	амперметры,	337 8	-	-	0,643	0,650	0,957	2,250
	Вольтметры, ки	ЛО-						
l H-l	амперметры, ми. лиамперметры	942I	-	-	0,643	0,56I	0,834	2,038
123	Вольтметры,							
1	амперметры	9761,9762		-	0,164	0,619	0,927	I,7I0
	Амперметры	H340	-	-	0,643	3 ,9 36	6,230	10,809
	Частотометры	ДІ46,ДІ56	-	-	0,246	I,369	2,163	3,778
	Вольтметры	ДІБІ	_	-	0,246	I,47I	2,375	4,092
	Вольтметри, амперметри	Д170,Д180			0,246	0,848	I,424	2,518
	Ваттметры	Д341,Д343	-	-	0,246	I,369	2,163	3,770
	Ампервольт-	TASOT TEOTA	_	_	T OOF	2 570	4 004	7,618
	таттметри Фазометри	Д4501,Д5014 Н382	_	-	I,095	2,5I9 4,278	4,004 6,743	7,618 II,664
	Фазометры Счетчики	1100%	-		0,643	4,610	0,743	TT,004
	3-хфазино.							
	3-хігроподіню	CA-3	-	-	0,643	0,968	I,567	3,178

~~	т .	2	: 3 :	4				
5.55.8	3.2. Лабораторине	gan an series and the series and a series and the s			: 5	: 6	: 7	: 8
	и переносные приборы							
	Вольтметры,	MI6,M80,M82,						
	милливольт— метры	MI05/I,MII05	-	-	0,698	4 ,14 0	6,230	II,068
	_	MIO5,MIO6	-	-	0,698	3 ,833	5,579	10,110
	Вольтметры	MI107	•	-	U ,69 8	6,709	9 ,I3 9	I6,5 4 6
	Милливольт- метрн, микро-							
	амперметры	MI200	-		0,698	4,895	7,222	12,815
	Вольтметры,							
	амперметры, микроампер-							
! H	метры	M205,BA-0	•••	•••	0,698	0,609	I,050	2,357
124	Вольтметры	חפפ ת דד מת			0.000	TC AOT	00 007	46 000
1	пифровне	B7-II,P-339 ABH	-	_	0,698	I6,43I	28,891	46,020
	Вольтметры	ADO	-	-	0,643	I,676	3,457	5,776
	вольтамперфа- зоиндикаторы	ВАФ85	_		0,643	4,039	6,983	II,665
	Вольтметры							
	электронные	Φ-517	-	-	0,643	8,420	13,487	22,550
	Вольтметри, амперметри,							
	миллиампер-							
	метри	959	-		0,958	I,772	3,26 5	5,995
	Вольт ме три, амперметри	Д57,0К7-9	_	_	1,287	4,552	7,428	13,267
					1,20	2,000	1,200	10,201
		Д 527,Д529, Д 533,Д53 9	_	-	I,287	2,464	4,073	7,824
		TEAC TERO						
	Амперметри	Д566,Д573, Д574	_		I,287	3,662	5,374	10,323
	Амперметры,	A			1,001	0,000	0,074	10,000
	миллиампер-	ACIM ACIMD ACIMI	**		0.050	T TEO	0 707	4 000
	метры	ACT, ACTB, ACTN	IA –	-	0,958	I,I50	2,191	4,299
	Микроампер- метры пос-							
	тоянного тока	H34I	-	-	0,643	4,073	6,435	II,I5I
	-таконделиА	55			O OPT	0 TOT	0.005	0 445
	метры	55 57	_		0,971	2,191	3,285	6,447
			-		0,971	2,218	3,183	6,372
! 		PH-340, II5014, 4311, M-64, M-9	5 -	_	0,971	2,841	4,347	8,159
125		Φ434	-	_	0,971	2,323	3,320	6,614
1	Мегомметри	M57		_	0,698	0,609	0,95I	2,258
		SOIIM, IOIIM	•••		0,698	2,040	3,149	5,887
		Φ–57	-	_	0,698	I,I49	I,454	3,301
		MIIOM	-	_	0,643	2,040	3,149	5,832
	Микроомметры	M246	-	-	0,698	3,491	5,374	9,563
	Ваттметры	АСТД	-	-	I,287	I,834	3,046	6,167
	Фазометры, фазоуказатели	9500						
	Фазометры Фазометры		•••	-	0,958	I,800	3, 3 20	6,078
		Д342,НФО-І	-	-	I,287	I,I57	I,834	4,278
	Электроизмери- тельные клещи	Ц9І,ИК-44	_	_	0,971	I,389	2,040	4;400

	I :	2 :	3 ;	4	; 5 ;	6 :	7	: 8
	Токоизмеритель- ные клещи пере- менного тока		-		0,971	1,280	1,831	4,082
	Мосты постоян- ного тока оди- нарные	MMB,P-343	_	-	0,643	2,632	4,689	7,964
	Синхроскопы	932,932M,9155, 9165,9175	_		0,958	0,732	I,348	3,038
	Комплекты ла- бораторных из- мерительных приборов	K-50	_	_	0 ,643	5,065	7,052	I2,76 0
- I26	Трансформаторы тока	И-54,И-56		***	0,643	2,464	4,415	7,522
წ 	Магазин сопро- тивлений	MCP-60	_	_	2,341	2,300	4,141	8,782
	THINGTHE	P-33	_	-	2,34I	2,300	2,054	6,695
		P-517	-	-	2,341	2,300	6,435	II,076
	Магазин сопро- тивлений	ДСМ-І	_	-	2,341	2,300	4,141	8,782
	измеритель полупроводни- ковых приборов	Л2-23	-	-	-	10,954	I4,959	25,913
	Испытатели	Л2-22	-		-	10,885	13,692	24,577
	транзисторов	Л2-9,Л2-2	-	-		5,750	9,208	I4,958
	Осцилографы	CI-68		-	-	8,283	13,624	21,907
		ЭÒ − 5	-		-	4,38I	7,017	II,398
	частотомеры							
	электронно- счетные	43–3 43 – 9	_	_	_	IO,6II II,638	I4,479 I8,587	25,096 30,226
	Испытатели	IS T PARATRY T				4 MEO	77 500	
	радиолами	М-І,ММІУ-І ПІ-2,ЛІ-З	_	_	_	4,758 6,572	7,598 9,858	12,356 16,430
	Индикаторы переменного тока элект- ронные	Φ-5ΙΟ	_	_	_	9,892	15,883	25,775
- I27	Приборы выпря- мительной сис- темы, показы- вающие	-	_	_	0 9 7 T			6,352
1	Универсальный переносной	Ц437	_	-	0,971	2,211	3,170	0,002
	приоор	УПИП-6СМ	-	-	0,971	9,687	13,863	24,521
	Термостат Ультратермос-	Дельта,ТС-16А, М-10, М ВЕ,МЕГZENA	VER -	-	2,341	I,327	2,040	5,708
	TaT	HBE	-		I,I70	2,122	2,635	5,927
	инстинктионны интегратор	EPN-IO	_	-	-	6,068	7,991	14,059
	Иммитатор	И-01,И-02	-	-	-	5,750	9,208	I4,95 8
	Источники рег лируемого нап жения		-	-	0,971	0,957	I,368	3,296

	<u> </u>	2 :	3 :	4:	5 :	6 ;	7 ;	8
	Лабораторный транеформатор	FATP-III		-	0,97I	0,957	I,368	3,296
	Аналого-циоро- вой преобразо- ватель	⊕-4892	_	-	0,971	8,420	I3,486	22,877
	Прибор комбини–	Ц -436 0		_	0,971	2,323	3 ,32 0	6,614
	Мости постоянног тока одинарно- двойные	ro P – 329	_	_	0,971	2,772	4,997	8,740
ı	Мосты постоян- ного тока	AB0-5M-I	-		0,971	2,858	4,295	8,124
- I28	Мости перемен- ного тока	P-551,MMC		_	0,971	2,858	4,295	8,124
ı	Мосты автомати- ческие универ- сальные	P-336			0,971	4,963	7,958	13,892
	Потенциометры постоянного тока	а ПП-63	_	_	0,971	I,643	2,921	5,535
		P-307,P-37II	-		0,971	2,464	4,381	7,816
	'15aa X aaaaa a	P-343	-	-	0,971	1,314	2,344	4,629
		У-І,ИПС-4	-	- ,	I,I70	2,122	2,635	5,927
	Спектральный калориметр	Спектраль	-	-	I,I70	2,122	2,635	5,927
	Потенциометр постоянного тока	1III-63	-	-	0,643	3,285	5,853	9,781
	истоянного тока постоянного тока	н-373	-		0,643	6,537	II,672	I8,852
	Осциллографы четырехканаль-							
	н ые Стабилизаторы	H-I0	-	-	U ,643	5,956	8,626	15,225
	напряжений [*] Весы лаборатор-	HI38,HI36 BNT-200,BNP-20,	-	-	0,643	6,846	10,954	I8,443
	ные технические Секундомеры	BJKT-2 CM-60	<u>-</u>	-	0 ,253 0 ,253	0,752 0,845	I,095 I,252	2,100 2,350
1	Универсальные источники пита- ния, электронные источники пита-	•						
· 129	ния Частотомеры	MMI-I	-	-	0,643	5,613	8,420	14,676
Ī	электронно- счетные	Φ -5 I9,Φ57I	-	-	0,643	II,638	18,587	3 0,868
	-вн акетикеД пряжения	P-5/I	-	-	0,643	I,643	2,265	4,551
	Измеритель временных ин- тервалов, измерители об- раздовые малых временных ин-							
	тервалов	И-2-5	-	-	0,643	9,584	15,404	25,631
	Измерители индуктивности	E-II-3	-		0,643	5,306	8,489	14,438

Продолжение табл. 5.55

<u> </u>	2	: 3	:	4	;	5	;	6 :	7 :	8
Измерители рас- стояния до мест повреждения кабеля			-	•		U ,64 3		2,926	5 , 750	9,3]
Генераторы стандартных сигналов, ге- нераторы им- пульсов	IW-18,IW-20		nea	****		0,643		5,306	8,557	I4,50

Примечание. Нормативами численности на обслуживание и ремонт средств **КИПИА** учтена их транспортировка внутри завода, а также покраска, чистка и мойка приборов.

1

Обработка картограмм Профессия: планиметрист

Видн картограм	м : Способ обработки :	картограмм :Нормативы числен :ности на IOO кар :тограмм
Круглые картогра	ммы На электросчетной ной машине	вычислитель- 0,396
Прямолинейные картограммы	На электросчетной ной машине	вичислитель - 0,678
		Таблица 5.57
		е и ремонт средств КИПИА ских установок
Обслуживаемые о	бъектн : Профессия	:Нормативы численности на :смену
Число технологич	IECENX	
до 10	Приборист (дежурный)	I во 2-ю и 3-ю смени
свыше 10	**************************************	I на IO установок во 2-1 0 з 3-то смены

6. Прочие работы

Таблипа 6.58

Уборка производственных помещений

ремонтных цехов

Профессии: уборщик производственных помещений, уборщик служебных помещений, подсобный рабочий

_	Убираемая	площадь, тыс.м2		:Нормативы численности при числе :производственных рабочих, чел.							
			÷	20-50	. :	5I - 75	:	76-I25	:	выше	<u>I2</u> 5
		I	:	2	:	3	:	4	:	5	-
	До 0,5			0,35		0,53		0,79		-	
	0,6	- I,O		0,53		0,7I		0,88		0,97	
				- T3T							

I	: 2	: 3	: 4	: 5
I,I - I,5	0,71	0,80	0,97	I,06
I,6 - 2,0	0,80	0,97	1,06	I,I5
2.1 - 3.0	0,88	I,06	I,I5	I,23

Таблица 6.59

Уборка служебных и бытовых помещений

Профессии: уборщик производственных помещений, уборщик служебных помещений, попсобный рабочий

ных помещении, подсооныи	Баоолий
Наименование помещений : Нормативы числ : щений	енности на 1000 м ² поме-
. Служебные (конторы, медпункт, красный уголок и т.н.)	I , 9
2. Битовне (санузли, душе- вне и т.п.) Ремонт спецодежди	2,3 Таблица 6.60
Наименование профессии :Норматив числе : век расотающих	нности на каждые IOC чело- подважения коминации и модельной на подважения по
Машинист по стирке и ремонту спецодежди	0,10
прачечных подматильном прачечных подматильном прачечных подматильном прачечных подматильном прачечных подматильном прачечных подматильного прачечных прачечных подматильного п	ия услугами центральных ая численность не опреде-

ляется. Таблица 6.61 Обсдуживание смешанных кладовых ремонтных цехов

(участков)

Профессии: кладовшик, подсобный рабочий

Число номенилат шибров материал кранящихся на с до	ов, : прием с	В М	числен выдач	HO B	средне Средне	одно оп ме	оклад	у прі ту за	числе месяц,
	: I50	' :	300	_:	45 0	:	600	:	800
<u> </u>	: 2	:	3	:	4	;	5	:	6
TOO	0,5		0,6		0,7	(3,8]	1,0
200	0,6		0,7		0,8	(J , 9	3	[,I
300	0,7		୍ର, 8		0,9		.jo	3	1,2
		-	- 132 -		-				

Продолжение табл. 6.61

I	: 2	: 3	: 4	: 5	: 6
400	0,8	0,9	I,0	I,I	I,3
500	0,9	I,0	I,I	1,2	I,4
600	I,0	I,I	I,2	I,3	1,5
700	ſ,I	1,2	I,3	1,4	I,6
800	1,2	I,3	I,4	I,5	I,7
900	I,3	I,4	I,5	1,6	3,1
1200	1,4	I,5	I,6	I,7	1,9
свиле 1200	1,6	I,7	3,I	I,9	2,I

Таблица 6.62

Обслуживание цеховых складов химикатов, лаков, красок, горюче-смазочных и других материалов

Профессии: кладовщик, подсобный рабочий

число приемов и выдач материалов: в среднем за месяц по складу, до:	1000	:	150 0	:	свыше 1500
Численность на склад :	I,0	:	I,5	:	2,0

Таблица 6.63

Центральный материальный склад

Число приемов и выдач: материалов в среднем :4 за месяц по склалу, до:	00 650	1000	1500	2500	4000	7000	10000	13000
Численность кладовщи-: I ков в смену	,I I,4	1,7	2,0	2,4	3,0	3,6	4,2	5,0

Таблица 6.64

Погрузочно-разгрузочные работы

Профессии: такелажник, грузчик, стропальщик

Общий вес перерабатывае за месяц грузов, т	200:250:320:400:500:640: 800: IOOO
Нормативы численности	:2,3:2,9:3,6:4,7:6,0:7,5:9,4 :II,7

HPM/OUTHME

Указания о порядке определения среднесписочной годовой численности рабочих

Для определения списочной численности следует пользоваться коэффициентом перехода от явочной к списочной численности. Коэффициент перехода рассчитывается на месте по данным предприятия.

І. Для условия непрершеного производства (работа производится также в виходные и праздничные дни) коэффициент перехода рассчитывается по формуле

$$K = \frac{\text{Tom} \cdot T}{\text{Tp} \cdot (T-A)}, \quad (I)$$

где Тсм - время обслуживания оборудования в смену, ч:

Т - время обслуживания оборудования в год, равное 365 дням;

Тр- установленная продолжительность рабочего дня одного рабочего при пятидневной рабочей неделе (8,2 ч при 4I рабочем часе в неделю и 7,2 при 36 рабочих **часах** в неделю: 4I:5=8,2: 36:5=7,2);

- А количество дней невыходов на работу, приходящихся в среднем на одного рабочего: A=O+P+E+Г+МЕ+В,
- где 0 число дней отпуска очередного и дополнительного (за учебу, за вредные условия, стаж работи и пр.), предусмотренные законой, кроме отпусков, представленных без сохранения заработной плати. Определяется на основании данных по предприятию;
- Р число дней отпуска в связи с беременностью и родами. Определяется на основании дистов нетрудоспособности;
 - Б число дней болезни. Определяется аналогично Р;
- Г число дней выполнения государственных и общественных обязанностей (посещение военкомата, участие на совещаниях, соревнованиях, нахождение на сельскохозяйственных работах и др.). Определяется по отчетным данным за истекций год;
- МЛ число непроработанных дней кормящими матерями и подростками (за исключением учеников, численность которых по настоящему сборнику не определяется), в связи с сокращением продолжительности рабочего дня. Определяется умножением числа непроработанных часов в день на число дней с сокращенным рабочим днем (по отчетным данным за истекший гол) и делением полученной величины на 8,2.

Пример. Рабочий день сокращен на I ч, а всего сокращенных

чел.-дней 410. Число чел.-дней, которое должно онть принято в расчет, составит (Ix4IO):8,2=50,0 чел.-дней, при среднесиисочной численности рабочих на предприятии (цехе) 100 чел., в расчете на одного рабочего эта величина составит 50:100=0.5 дня:

В - число выходных дней (субботи и воскресения), равное 104. На непрерывно действующих производствах рабочие не освобождаются от работи в праздничные дни. Работа в эти дни, оплачивается в соответствии с трудовым законодательством, поэтому праздничные дни не входят в значение "A".

Пример расчета коэффициента перехода от явочной к списочной численности.

Неходные данные: **Тем=8 ч. Т=365 дней, Тр=8,2 ч** $\Lambda = 0 + P + E + \Gamma + MI + B = I27,6 дня (0=2I; P=0,I; <math>E = 2.3$: $\Gamma = 0.I$: MI = 0.I: E = I04)

$$K = \frac{8 \cdot 365}{8,2 \cdot (365 - 127,6)} = 1,50.$$

Для определения списочной численности норматив явочной численности на одну смену умножается первоначально на число смен обслуживания в сутки, а затем на коэффициент перехода к списочной численности.

Пример определения списочной численности рабочих, обслуживающих установку по выработке элементарной серн.

Явочная численность на обслуживание установки – 3 чел. на смену, число смен обслуживания установки в сутки – 3, коэффициент перехода к списочной численности – I,50.Списочная численность: 3 чел. х 3 смены х I,50 = I3,5.

2. Для условия прерывного производства (работа в пыходние и праздничные дни не производится), коэффициент перехода рассчитывается по формуле

$$\mathbb{R} = \frac{\mathbf{T}_{\underline{\mathbf{I}}}}{\mathbf{T}_{\underline{\mathbf{I}}} - \mathbf{A}_{\underline{\mathbf{I}}}} ,$$

где T_I - время обслуживания оборудования (производства работ) в год, равное 254 дням (365-IO4 выходных и 7 правиничных);

$A_{\rm I}$ — число дней невыходов на работу одного рабочего A=O+P+B+MI, где значения те же, что и в формуле (I).

Пример расчета коэўўмимента для условий прерывного производства: $T_{\rm I}$ =254, $\Lambda_{\rm I}$ =0+P:E=E=E=26,2

$$\ddot{x} = \frac{254}{254 - 26.2} = \text{I,I2.}$$

СОДЕРЖАНИЕ

		J
HOPMATUBH	AR YACTE	6
	nbaher otomotetecomotes em poiomotes otomotes ot	
Таблица І	 Установки по осушке и очистке газа от сероводорода и углекислоти, одоризации газа, осушки твердим поглотителем, комойнированиме для природного газа 	6
Таблица І	.2. Установка низкотемпературной конденсации и осущки газа	7
Таблица І	.3. Установка назкотемпературной конденсации и ректификации газа (НТКР)	7
Таблица І	.4. Установка деэтанизации газа	8
		8
Таблица]	.6. Установка сероочастки	8
Таблица 1	.7. Установка по виработке элементарной сери	9
Таблица]	.8. Установка по переработке газового конденсата І	0
Таолица]	.9. Комонированная установка комплексной подготовки нефти и газа	0
Таблица]	I.IO. Маслоабсорбилонная установка (МАУ) I	Ί
Таблица]	I.II.Газофракционирующая установка (ГФУ) I	2
Таблица]	[.I2.Абсорбционно-газофракционирующая установка (АГФУ) I	[3
Таблица]	[.I3.Установка по выработке гелия I	[3
Таблица	[.I4.Пропано-холодильная установка I	[4
Таблица :	I.IS.Холодильная установка каскадного типа I	[4
Таблица :	I.I6. Азотно-кислородная установка, станция I	[5
	I.I7. Аммиачно-холодильная установка	
	I.I8.Установка получения пентана 1	[6
Таблица	І.19.Газораспределительные и газомерные пункты (ГРП, ГЭП)	[6
	-FA combonation of the second	[7
Таблица	I.2I.Сливно-наливная эстакада	18
		18
Таблица	I.23. Площадка охлаждения и сепарации	20
Таблица	I.24.Комплексная технологическая установка, оснащенная комплектным импортным оборудованием фирмы "Флуор"	20
Таблица	I.25. Пункт (установка) регенерации масел	22
	I.26. Установка регенерации этиленгликоля	
	 1.27. Насосные товарных парков, эстакад и водоснаожения 	

Таблица	І.28.0 чистные сооружения, ловушечное хозяйство	23				
	І.29.Реагентное хозяйство					
Таблица	I.30.Установка химической очистки и умягчения воды (оборотное водоснаожение и нейтрализация воды)	24				
	І.ЗІ.Парокотельные					
Таблица	І.32.Трубопроводы и сети	25				
Таблица	І.33. Артезианские скважини	26				
2. Производство лабораторных работ						
Таблица	2.34. Лабораторные работн	26				
	2.34.1.Подготовительные работы	26				
	2.34.2. Анадизн газов	27				
	2.34.3. Анализы бензина					
	2.34.4. Анализы масел и других нефтепродуктов	31				
	2.34.5. Анализы электролита, ГОСТ 667-73					
	2.34.6. Анализы воды	33				
	2.34.7.Анализы серы, ГОСТ 127-76	35				
	2.34.8. Анализи растворителей	35				
	2.34.9.Прочие работы	36				
	нт технологического оборудования					
Таблица	3.1.35.0борудование технологических установок	38				
Таблица	3.2.36.Компрессоры	45				
Таблица	3.3.37.Насосы	47				
	3.4.38.Котлы, вентиляторы					
Таблица	3.5.39.Резервуари, емкости	54				
	3.6.40. Грузоподъемное оборудование					
Таблица	3.7.41. Регенерационная установка	56				
	нт электрооборудования					
Таблица	4.І.42.Электродвигатели	56				
Таблица	4.2.43.Трансформаторы	6]				
Таблица	4.3.44. Аппараты напряжением выше 1000 В	63				
	4.4.45. Аппараты напряжением до 1000 В	66				
Таблица	4.5.46.00орудование (элементи) электрического освещения	74				
Таблица	4.6.47.Электротехническое оборудование	76				
Таблица	4.7.48.Установки конденсаторные для повышения коэффициента мощности напряжением до 10,5 кв	78				
Таолица	4.8.49.Батареи аккумуляторные	78				
Таблица	4.9.50 Редейная защита, электроавтоматика и вторичные цепи	_				
	вторичные цепи	8.				

Таблица	4.10.5	І.Электрические сети	84
Таблица	4.II.5	2. Заземляющие устройства	88
Таблица	4.12.5	З.Испытание защитных средств	88
		4.06служивание электрооборудования технологических установок и объектов	89
-		е и ремонт средств контроля и автоматики	
Таблица		Системы автоматики, приборы и механизмы	
		.Приборы системы "АУС" и "Старт"	
		?.Приборы для измерения температуры	92
		Приборы расхода и уровня, диафрагмы, регуляторы уровня	99
	5.55.4	Приборы для измерения давления, регуляторы давления	104
		.Приборы качества, газосигнализаторы	
		.Исполнительные механизмы	
		системы автоматики и отдельные ее элементы	
	5.55.8	3.Измерительные приборы алектрических величин и лабораторное оборудование	122
Таблица	5.56.	Обработка картограмм	131
Таблица	5.57.	Обслуживание и ремонт средств КИПИА технологичес-	I3I
6. Проч			
Таблица	6.58.	Уборка производственных помещений ремонтных цехов	131
		Уборка служебных и бытовых помещений	
Таолица	6.60.	Ремонт спецодежди	I32
Таблица	6.61.	Обслуживание смещанных кладовых ремонтных цехов (участков)	132
Таблица	6.62.	Обслуживание цеховых складов химикатов, лаков, красок, горюче-смазочных и других материалов	133
Таблица	6.63.	Центральный материальный склад	133
Таблица	6.64.	Погрузочно-разгрузочные работн	[33
IPALIONE:	HME. YI	казания о порядке определения среднесписочной рдовой численности рабочих	[34

НОРМАТИВЫ ЧИСЛЕННОСТИ РАБОЧИХ ГАЗОПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ-НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ. — М.: ВНИИОЭНГ, 1988.

Ответственный редактор А.Я.Репьев

Ответственные исполнители: В.В.Чистов, Л.Н.Баранова,

И.Ш. Шарифуллина. М. Ю. Мукминова. Р. М. Шайлуллина

Технический редактор Н.О.Трушина Корректори Т.М.Буличева. Н.Г.Евдокимова

Подписано в печать 10.08.88. Т- 13054. Формат 60х84 I/16. Бумага офсетная. Печать офсетная. Усл.печ.л. 8,14. Усл.кр.-отт.8,37. Уч.-изд.л. 7,90. Тираж 380 экз. Заказ № 2573. Цена Ір.58к. ВНИИОЭНТ № 1907.

II3162, Москва, Хавская, II, ВНИИОЭНГ.

Типография XOSУ Миннефтепрома. II3035, Москва, набережная Мориса Тореза, 26/I.