СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Часть II, раздел В

Глава 3

СТАЛЬНЫЕ КОНСТРУКЦИИНОРМЫ ПРОЕКТИРОВАНИЯ

СНиП II-В.3-62 Заменен СНиП II-В.3-72 е 1/VII - 1973 г. см, БОТ N3, 1973 г. е 28.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Часть II, раздел В

Глава 3

СТАЛЬНЫЕ КОНСТРУКЦИИ НОРМЫ ПРОЕКТИРОВАНИЯ

СНиП II-B.3-62

Утверждены
Государственным комитетом Совета Министров СССР
по делам строительства
27 августа 1962 г.

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ЛИТЕРАТУРЫ
ПО СТРОИТЕЛЬСТВУ, АРХИТЕКТУРЕ
И СТРОИТЕЛЬНЫ М МАТЕРИАЛАМ

Москва — 1963

Глава СНиП II-В.3-62 «Стальные конструкции. Нормы проектирования» разработана в развитие главы СНиП II-A.10-62 «Строительные конструкции и основания. Основные положения проектирования».

С введением в действие настоящей главы СНиП теряют силу «Нормы и технические условия проектирования стальных конструкций» (НиТУ 121—55) и Инструктивное письмо Госстроя СССР от 28 июля 1961 г. № 17—1334.

Настоящие нормы разработаны Центральным научно-исследовательским институтом строительных конструкций Академии строительства и архитектуры СССР и Государственным институтом по проектированию, исследованию и испытанию стальных конструкций и мостов «Проектстальконструкция» Главстройпроекта при Госстрое СССР.

	Строительные нормы и правила	СНиП II-В.3-62
Государственный комитет Совета Министров СССР по делам строительства	Стальные конструкции. Нормы проектирования	Взамен НиТУ 121—55

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящие нормы распространяются на проектирование стальных конструкций зданий и сооружений.

Примечание. Настоящие нормы не распространяются на стальные конструкции железнодорожных, автодорожных и городских мостов.

1.2. При проектировании стальных конструкций надлежит выполнять требования настоящей главы и главы СНиП II-A.10-62 «Строительные конструкции и основания. Основные положения проектирования».

Примечание. При проектировании стальных конструкций, находящихся в особых условиях эксплуатации (например, конструкций доменных печей; мачт и башен; листовых конструкций различного назначения; конструкций зданий химической, нефтяной и других отраслей промышленности, подвергающихся интенсивным температурным или агрессивным воздействиям; конструкций гидротехнических сооружений; конструкций уникальных зданий и сооружений и т. п.), а также специальных видов конструкций (например, предварительно напряженных, пространственных, из гнутых профилей и т. п.), должны дополнительно учитываться требования, отражающие особенности работы этих конструкций, согласно указаниям соответствующих глав СНиП и издаваемых в развитие настоящих норм специальных инструкций.

1.3. Стальные конструкции следует проектировать с учетом требований экономии металла.

В тех случаях, где это целесообразно по технико-экономическим данным, стальные конструкции следует проектировать с применением эффективных материалов (низколегированных и термически упрочненных сталей и др.) и конструктивных решений (конструкций из гнутых профилей, предварительно напряженных и др.).

1.4. Стальные конструкции должны проек-

тироваться преимущественно сварными с широким применением автоматической и полуавтоматической сварки.

1.5. При проектировании стальных конструкций должны предусматриваться мероприятия по защите от коррозии (окраска и др.). В конструкциях следует избегать пазух и корыт, которые могут задерживать влагу или затруднять проветривание. Все детали конструкций должны быть доступны для наблюдения, очистки и окраски.

Примечание. Не допускается увеличение толщины листового и профильного металла или увеличение толщины стенок труб сверх необходимой по расчету в целях увеличения срока службы конструкций, подвергающихся коррозии.

- 1.6. Прочность и устойчивость стальных конструкций должны быть обеспечены как в процессе эксплуатации, так и при транспортировании и монтаже.
- 1.7. Марка и способ выплавки стали, поставка стали для сварных конструкций, типы электродов, а также, в необходимых случаях, дополнительные требования к поставляемой стали должны указываться на чертежах проекта стальных конструкций и в документации по заказу металла.

2. МАТЕРИАЛЫ ДЛЯ СТАЛЬНЫХ КОНСТРУКЦИЙ И СОЕДИНЕНИЙ

- **2.1.** Основными видами прокатной стали для применения в несущих стальных конструкциях являются:
- а) сталь углеродистая обыкновенного качества мартеновская марок ВСт.3, ВСт.3пс и ВСт.3кп, поставляемая по механическим свойствам и с дополнительными требованиями по химическому составу по подгруппе В ГОСТ 380—60;

Внесены Академией строительства и архитектуры СССР Утверждены
Государственным комитетом
Совета Министров СССР
по делам строительства
27 августа 1962 г.

Срок введения 1 января 1963 г. сталь углеродистая обыкновенного качества конвертерная марок ВКСт.3, ВКСт.3пс, ВКСт.3кп по ГОСТ 9543—60—для конструкций, изготавливаемых из проката толщиной до 30 мм и не подвергающихся непосредственному динамическому воздействию подвижных или вибрационных нагрузок;

б) сталь низколегированная конструкционная мартеновская марок 14Г2, 15ГС, 10Г2С, 10Г2СД, 15ХСНД (природнолегированная) и 10ХСНД (природнолегированная), поставляемая с соблюдением механических свойств и химического состава по ГОСТ 5058—57* или по техническим условиям, утвержденным в установленном порядке.

Примечание. Кроме перечисленных в п. 2.1 марок прокатной стали для конструкций может применяться сталь и других марок в соответствии с указаниями настоящих норм и специальных инструкций.

2.2. Сталь мартеновская марок ВСт.4 и ВСт.5 по ГОСТ 380—60 может применяться только в конструкциях, не имеющих сварных соединений.

Эти марки стали допускаются к применению в сварных конструкциях, воспринимающих статические нагрузки, при специальном обосновании и при условии соблюдения технологии сварки и применения электродов и флюсов в соответствии со специальными инструкциями.

2.3. Сталь мартеновская марки Ст.0 и сталь бессемеровская марок Ст.3 и Ст.3кп по ГОСТ 380—60 могут применяться только в нерасчетных элементах конструкций. Для сварных конструкций эти марки стали должны поставляться по группе Б ГОСТ 380—60.

2.4. Прокатная сталь, применяемая для несущих конструкций, должна удовлетворять требованиям соответствующих государственных стандартов или технических условий с гарантиями в отношении предела текучести и предельного содержания серы и фосфора, а для сварных конструкций также в отношении предельного содержания углерода.

Углеродистая сталь для конструкций, подвергающихся непосредственному динамическому воздействию подвижных или вибрационных нагрузок (за исключением подкрановых балок под краны легкого и среднего режимов работы), должна удовлетворять дополнительному требованию: по ударной вязкости при нормальной температуре — для конструкций, эксплуатируемых при температуре выше минус 20°, и по ударной вязкости при отрицательной температуре — для конструкций, эксплуатируемых при температуре минус 20° и ниже.

Низколегированная сталь для конструкций, эксплуатируемых при отрицательной температуре, должна удовлетворять требованию по ударной вязкости при температуре минус 40°, а для сварных конструкций, подвергающихся при этом также непосредственному динамическому воздействию подвижных или вибрационных нагрузок, кроме того, — по ударной вязкости после механического старения.

Прокатная сталь, предназначенная для изготовления гнутых профилей и гнутых элементов листовых и других конструкций, а в необходимых случаях и прочая прокатная сталь, должна удовлетворять дополнительному требованию испытания на загиб в холодном состоянии.

Во всех случаях, когда необходимые характеристики стали не входят по условиям поставки в число гарантируемых, эти характеристики должны быть указаны в проекте и в документации по заказу стали как дополнительные (в объеме, предусмотренном Государственными стандартами или техническими условиями).

В проекте могут указываться и другие дополнительные требования (по согласованию с заводом-поставщиком стали).

Примечание. К конструкциям, подвергающимся динамическому воздействию подвижных нагрузок, относятся конструкции, при проверке прочности которых принимается коэффициент динамичности 1,1 и более.

К конструкциям, подвергающимся динамическому воздействию вибрационных нагрузок, относятся конструкции, подлежащие расчету на выносливость.

2.5. Для несущих стальных конструкций из углеродистой стали по ГОСТ 380—60 надлежит применять марки стали по указаниям табл. 1, а также по указаниям главы СНиП I-B.12-62.

Применение низколегированной стали (см. п. 2.1, б) и ее марки устанавливаются проектом при наличии соответствующего технико-экономического обоснования; рекомендуется применение низколегированных сталей для изготовления конструкций, подвергающихся непосредственному динамическому воздействию подвижных или вибрационных нагрузок и предназначенных для эксплуатации на открытом воздухе или в неотапливаемых помещениях в районах с расчетной температурой воздуха ниже минус 40°.

2.6. Отливки (опорные части и т. п.) для стальных конструкций надлежит проектировать из углеродистой стали марок 15Л и 35Л, удовлетворяющей требованиям ГОСТ 977—58,

Таблица 1 Указания по применению углеродистой стали по ГОСТ 380-60 в несущих стальных конструкциях зданий и сооружений

№ п/п	Наименование конструкций	Марки стали для конструк расчетной темп	ций, эксплуатируемых при пературе в град.
·		—30 и выше	ниже —30
1	Сварные конструкции — фермы и ригели рам; главные балки перекрытий; подкрановые балки под краны легкого, среднего и тяжелого (при толщине элементов балки 20 мм и менее) режимов работы; пролетные строения транспортных эстакад (галерей) и наклонных мостов доменных печей и	ВСт. Зпс	ВСт. З (спокойная)
2	другие сварные конструкции, подвергающиеся не- посредственному воздействию подвижных или виб- рационных нагрузок (кроме оговоренных в п. 2) Сварные конструкции, работающие в особо тя- желых условиях, как-то: сварные балки рабочих площадок главных зданий мартеновских цехов и элементы конструкций бункерных и разгрузочных эстакад, непосредственно воспринимающие нагру-	ВСт. З (спокойная)	ВСт. З (спокойная)
3	зку от подвижных составов; подкрановые балки под краны тяжелого (при толщине элементов балки свыше 20 мм), весьма тяжелого и весьма тяжелого непрерывного режимов работы Сварные конструкции—колонны, стойки, прогоны покрытий; конструкции, поддерживающие технологическое оборудование и трубопроводы; сварные балки (кроме оговоренных в п. 1), резервуары и баки общего назначения, бункера и другие	ВСт. З ки	ВСт. З пс
4	сварные конструкции, не подвергающиеся непо- средственному воздействию подвижных или виб- рационных нагрузок Сварные вспомогательные конструкции зданий и сооружений—связи, элементы фахверка, лестни- цы, площадки; опоры для светильников и другие слабонапряженные (не более чем до 0,4 расчет-	ВСт. Зкп	ВСτ. 3 кп
5	ного сопротивления) конструкции Конструкции, перечисленные в п. 1, при выпол-	ВСт. З кп	ВСт. З пс
6	нении их клепаными Конструкции, перечисленные в п. 2, при выпол-	ВСт. З пс	ВСт. З пс
7	нении их клепаными Конструкции, перечисленные в пп. 3 и 4, при выполнении их клепаными, а также элементы конструкций, не имеющие сварных соединений (прогоны покрытий, стойки, балки перекрытий и т. п., выполненные из прокатных профилей)	ВСт. З кп	ВСт. 3 кп

Примечания: 1. Дополнительные требования к поставке стали должны указываться согласно п. 2.4 настоящих норм.

Для конструкций, предназначенных для эксплуатации в отапливаемых помещениях, за расчетную

принимается температура воздуха в этих помещениях.

3. Взамен мартеновской стали марок ВСт. 3, ВСт. 3 пс и ВСт. 3кп может применяться конвертерная сталь соответственно марок ВКСт. 3, ВКСт. 3пс и ВКСт. 3кп по ГОСТ 9543—60 согласно указаниям п. 2.1 настоящих норм.

4. Указания настоящей таблицы не распространяются на стальные конструкции специальных сооружений: магистральные и технологические трубопроводы, резервуары специального назначения (для хранения нефтепродуктов и др.), кожухи доменных печей и воздухонагревателей, мачты и башни сооружений связи, опоры линий электропередачи, опоры контактных сетей и т. п. Марки стали для этих конструкций устанавливаются соответствующими главами СНиП или специальными инструкциями.

5. Выбор марки стали для конструкций, подлежащих расчету на выносливость, производится по

указаниям п. 8.8.

^{2.} Для конструкций, предназначенных для эксплуатации на открытом воздухе или в неотапливаемых помещениях, за расчетную принимается зимняя температура наружного воздуха по наиболее холодной пятидневке согласно указаниям главы СНиП II-A. 6-62.

а также из серого чугуна марок СЧ12-28, СЧ15-32, СЧ18-36, СЧ21-40, СЧ24-44 и СЧ28-48, удовлетворяющего требованиям ГОСТ 1412—54.

2.7. Сварка стальных конструкций должна производиться с применением следующих ма-

териалов:

а) при автоматической и полуавтоматической сварке — стальной проволоки, флюсов и других присадочных материалов, обеспечивающих сварное соединение в стык, равнопрочное с основным металлом;

б) при ручной сварке углеродистой стали марок ВСт.3, ВСт.3пс, ВСт.3кп и ВКСт.3, ВКСт.3кп и Э42 и Э42А; при этом для сварки элементов конструкций, подвергающихся непосредственному воздействию подвижных или вибрационных нагрузок, должны применяться электроды типа Э42А;

в) при ручной сварке низколегированной стали — электродов типа Э50А и Э55.

Применяемые электроды должны удовлетворять требованиям ГОСТ 9467—60.

- 2.8. Заклепки надлежит применять из углеродистой мартеновской стали марок Ст.2закл. и Ст.3закл., удовлетворяющей требованиям ГОСТ 499—41, а также из низколегированной стали марки 09Г2, удовлетворяю-
- щей требованиям ГОСТ 5058—57*.

 2.9. Болты надлежит применять из углеродистой стали обыкновенного качества марок ВСт.Зкп, ВСт.З и ВСт.5, поставляемой по группе В ГОСТ 380—60, а также из низколегированной стали марок 09Г2, 14Г2, 15ГС и 15ХСНД, удовлетворяющей требованиям ГОСТ 5058—57*.
- 2.10. Высокопрочные болты надлежит применять из углеродистых или легированных сталей, термически обработанных в готовом изделии (болте), у которых временное сопротивление разрыву после термической обработки будет не ниже 10 000 кг/см² площади сечения болта нетто (по резьбе) для углеродистых сталей и, соответственно, не ниже 13 000 кг/см² для легированных сталей.

3. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ И СОЕДИНЕНИИ

Расчетные сопротивления

3.1. Расчетные сопротивления прокатной стали, отливок, а также сварных, заклепочных и болтовых соединений следует принимать по табл. 2—8.

В необходимых случаях приведенные в табл. 2—8 расчетные сопротивления понижаются умножением на коэффициенты условчй работы конструкций и их элементов по указаниям п. 3.2. При расчете конструкций на выносливость расчетные сопротивления понижаются умножением на коэффициент γ по указаниям п. 8.9.

Примечания: 1. Расчетные сопротивления, приведенные в табл. 2—6, получены как произведение (с округлением) установленных в главе СНиП II-А. 10-62 нормативных сопротивлений, коэффициентов однородности и коэффициентов перехода, а для случаев, когда нормативные сопротивления установлены из условия достижения металлом временного сопротивления разрыву (табл. 3 и 5), также и коэффициентов условий работы материала в конструкции.

 Расчетные сопротивления, приведенные в табл. 7 и 8, получены как произведение (с округлением) установленных в главе СНиП II-А. 10-62 нормативных сопротивлений, коэффициентов однородности и коэффициеентов перехода, а также коэффициентов условий работы

соединений.

- 3. Для заклепочных и болтовых соединений (табл. 7 и 8) расчетные сопротивления растяжению и срезу принимаются по марке стали заклепок или болтов; расчетные сопротивления смятию по марке стали соединяемых элементов конструкций.
- 3.2. Расчетные сопротивления материалов и соединений, приведенные в табл. 2—8, лонижаются умножением на соответствующие коэффициенты условий работы, принимаемые по табл. 9, для элементов конструкций, перечисленных в этой таблице.

В необходимых случаях для специальных сооружений расчетные сопротивления понижаются или повышаются умножением на коэффициенты условий работы конструкций согласно указаниям соответствующих глав СНиП и издаваемых в развитие настоящих норм специальных инструкций.

3.3. Расчетное усилие (сопротивление) при растяжении стального каната принимается равным разрывному усилию каната в целом, установленному соответствующими стандартами или заводскими сертификатами и умноженному на коэффициент однородности k=0,8, коэффициент условий работы материала в конструкции 0,8 и, кроме того, на коэффициент m условий работы элемента конструкции или сооружения, устанавливаемый соответствующими главами СНиП или специальными инструкциями по проектированию этих конструкций или сооружений.

В необходимых случаях должен вводиться поправочный коэффициент, учитывающий работу соединений каната.

Расчетные сопротивления R в $\kappa e/c m^2$ прокатной стали, установленные из условия достижения металлом предела текучести

		l	Расчетны	е сопротивлен	ния прокати	ой стали	
Вид напряженного состояния	Условное	углеро мар	дистой, юк ¹	н	изколегиров	анной, марон	(
	обозначе- нне	_Сталь 3	"Сталь 5"	14Г2 н 15ГО щине прок		10Г2С, 10Г2СД,	10ХСНД
		"Сталь 4"		20 и менее	21-32	15ХСНД	IVACIIA
Растяжение, сжатие и изгиб Срез	$R \atop R_{ m cp}$	2 100 1 300	2 300 1 400	2 900 1 700	2 800 1 700	2 900 1 700	3 400 2 000
Смятие торцовой поверхности (при паличии пригонки)	$R_{\mathtt{CM.T}} \ R_{\mathtt{CM.M}}$	3 200 1 600	3 400 1 700	4 300 2 200	4 200 2 100	4 300 2 200	5 100 2 500
Диаметральное сжатие катков при свободном касании (в конструкциях с ограниченной подвижностью)	R _{c.ĸ}	80	90	110	110	110	130

¹ Здесь и в дальнейшем тексте настоящих порм наименования "Сталь 3", "Сталь 4" и "Сталь 5" охватывают все марки соответствующей углеродистой стали обыкновенного качества пезависимо от способа изготовления (мартеновская или конвертерная, кипящая, полуспокойная или спокойная) и условий поставки (одновременно по механическим свойствам и химическому составу или только по механическим свойствам).

На чертежах стальных конструкций и в документации по заказу металла следует указывать точное наименование принятой марки стали и дополнительные требования по соответствующему стандарту.

Примечания: 1. Указанные в табл. 2 значения расчетных сопротивлений установлены:

а) для прокатной углеродистой стали обыкновенного качества:

сортовой стали толщиной до 100 мм вкл.

фасонной стали , 20 ,

листовой и широкополосной стали толщиной до 40 мм вкл.

б) для прокатной низколегированной стали (сортовой, фасонной, листовой и широкополосной) тол-

щиной от 4 до 32 мм вкл.

2. При толщине прокатной стали, превышающей величины, указанные в примечании 1, расчетные сопротивления назначаются в соответствии с браковочным значением предела текучести, устанавливаемым стандартами, техническими условиями или соглашением между потребителем и поставщиком стали и принимаемым за нормативное сопротивление стали растяжению, сжатию и изгибу (основное). При этом коэффициент однородности принимается не выше 0,85 для углеродистой стали и не выше 0,8 для низколегированной стали.

Производные расчетные сопротивления определяются в этом случае путем умножения основного расчетного сопротивления на коэффициенты перехода, принимаемые по табл. 26 раздела 4 главы

СНиП II-A.10-62.

Расчетные сопротивления растяжению $R_{\rm p}$ в $\kappa e/c m^2$ прокатной стали, установленные из условия достижения металлом временного сопротивления разрыву

				Расчет	ные сопроти	вления прок	атной стали		
Вид напряженного состояния	Условное обозначе-		перодистой марок	,		низкол	егированной	, марок	
	ние	"Сталь З"	Сталь 3" "Сталь 4" "Стал		14Γ2	15FC	10Г2С, 10Г2СД	15ХСНД	10ХСНД
Растяжение	$R_{\rm p}$	2 600	2 700	3 200	3 000	3 100	3 200	3 300	3 500

Примечания: 1. Приведенные в табл. 3 расчетные сопротивления прокатной стали растяжению установлены для конструкций, эксплуатация которых возможна и после достижения металлом предела текучести (например, при расчете на внутреннее давление стальных трубопроводов, цилиндрических емкостей и т. п.).

2. Приведенные в табл. З расчетные сопротивления растяжению даны для толщин проката: углеродистой стали обыкновенного качества—в пределах, установленных ГОСТ 380—60; низколегированной стали—до 32 мм включительно.

3. При толщине прокатной стали, превышающей величины, указанные в примечании 2, а также для марок стали, не указанных в табл. 3, расчетные сопротивления назначаются в соответствии с браковочным значением временного сопротивления разрыву, устанавливаемым стандартами, техническими условнями или соглашением между потребителем и поставщиком стали и принимаемым за нормативное сопротивление стали растяжению. При этом коэффициент однородности принимается в соответствии с экспериментальными да ными, но не выше 0,8, а коэффициент условий работы материала—по специальным указаниям, но не выше 0,8,

Таблица 4 Расчетные сопротивления R в $\kappa e/c M^2$ отливок из углеродистой стали

Вид напряженного состояния	Условное обозначе- ние	Расчетные сопротив- ления отливок из угле- родистой стали марок			
	Усл	15Л	35Л		
Растяжение, сжатие и изгиб	<i>R R</i> _{ср} <i>R</i> _{см.т}	1 500 900 2 300 1 100	2 100 1 300 3 200 1 600		
ностью)	$R_{\rm c.\kappa}$	60	80		

Таблина 5 Расчетные сопротивления R в $\kappa e/cm^2$ отливок из серого чугуна

Вид напряженного состояния	Условное обозначе- ние		ые сопроти из серого марок	
COCTONNIA	Усле 0603 ние	СЧ12-28 СЧ15-32	СЧ18 -36 СЧ2 1-40	СЧ24-44 СЧ28-48
Сжатие централь- ное и при изгибе. Растяжение при	$R_{\rm c}$	1 600	1 800	2 100
изгибе	$R_{ m cp}$	450 350	600 450	800 600
поверхности (при наличии пригонки)	$R_{\mathrm{cm.t}}$	2 400	2 700	3 200

Таблица 6 Расчетные сопротивления R^{c_B} в $\kappa c/c M^2$ сварных швов

			Расчетные сопротивления <i>R</i> ^{CB} сварных швов в конст рукциях из стали марок					
Per anaputeur		Условное	"Сталь 3",	14Г2 и 15Г щине пров		10Г2С, 10Г2СД,	10ХСНД	
Вид сварных швов	Вид напряженного состояния	обозначе- ние	"Сталь 4"	20 и менее	21—32	15ХСНД		
			при сварке	автоматичес ручной,	кой и полуа электродами	втоматическо типов	ой, а такж	
			Э42 и Э42А		Э50A		955	
Швы в стык	Сжатие	$R_{ m c}^{ m cB}$	2 100	2 900	2 800	2 900	3 400	
То же	Растяжение: а) при автоматической сварке	$R_{ m p}^{ m cB}$	2 100	2 900	2 800	2 900	3 400	
	б) при полуавтоматической и ручной сварке с примене- нием для контроля каче- ства швов:							
	повышенных способов	$R_{ m p}^{ m cs}$	2 100	2 900	2800	2 900	3 400	
	обычных способов	$R_{ m p}^{ m cB}$	1 800	2 500	2 400	2 500	2 900	
То же	Срез	$R_{ m cp}^{ m cB}$	1 300	1 700	1 700	1 700	2 000	
Угловые швы	Сжатие, растяжение и срез	$R_{ m y}^{ m c_B}$	1 500	2 000	2 000	2 000	2 400	

Примечания: 1. К повышенным способам контроля качества швов, применяемым в дополнение к обычным способам (наружный осмотр, измерения швов и т. п.), относятся физические способы контроля (рентгено- или гаммаграфирование, ультразвуковая дефектоскопия, магнитографические способы и др.) в соответствии с указаниями главы СНиП III-В.5-62.

2. Применение повышенных способов контроля качества швов должно оговариваться в проекте. 3. Расчетные сопротивления сварных швов, выполняемых электродами типа Э42А в соединениях элементов из низколегированной стали с элементами из "Стали 3", принимаются такими же, как и для сварных швов в соединениях элементов из "Стали 3", выполняемых электродами типа Э42.

4. При применении в сварных конструкциях "Стали 5" (в соответствии с п. 2.2) расчетные сопротивле-

ния сварных швов принимаются на 10% выше соответствующих расчетных сопротивлений, установлен-

ных для конструкций из "Стали 3". 5. Приведенные в табл. 6 расчетные сопротивления сварных швов в стык соответствуют соединениям, выполненным двухсторонней сваркой или односторонней с подваркой корня щва. Для соединений в стык, в которых невозможно осуществить подварку корня шва, расчетные сопротивления снижаются умножением на коэффициент 0,7.

Таблица 7

Расчетные сопротивления R^{3akn} в $\kappa z/cm^2$ заклепочных соединений

				Pac	четные сопр	отивления R	закл		
Вид напряженного	Условное	срезу и растяжению заклепок из стали марок		смятию соединяемых элементов конструкций из стали марок					
состояния и группа соединения	обозначе- ние	Ст. 2 закл. Ст. 3 закл.	0 9Γ 2	"Сталь 3* "Сталь 4*	"Сталь 5"	14Г2 и 15Г0 щине пров		10Г2С, 10Г2СД,	10ХСНД
						20 и менее	21—32	15ХСНД	<u> </u>
Срез В	$\left.\right \left. ight\}R_{\mathrm{cp}}^{\mathtt{sak}\pi}$	1 800	2 200	_		_		_	
Cpes C	, 4	1 600		4 200	4 600	5 800	5600	5 800	6 900
Срез В	$ brace$ $R_{ ext{cm}}^{ ext{закл}}$	_	_	3 800	4 000 —		-		6 800
Растяжение (отрыв головок)	$R_{ m p}^{ m \scriptscriptstyle 3akn}$	1 200	1 500	–		_			
	Ī	1		ļ	ļ				

- Примечания: 1. К группе В относятся соединения, в которых заклепки поставлены в отверстия
- а) сверленные на проектный диаметр в собранных элементах;

б) сверленные на проектный диаметр в отдельных элементах и деталях по кондукторам;

- в) сверленные или продавленные на меньший диаметр в отдельных деталях с последующим рассверливанием до проектного диаметра в собранных элементах.
- К группе С относятся соединения, в которых заклепки поставлены в продавленные отверстия или в

отверстия, сверленные без кондукторов в отдельных деталях (без последующего рассверливания).
2. При применении в соединяемых элементах конструкций толстого проката приведенные в табл. 7 значения расчетных сопротивлений смятию снижаются в соответствии с указаниями примечания 2 к табл. 2.

3. При заклепках с потайными или полупотайными головками расчетные сопротивления заклепочных соединений срезу и смятию понижаются умножением на коэффициент 0,8. Работа указанных заклепок на растяжение не допускается $(R_p^{3akn}=0)$.

Расчетные сопротивления R^6 в $\kappa e/cm^2$ болтовых соединений

Таблица 8

						Расчетн	ые сопро	тивлени	я R ^б			
Вид болтового	Вид напряжен- ного состояния	Услов- ное	растяжению и срезу болтов из стали марок				смятию соединяемых элементов конструкций из стали марок					
соединения	и группа соединения	обоз- наче- ние	В Ст. 3 В Ст. 3 кп	B Cr. 5	09Г2	14Г2, 15ГС, 15ХСНД	"Crant 3"	"Сталь 5"	при то	15ГС лщине а в мм 21—32	10Г2С, 10Г2СД, 15ХСНД	10ХСНД
Болты чистые и получистые (повы- шенной точности) Болты черные (нормальной точ-	Растяжение Срез В Смятие В	$R_{ m p}^6$ $R_{ m cp}^6$ $R_{ m cm}^6$	1 700 1 700 —	1 900 1 800	2 000 2 000 —	2 300 2 200 —	3 800	_ _ 4 100	 5 200	 5 000	 5 200	- 6 100
ности): а) в одноболто- вых соедине- ниях	Растяжение Срез Смятие	R_{p}^{6} R_{cp}^{6}	1 700 1 500	1 900 1 600	2 000	2 300	_ _ _ 3 800	_ 	<u> </u>	-	 	1 1
б) в многобол- товых соеди- нениях	Растяжение Срез Смятие	Пом Пом Пом Пом Пом Пом Пом Пом	1 700 1 300	1 900 1 400 —	2 000 — —	2 300	_ _ 3 400		_ _			- -
Анкерные болты	Растяжение	R _p	1 400	1 500	1 700	1 900		_	_	_		

Примечания: 1. Определение группы В болтового соединения см. в примечании 1 к табл. 7. 2. При применении в соединяемых элементах конструкций толстого проката приведенные в табл. 8 значения расчетных сопротивлений смятию снижаются в соответствии с указаниями примечания 2 к табл. 2.

Таблица 9

Коэффициенты *т* условий работы элементов стальных конструкций

№ n/n	Наименование элементов конструкций	m
1	Сплощные балки и сжатые элементы ферм перекрытий под залами театров, клубов, кинотеатров, под трибунами, под помещениями магазинов, книгохранилищ и архивов и т. п. при весе перекрытий, равном или большем полезной нагрузки	0,9
2	Сжатые основные элементы (кроме опорных) решетки ферм покрытий и перекрытий (например, стропильных и аналогичных им ферм) при гибкости их λ≥60	8,0
3	Сжатые раскосы пространственных решетчатых конструкций из одиночных уголков, прикрепляемых к поясам одной полкой:	
	 а) при помощи сварных швов или двух и более закленок, постав- ленных вдоль уголка: 	
	при перекрестной решетке с совымещенными в смежных гранях узлами (рис. 11,6)	0,9
	при елочной и перекрестной ре- шетке с несовмещенными в смеж- ных гранях узлами (рис. 11,8 и г)	0,8
	б) при помощи болтов или одной заклепки	0,75
4	Подкрановые балки под краны гру- зоподъемностью 5 m и более тяжелого, весьма тяжелого и весьма тяжелого непрерывного режимов работы	0,9
5	Колонны гражданских зданий и опор водонапорных башен	0,9
6	Сжатые элементы из одиночных уголков, прикрепляемые одной полкой (для неравнобоких уголков только узкой полкой), за исключением элементов конструкций, указанных в п. 3 настоящей таблицы, и плоских ферм из одиночных уголков	0,75

Примечания: 1. Коэффициенты условий работы, установленные в пп. 1 и 2, а также в пп. 2 и 6 табл. 9, одновременно не учитываются.

2. Коэффициенты условий работы, установленные в пп. 2 и 3 табл. 9, не распространяются на крепления соответствующих элементов конструкций в узлах

3. Для сжатых раскосов пространственных решетчатых конструкций (п. 3) при треугольной решетке с распорками (рис. 11, a) коэффициент условий работы не учитывается.

Физические характеристики

3.4. Модули упругости для материалов стальных конструкций надлежит принимать по табл. 10.

Таблица 10

Модули упругости в кг/см² материалов стальных конструкций

Наименование материала	Модуль про- дольной уп- ругости Е	Модуль сдвига <i>G</i>			
Прокатная сталь и отлив- ки из углеродистой стали .	2 100 000	840 000			
Отливки из серого чугуна марок:					
СЧ 28-48, СЧ 24-44, СЧ 21-40 и СЧ 18-36	1 000 000				
СЧ 15-32 и СЧ 12-28	850 000	_			
Пучки и пряди высоко- прочной проволоки (с па- раллельным расположением проволок)	2 000 000				
Канаты стальные спиральные и канаты(тросы) с металлическим сердечником	1 500 000				
Канаты стальные спираль- ные закрытые	1 700 000				
Канаты стальные (тросы) с органическим сердечником.	1 300 000				
Примечание. Величины модуля упругости даны для канатов, предварительно вытянутых усилием не менее 30—40% от разрывного усилия для					

каната в целом.

3.5. Коэффициент поперечной деформации

(Пуассона) принимается равным 0,3. **3.6**. Коэффициент линейного расширения (в град. —1) принимается равным 0,000012.

3.7. Объемный вес принимается равным: для стали и стальных отливок всех марок 7850 кг/м³, для отливок из чугуна 7200 кг/м³.

4. РАСЧЕТ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ НА ОСЕВЫЕ СИЛЫ И ИЗГИБ

ЧЕНТРАЛЬНО СЖАТЫЕ И ЦЕНТРАЛЬНО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

4.1. Прочность элементов, подверженных центральному растяжению или сжатию силой N, проверяется по формуле

$$\frac{N}{F_{\rm HT}} \leqslant R,$$
 (1)

где *R* — расчетное сопротивление стали растяжению или сжатию;

 $F_{\rm {\scriptscriptstyle HT}}$ — площадь сечения элемента нетто.

4.2. Устойчивость центрально сжатых элементов проверяется по формуле

$$\frac{N}{\varphi F} \leqslant R,$$
 (2)

где

 ф — коэффициент продольного изгиба, принимаемый по табл. 50 приложения I в функции наибольшей гибкости λ;

F — площадь сечения элемента брутто.

- 4.3. Стержни из одиночных уголков рассчитываются на центральное сжатие по п. 4.2. При определении гибкости этих стержней радиус инерции сечения уголка r принимается:
- а) если стержни прикреплены только по концам минимальный;
- б) при наличии промежуточного закрепления (распорки, шпренгели, связи и т. п.), предопределяющего направление выпучивания уголка в плоскости, параллельной одной из полок, относительно оси, параллельной второй полке уголка.
- 4.4. Центрально сжатые элементы со сплошными стенками открытого П-образного сечения при $\lambda_x < 3\lambda_y$, где λ_x и λ_y гибкости элемента относительно осей x и y (рис. 1), рекомендуется укреплять планками или решеткой; при этом должны быть соблюдены указания пп. 4.5 и 4.7.

При отсутствии планок или решетки такие элементы, помимо проверки по формуле (2), следует проверять на устойчивость при изгибно-крутильной форме потери устойчивости.

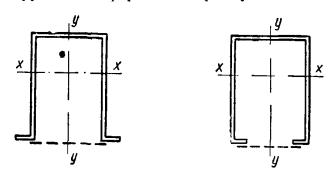


Рис. 1. П-образные сечения элементов

4.5. Для составных центрально сжатых стержней, ветви которых соединены планками или решетками, коэффициент продольного изгиба ф относительно свободной оси (перпендикулярной плоскости планок или решеток)

должен определяться по приведенной гибкости $\lambda_{\text{пр}}$, вычисляемой по формулам табл. 11. Таблица 11

Формулы для вычисления приведенной гибкости

Тип сечения стержия	Соединитель- ные элементы	Значение приведенной гибкости
/ y	Планки	$\sqrt{\lambda_y^2 + \lambda_1^2} $ (3)
*#************************************	Решетки	$\sqrt{\lambda_y^2 + k_1 \frac{F}{F_{\rm pl}}} (4)$
1 y	Планки	$\sqrt{\lambda^2 + \lambda_1^2 + \lambda_2^2} (5)$
x	Решетки	$\sqrt{\frac{\lambda^2 + F\left(\frac{k_1}{F_{p1}} + \frac{k_2}{F_{p2}}\right)}{(6)}}$

Обозначения, принятые в табл. 11:

 λ_y — гибкость всего стержня относительно свободной оси y-y;

 λ — наибольшая гибкость всего стержня; λ_1 и λ_2 — гибкости отдельных ветвей относительно осей 1-1 и 2-2 на участках между приваренными планками (в свету) или между центрами крайних заклепок;

F — площадь сечения всего стержня; $F_{\rm p1}$ и $F_{\rm p2}$ — площади сечения раскосов решеток, лежащих в плоскостях, соответственно перпендикулярных осям 1-1 и 2-2;

 k_1 и k_2 — коэффициенты, принимаемые в зависимости от величины угла α_1 или α_2 между раскосом решетки и ветвью (рис. 2), соответственно в плоскостях, параллельных осям 1-1 или 2-2, равными:

Примечание. Формулы (3) и (5) справедливы при отношении погонных жесткостей планки и ветви $i_{\Pi \Lambda_1} i_B \geqslant 3$; при $i_{\Pi \Lambda} / i_B < 3$ должно быть учтено влияние гибкости планки на величину приведенной гибкости.

Гибкость отдельных ветвей λ_1 и λ_2 на участке между планками должна быть не более 40.

При наличии в одной из плоскостей вместо планок сплошного листа (например, по рис. 1) гибкость ветви вычисляется по радиусу инерции полусечения относительно его оси, перпендикулярной к плоскости планок.

В составных стержнях с решетками гибкость отдельных ветвей на участках между узлами не должна превышать

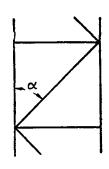


Рис. 2

приведенную гибкость λ_{np} стержня в целом.

- 4.6. Составные элементы из уголков, швеллеров и т. п., соединенных вплотную или через прокладки, рассчитываются как сплошностенчатые при условии, что наибольшие расстояния между их соединениями (прокладками, шайбами и т. п.) не превышают:
 - 40r для сжатых элементов;

80r — для растянутых элементов,

где r — радиус инерции уголка или швеллера относительно оси, параллельной плоскости расположения прокладок.

При этом в пределах длины сжатого элемента следует ставить не менее двух прокладок. За длину сжатого элемента пояса сквозных конструкций (например, ферм) принимается его расчетная длина из плоскости фермы.

4.7. Соединительные элементы (планки или решетки) центрально сжатых составных стержней должны рассчитываться на условную поперечную силу $Q_{\rm vcn}$ (в кг), принимаемую постоянной по всей длине стержня и определяемую по табл. 12.

Таблица 12 Значения условной поперечной силы $Q_{\text{усл}}$

-	- J
Конструкции из стали марок	Значение условной поперечной силы $Q_{\mathbf{yc}\mathbf{n}}$ в кг
"Сталь 3", "Сталь 4"	20 <i>F</i>
10Г2СД, 15ХСНД, 10ХСНД	40 <i>F</i>
F — плошадь брутто всего сечения	стержия в <i>см</i> ² .

Если соединительные элементы расположены в нескольких параллельных плоскостях, то

- поперечная сила Q_{ycn} распределяется: а) при наличии только соединительных планок или решеток - поровну между всеми системами планок (решеток);
- б) при наличии наряду с соединительными планками или решетками сплошного листа — пополам между сплошным листом и всеми системами планок (решеток).
- 4.8. Соединительные планки (рис. 3) должны рассчитываться, как элементы безраскосных ферм на:
- а) силу, срезывающую планку, по формуле

$$T = \frac{Q_{\rm n}l}{c}; (7$$

б) момент, изгибающий планку в ее плоскости, по формуле

$$M = \frac{Q_{\pi}l}{2} \,. \tag{8}$$

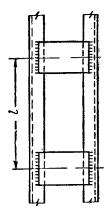


Рис. 3. Составной стержень на планках

В формулах (7) и (8)

- $Q_{\rm n}$ условная поперечная сила (по табл. 12), приходящаяся на систему планок, расположенных в одной плоскости;
- l расстояние между центрами планок;
- с расстояние между осями ветвей.
- 4.9. Соединительные решетки должны рассчитываться, как решетки ферм. При расчете перекрестных раскосов крестовой решетки с распорками следует учитывать дополнительные усилия, возникающие в них от обжатия поясов.
- **4.10**. Стержни, предназначенные уменьшения расчетной длины сжатых элементов, должны рассчитываться на усилие, равное условной поперечной силе в основном сжатом стержне, определяемой по табл. 12.

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

4.11. Прочность при изгибе в одной из главных плоскостей, за исключением случаев расчета разрезных балок, отвечающих требованиям п. 4.15, проверяется по формулам

$$\frac{M}{W_{\rm HT}} \leqslant R; \tag{9}$$

$$\frac{QS}{Jb} \leqslant R_{\rm cp}, \tag{10}$$

$$\frac{\partial S}{\partial h} \leqslant R_{\rm cp},$$
 (10)

S — статический момент (брутто) сдвигающейся части сечения относительно нейтральной оси;

δ — толщина стенки;

R и $R_{\rm cp}$ — расчетные сопротивления стали изгибу и срезу.

При наличии ослабления отверстиями для заклепок или болтов касательные напряжения, определяемые по формуле (10), умножаются на понижающий коэффициент $\frac{a}{a-d}$,

где a — шаг отверстий для заклепок или болтов;

d — диаметр отверстия.

4.12. В стенках балок при $\tau > 0.4 R$ должно выполняться условие

$$\sqrt{\frac{3}{4} \sigma^2 + 3\tau^2 \left(1 - \frac{1}{2} \frac{\sigma^2}{R^2}\right)} \leqslant R,$$
 (11)

где

— наибольшее по абсолютной величине краевое напряжение в стенке, вычисленное по сечению брутто в предположении упругой работы материала;

т — среднее касательное напряжение, вычисляемое по формуле

$$\tau = \frac{Q}{h_{cr}\delta},\tag{12}$$

где $h_{\rm cr}$ и δ — высота и толщина стенки.

Напряжения о и т определяются для одного и того же сечения и загружения.

4.13. Местное напряжение смятия $\sigma_{\rm M}$ в стенке балки под сосредоточенным грузом, приложенным к поясу балки в местах, не укрепленных ребрами, определяется по формуле

$$\sigma_{M} = \frac{n_1 P}{\delta z} \tag{13}$$

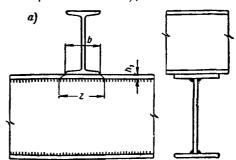
и не должно превышать расчетного сопротивления стали сжатию R.

В формуле (13)

Р — величина расчетного сосредоточенного груза; для подкрановых балок — расчетная величина давления колеса крана без учета коэффициента динамичности;

 n_1 — коэффициент, принимаемый равным: 1,5 — для подкрановых балок в зданиях и сооружениях с тяжелым режимом работы при кранах с жестким подвесом;

1,3 — то же, при кранах с гибким подвесом;


1,1 — для прочих подкрановых балок; 1 — в остальных случаях;

толщина стенки;

2 — условная длина распределения давления сосредоточенного груза, принимаемая равной: а) при подвижной нагрузке $z=c\sqrt[3]{rac{J_{\Pi}}{\lambda}}$, (14)

где c — коэффициент, равный 3,25 для сварных и прокатных балок и 3,75 для клепаных балок;

 $J_{\rm II}$ — сумма моментов инерции пояса балки и кранового рельса (в случае приварки рельса швами, обеспечивающими совместную работу рельса и пояса, $J_{\rm II}$ — общий момент инерции рельса и пояса);

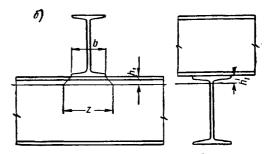


Рис. 4. Схема определения условной длины z распределения давления сосредоточенного груза на балку a — сварную; δ — прокатную

б) при непосредственном опирании на верхний пояс балки поперечной прокатной балки (рис. 4) или другой неподвижной конструкции

 $z = b + 2h_1, \tag{15}$

где b — ширина полки поперечной балки;

h₁ — толщина верхнего пояса балки, если нижняя балка сварная (рис. 4,a), или расстояние от наружной грани полки до начала внутреннего закругления стенки, если нижняя балка прокатная (рис. 4, б).

Аналогичным образом должно быть проверено опорное сечение прокатной балки. не укрепленное ребрами жесткости.

4.14. Прочность изгибаемых элементов при изгибе в двух главных плоскостях, за исключением случаев, указанных в п. 4.15. проверяется по формуле

$$\frac{M_x}{J_{x \text{ HT}}} y \pm \frac{M_y}{J_{y \text{ HT}}} x \leqslant R, \tag{16}$$

- где х и у координаты рассматриваемой точки сечения относительно его главных осей.
- 4.15. Разрезные балки постоянного сечения (прокатные и сварные), несущие статическую нагрузку, проверяются на прочность по пластическому моменту сопротивления W" при условии соблюдения следующих требований:
- а) должна быть обеспечена общая устойчивость балки, для чего необходимо, чтобы либо были выполнены требования п. 4.17а, либо коэффициент ф, вычисленный по указаниям п. 4.17 и приложения II, был не меньше 2,5 (при вычислении ф учитывается только изгиб в плоскости наибольшей жесткости):
- б) отношение ширины свеса пояса сварной балки к его толщине не должно превы-
- в) отношение h_0/δ расчетной высоты стенки h_0 к ее толщине δ не должно превышать $80 \sqrt{\frac{2100}{R}}$, где R в $\kappa c/cm^2$;
- г) касательные напряжения в месте наибольшего изгибающего момента не должны превышать 0.3 R.

Проверка прочности указанных балок про-

изводится по формулам:

при изгибе в одной из главных плоскостей

$$\frac{M}{W_{ur}^n} \leqslant R; \tag{17}$$

при изгибе в двух главных плоскостях

$$\frac{M_x}{W_{x\,\mathrm{HT}}^{\,\mathrm{n}}} + \frac{M_y}{W_{y\,\mathrm{HT}}^{\,\mathrm{n}}} \leqslant R. \tag{18}$$

Здесь M, M_x , M_y , $W_{\rm HT}^{\rm n}$, $W_{x \, \rm HT}^{\rm n}$, $W_{y \, \rm HT}^{\rm n}$ — абсолютные значения изгибающих моментов и пластические моменты сопротивления ослабленного сечения.

Пластический момент сопротивления W^{n} равен удвоенному статическому моменту половины площади сечения относительно оси, проходящей через центр тяжести сечения (рис. 5).

Вводимая в расчет величина W^{π} не должна превышать 1,2 W. Для прокатных двутавровых и швеллерных профилей следует принимать:

 $W^{n} = 1,12W$ — при изгибе в плоскости

 $W^{n} = 1.2W$ — при изгибе параллельно пол-

При наличии зоны чистого изгиба соответствующий момент сопротивления принимается равным $0.5(W+W^{n})$.

4.16. В неразрезных и заделанных балках постоянного сечения (прокатных и сварных) со смежными пролетами, отличающимися не более чем на 20%, несущих статическую нагрузку, при условии соблюдения требований п. 4.15, расчетный изгибающий момент определяется из условия выравнивания спорных и пролетных моментов; при этом проверка прочности производится по формуле (9).

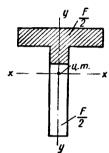


Рис. 5. Схема сечения для определения пластического момента сопротивления W^п

Разрешается принимать следующие значения расчетного момента $M_{\text{расч}}$:

а) в неразрезных балках со свободно опертыми концами — большую из величин

$$M_{\text{pacy}} = \frac{1}{1 + \frac{u}{I}} M_1; \tag{19}$$

$$M_{\text{pacy}} = 0.5 M_2,$$
 (20)

где M_1 , M_2 — наибольшие изгибающие менты соответственно в крайнем и промежуточном пролетах, вычисленные как в свободно опертой однопролетной балке;

и - расстояние от сечения, отвечающего моменту M_1 , до крайней опоры:

l — крайний пролет;

- б) в однопролетных и неразрезных балках с заделанными концами $M_{\text{расч}} = 0.5 M$, где М — наибольший из моментов, вычисленных как в балке с шарнирами на опорах;
 - в) в балке с одним заделанным и другим

свободно опертым концом как в крайнем пролете неразрезной балки (п. 4.16а).

В случае изгиба в двух главных плоскостях проверка прочности производится по формуле (16).

4.17. Устойчивость балок проверяется по формуле

 $\frac{M}{\varphi_{\delta}W} \leqslant R,$ (21)

где M и W — изгибающий момент и момент сопротивления сечения в плоскости наибольшей жесткости (W соответствует сжатому поясу);

96 — коэффициент, определяемый по указаниям приложения II.

Проверки устойчивости балок не требуется:

- а) при передаче распределенной статической нагрузки через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки (железобетонные или армопенобетонные плиты, волнистая сталь и т. п.);
- б) для балок двутаврового сечения при отношениях расчетной длины балки l к ширине сжатого пояса b, не превышающих величин, приведенных в табл. 13.

T аблица 13 Наибольшие отношения $\frac{l}{b}$, при которых

не требуется проверки устойчивости балок из стали марок «Сталь 3» и «Сталь 4»

		Наибо	льшие з	начения <i>l'b</i> разм	для бал еров	ок с соо	тношением			
			$h/\delta_1 =$	100		$h/\delta_i = 50$				
Тип балок	h b	при нагрузке, приложенной		ин проме- закреплс- го пояса от места я нагрузки	при нагрузке, приложенной		закрепле- го пояса от места я нагрузки			
Garlok		к верхнему поясу	к нижнему поясу	при наличин п жуточных закр ний верхнего п независимо от приложения на	к верхнему поясу	к нижнему поясу	при наличии пр жуточных закре ний верхнего г независимо от приложения наг			
Свар - ные	2 4 6	18 16 15	28 26 24	22 19 18	19 18 16	30 27 25	23 21 19			
Кле- па- ные	2 4 6	21 18 16	30 28 25	24 21 19	30 25 21	42 35 32	33 27 24			

Обозначения, принятые в табл. 13:

 расчетная длина балки, равная расстоянию между точками закрепления сжатого пояса от поперечных смещений (узлы продольных связей, точки опирания ребер жесткого настила) или расстоянию между поперечными связями, препятствующими повороту сечения балки; при отсутствии закреплений *l*— пролет балки;

b и б₁— ширина и толщина сжатого пояса;
 h — полная высота сечения балки.

Примечание. Для балок из стали других марок указанные значения l/b умножаются на $\sqrt{\frac{2100}{R}}$.

ЭЛЕМЕНТЫ, ПОДВЕРЖЕННЫЕ ДЕЙСТВИЮ ОСЕВОЙ СИЛЫ С ИЗГИБОМ

4.18. Прочность сплошностенчатых внецентренно сжатых (сжато-изогнутых) и внецентренно растянутых (растянуто-изогнутых) элементов, не подвергающихся непосредственному воздействию динамических нагрузок, проверяется по формуле

$$\left(\frac{N}{F_{\rm HT}R}\right)^{\frac{3}{2}} + \frac{M_x}{W_{x,\rm HT}^nR} + \frac{M_y}{W_{y,\rm HT}^nR} \leqslant 1,$$
 (22)

где N, M_x и M_y — абсолютные значения продольной силы и изгибающих моментов относительно осей x-x и y-y;

 $W_{x\, \mathrm{HT}}^{\mathrm{n}}$ и $W_{y\, \mathrm{HT}}^{\mathrm{n}}$ — пластические моменты сопротивления ослабленного сечения относительно осей x-x и y-y, вычисляемые по указаниям п. 4.15.

Если $\frac{N}{F_{\rm HT}R}$ < 0,1, то применение формулы (22) разрешается лишь при выполнении требований п. 4.15.

В прочих случаях проверка производится по формуле

$$\frac{N}{F_{\rm HT}} \pm \frac{M_x}{J_{x \, \rm HT}} y \pm \frac{M_v}{J_{y \, \rm HT}} x \leqslant R, \qquad (23)$$

где х и у — координаты рассматриваемой точки сечения относительно его главных осей.

Примечание. При отсутствии ослабления сечения и при одинаковых значениях изгибающих моментов, принимаемых в расчетах на прочность и устойчивость, проверки внецентренно сжатых элементов ча прочность не требуется при приведенном эксцентрицитете $m_1 \le 20$.

4.19. Внецентренно сжатые (сжато-изогнутые) элементы должны проверяться на устой-

чивость как в плоскости действия момента (плоская форма потери устойчивости), так и из плоскости действия момента (изгибно-крутильная форма потери устойчивости).

4.20. Устойчивость внецентренно сжатых элементов постоянного сечения в плоскости действия момента, совпадающей с плоскостью симметрии, проверяется по формуле

$$\frac{N}{e^{RH}F} \leqslant R. \tag{24}$$

Здесь N — продольная сила, приложенная с эксцентрицитетом $e = \frac{M}{N}$;

F — площадь поперечного сечения элемента брутто;

 $\phi^{\text{вн}}$ — коэффициент, определяемый: для сплошностенчатых стержней — по табл. 56 приложения III в зависимости от гибкости стержня и приведенного эксцентрицитета $m_1 = \eta$ m (где m — относительный эксцентрицитет, η — коэффициент влияния формы сечения); для сквозных стержней — по табл. 57 приложения III в зависимости от приведенной гибкости $\lambda_{\text{пр}}$ и относительного эксцентрицитета m.

Для сплошностенчатых стержней относительный эксцентрицитет равен $m=e\,\frac{F}{W}$, где W вычисляется для наиболее сжатого волокна.

Для сквозных стержней с решетками или планками, расположенными в плоскостях, параллельных плоскости изгиба, относительный эксцентрицитет определяется по формуле

$$m_x = e_x \frac{Fy_1}{J_x}$$
 или $m_y = e_y \frac{Fx_1}{J_y}$, (25)

где x_1 и y_1 — расстояние от нейтральной оси y или x. до оси наиболее сжатой ветви, но не менее расстояния до оси стенки ветви.

Коэффициент влияния формы сечения η принимается по табл. 58 приложения III.

Приведенная гибкость λ_{np} для сквозных стержней определяется по формулам табл. 11.

 Π р и м е ч а н и е. При приведенном эксцентрицитете $m_1 > 20$ проверки устойчивости по формуле (24) не требуется.

- 4.21. Расчетные значения изгибающих моментов M, необходимые для вычисления эксцентрицитета $e=\frac{M}{N}$, принимаются равными:
- а) для колонн постоянного сечения рамных систем наибольшему моменту в пределах длины колонны;
- б) для ступенчатых колонн наибольшему моменту на длине участка постоянного сечения:
 - в) для консолей моменту в заделке;
- г) для стержней с шарнирно опертыми концами моменту, определяемому по формулам табл. 14.

Таблица 14 Формулы расчетных моментов *М* для стержней с шарнирно опертыми концами

Относи- тельный эксцентри- цитет	Значения М при гибкости							
m	λ < 120	λ ≥ 120						
<i>m</i> ≤ 3	$M = M_2 = M_{\text{Makc}} - \frac{\lambda}{120} (M_{\text{Makc}} - M_1)$	$M=M_1$						
3 <m≤20< td=""><td>$M = M_2 + \frac{m-3}{17} \times (M_{\text{Marc}} - M_2)$</td><td>$M = M_1 + \frac{m-3}{17} \times (M_{\text{MAKC}} - M_1)$</td></m≤20<>	$M = M_2 + \frac{m-3}{17} \times (M_{\text{Marc}} - M_2)$	$M = M_1 + \frac{m-3}{17} \times (M_{\text{MAKC}} - M_1)$						

Обозначения, принятые в табл. 14: M_1 — наибольший изгибающий момент в пределах средней трети длины стержня; M_2 — расчетный момент при $m \leqslant 3$ и $\lambda < 120$.

 Π римечание. Во всех случаях принимается $M \geqslant 0.5~M_{\rm Makc}$.

- **4.22**. Устойчивость внецентренно сжатых элементов постоянного сечения из плоскости действия момента при их изгибе в плоскости наибольшей жесткости $(J_x > J_y)$, совпадающей с плоскостью симметрии, проверяется:
- а) при относительном эксцентрицитете $m_x \leqslant 10$ по формуле

$$\frac{N}{c\varphi_{\nu}F} \leqslant R,\tag{26}$$

где c — коэффициент, вычисляемый по указаниям п. 4.23;

φ_y — коэффициент продольного изгиба, принимаемый по табл. 50 приложения I;

Значения коэффициентов а и в в формуле (29)

Таблица 15

	Открытые сечения двутавровые и та	вровые	Замкнутые сечения сплош- ные или с решетками (планками)
Тип сечения и эксцентрицитет е приложения продольной силы	X X X X X X X X X X X X X X X X X X X	x x x x x x	
α=	0,7	$1-0.3 \frac{J_2}{J_1}$	0,6
β== (при λ _y ≪λ _c)	1	1	1
β== (при λ _у >λ _с)	0,6 φ _y	$\begin{vmatrix} 1 - \left(1 - \frac{0,6}{\varphi_y}\right) \left(2 \frac{J_2}{J_1} - 1\right) \\ \text{при } \frac{J_2}{J_1} < 0,5 \\ \text{значение } \beta = 1 \end{vmatrix}$	<u>0,6</u> Ψ _y

Обозначения, принятые в табл. 15:

 J_1 и J_2 — моменты инерции соответственно большей и меньшей полок относительно оси симметрии сечения

λ_с— наименьшее значение гибкости стержня, при котором центрально сжатый стержень теряет устойчивость в упругой стадии, определяемое по табл. 16.

Примечание. Пользование коэффициентами, установленными для стержней замкнутого сечения, допускается только при наличии не менее двух промежуточных диафрагм по длине стержня. В противном случае следует пользоваться коэффициентами, установленными для стержней открытого двутаврового сечения.

б) при относительном эксцентрицитете $m_x \gg 15$ по наибольшему краевому напряжению сжатия по формуле

$$\frac{M_x}{\varphi_6 W_x} \left(1 + \frac{1}{m_x} \right) \leqslant R, \tag{27}$$

где коэффициент φ_6 определяется по указаниям приложения II как для балки с промежуточными закреплениями сжатого пояса (при $\lambda_{\nu} \leqslant \lambda_{c}$ можно принимать $\varphi_6 = 1$);

в) при значениях относительного эксцентрицитета $10 < m_x < 15$ по формуле (26), причем вместо c подставляется величина c', определяемая по интерполяции:

$$c' = (3 - 0.2m_x)c + (0.1m_x - 1)\frac{\varphi_6}{8\varphi_v}$$
 (28)

4.23. Коэффициент c в формуле (26) определяется по формуле 3-2322

$$c = \frac{\beta}{1 + \alpha m_{x*}},\tag{29}$$

где а и β — коэффициенты, принимаемые по табл. 15.

При определении m_x за расчетный момент M_x принимается:

а) для стержней с концами, закрепленными от смещения перпендикулярно плоскости действия момента, — максимальный момент в пределах средней трети длины (но не менее половины наибольшего на длине стержня момента);

б) для консолей — момент в заделке.

При гибкости λ_y , превышающей λ_c по табл. 16, коэффициент c не должен превышать: для стержней открытого сечения— значений, указанных в табл. 17; для стержней замкнутого сечения— единицы.

Таблица 16 Значения гибкости до

Марки стали	λ _c
"Сталь 3" и "Сталь 4"	100 90 85 80

4.24. Внецентренно сжатые элементы при изгибе в плоскости наименьшей жесткости $(J_y < J_x$ и $e_y \neq 0$) и при $\lambda_x > \lambda_y$, кроме проверки по формуле (24), должны проверяться на устойчивость из плоскости действия момента как центрально сжатые стержни по формуле

$$\frac{N}{\varphi_x F} \leqslant R$$
,

где φ_x — коэффициент продольного изгиба, принимаемый по табл. 50 приложения І.

 Π римечание. При $\lambda_x \leqslant \lambda_y$ проверки устойчивости из плоскости действия момента не требуется.

4.25. В составных внецентренно сжатых элементах с решетками, расположенными в плоскостях, параллельных плоскости изгиба, кроме проверки стержня в целом по формуле (24), должны быть проверены отдельные ветви, как центрально сжатые стержни по формуле (2).

Продольная сила в каждой ветви определяется при этом с учетом дополнительного усилия $N_{\text{доп}}^{\text{в}}$ от изгибающего момента; величи-

на этого усилия при параллельных ветвях (поясах) определяется по формуле $N_{\text{доп}}^{\text{в}} = M/h$, где h — расстояние между осями ветвей (поясов).

При аналогичной проверке отдельных ветвей составных элементов с планками, расположенными в плоскостях, параллельных плоскости изгиба, должен быть учтен местный изгиб ветвей от фактической поперечной силы (как в поясах безраскосной фермы).

4.26. Устойчивость элементов со сплошной стенкой, подверженных сжатию и изгибу в обеих главных плоскостях, при совпадении плоскости наибольшей жесткости $(I_x > I_y)$ и плоскости симметрии проверяется по формуле

$$\frac{N}{\varphi_{xy}^{\text{BH}}F} \leqslant R. \tag{30}$$

Здесь

$$\varphi_{xy}^{\text{BH}} = \varphi_y^{\text{BH}} \sqrt{c}$$
 ,

определяется по указаниям п. 4.20; где c — по указаниям п. 4.23.

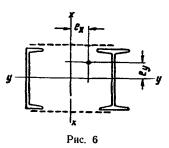
 Π римечание. При вычислении m_{1y} для стержней двугаврового сечения с неодинаковыми полками коэффициент влияния формы сечения η определяется по первой строке табл. 58 приложения III.

Если $m_{1y} < 0.8 m_x$, то помимо проверки по формуле (30) следует произвести проверку по формулам (24) и (26), принимая $e_y = 0$.

Если $\lambda_x > \lambda_y$, то следует произвести дополнительную проверку по формуле (24), принимая $e_v = 0$.

В случае несовпадения плоскости наибольшей жесткости $(I_x{>}I_y)$ и плоскости симметрии расчетная величина m_x увеличивается на 25%.

Наибольшие значения коэффициента c при $\lambda_u > \lambda_c$


Таблица 17

lõ,		Hанбольшие значения c при M/Nh														
bh	0	0,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,5	3	4	5	10
0,1 0,5 0,8 1,0 1,5 2,0 2,5 и бо- лее	1 1 1 1 1	0,88 0,89 0,91 0,93 0,95 0,97 0,99	0,69 0,73 0,77 0,80 0,85 0,90 0,92	0,56 0,59 0,64 0,67 0,74 0,80 0,85	0,46 0,50 0,54 0,58 0,66 0,73 0,78	0,39 0,42 0,47 0,50 0,58 0,66 0,72	0,34 0,37 0,41 0,44 0,52 0,60 0,66	0,30 0,32 0,36 0,39 0,47 0,54 0,61	0,27 0,30 0,33 0,35 0,43 0,50 0,56	0,24 0,27 0,30 0,32 0,39 0,45 0,52	0,22 0,24 0,27 0,30 0,37 0,42 0,49	0,18 0,20 0,23 0,26 0,30 0,36 0,41	0,15 0,17 0,19 0,21 0,26 0,31 0,36	0,12 0,13 0,15 0,16 0,20 0,24 0,28	0,10 0,11 0,12 0,13 0,18 0,22 0,24	0,049 0,054 0,062 0,068 0,086 0,105 0,126

h — высота сечения;

b и д₁ — ширина и толщина более сжатого пояса.

- 4.27. Составные стержни из двух сплошностенчатых ветвей с решетками в двух параллельных плоскостях (рис. 6), подверженные сжатию и изгибу в обеих главных плоскостях, следует проверять:
- а) на устойчивость стержня в целом в плоскости, параллельной плоскостям решеток, по п. 4.20, считая при этом эксцентрицитет $e_v = 0$ (рис. 6);

б) на устойчивость отдельных ветвей как внецентренно сжатых элементов по формулам (24) и (26); при этом продольная сила в каждой ветви определяется с учетом дополнительного усилия от момента M_x (см. п. 4.25), а момент M_y разрешается распределять между ветвями пропорционально их жесткостям; если M_y действует в плоскости одной из ветвей, то разрешается считать его передающимся полностью на эту ветвь.

При проверке отдельной ветви по формуле (26) гибкость ее определяется по наибольшему расстоянию между узлами решетки.

4.28. Соединительные элементы (решетки или планки) составных внецентренно сжатых стержней должны рассчитываться на поперечную силу, равную большей из величин: фактической поперечной силы или условной поперечной силы $Q_{\rm усл}$, вычисленной согласно указаниям п. 4.7.

Примечание. В случае, когда фактическая поперечная сила больше условной, соединение ветвей составных внецентренно сжатых элементов с помощью планок не рекомендуется.

ОПОРНЫЕ ЧАСТИ

4.29. Неподвижные шарнирные опоры с центрирующими прокладками и тангенциальные опоры, а при весьма больших реакциях балансирные опоры следует применять при необходимости строго равномерного распределения давления под опорой.

В случаях, когда нижележащая конструкция должна быть разгружена от горизонтальных усилий, возникающих при неподвижном опирании балки или фермы, следует применять плоские или катковые подвижные опоры. Коэффициент трения в плоских подвижных опорах принимается равным 0,3 в катках — 0,03.

4.30. В цилиндрических шарнирах (цапфах) балансирных опор проверка напряжений смятия производится (при центральном угле касания поверхностей, равном или большем $\frac{\pi}{2}$) по формуле

$$\frac{A}{1.25rl} \leqslant R_{\text{cm.m}},\tag{31}$$

где

A — давление на опору;

r — радиус шарнира;

l — длина шарнира;

 $R_{\text{см.м}}$ — расчетное сопротивление местному смятию при плотном касании, принимаемое по табл. 2 и 4.

4.31. Расчет на диаметральное сжатие катков производится по формуле

$$\frac{A}{ndl} \leqslant R_{c,\kappa},\tag{32}$$

где

n — число катков;

d — диаметр катка;

l — длина катка;

 $R_{\rm c.\kappa}$ — расчетное сопротивление диаметральному сжатию катков при свободном касании, принимаемое по табл. 2 и 4.

ЛИСТОВЫЕ КОНСТРУКЦИИ (ОБОЛОЧКИ ВРАЩЕНИЯ)

4.32. Проверка прочности листовых конструкций (оболочек вращения), находящихся в безмоментном напряженном состоянии, производится по формуле

$$\sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \leqslant R; \qquad (33)$$

при этом должно соблюдаться условие:

$$\sigma_x \leqslant R \text{ if } \sigma_v \leqslant R. \tag{33'}$$

Здесь: о_х и о_у — нормальные напряжения по двум взаимно перпендикулярным направлениям;

т_{ху} — касательное напряжение; R — расчетное сопротивление стали растяжению и сжатию, принимаемое в соответствии с указаниями п. 3.1.

В необходимых случаях должны вводиться коэффициенты условий работы конструкций в

соответствии с указаниями соответствующих глав СНиП или специальных инструкций.

4.33. Напряжения в безмоментных тонкостенных оболочках вращения, находящихся под давлением жидкости, газа или сыпучего тела, определяются по формулам

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p}{\delta}; \qquad (34)$$

$$\sigma_1 = \frac{Q}{2\pi r_0 \delta \cos \beta}, \qquad (35)$$

$$\sigma_1 = \frac{Q}{2\pi r \delta \cos \beta},\tag{35}$$

где σ_1 и σ_2 — соответственно меридиональное и кольцевое напряжения; р — расчетное давление на единицу поверхности оболочки;

> r₁ и r₂ — радиусы кривизны срединной поверхности оболочки;

толщина оболочки;

Q — проекция на ось полного расчетного давления жидкости, газа или сыпучего тела на часть оболочки abc (рис. 7);

 r_0 и β — радиус и угол, показанные на рис. 7.

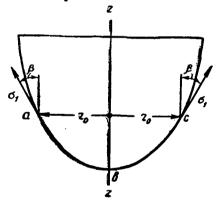


Рис. 7

4.34. Напряжения в замкнутых цилиндрических, конических и сферических безмоментных тонкостенных оболочках, находящихся под внутренним равномерным давлением, определяются:

а) для цилиндрических оболочек по формулам

$$\sigma_1 = \frac{pr}{2\hbar} \quad \text{if } \sigma_2 = \frac{pr}{\hbar}; \tag{36}$$

б) для конических оболочек по формулам

$$\sigma_1 = \frac{pr}{2\delta \cos \beta} \quad \text{if } \sigma_2 = \frac{pr}{\delta \cos \beta}; \quad (37)$$

в) для сферических оболочек по формуле

$$\sigma_1 = \sigma_2 = \frac{pr}{2\delta}, \tag{38}$$

где p — расчетное внутреннее давление на единицу поверхности оболочки;

> r — радиус срединной поверхности оболочки (рис. 8);

> β — угол между образующей конуса и его осью z (рис. 8).

4.35. В местах изменения формы или толщины оболочек, а также изменения нагрузки должны быть учтены местные напряжения (краевой эффект), которые определяются по указаниям специальных инструкций.

5. РАСЧЕТНЫЕ ДЛИНЫ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ и предельные гибкости РАСЧЕТНЫЕ ДЛИНЫ

Плоские фермы и связи

5.1. Расчетные длины l_0 при определении гибкости элементов с симметричными относительно плоскости фермы сечениями, за исключением пересекающихся стержней ферм с перекрестной решеткой, должны приниматься по табл. 18.

Таблица 18 Расчетные длины l_0 элементов плоских ферм (за исключением пересекающихся стержней ферм с перекрестной решеткой)

	Расчетная длина t_0					
Направление продольного изгиба	поясов	опорных раскосов и стоек	прочих элементов решетки			
В плоскости фермы В направлении, пер- пендикулярном плос-	1	ı	0,8 <i>l</i>			
кости фермы (из плос- кости фермы)	l_1	<i>l</i> ₁	l_1			

Обозначения, принятые в табл. 18 и на рис. 9: l — геометрическая длина элемента (расстояние между центрами узлов) в плоскости фермы; l_1 — расстояние между узлами, закрепленными от смещения из плоскости фермы (специальными связями; жесткими плитами покрытия, прикрепленными к поясу сварными швами или болтами, и т. п.).

Примечания: 1. Если по длине l_1 элемента действуют сжимающие усилия N_1 и $N_2 {<} N_1$ (рис. 10), то проверка его устойчивости из плоскости фермы производится на большее усилие N_1 при расчетной длине $l_0 = l_1 \left(0.75 + 0.25 \ \frac{N_2}{N_1}\right)$.

2. Для отдельных элементов решетки из одиночных уголков расчетная длина $l_{\rm 0}$ принимается равной их геометрической длине.

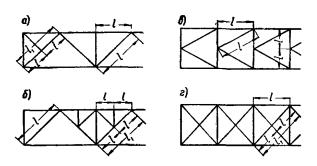


Рис. 9. Схемы ферм для определения расчетных длин элементов

5.2. Расчетные длины l_0 пересекающихся стержней ферм с перекрестной решеткой при определении их гибкости должны приниматься (рис. 9, ε):

в плоскости фермы — равными расстоянию от центра узла фермы до точки их пересечения $(l_0=l)$; из плоскости фермы — по табл. 19.

Радиусы инерции сечений сжатых элементов из одиночных уголков при этом принимаются: при $l_0 = l - r_{\text{мин}}$; при $l_0 = 0.7 l_1$ и $l_0 = l_1$ — относительно оси сечения уголка, параллельной плоскости фермы.

Таблица 19 Расчетные длины l_0 из плоскости фермы сжатых стержней перекрестной решетки

Характеристика узла пере-	Расчетная длина l_0 , если поддер живающий стержень					
сечения стержней решетки	растянут	не работает	твжэ			
Оба стержня не прерываются	ı	0,7 l ₁	l_1			
и перекрывается фа-	0,7 l ₁	l_1	l_1			

Обозначения, принятые в табл. 19: *l* — расстояние от центра узла фермы до пересечения стержней;

 l_1 — полная геометрическая длина сжатого стержия.

Пространственные решетчатые конструкции из одиночных уголков

5.3. Расчетные длины l_0 и радиусы инерции сечений при определении гибкости элементов пространственных решетчатых конструкций из одиночных уголков должны приниматься по табл. 20.

Рис. 10. Схемы для определения расчетной длины элемента с различными усилиями N_1 и N_2 по его длине

a — схема связей между фермами (вид сверху): δ — схема фермы

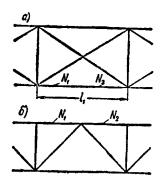
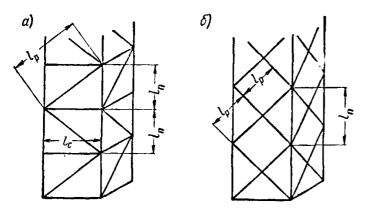
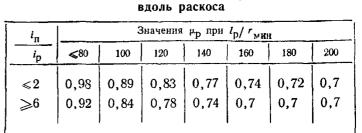


Таблица 20

Расчетные длины l_0 и радиусы инерции сечений элементов пространственных решетчатых конструкций


		- реше	ITAIDIA	KUNCI	рукции	
	По	эяса	Элем	шетки		
Вид конструкции	Расчетная длина <i>L</i> ₀	тная г Со		Расчетная длина l _o		
	Расч	Радиус инерции	рас- коса	стойки	инер- ции <i>г</i>	
Конструкции с совмещенными в смежных гранях узлами (рис. 11, а и 11, б)	l _a	<i>г</i> мин	μ ρ / ρ	0,8 <i>I</i> e	гмин	
Конструкции с несовмещенными в смежных гранях узлами (рис. 11, в и 11, г)	_{Աո} լո	r _х или r _y	_{Աթ} / _թ	_	г мин	


Обозначения, принятые в табл. 20:

µ_п — коэффициент расчетной длины пояса, определяемый по табл. 21;

— коэффициент расчетной длины раскоса, определяемый в зависимости от вида прикрепления раскосов к поясу по табл. 22 или табл. 23.

Значения коэффициента $\mu_{\rm p}$ при прикреплении раскосов к поясу сварными швами, а также двумя и более болтами или заклепками, расположенными

Обозначения, принятые в табл. 22: $i_{\rm II}/i_{\rm p}$ — отношение наименьших погонных жесткостей пояса и раскоса;

 $l_{\rm p}$ — длина раскоса по рис. 11; $r_{\rm мин}$ — минимальный радиус инерции сечения раскоса

Рис. 11. Схемы пространственных решетчатых конструкций из одиночных уголков

a — схема с совмещенными в смежных гранях узлами, тре угольная решетка с распорками; δ — то же, перекрестная решетка; δ — схема с несовмещенными в смежных гранях узлами, треугольная решетка; ϵ — то же, перекрестная решетка

Таблица 21

Значения коэффициента μ_{Π} при прикреплении раскосов к поясу сварными швами, а также двумя и более болтами или заклепками, расположенными вдоль раскоса

$i_{\rm n}/i_{\rm p}$	10	5	2,5	1,25	1
μπ	1,13	1,08	1,03	,1	0,98

Обозначения, принятые в табл. 21:

 $\frac{l_{\rm fl}}{l_{\rm p}} = \frac{J_{\rm fl}\,_{
m MHH}\,l_{
m p}}{J_{
m p}\,_{
m MHH}\,l_{
m fl}}$ — отношение наименьших погонных жесткостей пояса и раскоса;

 $J_{\text{п мин}}$ и $J_{\text{р мин}}$ — наименьшие моменты инерции сечений пояса и раскоса.

Примечание. Если раскосы прикреплены к поясу одним болтом или одной заклепкой, принимается $\mu_{\pi}=1,14$.

Таблица 23

Значения коэффициента рр при прикреплении раскосов к поясу одним болтом или одной заклепкой

$\frac{l_{\mathbf{p}}}{r_{\scriptscriptstyle \mathrm{MHH}}}$	<80	100	120	140	160	180	200			
$\mu_{\mathbf{p}}$	1	0,94	0,88	0,83	0,8	0,78	0,77			
O 6	µр 1 0,94 0,88 0,83 0,8 0,78 0,77 Обозначения, принятые в табл. 23, см. табл. 22.									

Колонны (стойки)

5.4. Расчетные длины l_0 колонн (стоек) или отдельных их участков (в случае ступенчатых колонн) определяются по формуле

$$l_0 = \mu l$$

где 1 — длина колонны, отдельного участка ее или высота этажа;

 коэффициент расчетной длины, определяемый по указаниям пп. 5.5—5.7 и приложения IV.

Примечание. В случае ступенчатых колонн коэффициенты µ даны для определения расчетных длин отдельных участков их в плоскости рамы.

5.5. Коэффициенты р расчетной длины колони и стоек постоянного сечения, в зависимости от условий закрепления их концов, принимаются по табл. 24 и 25,

Таблица 24 Коэффициенты µ для колонн и стоек постоянного сечения (кроме колонн с упругим защемлением концов)

	 				
№ п/п ————	Схема закреп- лений и на- грузки	μ	№ п/п	Схема закреп- лений и на- грузки	μ
1		2	5	man.	1
2		1	6	uduu.	2
3	Towns .	0,7	7	www.	0,725
4	udus nam	0,5	8	tana,	1,12

Таблица 25 Коэффициенты даля колонн одноэтажных рам постоянного сечения с упругим защемлением верхнего конца (при определении расчетной длины в плоскости рамы)

Закрепление в фун-		3	Вначен	ияμ	при і	p/l_{K}		
даменте	0	0,2	0,3	0,5	1	2	3	≥1 0
Жесткое	2	1,5			1,16			
Шарнирное	_	3,42	3	2,63	2,33	2,17	2,11	2
Обозначения	. Пои	ı Цтяты	ı евт	абл. :	25:	•	ı	

Ооозначения, принятые в таол. 25: i_p — средняя погонная жесткость ригелей, примыкающих к проверяемой колонне; i_k — погонная жесткость колонны.

Примечание. При шарнирном креплении ригеля к колонне принимается $i_{
m p}/i_{
m K}=0.$

5.6. При определении коэффициентов расчетной длины для ступенчатых колонн рам

одноэтажных промышленных зданий разрешается:

- а) не учитывать влияния степени загружения и жесткости соседних колонн;
- б) определять расчетные длины колонн лишь для комбинации нагрузок, дающей наибольшие значения продольных сил на отдельных участках колонн, и полученные значения использовать для других комбинаций нагрузок;
- в) для многопролетных рам (с числом пролетов два и более) при наличии сплошного диска (жесткой кровли, системы продольных связей и т. п.), связывающего поверху все колонны и обеспечивающего пространственную работу сооружения, определять расчетные длины колонн как для стоек, неподвижно закрепленных на уровне ригелей.

Коэффициенты расчетной длины для ступенчатых колонн рам одноэтажных промышленных зданий определяются по указаниям приложения IV.

При соблюдении условий $l_2/l_1 \leqslant 0.6$ и $\frac{N_1}{N_2} \geqslant 3$ коэффициенты μ для определения расчетных длин отдельных участков одноступенчатых колони рам одноэтажных промышленных зданий в плоскости рамы разрешается принимать по табл. 26.

Таблица 26 Коэффициенты μ для одноступенчатых колони рам одноэтажных промышленных зданий при $\frac{l_2}{l_1} \leqslant 0.6$ и $\frac{N_1}{N_2} \geqslant 3$

	Коэффициенты μ						
Условия закрепления	олэнжин ксд	÷ 7					
верхнего конца колонны	$0.3 \gg \frac{J_2}{J_1} \gg 0.1$	$0.1 > \frac{J_2}{J_1} \gg 0.05$	для верх него участки				
Свободный конец Конец, закреплен-	2,5	3,0	3,0				
ный только от по- ворота Неподвижный	2,0	2,0	3,0				
шарнирно опертый конец	1,6	2,0	2,5				
крепленный от по- ворота конец	1,2	1,5	2,0				

Обозначения, принятые в табл. 26: l_1 , J_1 , N_1 — длина, момент инерции и продольная сила нижнего участка колонны; l_2 , J_2 , N_2 — то же, для верхнего участка колонны.

- 5.7. Коэффициенты расчетной длины радля стоек многоэтажных рам определяются по указаниям приложения IV.
- 5.8. Расчетные длины колонн рам в направлении вдоль здания (из плоскости рам) принимаются равными расстояниям между закрепленными точками (опорами колонн, подкрановых балок и подстропильных ферм; узлами крепления связей и ригелей и т. п.).

предельные гибкости элементов

Сжатые элементы

5.9. Гибкости сжатых элементов не должны превышать величин, приведенных в табл. 27.

Таблица 27 Предельные гибкости ѝ сжатых элементов

№ п/п	Наименование элементов конструкций	Максималі ная допу- скаемая гибкость λ
1	Пояса; опорные раскосы и стой- ки ферм, передающие опорные ре- акции	120
2	Прочие элементы ферм	150
3	Верхние пояса стропильных ферм, остающиеся не закрепленными в процессе монтажа (предельная гибкость после завершения монтажа должна соответствовать п. 1)	220
4	Основные колонны	120
5	Второстепенные колонны (стой- ки фахверка, фонарей и т. п.), элементы решетки колонн, эле- менты вертикальных связей между колоннами (ниже подкрановых балок)	150
6	Элементы связей (за исключением связей, указанных в п.5)	200
7	Стержни, служащие для умень- шения расчетной длины сжатых стержней, и другие неработающие элементы	200

Примечание. Предельная гибкость сжатых раскосов (кроме опорных) пространственных решетчатых конструкций из одиночных уголков принимается: при использовании несущей способности раскосов до 50%—равной 180; при использовании несущей способности от 50 до 100%— по интерполяции между величинами 180 и 150.

Растянутые элементы

5.10. Гибкости растянутых элементов не должны превышать величин, приведенных в табл. 28.

Таблица 28 Предельные гибкости ѝ растянутых элементов

		я допускаемая Ость х
Наименование элементов конструкций	при непосред- ственном воз- действии на конструкцию динамических нагрузок	при воздей- ствин на кон- струкцию статических нагрузок
Пояса и опорные рас- косы ферм	< 250	400
Прочие элементы ферм	350	400
Нижние пояса подкра-	150	
новых балок и ферм Элементы вертикальных связей между колоннами	300	300
(ниже подкрановых балок) Прочие элементы связей	400	400

Примечания: 1. В сооружениях, не подвергающихся динамическим воздействиям, гибкость растянутых элементов проверяется только в вертикальной плоскости.

2. Гибкость растянутых элементов связей, подвергнутых предварительному напряжению, не ограничивается.

3. При проверке гибкости растянутых стержней перекрестной решетки из одиночных уголков радиус инерции сечения уголка принимается относительно оси, параллельной полке уголка.

4. Для растянутых раскосов стропильных ферм с незначительными усилиями, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельная гибкость принимается как для сжатых элементов; при этом соединительные прокладки должны устанавливаться не реже чем через 40 г.

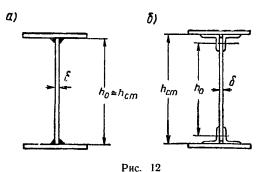
6. ПРОВЕРКА УСТОЙЧИВОСТИ СТЕНОК И ПОЯСНЫХ ЛИСТОВ ИЗГИБАЕМЫХ И СЖАТЫХ ЭЛЕМЕНТОВ. ПРОВЕРКА УСТОЙЧИВОСТИ ОБОЛОЧЕК ВРАЩЕНИЯ

Стенки балок

- **6.1**. Стенки балок для обеспечения их устойчивости укрепляются:
- а) поперечными основными ребрами, поставленными на всю высоту стенки;
- б) поперечными основными ребрами и продольными ребрами;

в) поперечными основными и промежуточными короткими ребрами и продольным ребром; промежуточные короткие ребра располагаются между сжатым поясом и продольным ребром;

г) поперечными основными и промежуточными, расположенными в сжатой зоне стенки, короткими ребрами — только в клепаных


балках.

Прямоугольные отсеки стенки (пластинки), заключенные между поясами и соседними поперечными основными ребрами жесткости, проверяются на устойчивость; при этом расчетными размерами проверяемой пластинки являются:

а — расстояние между осями поперечных основных ребер;

 h_0 — расчетная высота стенки, равная в сварных конструкциях полной высоте стенки (рис. 12,a), в клепаных конструкциях — расстоянию между ближайшими к оси балки рисками поясных заклепок (рис. 12,6);

δ — толщина стенки.

6.2. Проверка устойчивости стенки должна производиться с учетом всех компонентов на-

пряженного состояния (с, с и с_м).

Напряжения σ , τ и $\sigma_{\rm M}$ вычисляются в предположении упругой работы материала по сечению брутто без учета коэффициента φ_6 : $\sigma = \frac{M}{J_x} y$ — краевое сжимающее напряжение у расчетной границы отсека (прини-

мается со знаком +); если длина отсека не превосходит его расчетной высоты, то определяется по среднему значению изгибающего момента в пределах отсека; если длина отсека превосходит его расчетную высоту, то об вычисляется по среднему значению момента для

наиболее напряженного участка с длиной, равной расчетной высоте отсека:

 $au = rac{Q}{h_{
m cr}\,\delta}$ — среднее касательное напряжение, где Q — среднее значение поперечной силы в пределах отсека;

 $h_{\rm cr}$ — полная высота стенки (рис. 12); $\sigma_{\rm M}$ — местное напряжение в стенке под сосредоточенным грузом, определяемое по формуле (13) при n_1 = =1,1 для подкрановых балок и n_1 = 1 для прочих балок.

В отсеках, где сосредоточенная нагрузка приложена к растянутому поясу, одновременно учитываются только два компонента σ и τ или $\sigma_{\rm M}$ и τ .

6.3. Проверки устойчивости стенок в балках не требуется, если при отсутствии местного напряжения ($\sigma_{\rm M} = 0$)

$$\frac{h_0}{\delta} \leqslant 110 \quad \sqrt{\frac{2100}{R}}, \tag{39}$$

а при наличии местного напряжения (ом +0)

$$\frac{h_0}{\delta} \leqslant 80 \sqrt{\frac{2100}{R}}, \tag{40}$$

где R — расчетное сопротивление прокатной стали изгибу в $\kappa z / c m^2$.

При этом должны ставиться поперечные основные ребра жесткости в соответствии с указаниями п. 6.9.

6.4. Устойчивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости, при отсутствии местного напряжения ($\sigma_{\rm M}=0$) проверяется по формуле

$$\sqrt{\frac{\left(\frac{\sigma}{\sigma_0}\right)^2 + \left(\frac{\tau}{\tau_0}\right)^2}{\left(\frac{\tau}{\sigma_0}\right)^2}} \leqslant 1. \tag{41}$$

Здесь

$$\sigma_0 = k_0 \left(\frac{100b}{h_0}\right)^2 m/c M^2; \tag{42}$$

$$\tau_0 = \left(1,25 + \frac{0.95}{\mu^2}\right) \left(\frac{1005}{d}\right)^2 m/c m^2, \quad (43)$$

где d — меньшая из сторон пластинки; μ — отношение большей стороны пластинки к меньшей.

Коэффициент k_0 для сварных балок принимается по табл. 29 в зависимости от величины

$$\gamma = c \frac{b_{\rm fi}}{h_0} \left(\frac{\delta_{\rm fi}}{\delta} \right)^3, \tag{44}$$

где b_n и δ_n — ширина и толщина сжатого пояса балки;

с — коэффициент, принимаемый по табл. 30.

Для клепаных балок $k_0=7$.

Таблица 29 Коэффициенты k_0 для сварных балок

7	<0,8	1,0	2,0	4,0	6,0	10	≥30
k_0	6,30	6,62	7,0	7,27	7,32	7,37	7,46

Таблица 30 Значения коэффициента с в формуле (44)

Тип балок	Условия работы сжатого пояса	c
Подкрановые балки	рельсы не приварены рельсы приварены	2 ∞
Прочие балки	при непрерывном опи- рании на сжатый пояс	∞
	жестких плит в прочих случаях	0,8

Примечание. Для отсеков подкрановых балок, где сосредоточенная нагрузка приложена к растянутому поясу, при вычислении коэффициента k_0 принимается c=0,8.

6.5. Устойчивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости (рис. 13), при наличии местного напряжения ($\sigma_{\rm M} \neq 0$) проверяется по формуле

$$\sqrt{\left(\frac{\sigma}{\sigma_0} + \frac{\sigma_M}{\sigma_{M0}}\right)^2 + \left(\frac{\tau}{\tau_0}\right)^2} \leqslant m, \qquad (45)$$

где m = 0.9 — для подкрановых балок;

m=1 — для прочих балок;

σ, σ_м и τ— определяются согласно указаниям п. 6.2;

 τ_0 — определяется по формуле (43).

Остальные величины определяются следующим образом.

а) При $\frac{a}{h_0} \le 0.8$ принимается

 σ_0 — по формуле (42),

$$\sigma_{M0} = k_1 \left(\frac{100\delta}{a}\right)^2 m/c M^2.$$
 (46)

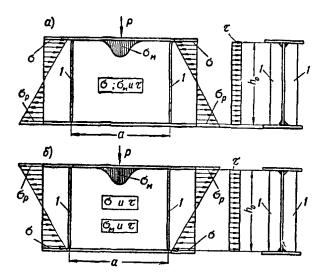


Рис. 13. Схема балки, укрепленной поперечными основными ребрами жесткости

a — сосредоточенный груз P приложен к сжатому поясу; b — сосредоточенный груз P приложен к растянутому поясу; I — ребро жесткости

Коэффициент k_1 для сварных балок принимается по табл. 31 в зависимости от отношения $\frac{a}{h_0}$ и величины γ , определяемой по формуле (44).

Для клепаных балок коэффициент k_1 определяется по табл. 31 при значении $\gamma=10$. Таблица 31

Коэффициенты k_1 для сварных балок

		Значения $m{k_i}$ при $m{a_i}m{h_0}$									
۲	≪0,5	0,6	0,8	1	1,2	1,4	1,6	1,8	2		
≤0,8	2,04	2,39	3,04	3,67	4,11	4,67	5,32	6,04	6,88		
1	2,07	2,44	3.13	3,80	4,29	4,90	5,61	6,39	7,29		
2	2,13	2,54	3,33	4,17	4,85	5,67	6,59	7,59	8,72		
4	2,17	2,60	3,47	4,46	5,33	6,38	7,58	8,89	10,35		
6	2,18	2,62	3,52	4,58	5,55	6,73	8,07	9,54	11,19		
10	2,19	2,64	3,57	4,68	5,76	7,07	8,56	10,21	12,06		
≥30	2,21	2,67	3,65	4,86	6,15	7,74	9,56	11,58	13,86		
					<u> </u>						

б) При $\frac{a}{h_0} > 0.8$ различаются два случая в зависимости от значений отношения $\frac{\sigma_{\rm M}}{\sigma}$.

Ј-й случай: $\frac{\sigma_M}{\sigma}$ больше значений, указанных в табл. 32. В этом случае принимается:

 σ_{M0} — по формуле (46), причем, если $\frac{a}{h_0} > 2$, то принимается $a = 2h_0$;

то принимается
$$a=2h_0;$$
 $\sigma_0=k_2\Big(\frac{1008}{h_0}\Big)^2\,m/c\,M^2,$ (47)

где k_2 — коэффициент, определяемый по табл. 33 в зависимости от отношения a/h_0 .

Таблица 32

Предельные значения $\frac{\sigma_{M}}{\sigma}$ для балок симметричного

					СПИЛ				
Тип балок	۲	Предельные значения $\frac{\sigma_{M}}{\sigma}$ при a, h							
		0,8	0,9	1	1,2	1,4	1.6	1,8	≥2
	≤0,8	0	0,215	0,248	0,268	0,285	0,303	0,315	0,333
	1	0	0,167	0,209	0,243	0,273	0,295	0,312	0,331
_	2	0	0,119	0,174	0,242	0,297	0,337	0,366	0,396
Свар- ные	4	0	0,081	0,147	0,245	0,327	0,3 9 6	0, 450	0,501
	6	0	0,075	0,146	0,257	0,356	0,442	0,509	0,578
	10	0	0,0 69	0,142	0,267	0,386	0,492	0,581	0,674
	≥ 30	0	0,056	0,135	0,288	0,455	0,619	0,767	0,940
Кле- паные	_	0	0,138	0,215	0,329	0,447	0.552	0,640	0,734

Таблица 33

Коэффициенты k_2

a h,	<0.8	0,9	ı	1.2	1,4	1.6	1.8	≥2
k ₂	по табл. 29	7,78	8,23	9,50	11,1	13,02	15,25	17,79

2-й случай: $\frac{\sigma_M}{\sigma}$ не больше значений, укасзанных в табл. 32. В этом случае принимается:

 σ_0 — по формуле (42); $\sigma_{\rm M0}$ — по формуле (46), но с подстановкой $\frac{a}{2}$ вместо a как в формулу (46), так и

в табл. 31.

Во всех случаях τ_0 вычисляется по действительным размерам отсека.

- 6.6. Устойчивость стенок балок симметричного сечения, укрепленных кроме поперечных основных также дополнительными короткими ребрами жесткости, следует проверять дважлы:
- а) по формуле (45), полагая, что короткие ребра отсутствуют и $\sigma_{\rm M} = 0$;

б) по формуле $1,5 \sigma_{_{\rm M}} \left(\frac{a_1}{100b}\right)^2 \leqslant 1, \tag{48}$

где $\sigma_{\rm M}$ в T/cM^2 .

Длина коротких ребер должна быть не менее 0,3 высоты стенки и не менее 0,4 a_1 , где a_1 — расстояние между осями двух коротких ребер или короткого и основного ребра.

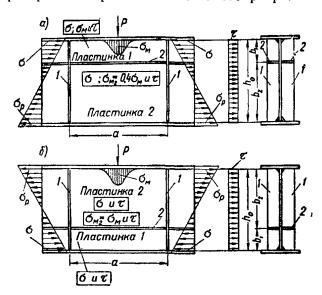


Рис. 14. Схема балки, укрепленной поперечными основными и одним продольным ребрами жесткости a— сосредоточенный груз приложен к сжатому поясу; δ —сосредоточенный груз приложен к растянутому поясу; l—поперечные ребра; l—продольное ребро

- 6.7. В стенке балки симметричного сечения, укрепленной кроме поперечных основных ребер одним продольным ребром жесткости, расположенным на расстоянии b_1 от расчетной (сжатой) границы отсека (рис. 14), обе пластинки, на которые это ребро разделяет отсек, проверяются отдельно.
- а) Первая пластинка, расположенная между сжатым поясом и продольным ребром, проверяется по формуле

$$\frac{\sigma}{\sigma_{01}} + \frac{\sigma_{M}}{\sigma_{M01}} + \left(\frac{\tau}{\tau_{01}}\right)^{2} \leqslant m, \tag{49}$$

где значение m принимается по указаниям п. 6.5; σ , σ м и τ сохраняют прежние значения.

Значения σ_{01} и σ_{m01} определяются следующим образом:

при
$$\sigma_{\rm M} = 0$$

$$\sigma_{01} = \frac{1}{1 - \frac{b_1}{h_0}} \left(\frac{100\delta}{b_1}\right)^2 m/c M^2; \tag{50}$$

при
$$\sigma_{\rm M} \neq 0$$
 и $\mu_1 = \frac{a}{b_1} \leqslant 2$

$$\sigma_{01} = \frac{0.25}{1 - \frac{b_1}{h_0}} \frac{(1 + \mu_1^2)^2}{\mu_1^2} \left(\frac{100\delta}{b_1}\right)^2 m/cM^2; \quad (51)$$

$$\sigma_{\text{M01}} = k' \frac{(1 + \mu_1^2)^2}{\mu_1^2} \left(\frac{100\delta}{a}\right)^2 m/c M^2, \tag{52}$$

где коэффициент k' принимается по табл. 34.

Таблица 34 Значения коэффициента k' в формуле (52)

$\mu_1 = \frac{a}{b_1}$	1	1,5	2
k'	0,36	0,42	0,45

Если $\frac{a}{b_1} > 2$, то при вычислении σ_{01} и $\sigma_{м01}$ принимается a=2 b_1 .

 au_{01} — определяется по формуле (43) с подстановкой в нее размеров проверяемой пластинки.

б) Вторая пластинка, расположенная между продольным ребром и растянутым поясом, проверяется по формуле

$$\sqrt{\left[\frac{\sigma\left(1-2\frac{b_1}{h_0}\right)}{\sigma_{02}} + \frac{\sigma_{M3}}{\sigma_{M02}}\right]^2 + \left(\frac{\tau}{\tau_{02}}\right)^2} \leqslant 1. \quad (53)$$

Здесь

$$\sigma_{02} = \frac{1,14}{\left(0,5 - \frac{b_1}{h_0}\right)^2} \left(\frac{100\delta}{h_0}\right)^2 m/c M^2; \tag{54}$$

 $\sigma_{\text{м02}}$ — определяют по формуле (46) и табл. 31, принимая в последней $\gamma=0.8$ и заменяя огношение a/h_0 величиной $\frac{a}{h_0-b_1}$;

т₀₂ — определяют по формуле (43) с подстановкой в нее размеров проверяемой пластинки:

 $\sigma_{\rm M2} = 0.4$ $\sigma_{\rm M}$ — при приложении нагрузки к сжатому поясу (рис. 14, a);

 $\sigma_{M2} = \sigma_{M}$ — при приложении нагрузки к растянутому поясу (рис. 14, 6).

Если первая пластинка укрепляется дополнительно короткими поперечными ребрами, то их следует доводить до продольного ребра.

В этом случае для проверки первой пластинки служат формулы (49)—(52), в которых a заменяется величиной a_1 , где a_1 — расстояние между осями соседних коротких ребер (рис. 15).

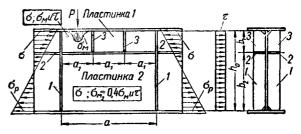


Рис. 15. Схема балки, укрепленной основными 1 и дополнительными 3 поперечными и продольным 2 ребрами жесткости

Проверка второй пластинки остается без изменений.

6.8. Устойчивость стенок балок асимметричного сечения (с более развитым сжатым поясом) проверяется по указаниям пп. 6.4—6.7 со следующими изменениями:

1) для стенок, укрепленных только поперечными ребрами жесткости, в формулах (42) и (47) под h_0 понимается удвоенное расстояние от нейтральной оси до расчетной (сжатой) границы отсека. При $a/h_0 > 0.8$ и $\sigma_{\rm M} \neq 0$ требуются обе проверки, указанные в п. 6.5, δ независимо от значения отношения $\frac{\sigma_{\rm M}}{\sigma}$;

2) для стенок, укрепленных поперечными ребрами и одним продольным ребром, расположенным в сжатой зоне:

а) в формулы (50), (51), (53) вместо $\frac{b_1}{h_0}$ подставляется $\frac{a b_1}{2h_0}$;

б) в формулу (54) вместо $(0.5 - \frac{b_1}{h_0})$ подставляется $(\frac{1}{\alpha} - \frac{b_1}{h_0})$.

Здесь

$$\alpha = \frac{\sigma - \sigma_p}{\sigma},$$

где σ_p — краевое растягивающее напряжение (со знаком —) у расчетной границы отсека.

6.9. Стенки балок следует укреплять поперечными ребрами жесткости, если

$$\frac{h_0}{\delta} > 70 \sqrt{\frac{2100}{R}}. \tag{55}$$

В стенке, укрепленной только поперечными ребрами, ширина выступающей части парного симметричного ребра $b_{\rm p}$ должна быть не менее $\frac{h_{\rm cT}}{30}$ +40 мм, а толщина ребра — не менее 1/15 $b_{\rm p}$.

Расстояние между поперечными основными ребрами не должно превышать $2h_0$ при $\frac{h_0}{\delta} > 100$ и 2,5 h_0 при $\frac{h_0}{\delta} \ll 100$.

В местах приложения к верхнему поясу больших неподвижных сосредоточенных грузов следует устанавливать поперечные ребра.

Ширина выступающей части короткого ребра должна быть не менее 2/3 ширины основного ребра.

При наличии одного продольного ребра необходимый момент инерции поперечного ребра определяется по формуле

$$J_{p} = 3h_0 \delta^3. \tag{56}$$

Необходимый момент инерции продольного ребра определяется в зависимости от величины $\frac{b_1}{h_0}$ по формулам табл. 35.

T аблица 35 Значения необходимого момента инерции продольного ребра $J_{
m np.\ p}$

b_1	Необходимый момент	Предельные значения $J_{\mathrm{пр.1}}$			
h ₀	инерции продольного ребра Ј _{пр. р}	минималь- ное	максимальное		
0,2	$\left(2,5-0,5\frac{a}{h_0}\right)\frac{a^2}{h_0}$ 63	$1.5 h_0 \delta^3$	7 h oồ³		
0,25	$\left(1,5-0,4\frac{a}{h_0}\right)\frac{a^2}{h_0}$ 83	1,5 h ₀ 83	3,5 <i>h</i> ებ3		
0,3	$1.5 h_0 \delta^3$	_			

 Π римечание. Для промежуточных значений $rac{b_1}{h_0}$ допускается линейная интерполяция.

При расположении ребер с одной стороны стенки момент инерции вычисляется относительно оси, совпадающей с ближайшей к ребру гранью стенки.

6.10. Участок стенки составной балки над опорой должен укрепляться ребром жесткости и рассчитываться на продольный изгиб из

плоскости как стойка, нагруженная опорной реакцией. В расчетное сечение этой стойки включается ребро жесткости и полоса стенки шириной до 15 °C каждой стороны ребра. Расчетная длина стойки принимается равной высоте стенки.

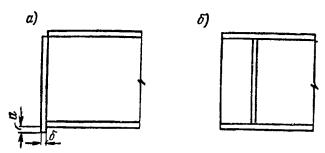


Рис. 16. Схема установки опорного ребра жесткости $a-\mathbf{B}$ торце с применением строжки; $b-\mathbf{W}$ строжен с плотной пригонкой или приваркой к нижнему поясу

Нижние сечения опорных ребер должны быть либо остроганы (рис. 16,a), либо плотно пригнаны или приварены к нижнему поясу балки (рис. $16, \delta$). Напряжения в этих сечениях при воздействии опорной реакции не должны превышать: в первом случае (рис. 16, a) — расчетного сопротивления прокатной стали смятию при $a \le 1,5\delta$ и сжатию при $a > 1,5\delta$; во втором случае (рис. $16, \delta$) — смятию.

В случае приварки опорного ребра к нижнему поясу балки соответствующие сварные швы должны быть рассчитаны на воздействие опорной реакции.

Стенки центрально и внецентренно сжатых элементов

6.11. Наибольшая расчетная высота стенки (или расчетная ширина листа между стенками двустенчатого сечения) в центрально сжатых элементах определяется из формулы

$$\frac{h_0}{b} = 40 \sqrt{\frac{2100}{R}} + 0.2\lambda, \tag{57}$$

но принимается не более 75δ.

Здесь h_0 — расчетная высота стенки, принимаемая в соответствии с п. 6.1; δ — толщина стенки; λ — расчетная гибкость стержня; R — расчетное сопротивление в $\kappa e/c m^2$.

В случае недонапряжения элемента значения $\frac{h_0}{\delta}$, вычисленные по формуле (57), могут

быть увеличены в $\sqrt{\frac{R\varphi}{\sigma}}$ раза (где $\sigma = \frac{N}{F}$ расчетное напряжение, φ — коэффициент продольного изгиба).

6.12. Наибольшее значение отношения $\frac{h_0}{\delta}$ для стенки внецентренно сжатого элемента определяется в зависимости от величин

$$\alpha = \frac{\sigma - \sigma'}{\alpha} \text{ if } \frac{\tau}{\sigma},$$

где σ — наибольшее сжимающее напряжение у расчетной границы стенки. вычисленное без учета коэффициентов $\varphi^{\rm BH}$, $\varphi^{\rm BH}_{xy}$ или $c\varphi$;

о' — соответствующее напряжение у противоположной расчетной границы стенки;

 $\tau = \frac{Q}{h_{cr}\delta}$ — среднее касательное напряжение в рассматриваемом отсеке.

При $\alpha < 0.4$ — наибольшее значение отношения $\frac{h_0}{\delta}$ принимается как для стенок центрально сжатых элементов (п. 6.11).

При $\alpha \gg 0.8$ наибольшее значение отношения $\frac{h_0}{\lambda}$ определяется по формуле

$$\frac{h_0}{\delta} = 100 \quad \sqrt{\frac{k_3}{\sigma}} \,, \tag{58}$$

где коэффициент k_3 принимается по табл. 36 (σ в T/cM^2).

Таблица 36 Коэффициенты k_4

τ		Значения <i>k</i> ₃ при α						
σ	0,8	1,0	1,2	1,4	1,6	1,8	2,0	
0 0,20 0,40 0,60	1,88 1,88 1,59 1,31	2, 22 2, 18 1, 76 1, 38	2,67 2,51 1,93 1,48	3,26 2,90 2,07 1,60	4,20 3,40 2,25 1,71	5,25 3,82 2,43 1,80	6,30 4,11 2,56 1,86	

В интервале $0.4<\alpha<0.8$ наибольшее значение отношения $\frac{h_0}{\delta}$ определяется по линейной интерполяции между значениями, вычисленными при $\alpha=0.4$ и $\alpha=0.8$.

6.13. В случае укрепления стенки продольным ребром жесткости, расположенным посредине стенки, наиболее напряженная часть стенки между поясом и ребром рассматривается как самостоятельная пластинка и рассчи-

тывается согласно указаниям пп. 6.11 и 6.12.

Ширина выступающей части парного симметричного продольного ребра должна быть не менее 10δ при толщине его не менее $3/4\delta$ (δ — толщина стенки).

Рекомендуется включать продольное ребро в расчетное сечение элемента.

6.14. В случае, если в центрально или внецентренно сжатых элементах устойчивость стенки не обеспечена, в расчет вводится только часть ее сечения шириной по 15°, считая от границ расчетной высоты стенки.

Поясные листы (полки) центрально и внецентренно сжатых и изгибаемых элементов

6.15. В центрально или внецентренно сжатых элементах наибольшая расчетная ширина b неокаймленного сжатого свеса листа (полки) определяется из отношения b/δ , принимаемого по табл. 37 в зависимости от наибольшей гибкости стержня λ .

 $\begin{tabular}{ll} T a G $\mathsf{Л}$ інца & 37 \\ \\ $\mathsf{П}$ редельные значения отношения $\frac{b}{\delta}$ \\ \end{tabular}$

Марки стали	Значения $\frac{b}{\delta}$ при гибкости стержия λ				
	25	50	75	100	125
"Сталь 3" и "Сталь 4" 14Г2, 15ГС, 10Г2С,	14	15	16,5	18	20
10Г2СД и 15ХСНД 10ХСНД	12 11	13 12,5	14,5 14	16,5 16	18,5 17,5
Обозначения, принятые в табл. 37: b — расчетная ширина свеса, измеряемая в сварных элементах от грани стенки, в прокатных — от начала внутреннего закругления полки, в клепаных — от наружной заклепочной риски поясного уголка; b — толщина листа (полки).					

В случае недонапряжения элемента значения $\frac{b}{\delta}$, полученные из табл. 37, могут быть увеличены в $\sqrt{\frac{R\varphi^*}{\sigma}}$ раза, но не более чем на 25%.

Здесь φ^* — меньшая из величин φ , $\varphi^{\text{вн}}$, $\varphi^{\text{вн}}_{xy}$ или c_{φ} , использованная при проверке устойчивости данного элемента;

 $\sigma = \frac{N}{F}$ — осевое напряжение сжатия в элементе.

$$\frac{b}{\delta} = 15 \sqrt{\frac{2100}{R}}, \tag{59}$$

где δ — толщина полки.

В случае недонапряжения балки значения $\frac{b}{\delta}$, вычисленные по формуле (59), могут быть увеличены в $\sqrt{\frac{R}{\sigma}}$ раза, но не более чем на 25%.

Здесь о-большая из величин

$$\sigma = \frac{M}{\varphi_6 W}$$
 или $\sigma = \frac{M_x}{J_x} y \pm \frac{M_y}{J_y} x$.

Листовые конструкции (оболочки вращения)

6.17. Замкнутая круговая цилиндрическая оболочка, равномерно сжатая параллельно образующим, проверяется на устойчивость по формуле

$$\sigma_1 \leqslant \sigma_{01}, \tag{60}$$

где определяется выражениями:

при
$$r/\hat{o} \leqslant \frac{525}{R} \left(R \text{ B} \frac{m}{c M^2} \right)$$

$$\sigma_{01} = \varphi^* R; \qquad (61)$$
при $r/\delta > \frac{525}{R}$

$$\sigma_{01} = cE\delta/r. \qquad (62)$$

Злесь:

 σ_1 — расчетное осевое напряжение в оболочке;

E — модуль упругости стали;

 r — радиус срединной поверхности оболочки;

б— толщина оболочки;

R — расчетное сопротивление стали сжатию, принимаемое по табл. 2;

 ф*, с — коэффициенты, принимаемые по табл. 38.

В случае внецентренного сжатия параллельно образующим или чистого изгиба в диаметральной плоскости напряжение σ_{01} увеличивается в $1+0.1\left(1-\frac{\sigma_1^{'}}{\sigma_1}\right)$ раз, где $\sigma_1^{'}$ — наименьшее напряжение (растягивающие напряжения считаются отрицательными).

Примечание. Указанный метод разрешается применять при изгибе с поперечной силой, если касательные напряжения в месте наибольшего момента не превышают величины 0,07 E $(\delta/r)^{3/2}$.

Таблица 38

Коэффициенты ϕ * и c

Значения коэффициента ф* в формуле (61)							
$0,476 \frac{r}{\delta} R$ $(R \text{ B } m/c M^2)$	0	25	50	100	150	200	250
φ*	1	0,94	0,85	0,71	0,6	0,53	0,47

Значения коэффициента с в формуле (62)				
r/8	≤500	750	1 000	1 500
с	0,12	0,10	0,08	0,07

Примечание. Приведенные значения коэффициентов ϕ^* и с действительны для конструкций, выполненных в соответствии с требованиями главы СНиП III-В. 5-62.

В прокатных трубах, а также в стандартных электросварных трубах при r/0<50 проверки устойчивости стенок не требуется.

Трубчатые сжатые элементы конструкций должны проверяться на устойчивость как стержни по указаниям раздела 4 (независимо от проверки устойчивости их стенок).

6.18. Цилиндрическая панель, опертая по двум образующим и двум дугам направляющей, равномерно сжатая вдоль образующих, проверяется на устойчивость по формулам (60), (61) и (62).

При выполнении условий

$$b^2/r\delta \leqslant 20; \quad b/\delta \leqslant 40 \quad \sqrt{\frac{2\overline{1}}{R}} + \sqrt{r/\delta};$$

$$b/\delta \leqslant 75 \tag{63}$$

проверки устойчивости не требуется.

Здесь b — ширина панели, измеряемая по дуге направляющей; R — в τ/cm^2 .

6.19. Замкнутая круговая цилиндрическая оболочка при действии внешнего равномерного давления *p*, нормального к боковой поверхности, проверяется на устойчивость по формуле

$$sigma_2 \leqslant \sigma_{02},$$
(61)

где определяется выражениями:

при
$$0.5 \leqslant \frac{L}{r} \leqslant 10$$

$$\sigma_{02} = 0.55E(r/L)(\delta/r)^{3/2};$$
 (65)

при $L/r \geqslant 20$

$$\sigma_{02} = 0.17E (\delta/r)^2.$$
 (65)

Для значений $10 < \frac{L}{r} < 20$ напряжение σ_{02} определяется по линейной интерполяции.

Здесь

 $\sigma_2 = \frac{pr}{\hbar}$ — расчетное кольцевое напряжение в оболочке:

L — длина цилиндрической оболочки; прочие обозначения по п. 6.17.

Та же оболочка, но укрепленная кольцевыми ребрами, расположенными на расстояниях $a \geqslant 0.5r$ ось от оси, проверяется на

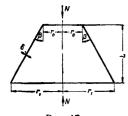


Рис. 17

устойчивость по формулам (64)—(66) с под-становкой а вместо L при условии, что момент инерции ребра относительно оси, параллельной образующей, не меньше величины $par^3/3E$. В случае одностороннего ребра момент инерции вычисляется относительно оси,

совпадающей с ближайшей поверхностью оболочки.

6.20. Замкнутая круговая цилиндрическая оболочка, подверженная одновременному действию нагрузок, указанных в пп. 6.17 и 6.19, проверяется на устойчивость по формуле

$$\frac{\sigma_1}{\sigma_{01}} + \frac{\sigma_2}{\sigma_{02}} \leqslant 1, \tag{67}$$

где σ_{01} вычисляется по указаниям п. 6.17, а σ_{02} — по указаниям п. 6.19.

6.21. Коническая оболочка вращения с углом конусности $\beta \leqslant 60^{\circ}$, сжатая усилием Nвдоль оси (рис. 17), проверяется на устойчивость по формуле

$$N \leqslant N_{\rm o}$$
, (68)

где

$$N_0 = 2\pi r^* \delta \sigma_{01} \cos^2 \beta. \tag{69}$$

Здесь σ_{01} определяется по формулам (61) и (62) в функции от r/δ (где $r=r^*$); $r^* = \frac{0.9r_1 + 0.1r_0}{\cos\beta}; \qquad (70)$

$$r^* = \frac{0.9r_1 + 0.1r_0}{\cos\beta}; \tag{70}$$

 r_0, r_1 — радиусы соответственно меньшего и большего оснований конуса;

толщина оболочки.

6.22. Коническая оболочка вращения при действии внешнего равномерного давления р. нормального к боковой поверхности, проверяется на устойчивость по формуле

$$\sigma_2 \leqslant \sigma_{02}, \tag{71}$$

где
$$\sigma_{02} = 0.55E(r^*/L)(\delta/r^*)^{3/2}$$
. (72)

 $\sigma_2 = \frac{pr^*}{\pi}$ — расчетное кольцевое напряжение в

оболочке;

L — высота конической оболочки (между основаниями);

 r^* — радиус, определяемый по формуле (70).

6.23. Коническая оболочка вращения, подверженная одновременному действию нагрузок, указанных в пп. 6.21 и 6.22, проверяется на устойчивость по формуле

$$\frac{N}{N_0} + \frac{\sigma_2}{\sigma_{02}} \leqslant 1, \tag{73}$$

где N_0 и σ_{02} определяются выражениями (69) и (72).

6.24. Полная сферическая оболочка (или ее сегмент) при действии внешнего равномерного давления р нормально к ее поверхности проверяется на устойчивость по формуле

$$\sigma \leqslant \sigma_0,$$
 (74)

где on определяется выражениями:

при $50 \ll r/3 \ll 420/R (R в m/cм^2)$

$$\sigma_0 = [0.8 - (R/1400)(r/\delta)]R; \tag{75}$$

при $420/R < r/\delta \le 500$

$$\sigma_0 = 0.1E\delta/r. \tag{76}$$

Здесь:

 $\sigma = \frac{pr}{2k}$ — расчетное напряжение в оболочке;

δ — толщина оболочки;

r — радиус срединной поверхности сферы.

7. РАСЧЕТ СОЕДИНЕНИЙ СТАЛЬНЫХ **КОНСТРУКЦИЙ**

СТЫКИ И ПРИКРЕПЛЕНИЯ ЭЛЕМЕНТОВ

Сварные соединения

7.1. В сварных соединениях при действии на соединение продольной силы (в стыках или прикреплениях элементов) распределение напряжений по длине шва принимается равномерным.

7.2. Сварные швы в стык, воспринимающие продольные силы и имеющие расчетное сопротивление наплавленного металла, равное расчетному сопротивлению материала свариваемых элементов, должны выполняться прямыми с подваркой корня и выводом концов шва за пределы стыка (на подкладки и т. п.); такие швы считаются равнопрочными основному металлу и не требуют проверки расчетом.

При применении в стыковых швах наплавленного металла, расчетное сопротивление которого ниже, чем расчетное сопротивление материала свариваемых элементов, швы могут выполняться прямыми или косыми. В этом

случае:

а) прямые швы в стык рассчитываются по формулам: на сжатие

$$\frac{N}{l_{\rm m}\delta} \leqslant R_{\rm c}^{\rm cB},\tag{77}$$

на растяжение

$$\frac{N}{l_{\rm m}\delta} \leqslant R_{\rm p}^{\rm cB}; \tag{78}$$

б) косые швы в стык рассчитываются по формулам: на сжатие

$$\frac{N}{l_{\rm m}\delta}\sin\alpha \ll R_{\rm c}^{\rm cB},\tag{79}$$

на растяжение

$$\frac{N}{l_{\rm mb}}\sin\alpha \leqslant R_{\rm p}^{\rm cB}, \tag{80}$$

на срез

$$\frac{N}{I-\hbar}\cos\alpha \ll R_{\rm cp}^{\rm cB}. \tag{81}$$

Обозначения, принятые в формулах (77)—(81):

 N — расчетная продольная сила, действующая на соединение;

 $l_{\rm m}$ — расчетная длина шва, равная его полной длине за вычетом $10~{\it mm}$;

наименьшая толщина соединяемых элементов;

 а— угол между направлением продольной силы и швом;

 $R_{\rm c}^{\rm cs},\,R_{\rm p}^{\rm cs},\,R_{\rm cp}^{\rm cs}$ — расчетные сопротивления сварного шва в стык сжатию, растяжению и срезу.

Примечания: 1. При выводе шва за пределы стыка (на подкладки и т. п.) расчетная длина шва принимается равной его полной длине.

2. При применении электродов в соответствии с указаниями п. 2.7 косые швы при угле $\alpha \leqslant 65^\circ$ проверке расчетом не подлежат.

7.3. Сварные угловые швы, воспринимающие продольные силы, рассчитываются на сжатие, растяжение и срез по формуле

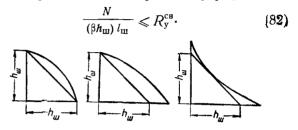


Рис. 18. Схемы сечений сварных угловых швов

Вдесь $h_{
m in}$ — толщина углового шва, принимаемая равной катету вписанного го равнобедренного треугольника (рис. 18):

β — коэффициент, принимаемый рав-

ным

β=1 — для однопроходной автоматической сварки;

 β =0,8 — для однопроходной полуавтоматической сварки;

β = 0,7 — для ручной сварки, а также для многопроходной автоматической и полуавтоматической сварки;

 R_{y}^{cs} — расчетное сопротивление углового шва.

Примечание. Вид сверки должен быть оговорен в проекте.

Сварные соединения внахлестку двумя лобовыми швами, выполненные ручной сваркой с применением электродов в соответствии с указаниями п. 2.7, считаются равнопрочными основному металлу и не требуют проверки расчетом при условии, что лобовые швы наложены по всей толщине свариваемых элементов и концы их выведены за пределы соединения.

7.4. Сварные соединения, работающие на изгиб, рассчитываются по формулам, установленным для целого сечения, с расчетными сопротивлениями согласно табл. 6.

7.5. Сварные швы в стык, работающие одновременно на изгиб и срез, проверяются по формуле (11), в которой

 $\sigma = \sigma_{\rm m}$ — напряжение в шве от изгиба;

 $au = au_{
m m}$ — напряжение в шве от среза; $R = R_{
m p}^{
m e}$ — расчетное сопротивление сварного шва в стык растяжению.

7.6. Угловые швы при одновременном действии в одном и том же сечении шва срезывающих напряжений в двух направлениях рассчитываются на равнодействующую этих напряжений.

Заклепочные и болтовые соединения

7.7. В заклепочных и болтовых соединениях при действии на соединение продольной силы (в стыках или прикреплениях элементов) распределение этой силы между заклепками или болтами принимается равномерным.

7.8. Заклепочные или болтовые соединения. воспринимающие продольные силы, рассчитываются по формулам:

на срез заклепок и болтов

$$\frac{N}{nn_{\rm cp}}\frac{\pi d^2}{4} \leqslant R_{\rm cp},\tag{83}$$

ча смятие

$$\frac{N}{nd\Sigma^{\delta}} \leqslant R_{\text{cm}},\tag{84}$$

на растяжение (отрыв головок) заклепок

$$\frac{N}{n\frac{\pi d^2}{4}} \leqslant R_{\rm p}^{\rm 3akn},\tag{85}$$

на растяжение болтов

$$\frac{N}{n \frac{\pi d_0^2}{d_0}} \leqslant R_p^6. \tag{86}$$

Обозначения, принятые в формулах (83) — (86):

N — расчетная продольная сила, действующая на соединение;

n — число заклепок или болтов в соединении:

 $n_{\rm cp}$ — число рабочих срезов одной заклепки или болта:

 $d \rightarrow$ диаметр отверстия для заклепки или наружный диаметр стержня болта;

 d_0 — внутренний диаметр резьбы болта;

 $\Sigma\delta$ — наименьшая суммарная толщина элементов, сминаемых в одном направ-

 $R_{\rm cp}$ — расчетное сопротивление срезу заклепок (болтов):

 $R_{\mathsf{c}\mathsf{M}}$ — расчетное сопротивление смятию заклепочных (болтовых) соединений;

R_p^{закл} — расчетное сопротивление растяжению (отрыву головок) заклепок;

 $R_{\rm p}^{\rm s}$ — расчетное сопротивление растяжению болтов.

Примечание. Заклепки и болты, работающие одновременно на срез и растяжение, проверяются отдельно на срез и растяжение.

7.9. В креплениях одного элемента к другому через прокладки или иные промежуточные элементы, а также в креплениях с односторонней накладкой число заклепок (болтов) должно быть увеличено против расчета на 10%.

При прикреплении выступающих полок уголков или швеллеров с помощью коротышей число заклепок (болтов), прикрепляющих одну из полок коротыша, должно быть увеличено против расчета на 50%.

Монтажные соединения на высокопрочных болтах

7.10. Монтажные соединения на высокопрочных болтах рассчитываются в предположении передачи действующих в стыках и прикреплениях усилий через трение, возникающее по соприкасающимся плоскостям соединяемых элементов от натяжения высокопрочных болтов. При этом распределение продольной силы между болтами принимается равномерным.

7.11. Расчетное усилие, которое может быть воспринято каждой поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом, определяется по формуле

$$N_6 = Pfm, (87)$$

гле f — коэффициент трения, принимаемый по табл. 39;

т — коэффициент условий работы болтового соединения, принимаемый равным 0,9;

P — осевое усилие натяжения болта.

Осевое усилие натяжения высокопрочных болтов P принимается в зависимости от механических свойств болтов после их термической обработки равным 60% от разрушающей нагрузки при разрыве болта и определяется по формуле

$$P = 0.5 \sigma_{\rm sp} F_{\rm HT}, \tag{88}$$

где _{вр} — временное сопротивление разрыву стали высокопрочных болтов после термической обработки в готовом изделии (болте);

 $F_{\rm HT}$ — площадь сечения болта нетто (по резьбе).

Таблица 39 Значения коэффициента трения f в формуле (87)

Способ предварительной очистки	Значения <i>f</i> для сое- диняемых элементов конструкций из		
соединяемых поверхностей	углероди- стой стали	низколе- гированной стали	
Пневматическая обработка (песком, металлическим порошком и т. п.) или обжиг Обработка стальными проволочными щетками	0,45 0,35 0,25	0,55	

Соединения с фрезерованными торцами

7.12. В соединениях с фрезерованными торцами элементов (в стыках и базах колонн и т. п.) сжимающая сила считается полностью передающейся через торцы.

Во внецентренно сжатых элементах сварные швы, заклепки или болты указанных соединений проверяются на наибольшее растягивающее усилие от действия изгибающего момента, соответствующего минимальной продольной силе.

Поясные соединения в составных балках

7.13. Сварные швы и заклепки, соединяющие стенки и пояса составных двугавровых балок, рассчитываются по формулам табл. 40.

Примечания: 1. При неподвижной сосредоточенной нагрузке, приложенной к верхнему поясу, предусматривается, что в местах приложения грузов имеются ребра жесткости, приваренные или плотно пригнанные к верхнему поясу. При отсутствии указанных ребер расчет прикрепления верхнего пояса ведется, как для подвижной сосредоточенной нагрузки.

- 2. При приложении неподвижной сосредоточенной нагрузки к нижнему поясу балки сварные швы и заклепки, прикрепляющие этот пояс к стенке, рассчитываются по формулам (91) и (92) независимо от наличия ребер жесткости в местах приложения грузов.
- 3. Сварные поясные швы, выполненные с проваром на всю толщину стенки, считаются равнопрочными со стенкой.

Таблица 40

Формулы для расчета поясных соединений в составных балках

Характер ва- грузки	Тип соеди- нений	Расчетные формулы
Неподвижная нагрузка (распределенная и сосредоточенная)	Угловые швы	$\frac{QS_{\pi}}{2\left(\beta h_{\mathbf{H}}\right)J_{6\mathbf{p}}} \leqslant R_{\mathbf{y}}^{cs} \tag{89}$
То же	Заклеп- ки	$a\frac{QS_{\Pi}}{J_{6p}} \leqslant N^{3aK\pi} \qquad (90)$
Подвижная сосредоточенная нагрузка	Угловые швы	$\frac{1}{2(\beta h_{\text{III}})} \sqrt{\left(\frac{QS_{\text{II}}}{J_{6\text{p}}}\right)^2 + \left(\frac{n_1 P}{z}\right)^2} \leqslant R_{\text{y}}^{\text{CB}} \tag{91}$
То же	Заклеп- ки	$a \sqrt{\left(\frac{QS_{\pi}}{J_{6p}}\right)^{2} + \left(\frac{an_{1}P}{z}\right)^{2}} \leqslant $ $\leqslant N^{3aRR} \qquad (92)$

Обозначения, принятые в табл. 40:

 Q — наибольшая поперечная сила в рассматриваемом сечении:

 \mathcal{S}_{π} — статический момент брутто пояса балки относительно нейтральной оси;

 $h_{\rm III}$ — толщина углового шва; β — коэффициент, принимаемый по п. 7.3;

a — шаг поясных заклепок;

 $N^{
m sakn}$ — меньшее из двух значений расчетного усилия на одну заклепку, принимаемое равным: $N^{3a\kappa\Lambda} = n_{\rm cp} \frac{\pi d^2}{4} R_{\rm cp}^{3a\kappa\Lambda}$ —при расчете на срез;

$$N^{\mathrm{закл}} = d \; \Sigma \delta \; R_{\mathrm{см}}^{\mathrm{закл}} \; - \mathrm{при} \; \mathrm{расчете} \; \mathrm{на} \; \mathrm{смятие};$$

 $R_{\, {
m y}}^{\, {
m cB}}$ принимается по табл. 6, $R_{\, {
m cp}}^{\, {
m 3akn}}$ и $R_{\, {
m cm}}^{\, {
m 3akn}}$ — по табл. 7;

P— величина расчетного сосредоточенного гру-за (для подкрановых балок— расчетная величина давления колеса крана, принимаемая без коэффициента динамичности);

n₁ -- коэффициент, принимаемый по указаниям

 условная длина распределения давления сосредоточенного груза, принимаемая по указаниям п. 4.13;

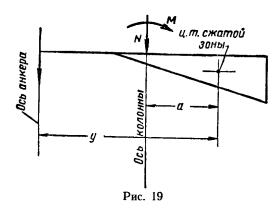
равным: с — коэффициент, принимаемый $\alpha = 0.4$ — при нагрузке по верхнему поясу клепаной балки, в которой стенка пристрогана к верхнему поясу; $\alpha = 1$ — то же, но при отсутствии пристрожки стенки, а также при нагрузке по нижнему поясу.

7.14. В клепаных балках с многолистовыми поясными пакетами каждый из листов должен быть прикреплен за местом своего теоретического обрыва из расчета на половину усилия, которое может быть воспринято сечением листа.

Каждый лист на участке между действительным местом его обрыва и местом обрыва предыдущего листа должен быть прикреплен из расчета на полное усилие, которое может быть воспринято сечением листа.

АНКЕРНЫЕ БОЛТЫ

- 7.15. Для анкерных болтов при определении расчетных комбинаций усилий коэффициент перегрузки постоянной нагрузки принимается равным 0,9.
- 7.16. Необходимая площадь сечения $F_{\rm нт}$ (по резьбе) анкерных болтов, прикрепляющих к фундаментам внецентренно сжатые колонны и расположенных в растянутой зоне, определяется по формуле


$$F_{\rm HT} \geqslant \frac{M - Na}{yR_{\rm p}^{\rm a}},\tag{93}$$

- где M и N расчетные значения изгибающего момента и продольной силы в основании колонны;
 - а расстояние от оси сечения колонны до центра тяжести сжатой зоны эпюры напряжений под опорной плитой (рис. 19);
 - у расстояние от оси анкерных болтов до центра тяжести сжатой зоны эпюры напряжений под опорной плитой (рис. 19);
 - R_p^a расчетное сопротивление растяжению анкерных болтов, принимаемое по табл. 8.

При необходимости площадь сечения анкерных болтов определяется с учетом упругих свойств бетона фундамента и стали анкеров.

7.17. Анкерные болты должны быть заделаны в бетон на глубину, достаточную для передачи усилия через сцепление металла с бетоном.

При ограниченной глубине заделки анкерные болты должны быть надежно закреплены с помощью анкерных шайб или балок, передающих все усилие на бетон. В этом случае сцепление между бетоном и анкерами не учитывается.

8. УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ СТАЛЬНЫХ КОНСТРУКЦИЙ И ИХ ЭЛЕМЕНТОВ

Общие указания

- 8.1. При проектировании стальных конструкций надлежит:
- а) предусматривать связи, обеспечивающие в процессе монтажа и эксплуатации устойчивость и пространственную неизменяемость сооружения в целом и его элементов, назначая их в зависимости от основных параметров сооружения и режима его эксплуатации (конструктивная схема, пролеты, типы кранов и режим их работы, температурные воздействия и т. д.);
- б) учитывать производственные возможности и мощность кранового оборудования заводов и мастерских-изготовителей, а также подъемно-транспортное и другое оборудование монтажных организаций;
- в) компоновать элементы конструкций из наименьшего количества деталей;
- г) использовать металл с наименьшими отходами и потерями путем соответствующего размещения стыков в конструкции;
- д) производить разбивку конструкций на отправочные элементы с учетом рационального и экономичного транспортирования их на строительство и выполнения максимального объема работ на заводе;
- е) предусматривать возможность укрупнения отправочных элементов конструкций на строительной площадке для монтажа крупными блоками с обеспечением устойчивости отдельных элементов и блоков сооружения в процессе монтажа;
- ж) использовать возможность фрезерования торцов для мощных сжатых и внецентренно сжатых элементов (при отсутствии значительных краевых растягивающих напряжений)

при наличии соответствующего оборудования на заводе-изготовителе;

- з) предусматривать монтажные крепления элементов, обеспечивающие возможность легкой сборки и удобного выполнения соединений элементов на монтаже (устройство монтажных столиков и т. п.), а также быстроту выверки конструкций;
- и) назначать монтажные соединения элементов преимущественно болтовыми; сварные и клепаные монтажные соединения предусматривать лишь в тех случаях, когда применение болтов нерационально или не допускается нормами:
- к) в болтовых монтажных соединениях преимущественно применять черные болты; при этом в соединениях, воспринимающих значительные вертикальные усилия (крепления ферм, ригелей рам и т. п.) рекомендуется передавать эти усилия на столики, устраняющие работу болтов на срез; при наличии в соединениях изгибающих моментов следует использовать работу черных болтов на растяжение;
- л) учитывать возможность применения в монтажных соединениях высокопрочных болтов взамен заклепок (при соответствующем технико-экономическом обосновании).
- 8.2. При проектировании стальных сварных конструкций необходимо стремиться к уменьшению возможного вредного влияния остаточных деформаций и напряжений, в том числе и сварочных, а также к снижению концентрации напряжений, предусматривая соответствующие конструктивные решения (с наиболее равномерными эпюрами рабочих напряжений в элементах и деталях, без входящих углов, резких перепадов сечения и других концентраторов напряжений), a также технологические мероприятия (порядок сборки и сварки, предварительный выгиб, местный подогрев конструкций, механическая обработка соответствующих зон путем строжки, фрезерования, зачистки абразивным кругом и др.).
- 8.3. При проектировании сварных соединений стальных конструкций необходимо принимать меры против возможного хрупкого разрушения этих конструкций в процессе их монтажа и эксплуатации (при напряжениях, значительно меньших, чем расчетные сопротивления) в результате неблагоприятного сочетания следующих факторов:
- а) высоких местных напряжений, вызванных воздействием сосредоточенных нагрузок или деформацией деталей соединений, а также остаточных напряжений;

- б) резких геометрических концентраторов напряжений, являющихся следствием неудачной конструкции сварного соединения и т. п., в особенности расположенных на участках с высокими местными напряжениями и ориентированных поперек направления действующих растягивающих напряжений;
- в) пониженной температуры, при которой данный вид стали в зависимости от ее химического состава, структуры и толщины проката переходит в хрупкое состояние,

назначая марку стали в строгом соответствии с указаниями пп. 2.4 и 2.5 и выполняя в максимальном объеме конструктивные и технологические требования, указанные в п. 8.2.

8.4. Прогибы изгибаемых элементов не должны превышать величин, приведенных в табл. 41.

Таблица 41 Предельные прогибы изгибаемых элементов

Наименование элементов конструкций	Величина предельно- го прогиба в долях от пролета
Подкрановые балки и фермы: а) при ручных кранах	1/500 1/600 1/750
Пути кран-балок	1/500 1/400
главные балки	1/400 1/250 1/400 1/600
а) главные балки	1/400 1/250 1/250
б) прогоны	1/200 1/300 1/200

Примечания: 1. Прогибы определяются без учета ослабления сечений отверстиями для закленок или болтов, а также без учета коэффициента динамичности.

2. При наличии штукатурки прогиб балок перекрытий только от полезной нагрузки не должен быть более 1/350 пролета.

При определении прогиба конструкции, изготавливаемой со строительным подъемом, прогиб от постоянной нагрузки не учитывается, если он не превышает величины строительного подъема. В противном случае учитывается только разность между этими величинами.

8.5. Горизонтальное смещение колонн открытых подкрановых эстакад в поперечном и продольном направлениях не должно превышать 1/4000 высоты колонны (от низа базы колонны до головки рельса подкрановой балки)

Указанное смещение определяется от сил торможения, вычисленных в соответствии с главой СНиП II-A.11-62 от одного крана наибольшей грузоподъемности из числа установленных на эстакаде; при этом смещение в поперечном направлении определяется в предположении равенства смещений двух противостоящих колонн на уровне верхнего пояса подкрановых балок.

Сила продольного торможения распределяется между всеми вертикальными связями, установленными в пределах температурного отсека; при отсутствии вертикальных связей сила торможения передается на все колонны, расположенные в пределах температурного отсека.

Примечание. Предельные горизонтальные деформации колонн и тормозных конструкций (балок или ферм) от воздействия кранов в зданиях с тяжелым режимом работы см. п. 9.3.

Таблица 42 Предельные размеры в м температурных отсеков зданий и сооружений

Категория зданий или сооружений	Предсльное расстояние от торца стсака до оси ближайшей вертикальной связи	Предель- ная длина отсека (вдоль здания)	Предель- ная шири- на отсека (здания)
Отапливаемые здания	90	230	150
здания и горячие цехи	75	200	120
Открытые эстака- ды	50	130	
	•	ı	

Примечания: 1. При наличии в пределах температурного отсека здания или сооружения двух вертикальных связей, расстояние между последними (в осях) не должно превышать 50 м для зданий и 30 м для открытых эстакад.

2. Соответствующие предельные размеры стальных конструкций в зданиях и сооружениях со смешанным каркасом принимаются в соответствии с указаниями главы СНиП II-В.1-62.

8.6. Климатические температурные воздействия на стальные конструкции одноэтажных зданий и сооружений разрешается не учитывать при соблюдении предельных размеров их температурных отсеков, указанных в табл. 42.

Учет усталости металла

8.7. Стальные конструкции, непосредственно воспринимающие многократно действующие подвижные, вибрационные или другого вида нагрузки, которые могут привести к усталостному разрушению, надлежит проектировать с применением таких конструктивных решений, которые не вызывают значительной концентрации напряжений, и проверять расчетом на выносливость.

К конструкциям, в которых могут возникать явления усталости, относятся подкрановые балки в зданиях с тяжелым режимом работы, балки рабочих площадок и элементы конструкций бункерных и разгрузочных эстакад, непосредственно воспринимающие нагрузку от подвижных составов, конструкции пол моторы и т. п.

Примечание. Разрезные подкрановые балки сплошного сечения, проектируемые из стали марок В Ст.3 и В Ст.3пс, могут не подвергаться расчету на выносливость при условии обязательного выполнения конструктивных указаний, изложенных в пп. 9.5—9.13.

8.8 Для конструкций, воспринимающих нагрузки, которые могут привести к усталостному разрушению, рекомендуется принимать марки стали в соответствии с табл. 43.

Таблица 43 Марки стали, рекомендуемые для конструкций, воспринимающих нагрузки, которые могут привести к усталостному разрушению

Группа зданий	Марки стал	и для конструкций	
с тяжелым режимом работы (см. приложение VI)	сварных	не имеющих сварных соединений	
A	ВСт.3 14Г2 15ГС 10Г2С 10Г2СД	ВСт.Зпс 14Г2 15ГС 10Г2С 10Г2СД	
Б	ВСт.3 10Г2С 10Г2СД 15ХСНД 10ХСНД	ВСт.3пс 14Г2 15ГС 10Г2С 10Г2СД	

8.9. Расчетные сопротивления основного металла и соединений при расчете конструкций на выносливость понижаются умножением на коэффициент ү, определяемый по формуле

$$\gamma = \frac{1}{(a\beta \pm b) - (a\beta \mp b)\rho} \tag{94}$$

и принимаемый не более единицы.

Здесь β— эффективный коэффициент концентрации напряжений, принимаемый по приложению V;

а и b — коэффициенты, принимаемые по табл. 44;

 $ho = \frac{\sigma_{MHH}}{\sigma_{MAKC}}$, где σ_{MHH} и σ_{MAKC} — наименьшее и наи-

большее по абсолютной величине напряжения в рассчитываемом элементе, вычисленные (каждое со своим знаком) от нормативной нагрузки без учета коэффициента динамичности, коэффициентов φ , $\varphi^{\text{вн}}$ и φ_{δ} , а также коэффициентов α по п. 9.2.

Примечания: 1. Верхние знаки в знаменателе формулы (94) принимаются в случаях, когда наибольшее по абсолютной величине напряжение является растягивающим; нижние знаки — в противоположных случаях.

2. Расчет конструкций на выносливость следует производить на нормативные нагрузки без учета коэф-

фициента динамичности.

3. Расчет на выносливость подкрановых балок и ферм, а также балок рабочих площадок и элементов конструкций бункерных и разгрузочных эстакад следует производить на нормативные нагрузки от одного крана наибольшей грузоподъемности (или соответственно от одного подвижного состава), действующего в пролете.

Таблица 44 Значения коэффициента а и в в формуле (94)

		Вид конс	трукций	
Материал конструкций	подкрановые бал- ки и фермы, а так- же балки рабочих площадок и эле- менты конструкций бункерных и раз- грузочных эстакад		конструкции, находящиеся под воздействием полной норматив- ной переменной нагрузки	
	Значения коэффициентов			
	a	b	a	b
Сталь углероди- стая	0,75	0,3	0,9	0,3
Сталь низколеги- рованная	0,8	0,3	0,95	0,3

Балки

8.10. В сварных двутавровых балках пояса должны состоять из одного листа. При соответствующем обосновании допускаются пояса в

виде пакета из двух симметрично расположенных относительно стенки горизонтальных листов; при этом разница в ширине этих листоз должна быть не менее 40 мм.

В клепаных двутавровых балках для поясов допускается применять пакеты, состоящие не более чем из трех листов; при этом площадь поясных уголков рекомендуется принимать не менее 30% всей площади пояса.

8.11. Поясные швы сварных балок, а также швы, присоединяющие к основному сечению балки вспомогательные элементы (например, ребра жесткости), следует выполнять непрерывными.

комендуется выполнять с

ты (например, ребра жесткости), следует выполнять непрерывными.
Верхние поясные швы в подкрановых балках ре-

проваром на всю толщину стенки. 8.12. Ребра жесткости сварных балок, параллельные стыковым швам стенки, должны быть удалены от стыков на расстояние не менее $10 \, \delta$ (где δ — толщина стенки).

В местах пересечения стыковых швов стенки балки с ребрами жесткости швы, прикрепляющие ребра к стенке, следует не доводить до стыкового шва на 40—50 мм.

8.13. Торцы вертикальных ребер жесткости сварных балок в местах примыкания их к поясам (за исключением нижних торцов опорных ребер) должны иметь скосы с размерами по высоте 60 мм и по ширине 40 мм (рис. 20).

8.14. Горизонтальные ребра жесткости сварных балок в местах пересечения с вертикальными ребрами прерываются и привариваются к вертикальным ребрам. При этом концы горизонтальных ребер в месте примыкания к вертикальным ребрам должны иметь скосы с размерами по длине 60 мм и по ширине 40 мм (рис. 21, а).

При необходимости горизонтальные ребра жесткости могут быть выполнены непрерывными. В этом случае торцы вертикальных ребер в местах пересечения с горизонтальными ребрами должны иметь соответствующие скосы (рис. 21,6).

8.15. Поперечные промежуточные короткие ребра жесткости в сварных балках могут применяться только при наличии продольного ребра, к которому они должны привариваться.

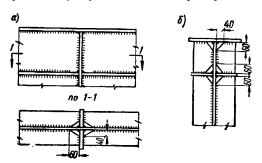


Рис. 21. Схема устройства ребер жесткости в сварных балках

 а — продольное ребро жесткости прерывается в местах пересечения с поперечными ребрами жесткости; б — поперечные ребра жесткости прерываются в местах пересечения с продольным ребром жесткости

8.16. В сварных балках, непосредственно воспринимающих динамические или вибрационные нагрузки, заводские стыки поясных листов и стенок надлежит выполнять в стык без накладок с применением, как правило, двухсторонней сварки. Применение односторонней сварки допускается с обязательной подваркой корня шва.

Поверхности стыковых швов поясных листов рекомендуется зачищать заподлицо с основным металлом.

Концы швов в стык следует выводить за пределы стыка (на подкладки).

Количество стыков в растянутых элементах должно быть по возможности ограничено.

8.17. Фасонки горизонтальных связей разрешается приваривать к поясам сварных подкрановых балок внахлестку с обваркой по контуру или швами в стык с проваром на всю толщину фасонки.

Фермы

8.18. Оси стержней ферм должны быть центрированы во всех узлах. Центрирование стержней следует производить в сварных фермах по центрам тяжести сечений (с округлением до 5 мм), а в клепаных — по рискам уголков.

8.19. Смещение оси поясов ферм при изменении сечений может не учитываться, если оно не превышает 1,5% высоты пояса в тяжелых фермах и 5%—в легких фермах.

8.20. При пролетах ферм покрытий свыше 36 м рекомендуется предусматривать строи-

тельный подъем, равный 1/500 пролета. При плоских кровлях строительный подъем следует предусматривать независимо от величины пролета, принимая величину подъема равной прогибу от постоянной нагрузки.

8.21. Поясные уголки стропильных ферм при опирании на них крупнопанельных железобетонных плит в случаях, когда толщина полок уголков при шаге ферм 6 м составляет менее 10 мм, а при шаге ферм 12 м — менее 14 мм, должны быть усилены в местах опирания плит путем приварки сверху стальных опорных листов толщиной 10—12 мм (рис. 22).

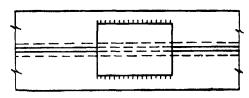


Рис. 22

8.22. В сварных подкрановых фермах крепление фасонок к верхнему поясу из двутавра следует осуществлять с проваром на всю толщину фасонки.

8.23. В подкрановых фермах необходимо предусматривать конструктивные мероприятия против скручивания верхнего пояса в результате внецентренного приложения крановой нагрузки.

8.24. Элементы решетки ферм в целях избежания резкой концентрации напряжений рекомендуется приваривать к фасонке с каждой ее стороны двумя фланговыми и одним лобовым (поперечным) швами или двумя фланговыми швами, концы которых выводятся на торец элемента на длину около 20 мм.

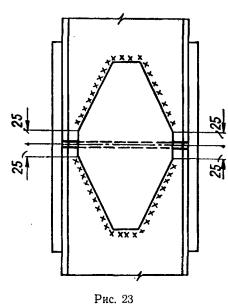
Элементы решетки из уголков допускается приваривать одним фланговым (со стороны обушка уголка) и лобовым швами.

Расстояние между краями элементов решетки и поясов в узлах ферм с фасонками следует принимать 40—50 мм.

В расчете учитываются швы фланговые длиной не менее 60 мм и лобовые (поперечные), выполненные на всю длину торца. Швы рассчитываются с учетом эксцентрицитета приложения усилия относительно центра тяжести швов.

При прикреплении к фасонке элементов из уголков двумя фланговыми и одним лобовым швами или только двумя фланговыми

швами влияние эксцентрицитета приложения усилия может не учитываться, если длина введенных в расчет фланговых швов назначена обратно пропорционально расстояниям от этих швов до оси приложения усилия.


8.25. Прикрепление узловых фасонок к поясам ферм прерывистыми швами не реко-

мендуется.

8.26. Между торцами стыкуемых элементов поясов ферм, перекрываемых накладками, следует оставлять зазор не менее 50 мм.

Колонны

8.27. Стенки сплошных колонн при $\frac{h_0}{\delta} > 70$ следует укреплять парными поперечными ребрами жесткости, расположенными на расстояниях $2,5h_0$ — $3h_0$ одно от другого; на каждом отправочном элементе должно быть поставлено не менее двух ребер.

Ширина выступающей части поперечного ребра жесткости $b_{\rm p}$ должна быть не менее $\frac{h_{\rm cr}}{30}+40$ мм; толщина ребра— не менее $\frac{1}{15}$ $b_{\rm p}$.

Примечание. Отступление от требования настоящего пункта может быть допущено для стандартных сварных двутавров специализированного производства при условии обеспечения неизменяемости формы сечения при перевозке.

8.28. Мощные составные колонны с развитыми сечениями ветвей следует укреплять диафрагмами, соединяющими обе ветви этих колонн. Диафрагмы следует располагать при-

мерно через 4 *м* по высоте колонны; на каждом отправочном элементе должно быть поставлено не менее двух диафрагм.

8.29. Заводские стыки колонн следует осуществлять прямыми в стык с полным прова-

ром.

Монтажные стыки колонн могут выполняться швами в стык с полным проваром или перекрываться накладками со скошенными сторонами; накладки обвариваются по контуру, за исключением зоны, непосредственно примыкающей к стыку, где швы не доводятся до стыка на 25 мм с каждой стороны (рис. 23).

Крановые рельсы

8.30. Рельсы крановых путей следует применять, как правило, специальные крановые по ГОСТ 4121—62. Для кранов малой грузоподъемности допускается применение железнодорожных рельсов.

8.31. Специальные крановые рельсы рекомендуется крепить прижимными планками, железнодорожные рельсы — планками или крюками. Каждая планка должна быть прикреплена к поясу балки не менее чем двумя

болтами.

8.32. Конструкция стыков рельсов должна обеспечивать плавный проход колес крана на стыкуемых участках крановых путей. Рекомендуется применять сварные стыки рельсов.

Сварные соединения

- 8.33. В конструкциях со сварными соединениями следует:
- а) предусматривать такое расположение сварных швов, при котором максимально сокращалась бы необходимость кантовки конструкций при их изготовлении;
- б) назначать толщины и взаимное расположение швов таким образом, чтобы в конструкциях возникали бы возможно меньшие усадочные напряжения и деформации при сварке;
- в) избегать сосредоточения большого количества швов в одном месте;
- г) принимать количество и размеры сварных швов минимально необходимыми.
- 8.34. Разделка кромок под сварку должна назначаться с учетом вида сварки (ручная, автоматическая), условий работы шва, положения его в пространстве, толщины свариваемых элементов, технологии процесса наложения швов и имеющегося оборудования.

Разделку кромок под сварку следует принимать по ГОСТ 5264—58, ГОСТ 8713—58* и заводским нормалям.

- 8.35. Размеры и форма сварных угловых швов должны удовлетворять следующим требованиям:
- а) толщина угловых швов $h_{\rm m}$ должна быть не менее 4 мм (за исключением швов в деталях толщиной менее 4 мм) и не более 1,2 δ , где δ наименьшая толщина соединяемых элементов;
- б) в зависимости от толщины свариваемых элементов толщину угловых однопроходных швов $h_{\rm m}$ рекомендуется принимать не менее указанных в табл. 45 величин (с учетом п. 8.35a);

			Tat	блица	45
Минимальные	толщины	$h_{\rm iff}$	угловых і	швов	

Голщина более тол- стого из сваривае-	Минимальная толіцина $h_{f u}$ в мм в конструкциях из стали		
мых элементов в жж	углеродистой	жинколегирова нной	
До 10	4	6	
11-20	6	8	
21-30	8] 10	
3155	10	12	
51 и более	12		

- в) расчетная длина углового (флангового и лобового) шва должна быть не менее $4h_{\rm m}$ и не менее $40~{\rm mm}$:
- г) наибольшая расчетная длина флангового шва должна быть не более $60h_{\rm m}$, за исключением сопряжений, в которых усилие, воспринимаемое фланговым швом, возникает на всем его протяжении; в последнем случае длина флангового шва не ограничивается;
- д) расстояния в свету между участками прерывистых швов должны быть не более 15 б в сжатых элементах и не более 30 б в растянутых и нерабочих элементах (б наименьшая толщина соединяемых элементов);
- е) величина напуска в соединениях внахлестку должна быть не менее 5 толщин наиболее тонкого из свариваемых элементов;
- ж) в конструкциях, воспринимающих динамические и вибрационные нагрузки, угловые швы должны выполняться с плавным переходом к основному металлу;
- з) соотношения размеров катетов угловых швов следует принимать:
- в конструкциях, воспринимающих статические нагрузки, для фланговых и лобовых швов 1:1;
 - в конструкциях, воспринимающих динами-

ческие и вибрационные нагрузки, — для фланговых швов 1:1, а для лобовых швов 1:1,5; при этом больщой катет должен быть направлен вдоль усилия, воспринимаемого лобовым швом.

8.36. В сварных стыковых соединениях листов разного сечения в целях обеспечения плавности перехода сечения от меньшей толщины (ширины) к большей следует предусматривать скосы у более толстого (широкого) листа с одной или двух его сторон при уклоне скоса не более 1:5.

Стыкование листов разной толщины без устройства скосов разрешается при условии, если разница в толщинах листов не превышает 4 мм, а величина уступа в месте стыка не превышает ¹/₈ толщины более тонкого листа.

8.37. При применении сварки в монтажных узлах следует предусматривать сборочные приспособления, болты и т. п. для подтягивания друг к другу свариваемых элементов. Конструкция монтажных узлов должна обеспечивать возможность удобного наложения сварных швов, как правило, в нижнем и вертикальном положениях. В случае необходимости резделки кромок в элементах, свариваемых на монтаже, следует предпочтительно применять U-образную разделку.

8.38. Применение комбинированных соединений, в которых часть усилий воспринимается сварными швами, а часть заклепками,

запрещается.

Заклепочные и болтовые соединения

- 8.39. В клепаных конструкциях рекомендуется применять по возможности заклепки одного диаметра в пределах каждого конструктивного элемента и наименьшее количество различных диаметров для всех конструктивных элементов проектируемого сооружения.
- 8.40. В рабочих элементах конструкций число заклепок или болтов, прикрепляющих элемент в узле или расположенных по одну сторону стыка, должно быть не менее двух.

Примечание. Элементы соединительных решеток составных стержней (например, двустенчатых элементов, элементов опор линий электропередачи и т. п.) допускается крепить на одной заклепке или одном болте.

8.41. Толщина склепываемого пакета, как правило, не должна превосходить 5 диаметров заклепки.

При применении заклепок с повышенными головками и коническими стержнями толщи-

на пакета может доходить до 7 диаметров заклепки; при этом клепка должна производиться в соответствии с указаниями главы СНиП III-В.5-62.

8.42. Размещение заклепок и болтов (в том числе высокопрочных) должно производиться в соответствии с табл. 46.

Соединительные заклепки и болты должны размещаться, как правило, на максимальных расстояниях; в стыках и узлах рекомендуется размещать заклепки и болты на минимальных расстояниях.

Таблица 46 Размещение заклепок и болтов

Характеристика расстояния	Величина расстояния
Расстояния между центрами закле- пок и болтов в любом направлении: а) минимальное: для заклепок	3d 3,5d
при растяжении и сжатии при растяжении и сжатии в) максимальное в средних рядах, а также в крайних рядах при наличии окаймляющих уголков:	8d или 12ò
при растяжении	16d или 248 12d или 188
а) минимальное, вдоль усилияб) минимальное, поперек усилия:	2d
при обрезных кромках	1,5d 1,2d 4d или 8b
Обозначения, принятые в табл. 46: d — диаметр отверстия для заклепк б — толщина наиболее тонкого нар мента.	

Листовые конструкции (оболочки вращения)

8.43. Элементы поперечной жесткости оболочек, как правило, должны иметь замкнутую форму. Применение коротких незамкнутых поперечных ребер не рекомендуется.

8.44. Сосредоточенные воздействия на листовые конструкции следует, как правило, пе-

редавать через элементы жесткости.

8.45. В местах сопряжений оболочек различной формы рекомендуется применять плавные переходы в целях уменьшения местных напряжений.

8.46. В листовых конструкциях все стыковые швы должны выполняться либо двухсто-

ронней сваркой, либо односторонней сваркой с подваркой корня или на подкладках.

В проекте надлежит указывать на необходимость обеспечения плотности соединений конструкций, в которых эта плотность требуется.

8.47. В листовых конструкциях рекомендуется применять сварные соединения в стык. Соединения листов толщиной 5 мм и менее, а также монтажные соединения разрешается осуществлять внахлестку.

8.48. При проектировании листовых конструкций необходимо предусматривать индустриальные методы их изготовления и монта-

жа путем применения:

а) листов и лент больших размеров;

- б) способа рулонирования, изготовления заготовок в виде «скорлуп», а также других передовых методов;
- в) раскроя, обеспечивающего наименьшее количество отходов:
- г) автоматической сварки с минимальным количеством сварных швов, выполняемых на монтаже.

9. ДОПОЛНИТЕЛЬНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ СТАЛЬНЫХ КОНСТРУКЦИЙ ПРОМЫШЛЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ, НАХОДЯЩИХСЯ В ОСОБО ТЯЖЕЛЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ

- 9.1. К промышленным зданиям и сооружениям, в которых конструкции находятся в особо тяжелых условиях эксплуатации, относятся:
- а) промышленные здания и сооружения с тяжелым режимом работы, в которых эксплуатируются мостовые электрические краны весьма тяжелого и весьма тяжелого непрерывного режимов работы;
- б) промышленные здания и сооружения с особыми условиями работы, в которых конструкции в процессе эксплуатации подвергаются интенсивным воздействиям весьма высоких или низких температур, воздействиям агрессивной среды и т. п.

Примечание. К зданиям и сооружениям с тяжелым режимом работы относятся здания, цехи, отделения и пролеты, перечисленные в приложении VI и аналогичные им, а также бункерные и разгрузочные эстакады.

А. ПРОМЫШЛЕННЫЕ ЗДАНИЯ И СООРУЖЕНИЯ С ТЯЖЕЛЫМ РЕЖИМОМ РАБОТЫ

Нагрузки

9.2. При расчете подкрановых балок, тормозных конструкций (балок или ферм) и их креплений надлежит вместо воздействия поперечных тормозных сил учитывать воздействие горизонтальных боковых сил, вызываемых движением крановых мостов.

Эти горизонтальные боковые силы определяются путем умножения поперечных тормозных сил, вычисленных по главе СНиП II-A.11-62, на коэффициенты а, принимаемые по табл. 47 в зависимости от типа и грузоподъемности крана.

Таблица 47 Коэффициенты а для определения боковых сил от крановых мостов

		Значения коэффициента а			
Тип кранов	Грузоподъ- емность кранов в <i>т</i>	для расчета верх- него пояса подкра- новых балок и тор- мозных конструк- ций	для расчета креп- ления тормозных конструкций к под- крановым балкам и колоннам		
Краны с гибким подвесом	5—10 15—20 30—150 175—275 300—350	2,5 2,0 1,5 1,3 1,1	5,0 4,0 3,0 2,6 2,2		
Краны с жестким подвесом		1,5	3,0		

Примечанне. Горизонтальные боковые силы включают в себя и поперечные тормозные силы.

Предельные деформации

9.3. Горизонтальные деформации (смещения) колонн на уровне верхнего пояса подкрановых балок не должны превышать величин, приведенных в табл, 48.

Прогиб тормозных конструкций (балок или ферм) не должен превышать $^{1}/_{2000}$ их пролета.

Примечания: 1. Смещение колонн зданий в поперечном и продольном направлениях, а также прогиб тормозных конструкций определяются от сил торможения, вычисленных в соответствии с главой СНиП II-A. 11-62 от одного крана наибольшей грузоподъемности из числа установленных в здании.

2. Величина смещения колонн в поперечном направлении определяется в предположении равенства

смещений двух противостоящих колони на уровне верхнего пояса подкрановых балок.

3. Сила продольного торможения распределяется между всеми вертикальными связами, установленными в пределах температурного отсека здания; при отсутствии вертикальных связей сила торможения передается на все колонны, расположенные в пределах температурного отсека.

4. Требованию обеспечения допустимого прогиба могут удовлетворять тормозные конструкции только одного из подкрановых путей каждого пролета здания.

Таблица 48 Предельные деформации (смещения) колонн от воздействия кранов

Вид деформации	Величина предельной деформации в долях от высоты колонны h
Смещение в поперечном направлении для зданий или их отдельных пролетов: при плоской расчетной схеме при пространственной расчетной схеме Смещение в продольном направлении	1/2500 1/4000 1/4000
Обозначение, принятое в табл. h — высота колонны от низа рельса подкрановой бали	базы до головки

Предельные гибкости элементов

9.4. Гибкость растянутых элементов ферм и связей не должна превышать величин, приведенных в табл. 49.

Таблица 49

Предельные гибкости λ растянутых элементов в зданиях и сооружениях с тяжелым режимом работы

Наименование элементов конструкций	Максимальная допускаемая гибкость х
Пояса и опорные раскосы ферм (включая тормозные фермы) Прочие элементы ферм Элементы вертикальных связей	250 300
между основными колоннами (ниже подкрановых балок)Прочие элементы связей	200 300

Подкрановые балки и фермы. Балки рабочих площадок, непосредственно воспринимающие нагрузку от подвижных составов

9.5. Выбор марки стали для подкрановых балок и ферм, а также для балок рабочих площадок, непосредственно воспринимающих

нагрузку от подвижных составов, производится в соответствии с указаниями п. 8.8.

9.6. Сварные подкрановые балки и балки рабочих площадок в цехах, перечисленных в приложении VI, рекомендуется выполнять сплошного сечения.

9.7. Тормозные конструкции сварных подкрановых балок сплошного сечения рекомен-

дуется принимать сплошными.

9.8. Вырезы в листах тормозных балок, устраиваемые для пропуска трубопроводов и т. п., следует размещать возможно дальше от поясов подкрановых балок.

Эти вырезы надлежит окаймлять ребрами из полос или уголков; ослабленное сечение тормозной балки должно быть проверено на прочность от воздействия горизонтальных боковых сил, определяемых согласно п. 9.2.

9.9. Свободные кромки растянутых элементов должны быть прокатными, строгаными или обрезанными машинной газовой резкой (при условии обеспечения ровных кромок без подрезов).

9.10. Поясные швы сварных балок следует выполнять, как правило, автоматической

сваркой.

Верхние поясные швы балок, а также швы, присоединяющие опорные ребра к нижнему поясу в неразрезных балках, должны выполняться с проваром на всю толщину стенки или ребра.

Минимальная толщина угловых швов при-

нимается по табл. 45.

- 9.11. В подкрановых балках на участках, в которых растягивающие напряжения составляют больше 60% расчетного сопротивления, сварные стыковые соединения и лобовые швы следует подвергать механической обработке для обеспечения плавного перехода от металла шва к основному металлу.
- 9.12. Применение электрозаклепок, а также заварка монтажных отверстий запрещается.
- 9.13. Заклепочные и болтовые соединения в основных элементах следует выполнять по группе В (см. примечание 1 к табл. 7).

Связи

9.14. Нижние пояса подкрановых балок и ферм должны быть укреплены в горизонтальной плоскости так, чтобы их свободная длина не превышала 12 м.

9.15. Вертикальные связи между основными колоннами ниже подкрановых балок ре-

комендуется при двухветвевых колоннах располагать в плоскости каждой из ветвей колонны.

При наличии фахверка в плоскости наружной ветви колонн допускается установка указанных связей только в плоскости подкрановой ветви колонны.

Монтажные крепления

9.16. Монтажные крепления конструкций зданий и сооружений с тяжелым режимом работы следует осуществлять на сварке, заклепках или высокопрочных болтах.

Черные болты в монтажных соединениях этих конструкций допускается применять:

- а) для крепления прогонов, элементов фонарной конструкции, связей по верхним поясам ферм (при наличии связей по нижним поясам или жесткой кровли), вертикальных связей по фермам и фонарям, а также элементов фахверка;
- б) для крепления связей по нижним поясам ферм при наличии жесткой кровли (например, из сборных железобетонных или армопенобетонных плит и т. п.);
- в) для крепления стропильных и подстропильных ферм к колоннам и стропильных ферм к подстропильным, при условии передачи вертикального опорного давления через столик;
- г) для крепления подкрановых балок друг к другу по длине, а также для крепления нижнего пояса их к колоннам, к которым не крепятся вертикальные связи;
- д) для крепления балок рабочих площадок, не подвергающихся воздействию динамических нагрузок, при условии передачи вертикального опорного давления через столик;
- е) для крепления второстепенных конструкций.

Во всех случаях применения в монтажных соединениях черных болтов (за исключением крепления второстепенных конструкций) должны быть предусмотрены мероприятия, предотвращающие возможность развинчивания гаек.

9.17. Сварное крепление горизонтальных листов тормозных балок к верхнему поясу подкрановых балок надлежит выполнять сплошным швом с применением электродов типа Э42А.

Сварные крепления подкрановых балок и тормозных конструкций (балок и ферм) к ко-

лоннам, передающие поперечные горизонгальные силы, следует осуществлять с применением электродов типа Э42А.

Б. ПРОМЫШЛЕННЫЕ ЗДАНИЯ И СООРУЖЕНИЯ С ОСОБЫМИ УСЛОВИЯМИ РАБОТЫ

Тепловые воздействия

9.18. Стальные конструкции, подвергающиеся при эксплуатации высоким тепловым воздействиям (нагревание до температуры 150° и выше, случайные воздействия расплавленного металла или огня), следует защищать от нагревания и воздействия расплавленного металла.

9.19. В зависимости от характера тепловых воздействий надлежит применять одно из

следующих мероприятий:

а) конструкции, которые могут подвергнуться воздействию горячего расплавленного металла (в виде брызг при разливке металла в изложницы, при прорыве металла из печей или ковшей в случае повреждения стопоров и т. п.), защищаются облицовкой или ограждающими стенками из огнеупорного кирпича или жароупорного бетона с защитой их от механических повреждений;

б) конструкции, подвергающиеся длительному воздействию лучистой или конвекционной теплоты или кратковременному непосредственному воздействию огня во время аварий тепловых агрегатов, должны защищаться подвесными металлическими экранами или футеровкой из кирпича или жароупорного бетона.

Воздействие агрессивной среды

9.20. Стальные конструкции, подвергающиеся воздействию агрессивной среды (например, при наличии сернистого газа в окружающем воздухе со значительной относительной влажностью), должны быть предохранены от коррозии путем особо тщательной окраски (с огрунтовкой и шпаклевкой) или защитой другими покрытиями в соответствии с указаниями СНиП, главы I-B.27-62 и III-B.6-62, а также других нормативных документов по защите строительных конструкций от коррозии.

9.21. При проектировании стальных конструкций, подвергающихся воздействию агрессивной среды, рекомендуется применять сечения, легко доступные очистке и окраске или нанесению других защитных покрытий, а также сечения с наименьшим отношением пе-

риметра к площади.

Приложение І

КОЭФФИЦИЕНТЫ Ф ПРОДОЛЬНОГО ИЗГИБА ЦЕНТРАЛЬНО СЖАТЫХ ЭЛЕМЕНТОВ

Таблица 50

]	Значения ф для элементов из стали марок			
Тибкость вотнемеле	"Сталь 3" "Сталь 4"	"Сталь 5"	14Г2, 15ГС, 10Г2С, 10Г2СД, 15ХСНД	10ХСНД
0	1,00	1,00	1,00	1,00
10	0,99	0,98	0,98	0,98
20	0,97	0,96	0,95	0,95
30	0,95	0,93	0,92	0,92
40	0,92	0,89	0,89	0,88
50	0,89	0,85	0,84	0,82
60	0,86	0,80	0,78	0,77
70	0,81	0,74	0,71	0,68
80	0,75	0,67	0,63	0,59
90	0,69	0,59	0,54	0,50
100	0,60	0,50	0,46	0,43
110	0,52	0,43	0,39	0,36
120	0,45	0,37	0,33	0,31
130	0,40	0,32	0,29	0,27
140	0,36	0,28	0,25	0,23
150	0,32	0,25	0,23	0.20
160	0,29	0,23	0,21	0,18
170	0,26	0,21	0,19	0,16
180	0,23	0,19	0,17	0,14
190	0,21	0,17	0,15	0,12
200	0,19	0,15	0,13	0,11
210	0,17	0,14	0,12	0,10
220	0,16	0,13	0,11	0,09
Примечание. Гибкость элемента $\lambda = \frac{l}{r}$. где l — расчетная длина элемента; r — раднус инерции сечения.				

Приложение II

УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ КОЭФФИЦИЕНТА 96 ДЛЯ ПРОВЕРКИ ОБЩЕЙ УСТОЙЧИВОСТИ БАЛОК

1. Для балок двояко симметричного двутаврового сечения коэффициент ф определяется по формуле

$$\varphi_{\delta} = \psi \frac{J_{y}}{J_{x}} \left(\frac{h}{l}\right)^{2} 10^{3}. \tag{95}$$

Значения ψ принимаются по табл. 51 и 52 в функции параметра ч, определяемого по формулам:

а) для прокатных двутавров

$$\alpha = 1.54 \frac{J_{K}}{J_{y}} \left(\frac{l}{h}\right)^{2}, \tag{96}$$

где $J_{\rm K}$ — момент инерции при кручении (значения $J_{\rm K}$ для прокатных двутавров по ГОСТ 8239—56* приведены в табл. 53);

1 — расчетная длина балки согласно п. 4.17;

б) для сварных двутавров, составленных из трех листов, а также для клепаных двутавровых балок

$$a = 8\left(\frac{l\delta_1}{bh}\right)^2 \left(1 + \frac{d\delta^3}{b\delta_1^3}\right) \tag{97}$$

для сварных балок

б — толщина стенки балки;

b и д₁ — ширина и толщина пояса балки;

h — полная высота сечения балки;

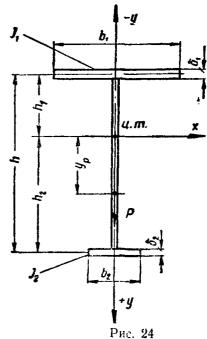
d = 0.5h;

для клепаных балок

6— толщина стенки вместе с полками уголков; — толщина пояса вместе с полкой уголка;

d — высота вертикальной полки уголка плюс толщина пакета горизонтальных листов.

Если $\varphi_6 > 0.85$, то вместо φ_6 в формулы (21), (27) и (28) подставляется величина ф, определяемая по табл. 54.


2. Для балок с более развитым сжатым поясом, симметрично расположенным относительно (рис. 24), коэффициент 46 определяется по формуле

$$\varphi_{0} = \frac{8.4 \zeta E J_{y} h_{1}}{J_{x} l^{2} R} \left[V \frac{(0.5 y_{p} + \beta_{y})^{2} + c^{2}}{(0.5 y_{p} + \beta_{y})^{2}} + c^{2} + (0.5 y_{p} + \beta_{y}) \right].$$
 (98)

Здесь С — коэффициент, зависящий от типа нагрузки и принимаемый по табл. 55;

l — расчетная длина балки (см. п. 4.17);

ур — координата точки приложения нагрузки со своим знаком по рис. 24;

$$eta_y = \left[0,43-0,065\left(rac{b_1}{h}
ight)^2\right](2n-1)\,h;$$
 $n = rac{J_1}{J_1 + J_2};$

 J_1 и J_2 — моменты инерции соответственно сжатого и растянутого поясов относительно оси симметрии сечения;

$$J_y - J_1 + J_2$$
, $c^2 = \frac{1}{J_y} \left(\frac{J_1 J_2}{J_y} h^2 + 0.04 J_K l^2 \right)$;

$$J_{\rm K} = \frac{\gamma}{3} \sum_i b_i \, \delta_i^3$$
 — момент ичерции при кручении;

Таблица 52

 b_i и δ_i — ширина и толщина элементарных прямоугольников, образующих сечение;

 $\gamma = 1,3$ — для двутаврового сечения; $\gamma = 1,2$ — для таврового сечения

(для двутаврового сечения с одной осью симметрии принимается промежуточное значение ү).

Если соответствующее нижнему поясу $\varphi_{6H} = \frac{h_2}{h_1} \varphi_6 > 0$ >0,85, то в формулы (21), (27) и (28) вместо 96 подставляется величина

$$\varphi_{6}'' = \varphi_{6} \left[n \frac{\varphi_{6}'}{\varphi_{6}} + (1-n) \frac{\varphi_{6H}'}{\varphi_{6H}} \right],$$
где φ_{6}'' и φ_{6H}' определяются по табл. 54.

3. Проверка устойчивости балок швеллерного сечения производится так же, как балок двутаврового сечения; при этом а вычисляется по формуле (97), но найденные значения ф умножаются на 0,5 при приложении нагрузки в главной плоскости, параллельной стенке, и на 0,7 при приложении нагрузки в плоскости стенки.

Таблица 51 Коэффициенты ψ для двугавровых балок из «Стали 3» и «Стали 4»

1	Коэффициенты ф				
Í [для балок без закреплений в пролете			ė .	
α	при сосредоточенной при равномерно распределенной нагрузке, приложенной при равномерно распределения при распр		при наличии про межуточных за- креплений верх- него пояса, чеза- висимо от места приложения на- грузки		
	к верхне- му поясу	к нижнему поясу	к верхнему поясу	к нижнему поясу	при наличии межуточных креплений ве него пояса, н висимо от ме приложения грузки
	1	2	3	4	5
0,1 0,4 1	1,73 1,77 1,85	5,0 5,03 5,11	1,57 1,60 1,67	3,81 3,85 3,90	2,17 2,20 2,27
8 16	2,21 2,63 3,37	5,47 5,91 6,65	1,98 2,35 2,99	4,23 4,59 5,24	2,56 2,90 3,50
24 32 48	4,03 4,59 5,60	7,31 7,92 8,88	3,55 4,04 4,90	5,79 6,25 7,13	4,00 4,45 5,23
64 80 96	6,52 7,31 8,05	9,80 10,59 11,29	5,65 6,30 6,93	7,92 8,58 9,21	5,91 6,51 7,07
128 160 240	9,40 10,59 13,21	12,67 13,83 16,36	8,05 9,04 11,21	10,29 11,30 13,48	8,07 8,95 10,86
320 400	15,31 17,24	18,55 20,48	13,04 14,57	15,29 16,80	12,48 13,91

Примечания: 1. При одном закреплении в пролете и нагрузке, приложенной к нижнему поясу. следует пользоваться графой 2.

2. Табличные значения ψ должны быть умножены на:

0,83 — для «Стали 5»; 0,71 — для стали марок 14Г2, 15ГС, 10Г2С, 10Г2СД и 15ХСНД;

0,6 — для стали марки 10ХСНД.

Коэффициенты ψ для консолей двугаврового сечения из «Стали 3» и «Стали 4» (при сосредоточенной нагрузке, приложенной к центру тяжести свободного конца консоли или ниже)

α	÷	α	ψ	α	ψ
0,1 1 2 3 4	3,06 3,44 3,76 4,06 4,26	6 8 10 12 14	4,64 4,96 5,25 5,46 5,69	16 24 32 40	5,90 6,63 7,27 7,79

Примечание. Табличные значения ψ должны быть умножены на:

0,83 — для «Стали 5»; 0,71 — для стали марок 14Г2, 15ГС, 10Г2С, 10Г2СД и 15ХСНД:

0,6 — для стали марки 10ХСНД.

Таблица 53 Моменты инерции при кручении J_{κ} прокатных двутавров (по ГОСТ 8239-56*)

№ дву- тавров	<i>Ј</i> _К см⁴	№ двутав- ров	J _K CM4	№ двутав÷ ров	J _К см¹
10 12 14 16 18 18a 20 20a 22 22 22a	2,28 2,88 3,59 4,46 5,60 6,54 6,92 7,94 8,60 9,77	24 24a 27 27a 30 30a 33 36 40 45	11,1 12,8 13,6 16,7 17,4 20,3 23,8 31,4 40,6 54,7	50 555 60 65 70 70а 70в	75,4 100 135 180 244 352 534

Таблица 54 Коэффициенты $\varphi_{\acute{0}}$ и $\varphi_{\acute{0}H}$

Фб(_{Фбн})	φ ₆ (φ _{бн})	φ ₆ (φ ₆₁₁)	φ ₆ (φ _{6H})	^Ф б (Ф _{бн})	$\varphi_{\delta}'(\varphi_{\delta H}')$
0,85	0,850	1,10	0,927	1,35	0,973
0,90	0,871	1,15	0,938	1,40	0,980
0,95	0,890	1,20	0,948	1,45	0,987
1,00	0,904	1,25	0,957	1,50	0,994
1,05	0,916	1,30	0,964	1,55	1,00

Таблица 55 Значения коэффициента \$ в формуле (98)

Тип нагрузки	ζ
Чистый изгиб	1,0 1,12
пролета	1,35 1,75

ТАБЛИЦЫ ДЛЯ РАСЧЕТА ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТОВ

Таблица 56

 K_{Θ} эффициенты φ^{BH} для проверки устойчивости внецентренно сжатых (сжато-изогнутых) сплошностенчатых стержней из «Стали 3» и «Стали 4» (с расчетным сопротивлением R =2100 $\kappa e/c n^2$) в плоскости действия момента, совпадающей с плоскостью симметрии

م										3,,,,,,,,,	na R	H									 -			······································		
ибкость Х				<u> </u>			1			э начен	ия ф	- upu	привед	енном	эксцен	трицит	ere m ₁		<u> </u>							
Гибк	0,1	0,25	0,50	0,75	1.0	1,25	1,50	1,75	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	8,0	9,0	10,0	12,0	14,0	17.0	20,0
10	967	920	847	781	721	667	618	574	535	468	414	370	333	303	285	256	235	220	205	182	162	147	123	106	089	075
20	959	887	800	729	673	623	577	536	501	439	390	349	315	288	263	243	225	210	196	174	157	141	120	102	085	072
30	942	868	773	699	641	592	550	511	478	420	373	335	303	277	254	234	218	203	191	169	152	138	117	100	084	071
40	920	846	743	668	608	560	520	484	453	399	355	320	290	265	243	226	210	196	184	164	148	135	114	098	083	070
50	890	820	711	634	574	528	490	456	427	377	338	304	277	253	234	216	201	189	177	159	143	130	111	096	081	069
60	860	788	674	598	540	495	459	428	402	355	319	289	263	241	224	207	193	182	171	153	138	126	107	094	079	068
70	810	749	634	560	505	463	429	401	377	334	301	273	249	230	213	198	185	174	164	147	134	122	104	091	077	066
80	75 0	701	591	521	471	432	400	374	353	314	283	258	236	218	203	189	177	167	157	142	129	118	101	089	075	065
90	690	648	546	483	436	401	372	348	329	294	266	243	224	207	192	180	169	160	151	136	123	114	098	087	073	063
100	600	590	500	44-1	403	371	345	324	305	275	250	229	211	197	183	172	161	153	144	131	120	110	095	084	071	062
110	520	520	456	407	371	342	320	301	284	257	234	216	200	186	173	163	154	146	138	126	115		092	081	069	060
120	450	450	413	372	341	316	296	279	264	239	221	203	189	176	165	155	147	138	132	120	110	102	089	079	067	059
130	400	400	374	3 39	312	291	273	258	245	224	206	191	178	166	156	147	139	132	126	115	106	098	086	076	065	057
140	360	3 6 0	338	309	287	268	253	240	228	209	193	180	168	158	149	140	133	126	121	110	102		084	074	063	055
150	320	3 2 0	306	282	263	248	234	222	212	195	182	169	158	149	141	133	126	120	115	106	099		080	071	062	054
160	290	290	277	257	241	228	216	206	197	182	170	159	149	141	134	127	120	115	110	101	094	087	077	069	060	053
170	260	26 0	252	237	222	211	200	192	184	170	159	150	141	134	127	120	114	110	105	097	090	084	074	067	059	052
180	230	230	229	-216	204	194	185	178	171	159	149	141	133	126	120	114	109	104	100	093	086		072	065	057	051
190	210	210	210	199	188	180	172	166	160	149	141	133	126	120	114	109	104	099	096	090	083		070	063	055	$031 \\ 049$
200	190	190	190	182	174	167	160	154	149	140	132	125	119	İ	İ	103	099	ļ	092	086	079		067	06, T	053	049
1	l					ļ	[]	1								""		002	000	013	1 0,0	007		000	040

Примечания: 1. Значения коэффициента фин в таблице увеличены в 1000 раз.

- 2. Для стали с другим значением расчетного сопротивления $R \, \kappa z / c M^2 \,$ коэффициенты $\varphi^{\text{вн}}$ определяются по данной таблице с заменой гибкосты $\lambda \sqrt{\frac{R}{2100}}$.
 - 3. Значения фвн принимаются не выше значений ф, приведенных в табл. 50 приложения I.

Коэффициенты $\varphi^{\text{вн}}$ для проверки устойчивости внецентренно сжатых (сжато-изогнутых) сквозных стержней из «Стали 3» и «Стали 4» (с расчетным сопротивлением R=2100 $\kappa e/c M^2$) в плоскости действия момента, совпадающей с плоскостью симметрии

en-									Зна	чения	φ ^{ВН} п	ри от	юси те л	ьном (эксцен:	грицит	ете т									
Приведен- ная гиб- кость ^д пр	0,1	0,25	0,5	0,75	1,0	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,5	6,0	6,5	7,0	8,0	9,0	10,0	12,0	14,0	17,0	20,0
20	906	794	660	565	495	440	395	360	330	283	248	220	199	180	165	153	142	133	124	110	099	091	077	067	055	048
30	901	786	651	557	487	433	390	355	326	280	245	218	197	179	164	152	141	132	123	110	099	090	076	066	055	047
40	893	774	638	545	477	424	383	348	320	275	241	215	194	177	162	150	140	131	122	109	098	090	076	066	055	047
50	882	757	621	530	464	413	373	340	313	269	237	212	191	174	160	148	138	129	121	108	097	089	075	065	055	047
60	860	735	600	512	448	400	361	330	304	263	231	207	187	171	157	146	136	127	120	107	096	088	075	065	054	047
70	810	706	574	490	430	385	348	319	294	255	225	202	183	167	154	143	133	125	118	105	095	087	074	064	054	046
80	750	669	544	466	410	368	334	306	283	246	218	196	178	163	151	140	131	123	115	103	094	086	073	064	053	046
90	690	624	510	439	389	350	319	293	272	237	211	190	173	159	147	137	128	120	113	102	092	084	072	063	053	046
100	600	573	474	411	366	331	302	279	259	227	203	184	168	154	143	133	125	117	111	100	090	033	1	062	052	
110	520	520	437	382	342	311	286	264	247	218	195	177	162	149	139	129	121	114	108	097	089	081	070	061	052	045
120	450	450	400	354	319	291	269	250	234	207	187	170	156	144	134	126	118	111	105	095	087	080			051	044
130	400	400	364 331	326	296	272	252 236	235	221	197	178	163	150	139	130	122	114	108	102	093	085	078	067	059	050	
140	360	360 320	301	299 275	274 253	253 236	230	221 208	208	177	170 162	160	138	134	125	118	111	105	100	090	083	076	066	058	050	
160	290	290	274	252	234	219	206	195	185	168	154	142	132	129	121	113	107	102	097	088	081	075	065	1	049	
170	260	260	249	231	216	203	192	182	173	158	146	135	126	118	116	109	103	098	094	085	078	073	-	}	048	
180	230	230	227	213	200	189	179	171	163	149	138	129	120	113	107	103	098	093	087	083	076	071	062		047	041
190	210	210	208	196	185	176	167	160	153	141	131	122	115	108	107	097	093	088	084	078	074	069	060		046	
200	190	190	190	180	171	163	156	149	ļ	133	124	116	110	104	098	093	089	085	082	075	072				045	-
																033	003	000	002	013	0,0	000	038	002	040	039
	I	I	i	l	l	I	i	ŀ	ì	1	i	ı	1	ì	l		ļ		1]	1		1		1	}

Примечания: 1. Зпачения коэффициента $\varphi^{\text{вн}}$ в таблице увеличены в 1000 раз.

^{2.} Для стали с другим значением расчетного сопротивления R в $\kappa_{\it E}/cm^2$ коэффициенты $\phi^{\rm BH}$ определяются по данной таблице с заменой приведенной гибкости $\lambda_{\rm np}$ условной гибкостью $\lambda_{\rm np}$ $\sqrt{\frac{R}{2100}}$.

^{3.} Значения $\varphi^{\text{ви}}$ принимаются не выше значений φ , приведенных в табл. 50 приложения I.

			Таблица	58
Коэффициенты	пвлияния формы сечен	ия для вычисления	приведенного	
	эксцентрицит	$m_1 = r_i m$	-	

Тип сече-	Constant	Значени	я η при
ния	Схема сечения	20≼λ≼150	λ>150
1		0,775 + 0,0015λ	1,0
2	File File File File File File File File	$1.3 \div 0.5 \sqrt{m}$	$1,3+0,5\sqrt{m}$
3		1,0	1,0
4		1,45—0,003\	1,0
5		1,3—0,002λ	1,0
* Для	- я сечений типа 2 формулы для определ	ления η действитель	ны при <i>F</i> ₁ / <i>F</i> ₂ ≪1.

Приложение IV,

УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ КОЭФФИЦИЕНТОВ РАСЧЕТНОЙ ДЛИНЫ КОЛОНН

Одноступенчатые колонны

Значения коэффициентов расчетной длины μ_1 для нижнего участка одноступенчатой колонны принимаются в зависимости от отношения погонных жесткостей

участков
$$\frac{i_2}{i_1} = \frac{J_2 \, l_1}{J_1 \, l_2}$$
 и величины $c_1 = \frac{l_2}{l_1} \, \sqrt{\frac{J_1}{J_2 \, m}}$:

при верхнем конце, свободном от всяких закреплений, - по табл. 59; при верхнем конце, закрепленном от поворота и при возможности свободного его смещения, — по табл. 60. Здесь (рис. 25)

 J_1 , J_2 и l_1 , l_2 — моменты инерции сечений и длины соответственно нижнего и верхнего участков

$$m = \frac{P_1 + P_2}{P_2}$$

При неподвижном верхнем конце, шарнирно опертом или закрепленном от поворота, значения коэффициента µ1 для нижнего участка колонны определяются по формуле

$$\mu_1 = \sqrt{\frac{\mu_{12}^2 + \mu_{11}^2 (m-1)}{m}} , \qquad (100)$$

где μ_{12} — коэффициент расчетной длины нижнего участка при $P_1 = 0$; µ₁₁ — коэффициент расчетной длины нижнего участка при $P_2 = 0$.

Значения коэффициентов μ_{12} и μ_{11} принимаются: при шарнирно опертом верхнем конце — по табл. 61; при неподвижном верхнем конце, закрепленном от поворота,— по табл. 62. Коэффициенты расчетной длины для

вархнего участка колонн во всех случаях определяются по формуле

$$\mu_2 = \frac{\mu_1}{c_1} \le 3 \ . \tag{101}$$

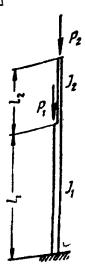


Рис. 25. Схема од-(101) ноступенчатой колонны

Таблица 59

			Коэф	фици	нты (л ₁ д.	ля од	носту						IM CE	обод	ным	конц	ом			
Расчетная схема	c,	0	0,1	0,2	0.2	0.4	0.5	0.6	-		ния μ ₁	<u> </u>					<u> </u>	105		1,00	
			, 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	2,5	5,0	10,0	20,
P ₂	0 0,2 0,4	2,0	$\{2,01\}$	2,02	2,03	2,0 2,04 2,13	2,05	2,06	2,06	[2,07]	2,08	(2,09)	2,10	2,12	2,14	2,15	2.17	2,21	2,40	2,0 2,76	2,0 3,3
	0,6 0,8 1,0	2,0	2,25	2.42	2,58	2,36 2,70 3,13	2,83	2,96	3,07	3,17	3,27	3,36	3,55	3,05 3,74	3,17	3,28	3,39				
7777. P, + P ₂	1,5 2,0 2,5 3,0	4,0 5,0	3,43 4,44 5,55 6,65	$\begin{vmatrix} 4,90\\ 6,08 \end{vmatrix}$	5,29 6.56	4,35 5,67 7,0	4,61 6,03	4,86	5,08												

Таблица 60 Коэффициенты μ_1 для одноступенчатых колонн с верхним концом, закрепленным только от поворота

Расчетная	Ì									Значе	іня μ1	при <i>i</i> ,	/i ₁								
схема	<i>c</i> ₁	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1.2	1,4	1,6	1,8	2.0	2,5	5,0	10,0	20.
P ₂	0 0,2 0,4 0,6 0,8 1,0	$\begin{array}{c} 2,0\\ 2,0\\ 2,0\\ 2,0\\ \end{array}$	1,93 1,94 1,95 1,97	1,87 1,88 1,91 1,94	1,80 1,82 1,83 1,86 1,92 2,0	1,73 1,77 1,83 1,90	1,71 1,75 1,79 1,88	1,68 1,72 1,77 1,87	1,64 1,69	1,62 1,66 1,72 1,85	1,59 1,62 1,71 1,83	1,56 1,61 1,69 1,82	1,52 1,57 1,66	1,48 1,53 1,63	1,45 1,50 1,61	1,41 1,48	1.39 1,45	1,33	1,20	1,10 1,11	1,0
77777. P. + P.	1,5 2,0 2,5 3,0	2,0 2,5	2,45 $2,94$	2,66 3,17	2,33 2,81 3,34 3,93	2,91 3,50	3,0	2,48	2,52												

Таблица 61 Коэффициенты μ_{12} и μ_{11} для колонн с неподвижным шарнирно опертым верхним концом

Расчетная схема	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0
1 1/2						F	(0 эффи	циенп	161 µ12							
	0,04 0,06 0,08	1,02 0,91 0,86	1,84 1,47 1,31	$\begin{array}{c} 2,25 \\ 1,93 \\ 1,73 \end{array}$	2,59 2,26 2,05	2,85 2,57 2,31	3,08 2,74 2,49		3,42		4,00 3,45 3,14	3,88	5,25 4,43 3,93		6,55 5,43 4,85	5,94 5,28
J,	0,1 0,2 0,3	0,83 0,79 0,78	1,21 0,98 0,90	1,57 1,23 1,09	1,95 1,46 1,27	2,14 1,67 1,44	2,33 1,85 1,60	2,46 2,02 1,74	2,15	2,76 2,28 1,98		3,28 2,67 2,35	3,61 2,88 2,51	4,03 3,11 2,76		$\begin{bmatrix} 3,71 \\ 3,25 \end{bmatrix}$
77777	0,4 0,5 1,0	0,78 0,78 0,78	0,88 0,86 0,85	1,02 0,99 0,92	1,17 1,10 0,99	1,32 1,22 1,06	1,45 1,35 1,13	1,58 1,47 1,20	1,57	1,81 1,67 1,34	1,92 1,76 1,41	2,14 1,96 1,54	2,31 2,15 1,68	2,51 2,34 1,82	2,50	2,88 2,76 2,10
	1					Ke	эффии	циент	ы µ11							
J ₂	0,04 0 06 0,08	$\begin{bmatrix} 0,67 \\ 0,67 \\ 0,67 \end{bmatrix}$	0,67 0,67 0,67	0,83 0,81 0,75	1,25 1,07 0,98	1,43 1,27 1,19	1,55 1,41 1,32	1,65 1,51 1,43	1,70 1,60 1,51	1,75 1,64 1,58	1,78 1,70 1,63	1,78	1,87 1,82 1,77	1,88 1,84 1,81	1,90 1,87 1,82	1,88
ρ, , , , , , , , , , , , , , , , , , ,	0,1 0,2 0,3	0,67 0,67 0,67	0,67 0,67 0,67	0,73 0,69 0,67	0,93 0,75 0,71	1,11 0,89 0,80	1,25 1,02 0,90	1,36 1,12 0,99	1,45 1,21 1,08	1,29	1,57 1,36 1,22	1,66 1,46 1,33	1,72 1,54 1,41	1,77 1,60 1,48	1,65	1,59
7, 70, P,	0,4 0,5 1,0	0,67 0,67 0,67	0,67 0,67 0,67	0,67 0,67 0,67	0,69 0,69 0,68	0,75 0,73 0,71	0,84 0,81 0,74	0,92 0,87 0,78	0,94	1,01	1,13 1,07 0,91	1,17	1,26	1,40 1,33 1,13	1,39	1,51 1,44 1,24

Таблица 62 Коэффициенты μ_{12} и μ_{11} для колони с неподвижным верхним концом, закрепленным от поворота

Расчетная	$l/2/l_1$	0,1	0,2	0,3	0.4	0,5	0,6	0.7		 -	kpena					
схема	J_2/J_1	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0
102			,		•	. Ка	эффиц	ие нт і	μ ₁₂							
	0,04 0,06 0,08	0,78 0,70 0,68	1,02 0,86 0,79	1,53 1,23 1,05	1,73 1,47 1,31	2,01 1,73 1,54	2,21 1,93 1,74	2,38 2,08 1,91	2,54 2,23 2,05	2,65 2,38 2,20	2,85 2,49 2,31	3,24 2,81 2,55	3,70 3,17 2,80	4,20 3,50 3,11	4,76 3,92 3,45	5,23 4,30 3,73
7 1,	0,1 0,2 0,3	0,67 0,64 0,62	0,76 0,70 0,68	1,00 0,79 0,74	1,20 0,93 0,85	1,42 1,07 0,95	1,61 1,23 1,06	1,78 1,41 1,18	1	2,64 1,60 1,39	2,20 1,72 1,48	1,67	2,60 2,11 1,82	2,28		3,41 2,64 2,20
7/12/11. P ₂	0,4° 0,5 1,0	0,60 0,59 0,55	0,66 0,65 0,60	0,71 0,70 0,65	0,78 0,77 0,70	0,87 0,82 0,75	0,99 0,93 0,80	1,07 0,99 0,85	1,16 1,08 0,90	1,26 1,17 0,95	1,34 1,23 1,00	1,50 1,39 1,10	1,65 1,53 1,20	1,79 1,66 1,30		2,08 1,92 1,50
111111						Ка	эффиц	иенты	ν μ11							<u> </u>
J_2	0,04 0,06 0,08	0,66 0,65 0,64	0,68 0,67 0,66	0, 75 0,68 0,67	0,94 0,76 0,68	1,08 0,94 0,84	1,24 1,10 1,00	1,37 1,25 1,12	1,35	1,55 1,44 1,34	1,64 1,50 1,41	1,72 1,61 1,53	1,69	1,81 1,74 1,68	1,79	1,89 1,82 1,79
7,	0,1 0,2 0,3	0,64 0,62 0,60	0,65 0,64 0,63	0,65 0,65 0,64	0,65 0,65 0,65	0,78 0,66 0,66	0,92 0,73 0,67	1,05 0,83 0,73	0,92	1,25 1,01 0,89	1,33 1,09 0,94	1,45 1,23 1,09	1,55 1,33 1,20	1,62 1,41 1,28	1,48	
77777, P,	0,4 0,5 1,0	0,58 0,57 0,55	0,63 0,61 0,58	0,63 0,63 0,60	0,64 0,64 0,61	0,64 0,64 0,62	0,66 0,65 0,63	0,68 0,68 0,65	0,72	0,82 0,77 0,70	0,83	1,01 0,94 0,80	1,10 1,04 0,88	1,19 1,12 0,93	1,19	1,32 1,25 1,05

Двухступенчатые колонны

Значения коэффициентов расчетной длины μ_1 для нижнего участка двухступенчатой колонны при различных условиях закрепления (кроме упругой заделки) верхнего конца определяются по формуле

$$\mu_{1} = \sqrt{\frac{t_{1}\overline{\mu}_{1}^{2} + \left(t_{2}\overline{\mu}_{2}^{2} + \overline{\mu}_{3}^{2}\right)(1 + n_{2})^{2} \frac{J_{1}}{J_{cp}}}{1 + t_{1} + t_{2}}} . \tag{102}$$

Схема

двухсту.-

пенчатой

колонны

Здесь (рис. 26)

$$t_1 = \frac{P_1}{P_3}$$
 w $t_2 = \frac{P_2}{P_3}$; $n_2 = \frac{l_2}{l_1}$;

 P_1 , P_2 и P_3 — продольные силы, приложенные соответственно в местах образования ступеней и к верху колонны; $J_{\rm cp}^{\prime}$ — среднее значение момента инерции для участков l_1 и l_2 , определяемое по формуле

$$J_{\rm cp}' = \frac{J_1 l_1 + J_2 l_2}{l_1 + l_2}; \qquad (103)$$

 $ilde{J_{ t cp}^{"}}$ — среднее значение момента

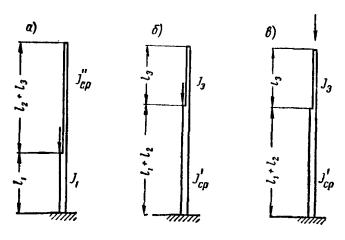


Рис. 27. Расчетные схемы одноступенчатых колони к табл. 63.

инерции для участков l_2 и l_3 , определяемое по формуле

$$J''_{\rm cp} = \frac{J_2 l_2 + J_3 l_3}{l_2 + l_3}; \tag{104}$$

 J_1 , J_2 , J_3 и l_1 , l_2 , l_3 — моменты инерции сечений и длины соответственно нижнего, среднего и верхнего участков колонны.

Значения коэффициентов расчетной длины для среднего участка длиной l_2 определяются по формуле

$$\mu_2 = \frac{\mu_1}{c_2}, \tag{105}$$

а коэффициентов расчетной длины для верхнего участка длиной l_3 — по формуле

 $\mu_3 = \frac{\mu_1}{c_3} \leqslant 3$ (106)

Здесь
$$c_2 = \frac{l_2}{l_1} \sqrt{\frac{(P_2 + P_3) J_1}{(P_1 + P_2 + P_3) J_2}};$$
 $c_3 = \frac{l_3}{l_1} \sqrt{\frac{P_3 J_1}{(P_1 + P_2 + P_3) J_3}}.$

Указания по определению коэффициентов μ_1 , μ_2 и μ_3 в формуле (102)

	Значения коэффициентов				
	μ,	μ,	μ,		
Условия закрепления верхнего конца колонны	при загружении				
	по схеме рис. 27, а	по схеме рис. 27, б	по схеме рис. 27, в		
Свободный конец	$\overline{\mu_1} = 2$	$\overline{\mu_2} = 2$	$\mu_3 = \mu_1$ по табл. 59 при		
Конец, закрепленный только от поворота	— μ ₁ = μ ₁ по табл. 60 при c ₁ =0	$ar{\mu_2} = \mu_1$ по табл. 60 при $c_1 = 0$	$c_1 = \frac{l_3}{l_1 + l_2} \sqrt{\frac{\overline{J_{ ext{cp}}}}{J_3}}$ $\overline{\mu_3} = \mu_1$ по табл. 60 при		
Неподвижный шарнирно опертый конец Неподвижный, закрепленный от поворота конец	$ \mu_1 = \mu_{11} $ по табл. 61 $ \mu_1 = \mu_{11} $ по табл. 62	— μ ₂ = μ ₁₁ по табл. 61 — μ ₂ = μ ₁₁ по табл. 62	$c_1 = \frac{l_3}{l_1 + l_2} \sqrt{\frac{J_{\text{cp}}'}{J_3}}$ $\mu_3 = \mu_{12}$ $\mu_3 = \mu_{12}$ $\mu_3 = \mu_{12}$ $\mu_3 = \mu_{12}$ $\mu_3 = \mu_{13}$ $\mu_3 = \mu_{13}$ $\mu_3 = \mu_{13}$		

Колонны (стойки) многоэтажных свободных рам

Таблица 64 Коэффициенты µ расчетной длины стоек многоэтажных свободных рам при числе ярусов 3 и более

1	i _c							Значени	и фи	$i_{\rm c}/i_{\rm p.B}$						
	- і _{р.н}	0	0,2	0,4	0,6	0,8	1,0	2,0	4,0	6,0	8,0	10,0	15,0	20,0	25,0	30,0
	0 0,2 0,4 0,6 0,8 1,0 2,0 4,0 6.0 8,0 10,0	1,00 1,03 1,06 1,10 1,12 1,15 1,28 1,44 1,55 1,62 1,67 1,75	1,03 1,06 1,10 1,13 1,16 1,19 1,31 1,48 1,60 1,66 1,72 1,80	1,06 1,10 1,13 1,16 1,19 1,22 1,35 1,52 1,64 1,71 1,77	1,10 1,13 1,16 1,19 1,22 1,25 1,38 1,56 1,68 1,76 1,82 1,90	1,12 1,16 1,19 1,22 1,25 1,29 1,41 1,60 1,72 1,79 1,86 1,96	1,15 1,19 1,22 1,25 1,29 1,31 1,44 1,64 1,76 1,84 1,91 2,00	1,28 1,31 1,35 1,38 1,41 1,44 1,58 1,79 1,93 2,03 2,11 2,22	1,44 1,48 1,52 1,56 1,60 1,64 1,79 2,04 2,21 2,33 2,43 2,59	1,55 1,60 1,64 1,68 1,72 1,76 1,93 2,21 2,40 2,56 2,66 2,88	1,62 1,66 1,71 1,76 1,79 1,84 2,03 2,33 2,56 2,71 2,85 3,11	1,67 1,72 1,77 1,82 1,86 1,91 2,11 2,43 2,66 2,85 3,02 3,18	1,75 1,80 1,86 1,90 1,96 2,00 2,22 2,59 2,88 3,11 3,28 3,61	1,80 1,86 1,91 1,96 2,01 2,06 2,31 2,71 2,99 3,28 3,50 3,88	1,84 1,89 1,95 2,00 2,05 2,10 2,36 2,78 3,11 3,38 3,61 4,03	1,86 1,91 1,97 2,03 2,09 2,13 2,40 2,83 3,17 3,45 3,70 4,19
	$20,0 \\ 25,0 \\ 30,0$	1,80 1,84 1,86	1,86 1.89 1,91	1,91 1,95 1,97	1,96 2,00 2,03	2,01 2,05 2,09	2,06 2,10 2,13	2,31 2,36 2,40	2,71 2,78 2,83	2,99 3,11 3,17	3,28 3,38 3,45	3,50 3,61 3,70	3,88 4,03 4,19	4,19 4,36 4,55	4,36 4,62 4,84	4,55 4,84 5,07
İ		1	ł	l '	1		1	1				l	l	t I	I	1

Обозначения, принятые в табл. 64: $i_{\rm c}$ — погопная жесткость стойки рассматриваемого яруса; $i_{\rm p. H}$ — полусумма погонных жесткостей ригелей, примыкающих к нижнему концу рассматриваемой стойки; $i_{\rm p. B}$ — то же, примыкающих к верхнему концу стойки.

Примечания: 1. При отношении $\frac{L}{b} \geqslant 6$ (где L — полная высота рамы и b — ширина рамы) должна быть проверена общая устойчивость рамы в целом, как составного стержня, защемленного в основании и свободного вверху.

2. Для стоек двухъярусных рам значения коэффициентов µ, приведенные в таблице, умножаются на коэффициент 0,9.

Приложение V

РАСЧЕТНЫЕ ВЕЛИЧИНЫ ЭФФЕКТИВНЫХ КОЭФФИЦИЕНТОВ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В

<u> </u>	Расчетные сеч	копцептации папраж	Коэффициенты 3 для стали		
№ п/п	схема соединения и расположение расчетного сечения $oldsymbol{a}-oldsymbol{a}$	характеристика сечения	углеродистой	низколеги- рованной	
1		По основному металлу Основной металл с необработанной прокатной поверхностью и с прокатными, обрезанными или обработанными механическим путем кромками в сечениях внесварных швов, заклепок и болтов	1	1	
2	al (9 9 9 9 9	То же, но с кромками, обрезанными газовой резкой: а) машинной б) ручной	1,1 1,4	1,2 1,8	
3	Ia Ia	Основной металл в месте пере- хода к необработанному стыко- вому шву с усилением, имеющим достаточно плавный переход	1,4	1,8	
4		Основной металл в месте пере- жода к стыковому шву, обрабо- танному в этом месте абразив- ным кругом или специальной фрезой: а) при стыковании листов одинаковой толшины и ширины	• • • • • • • • • • • • • • • • • • • •	1	
	ia ia	б) при стыковании листов разной ширины	1,2	1,4	
	10 10	в) при стыковании листов разной толщины	1,3	1,6	
5	la la	Основной металл в месте пере- хода к поперечному (лобовому) угловому шву в рабочих соеди- нениях:			
		 а) без механической обработ- ки при отношении катетов b: h = 1,5 (при направлении большего катета вдоль уси- лия) 	2,7	3,7	
	_a b-1	б) при механической обра- ботке и отношении катетов b:h = 1,5	1,5	1,9	

Продолжение прилож. V

	Расчетные се	Коэффициенты 3 для ст		
№ п/п	схема соединения и расположение расчетного сечения $a\!-\!a$	характеристика сечения	углеродистой	низколеги- рованной
6	- 1a	Основной металл в соединениях с фланговыми швами, работающими на срез от осевой силы, в местах перехода от элемента к концам фланговых швов, независимо от наличия обработки швов	3,4	4,4
7	a	Основной металл вблизи диа- фрагм и ребер, приваренных уг- ловыми швами к растянутым по- ясам балки и элементам ферм: а) без механической обработ- ки швов, но при наличии плавного перехода от швов		
	01	к металлу: при ручной сварке при полуавтоматической сварке	1,6 1,3	2,2 1,5
	a i	б) то же, при механической обработке швов	1	1,1
8		Основной металл в сечениях:	1,3	1.6
	a1	а) у прикреплений высоко- прочными болтами	1,3	1,6
,		б) по соединительным за- клепкам, а также по сво- бодному отверстию	1,3	1,5
	- 10 10 10 10 10 10 10 10 10 10 10 10 10	в) по прикреплениям с дву- срезными заклепками	1,6	1,9
	;a	г) по прикреплениям с одно- срезными заклепками	2	2,4
		д) по первому ряду заклепок, прикрепляющих фасонки к непрерывным (нестыкуемым в данном узле) элементам сплошных балок и решетчатых ферм, а также у обрыва поясного листа изгибаемого элемента	1,6	1,9

Продолжение прилож. V

	Расчетные се	Прооолжение прилож. V Коэффициенты β для стали		
№ п/п	схема соединения и расположение расчетного сечения $a\!-\!a$	характеристика сечения	углеродистой	низколеги- рованной
9	a	Поперечные сечения сварных элементов Сечения элементов, сваренных из листов непрерывными швами, вдали от диафрагм и ребер, при действии усилия вдоль оси шва: а) при автоматической и полуавтоматической сварке б) при ручной сварке	1 1,3	1
10		По основному металлу в местах перехода к следующим конструктивным элементам Фасонки прямоугольной или трапециевидной формы, привариваемые в стык или в тавр к элементам конструкции без механической обработки перехода от фасонки к элементу	2,5	3,5
11		Фасонки, привариваемые в стык или в тавр к стенкам и поясам балок, а также к элементам ферм, при плавной криволинейной форме и механической обработке перехода от фасонки к элементу конструкции, при полном проваре на всю толщину фасонки	1,2	1,4
12		Фасонки прямоугольной и тра- пециевидной формы, приварива- емые к поясам балок внахлестку с обваркой по контуру нахлест- ки, без механической обработки зон концентрации напряжений	2,5	3,5

Продолжение прилож. V

	Продолжение					
	Расчетные с	ечения	Коэффициенты в для стал			
3€ n/n	схема соединения и расположение расчетного сечения $a-a$	характеристика сечения	углеродистой	низколегиро- ванной		
13	a an an an an an an an an an an an an an	Фасонки трапециевидной формы, привариваемые двумя фланговыми и двумя косыми швами (с отношением катетов 1:1 для фланговых и 1:1,5 для косых швов), при механической обработке швов на концах фасонок	1,6	2,2		
14		По металлу соединений Стыковые швы (по оси шва) с полным проваром корня шва:				
	ia	 а) при автоматической (а так- же ручной) сварке и про- свечивании 	1	1		
		б) при автоматической свар- ке без просвечивания	1,1	1,2		
		в) при ручной сварке без просвечивания	1,2	1,4		
15		Угловые швы: а) поперечные (лобовые) швы по расчетному сечению шва: при ручной сварке при автоматической сварке	2,3 1,7	3,2 2,4		
		б) продольные (фланговые) швы, работающие на срез от осевой силы в соедине- нии	3,4	4,4		
16	См. рис. п. 8, а	Высокопрочные болты	1	1		
17	См. рис. п. 8, в См. рис. п. 8, г	Заклепки (при расчете на срез и на смятие): а) двусрезные б) односрезные	1,6 2	1,9 2,4		
	-	1	1			

Примечания: 1. Приведенные значения коэффициентов β действительны для конструкций, выполненных в соответствии с требованиями главы СНиП III-В.5-62.

2. Под механической обработкой швов подразумевается обработка швов абразивным кругом, специальной фрезой или любым другим способом, не оставляющим на поверхности швов зарубок, насечек, надрезов и других дефектов. 3. Коэффициенты β , указанные в п. 8, σ , σ , σ , относятся κ сечениям нетто.

Приложение VI

Приложение VII

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗДАНИЙ С ТЯЖЕЛЫМ РЕЖИМОМ РАБОТЫ

Наименование зданий, цехов, отделений и пролетов Отделения миксера	Наименование заводов
Отделения миксера	
j	Металлурги- ческие
Главные здания сталепла- вильных (мартеновских, кон- вертерных, электросталепла- вильных) цехов	То же
Дворы изложниц	_
·	•
Отделения раздевания слитков	
Скрапо-разделочные базы (копровые и шлаковые отделения, отделения огневой резки)	,
Склады чугуна и слитков	,
Здания чистки и смазки изложниц	*
Главные здания и шихто- вые дворы	Ферросплав- ные
Пролеты, в которых эк- сплуатируются мостовые электрические краны весьма тяжелого режима работы (см. приложение VII)	Любые
Пролеты складов заготовок, отделочные пролеты и пролеты складов готового проката прокатных и трубопрокатных цехов	Металлурги- ческие
Здапия нагревательных колодцев	То же
Пролеты, в которых эксплуатируются мостовые электрические краны весьма тяжелого непрерывного режима работы (см. приложение VII)	Любые
	Скрапо-разделочные базы (копровые и шлаковые отделения, отделения огневой резки) Склады чугуна и слитков Здания чистки и смазки изложниц Главные здания и шихтовые дворы Пролеты, в которых эксплуатируются мостовые электрические краны весьма тяжелого режима работы (см. приложение VII) Пролеты складов заготовок, отделочные пролеты и пролеты и пролеты и пролеты и пролеты и кладов готового проката прокатных и трубопрокатных цехов Здания нагревательных колодцев Пролеты, в которых эксплуатируются мостовые электрические краны весьма тяжелого непрерывного режима работы (см. приложе-

КЛАССИФИКАЦИЯ МОСТОВЫХ ЭЛЕКТРИЧЕСКИХ КРАНОВ ПО РЕЖИМУ РАБОТЫ

(выдержка из «Правил устройства и безопасной эксплуатации грузоподъемных кранов», изд. 1959)

Режим работы моста крана	Услов- ное обозна- чение режима	Примерные наиме- нования мостовых кранов	Типичные цехи
Легкий	л	Крюковые	Ремонтные це- хи, машинные за- лы
Срединй	С	Крюковые	Механические и сборочные це- хи заводов со среднесерийным производством; ремонтно-меха- нические цехи
Тяжелый	Т	Крюковые, ли- тейные, ковоч- ные	Цехи заводов с крупносерий- ным производст- вом
Весьма тяжелый	ВТ	Магнитные, завалочные	Цехи металлур- гических заводов (шихтовые и скрапные дворы, копровые отделе- ния, отделения раздевания слит- ков)
Весьма тяжелый непре- рывный	втн	Грейферные, магнитно-грейферные, с под- жватами, с тра- версой на гиб- ком подвесе (вращающейся и невращающейся), магнит- ные с траверсой на жестком под- весе, колодце- вые, завалочные, мульдомагнит- ные	Цехи металлур- гических и дру- гих заводов

Приложение VIII

основные буквенные обозначения

x, y — главные оси сечения; F — площадь сечения; J — момент инерции сечения J_x, J_y — момент инерции сечения J_x, J_y — моменты инерции сечения относительно осей xи у; W— момент сопротивления сечения при упругой работе материала (общее обозначение); W_x , W_y — моменты сопротивления сечения при упругой работе материала относительно осей x и y; $W^{\scriptscriptstyle \Pi}$ — пластический момент сопротивления сечения (общее обозначение); $\lambda_x = \frac{l_x}{r_x}$ и $\lambda_y = \frac{l_y}{r_y}$ — гибкость стержня в плоскости, перпендикулярной осям x и y;

$$l_x$$
, l_y — расчетные длины стержня в плоскости, перпендикулярной осям x и y ; $r_x = \sqrt{\frac{J_x}{F}}$; $r_y = \sqrt{\frac{J_y}{F}}$ — радиусы инерции сечения; N — продольная сила; Q — поперечная сила; M_x , M_y — изгибающие моменты относительно осей x и y ; $e = \frac{M}{N}$ — эксцентрицитет приложения силы; $m = e \frac{F}{W}$ — относительный эксцентрицитет (с учетом влияния формы сечения); η — коэффициент влияния формы сечения.

Примечание. Все приведенные выше характеристики $F,\ J$ и W соответствуют сечениям брутто.

Для обозначения характеристик, соответствующих сечениям нетто, вводится нижний индекс нт (например, $F_{\rm HT}$ — площадь сечения нетто).

СОДЕРЖАНИЕ

		Стр.
,	06	3
	Общие указания	_
	Материалы для стальных конструкций и соединений	6
ა.	Расчетные характеристики материалов и соединений	
	Расчетные сопротивления	10
	Физические характеристики	_
4.	Расчет элементов стальных конструкций на осевые силы и изгиб	_
	Центрально сжатые и центрально растянутые элементы	12
	Изгибаемые элементы	15
	Элементы, подверженные действию осевой силы с изгибом	19
	Опорные части	-
-	Листовые конструкции (оболочки вращения)	20
ວ.	Расчетные длины элементов стальных конструкций и предельные гибкости	20
	Расчетные длины	_
	Плоские фермы и связи	
	Пространственные решетчатые конструкции из одиночных уголков	$\frac{21}{22}$
	Колонны (стойки)	24
	Предельные гибкости элементов	
	Сжатые элементы	_
	Растянутые элементы	_
6.	Проверка устойчивости стенок и поясных листов изгибаемых и сжатых эле-	
	ментов. Проверка устойчивости оболочек вращения	_
	Стенки балок	29
	Стенки центрально и внецентренно сжатых элементов	29
	Поясные листы (полки) центрально и внецентренно сжатых и изги-	30
	баемых элементов	30
	Листовые конструкции (оболочки вращения)	-
7.	Расчет соединений стальных конструкций	32
	Стыки и прикрепления элементов	
	Сварные соединения	
	Заклепочные и болтовые соединения	34
	Монтажные соединения на высокопрочных болтах	
	Соединения с фрезерованными торцами	35
	Поясные соединения в составных балках	
	Анкерные болты	36
8.	Указания по проектированию стальных конструкций и их элементов	_
	Общие указания	_
	Учет усталости металла	38
	Балки	39
	Фермы	40
	Колонны	41
	Крановые рельсы	_
	Сварные соединения	
	Заклепочные и болтовые соединения	42
	Листовые конструкции (оболочки вращения)	43

	Стр.
9. Дополнительные указания по проектированию стальных конструкций про-	
мышленных зданий и сооружений, находящихся в особо тяжелых ус-	
ловиях эксплуатации	43
А. Промышленные здания и сооружения с тяжелым режимом работы	44
Нагрузки	_
Предельные деформации	
Предельные гибкости элементов	_
Подкрановые балки и фермы. Балки рабочих площадок, непосредствен-	
но воспринимающие нагрузку от подвижных составов	_
Связи	45
Монтажные крепления	
Б. Промышленные здания и сооружения с особыми условиями работы	46
Тепловые воздействия	_
Воздействие агрессивной среды	_
Приложение І. Коэффициенты у продольного изгиба центрально сжатых	
элементов	47
Приложение II. Указания по определению коэффициента 🕫 для проверки	
общей устойчивости балок	_
Приложение III. Таблицы для расчета внецентренно сжатых элементов .	49
Приложение IV. Указания по определению коэффициентов расчетной длины	
колонн	51
Приложение V. Расчетные величины эффективных коэффициентов концент-	0.2
рации напряжений β	55
Приложение VI. Примерный перечень зданий с тяжелым режимом работы	59
Приложение VII. Классификация мостовых электрических кранов по ре-	03
жиму работы	
Приложение VIII. Основные буквенные обозначения	60

Госстройиздат Москва, Третьяковский проезд, д. 1

* * *

Редактор издательства *Петрова В. В.* Технический редактор *Родионова В. М.*

Сдано в набор 20/Х 1962г, Подписано к печати 12.11 1963 г. Бумага 84×108/16 = 2 бум. л.— 6,56 усл.-печ. л. (6,6 уч. изд.-л.). Тираж 100 000 экз. Изд. № ХІІ-7435. Зак. № 2322 Цена 33 коп.

Типография № 1 Государственного издательства литературы по строительству, архитектуре и строи тельным материалам, г. Владимир

Разъяснение к главе СНиП II-B.3-62

По сообщению Отдела технического нормирования в стандартизации Госстроя СССР ниже приводится разъяснение к главе СНиП II-В.3-62 «Стальные конструкции. Нормы проектирования».

В связи с поступающими запросами от проектных и строительных организаций Отдел технического нормирования и стандартизации Госстроя СССР разъясняет, что при назначении марок стали для строительных стальных конструкций, эксплуатируемых при расчетных температурах минус 40°С и ниже, надлежит руководст-

воваться «Указаниями по проектированию, изготовлению и монтажу строительных стальных конструкций, предназначенных для эксплуатации в условиях низких температур».

В соответствии с этим при пользовании таблицей 1 (Указания по применению углеродистой стали по ГОСТ 380—60 в несущих стальных конструкциях зданий и сооружений) на странице 5 главы СНиП II-В.3-62 марки стали по четвертой колонке принимаются для расчетных температур «ниже минус 30 до минус 39°С», вместо указанных «ниже минус 30».