МИНИСТЕРСТВО СТРОИТЕЛЬСТВА ПРЕДЛИКТИВ НЕВТИНОВ В ГАЗОВОВ СТРОИЗНИВЕННОСТИ

Всессенный научно-испеденательский институт по странтельству мигистральных трубанизафия

рекомендации

ПО РАСЧЕТУ ТРУБОПРОВОДОВ

ИЗ МНОГОСЛОЙНЫХ ТРУБ

НА ДИНАМИЧЕСКИЕ НАГРУЗКИ

P 451-82

MOCKBA 1982

MOCKBA 1982

P 451-82

ПО РАСЧЕТУ ТРУБОПРОВОДОВ ИЗ МНОГОСЛОЙНЫХ ТРУБ НА ДИНАМИЧЕСКИЕ НАГРУЗКИ

НЕФТЯНОЙ И ГАЗОВОЙ ПРОМЫШЛЕННОСТИ

Всесоюзный научно-исследовательский институт по строительству магистральных трубопроводов

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА ПРЕДПРИЯТИЙ

УДК 621.643.001.3

"Рекомендации по расчету трубопроводов из многослойних труб на динамические нагрузка" разработани лабораторией методов расчета трубопроводов и соединительних деталей ЕНИИСТа совместно с отраслевой лабораторией прочности КТИРПих при участии ЕЦ КТИРГих. В них изложены расчетние модели, методы расчета, расчетные зависимости и алгоритмы вичисления частот своболных колебаний болонных вичисления частот

В них изложены расчетные модели, методы расчета, расчетные зависимости и алгоритмы вычисления частот свободных колебаний балочных элементов трубопроводов из многослойных трубопроводов при динамических нагруз ках от колабаний однослойных трубопроводов. Рекомендации разработаны на основе теоретичес -

Рекомендации разработаны на основе теоретичес ких исследований, экспериментальных измерений на лабораторных моделях и натурных трубопроводах.

бораторных моделях и натурных трубопроводах. В разработке Рекомендаций принимали участие канд.техн.наук М.С.Герштейн и инженер С.С.Халок.

(C) Всесовзный научно-исследовательский институт по строительству магистральных трубопроводов (ВНИИСТ), 1982

Всесовзный научно-	Peromenzative	P 45I-82
институт по строи- тельству магист-	многослойных труб на дина- мические нагрузки	Разработаны впервые
ральных трубопро- водов (ВНИИСТ)		

I. OHIME HOJOKEHNS

I. Рекомендация по расчету содержат расчетные модели, основные уравнения, алгоритмы вычислений, расчетные и графичес – кие зависимости для определения частот и форм свободных колебаний балочных элементов трубопроводов из многослойных труб.

2. Рекомендации разработаны в развитие главы СНиП П-45-75 "Нормы проектирования. Магистральные трубопроводы".

3. Расчетные зависимости для балочного трубопровода из элементов многослойных и однослойных труб, основанные на модели длинной ортотропной конструктивно неоднородной оболочки, приведены в разделе 2. Для малых колебаний построены частотные зависимости, определены значения "предельной длины" трубопро – вода, выше которой можно определять наименьщую частоту собст – венных колебаний по "балочным" соотношениям.

Приведены амплитудно-частотные зависимости для нелинейных колебаний трубопровода, при которых балочная форма динамичес ких перемещений связана с овализацией поперечного сечения.

4. В приложении рассмотрены примеры расчета амплитудно частотных зависимостей нелинейных колебаний и таблицы.

5. Колебания элемента трубопровода, рассматриваемого как многослойная оболочка с однородными слоями, описаны в разделе 3. Приведены уравнения движения оболочки, методы и алгоритым решения для линейных колебаний с малыми амплитудами и нелинейных колебаний с амплитудой порядка толщины оболочки. Даны гра-

Внесено лаборатори- ей методов расчета трубопроводов и со- единительных дета- лей ЕНИИСТа	Утверждено Всесорзным науч- но-исследовательским инсти- тутом по строительству ма- гистральных трубопроводов 5 декабря 1981 г.	Срок введения I моля 1982 г.
---	--	---------------------------------

фики зависимостей частоти колебаний он числа окружных и продольных воли для оболочки с внутренним давлением и без него при различных соотношениях геометрических размеров, а также амплитудно-частотные характеристики нелинейных колебаний оболочек.

2. СВОБОДНЫЕ КОЛЕБАНИЯ БАЛОЧНОГО КОНСТРУКТИВНО-НЕОДНОРОДНОГО ТРУБОПРОВОДА

РАСЧЕТНАЯ СХЕМА И ОСНОВНЫЕ УРАВНЕНИЯ

2.1. Многослойные трубы для магистральных трубопроводов состоят из спирально-свернутых обечаек, сваренных между собой кольцевыми швами. Расчетная схема такой конструктивно-неоднородной оболочки должна учитывать многослойность стенки, наличие регулярно расположенных по длине кольцевых подкреплений и отсутствие взаимного смещения слоев в местах подкреплений. Возможны и различные конструктивные решения многослойных труб.

На рис.І представлена труба, состоящая из / обечаек с числом слоев, равным р.

Приведенная цилиндрическая жесткость такой трубн может быть найдена по следующей зависимости:

$$\mathcal{D}_{np} = \left[\mathcal{D}_{\eta} \frac{\alpha + 2\beta}{\ell} + \mathcal{D}_{g} \left(l - \frac{\alpha + 2\beta}{\ell} \right) \right] \frac{\ell}{L} \iota + \mathcal{D}_{\eta} \left(l - \frac{\ell}{L} \iota \right), (\mathbf{I})$$

где

J₀ – цялиндрическая жесткость оболочки, лишенной связей сдвига;

Д₁ - цилиндрическая жесткость сплошной оболочки, толшина которой равна сумме толщин слоев. Они определяются соотношениями:

$$\mathcal{D}_{o} = \rho \frac{Eh^{3}}{12(1-\mu^{2})};$$

$$\mathcal{D}_{f} = \frac{Eh}{1-\mu^{2}} \sum_{i=1}^{\rho} Z_{i}^{2},$$
(2)

где Z₁ - расстоя ия от срединных поверхностей отдельных слоев до срединной поверхности оболочки в целом.

Параметр 🖉 определяется по следующей формуле:

Рис.І. Схема многослойной трубы: 2 – длина трубы; /2 – толщина одного слоя; /2 – ширина сварного шва; /2 – ширина участка, примыкающего к сварному шву и работающего как сплошное кольцо; / – длина обечайкы

$$\delta = K \sqrt{Rh} \,. \tag{3}$$

Коэффициент // принимает значения 1,5-2 в зависимости от типа применяемого материала, состояния его поверхности, плотности навивки, имеющихся подкрепляющих сварных швов.

При вычислениях $\mathcal{D}_{n\rho}$ сыла сделана ориентация на промыпленный образец многослойной трусы и значение коэффициента kсыло принято равным 1,9.

Значения приведенной цилиндрической жесткости для некоторых конструктивных вариантов труб представлены в табл. I. Число секций для всех вариантов равно 7.

2.2. При составлении уравнений движения использованы безразмерные величины

$$\left\{\boldsymbol{x},\boldsymbol{y},\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\right\} = \frac{1}{R} \left\{\boldsymbol{x},\boldsymbol{y},\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\right\}, \quad t = \frac{t}{R} \left[\frac{E}{\mathcal{P}(I-\mu^2)}\right], \quad (4)$$

где I направлена по образущей, У - по дуге окружности.

Taomma I

Характ	еристика	трубы		
ћ, мм	ρ	Наличие однослой- ных сек- ций	<i>О,</i> см	ש _{חס} , אדיכיכא
4,I	4	Her	9,17	I.7.10 ⁵
4,6	5	Her	9,71	4,4·I0 ⁵
6,0	5	Her	11,10	10,56.10 ⁵
5,5	6	Her	10,60	12,77.10 ⁵
2,0	4	Her	6,4	0,17.105
4,I	4	Две кра йние	9,17	3,48.10 ⁵

Основные допущения подубезмоментной теорие оболочек сводятся к следующему:

 относительное удлинение *Е*_у профиля поперечного чения оболочки и относительный сдвиг *Е*_{xy} в срединной ce-<u>no-</u> верхности малы по сравнению с производными перемещений, или

$$\frac{\partial \mathcal{U}}{\partial y} + \mathcal{U}^{\epsilon} = \mathcal{E}_{y} \approx \mathcal{O}, \qquad \frac{\partial \mathcal{U}}{\partial y} + \frac{\partial \mathcal{U}}{\partial x} = \mathcal{E}_{xy} \approx \mathcal{O}; \quad (5)$$

2) в соотношениях упругости можно не учитывать часть уд-линения \mathcal{E}_x , связанную с усилиями \mathcal{T}_y , и часть момента M_y , связанную с параметром \mathcal{Z}_x . Это означает принятие соотноше ний упругости в упрощенном виде:

$$M_{x} = \mu \mathcal{D}_{nP} \mathcal{X}_{y} ,$$

$$T_{x} = E H \mathcal{E}_{x} , \quad (H = P \hbar),$$

$$M_{y} = \mathcal{D}_{nP} \mathcal{X}_{y} ;$$
(6)

3) во всех уравнениях равновесия, кроме уравнения моментов относительно касательной к координатным линиям // , можно пренебречь усилием Q_x и моментами M_x и M_{xy} . С учетом принятых допущений уравнения движения имеют вид:

$$\frac{\partial T_x}{\partial x} + \frac{\partial T_{xy}}{\partial y} - Q_y \frac{\partial^2 w}{\partial x \partial y} - \rho H \frac{\partial^2 u}{\partial t^2} = 0,$$

$$\frac{\partial T_{y}}{\partial y} + \frac{\partial T_{xy}}{\partial x} - \frac{1}{R_{y}^{*}} \mathcal{Q}_{y} - \rho H \frac{\partial^{2} \mathcal{V}}{\partial t^{2}} = 0,$$

$$\frac{T_{y}}{R_{y}^{*}} + \frac{\partial \mathcal{Q}_{y}}{\partial y} + T_{x} \frac{\partial^{2} \mathcal{W}}{\partial x^{2}} - q - \rho H \frac{\partial^{2} \mathcal{W}}{\partial t^{2}} = 0,$$

$$\frac{\partial M_{x}}{\partial x} + \frac{\partial M_{xy}}{\partial y} - \mathcal{Q}_{x} = 0,$$

$$\frac{\partial M_{y}}{\partial y} - \mathcal{Q}_{y} = 0$$
(7)

Входящий в уравнение радкус кривняны деформированной срединной поверхности \mathcal{R}^{*}_{ν} определяется следуищей зависимостьр:

$$\frac{1}{R_{y}^{*}} = \frac{1}{R} \left(1 - \frac{\partial \mathcal{V}}{\partial y} \right) \quad , \qquad \mathcal{V} = \frac{\partial \mathcal{U}}{\partial y} - \mathcal{V} , \tag{8}$$

где U⁴ - угол поворота касательной к средней линии контура поперечного сечения.

Уревнения двихения (7) после преобразования и подстановки зависимостей усилий от перемещений приводят к одному уравнению в перемещениях:

$$\frac{\partial^{3}\mathcal{U}}{\partial x^{3}} - \frac{\partial^{3}\mathcal{U}}{\partial x\partial y^{2}} \cdot \frac{\partial^{2}\mathcal{W}}{\partial x^{2}} - 2 \frac{\partial^{2}\mathcal{U}}{\partial x\partial y} \frac{\partial^{3}\mathcal{W}}{\partial x^{2}\partial y} - \frac{\partial\mathcal{U}}{\partial x} \left(\frac{\partial^{4}\mathcal{W}}{\partial x\partial y^{2}} + C \left[\left(\frac{\partial^{3}\mathcal{V}}{\partial y^{3}} \right)^{2} + 2 \frac{\partial^{2}\mathcal{V}}{\partial y^{2}} \frac{\partial^{4}\mathcal{V}}{\partial y^{4}} + \frac{\partial^{5}\mathcal{V}}{\partial y^{5}} \right] + C \left[\left(\frac{\partial^{2}\mathcal{V}}{\partial x^{2}} \frac{\partial^{2}\mathcal{V}}{\partial y^{2}} + \frac{\partial\mathcal{V}}{\partial x} \frac{\partial^{3}\mathcal{V}}{\partial x\partial y^{2}} \right] + C \left[\left(\frac{\partial^{2}\mathcal{V}}{\partial x^{2}} \frac{\partial^{2}\mathcal{V}}{\partial y^{2}} + \frac{\partial\mathcal{V}}{\partial x} \frac{\partial^{3}\mathcal{V}}{\partial x\partial y^{2}} \right] + C \left[\left(\frac{\partial^{2}\mathcal{V}}{\partial x^{2}} \frac{\partial^{2}\mathcal{V}}{\partial y^{2}} + \frac{\partial\mathcal{V}}{\partial x} \frac{\partial^{3}\mathcal{V}}{\partial x\partial y^{2}} \right] + C \left[\left(\frac{\partial^{2}\mathcal{V}}{\partial x^{2}} + \frac{\partial^{2}\mathcal{V}}{\partial y^{2}} + \frac{\partial\mathcal{V}}{\partial x} \frac{\partial^{3}\mathcal{V}}{\partial x\partial y^{2}} \right] + C \left[\left(\frac{\partial\mathcal{V}}{\partial x} + \mathcal{W} - \frac{\partial^{2}\mathcal{W}}{\partial y^{2}} \right) \right] \right] \right]$$

Здесь

$$C^{2} = \frac{\mathcal{D}_{nP}}{R^{2}EH} , \qquad \mathcal{K}_{q} = \frac{QR}{EH} . \tag{10}$$

2.3. Колебания трубопровода при малых перемещениях.

Для получения уравнения движения, описывающего малые комебания трубопровода, необходимо в (9) исключить нелинейные члены. Линеаризованное таким образом уравнение примет вид:

$$\frac{\partial^{3} \mathcal{U}}{\partial x^{3}} + \mathcal{C}^{2} \left(\frac{\partial^{5} \mathcal{U}}{\partial y^{5}} + \frac{\partial^{3} \mathcal{U}}{\partial y^{3}} \right) - \mathcal{K}_{q} \frac{\partial^{3} \mathcal{U}}{\partial y^{3}} = \frac{\partial^{2}}{\partial t^{2}} \left(\frac{\partial \mathcal{U}}{\partial x} + \mathcal{U} - \frac{\partial^{2} \mathcal{U}}{\partial y^{2}} \right). (\mathbf{II})_{q}$$

Принята следующая аппроксимация нормальной составляющей перемещения точки срединной поверхности трубы:

$$\mathcal{U} = \sum_{n=-\infty}^{\infty} f_n(x) e^{iny} \sin(\omega t).$$
 (12)

Остальные составляющие примут вид:

$$\mathcal{U} = -\sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{1}{n^2} f_n(x) e^{iny} \sin(\omega t),$$

$$\mathcal{U} = -\sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{1}{in} f_n'(x) e^{iny} \sin(\omega t),$$

$$\mathcal{U} = -\sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{n^{2-1}}{in} f_n(x) e^{iny} \sin(\omega t)$$
(I3)

(Здесь и далее штрихами и римскими цифрами обозначены произ – водные функции $f_{\alpha}(x)$ по продольной координате x).

Подставив выражения (I3) в (II), после преобразований получим следующее уравнение:

$$\frac{1}{n^2} f_n''(x) + n^2 (n^2 - 1) (C^2 n^2 - C^2 + K_q) f_n(x) - \omega_*^2 \frac{1}{n^2} f_n''(x) - (14) - (n^2 + 1) f_n(x) = 0.$$

Граничные условия на концах трубы, соответствующие шарнирному опиранию, имеют вид:

$$\mathbf{T} = \mathcal{O}, \quad \mathcal{X} = \mathcal{L}, \quad \mathcal{V} = \mathcal{U}^{\mathbf{0}} = \mathcal{T}_{\mathbf{X}} = \mathcal{O}. \tag{15}$$

Функция $f_{\alpha}(x)$ задана в виде ряда:

$$f_{\eta}(x) = \sum_{m=1}^{\infty} B_{m,\eta} \, Sin \, \Lambda x \,. \tag{16}$$

Здесь и ранее: $\lambda = \frac{m\pi R}{L}$, $\omega_{*}^{2} = \frac{\omega^{2} R^{2} \rho (1 - \mu^{2})}{E}$.

С учетом (16) уравнение (15) принимает вид:

$$\lambda^{4} + \pi^{2}(\pi^{2} - 1)(c^{2}\pi^{2} - c^{2} + K_{q}) = \omega_{*}^{2} \left[\lambda^{2} + \pi^{2}(\pi^{2} + 1) \right].$$
(17)

Решив (17) относительно ω_{\star} , получим расчетную формулу для квадрата собственной частоти замкнутой цилиндрической 8 конструктивно-неоднородной оболочки с шарнирным опвранием концов. Формула учитывает влияние внутреннего давления (при внешнем давлении знак при коэфтициенте K_{α} изменяется на минус).

$$\omega_{*}^{2} = \frac{\lambda^{4} + \pi^{4} (\pi^{2} - 1) \left[C^{2} (\pi^{2} - 1) + K_{q} \right]}{\lambda^{2} + \pi^{2} + \pi^{4}} .$$
(18)

Увеличение жесткости труби приводит, с одной сторони, к возрастанию абсолютных значений собственных частот, с другой – к перераспределению $(\omega_*)_{min}$ относительно форм колебаний. В связи с этим используется понятие предельной длины трубопровода в виде параметра $L_* = L_{np} / R$, где $L_{np} - длина$ труби, соответствующая равенству собственных частот при колебаниях по формам с одной и двумя окружными волнами.

Приравняя значения собственных частот (I8) при n = I и n = 2 и полагая $\lambda^2 \approx 0$, получим

$$L_{*} = \frac{L_{nP}}{R} = \frac{\pi}{2\sqrt{c}} \left(1 - \frac{\kappa_{q}}{3c^{2}} \right)^{-1/4}$$
(19)

Отсюда, при \mathcal{K}_q = 0 (труба, не загруженная давлением) имеем

$$L_* = \frac{\pi}{2\sqrt{c}} \tag{20}$$

СВЯЗАННЫЕ КОЛЕБАНИЯ МНОГОСЛОЙНОЙ ТРУБЫ (НЕЛИЧЕЙНАЯ ЗАДАЧА)

2.4. Изгибным свободным колебаниям трубы даже при небольших амплитудах сопуствуют колебания, вызывающие изменение геометрии поперечного сечения (овализацию), т.е. характеризующиеся числом окружных воли // = 2. Частота этих наложенных колебаний в два раза превышает основную частоту. Это явление описывается геометрически нелинейной полубезмоментной теорией оболочек. Уравнение движения принимается в виде (9).

Введем двучленную аппроксимацию нормальной составляющей полного перемещения точки срединной поверхности трубы

$$\mathcal{W} = f_1 \sin \Lambda x \cos y + f_2 \sin \Lambda x \cos 2y , \qquad (21)$$

где f_1, f_2 - функции времени. Второе слагаемое вирахения (21) представляет собой нало женную составляющую прогиба (результат овализации).

Решение принимается в виде:

$$f_1 = A\cos(\omega_* t), \quad f_2 = -B\cos^2(\omega_* t). \quad (22)$$

Использование для интегрирования уравнений движения метода Бубнова-Галеркина приводит к системе уравнений:

$$-\omega_{*}^{2} + \alpha_{I} - \frac{3}{4}\alpha_{2}B = 0,$$

$$(\omega_{*}^{2} - \frac{3}{4}\beta_{I})B + \frac{3}{4}\beta_{2}A = 0$$
(23)

Из второго уравнения следует соотношение между амплитудами прогиба А и овализации В

$$\mathcal{B} = -\frac{0.75\,\delta_2\,A^2}{\omega_*^2 - 0.75\,\delta_1} \,. \tag{24}$$

Подставив (24) в первое уравнение (23), приходим к уравнению второй степени относительно квадрата частоты

$$\omega_{*}^{4} - (a_{j} + \frac{3}{4} b_{j}) \omega_{*}^{2} + \frac{3}{4} a_{j} b_{j} - \frac{g}{16} a_{2} b_{2} A^{2} = 0, \qquad (25)$$

гле

$$\begin{aligned} \mathcal{Q}_{j} &= \frac{\lambda^{4}}{2 + \lambda^{2}} , \qquad \mathcal{Q}_{2} = \frac{5\lambda^{4}}{3\pi(2 + \lambda^{2})} , \\ \mathcal{B}_{j} &= \frac{\lambda^{4} + 144c^{2} + 48K_{q}}{20 + \lambda^{2}} , \qquad \mathcal{B}_{2} = \frac{54z^{4}}{3\pi(20 + \lambda^{2})} \end{aligned}$$
(26)

Последний член полученного уравнения учитывает связанность форм колебаний при конечных перемещениях точек трубь.

Окончательная расчетная (ормула для квадрата частоты

$$\omega_{\star}^{2} = \frac{(a_{l} + \frac{3}{4}b_{r})}{2} \pm \frac{\left(\frac{a_{l} + \frac{3}{4}b_{r}}{2}\right)^{2}}{4} - \frac{3}{4}a_{l}b_{l} + \frac{g}{l_{5}}a_{2}b_{2}A^{2} \quad (27)$$

З частном случае при B = 3 из первого уравнения системы (23) получаем выражение для квадрата наименьдей соботвенной частоты трубы с недеформируемым контуром поперечного сечения

(т.е. при колебаниях по балочной форме)

$$\omega_{\star}^{2} = \frac{\lambda^{4}}{2 + \lambda^{2}} \tag{28}$$

З. СВОЕОДНЫЕ КОЛЕБАНИЯ МНОГОСЛОЙНЫХ ЭЛЕМЕНТОВ ТРУБОПРОВОДА

КОЛЕБАНИЯ С МАЛЬМИ АМПЛИТУЛАМИ

3.Г. В качестве многослойного элемента трубопровода рас – сматривается одна многослойная обечайка в виде круговой цилиндрической оболочки конечной длинч, состоящей из чередующихся слоев одинаковой толщини (рис.2). При рассмотрении колебаний допускается не учитивать конструкцию нахлеста концов наружного и внутреннего слоев. Число слоев обозначается буквой ρ , толщина слоя оболочки – h, толщина "шва" – межслоевого зазора – $h_{\rm M}$ (рис.3).

Рис. 2. Иногослойная рулонированная обечайка

Рис. 3. Элемент многослойной оболочки в процессе деформирования

Модуль упругости материала слоя – E, козффициент Пуас – сона материала слоя – μ , жесткость "шва" на сдвиг – G. Радаус средянной поверхности оболочки – R, длина – L.

Величина h_M принимается равной удвоенной высоте микронеровностей R_z на шероховатой поверхности исходного материала слоев. Для первого класса чистоти $R_z = 320$ мкм. Соответственно $h_M = 0.6$ мм. Сдвиговая жесткость G определяется по формуле

$$G = \frac{h_{\mu}}{K_{\tau}} , \qquad (29)$$

гда К_т - коэфлициент контактной податливости, мкм-см²/кгс. Для слоев труби диаметром 1420 мм принимается К_т =

= 0,2 мкм см²/кгс. Отсюда \tilde{G} = 3000 кгс/см². В практических расчетах приведенную жестность можно принимать по данным экс-перимента.

3.2. Линейные уравнения движения.

При рассмотрении заднчи о свободних колебаниях круговой имлиндрической оболочки с малыми перемещениями используется линеаризованный вариант уравнений движения. Для каждого слоя принята гипотеза Кирхгофа-Лява.

Координата Г отсчитивается в срединной поверхности

вдоль образущией, координата \mathcal{Y} – в окружном направления, \mathbb{Z} – по нормаля к средянной поверхности к центру кривизны. Через $\mathcal{U}, \mathcal{V}, \mathcal{W}$ обозначены составляющие перемещений в направлениях $\mathcal{I}, \mathcal{Y}, \mathcal{Z}$, через φ_x, φ_y – углы поворота нормали в плоскостях $\mathcal{IZ}, \mathcal{YZ}$. Положительные направления усилий в средянной поверхности $\mathcal{I}_x, \mathcal{I}_y, \mathcal{I}_{xy}$, поперечных усилий $\mathcal{Q}_x, \mathcal{Q}_y$ и моментов $M_x, M_y, M_{xy}, \mathcal{M}_x, \mathcal{M}_y, \mathcal{M}_{xy}$ показаны на рис.4.

Рис.4. Положительные направления усилий и моментов многослойной оболочки

Уравнения движения в усилиях имеют вид:

$$\frac{\partial T_x}{\partial x} + \frac{\partial T_{xy}}{\partial y} - \rho \rho h \frac{\partial^2 U}{\partial t^2} = 0,$$

$$\frac{\partial T_y}{\partial y} + \frac{\partial T_{xy}}{\partial x} - \frac{1}{R} q_y - \rho \rho h \frac{\partial^2 U}{\partial t^2} = 0,$$

$$\frac{T_y}{R} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial^2 m_x}{\partial x^2} + \frac{\partial^2 m_y}{\partial y^2} + 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + q - -\rho\rhoh \frac{\partial^2 W}{\partial t^2} = 0,$$

$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} - q_x - q_z - \frac{\partial^2 q_x}{\partial t} = 0,$$

$$\frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x} - q_y - \gamma_z \frac{\partial^2 \varphi_y}{\partial t^2} = 0.$$
(30)

Здесь ${\mathcal{I}}_{2} = \rho h \sum_{i=1}^{\rho} {\mathcal{I}}_{i}^{2}$, ${\mathcal{Q}}_{i}$ – внутреннее давление;

ρ - плотность материала слоев;

Z; - расстояние от срединной поверхности оболочки в целом до срединной поверхности и -го слоя.

Усилия связаны с перемещениями зависимости вида

$$\begin{split} \mathcal{I}_{x} &= \mathcal{B}\left[\frac{\partial\mathcal{U}}{\partial x} + \mathcal{\mu}\left(\frac{\partial\mathcal{V}}{\partial y} - \frac{\mathcal{W}}{\mathcal{R}}\right)\right],\\ \mathcal{I}_{y} &= \mathcal{B}\left[\frac{\partial\mathcal{U}}{\partial y} - \frac{\mathcal{W}}{\mathcal{R}} + \mathcal{\mu}\left(\frac{\partial\mathcal{U}}{\partial x}\right),\\ \mathcal{I}_{xy} &= \mathcal{B}\left[\frac{1-\mathcal{\mu}}{2}\left(\frac{\partial\mathcal{U}}{\partial y} + \frac{\partial\mathcal{V}}{\partial x}\right),\\ \mathcal{M}_{x} &= \mathcal{D}_{1}\left(\frac{\partial\varphi_{x}}{\partial x} + \mathcal{\mu}\left(\frac{\partial\varphi_{y}}{\partial y}\right),\\ \mathcal{M}_{y} &= \mathcal{D}_{1}\left(\frac{\partial\varphi_{y}}{\partial y} + \mathcal{\mu}\left(\frac{\partial\varphi_{x}}{\partial x}\right),\\ \mathcal{M}_{xy} &= \mathcal{D}_{1}\left(\frac{1-\mathcal{\mu}}{2}\left(\frac{\partial\varphi_{x}}{\partial y} + \frac{\partial\varphi_{y}}{\partial x}\right),\\ \end{split}$$

I4

$$\begin{split} m_{x} &= -\mathcal{D}_{o}\left(\frac{\partial^{2}\mathcal{W}}{\partial x^{2}} + \mu \frac{\partial^{2}\mathcal{W}}{\partial y^{2}}\right), \\ m_{y} &= -\mathcal{D}_{o}\left(\frac{\partial^{2}\mathcal{W}}{\partial y^{2}} + \mu \frac{\partial^{2}\mathcal{W}}{\partial x^{2}}\right), \\ m_{xy} &= -\mathcal{D}_{o}\left(\frac{1-\mu}{2}\right) \frac{\partial^{2}\mathcal{W}}{\partial x\partial y}, \\ q_{x} &= \frac{1}{1-S} k^{2}\rho h_{m} \mathcal{G}\left(\frac{\partial\mathcal{W}}{\partial x} + \varphi_{x}\right) = k^{T} \mathcal{G}h\rho\left(\frac{\partial\mathcal{W}}{\partial x} + \varphi_{x}\right), \\ q_{y} &= \frac{1}{1-S} k^{2}\rho h_{m} \mathcal{G}\left(\frac{\partial\mathcal{W}}{\partial y} + \varphi_{y}\right). \end{split}$$
(31)

Здесь

$$B = \rho \frac{E\hbar}{1-\mu^2}, \qquad \mathcal{D}_{I} = \frac{E\hbar}{1-\mu^2} \sum_{i=1}^{\rho} g_{i}^{2}, \\ \mathcal{D}_{0} = \rho \frac{E\hbar^{3}}{12(1-\mu^2)}, \qquad \mathcal{S} = \frac{\hbar}{\hbar+\hbar_{m}}.$$
(32)

Подстановка зависямостей (30) в уравнения (31) приводит к уравнениям движения в перемещениях:

$$\begin{split} & B\left[\frac{\partial^{2}\mathcal{U}}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial^{2}\mathcal{U}}{\partial y^{2}} + \frac{1+\mu}{2} \frac{\partial^{2}\mathcal{V}}{\partial x\partial y}\right] - B \frac{\mu}{R} \frac{\partial\mathcal{U}}{\partial x} - \frac{\partial^{2}\mathcal{U}}{\partial x} - \frac{\partial^{2}\mathcal{U}}{\partial t^{2}} = 0, \\ & B\left[\frac{\partial^{2}\mathcal{U}}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial^{2}\mathcal{U}}{\partial x^{2}} + \frac{1+\mu}{2} \frac{\partial^{2}\mathcal{U}}{\partial x\partial y}\right] - \frac{\mathcal{L}}{R^{2}} U - \frac{\mathcal{B}+\mathcal{L}}{R} \frac{\partial\mathcal{U}}{\partial y} - \frac{\mathcal{L}}{R} \frac{\mathcal{Q}}{\mathcal{Q}} - \frac{\partial^{2}\mathcal{U}}{\partial t^{2}} = 0, \\ & C\nabla^{2}\mathcal{U}^{0} - \mathcal{D}_{0}\nabla^{4}\mathcal{U}^{0} - \frac{B}{R^{2}}\mathcal{U}^{0} + B\frac{\mu}{R} \frac{\partial\mathcal{U}}{\partial x} + \frac{\mathcal{B}+\mathcal{L}}{R} \frac{\partial\mathcal{U}}{\partial y} + C\left(\frac{\partial\mathcal{Q}_{x}}{\partial x} + \frac{\partial\mathcal{U}_{y}}{\partial t^{2}}\right) \\ & + \frac{\partial\mathcal{Q}_{y}}{\partial y}\right] + \mathcal{T}_{x_{0}}\frac{\partial^{2}\mathcal{U}}{\partial x^{2}} + \mathcal{T}_{y_{0}}\left(\frac{1}{R} + \frac{\partial^{2}\mathcal{U}}{\partial y^{2}}\right) - \mathcal{I}_{1}\frac{\partial^{2}\mathcal{U}}{\partial t^{2}} = 0, \\ & C\frac{\partial\mathcal{U}}{\partial x} - \mathcal{I}_{1}\left(\frac{\partial^{2}\mathcal{Q}_{x}}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial^{2}\mathcal{Q}_{x}}{\partial y^{2}} + \frac{1+\mu}{2} \frac{\partial^{2}\mathcal{Q}_{y}}{\partial x\partial y}\right) + C\varphi_{x} + \mathcal{I}_{z}\frac{\partial^{2}\mathcal{Q}_{x}}{\partial t^{2}} = 0, \\ & C\frac{\partial\mathcal{U}}{\partial y} - \mathcal{Q}_{1}\left(\frac{\partial^{2}\mathcal{Q}_{y}}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial^{2}\mathcal{Q}_{y}}{\partial x^{2}} + \frac{1+\mu}{2} \frac{\partial^{2}\mathcal{Q}_{y}}{\partial x\partial y}\right) + \mathcal{L}\mathcal{C}\varphi_{y} + \mathcal{I}_{z}\frac{\partial^{2}\mathcal{Q}_{y}}{\partial t^{2}} = 0, \\ & I = 0, \\ &$$

Злесь

Граничные условия на краях для : кнутой оболочки длиной I. поинимаются в следующем виде:

$$x = 0$$
, $x = L$, $U^{\dagger} = U^{\dagger} = \varphi_y = M_x = 0$,
 $T_x = T_{x_0}$, $T_y = T_{y_0}$, (34)

Г_{xo} - сжимающие (или растягивающие) усилия, равномерно приложенные к торцам оболочки; гле

*Т*₄₀ - окружные усилия от действия внутреннего давления.

Решения для форм колебания, удовлетворяющие принятым граничным условиям, имеют вид:

$$\mathcal{U} = \mathcal{U}_{o} \cos \frac{m\pi x}{L} \sin \frac{ny}{R} e^{i\omega t},$$

$$\mathcal{U} = \mathcal{V}_{o} \sin \frac{m\pi x}{L} \cos \frac{ny}{R} e^{i\omega t},$$

$$\mathcal{U} = \mathcal{W}_{o} \sin \frac{m\pi x}{L} \sin \frac{ny}{R} e^{i\omega t},$$

$$\mathcal{Q}_{x} = \mathcal{Q} \cos \frac{m\pi x}{L} \sin \frac{ny}{R} e^{i\omega t},$$

$$\mathcal{Q}_{y} = \mathcal{V} \sin \frac{m\pi x}{L} \cos \frac{ny}{R} e^{i\omega t}.$$
(35)

Здесь /// - число продольных подуволи;

Л - число волн в окружном направлении:

 ω – частота колебаний.

Подстановка выражений (35) в уравнения движения (33) приводит к системе пяти линейных алгебраических однородных уравнений, которую можно представить в виде

$$(\bar{A} - \omega^2 \bar{E}) \bar{U} = 0, \qquad (36)$$

где \vec{E} – единичная матрица; \vec{V} – вектор-столбец амплитудных значений динамических це-ремещений (U, U, W) и углов поворота (φ_x , φ_y);

I6

 симметричная матрица упругих коэфтициентов, зависящих от геометрических и механических характеристик оболочки. Элементы матрицы А вычисляются по следувщим формулам:

$$\begin{split} \mathcal{Q}_{II} &= \frac{\mathcal{P}}{\mathcal{H}} \left[\left(\frac{m\overline{n}}{\mathcal{L}} \right)^2 + \frac{J - \mu}{2} n^2 \right]^{\prime}, \\ \mathcal{Q}_{I2} &= \frac{\mathcal{P}(I + \mu) m \overline{n} n}{2 \mathcal{H} \ell} , \\ \mathcal{Q}_{I3} &= \mathcal{P} \frac{\mu m \overline{n}}{\mathcal{H} \ell} , \qquad \mathcal{Q}_{I4} = \mathcal{Q}_{I5} = \mathcal{Q} , \\ \mathcal{Q}_{22} &= \frac{\mathcal{P}}{\mathcal{H}} n^2 + \mathcal{P} \frac{J - \mu}{2 \mathcal{H} \ell} m^2 \overline{n}^2 , \\ \mathcal{Q}_{23} &= \frac{\mathfrak{D} + \mathcal{P}}{\mathcal{H}} n , \end{split}$$

$$\begin{aligned} \mathcal{Q}_{24} = \mathcal{Q} , \qquad \mathcal{Q}_{25} = \frac{\mathcal{D}}{\sqrt{H}} \xi , \\ \mathcal{Q}_{33} = \frac{\mathcal{P}}{\mathcal{I}\mathcal{Z}\mathcal{H}z^2} \left(\frac{m\pi}{\mathcal{P}}\right)^4 + \frac{\mathcal{P}}{\mathcal{G}\mathcal{H}} \left(\frac{m\pi}{\mathcal{P}z}\right)^2 + \frac{\mathcal{P}}{\mathcal{I}\mathcal{Z}\mathcal{H}z^2} \mathcal{I}^4 + \\ &+ \frac{\mathcal{Q}\mathcal{H}z}{\mathcal{H}} \left(\frac{m\pi}{\mathcal{P}}\right)^2 + \frac{\mathcal{Q}\mathcal{H}z}{\mathcal{H}} \mathcal{I}^2 + \frac{\mathcal{P}\mathcal{H}z}{\mathcal{H}z} , \\ \mathcal{Q}_{34} = \frac{\mathcal{D}}{\mathcal{V}\mathcal{H}} \xi \frac{m\pi}{\mathcal{P}} , \qquad \mathcal{Q}_{35} = \frac{\mathcal{D}}{\mathcal{V}\mathcal{H}} \xi \mathcal{I} , \\ \mathcal{Q}_{44} = \left(\frac{m\pi}{\mathcal{P}}\right)^2 + \frac{\mathcal{I}\mathcal{H}}{\mathcal{Q}} \mathcal{I}^2 + \mathcal{D}\xi^2 , \\ \mathcal{Q}_{45} = \frac{\mathcal{I}\mathcal{H}}{\mathcal{Q}} \left(\frac{m\pi}{\mathcal{P}}\right)^2 + \frac{\mathcal{I}\mathcal{L}}{\mathcal{Q}} \mathcal{I}^2 , \end{aligned}$$
(37)

$$\mathcal{D} = \frac{\mathcal{H}\mathcal{G}(1-\mu^2)}{\mathcal{E}h(1-s)}$$

Кроме того, введены безразмерные параметры:

$$\ell = \frac{L}{R} , \quad \widetilde{H} = \frac{H}{\hbar} , \quad z = \frac{R}{\hbar} , \quad \xi^2 = \frac{R^2}{\sum_{i=1}^{p} Z_i^2} ,$$

$$\omega_{\star} = \omega R \left| \left\langle \frac{\rho(l-\mu^2)}{E} \right\rangle, \quad \widetilde{T}_{x} = \frac{T_{x}}{E\hbar} (l-\mu^2), \quad \widetilde{T}_{y} = \frac{T_{y}}{E\hbar} (l-\mu^2). \quad (38)$$

Волнистые линии над обозначениями безразмерных величин в (37) опущены.

Однородная система линейных алгебраических уравнений (36) имеет ненулевое решение при условии равенства нулю ее опреде – лителя

$$det\left(\overline{A}-\omega_{*}^{2}\overline{E}\right)=0.$$
(39)

Из этого уравнения находятся квадраты частот свободных колебаний, являющиеся собственными числами матрицы \overline{A} . Таким образом, задача свелась к определению собственных чисел и собственных векторов матрицы пятого порядка \overline{A} , элементы которой определяются выражениями (37).

3.4. Частоты и формы колебаний.

Расчети выполнены по стандартной программе, реализующей метод вращений, для машин единой системы ЭВМ. Геометрические и физические параметры оболочек варьировались в пределах: R/H – от IO до 500, L/R – от 0,5 до 50, число слоев ρ – от 2 до IO, отношение сдвиговой хесткости швов C к модулс упругости слоев E – от 0 до 0,5. Величина S принимала значения 0,67 и 0,95. Число полуволы в продольном направлении изменялось от C до I2, число окружных волн /7 – от I до I3.

Проведены вычисления без учета внешних нагрузок и при действии сжимающих равномерно распределенных по окружности усилий, а также внутреннего давления.

Расчеты дают пять значений \mathcal{W}_{*} , соответствующих попереч – ным, тангенциальным и сдвиговым колебаниям. Результаты представлены в виде таблиц, содержащих все значения \mathcal{W}_{*} для произвольного сочетания \mathcal{M} и \mathcal{N} . Порядок расположения \mathcal{W}_{*} в столбцах следующий (снизу вверх): поперечные, тангенциальные, сдвиговые.

18

где

Примерь вычислений приведены в табл.2 (приложение). В шапке каждого примера указаны значения R/H (обозначено RH); L/R; G, ...rc/ck²; число слоев P (обозначено A); h_{∞} , cm (HM); H_{2} ск; Q, кгс.c²/ск⁴; μ ; E, кгс/см²; $T_{x_{o}}$ (TXO); $T_{y_{o}}$ (TYO).

КОЛЕБАНИЯ С АМПЛИТУДАМИ ПОПЕРЕЧНЫХ ПЕРЕМЕТЕНИ: ПОРЯДКА ТОЛЩИНЫ ОБОЛОЧКИ

3.5. Колебания элемента трубопровода в виде многослойной оболочки с амплитудами поперечных перемещений порядка толщины описываются нелинейными уравнениями движения. Нелинейные уравнения в перемещениях имеют вид:

$$C \nabla^{2} \mathcal{W} - \mathcal{D}_{0} \nabla^{4} \mathcal{W} + \frac{\mathcal{C}}{\mathcal{B}R(1-\mu^{2})} \left(\frac{\partial^{2}F}{\partial x^{2}} - \mu \frac{\partial^{2}F}{\partial y^{2}} \right) + \frac{\mathcal{C}}{R^{2}} \mathcal{W} - \frac{\mathcal{C}}{2R} \left(\frac{\partial \mathcal{W}}{\partial y} \right)^{4}$$

$$+ C \left(\frac{\partial \varphi_{x}}{\partial x} + \frac{\partial \varphi_{y}}{\partial y} \right) + L \left(\mathcal{W}, F \right) + \frac{1}{R} \frac{\partial^{2}F}{\partial x^{2}} - \mathcal{I}_{1} \frac{\partial^{2} \mathcal{W}}{\partial t^{2}} = \mathcal{O},$$

$$\mathcal{D}_{1} L \left(\varphi_{x}, \varphi_{y} \right) - C \varphi_{x} - C \frac{\partial \mathcal{W}}{\partial x} - \mathcal{I}_{2} \frac{\partial^{2} \varphi_{x}}{\partial t^{2}} = \mathcal{O},$$

$$\mathcal{D}_{1} L \left(\varphi_{y}, \varphi_{x} \right) - C \varphi_{y} - C \frac{\partial \mathcal{W}}{\partial y} - \frac{\mathcal{C}}{R} \mathcal{V} - \mathcal{I}_{2} \frac{\partial^{2} \varphi_{y}}{\partial t^{2}} = \mathcal{O},$$

$$\frac{1}{\mathcal{B}(1-\mu^{2})} \nabla^{4}F = L \left(\mathcal{W}, \mathcal{W} \right) - \frac{1}{R} \frac{\partial^{2} \mathcal{W}}{\partial x^{2}},$$

$$(40)$$

где *F* - функция усилий в срединной поверхности, определяемая соотношениями

$$T_x = \frac{\partial^2 F}{\partial y^2}, \quad T_y = \frac{\partial^2 F}{\partial x^2}, \quad T_{xy} = -\frac{\partial^2 F}{\partial x \partial y}.$$
 (41)

I9

В уравнениях (40) введены следующие дифференциальные операторы:

$$L(\mathcal{W},F) = \frac{\partial^2 \mathcal{W}}{\partial x^2} \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 \mathcal{W}}{\partial y^2} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 \mathcal{W}}{\partial x \partial y} \frac{\partial^2 F}{\partial x \partial y},$$

$$L(\varphi_{x},\varphi_{y}) = \frac{\partial^{2}\varphi_{x}}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial^{2}\varphi_{x}}{\partial y^{2}} + \frac{1+\mu}{2} \frac{\partial^{2}\varphi_{y}}{\partial x\partial y}, (x=y),$$

$$L(\mathcal{W},\mathcal{W}) = \left(\frac{\partial^{2}\mathcal{W}}{\partial x\partial y}\right)^{2} - \frac{\partial^{2}\mathcal{W}}{\partial x^{2}} \frac{\partial^{2}\mathcal{W}}{\partial y^{2}}.$$
(42)

Общие выражения для радиального прогиба и углов поворота должны удовлетворять условиям периодичности, которые можно записать в виде

$$\mathcal{W}(\boldsymbol{x},\boldsymbol{y},t) = \mathcal{W}(\boldsymbol{x},\boldsymbol{y}+2\boldsymbol{\pi}\boldsymbol{R},t),$$

$$\frac{\partial^{\kappa}\boldsymbol{W}}{\partial\boldsymbol{y}^{\kappa}}(\boldsymbol{x},\boldsymbol{y},t) = \frac{\partial^{\kappa}\boldsymbol{W}}{\partial\boldsymbol{y}^{\kappa}}(\boldsymbol{x},\boldsymbol{y}+2\boldsymbol{\pi}\boldsymbol{R},t), \quad (\boldsymbol{K}=1,2,3,4),$$

$$\mathcal{U}(\boldsymbol{x},\boldsymbol{y},t) = \mathcal{V}(\boldsymbol{x},\boldsymbol{y}+2\boldsymbol{\pi}\boldsymbol{R},t),$$

$$\frac{\partial \mathcal{U}}{\partial\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y},t) = \frac{\partial \mathcal{U}}{\partial\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}+2\boldsymbol{\pi}\boldsymbol{R},t). \quad (43)$$

Из последнего условия следует

$$\oint \frac{\partial v}{\partial y} \, dy = 0.$$

3.6. Метод и алгоритм решения.

Функции прогиба и углов поворота нормали к срединной поверхности принимаются в виде

$$\begin{split} \mathcal{W}(x,y,t) &= f_{1} \sin \lambda_{x} \cos \pi y - f_{0} \sin^{2} \lambda_{x}, \\ \varphi_{x}(x,y,t) &= \varphi_{1} \cos \lambda_{x} \cos \pi y - \varphi_{0} \sin 2\lambda_{x}, \\ \varphi_{y}(x,y,t) &= \Psi_{1} \sin \lambda_{x} \sin \pi y, \\ \text{где} \qquad f_{1}, f_{0}, \varphi_{1}, \varphi_{0}, \Psi_{1} - \varphi_{y} \text{нкций времени;} \\ \lambda &= \pi \pi \pi R \\ \text{ный} \qquad \lambda &= \frac{\pi \pi R}{L}. \end{split}$$

Условие малости окружной деформации срединной поверхности 2ля

$$\int_{O} \mathcal{E}_{y} d_{y} \approx 0$$

приводит к зависимости для f_o и ϕ_o , подстановка которых в (44) дает следующие выражения для аппроксимирующих функций: 20

$$\begin{split} \mathcal{W} &= f_1 \sin \Lambda_x \cos \pi y - \frac{\pi^2}{4} f_1^2 \sin^2 \Lambda_x ,\\ \varphi_x &= \varphi_1 \cos \lambda_x \cos \pi y - \frac{\pi^2}{4} \varphi_1^2 \sin 2 \Lambda_x ,\\ \varphi_y &= \Psi_1 \sin \Lambda_x \sin \pi y . \end{split} \tag{45}$$

После подстановки (45) в уравнение неразрывности деформаций – четвертое уравнение (40) – интегрированием находится выражение для функции усилий. Затем применение метода Бубнова – Галеркина к первым трем уравнениям (40) даст обыкиовенные дифференциальные уравнения относительно амплитуд поперечных перемещений f_1 и углов поворота нормали к срединной поверхности φ_1 , Ψ_1

$$\frac{d^{2}f_{1}}{dt^{2}} + Q^{2}f_{1} + 2\mathcal{Z}f_{1}\left[\left(\frac{df_{1}}{dt}\right)^{2} + f_{1}\frac{d^{2}f_{1}}{dt^{2}}\right] + \delta f_{1}^{3} + gf_{1}^{5} + a_{1}\varphi_{1} + a_{2}\psi = 0,$$

$$\frac{d^{2}\varphi_{1}}{dt^{2}} + \vartheta_{1}^{3}\varphi_{1} + 2\vartheta_{2}^{3}\varphi_{1}\left[\left(\frac{d\varphi_{1}}{dt}\right)^{2} + \varphi_{1}\frac{d^{2}\varphi_{1}}{dt^{2}}\right] + \vartheta_{3}^{3}f_{1} - \vartheta_{4}^{3}\psi_{1} = 0,$$

$$\frac{d^{2}\psi}{dt^{2}} + \xi_{1}\psi - \xi_{3}f_{1} - \xi_{4}\varphi_{1} - \xi_{5}f_{1}^{3} = 0.$$
(46)

Здесь

$$\begin{split} \Omega^{2} &= \frac{1}{\zeta_{1}} \left[\frac{\mathcal{D}_{0}}{R^{2}} \gamma^{2} + C \gamma + \frac{C \lambda^{2} (\lambda^{2} - \mu n^{2}) + \tilde{B} \lambda^{4}}{r^{2}} - C \right], \\ \mathcal{X} &= \frac{3}{16} n^{4}, \quad g = \frac{3 \tilde{B} \lambda^{4} n^{8}}{16 \zeta_{1}} \left(\frac{1}{\sigma^{2}} + \frac{1}{\sigma^{2}} \right), \\ \delta &= \frac{1}{\zeta_{1}} \left[\frac{\mathcal{D}_{0}}{R^{2}} \lambda^{4} n^{4} - \frac{C n^{4} (1 - \lambda^{2})}{4} + \frac{\tilde{B} \lambda^{4}}{16} + \frac{C \lambda^{2} n^{4} (\lambda^{2} - \mu n^{2}) - 4 \tilde{B} \lambda^{4} n^{4}}{4 r^{2}} \right], \quad \zeta_{1} = \frac{\rho h E}{(1 - \mu^{2})}, \\ \mathcal{V}_{1}^{1} &= \frac{\mathcal{D}_{1}}{\zeta_{2}} \left(\lambda^{2} + \frac{1 - \mu}{2} n^{2} \right) + \frac{C}{\zeta_{2}} R^{2}, \quad \mathcal{V}_{2}^{3} = \frac{n^{4}}{4}, \quad \mathcal{V}_{3}^{3} = \frac{C \lambda}{\zeta_{2}} R^{2}, \end{split}$$

2**I**

При анализе гармонических нелинейных колебаний решение (46) принято в виде

$$f_{I} = A \cos \omega t ,$$

$$\varphi_{I} = B \cos \omega t ,$$

$$\Psi_{I} = C \cos \omega t .$$
(48)

Подстановка этого решения в уравнения движения (46) и применение метода Бубнова-Галеркина приводит систему к виду

$$(-\omega_{*}^{2} + \Omega^{2})A - \mathcal{X}\omega_{*}^{2}A^{3} + \frac{3}{4}\delta A^{3} + \frac{5}{8}gA^{5} + a_{1}B - a_{2}C = 0,$$

$$(-\omega_{*}^{2} + \vartheta_{1})B - \vartheta_{2}^{4}\omega_{*}^{2}B^{3} + \vartheta_{3}^{5}A - \vartheta_{4}U = 0,$$

$$(-\omega_{*}^{2} + \xi_{1})C - \xi_{3}A - \xi_{4}B - \frac{3}{4}\xi_{5}A^{3} = 0.$$
(49)

Приравнивание нуло матриць, составленной из коэффициен – тов, при амплитудах A, B, C приводит к частотному уравне – нию, которое может быть представлено в виде многочлена третьего порядка относительно квадрата частоты ω_{\star}^2 с коэффициентами, нелинейно зависяциих от амплитуцы перемедений,

$$\omega_{*}^{6} - K_{1}\omega_{*}^{4} + K_{2}\omega_{*}^{2} - K_{3} = 0.$$
 (50)

Коэффициенты $K_7 - K_3$ связаны с (47) следующими соотно – шениями: $O^2 + \frac{3}{2} \delta \Delta^2 + \frac{5}{2} \sigma A^4$

$$\mathcal{K}_{1} = \mathcal{Q}_{3} + \frac{\mathcal{Q}^{2} + \frac{\mathcal{Q}}{4}\delta A^{-} + \frac{\mathcal{Q}}{8}gA^{-}}{1 + \mathcal{X}A^{2}}$$

$$K_{2} = \alpha_{4} + \frac{\alpha_{3} \Omega^{2} + \alpha_{1} \mathcal{V}_{3}^{4} + \alpha_{2} \xi_{3} + \frac{3}{4} (\alpha_{3} \delta - \alpha_{2} \xi_{5}) A^{2} + \frac{5}{8} \alpha_{3} g A^{4}}{1 + \mathcal{X} A^{2}},$$

$$K_{3} = \frac{1}{1 + \mathcal{X} A^{2}} \int \alpha_{4} \Omega^{2} - \alpha_{1} \alpha_{5} - \alpha_{2} \alpha_{5} + \frac{3}{4} (\alpha_{4} \delta + \alpha_{1} \xi_{5} \mathcal{V}_{4}^{1} - \alpha_{5} - \alpha_{5} \alpha_{5} + \frac{3}{4} (\alpha_{4} \delta + \alpha_{5} \xi_{5} \mathcal{V}_{4}^{1} - \alpha_{5} \delta_{5}) A^{2} + \frac{3}{4} (\alpha_{5} \delta - \alpha_{5} \delta_{5}) A^{2} + \frac{3}{4}$$

$$\begin{aligned} \zeta_{3} &= \frac{1}{1+\mathcal{X}A^{2}} \left[a_{4} \mathcal{Q}^{2} - a_{1}a_{5} - a_{2}a_{6} + \frac{1}{4} (a_{4}\delta + a_{1}\xi_{5}V_{4} - a_{2}\xi_{5}V_{1})A^{2} + \frac{5}{8}a_{4}gA^{4} \right]. \end{aligned}$$

RPOME TOFO,

$$\begin{aligned} \mathcal{Q}_{3} &= \mathcal{V}_{1}^{h} + \xi_{1}, & \mathcal{Q}_{4} &= \mathcal{V}_{1}^{h}\xi_{1} - \mathcal{V}_{4}^{h}\xi_{4}, \\ \mathcal{Q}_{5} &= \mathcal{V}_{3}^{h}\xi_{1} - \mathcal{V}_{4}^{h}\xi_{3}, & \mathcal{Q}_{6} &= \mathcal{V}_{1}^{h}\xi_{3} - \mathcal{V}_{3}^{h}\xi_{4}. \end{aligned} \tag{51}$$

Наименьший корень уравнения, соответствующий поперечным колебаниям, можно найти по формуле

$$\left(\omega_{\star}^{2}\right)_{H\mathcal{E}\mathcal{I}} = \widetilde{\omega}_{\star}^{2} = \frac{\mathcal{K}_{3}}{\mathcal{K}_{2}} + \left(\frac{\mathcal{K}_{3}}{\mathcal{K}_{2}}\right)^{2} \frac{\mathcal{K}_{1}}{\mathcal{K}_{2}}$$
(52)

Если пренебречь в (49) нелинейными членами, будет найдена частота ω_* линейных колебаний с малыми амплитудами. Уравне – ние скелетной кривой, характеризующей амплитудно-частотную зависимость для нелинейных колебаний, будет представлено в виде

$$\mathbf{v} = \widetilde{\omega}_{\star} / \omega_{\star} . \tag{53}$$

Пример расчета І

Выполнить расчет и анализ частот собственных колебаний трубопроводов при двух вариантах конструкций многослойных труб.

Вариант I. Труба состоит из 7 четирежслойных обечаек.

<u>Вариант 2</u>. 5 четырехслойных и две однослойные обечайки (той же толщины) установлены по концам.

Диаметр труб -1420 мм, суммарная толщина 16,4 мм.

Результаты вичислений нижней части спектра собственных частот труб при различных значениях отношения длины трубопро – вода к радиусу поперечного сечения (L/R = 5, IO, 25, 50, IOO) представлены на рис.5 и 6 в виде зависимостей частоты от числа волн // в окружном направлении. Волновой параметр /// был принят равным единице, так как именно этому его значению отвечают наименьшие собственные частоты. Величины приведенной ци-

Рис.5. Частотные кривые трубопровода І-го конструктивного варианта

Рис.6. Частотные кривые трубопровода 2-го конструктивного варианта

линдрической жесткости \mathcal{D}_{nP} , соответствующие обоям вариантам, найденные по формулам (I)-(3), равны соответственно I,7·10⁵ и 3,48·10⁵ кгс·см.

Приведенные графики свидетельствуют о том, что наименьшая собственная частота трубы не всегда соответствует наиболее простой балочной форме колебания. При определенном значении геометрических или жесткостных параметров минимум $\omega_{L/P}$ смещается в сторону более сложных форм. Так, например, для трубы варианта I при L/R = 5 наименьшая собственная частота соот - ветствует трем волнам в окружном направлении, при L/R = 10,25 - двум, а при L/R = 50 и выше - одной.

На рис.7,8 выполнено графическое определение предельной длины. Для труб вариантов I и 2 она оказалась равной 28 и 23 соответственно.

Значения предельной длини, подсчитанные по формуле (20), равны 28,09 к 23,6. Результаты совпадают.

Рис.7. Зависимость низшей частоты от длины трубопровода I-го конструктивного варианта

Рис.8. Зависимость низшей частоты от длины трубопровода 2-го конструктивного варианта

На рис.9 показана зависимость предельной длины от параметра приведенной жесткости (10).

По формуле (19) были получены значения предельных длин труб, находящихся под действием внутреннего давления. Резуль – таты расчетов отражены на рис. Ю, из которого следует, что предельная длина при наличии давления резко уменьшается. При этом, чем тоньше труба, тем влияние внутреннего давления существенней.

Рис.9. Зависимость предельной длины от параметра приведенной жесткости

Выполненный анализ распределенля минимальных собственных частот конструктивно-неоднородных многослойных труб позволяет сделать некоторые выводы.

Минимальные частоты не всегда соответствуют наиболее простой балочной форме колебаний. При определенных соотношениях геометрических и жесткостных характеристик это могут быть колебания с $\Lambda = 2;3$.

Рис.10. Зависимость предельной дляны от величины внутреннего давления

Пример расчета 2

Вичислить частоть связанных колебаний (при M = I, n = Iи 2) четнрехолойной трубы II конструктивного варианта (см. пример I) с размерами: днаметр I420 мм, толщана I6,4 мм при значениях параметра длины L/R = I0-80.

Основные результаты расчетов представлены на рис.II. Как следует из рис.II, учет овализации при рассмотрении колебаний трубопровода по форме с одной полуголной в пролете приводит к некоторому снижению частоты по сравнению со значением, найденным по линейному расчету во всем диапазоне длин. График имеет точку перегиба, правее которой частоти соответствуют преимущественно изгибным колебаниям с овализацией, а левее - преимущественно овализационным колебаниям с наложенным изгибом. Эта точка определяет на горизонтальной координатной оси значение предельной длины трубопровода. Из графика видно, что с увели чением амплитуды колебания предельная длина уменьшается. Накбольшее отличие результатов расчета по линейной и нелинейной

Рис.II. Зависимость низшей частоты колебаний от относительной длины пролета

(с учетом связанноста форм) теории наблюдается для труб с длиной, близкой к предельной (~25%).

На рис.12 представлены амплитудно-частотные зависимости нелинейных связанных колебаний рассматриваемой составной тру – бы. По вертикальной оси отложена безразмерная амплитуда нормального перемещения.

Как следует из рис.12, наибольшая нелинейность наблюдается у трубы с парамстрами L/R = 25. Это объясняется совпадением этого параметра с величиной предельной длины трубы при подученном значении приведенной жесткости.

Влияние \mathcal{D}_{PP} на собственные частоты нелинейных колебаний отражено на рис.I3. Расчетные точки грајика соответствуют значениям козфициента нелинейности $\sqrt{-\omega_*/\omega_*}$, полученным пол величине безразмерной амплитуды, равной $\widetilde{A} = AR^2/L_{,dля}^2$ для длан труб, равных предельным для каждого значения приведенной жесткости.

Таким образом, по данным выполненного анализа резу - льтатов нелинейного расчета можно сделать вывод о том, что

Рис.12. Амплитудно-частотные зависимости для нелинейных связанных колебаний трубы

Рис.I3. Зависимость параметра ∛= $\widetilde{\omega}_{*}/\omega_{*}$ от приведенной жесткости трубы

نەر

пренебрежение связанностью форм колебания с /2 = I и /2 = 2для труб с околопредельной длиной может привести к заметным неточностям в определении минимальной частоты трубы при больших прогибах (к ее завышению). В особенности это относится к многослойным трубам, составленным из большого числа слоев, когда снижение значения приведенной цилиндрической жесткости становится существенным.

Пример расчета 3

Исследовать влияние физических и геометрических парамет – ров элементов трубопроводных систем на амплитудно-частотные зависимости, соответствующие нелинейным колебаниям многослой – ных элементов трубопроводов.

Вычисления проводились по формулам (51) и (53). По результатам вычислений построены приведенные ниже графики.

Графики на рис. 14, 16, 18 относятся к оболочкам с R/H = >>>>.

Гис. I4. Влияние числа слоев на амплитудно-частотные зависимости колебаний оболочек по форме с m = 1, n = 5

レト

Вел. чина L/R для оболочек, поведение которых иллюстрируется на рис.14,16,19, принята равной 5. Графики на рис.17 построени для оболочек с параметрами R/H = 147, L/R = 3,64.

При вычислении данных для графиков рис. 14, 15, 18, 19 было принято $G/E = 1 \cdot 10^{-4}$, для рис. 17 $-G/E = 5 \cdot 10^{-5}$.

Рис. 15. Скелетные кривые для пятислойной оболочки при ее колебаниях по формам с одной полуволной в продольном направлении

На рисунках указаны значения параметров η^2 и U^2 $\eta^2 = \eta^2 H/R$, $U^3 = \Lambda/\eta$.

Графики рис. I4 демонстрируют влияние числа слоев оболочки
с коэффициентом армирования
$$S = 0.9$$
 на особенности нелинейных
колебаний по форме с $M = 1$, $N = 5$; как видно из рисунка, уве-
личение числа слоев приводит к изменению характера колебаний.
При дальнейшем увеличении числа слоев нелинейная характеристи-
ка из "жесткой" превратится в "мягкую".

На рис. I5 представлены скелетние кривые для пятислойной соболочки при ее колебаниях по формам с одной полуволной в продольном направления. Числу окружных волн n = 6 соответствует нелинейность "жесткого" типа, а при n = 10 и более она сказывается существенно "мягксй". Увеличение жесткости "швов", т.е. рост параметра *G/E* вызывает увеличение частоты колебаний многослойной оболочки. Влияние этого параметра на нелинейность амплитудно-частотных характеристик стражено на рис.16.

Рис. I6. Влияние параметра сдвиговом жесткости на амплитудно-частотные зависимости

Наибольшая нелинейность "жесткого" типа соответствует многослойной оболочке, лишенной связей сдвига между слоями. По мере возрастания сдвиговой жесткости G нелинейность вначале уменьшается, затем меняет характер на "мягкий" и при дальней – шем увеличении усиливается в "мягкур" сторону. Скелетная кривая приблилается к зависимости, полученной для сплошной оболочки.

Влияние коэффициента S на колебания пятислойной оболочки по форме $\mathcal{M} = \mathbf{I}$, $\mathcal{N} = 5$ иллюстрируется графиками на рис.17. Снижение коэффициента S приводит к перемещению скелетной кривой вправо. Это вполне согласуется с графиками рис.16: уменьшение как \mathcal{G} , так и S приводит к одному и тому же результату – росту податливости "шва", т.е. влияние этих пара – метров на нелинейное поведение многослойной оболочки должно быть количественно одинаковым.

Рис. I7. Влияние коэффициента S на колебания пятислойной оболочки по форме /// = I, // = 5

На рис. 18 приведены амплитудно-частотные характеристики колебания оболочки различной длины. Формы волнообразования (значения /// и //) отвечают минимальным частотам малых колебаний, найденным из рассмотрения спектра частот линейных колебаний многослойной оболочки. Графики относятся к пятислойным оболочкам со значениями параметра L/R = 2, 5, 10. Соответствующие параметры волнообразования оказались равными // = = 3, 5, 8. Нелянейный эффект оказался тем существенней, чем короче оболочка. Влияние относительной толщины R/H отражают кривне, показанные на рис.19. Оба графика, относящиеся к R/H == IOC, 500, построены для формы M = I, n = 5. Чем меньше R/H(т.е. чем выше относительная толемна оболочки), тем существенней нелинейность "мяткого" типа. При сольших значениях R/H скелетная кривая отражает "жесткий" режим колебаний с усиливающейся нелинейностью этого типа по мере дальнейшего возрастания относительной толлины оболочки.

Рис.18. Амплитудно-частотные характеристики колебани: сболочки различной длины

Рис.19. Скелетные кривые

Примеры вычислении честот собственных колебании при келых прогисах

	- RP= 566.	L/ =	= ,'	G ≟ 2 ∜ , X ₀ = Ø ;	A= 1. 8009 T	41t. = 5. 4 10=0 = 0004	1 35 : ні	· *.(1	R0= 0.00	1, 1790	MJ=	37 E= 2	2128204.8	
- N - M		;	7	3	: : :	R.	6	7	8	9	.*	11	12	′2
	3.282 23.27/ 4.918 3.522 4.332	23.3.4 23.4 1.3 0.1 1.1 0.1 1.1	23.308 23.307 2.955 1 140 2 918	23.4"5 23.24 2.377 1.64	23.623 23.397 3.727 2.148 0.924	22.813 23.464 4 593 4 670 4 670	2 6 . 2 6 . 3 . 4 ' 6 . 7 :	24-312 23-642 6-349 3-728 9-633	24.610 23.753 7.232 4.247 6.941	24.961 13.878 8.119: 4.774: 0.848	25.339 24.317 9.026 5.322 	25.750 24.167 9.895 5.830 9.870	6.193 4.235 10 /85 6.259 0.361	2 - 666 2 - 514 3 - 675 6 - 887 - 6 - 887
?	23.283: 23.283: 1.188: 0.867: 0.665:	23.3 9 23.275 1 546 8,908 8.908	23,353 73 316 2 241 1 326 5 2 15	3.243 3.243 3.498 1.748	23,648 23,416 3,844 2,238 8,275	23 038 23 473 4,691 2,739 2,739	2 · · · · · · · · · · · · · · · · · · ·	24 - 336 73 - 651 6 - 421 3 - 768 8 - 242	23.762 7.296 4.288 9.945	24.985: 73.887: 8.176: 4.811: 0.952:	25 363 24 025 5 858 5 335 1 061	25.773 24.170 9.942 5.860 2.4.171	6 - 16 24 - 244 6 - 28 6 - 285 9 - 882	20.688 24.523 11.716 0.912 5.093
3	3.356: 23.3.2: 1.714: 6.997: 3.639:	23.371: 73.375; 1.961; 1.433; 8.594;	23,475 23,330 2,537 1,5-5 0,366	<pre></pre>	23.650 23.420 4.033 2.373 0.150	25,879 22,487 4,649 2,648 2,648	24.19 2559 3.08 3.31 8.79	4 - 377 23 - 666 6 - 548 3 - 845 8 - 845	24.683 23.776 7.492 4.355 8.866	23.901 8.270 4.876 2.061	25.401 24.040 9.144 5.3c8 2.066	23 (811 24 - 192 13 - 821 5 - 984 3 - 874	26.253 24.258 3 789 6 433 8 984	26./25 24.537 1782 0.952 2.952
4	73.321 73.321 2.267 1.330 0.846	23.430 23.379 2.449 1.489 8.722	23.404 23.351 2.972 1.779 0.401	23.000 23.389 3.568 2.134 2.336	23.748 23.441 4.267 2.543 3.234	23,937 23,5ø8 5,865 2,991 8,169	24.1.5 23,5 Ø 3,5 Ø 3,4 2 4,2	24 + 433 23 + 686 6 + 183 3 + 958 8 , 181	24 . 738 23 . 797 547 4 . 447 8 . 886	25.020 23.921 8.471 4.952 8.079	25,456 2~ 060 5,262 5.462 6 078	25.865 24,212 14.129 5.975 9.082	6.206 4.278 1.288 6.491 8.298	20,777 24,557 51,875 6.959 2,399
5	23.485: 23.348: 2.824: 1.662: 8.849:	23.506 23.355 2.965 1.777 8.756	23.570 23.378 3.345 2.632 0.583	23.676 23.415 3.978 2.559 0.435	23.823 23.467 4.597 2.739 0.316	24.011 23.534 5.331 3.160 0.237	24.239: 23.06: 6.16' 0.20:	24 • 506; 23 • 712; 6 • 908; 4 • 479; 8 • 145;	24.818: 23.025: 7./38: 4.562: 8.120;	(25,150) (3,947) (3,566) (5,055) (1,135)	25,525 24 006 9.413 5.555 0.897	25.934 24.238 15.267 6.968 0.896	6.375 24.403 11.128 6.569 8.899	26.643 24.582 1.593 7.681
8				· · · ·			 							
5	23.577 23.380 3.383 1.995 4.65#	23,598 23,388 3,583 2,083 4,083 4,786	23.662 23.418 3.848 2.383 0.649	23.767 23.448 4.341 2.602 8.308	23.914 23.560 4,954 2.956 0.392	24.162 23.567 5.641 3.352 8.384	24.329 23.648 6.379 5.779 0.239	24.594 23.744 7.151 4.239 8.192	24.898; 23.855; 7.949; 4.697; 0.159;	23.979: 23.979: 8.764: 5.177: 8.136:	25.618 24.117 9.594 5.666 8.122	26.817 24.269 10.433 6.161 0.115	20.450 24.434; 11.282; 6.663; 8.113;	20.924 24.613 12.136 7.168 0.117
7	23.686 23.419 3.943 2.327 6.651	23.747 23.426 4.846 2.399 8.874	23.770 23.449 4.338 2.590 9.695	23.875 23.486 4.785 2.861 9.579	24.021 23.538 5.347 3.190 9.458	24.298 23.695 5.989 3.562 9.366	24:434: 23.686: 61689: 31968: 4.295:	24.599 23.782 7.429 4.409 \$.241	25.899 23.892 6.299 4.851 9.291	25.338: 24.916: 8.993: 5.317: 9.171:	25.718 24.154 9.803 5.794 2.151	26.116 24.306 10.627 6.279 9.130	26.552; 24.471; 11.461; 6.771; 8.132;	2/.019 24.649 12.303 7.269 0.131
8	23.8192 23.463 4.5042 2.6692 3.851	23.831 23.478 4.594 2.798 8.816	23.894 23.493 4.652 2.867 Ø.728	23.909 23.538 5.254 3.133 8.619	24.144 23.502 5,769 3.438 8,514	24.330 23.649 6.368 3.789 9.423	24.555: 23.7*0: 7.039: 4.174: 0.348:	24.818 23.826 7.738 4.587 8.289	25,119; 23,936; 0,481; 5,022; 0,243;	25.455: 24.859: 9.258: 5.473: 8.208:	25.825: 24.197: 10.940: 5.937 0.183	26.229; 24.349; 18.846; 6.412; 0.165;	26,664: 24.513: 11.664: 6.895: 9.154:	27,128 24.691 12.493 7.384 5.148
: 9	1 23.951: 23.513: 5.8651 2.992: 0.852:	23.972 23.523 5.1453 3.845 8.024	24.034 23.543 5.376 3.192 0.752	24.138 23.588 5.748 3.416 0.658	24.283 23.632 6.214 3.699 6.561	24.467: 23.696: 6.774: 4.029: 0.475	244691; 25,/~9; 7,3≈9; 4,3≈5; 8,578;	24.953 23.075 8.075 4.790 9.335	25.252 23.985 8.789 5.298 9.285	25.586: 24.108: 9.534: 5.644: 0.246:	25.955 24.246 10.302 6.096 0.216	26.356; 24.39/; 11.089; 6.559; 8.193;	26,789: 24.561: 11.891: 7.031: 0.178:	27.252 24.739: 12.705 7.512; 2.169.
\$ 1ª	24.1071 23.569 5,626 3.325 7.852	24,128; 23,576; 5,698; 3,371; 8,829;	24.190 23-598 5.907 3.503 0.770	24.293 23.635 6.245 3.708 Ø.669	24.437 23.687 6.677 3.971 8.621	24 620; 23.754; 7.200; 4.280; 0.517;	24.8/3: 23,3'4' 7.791: 4.527: 6.443:	25 - 183 23 - 938 6 - 436 5 - 985 8 - 379	25 • 400 : 24 • 039 : 9 • 122 : 5 • 407 : 0 • 326 :	25.732: 24.163: 9.842: 5.829: 0.283:	26.099 24.300 30.588 6.267 0.249	26.498; 24.451; 11.355; 6.719; 0.223;	26.929: 24.615; 12.139: 7.181; 8.204;	2/.389: 24.792: 12.938: /.651: 0.191:
11	; 24.278; ; 23.636; ; 6.188; ; 3.657; ; 8.852;	24,299; 23,638; 6,253; 3,698; 8,834;	24.361 23.668 6.443 3.8:8 8.784	24.463 73.697 6.749 4.206 0.713	24.626 23.748 7.155 4.251 8.634	24.783 23.015 7.645 4.542 0.556	25.89; 25.395; 3.274; 4.871; J.483;	25 • 267; 23 • 998; 8 • 818; 5 • 232; 8 • 428;	25.563; 24.099; 9.477; 5.619; 0.365;	25.893: 24.223: 18.171: 6.826: 8.328:	26.257: 24.359: 10.895: 6.451: 8.253:	26.654; 24.510; 11.642; 6.891; 0.254;	27.082: 24.674: 12.498: 7.342: 0.231:	27.548 24.858 13.199 7.803 8.215
: 12	74.465: 23.697: 6.749: 3.998: 4.652:	24.435; 23.705; 6.809; 4.027; 8.837;	24.546 23.727 6.924 4.136 8.794	24.648 23.764 7.267 4.310 9.733	24.790 23.515 7.645 4.538 9.661	24.970: 23.881: 8.185: 4.812: 9.567:	25.198 23.962: 3.634: 5.125: 0.519:	25 • 447 : 24 • 056 : 9 • 219 : 5 • 470 : 0 • 457 :	25 • 748 24 • 165: 9 • 651: 5 • 841: 0 • 482:	26.068: 24.288: 19.521; 6.234: 8.355:	26.430 24.425 1.222 6.646 0.316	26.824 24.575 11.948 7.074 0.284	27.25g 24.738: 12.696: 7.514; g.259;	27.704 24.914 13.462 7.965 0.249

Æ

•	£:= 520.	1//=	s.,? (= 222. XØ=-,00	A= 1. 218 T	HM= 8. 0 Ya=0,6913	Ø5 H=	a, e 1	R0= 0.00	ı ⊎79£	Mu= 1,3	6 E= 2		·····
NI M	6	1	2	3	4	5	6	7	8	9	. ø	1:	12	13
1	23.284 23.277 3.277 0.915 0.522 0.332	23.324 23.224 1.326 0.771 0.147	23.368 23.367 2.059 1.140 0.68	23.475 23.544 2.877 1.054 0.236	23.623 23.357 3.727 2.148 0.227	23.013 23.464 4.593 2.670 0.629	24.043 2.56 3.48 3.14 6.34 4.8	24.212 23.642 6.349 3.720 8.642	24.618; 23.753; /.232; 4.24/; 0.950;	4,961: 23.878: 8.119: 4.774: 2.059:	25.339 27.017 9006 5.302 2.070	25.753 24.167 9.895 5.830 2.081	26.93 24.235 10.85 6.259 0.092	20+666 2+514 11-675 6+887
?	: 23.308: : 23.∠86: : 1.188: : 0.867: : 0.665:	23,329 23,203 1,556 Ø.958 Ø.411	23 3 3 3 23 3 6 2 241 1 3 2 6 3 2 1 5	23.508 23.353 3.028 1.748 8.121	23.648 23.426 3.844 2.238 8.876	23,838 23,473 4,691 2,739 8,855	24.048 22.555 5.551 2.278 8.148	24 - 336 23 - 651 6 - 421 3 - 768 9 - 948	24.643 25.762 1.296 4.286 0.253	24.985: 25.887: 8.176: 4.611: 2.061:	25.363 24.325 9.338 5.335 2.071	20.775 24.170 9.942 5.860 6.081	26 216 24.544 10.028 6.385 0.792	20.088 2523 11./16 5.912 0.105
,	23.35C: 23.30E: 1.714: 0.997 2.635:	23.571 23.378 1.961 1.273 0.503	23-425 23-330 2-537 1-545 2-366	23.5.2 23.568 3.2*2 1.931 9.228	23.650 23.420 4.033 2.373 0.151	23.879 23.487 4.849 2.848 6.106	2 · . 129 · 2 579 · 5 . 579 · 5 . 574 · 5 . 574 ·	24 + 377 23 - 666 6 + 540 3 - 845 8 + 269	24.683 23.776: 1.492: 4.355: 4.956:	^5.925: 23.901: 3.279: 4.870: 2.969:	25.4x1 24.240 5.144 5.388 2075	25.811 24.191 10.921 5.908 0.084	26.253 24 358: 38 988: 6 432 8.694	20 - 725 24 537 1 - 782 0 - 952 7 - 100
د 	23.429: 23.321: 2.267: 1.339: 0.846:	23,475 23,309 2,449 1,489 0,699	23 494 23 351 2 924 1 779 8 490	23.609 23.389 3.568 2.134 0.335	23.748 23.441 4.287 2.543 £.234	23,93/ 23,503 5,965 2,991 0,169	24.146 23.349 5.374 3.442 8.19	24.433 23.686 6.703 3.950 0.104	24.738 22.797 7.547 4.447 8.990	5.080: 23.921: 8.4:1: 4.952: 0.984:	25,456 24,060 9,262 5,462 2,085	25.865; 24.212; 12.127; 5.975; 0.891;	 6. Jp6: 4. ⊃78: 1. σ€0: 6. 491: 0. 99: 	20.777 24.557 11.875 7.009 0.109
5	23.485: 73.348: 2.824: 1.662: 0.849:	23.506 23.355 2.960 1.777 0.755	23.5-0 23.378 3.343 2.032 0.583	23.676 23.4.5 3.928 2.359 9.439	25,823 23,067 4.557 2.739 0.316	24.011 23.534 5.331 3.160 0.237	24.239 23.516 6.176 3.618 J.1R3	24.506 23.712 6.988 4.079 0.146	24.810 73.623 7.730 4.562 3.122	25.153: 3.947: 8.566: 5.055: 0.128: 	25.525 24.086 9.413 5.555 2.102	25,934 24,238 10,26/ 6,060 2,104	6.373 24.405 1.128 6.269 0.127	20.043 24.082 11.993 7.081 2.115
ę	: 3.577; 23.36; 3.383; 1.995; 2.850;	23.3% 23.3% 3.5% 2.2% 3.7% 5%	23 • 6 5 2 23 • 4 • 9 -3 8 4 9 -2 • 3 • 5 - 9 • 6 4 8	3,767 23,448 4,541 2,672 Ø,578	23.914 23.580 4.954 2.956 0.391	24.102 23.567 5.641 3.352 8.503	24.2/9: 23.5/8- 6.3.9: 3.7/9: 4.279:	24.594 23.744 7.151 4.238 Ø.193	24-898 23-855 7.949 4.697 8-160	05.237: 23.979: 8.764: 5.177: 9.138:	25,610 24,117 9,594 5,666 0,126	26.01 24.269 10.433 6,161 8.128	26,456 24,~34 11,282 6,663 0,120	26,924: 24,613 12,136: /.168 6,124:
7	5.686 23.419 3.943 2.327 2.85	25.707 23.005 4.015 2.399 9.894	23 7 U 23 4 9 4 3 8 2 5 0 4 6 9 5	23.375 23.446 4,,45 2.641 0.270	24.021 23.538 5.347 3.190 0.457	24,208 23,005 5,989 3,562 0,366	24.4 4: 23.556: 6.589: 3.9*8 2.2.5:	24.699 23.782 7.429 4.400 0.241	25.090 23.092 8.200 4.851 0.201	25.338: 24.016: 8.993: 5.317: 0.173:	25.712 24.154 9.803 5.794 2.153	26,119 24,305 16,627 6,279 5,142	24 471 24 471 1 461 6 771 0 137	2 · . 0 19 · 2 6 49 12 . 393 7 . 269 6 . 137
ġ	23.8101 23.4631 4.5041 2.0691 0.8511	23.871 23.470 4.594 2.70 8.816	23-894 23-495 4-872 2-887 877	23+999: 23+5-99 5+_54 3+_3 2+_59	24.144 23.582 5.769 3.438 0.513	24.530; 23.649; 0.568; 3.789; 0.422	24.345 23.70 7.00 8.4 4.4 5.3484	24.818 23.826 7.738 4.287 8.289	25.119 23.936 8.481 5.022 6.243	25.455: 74.059: 9.250: 5.473: 0.259:	2>.825: ?197 10.040 5.937 0.184	26.229: 24.349 1J.846 6.412 2.167	26.664: 14.213 11.064 6.895 Ø.157	27.128; 24.691; 12.493 .384
ç	23.951 73.513 5.065 2.992 0.851	23.922 23.578 5,145 5.275 3.823	24 834 23 543 3 3 6 5 1 72 8 75 1	24.1*8 23.560 5,770 3.62 0.057	24.283 23.632 6.214 5.059 4.561	24.467: 23.698: 6.774 4.029: 0.472:	24.091 20.099 3595 4.3755 1,3475	24 · 953 23 · 875 · 8 · 075 4 · 798 0 · 335	25+252 25-945 8-789 5-208 9-285	25.586: 74.198: 9.534: 5.644: 0.246:	25.955 24.246 10.362 6.076 216	26.350 24.39 11.087 6.557 2.195;	6 /89 74 561 1.591 7.031 0.180	2'+252 24.739 12.705: /.512: 0.172
1	24.127 23.509 5.626 3.325 2.854	24.128 23.575 5.608 3.21 8.829	24 - 190 23 598 3 - 997 3 573 0 719	24.293 13.6=5 6.240 3.708 2.688	24.437 23.687 6.677 3.971 0.570	24.620 25.754 7.200 4.280 0.516	2*	25.103 23.930 8.436 5.005 0.378	25.400 24.039 9.122 5.407 2.325	25.732: 24.163: 9.842: 5.829: 8.283:	25.099 21.320 10.588 6.267 .249	26.498 24.451 11.355 6.719 2.224	26.929 24 015 12.139 7.181 0 205	2/+389 24+792 12+938 +651 +193+
1.	24.278: 23.630: 6.188: 3.657: 0.851:	24.299 23.676 5.253 3.698 8.573	04 361 23 660 6 443 3 3 8 0 782	14.463 23.6c7 6.749 4.206 0.712	24.086 23.748 7.155 4.251 0.673	24./88 23.815 /.645 4.542 Ø.554	23.3 ⁹ 23.45 3.24 4.31 4.31 4.21	25 267 23 990 8 8 18 5 232 0 418	24.099 24.099 9.477 2.619 0.364	25.893: 24.223: 10.171: 5.026: 0.319:	26_257: 24.339: 12.895: 6.451: 4.282:	26.654 24.510 11.642 6.891 0.255	27,382 :4.674 :2.408 7.342 0.432	27.540 2.050 13.190 7.803 0.216
1^	: 24,465: : 23.697: : 0.749: 3.990: : J.651:	24	24 576 25 7:7 6-984 4.1.6 2-745	24.0.8 23.7.4 7.2.7 4.318 3.711	24.798 23.815 7.645 4.538 2.663	24.97g 23.881 8.105 4.812 587	20.150 20.972 3.0342 5.555 4.26	5 • 447 4 • 2 56 9 • 2 19 5 • 4 7 2 Ø • 4 55	22.746 24.165 2.651 2.651 2.641 2.641	26.068; 24-288; 18.521; 6.234; 8.354;	26 430 2.425 1.222 6.646 .315	26.824 24.575 11.948 7.074 4.283	27 250 24./38 12.696 7 514 0 259	27.794 24.914 15.462 7.965 8.249

¥.

	RH_ 500.	L/9E	5.2	G = 20. T×0=-00	A= 1. 022 T	HN = 0.0 Y0 = 0.2925	1 05 ⊍ H∶ 505, – –	z Ø. 31	ROF 9.99	000790	MU± Ø.1	9 E= 2	121208.0	
N N	Ø	1 ;	2	3	4	5	6	7	8	9	17	11	12	13
- `` - ``	: 23.262: 23.277: 0.918: 0.522: 0.332:	23.304: 23.284: 1.326: 0.721: 0.167:	23.368 23.307 2.059 1.140 0.369	23.475 23.344 2.877 1.634 0.038	23.623 23.357 3.727 2.148 Ø.Ø32	23.813 23.464 4.593 2.670 6.036	24,243 23,5.6 5.448 3.194 3.043	24.312 23.642 6.349 3.728 8.851	24.618; 23.753; 7.232; 4.247; 0.061;	24.961: 23.878: 6.119 4.774: 0.071	25.339 24.017 9.006 5.302 0.082	25.750 24.169 9.895 5.838 8.694	26.193 24.335 10.785 6.359 0.106	26.666; 24.514 11.675 6.887 0.119
	: 73.308; : 73.286; : 1.188; : 0.807; : 0.665;	23.329: 23.293: 1.556 9.998: 8.411:	23.393 23.316 2.241 1.326 0.215	23.500 23.353 3.020 1.758 0.121	23.648 23.426 3.844 2.238 0.978	23.838 23.473 4.691 2.739 6.059	24.068 25.555 5.551 3.250 0.354	24.336 23.651 6.421 3.768 Ø.057	24.643 23.762 7.296 4.288 8.964	24.983 23.887 8.176 4.811 Ø.072	25.363 24.025 9.058 5.335 0.883	25.773 24.178 9.942 5.868 9.994	26.216 24.344 19.828 6.385 8.106	20.688 24.523 11.716 6.912 0.119
	23.356; 23.320; 1.714; 8.997; 6.639;	23.371; 23.378; 1.941; 1.273; 9.593;	23 435 75 3 20 2 537 1 545 2 366	23.542 23.568 3.252 1.931 0.279	23.690 23.420 4.033 2.373 0.151	23.879 23.487 4.849 2.848 0.108	24.109 23.569 5.688 3.341 9.985	24-377 23-666 6-548 3-845 8-275	24.683 23.776 7.402 4.355 0.074	25.925 23.901 8.279 4.879 0.079	25,401 24,640 9,144 5,388 6,086	25.811 24.192 10.021 5.908 0.096	26.253 24.358 10.900 6.430 0.108	26.725 24.537 11.782 6.952 5.120
	23.409: 23.321: 2.267: 1.330: 3.846:	23.430 23.329 2.449 1.489 0.699	23.494 23.351 2.922 1.779 0.450	23.600 23.389 3.560 2.134 0.336	23.748 23.441 4.287 2.543 0.234	23.937 23.508 5.065 2.991 0.170	24.166 23.5°3 5.5°3 3.462 3.131	24.433 23.686 6.703 3.950 8.107	24.738 23.797 7.547 4.447 9.096	25.085 23.921 8.401 4.952 9.9921	25,456 24,068 9,262 5,462 9,995	25.865 24.212 10.129 5.975 0.192	26.306 24.378 11.000 6.491 9.111	26.777 24.557 11.875 7.009 2.122
	23.485: 23.348: 2.624: 1.662: 0.846:	23.506: 23.555: 2.968: 1.777: 0.755:	23.570 23.378 3.363 2.032 0.583	23.676 23.415 3.928 2.359 0.439	23.823 23.467 4.557 2.739 Ø.316	24 011: 23 534: 5 331: 3 160: 0 238:	24.239 23.6.6 3.612 9.164	24.506 23.712 6.908 4.079 9.149	24.818 23.823: 7.738 4.562; 8.126;	25.150 23.947 3.566 5.055 0.115	25.525 24.006 9.413 5.555 0.111	25.934 24.238 19.267 6.069 9.112	26.373 24.493 11.128 6.569 0.118	26.843 24.582 11.993 7.081 0.127
:	: ^3.577; : ^3.382; : 3.383; : 1.595; : 3.850;	23,5°0; 23,5°0; 3,13; 2,2,2;3; 2,2,3;	23.6(2 73.4 3 8.0 2.3(3 0.648	· 5. / (·7 233 4. 3 < 1 2. 6 ; 2 2. 5 7	23.914 23.500 4.954 2.956 2.352	24.102 25.567 5.641 3.552 6.304	2 5 9 2 5 9 5 . 7 9 5 . 7 9 0 . 2 4 9	24.504 3.744 7.151 4.230 0.195	24.698 25.855 1.949 4.697 2.163	75.237 5.979 8.764 5.177 5.143	25.618 24.117 9,594 5.666	25.91/ 24.26y 12.433 6.161 5.128	26 456 24.434 1.282 6 663 8.138	26.924 24.613 12.136 7.168 2.135
- , -	3.686: 3.443: 3.943: 3.943: 5.943: 5.943:	73.777 73.476 4.245 2.359 8.84	73 778 75 449 4 378 2 540 9 654	23.3-5 23.445 4.7p3 2.341 0.578	24.021 23.538 5.347 3.190 0.457	24.200 23.605 5.989 3.564 5.366	24.474 23.576 5.59 3.748 7.295	24.699 23.782 7.429 4.400 0.242	25.688 23.692 6.240 4.651 0.263	24.016 8.993 5.317 0.176	25.718 24.154 9 803 5.794 1.158	26.116 24.306 16.627 6.279 0.148	26.352 24.471 11.461 6.771 0.145	27.019 24.649 12.303 7.269 0.147
;	23.810 23.463 4.524 2.660 8.850	23.871 23.470 4.594 2.772 0.65	23 894 23 493 4 8:2 2 887 9 727	23.909 23.50 5.244 3.133 8.319	24.144 23.582 5.769 3.438 0.513	24.330 23.649 6.368 3.789 0.422	24.5 ⁵ 5 23.7 ⁹ 7.3 ⁴ 6 4.1 ⁷ 4 6.348	24.018 23.826 7.738 4.587 8.298	23.119 23.936 6.484 5.022 0.245	25.455 74.859 9.250 5.473 0.211	25.825 24.197 10.040 3.937 1.188	26.229 24.349 10.840 6.412 0.173	26.664 24.513 11.664 6.895 0.164	2/.128 ? 7.691 : 12,493 : /.384 : .162
	23.951; 23.513; 5.065; 2.992; 2.851;	23.972; ?3.528; 5.145; 3.045; 0.873;	24.034 23 545 5 3 6 3 1 4 0 4 7 1 1	24.1+8	24.283 23.632 6.214 3.659 8.560	24,467 23,690 6,774 4,829 8,472	24.691 23 19 7.39 4.35 .357	24.953 3.075 8.075 4.798 8.335	25+252 23+985 8+789 5+208 2+266	23.586 24.148 9.534 5.644 6.248	24.246 10-302 6.096 219	26.350 24.39/ 11.889 6.559 2.199	24.561 24.561 11.691 7.031 9.186	27.252 24.739 52.785 7.512 3.188
1	23.569: 5.626: 3.325: 0.656:	24.128: 23.576 5.698 3.371 8.878	24 - 158 25 - 558 5 - 9, 7 3 - 523 8 - 7*9	23.6.5 6.240 3.768 w.6F7	24.437 23.687 6.677 3.971 8.688	24,620 23,754 7,260 4,280 0,516	24.343 23.5 ⁴ 7.751 4.677 3.442	75 • 103 73 • 938 8 • 436 5 • 885 0 • 379	25 • 408 24 • 639 9 • 122 5 • 497 3 • 526	25.732 4.163 9.842 5.829 5.284	26.099 24.300 10 588 6.267 5.252	26.490 24.451 11-355 6.719 2.223	26.929 74 015 12.339 7 381 5.218	27.389 2792 12.938 7.651 6.265
; 1:	24.278: 23.636: 6.188: 3.657: 4.850:	24.299; 23.678; 6.253; 3.678; 2.872;	24-361 25-610 6-403 3 5.8 0 782	24.463 23.6c7 6.29 4.606 3.71	24.626 23.748 7.155 4.251 2.632	24.788 23.615 7.045 542 2.554	25.329 25.375 5.24 4.871 7.42	25.267 23.990 8.518 5.232 9.419	25.563 24.899 9.477 5.619 0.365	25.693 24.223 10-171 6.926 0.320	26.257 24.359 10.695 6.451 6.284	26.654 24.518 11.642 6.891 2.255	27, 082 24.074 12.408 7.542 0.236	2 · . 54# 2 · . 55# 1 5 · 196
17	: 24.405: 23.697: 6.749: 3.992 2.855:	24.485: 23.785: 6.879: 4.227: 3.835:	24.5:0 23.7,7 6.954 4 1*0 J 7'2	24.648 3.764 7.267 4.3;8 2.731	24,750 23.815 7.645 4.538 N.668	24,974 23,881 8,163 4,812 2,587	25.1~8 25.9~2 8.634 5.175 3.16	25+447 24.056 9.219 5.470 8.455	25.740 74.165 9.851 5.841 9.491	26,868 24.288 18.521 6,234 8,355	76 430 24.425 1.222 6 0.316	26.824 24.575 11.948 7.874 0.286	27,258 24,/38 12,096 7,514 8,262	21.784 2914 13.462 13.465 2.245

#2

	RH± 500.	L/Rm	5.0 0	G 202, A= 3, ĭ×g=-,99056	- HM.= Ø.0 TYØ≠Ø,0054	856 HF	0.01	R0≈ 0,00 ;	064799	NUx 0.3	ð E= 2	120000.0	
N. M		1	2	3 4		6	7	8	9	10	11	12	ş 3
 1	28 + Ø 52 28 + Ø 47 6 + 875 8 + 498 6 - 317	28.069 28.053 1.264 D.088 U.159	28+123 28+072 1-964 1-787 8-665	20.2 2 28.33 20.103 28.14 2.743 3.55 1.558 2.04 0.03	5; 28,494; 7; 28,293; 4; 4,389; 8; 2,545; 1; 9,635;	28.686 28.271 5.214 3:845 3.042	28 + 912 28 + 351 6 + 1653 3 + 547 6 + 856	29.170 28.444 6.096 4.649 9.659	29.468: 28.548: 7.741: 4.552: 8.869:	29,781 28,664 8,587 5,056 0,079	38.132 28.792 9.435 5.559 8.896	30.511 28.732 10.283 6.063 0.102	32.918 27.282 11.132 0.567 0.114
	: 2A • 273: : A • 054: : 1 • 133: : 0 • 769: : 0 • 634:	28.891 28.861 1.423 0.952 0.391	28,144 23 979 2.130 1 264 0,265	20.133 28.35 28.11 28.15 2.5FØ 3.66 1.676 2.13 Ø.115 Ø.27	6: 28.515: 4: 28.210: 5: 4.472: 4: 2.611: 4: 0.057:	28.707 28.278 5 293 3.899 2.052	28 - 932 28 - 358 5 - 122 3 - 592 5 - 1055	29.191; 28.451; 6.957; 4.689; 8.961;	28,555: 28,555: 7,795: 4,587: 0,878:	29,821 28,671 8,636 5,086 0,080	36.151 26.799 9.488 5.58/ 2.991	30.530; 28.739; 10.324; 6.088; 0.102;	30.937 2×.095 11.176 C.595 0.114
3	28.108: 28.067: 1.634: 0.951: 0.820:	28.126 28.073 1.874 1.175 8.566	28,179 28-092 24,9 1,473 0,349	28.265 28.35 28.123 28.16 3.191 3.84 1.341 2.26 0.2.5 0.14	1: 28,549: 6: 28,222: 5: 4,524: 3: 2,716: 4: 9,103:	28.741 28.290 5.423 3.186 0.081	28 • 967 28 • 371 6 • 236 3 • 066 Ø • Ø 72	29,224 28,463 7.857 4.155 9.671	29.514: 28.567: 7.885: 4.644: 0.875;	29,834 28.683 8.718 5.137 8.883	30.184 28.811 3.554 5.633 9.592	30.563 28.951 14.393 6.130 8.103	32.969 27.181 11.234 0.629 0.115
	28.157; 28.084; 2.161; 1.268; 0.860;	28.175 28.090 2.375 1.419 8.667	28,228 28,109 2,785 1,696 Ø,468	28.5.6 28.44 28.140 28.18 3.305 4.38 2.35 2.42 0.320 0.22	0: 25,598; 4: 28,439; 8: 4,529; 5: 2,551; 3: 0,162;	28.789: 28.307: 5.609 3.391: 0.124:	29.914 28.388 6.391 3.766 #.192	29 - 272: 28 - 480: 7 - 196: 4 - 240: 0 - 991:	29.561: 25.584: 8.919: 4.722: 9.888:	29.880 28.709 8.831 5.248 0.091	30,230 28,820 9,658 5,697 0,097	30.698 28.967 18.488 6.189 8.196	31.014 29.118 11.322 6.683 0.117
5	28.220 28.106 2.693 1.585 6.829	28.238 28.112 2.830 1.604 0./20;	28-291 28-131 3-7 1-937 0-555	28.379 28.52 28.162 25.22 3.745 4.38 2.249 2.61 8.409 8.38	2; 28,669; 6; 28,261; 3; 5,983; 2; 3,913; 1; 9 226;	28.851 28.329 5.821 3.442 0.175	29.675: 28.410 6.587: 3.889 9.141	29.332 28.502 7.379 4.359 0.129	29.621: 28.6#6: 8.168: 4.819: 0.109:	29,948 28,722 8,975 5,296 8,145	30.280 28.850 9.787 5.773 0.16/	38,666 28,989 18,618 6,263 4,113	31.871 29.139 11.435 6.752 9.122
6	28.297: 28.133; 3.226; 1.9%2; Ø.81%;	28.315: 28.139: 3.340: 1.980: 8.749:	28.367: 28.158: 3.661: 2.196: Ø.618:	28.455 28.57 26.189 28.23 4.159 4.72 2.481 2.81 0.484 0.37	5: 28 /35; 2: 28 280; 3: 5.379; 5: 3.196; 5: Ø,289;	28.926 28.356 6.082 3.603 0.228	29.150 28.436 6.819 4.033 6.185	29,446 28,528 7,579 4,479 155	29.694; 28.633; 8.356; 4.936; 8.136;	30.012 28,748 9,147 5,402 0,125	39.364 28.876 9.948 5.875 6.122	30./37: 29.015: 10.757: 6.553: 0.123:	31.141 29.165 11.571 6.834 #.129
 , 7 : :	28.387: 28.165: 3.769: 2.219: 0.810:	28.4~5: 28.171: 3.858: 2.287: 9.766:	28,458; 28-190; 4 137; 2-469; 0-662	28,546 28,66 28,221 28,26 4,263 5,09 2,726 3,04 0.543 0,43	5: 28.824: 4: 28.320: 5: 710: 1: 3.397: 5: 0.348:	29.015: 28.388: 6.377: 3.784: 0.281:	29.238 28.468 7.483 4.195 8.238	29.493; 28.569; 7.818; 4.625; 9.193;	29.780: 28.664: 8.575: 5.069: 0.167:	30,098 28,760 9,347 5,524 0,150	30.445 28.907 12.132 5.987 0.141	38.828 29.046 18.927 6.456 8.138	31.223 29.196 11.731 6.931 8.148
, , , , , , , , , , , , , , , , , , ,	<pre>^B.492: ^B.202 4.295 2.536; 0.811;</pre>	28,579; 20,218; 4,392; 2,574; 0,77;	28 562 28 227 4 626 2 753 8 695	28.649 28.77 28.258 28.38 5.019 5.58 2.988 3.27 0.589 0.48	1 28,927 1 28,356 6 072 3 612 9 0.402	29.117 28.424 6.703 3.98# 0.331	29 • 339 : 28 • 5#4 : 7 • 378 4 • 374 : Ø • 275 :	29.394 28.596 8.886 4.788 8.232	29-879: 28.700: 8.820: 5.218: 0.201:	39.196 28.816 9.573 5.661 9.178	39.542 28.943 10.341 6.114 0.163	30.916 29.082 11-121 6.574 9.155	31.318 29.232 11.912 7.049 0.153
0	28.629: 28.243: 4.829: 2.853: 2.853: 2.811:	28,677 28,77 4,95 2,973 8,784;	28.679 28.200 5.126 3.844 0.716	28.766 28.88 78.299 28.34 5.473 5.92 3.257 3.52 0.526 0.53	7: 29.643: 2: 28 396: 5: 6.458: 7: 3.841: 4: 0.456:	29.232 28.466 7.955 4.190 0.378	29 • 453 : 28 • 545 : 7 • 699 : 4 • 567 : Ø • 319 :	29.787 28.637 8.380 4.965 8.272 	29.992: 28.741: 9.990: 5.382: 0.235:	30,307; 28,856 9,823 5,812 0,208	30.651 28.983 18.573 6.254 9.180	31,924 29,122 11,337 6,784 9,176	31.42> 29.272 12.114 7.162 0.170
1	28.740 28.292 5.362 3.17L 8.81	28+7*7: 29+2*6: 5+4*3: 3+2*4: 0+789:	28.829; 28.3,5; 5.632; 3.340; 8.732;	28.345 28.345 28.345 28.38 5.949 6.36 3.535 3.78 Ø.655 Ø.57	7: 29.172: 9: 28.444; 7: 6.865; 6: 4.081; 1: 0.491;	29.360 28.512 7.429 4.412 0.420	29 • 580 : 28 • 591 ; 8 • 043 ; 4 • 772 ; 0 • 366 ;	29.833; 28.683; 8.698; 5.155; 0.510;	30.116: 28.787: 9.384: 5.558: 0.279:	30.430 28.902 19.095 5.976 0 239	30,773 29,629 15,826 6,490 6,215	31.145 29.167 11.574 6.847 0.199	31.544 29.317 12.336 7.295 6.189
11	78.884 28.341 5.990 3.487 0.81x	28.931 28.347 5.962 3.526 8.7°3	28.953 28.306 6.144 3.640 0.745	79.179 29.16 28.97 28.44 6.475 6.82 3.020 4.05 2.578 0.62	0: 29.313; 0: 28.495; 2: 7.290; 3: 4.331; 2: 9.527;	29.501 28.563 7 822 4.645 9.458	29.729 28.642 8.408 4.989 9.398	29-971 26-734 9-836 5-357 8-346	30.254; 28.637; 9.698; 5.746; 0.304;	30.566 23.952 10.388 6.151 0.269	30.988 29.075 11.100 6.570 0.243	31.278 29.217 11.831 7.004 9.223	31.673 29.366 12.577 7.440 6.289
12	79.041 28.397 6.435 3.804 4.810	29-058: 28.403: 6.402: 3.840: 0.;95:	29 - 1 39 ; 28 4 2 ; 6 - 659 ; 3 - 9 4 4 ; 0 - 755 ;	29.195: 29.31 28.443: 28.49 6.929: 7.28 4.109: 4.32 0.006: 0.62	5: 29.468: 6: 28.551: 9: 7.728: 7: 4.588: 8: 0.558:	29.654; 28.618 8,232 4.886 1.492	29 • 872 ; 28 • 697 ; 8 • 79# ; 5 • 215 ; # • 433 ;	30.123; 26.789; 9.392; 5.569; 0.381;	30.423: 28.892: 10.031; 5.944: 0.336:	30.714: 29.007 10.699 6.337 0.300	31.#54 29.133 11.392 6.742 0.270	31,423: 29,271 12,105 7,165 0,248	31.818 29.425 12.835 7.595 5.231

€.

		· · · ·		TX4=0.8	T'	Ya=0,0g3	30						·	
N		•	2					7	8	•	: : : : : : : : : : : : : : : : : : : :	11	12	13
M						:								
		29.147	29.2 5	29.304	29.423			29.979	30'.228	38.588		31.157	31 >24	3:.918
,	29.146	29.152	29.170	29.200	29.242	29 295	2y.31	29.438	24.527	29.628	29,748	29.863	. <u>2</u> 9,293	33.1431 11.0321
	g.493:	Ø • 6 P 2	1.977	1.544	2.93	2.52	5., 8	3.515	4.013	4.511	5.010	5.509	6.098	
				· • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	31.176	31.243	31.937
,	29.153	29.159	29.177	29.267	29.249	29.302	29.568	29.445	29.534	29.635	29,747	29.67	58.485 18.232	- 33-15#
	0.763:	9.943 0.384	1 253	1.6(1	2.114	2.588	3, 3/1	3.56	4.052	4.546	5,941	5.537 0.976	6.034 6.087	5.531 5.298
	20.204:	29.221	29.273	29.48	29.477	29 629		30.032	34.200	34.560	38.869	31.203		: 3, 967
	29.165	29.171	29-189	29.219	29.269	29.314	29.3° 5	29.457	27.546	29.647	29.759	29.882	30.216 10.300	: 3),162, : 1,133,
	g.942 g.793	1-165 Ø-561	1.459	1.024	2.243	2.691	5 57 8 578	3,633 9,633	4.115 3.064	4.692	5.091	5.583 9.988	6.075 0.089	6.569. 2.100
 4	: 29.251:	29.269	29.328	29.405	29.524	29.676	.	30.078	: 30.326		: 32 9,4	31.252	31.618	32.011
	29.181:	29.187	29.205	29.235	29.277	29.331	; 29.3 6; ; 5.5 8;	29.474	: 28.563	7.938	: 2×,755 : 5,752	29.898 9.57	3 <i>9.</i> 232	: 30+178 : 1.+221
	1.257: 3.800:	1.407	1.681	2 . 0 : 6	2.463	2.826	3.2 ⁷ 1 6.1 3	3.732 \$.10₽	: 4.2 6 2 : ∂.667	4.679 0.082	5.161 w. 8 82	5.646 0.087	: 6 135 : 2.094	6.623 Ø.104
.	29.312:	29-379	29.380	29.465	29.584	29.736	29.20	30-137	: 30.304	30.663	36.9/1	31.309	31.074	32.066
	29.203:	29.208	29.226	29.256 3./12	29.298 4.344	29,352 5,937	29.47 5.769	29.495 6.528	7.504	7.684 8.894	2 2 . 796	9.702	_0.>15	11.332
	1.571:	1.679: 0.7'4:	1 · 920 : 2 · 551 :	2 + 229 2 + 46 7	2.500 0.300	2.986	3,4 1 6.1 ⁻⁴	3+854 Ø+140	· · · · · · · · · · · · · · · · · · ·	4.776 8.105	5 249 2. 59 9	8.09y	. 0,207 : 0,103	- 5-591)
•	<u> </u>		· · · · ·		** • • • • •									
. ,		29.4.3	-	- 70.4.9:	29.657	29 EAV:	2, 1.3	- 19./a9:	30.456		31 641:	31.378		3-130
•	· y · 229*	29.24	29+252 3 6285	- 9 - 2 F 2	29.324.	29,378:	29, 13	19-320 6-157	. (y+629) -511	29.710. 8.281	27.021	29,904. 9.857	19.275	30.223
	1.885:	1.7 6	2-1-6-	2 - 1 - 9	2.793	3,167; Ø 288;	5.21	3.y97 0.184	4.438:	4.892	354	5 · 82∡ ·	6.496	6.773 0.120
· · ·	n groen n n hu t n hutt		52.541	· -	29 744	29 805		*4.2033		70.047	31 124		1 523	32.214
•	1 - 9 - 2591	27.253	29.263	1.9 - 5 1 3	27,355	29.468:	2 74	7.024	27.643:	27.746	22,8-1	29.974:	Ø 108 2 c29	30.255
	: <u>2.199</u> :	2 7 :	2+447+	2	3.014: 0.433:	3 366:	3. 3	4 • 158 8 • 230	++5841 ⊉+1921	5.024:	5 4 5	5.933 2.136	: 98 د . 6 3 3 - 33	6.669 4.133
; _ A	1 29.574:	29.501	29.641.	_g;5;	29.843.	29,99,	30.1 6	30.391		· . 913:	31.219	31.554:	51-116	32.205
	9.295;	29,31	1 y 3184	24.348	29.390:	29.444:	27.5-9:	29-586	21+674:	29.175; 8.741;	27.366	30.00/	10-143	3⊾•287 18ø5
•	2.51"; 4.82;	2.573:	2 . 728:	2.961	5.249: 0.4E7	3.580° 8.4011	5. 2. 4 :	4.335: Ø.276	4.145:	5.172: 0.201:	5 510	6 · Ø5 × : 2 · 16 = :	6.215: Ø.:53:	6 - 977 . 6 - 149
· · · · ·		29.7.41	29.754	4 y + 3 3 8 1	29,955	32,105:	3.17	30.501	5× • / 46'2	1.021:	3316	31.662	2.021	32.499
	ry 335; 4.7861	29.311	29.359.	2++24	29,430	2 y 483 6 400:	29, 549	29+026	22.794; 0.395:	79.014: 9.039:	29,925	30.040. 10.47.		30+326 12+305
	2,827: 2,827:	2.577:	3 8:6:	3,298-	3,496: 0,532:	3 807: 2.449:	1,1 ² 3,5181	4.526: 0.19	4.971* 4.275*	5,333; 0,230;	5 768	0,19/° _ 18y	6 644: 10 - 75	· . £ 98 68
: :	29.813	29+6325	29 9 20	25.164	30.080	30,229;	30.4 11	38.624.	32.068:	1.142:	3 446	31.770	2 38	3, . 525
:	5.3161	29.3.3.	29.453 5.5°.'	29:4: 3 : 5:096:	29,475. 5,350:	29,528: 6.804	2 : . 3	29+670 7+971	29.750 0.620:	^¥-858; ¥ 3^∅;	2+,9tx . g(4)	30.092: 1.72.	1025 11. •7e :	3, , 269
	3.142:	3+1/51 2+7851	3 3 · 2 · 2 · 7 ° 8	3 - 5 e 4 : 2 - 5 5 2 :	3,752; 0,569;	4,045 6,492:	4.3 3:	4.729 Ø 361	2+109: L+3111	5.5,8; 0.272;	5 922 3,240	6.34y: 3 21.5	6 85 0.200`	+230 +189
1	2.95.	29., / b	30.9.9.	2 2 :	39.218	30.366:	33.241	30.759	3002	1.2-5:	31.5 7	31.9631	,2.267	3
	79.4 29' 5.847 :	29,415 3,919	79 · 4 3 6 · 6 : 8	0+3-7:	29,524	1,224	21.512	8:332	0.555	9.611:	2.255	11.000	۵ ۲/۵۰ ۱ /25:	2.441
	3.450; 7.620;	2+4751 8:779+	3 - A - B 8 - 7 - 1	3،74 5 : دروری	4.217° 0.600:	4.292° 5.27°	- , , , , 3 ° - 9	4.944. Ø.299	2+289° 1+3401	2, 894: 1, 316:	2 2 2	.,245	0.757 2.425	· · 211
1	1831	38,1281	13.1-91	3 2	32.368	32.515:	32.55	30 yg6:	31+140°	1.420:	1.721	32.458	2.461	3. 4.91
:	9.483	6,414; t 5,-1	6.5991	6.590	7,224	7,659	2713 B d, 8:	8.711 8.711	y. 200	9.941; 5.801	1 . 5 . 5 . 5	11.292	11.997	1 / 2.8
:	- 3+//Е: С АСС:	2,752;	5+9~0+ 2+752	314721 31694:	4.200 2.527	2.250	4 · 3 ·	B + 4 3 4	0.3A3	2.339:	363		0.251	

RH= 500, L/9= 5.0 G= 200, A= 4, HH= 0.0050 H= 0.01 RD= 0.00000000 HU= 0.30 E= 2128030.0

* U

	RH= 500.	L/Rm	5.0	G= 20 TX0=Ø	A= 4.	HM= 0.0	885) H= 78	0.01	R0= 0.0g		₩U± ,,3	E= 2	81.08.00.0	en, et e same
: : N		1	2	3	4	5	5	7	8	9	10	11	1?	.3
	29.150 29.146 0.868 0.493 0.314	29.167 29.152 1.253 0.682 0.15	29.219 29.170 1.946 1.077 0.865	29.304 29.200 2.718 1.544 £.437	29,423 29,242 3,522 2,030 0,031	29 570 29 295 4 346 2 523 8 035	29 / 1 2 - 541 5,1:7 3,4 8 0, 72	29.979 29.438 5.999 3.515 5.059	30.228; 29.527; 6.634; 4.013; 0.058;	30.568: 9.628: 7.671: 4.511: 0.068:	36,818 29,740 6,513 5.010 .0 8	31.15/ 29.863 9.35± 5.50+ 2.08+	01.024 79.798 10.191 6 208 0.101	31.918 30.143 1.032 5.508 113
2	29.170: 29.153: 1.123: 3.763: 0.628:	29.188 29.15y 1.473 0.943 0.338	29 • 239 29 • 1 ⁻⁷ 2 • 117 1 • 253 2 • 203	29.324 29.207 2.854 1.661 3.115	29.443 29.249 3.632 2.114 8.075	29.596: 29.302: 4.432: 2.588: 0.057:	29.7F1 29.568 5.2.6 3.071 0.153	29.999 29.445 6.067 3.560 0.055	30-248 29.534 6.894 4.052 0.962	30.527: 29.635: 7.725: 4.546: 0.070:	3¢ 877 29.747 8.559 5.041 ¢.080	31.176 29.870 9.395 5.537 0.890	31.243 30.005 10.232 6.034 0.101	31.937: 3150: 11.070. 531: 13:
	9.204 29.165 1.620 9.942 9.793	29.211 29.171 1.853 1.165 0.561	29+2 3 29+189 2+397 1+459 0+346	29.358 29.219 3.273 1.824 3.217	29.477 29.269 3.811 2.243 0.144	29.629: 29.514; 4.582; 2.691; g.104;	29.314 29.350 5.34 3.27 2, 182	39.032 29.457 6.189 3.633 9.073	30.280 27.546 6.994 4.115 0.073	*0.560: 29.647: 7.615: 4.602: 0.077:	30,869 29,759 5,640 5,091 2,084	31+200 29.882 9.469 5.583 2.993	31.374 30.216 30.328 6.075 9.104	31.967 34.162 11.133
4 ; ;	79-251: 29.181: 2.142: 1.257: 0.800:	29.269 29.187 2.314 1.407 8.661	29.320 29.205 2.761 1.681 0.464	29.405 29.15 3.364 2.16 2.16	29.524 29.277 4.051 2.403 0.223	29.076 29.331 4.786 2.826 0.163	29.51 29.36 5.59 5.21 .1267	30 + 270 29 + 474 6 + 334 3 - 732 0 - 164	2x - 563 / - 31 4 - 202 0 - 893	79.663: 7.938: 4.679: 0.091:	50,914 29,775 8,752 5,161 2,093	29.890 9.571 2.646 0.699	31.018. 39.532; 10.394; 6.133; 0.108;	30-178 11-221 6-623- 0-118
; 5 ; ; ;	29.312 29.203 2.668 1.571 4.802	29.309: 29.206: 2.805: 1.679: 0.714:	29.380 79.226 3.178 1.920 0.551	29,465 29.256 3.712 2.229 0.407	29.584 29.298 4.344 2.588 8.328	29.736; 29.552; 5.037; 2.986; 0.226;	29.9 0 29.4 7 5.749 5.4 1 3.176	30 • 137 29 • 495 6 • 528 3 • 354 . 2 • 143	30.364: 2×.584: 7.304: 4.311: 0.123:	*0.663: 29.684: 8.094: 4.776: 0.112:	32.971 29.796 8.894 5.249 8.128	31.309; 29.919; 9.702; 5.726; 0.110;	31 674 30-053: 0 515: 6.207; 8.116;	32.066 32.198: 11.332 6.691 2.124
··· ••··a+	29.386 79.229 3.197 1.885 <i>J.</i> 6±4;	29.423 29.274 3.312 1.948 0.703	29.454 29.252 3.628 2.16 8.6'3	29.539 29.282 4.101 2.459 2.459 2.481	29.657 29.324 4.681 2.793 8.371	29.869: 29.378: 5.338: 3.167: 8.289:	29.353: 27.473: 6.27: 3.571: 0.279:	3# • 289	30.456 29.609 7.511 4.438 2.158	70,734: 7,718; 8,281; 4,892; 0,139;	31.041 29.321 9.065 5.354 C.129	31.370 29.944 9.859 5.824 0.126	1./42 30.278 10.060 6.296 0.127	32.134 34.223 11.468 6.773 2.133
7	29.473; 79.259; 3.726; 2.199; 0.864;	29.493 29.265 3.873 2.267 0.761	29.541 29.283 4.099 2.447 9.657	29.626 29.313 4.522 2.703 9.540	29,744 29,355 5.852 3.814 0,434	29.895: 29.498: 5.659: 3.366: 8.348:	30 + c 8 2 + 174: 6 - 370 3 - 75 7 - 252	3g + 293 29 - 551 7 - 020 4 - 158 8 - 232	37.541 27.648 7.748 4.584 9.196	30.817: 29.74#: 8.498: 5.824: 2.171:	3:.124 29.851 9.263 5.475 8.155	31.460 29.974 10.041 5.933 0.146	31.823 30.108 10.329 6.598 9.143	32.214 30.253 11.625 5.869 2.145
8	20.574: 79.295: 4.256: 2.513: 3.605:	29.591 29.31 4.341 2.570 2.772	29.641 29.318 4.585 2 728 0 689	29.725 29.348 4.965 2.961 2.586	29.843 29.358 5.451 3.249 8.487	29.993: 29.444: 6.017: 3.580: 0.401:	30.1-6 29.009: 6.043: 3.744. 0.332:	30.391 29.506 7.312 4.335 8.277	30.637: 29.674: 8.814: 4.745: 0.236:	<pre>""""""""""""""""""""""""""""""""""""</pre>	31.219 29.866 9.487 5.610 2.183	31.554 30.009 10.245 6.039 0.169	31+916 30+143 1+422 6-215 0+162	32.305 30.287 11.605: 0.977: J.160:
Q	9.687: 9.335: 4.786: 2.827: 1.805:	29.7:4 29.341 4.841 2.877 0.779	29.754 29.359 5 080 3.0°6 0.7°1	29.838 29.388 5.424 3.228 0.623	29.955 29.430 5.872 3.496 0.532	30.105 29.483 6.400 3.607 0.449	30.27 29.549 6.991 4.152 0.38	30.501 29.626 7.630 4.526 0.321	30.748: 29.714 8.305: 4.921 0.275:	31.021: 29.814: 9.009: 5.333: 0.240:	31 326 29,915 9,735 5 760 8 213	31.660 30.043 10.478 6.197 0.195	32.321 30.182 11.236 6.644 0.185	32.409 30.326. 12.005. 7.098 6.177:
1	29.813; 29.379; 5.316; 3.142; 4.846;	29.830 29.385 5.384 3.185 6.785	29.888 29 403 5.581 3.3.7 8.728	29.964 29.433 5.896 3.304 2.652	30.000 29.475 6.310 3.752 0.569	30.229: 29.528: 6.804: 4.045: 0.491:	30.411 29.553 7.3(2) 4.33: 8.471	30.624 29.678 7.971 4.729 0.362	30.063 29.758 8.620 5.109 0.015	31.142: 29.858: 9.300: 5.598: 0.274:	31,446 29,969 12 004 5,922 2,244	31.778 30.092 10.729 6.349 0.222	32 - 138 30 - 225 11 - 472 6 - 785 0 - 206	32.525 32.525 12.225 7.230 J.197
1	20.952; 29.429; 5.847; 3.456; 4.826;	29.966 29.435 5.936 3.495 9.789	30.019 29.43 6.238 3.668 3.741	30.1/2 29.482 6.377 3.785 2.675	38.218 29.524 6.761 4.017 2.621	30.365: 29.577: 7.224: 4.292: 0.527:	30.3-7: 29.642 7.7-2 1.3/3 0.459	30.759 29.719 8.332 4.944 8.469	31.002: 29.807: 8.935: 5.349: 0.350:	31.275: 29.907: 9.611: 5.694: 8.309:	31.577 3018 1.295 5.096 2276	31.908 30.140 11.002 0.511 9.250	32.267 30 273 11.725 6.937 9.231	32.052 32.417 12.464 7.373 2.218
12	30.103: 29.483: 6.377: 3.770: 0.806:	30.170 29.4°9: 6.4°4: 3.8 5: 0.7°2:	30 169 29 506 6 599 3 9 18 0 752	29.5.6 6.866 4.272 6.694	30,368 29,577 7,224 4,288 0,627	30,516; 29,631; 7,659; 4,547; 0,558;	3 5 24-0 6 3-058 4-073 0-1 4	39.996: (9.772) 8.711 5.168; 9.435;	31.148; 29.862; 9.308; 5.519; 0.385;	21.428: 29.968: 9.941: 5.891: 8.342:	31 721 32 070 10.623 6,280 £.326	32.953 36.192 11.293 6.684 8.278	32.407 30.325 .1.797 7.100 0.456	32.791 3.469 12.720 7.527 0.241

СОДЕРЖАНИЕ

Ι.	Общие положения	3
2.	Свободные колебания балочного конструктивно- неоднородного трубопровода	4
3.	Свободные колебания многослойных элементов трубопровода	II /4

Рекомендации по расчету трубопроводов из многослойных труб на динамические нагрузки

P 451-82

Издание ВНИИСТа

Редактор А.И.Зарецкая Корректор С.П. михайлова Технический редактор Т.В.Берешева

I- 76924 "	Подписано в печать 21/1	1982	⊈opmar	60x84/I6
Печ.л. 3,0 Тират 300 ака.	Учизд.л. 5,0		Бум.л.	1,5
Inpar Juo ener	dena 20 kon.		Janas	20

Ротапринт ВНИИСТа

МИННЕФТЕГАЗСТРОЙ

