предметной индексации и постройки морских подводных трубопроводов

НД N 2-020301-003

Санкт-Петербург
2012
Правила классификации и постройки морских подводных трубопроводов Российского морского регистра судоходства утверждены в соответствии с действующим положением и вступают в силу 15 марта 2012 года.

Настоящие Правила охватывают аспекты технического наблюдения при проектировании, строительстве и эксплуатации подводных трубопроводов и райзеров на шельфе.

При разработке Правил был учтен опыт других классификационных обществ.
СОДЕРЖАНИЕ

ЧАСТЬ I. МОРСКИЕ ПОДВОДНЫЕ ТРУБОПРОВОДЫ

1 Общие положения ... 7
1.1 Область распространения .. 7
1.2 Термины и определения ... 8
1.3 Классификация ... 11
1.4 Объем освидетельствований ... 13
1.5 Техническая документация ... 18

2 Расчетные нагрузки, действующие на подводные трубопроводы 23
2.1 Общие положения .. 23
2.2 Расчетное давление ... 24
2.3 Температурные воздействия ... 25
2.4 Весовые воздействия .. 25
2.5 Воздействие течения .. 26
2.6 Воздействие волн и ветра .. 27
2.7 Переменные гидродинамические нагрузки ... 30
2.8 Сейсмические воздействия ... 31

3 Прочность подводных трубопроводов .. 32
3.1 Общие положения ... 32
3.2 Определение толщины стенки стального трубопровода ... 32
3.3 Расчет стального подводного трубопровода на устойчивость (смятие) под действием гидростатического давления ... 34
3.4 Расчет стального подводного трубопровода на локальное смятие 37
3.5 Расчет стального подводного трубопровода на лавинное смятие 38
3.6 Расчет стального подводного трубопровода на усталостную прочность 39
3.7 Расчет стального подводного трубопровода на сейсмические воздействия 41
3.8 Расчет прочности конструктивных элементов трубопровода из гибких труб 44

4 Материалы .. 48
4.1 Общие положения ... 48
4.2 Освидетельствование и техническое наблюдение .. 49
4.3 Методы испытаний стальных труб и проката .. 62
<table>
<thead>
<tr>
<th>Глава</th>
<th>Тема</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Выбор материалов из стали</td>
</tr>
<tr>
<td>4.5</td>
<td>Сталь для подводных трубопроводов</td>
</tr>
<tr>
<td>4.6</td>
<td>Материалы гибких полимерно-металлических труб и их соединительных элементов</td>
</tr>
<tr>
<td>5</td>
<td>Сварка</td>
</tr>
<tr>
<td>5.1</td>
<td>Общие положения</td>
</tr>
<tr>
<td>5.2</td>
<td>Технологические требования к процессам изготовления сварных конструкций подводных трубопроводов</td>
</tr>
<tr>
<td>5.3</td>
<td>Контроль сварных соединений</td>
</tr>
<tr>
<td>5.4</td>
<td>Методы испытаний</td>
</tr>
<tr>
<td>5.5</td>
<td>Сварочные материалы</td>
</tr>
<tr>
<td>5.6</td>
<td>Допуск сварщиков</td>
</tr>
<tr>
<td>5.7</td>
<td>Одобрение технологических процессов сварки</td>
</tr>
<tr>
<td>6</td>
<td>Балластировка подводных трубопроводов</td>
</tr>
<tr>
<td>6.1</td>
<td>Общие положения</td>
</tr>
<tr>
<td>6.2</td>
<td>Сплошные балластные покрытия</td>
</tr>
<tr>
<td>7</td>
<td>Защита от коррозии</td>
</tr>
<tr>
<td>7.1</td>
<td>Общие положения</td>
</tr>
<tr>
<td>7.2</td>
<td>Защита от внутренней коррозии</td>
</tr>
<tr>
<td>7.3</td>
<td>Защита от внешней коррозии</td>
</tr>
<tr>
<td>8</td>
<td>Монтаж и испытания трубопроводов</td>
</tr>
<tr>
<td>8.1</td>
<td>Общие положения</td>
</tr>
<tr>
<td>8.2</td>
<td>Трассировка трубопроводов</td>
</tr>
<tr>
<td>8.3</td>
<td>Дополнительные меры по защите трубопровода в районах интенсивной ледовой экипации</td>
</tr>
<tr>
<td>8.4</td>
<td>Морские операции при укладке трубопроводов</td>
</tr>
<tr>
<td>8.5</td>
<td>Способы укладки трубопроводов на морское дно</td>
</tr>
<tr>
<td>8.6</td>
<td>Испытания подводных трубопроводов давлением</td>
</tr>
<tr>
<td>9</td>
<td>Техническое обслуживание и ремонт</td>
</tr>
<tr>
<td>9.1</td>
<td>Техническое обслуживание</td>
</tr>
<tr>
<td>9.2</td>
<td>Ремонт подводных трубопроводов</td>
</tr>
<tr>
<td>10</td>
<td>Оценка безопасности</td>
</tr>
<tr>
<td>10.1</td>
<td>Область распространения</td>
</tr>
<tr>
<td>10.2</td>
<td>Определения и пояснения</td>
</tr>
<tr>
<td>10.3</td>
<td>Основные принципы</td>
</tr>
<tr>
<td>10.4</td>
<td>Основные требования к проведению анализа риска</td>
</tr>
<tr>
<td>10.5</td>
<td>Методы проведения анализа риска</td>
</tr>
</tbody>
</table>
ЧАСТЬ II. РАЙЗЕРЫ

1 Общие положения..160
1.1 Область распространения..160
1.2 Определения и сокращения..161
1.3 Классификация ..162
1.4 Объем освидетельствований ...164
1.5 Техническая документация ..164
2 Расчетные нагрузки ..166
3 Требования к определению динамического отклика райзера на внешние воздействия и нагрузки ...169
3.1 Общие требования..169
3.2 Определение статической упругой линии райзера ...169
3.3 Определение динамического отклика ..171
3.4 Критерии локальной прочности труб райзера ..172
4 Материалы ..172
4.1 Общие положения ...172
4.2 Металлические трубы райзеров ..173
4.3 Трубы райзеров из полимерных композиционных материалов173
4.4 Полимерно-металлические трубы райзеров ..177
5 Защита от коррозии ..177
6 Постройка, монтаж и испытания райзеров ..178
7 Техническое обслуживание и ремонт райзеров..180
7.1 Общие положения ...180
7.2 Техническое наблюдение за райзерами в эксплуатации181
7.3 Ремонт райзеров ..183

Приложение 1. Рекомендации по обеспечению надежности и безопасности подводных трубопроводов на морском грунте ...184
Приложение 2. Количественные показатели анализа риска193
Приложение 3. Методы анализа риска ..198
Приложение 4. Методики специальных испытаний стальных труб и проката ..212
Приложение 5. Определение значений скорости и ускорения волнового движения частиц воды в придонном слое ...231
Приложение 6. Определение коэффициентов для расчета волновых нагрузок ..242
Приложение 7. Модель динамического отклика подводных трубопроводов при вихревой вибрации

Приложение 8. Основные требования к проверке прочности стальных подводных трубопроводов при сейсмических воздействиях

Приложение 9. Прочность и устойчивость труб райзеров из полимерных композиционных материалов
ЧАСТЬ I. МОРСКИЕ ПОДВОДНЫЕ ТРУБОПРОВОДЫ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части Правил классификации и постройки морских подводных трубопроводов (далее – Правила МПТ) распространяются на трубопроводы, проектируемые, строящиеся и эксплуатируемые в шельфовых зонах морей, подводные переходы участков сухопутных магистральных трубопроводов до ближайшего от уреза воды запорного устройства, транспортирующие жидкие, газообразные и двухфазные углеводороды, а также другие среды, способные транспортироваться по трубопроводам.

При проведении технического наблюдения кроме Правил МПТ Российский морской регистр судоходства (далее – Регистр) использует Руководство по техническому наблюдению за постройкой и эксплуатацией морских подводных трубопроводов (далее – Руководство МПТ) и Руководство по техническому наблюдению за промышленной безопасностью опасных производственных объектов и их технических устройств, нормы и правила национальных органов технического надзора.

1.1.2 В каждом конкретном случае объем технического наблюдения Регистра оговаривается специальным соглашением с владельцем трубопровода и/или организацией, занимающейся его эксплуатацией, и согласовывается, в случае необходимости, в национальных органах технического надзора.

1.1.3 Правила МПТ не распространяются на гибкие шланги. Гибкие шланги должны отвечать требованиям разд. 6 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов. В зависимости от условий применения к гибким шлангам в составе подводных трубопроводов могут быть предъявлены дополнительные требования.

1.1.4 Требования, содержащиеся в Правилах МПТ, относятся к составу документации на морские подводные трубопроводы, объемам освидетельствований, прочности, материалам и сварке, устойчивости на грунте, защите от коррозии, способам укладки, величине заглубления в донный грунт в замерзающих акваториях, испытаниям, эксплуатации и оценке безопасности морских подводных трубопроводов.
1.1.5 Правила МПТ применимы к однониточным, многониточным трубопроводам и трубопроводам типа «труба в трубе».

1.1.6 Правила МПТ могут применяться к существующим подводным трубопроводам, построенным без технического наблюдения Регистра, с целью проведения освидетельствования технического состояния и оценки возможности присвоения класса Регистра.

1.1.7 Регистр может дать согласие на применение материалов, конструкций, устройств и изделий иных, чем предусмотрены Правилами МПТ, при условии, что они являются одинаково эффективными по отношению к определенным в Правилах МПТ. В указанных случаях Регистру должны быть представлены данные, позволяющие установить соответствие этих материалов, конструкций, устройств и изделий условиям, обеспечивающим безопасность транспортировки сред по подводным трубопроводам.

1.1.8 В случае, изложенном в 1.1.6, Регистр вправе потребовать проведения специальных испытаний, а также сократить сроки между периодическими освидетельствованиями или увеличить объем этих освидетельствований.

1.1.9 Подводные трубопроводы, выполненные по другим нормам, правилам или стандартам, могут быть одобрены Регистром альтернативно или в дополнение к Правилам МПТ. В обоснованных случаях трубопроводы должны быть приведены в соответствие с требованиями Правил МПТ в сроки, согласованные с Регистром.

1.1.10 При проектировании, строительстве и эксплуатации подводных трубопроводов должны быть учтены применимые требования национальных надзорных органов.

1.2 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Атмосферная зона – часть трубопровода, расположенная выше зоны всплеска.

Величина заглубления – разность между уровнями расположения верхней образующей трубопровода и естественным уровнем грунта морского дна.

Высота зоны всплеска – вертикальное расстояние между верхним и нижним пределами колебаний зоны всплеска.

Гибкие трубы для морских подводных трубопроводов – полимерно-металлические трубы с концевыми соединительными фитингами, допускающие значительные отклонения от прямолинейности
без существенного роста изгибных напряжений (как правило, расчетное давление для гибких труб должно составлять не менее 1,6 МПа).

Глубина моря – расстояние по вертикали, измеренное от дна моря до среднего уровня воды, плюс суммарная высота астрономического и штормового приливов.

Давление избыточное – разность двух абсолютных давлений – наружного гидростатического и внутреннего.

Длина провисающего участка трубопровода – длина участка трубопровода, не соприкасающегося с морским дном или опорными устройствами.

Допустимые напряжения – максимальные суммарные напряжения в трубопроводе (продольные, кольцевые и тангенциальные), допустимые нормами.

Заглубление трубопровода – размещение подводного трубопровода ниже естественного уровня грунта морского дна.

Зона всплеска – участок трубопроводной системы, периодически омываемый водой в результате действия волн, течений и изменений уровня воды.

Испытательное давление – нормированное давление, при котором производится испытание трубопровода перед сдачей его в эксплуатацию.

Испытание на герметичность – гидравлическое испытание давлением, устанавливающее отсутствие утечки транспортируемой среды.

Испытание на прочность – гидравлическое испытание давлением, устанавливающее конструктивную прочность трубопровода.

Ледовое образование – плавающее на поверхности акватории твердое тело, образованное из морского или пресноводного льда и обладающее целостностью (например, стамуха, торос, айсберг и т.д.).

Киль ледового образования – подводная часть ледового образования.

Минимальный предел текучести – минимальный предел текучести, указанный в сертификате качества предприятия (изготовителя) или стандарте, по которым поставляются стальные трубы или изделия. В расчетах принимается условие, что при минимальном пределе текучести остаточное удлинение не превышает 0,2 %.

Номинальный диаметр трубы – наружный диаметр трубы, указанный в стандарте, по которому поставляются трубы.

Номинальная толщина стенки – толщина стенки трубы, указанная в стандарте, по которому поставляются трубы.
Отрицательная плавучесть трубопровода — сила, направленная вниз и равная весу конструкции трубопровода на воздухе за вычетом веса воды, вытесненной погруженным объемом трубопровода.

Подводный трубопровод — часть трубопроводной транспортной системы, расположенная ниже уровня воды, включающая собственно трубопровод, устройства электрохимической защиты и другие технические устройства, обеспечивающие транспортирование сред при заданном технологическом режиме.

Постройка трубопровода — комплекс технологических процессов по изготовлению, укладке и заглублению, если имеется, морского трубопровода.

Рабочее давление — наибольшее избыточное внутреннее давление транспортируемой среды, при котором обеспечивается заданный режим эксплуатации трубопровода.

Стингер — устройство, устанавливаемое на трубоукладочном судне или барже и предназначенное для обеспечения безопасной кривизны трубопровода и уменьшения его изгибных напряжений в процессе укладки.

Стойка — вертикальная часть подводной трубопроводной системы, закрепленная на опорном блоке (опорном основании) морской стационарной платформы.

Транспортируемые среды — жидкие, газообразные и двухфазные углеводороды, а также другие среды, способные транспортироваться по трубопроводам.

Трубозаглубители — машины, предназначенные для заглубления уложенных поверх морского дна трубопроводов в грунт или для предварительной разработки траншей.

Трубоукладчик (трубоукладочное судно) — специализированное судно, предназначенное для укладки подводного трубопровода.

Укладка трубопровода протаскиванием по дну — технологический процесс, состоящий из предварительного монтажа трубопровода на строительно-монтажной площадке на полную длину или с последовательным наращиванием нитки трубопровода с протаскиванием по морскому дну с помощью различных тяговых устройств и оборудования.

Укладка трубопровода с применением барабана — укладка трубопровода с трубоукладочного судна с предварительной намоткой его на специальный барабан.

Укладка трубопровода с применением наклонного бурения — сочетание процессов наклонного бурения и укладки подводного трубопровода.
Укладка трубопровода J-методом — укладка трубопровода свободным погружением на дно моря с применением наклонной или вертикальной рампы при глубинах более 300 м, состоящая из двух этапов: на первом этапе трубопровод опускается вертикально (или почти вертикально) с трубоукладочного судна методом наращивания до момента касания морского dna; на втором этапе происходит изгиб трубопровода, в процессе которого по мере движения трубоукладочного судна трубопровод ложится на dna моря.

Укладка трубопровода S-методом — укладка трубопровода свободным погружением на дно моря, при этом участок трубопровода, находящийся между точкой касания dna и стингером, принимает форму S-образной кривой.

Утяжеляющее (балластное) покрытие — покрытие, наносимое на трубопровод с целью придачи ему отрицательной плавучести и защиты от механических повреждений.

Экзарация — вспахивание донного грунта килями ледовых образований.

1.3 КЛАССИФИКАЦИЯ

1.3.1 Присваиваемый Регистром подводному трубопроводу класс состоит из основного символа, дополнительных знаков и словесных характеристик, определяющих его назначение и конструкцию.

1.3.2 Основной символ класса, присваиваемый Регистром подводному трубопроводу, состоит из следующих знаков: SP®, SP ★ или SP .

В зависимости от того, под наблюдением какого надзорного органа построен подводный трубопровод, основной символ класса устанавливается следующим образом:

.1 подводным трубопроводам, построенным по правилам и под техническим наблюдением Регистра, присваивается класс с основным символом SP®;

.2 подводным трубопроводам, построенным по правилам и под наблюдением признанного Регистром классификационного общества или национального надзорного органа, присваивается класс с основным символом SP ★;

.3 подводным трубопроводам, построенным без наблюдения признанного Регистром классификационного общества или национального надзорного органа, присваивается класс с основным символом SP★.
1.3.3 К основному символу класса добавляется один из дополнительных знаков:

Л, Л1, Л2, Л3, Г, Г1, Г2, Г3 — назначаемых в соответствии с табл. 1.3.3 для стальных подводных трубопроводов;

FP — для подводных трубопроводов из гибких труб.

<table>
<thead>
<tr>
<th>Уровень эксплуатационной надежности</th>
<th>Вид транспортируемой среды</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Жидкости и двухфазные потоки</td>
</tr>
<tr>
<td>Базовый уровень надежности</td>
<td>L</td>
</tr>
<tr>
<td>Повышенной эксплуатационной надежности</td>
<td>L1</td>
</tr>
<tr>
<td>Для транспортировки агрессивных сред</td>
<td>L2</td>
</tr>
<tr>
<td>Для сейсмически опасных районов и ледостойких стояков</td>
<td>L3</td>
</tr>
</tbody>
</table>

Примечание. При предъявлении комплекса требований к трубопроводу дополнительный знак указывается с применением двух соответствующих индексов (например, Г2/3 — газопровод для агрессивных сред в сейсмически опасном регионе).

1.3.4 К основному символу класса и дополнительному знаку добавляются словесные характеристики:
географический район;
вид транспортируемой среды;
рабочее давление, МПа;
максимальная температура транспортируемой среды, °С;
номинальный диаметр трубы, мм/количество ниток, шт.
Например, SP® Л1, Baltic Sea, Crude Oil, 6 MPa, 40 °C, 325/2.

1.3.5 Регистр может присвоить класс подводному трубопроводу по окончании постройки, а также присвоить или возобновить класс трубопровода, находящегося в эксплуатации.

1.3.6 Присвоение подводному трубопроводу класса Регистра означает подтверждение соответствия трубопровода предъявляемым к нему требованием при дифференциации требований к прочности и материалам трубопроводов, имеющих в символе класса различные дополнительные знаки, для краткости под классом трубопровода будет пониматься тот или иной дополнительный знак (см., например, табл. 3.2.5, 3.2.6 и т. д.).
ниям Правил МПТ и взятие трубопровода под техническое наблюдение на определенный срок с проведением всех предписанных Регистром освидетельствований для подтверждения соответствующего класса.

1.3.7 Подтверждение класса означает подтверждение Регистром соответствия технического состояния трубопровода присвоенному классу и продление технического наблюдения Регистра на установленный период.

1.3.8 Класс подводному трубопроводу присваивается или возобновляется Регистром, как правило, на пятилетний срок, однако в обоснованных случаях Регистр может присвоить или возобновить класс на меньший период.

1.3.9 В случае, если подводный трубопровод не предъявляется к обязательному освидетельствованию в предписанный срок; если он не был предъявлен к освидетельствованию после ремонта; если на нем введены конструктивные изменения, не согласованные с Регистром, или если ремонт трубопровода был осуществлен без технического наблюдения Регистра, то Классификационное свидетельство морского подводного трубопровода (см. 1.4.5) теряет силу, что влечет за собой приостановку класса.

1.3.10 Снятие класса означает прекращение технического наблюдения Регистра, при этом возобновление его действия является предметом специального рассмотрения Регистром.

1.3.11 Снятие класса или отказ Регистра от осуществления технического наблюдения может произойти в случаях, когда владелец трубопровода или организация, занимающаяся его эксплуатацией, систематически нарушают Правила МПТ, а также, если сторона, заключившая с Регистром договор об освидетельствованиях, нарушает его.

1.3.12 Используемые материалы и изделия должны подвергаться необходимым освидетельствованиям и испытаниям в процессе изготовления в установленном Регистром порядке и объеме.

1.4 ОБЪЕМ ОСВИДЕТЕЛЬСТВОВАНИЙ

1.4.1 Общие положения.

1.4.1.1 Объем работ по освидетельствованию и классификации включает следующие этапы деятельности:
рассмотрение и одобрение технической документации;
освидетельствование материалов и изделий, предназначенных для строительства и ремонта трубопроводов;
наблюдение за строительством и ремонтом подводных трубопроводов;
освидетельствования подводных трубопроводов в процессе эксплуатации;
присвоение, подтверждение, возобновление и восстановление класса,
внесение соответствующих записей и выдача документов Регистра.

1.4.1.2 Изменения, осуществляемые строителями и владельцами, касаю­
щиеся материалов и конструкций подводного трубопровода, на которые рас­
шириваются требования Правил МПТ, должны быть одобрены Регистром
до их реализации.

1.4.1.3 Спорные вопросы, появляющиеся при проведении освидетельс­
твования, могут быть представлены владельцами трубопроводов непосредс­
твенно в Главное управление Регистра.

1.4.2 Освидетельствование материалов и изделий.

1.4.2.1 Изготовление материалов и изделий следует производить по тех­
нической документации, одобренной Регистром.

При проведении освидетельствований Регистр может проверить выпол­
нение конструктивных, технологических, производственных нормативов и
процессов, не регламентированных Правилами МПТ, но влияющих на вы­
полнение их требований.

1.4.2.2 Новые или впервые предъявляемые для освидетельствования Ре­
гистру материалы, изделия или технологические процессы должны иметь
одобрение Регистра. Образцы материалов, изделий или новые технологичес­
кие процессы после одобрения Регистром технической документации долж­
ны быть подвергнуты испытаниям по программе и в объеме, согласованном
с Регистром.

1.4.2.3 Формы технического наблюдения, осуществляемого Регистром
при изготовлении материалов и изделий, могут быть следующими:
освидетельствование инспектором;
освидетельствование Регистром предприятия;
освидетельствование в форме рассмотрения Регистром технической до­
кументации;
освидетельствование по поручению Регистра.

Выбор формы освидетельствования осуществляет Регистр при заключе­
нии соглашения о техническом наблюдении за подводным трубопроводом.

1.4.2.4 В процессе освидетельствования материалы и изделия должны
подвергаться необходимым испытаниям в установленном Регистром поряд­
ке и объеме. Эти материалы и изделия должны иметь установленные Регис­
тром документы, а в необходимых случаях - клейма, подтверждающие его
освидетельствование, и маркировку, позволяющую установить их соответс­
твие этим документам.
1.4.3 Техническое наблюдение за строительством, эксплуатацией и ремонтом подводных трубопроводов.

1.4.3.1 Техническое наблюдение за строительством подводных трубопроводов выполняют инспекторы Регистра в соответствии с одобренной Регистром технической документацией. Объем проводимых осмотров, измерений и испытаний, осуществляемых в ходе технического наблюдения, устанавливается Регистром с учетом конкретных условий для данного трубопровода.

1.4.3.2 Владельцы подводных трубопроводов обязаны соблюдать в период эксплуатации сроки периодических и других предписанных Регистром освидетельствований и соответствующим образом подготовливать трубопровод к освидетельствованиям.

1.4.3.3 Владельцы подводных трубопроводов обязаны заявлять Регистру о всех имевших место в период между освидетельствованиями аварийных случаях и ремонтах подводного трубопровода и его комплектующих, на которые распространяются требования Правил МПТ.

1.4.3.4 В случае установки в подводный трубопровод в период эксплуатации или ремонта новых комплектующих изделий, на которые распространяются требования Правил МПТ, к ним применяются положения 1.4.2, 1.4.3.1–1.4.3.3.

1.4.4 Виды и периодичность освидетельствований.

1.4.4.1 Подводные трубопроводы подвергаются следующим освидетельствованиям:

первоначальным, периодическим (очередным, ежегодным и промежуточным) и внеочередным.

Первоначальные освидетельствования разделяются на освидетельствования, проводимые при постройке подводного трубопровода под техническим наблюдением Регистра, и освидетельствований подводного трубопровода, построенного под наблюдением признанного Регистром классификационного общества или национального надзорного органа.

Очередное освидетельствование проводится для возобновления класса, как правило, через каждые 5 лет эксплуатации подводного трубопровода при условии прохождения ежегодных и одного промежуточного освидетельствования.

Ежегодные освидетельствования проводятся для подтверждения класса каждый календарный год с отклонением от предписываемой даты очередного освидетельствования в пределах 3 месяцев до и после этой даты.

Промежуточное освидетельствование проводится в расширенном объеме для подтверждения действия класса между очередными освидетельствованиями.
Внеочередное освидетельствование проводится после аварий, ремонтов и других необходимых случаев.

1.4.4.2 Первоначальное освидетельствование осуществляется с целью присвоения соответствующего класса подводному трубопроводу, впервые предъявляемому Регистру для классификации. К первоначальному освидетельствованию предъявляются также подводные трубопроводы, ранее имевшие класс Регистра, но утратившие его по каким-либо причинам. Первоначальное освидетельствование заключается в тщательном осмотре, проверках, испытаниях и замерах, объем которых каждый раз устанавливается Регистром в зависимости от внешних условий эксплуатации, возраста трубопровода, мероприятий, предусмотренных для его защиты, технического состояния трубопровода, покрытий, арматуры и т. п.

1.4.4.3 Первоначальному освидетельствованию подвергаются подводные трубопроводы, построенные не по правилам Регистра, без технического наблюдения Регистра, классификационного общества, признанного Регистром, или национального надзорного органа. В этом случае первоначальное освидетельствование, объем которого устанавливает Регистр, предполагает тщательное и полное освидетельствование, сопровождающееся в необходимых случаях испытаниями трубопроводов и комплектующего оборудования с целью подтверждения того факта, что они полностью соответствуют требованиям Правил МПТ. Если на подводный трубопровод и соответствующую техническую документацию имеются документы, выданные классификационным обществом или национальным надзорным органом, первоначальное освидетельствование осуществляется в объеме очередного освидетельствования. В случае отсутствия необходимой технической документации на подводный трубопровод в полном объеме, программа освидетельствования может быть увеличена по тому комплектующему оборудованию, на которое эта документация отсутствует.

1.4.4.4 Освидетельствования, проводимые при строительстве подводных трубопроводов, имеют целью проверки соответствия материалов, комплектующих изделий и технологических процессов их изготовления требованиям технического проекта и рабочей документации на подводный трубопровод. Объем освидетельствования в каждом конкретном случае определяется Регистром.

Датой освидетельствования подводного трубопровода по окончании строительства является дата фактического завершения освидетельствования и выдачи Классификационного свидетельства морского подводного трубопровода (см. 1.4.5).
1.4.4.5 Очередное освидетельствование для возобновления класса имеет целью установить, что техническое состояние подводного трубопровода удовлетворительно и соответствует требованиям Правил МПТ, и предполагает проведение испытаний трубопровода, арматуры, автоматизированных систем управления, систем аварийно-предупредительной сигнализации, защиты и индикации. Очередные освидетельствования, объем которых определяется Регистром, проводятся через установленные им периоды, как правило, пятилетние.

1.4.4.6 Обязательное ежегодное освидетельствование предполагает освидетельствование подводного трубопровода, включая арматуру, автоматизированные системы управления, системы аварийно-предупредительной сигнализации, защиты, индикации и другое комплектующее оборудование, в объеме, подтверждающем то, что трубопровод и его комплектующее оборудование продолжают отвечать требованиям Правил МПТ, что подтверждает класс подводного трубопровода.

Объем ежегодных освидетельствований устанавливается Регистром.

1.4.4.7 При очередных освидетельствованиях трубопроводов их испытания давлением должны совмещаться с проверкой в действии обслуживающих их насосных перекачивающих и компрессорных станций, запорной и предохранительной арматуры, дистанционных приводов.

1.4.4.8 Промежуточное освидетельствование подводного трубопровода осуществляется между очередными освидетельствованиями вместо второго или третьего ежегодного освидетельствования по согласованию с Регистром. Объем освидетельствования устанавливается Регистром.

1.4.4.9 Внеочередные освидетельствования подводных трубопроводов или отдельных их компонентов проводятся при предъявлении к освидетельствованию во всех случаях, кроме первоначального и периодических освидетельствований. Внеочередное освидетельствование проводится для оценки допустимости выявленных дефектов или повреждений после аварии, в том числе, сопровождающимися нарушением герметичности трубопровода, разливом жидких или выбросом газообразных транспортируемых сред.

Объем освидетельствований и порядок их проведения определяет Регистр, исходя из предназначения освидетельствования, возраста и технического состояния подводного трубопровода.

1.4.4.10 Внеочередное освидетельствование после аварии имеет целью выявить вид и характер повреждения, объем работ по устранению последствий аварии, а также определить возможность и условия сохранения класса трубопровода после их устранения.
1.4.5 Документы, выдаваемые Регистром по результатам освидетельствований.

1.4.5.1 Документы Регистра выдаются при подтверждении удовлетворительной оценки технического состояния объекта освидетельствования, устанавливаемой в ходе проведения освидетельствований и испытаний.

1.4.5.2 Документом, подтверждающим выполнение Правил МПТ, является Классификационное свидетельство морского подводного трубопровода (ф. 9.9.2).

1.4.5.3 В процессе технического наблюдения за подводными трубопроводами Регистр выдает акты освидетельствования МПТ по окончании постройки (ф. 9.9.1), акты ежегодного/промежуточного/очередного освидетельствования МПТ (ф. 9.9.3) и, в случае необходимости, иные документы.

1.4.5.4 Регистр вправе признавать полностью или частично документы иных классификационных обществ, органов технического надзора и других организаций.

1.4.5.5 Классификационное свидетельство морского подводного трубопровода теряет силу в следующих случаях:
- по истечении срока его действия;
- если подводный трубопровод и комплектующие его изделия не будут предъявлены к периодическому освидетельствованию в предусмотренный срок с учетом порядка отсрочек периодических освидетельствований, определяемого Правилами МПТ;
- после проведения ремонта без технического наблюдения Регистром или замены новыми комплектующих изделий, на которые распространяются требования Правил МПТ;
- если подводный трубопровод не содержится в надлежащем техническом состоянии, обеспечивающем его безопасность;
- при нарушении назначения и условий эксплуатации, указанных в символе класса.

1.5 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.5.1 До начала строительства подводного трубопровода на рассмотрение Регистру должна быть представлена техническая документация, позволяющая удостовериться, что требования правил Регистра по отношению к данному подводному трубопроводу выполняются.

Объем технической документации указан в 1.5.2 – 1.5.11. Следует также учитывать дополнительные указания по составу документации, содержащиеся в других разделах документации.
щиеся в последующих разделах Правил МПТ.

1.5.2 Общая часть:
1. спецификация;
2. чертежи (схемы) прокладки (трассировки) трубопровода со всеми необходимыми данными для рассмотрения проекта;
3. перечень комплектующих изделий и оборудования с указанием основных технических характеристик, предприятия-изготовителя и наличия одобрения Регистром или другим компетентным органом.

1.5.3 Документация на трубы.
1.5.3.1 Предъявляемая техническая документация должна содержать сведения о размерах, материалах, способах и технологии сварки стальных труб. На рассмотрение предъявляются:
1. сертификаты на трубы и протоколы их испытаний (спецификация на поставку труб или технические требования на закупку труб);
2. чертежи разделки кромок труб под сварку;
3. чертежи секций труб;
4. чертежи плетей труб (при укладке труб плетями);
5. технология сварки труб;
6. виды и объем испытаний;
7. способы и объем неразрушающего контроля;
8. сведения о транспортируемой среде;
9. гидравлический расчет.
1.5.3.2 Вместе с чертежами необходимо представить следующие сведения и расчеты:
1. описание способа укладки подводного трубопровода на морское дно;
2. необходимые сведения для определения внешних нагрузок (сил и моментов) от ветра, течений, волн, ледовых образований и других параметров, учитываемых при анализе прочности трубопровода, включая случайные нагрузки (от рыболовных тралов, якорей и т. д.);
3. расчет номинальной толщины стенок труб для соответствующих сочетаний нагрузок;
4. результаты необходимых модельных испытаний, которые могут быть использованы для подтверждения или уточнения приведенных обоснований и расчетов;
5. расчет прочности трубопровода в процессе укладки.
6. расчеты, подтверждающие сейсмостойкость подводного трубопровода.
1.5.3.3 Документация на гибкие трубы должна включать следующие сведения и расчеты:
.1 сертификаты на трубы и протоколы их испытаний (спецификацию на поставку труб или технические требования на закупку труб);
.2 конструктивное исполнение труб и соединительных элементов (концевых фитингов);
.3 характеристики используемых металлических и полимерных материалов;
.4 методы расчета параметров всех слоев трубы с определением расчетного внутреннего и внешнего давления, сопротивления растяжению и кручению;
.5 область применения гибких труб, включая параметры транспортируемой среды;
.6 допустимые виды внешних воздействий (статические, динамические, требования по циклическому и временному ресурсу) и допустимые параметры внешней среды;
.7 минимальный радиус изгиба при хранении, укладке и эксплуатации;
.8 расчеты прочности при укладке, эксплуатации и испытаниях, включая расчеты усталостной прочности;
.9 сведения по инспекции и мониторингу, включая расчетное прогнозирование срока эксплуатации трубы.

1.5.4 Документация на грузы, применяемые для балластировки трубопроводов:
.1 расчет плавучести (выталкивающей силы) подводного трубопровода;
.2 схема размещения балластных грузов;
.3 рабочие чертежи конструкции балластного груза;
.4 расчет балластировки подводного трубопровода при применении обетонированных труб.

1.5.5 Документация на арматуру и ее приводы:
.1 схема размещения запорной и предохранительной арматуры;
.2 сертификаты на арматуру и протоколы испытаний арматуры, подтверждающие ее соответствие транспортируемым средам, предполагаемым условиям эксплуатации трубопроводов;
.3 схема дистанционного управления трубопроводной арматурой;
.4 рабочие чертежи конструкции привода.

1.5.6 Документация на береговые переходы:
.1 описание конструкции выхода подводного трубопровода на берег;
.2 рабочие чертежи берегового перехода.

1.5.7 Документация по укладке подводного трубопровода на морское дно:
.1 способы и технологические схемы укладки с указанием основных параметров;
2 чертеж траншеи или зоны для укладки;
3 описание формирования засыпки траншеи;
4 конструктивное оформление пересечений с ранее уложенными подводными трубопроводами и кабелями.

1.5.8 Документация на автоматизированные системы управления и системы аварийно-предупредительной сигнализации:
1 схема системы сигнализации, контролирующей характеристики транспортируемой среды, утечки, параметры насосов и компрессоров, положение запорных органов арматуры;
2 перечень контролируемых параметров с указанием типов датчиков и приборов, их характеристик;
3 сертификаты на контрольно-измерительные приборы, источники звука и света у приборов и на другие элементы, входящие в систему сигнализации.

1.5.9 Документация на антикоррозионную защиту и изоляцию:
1 сертификаты на антикоррозионные покрытия;
2 обоснование выбора антикоррозионного покрытия трубопроводов;
3 схема антикоррозионного покрытия и изоляции;
4 инструкция по подготовке поверхности трубопровода и нанесению защитных покрытий и изоляции;
5 схема катодной защиты (размещение анодов) или протекторной защиты;
6 определение массы анодов или протекторов.

1.5.10 Документация анализа рисков должна быть подготовлена на основании разд. 10. Допускается выполнение анализа рисков для подводного трубопровода в составе соответствующего раздела в проекте обустройства месторождения на морском шельфе.

1.5.11 В случае установки в подводный трубопровод, находящийся в эксплуатации, новых комплектующих изделий, существенно отличающихся от первоначальных и на которые распространяются требования Правил МПТ, необходимо предъявлять на рассмотрение и одобрение Регистру дополнительную техническую документацию на новые изделия в объеме, требуемом для подводного трубопровода при строительстве.

1.5.12 В случаях, предусмотренных 1.3.5, объем представленной Регистру технической документации является предметом специального рассмотрения Регистром.

1.5.13 Согласованные с Регистром стандарты на отдельные материалы и изделия могут заменить соответствующую часть технической документации.
1.5.14 Изменения, вносимые в одобренную Регистром техническую до­
kументацию и касающиеся элементов и конструкций, предусмотренных тре­
бованиями Правил МПТ, должны быть до их реализации представлены на
одобрение Регистру.

1.5.15 Предъявляемая на рассмотрение и одобрение Регистру техниче­
sкая документация должна быть разработана таким образом или снабжена
такими дополнительными сведениями, чтобы на ее основании можно было
удостовериться в выполнении положений Правил МПТ.

1.5.16 Расчеты, необходимые для определения параметров и значений,
регламентированных Правилами МПТ, должны выполняться в соответствии
с указаниями Правил МПТ или по методикам, согласованным с Регистром.
Применяемые методики и способы выполнения расчетов должны обеспечи­
вать достаточную точность решения задачи. Расчеты, выполненные на ЭВМ,
dолжны производиться по программам, имеющим Свидетельство о типовом
одобрении программы расчетов для ЭВМ (ф. 6.8.5). Регистр может потре­
bовать выполнения контрольных расчетов по любой программе. Регистр не
проверяет правильность выполнения вычислительных операций при рас­
четах. Основные положения, касающиеся одобрения программ расчетов на
ЭВМ и согласования методик расчетов, изложены в 12.2 части II «Техниче­
sкая документация» Правил технического наблюдения за постройкой судов
и изготовлением материалов и изделий для судов.

1.5.17 Согласование стандартов и нормативно-технических документов
на материалы и изделия производится на срок их действия. При пересмотре
стандартов и нормативно-технических документов должна производиться
проверка этих документов с целью учета в них требований действующих на
этот момент правил и норм Регистра.

1.5.18 Срок действия одобрения Регистром технической документации
– 6 лет. По истечении этого срока или в том случае, если перерыв между
датой одобрения и началом постройки трубопровода превышает 3 года, до­
kументация должна быть проверена и откорректирована с учетом изменений
правил Регистра.

1.5.19 Одобрение технической документации подтверждается путём
проставления на ней соответствующих штампов Регистра. Одобрение до­
kументации Регистром не относится к находящимся в ней элементам и кон­
струкциям, на которые не распространяются требования Правил МПТ.
2 РАСЧЕТНЫЕ НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ПОДВОДНЫЕ ТРУБOPРОВОДЫ

2.1 ОБЩИЕ ПОЛОЖЕНИЯ

2.1.1 Расчетные нагрузки, действующие на подводный трубопровод, должны учитывать эксплуатационные условия, испытательные нагрузки и нагрузки при монтаже трубопровода. Каждый вид нагрузки, определенный согласно 2.2 - 2.10, должен быть умножен на коэффициент значимости υ. Значения коэффициентов приведены в табл. 2.1.1.

Таблица 2.1.1

<table>
<thead>
<tr>
<th>Вид нагрузки</th>
<th>υ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вес трубопровода и вспомогательных конструкций</td>
<td>1,1</td>
</tr>
<tr>
<td>Внутреннее давление:</td>
<td></td>
</tr>
<tr>
<td>для газопроводов</td>
<td>1,1</td>
</tr>
<tr>
<td>для нефтепроводов и нефтепродуктопроводов</td>
<td>1,15</td>
</tr>
<tr>
<td>Наружное давление воды с учетом колебаний уровня воды за счет приливо-отливных явлений и волнения</td>
<td>1,1</td>
</tr>
<tr>
<td>Давление грунта обваловки/засыпки трубопровода в траншее</td>
<td>1,4</td>
</tr>
<tr>
<td>Обледенение трубопровода в случае транспортировки среды с отрицательной температурой</td>
<td>1,4</td>
</tr>
<tr>
<td>Сейсмические воздействия</td>
<td>1,1</td>
</tr>
<tr>
<td>Воздействие течения</td>
<td>1,1</td>
</tr>
<tr>
<td>Воздействие волн</td>
<td>1,15</td>
</tr>
<tr>
<td>Воздействие ветра</td>
<td>1,1</td>
</tr>
<tr>
<td>Температурные воздействия</td>
<td>1,0</td>
</tr>
</tbody>
</table>

2.1.2 Расчетные нагрузки с учетом физических явлений их возникновения могут быть разделены на:

функциональные нагрузки;
внешние (природные) нагрузки;
нагрузки при монтаже, укладке и испытаниях;
случайные и особые (аварийные) нагрузки.

2.1.3 Нагрузки, обусловленные целевым назначением подводной трубопроводной системы и ее эксплуатацией в этих целях, относятся к функциональным нагрузкам (внутреннее давление, температурные воздействия транспортируемой среды, реакция грунта морского дна и т. д.). Необходимо учитывать все функциональные нагрузки, определяющие работоспособность системы на стадиях постройки и эксплуатации.
2.1.4 Внешние (природные) нагрузки на подводную трубопроводную систему определяются факторами окружающей среды и не могут быть отнесены к функциональным или особым (аварийным) нагрузкам.

2.1.5 Нагрузки при монтаже трубопровода при соблюдении нормативных внешних условий (ветер, волнение, течения, температура воды и воздуха) и технологии монтажа определяются в зависимости от способа укладки, внешних природных условий и особенностей трассы трубопровода.

2.1.6 Случайные нагрузки (воздействия упавших предметов, орудий рыбной ловли, рыболовных сетей и др.) и особые (аварийные) нагрузки, а также вероятности их появления являются предметом специального рассмотрения Регистром.

2.2 РАСЧЕТНОЕ ДАВЛЕНИЕ

2.2.1 Расчетное давление в трубопроводе \(p_0 \), МПа, определяется по формуле

\[
p_0 = (p_i - p_{g\min}) + \Delta p,
\]

где

- \(p_i \) — внутреннее рабочее давление в трубопроводе, принимаемое в проекте, МПа;
- \(p_{g\min} \) — минимальное внешнее гидростатическое давление на трубопровод, МПа;
- \(\Delta p \) — добавочное расчетное давление, учитывающее давление стратификации транспортируемой среды в трубопроводе и/или давление гидравлического удара в трубопроводе, МПа. Добавочное расчетное давление определяется в результате гидравлического расчёта трубопровода, одобренного Регистром.

2.2.2 Величина \(p_{g\min} \) определяется по формуле

\[
p_{g\min} = \rho_w \cdot g \cdot (d_{\min} - h_w / 2) \cdot 10^{-6},
\]

где

- \(\rho_w \) — плотность морской воды, кг/м³;
- \(g \) — ускорение свободного падения, м/с²;
- \(d_{\min} \) — минимальный уровень тихой воды по трассе трубопровода, м, учитывающий приливно-отливные явления и нагоны с обеспеченностью \(10^{-2} \) 1/год;
- \(h_w \) — расчетная высота волны на проектируемом участке трубопровода, м, с обеспеченностью \(10^{-2} \) 1/год.

2.2.3 Величина добавочного расчетного давления \(\Delta p \), МПа, учитывающего явление гидравлического удара, должна быть не менее величины, определенной по формуле

24
\[\Delta p = V_{int} \sqrt{\frac{\rho_{int} E \cdot t_c \cdot K}{E \cdot t_c + D_{int} \cdot K}} \cdot 10^{-3}, \]

где \(V_{int} \) — скорость движения транспортируемой среды в трубопроводе, м/с;
\(E \) — модуль нормальной упругости материала труб, МПа;
\(K \) — модуль объемной упругости транспортируемой среды, МПа;
\(\rho_{int} \) — плотность транспортируемой среды, кг/м³;
\(D_{int} \) — внутренний диаметр трубопровода, мм;
\(t_c \) — толщина стенки трубы, мм.

2.2.4 В случае применения специальных конструктивных мер по уменьшению давления гидравлического удара (ограничения скорости закрытия арматуры, применение специальных устройств по защите трубопровода от воздействия переходных процессов и др.) величина \(\Delta p \) в расчетах может быть уменьшена на величину, согласованную с Регистром.

2.3 ТЕМПЕРАТУРНЫЕ ВОЗДЕЙСТВИЯ

2.3.1 Для стального подводного трубопровода должны быть определены осевые усилия, возникающие при изменениях температуры стенок труб. Температурный перепад в металле стенок труб следует принимать равным разнице между максимально и минимально возможной температурой стенок во время эксплуатации и укладки.

2.3.2 Максимальную и минимальную температуру стенок труб в процессе эксплуатации следует определять в зависимости от температуры окружающей среды, начальной температуры перекачиваемой среды, интенсивности теплообмена трубопровода с окружающей средой.

2.3.3 Должны допускаться перемещения трубопровода из-за теплового осевого расширения в зонах около стационарных платформ/подводных конструкций (например, подводного манифольда) и местах изменения трубопроводом своего направления (например, трубных вставок с отводами).

2.4 ВЕСОВЫЕ ВОЗДЕЙСТВИЯ

2.4.1 Погонная суммарная нагрузка от сил веса должна учитывать вес труб, защитных покрытий, бетонных покрытий и балласта, различных деталей трубопровода (анодов, арматуры, тройников и т. д.), транспортируе-
мой среды, сил плавучести. Кроме этого в случае укладки трубопровода в засыпную траншею и/или обваловки необходимо учитывать давление грунта засыпки/обваловки.

2.4.2 Если трубопровод, заполненный газом или воздухом, имеет положительную плавучесть, то при укладке его в засыпную траншею предел прочности грунта засыпки на сдвиг должен быть достаточен для предотвращения всплытия трубопровода.

2.4.3 Если трубопровод укладывается поверх грунта, и температура перекачиваемой среды может быть отрицательной, при вычислении сил плавучести необходимо учитывать возможность обльеденения трубопровода.

2.5 ВОЗДЕЙСТВИЕ ТЕЧЕНИЯ

2.5.1 Погонные нагрузки: горизонтальная $F_{c,h}$, вертикальная $F_{c,v}$ и суммарная F_c от течения, Н/м, вычисляются по формулам:

$$F_{c,h} = c_x \frac{\rho_w V_c^2}{2} D_a;$$

$$F_{c,v} = c_z \frac{\rho_w V_c^2}{2} D_a;$$

$$F_c = \sqrt{F_{c,h}^2 + F_{c,v}^2};$$

где V_c — проекция расчетной скорости течения на нормаль к оси трубопровода на глубине установки трубопровода, определенная для данного географического района с обеспеченностью 10^{-2} 1/год на основании инженерных изысканий, м/с;

ρ_w — плотность морской воды, кг/м3;

c_x, c_z — коэффициент сопротивления трубопровода, определяемый согласно 2.5.2;

D_a — наружный диаметр трубы, м.

2.5.2 Коэффициент сопротивления трубопровода c_x, лежащего на дне, определяется по графику на рис. 2.5.2 в зависимости от числа Рейнольдса Re и относительной шероховатости наружной поверхности трубы (антикоррозионного или балластного покрытия) k, которые определяются по формулам

$$Re = \frac{V_c \cdot D_a}{\nu};$$
Рис. 2.5.2
Зависимость коэффициента c_h от числа Рейнольдса и относительной шероховатости поверхности трубы:
1) $k = 0$; 2) $k = 5,0 \cdot 10^{-3}$; 3) $k = 2,0 \cdot 10^{-3}$; 4) $k = 4,0 \cdot 10^{-3}$; 5) $k = 5,0 \cdot 10^{-3}$;
6) $k = 7,0 \cdot 10^{-3}$; 7) $k = 9,0 \cdot 10^{-3}$; 8) $k = 2,0 \cdot 10^{-2}$

$k = k_0 / D_a$, \hspace{1cm} (2.5.2-2)

где $v = 1,2 \cdot 10^{-6}$ м2/с – кинематическая вязкость воды;
k_0 – средняя величина выступов шероховатости на наружной поверхности трубы, м.

2.5.3 Коэффициент сопротивления трубопровода c_z, лежащего на дне, принимается равным 0,8. В случае отстояния трубопровода от морского dna на расстояние d коэффициенты c_x и c_z определяются по графику на рис. 2.5.3.

2.6 ВОЗДЕЙСТВИЕ ВОЛН И ВЕТРА

2.6.1 Погонная горизонтальная волновая нагрузка на трубопровод вычисляется как суперпозиция сил сопротивления $F_{w,s}$ и инерционных сил $F_{w,i}$, Н/м, по формулам:

$$F_{w,s} = c_d \frac{\rho_w V_w^2}{2} D_a; \hspace{1cm} (2.6.1-1)$$
Коэффициенты c_x и c_z в зависимости от относительного отстояния трубопровода от дна d/D_o

$$F_{w,i} = c_i \frac{\pi \cdot \rho_w \cdot a_w}{4} D_o^2$$

где ρ_w, D_o — согласно формулам (2.5.1-1) и (2.5.1-2);
V_w, a_w — см. 2.6.2;
c_i, c_i — коэффициенты сопротивления при волновом движении частиц воды — см. 2.6.5.

2.6.2 Проекции расчетных скорости V_w, м/с, и ускорения a_w, м/с², волнового движения частиц воды на нормаль к оси трубопровода на глубине установки трубопровода определяются для данного географического района с обеспеченностью 10^{-2} 1/год для наиболее волнопасного направления по результатам непосредственных инженерных изысканий по трассе подводного трубопровода.

В приложении 5 приводятся рекомендуемые данные для указанных компонентов скорости и ускорения волнового движения частиц воды в зависимости от глубины моря, высоты и периода волн с обеспеченностью 10^{-2} 1/год, которые определяются по результатам инженерных изысканий. Допускается использование Справочного данных Регистра по режиму ветра и волнения для назначения высоты и периода волн для тех районов морских акваторий, где эти значения определены.
2.6.3 Суммарная горизонтальная волновая нагрузка $F_{w,h}$, Н/м, определяется по формуле

$$F_{w,h} = \sqrt{F_{w,s}^2 + F_{w,i}^2}.$$ \hspace{1cm} (2.6.3)

2.6.4 Вертикальная погонная волновая нагрузка $F_{w,v}$, Н/м, вычисляется по формуле

$$F_{w,v} = c_w \frac{\rho_w V_w^2}{2} D_a.$$ \hspace{1cm} (2.6.4)

gде c_w – см. 2.6.5.

2.6.5 Коэффициенты c_s, c_i и c_v определяются в зависимости от характеристик волнения, параметров подводного трубопровода и его трассы в соответствии с приложением 6, в котором также рассмотрено совместное воздействие волн и течений.

2.6.6 Погонные нагрузки от ударов волн на поверхность трубопровода $F_{s,l}$, Н/м, в зоне всплеска определяются по формуле

$$F_{s,l} = 1,6 \rho_w V_s^2 D_a.$$ \hspace{1cm} (2.6.6)

gде V_s – проекция расчетной скорости поверхностного волнового движения частиц воды на нормаль к оси трубопровода, определенная для данного географического района с обеспеченностью 10\(^{-2}\) 1/год для наиболее волнопасного направления на основании инженерных изысканий, м/с.

2.6.7 Погонные ветровые нагрузки $F_{w,d}$, Н/м, для участков трубопровода, находящихся выше уровня тихой воды на расстоянии z, м, вычисляются по формуле

$$F_{w,d} = 0,23 \rho_a V_w^2 D_a.$$ \hspace{1cm} (2.6.7)

gде ρ_a – плотность воздуха, кг/м\(^3\);

$V_{w,d}$ – расчетная скорость ветра, определенная для данного географического района с обеспеченностью 10\(^{-2}\) 1/год на основании инженерных изысканий, м/с.
2.7 ПЕРЕМЕННЫЕ ГИДРОДИНАМИЧЕСКИЕ НАГРУЗКИ

2.7.1 Для подводных трубопроводов, укладываемых на донный грунт без заглубления или в открытой подводной траншее и имеющих на своей трассе свободные пролеты, должны быть определены переменные (циклические) гидродинамические нагрузки, вызванные вихревой вибрацией - срывом вихрей с поверхности трубы при ее обтекании потоком воды.

2.7.2 Явление возникновения указанных переменных гидродинамических нагрузок следует рассмотривать для подводных трубопроводов при числах Рейнольдса $Re > 300$, определяемых по формуле (2.5.2-1).

2.7.3 Для подводных трубопроводов, указанных в 2.7.2, должны быть определены переменные гидродинамические нагрузки, действующие вдоль и поперек потока, частоты действий этих нагрузок, а также частоты собственных колебаний подводного трубопровода для исключения явлений резонанса.

2.7.4 При определении переменных гидродинамических нагрузок должны быть учтены стационарные компоненты гидродинамического потока (течение) и периодически меняющиеся скорости и ускорения потока воды в придонной области, вызванные волнением.

2.7.5 Для определения динамического отклика подводных трубопроводов, находящихся в условиях вихревой вибрации, должны быть определены следующие гидродинамические параметры:

1 приведенная скорость

$$V_R = (V_c + V_w)/f_0 D_a$$ \hspace{1cm} (2.7.5.1)

где f_0 - собственная частота данной формы колебаний, c^{-1};
V_c - согласно (2.5.1-1) и (2.5.1-2);
V_w - см. 2.6.2.

2 число Кюлегана-Карпентера - см. формулу (1-1) приложения 6;

3 коэффициент скорости потока

$$\alpha = V_c/(V_c + V_w);$$ \hspace{1cm} (2.7.5.3)

4 интенсивность турбулентности

$$I_c = \sigma_c/V_c;$$ \hspace{1cm} (2.7.5.4)

где σ_c - стандартное отклонение флуктуации скорости, м/с.
.5 курсовой угол потока относительно трубы \(\theta_{\text{пр}} \) рад.;
.6 коэффициент устойчивости

\[
K_s = \frac{4 \pi \cdot m_e \cdot \zeta_r}{\rho_w \cdot D_a^2},
\]

где \(\zeta_r \) — полный коэффициент демпфирования данной формы колебания;
\(m_e \) — эффективная масса, кг/м.

2.7.6 Полный коэффициент демпфирования данной формы колебания \(\zeta_r \) равен сумме:

.1 коэффициента конструкционного демпфирования \(\zeta_{\text{стр}} \), обусловленного силами внутреннего трения в материале трубы. В первом приближении принимается \(\zeta_{\text{стр}} = 0,005 \), при наличии бетонного балластного покрытия \(\zeta_{\text{стр}} = 0,01 \ldots 0,02 \).

.2 коэффициента демпфирования грунта \(\zeta_{\text{сол}} \) в первом приближении может быть принято \(\zeta_{\text{сол}} = 0,01 \);

.3 коэффициента гидродинамического демпфирования \(\zeta_h \) (в области захвата \(\zeta_h = 0 \)).

2.7.7 Эффективная масса \(m_e \), кг/м вычисляется по формуле

\[
m_e = \int_L m(s) \phi^2(s) \, ds / \int_L \phi^2(s) \, ds,
\]

где \(\phi(s) \) — предполагаемая форма колебаний трубопровода, удовлетворяющая граничным условиям;
\(m(s) \) — масса единицы длины трубопровода, включающая массу трубы с покрытиями, при соединенную массу и массу транспортируемой среды, кг/м;
\(L \) — длина свободного пролета, м.

2.8 СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

2.8.1 Прочность стальных подводных трубопроводов должна быть проверена на действие сейсмических нагрузок. Оценка сейсмостойкости подводных трубопроводов проводится расчетным путем на следующие воздействия:

- проектное землетрясение повторяемостью 1 раз в 100 лет;
- максимальное расчетное землетрясение повторяемостью 1 раз в 500 лет.

2.8.2 Основные требования к расчетным внешним воздействиям для оценки сейсмостойкости подводных трубопроводов приведены в приложении 8.
3 ПРОЧНОСТЬ ПОДВОДНЫХ ТРУБОПРОВОДОВ

3.1 ОБЩИЕ ПОЛОЖЕНИЯ

3.1.1 Расчет прочности морских подводных трубопроводов должен ос новываться на классических или полузмпирических методиках и численном моделировании, которые учитывают совокупность действующих расчетных нагрузок, граничные условия и параметры сопротивления труб, имеющих отклонения от правильной круговой формы.

3.2 ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ СТЕНКИ СТАЛЬНОГО ТРУБОПРОВОДА

3.2.1 Выбор толщины стенки стального подводного трубопровода, являющийся одним из определяющих этапов проектирования, основывается на необходимости обеспечения прочности (устойчивости) и необходимого уровня безопасности трубопровода. Расчет выполняется для наиболее неблагоприятного сочетания возможных нагрузок.

3.2.2 Толщина стенки стального трубопровода должна определяться, исходя из следующих условий:
- местной прочности трубопровода, характеризуемой максимальными значениями кольцевых напряжений;
- достаточной локальной устойчивости трубопровода.

3.2.3 Толщина стенки стального трубопровода t, мм, исходя из условий местной прочности, определяется по формуле

$$ t = \frac{p_0 D_a}{2 \sigma \varphi} + c_1 + c_2,$$ (3.2.3)

где p_0 — расчетное давление в трубопроводе, МПа, определяемое согласно 2.2;
D_a — наружный диаметр трубы, мм;
σ — допустимое напряжение материала трубы (см. 3.2.5), МПа;
φ — коэффициент прочности, определяемый в зависимости от способа изготовления труб (см. 3.2.4);
c_1 — прибавка на коррозию (см. 7.2.4 и 7.2.5), мм;
c_2 — прибавка, компенсирующая технологический допуск на изготовление труб, мм.

3.2.4 Коэффициент прочности φ принимается равным 1,0 для бесшовных труб и для сварных труб, одобренных Регистром и выпускаемых на признанных Регистром предприятиях.
Для остальных сварных экспандированных труб (прямощовных с одним или двумя швами и спиральношовных) коэффициент прочности \(\phi \) принимается в зависимости от толщины стенки:

- 0,9 для толщины стенки не более 20 мм;
- 0,85 для большей толщины стенки.

Использование сварных независимированных труб не рекомендуется. В случае их применения коэффициент прочности \(\phi \) принимается равным 0,85.

Значения коэффициента прочности \(\phi \) могут быть увеличены по сравнению с указанными выше в случае, если возможность этого доказана выполнением полномасштабных испытаний труб на разрушение по программе, согласованной с Регистром.

3.2.5 Допустимое напряжение \(\sigma \) должно приниматься равным наименьшему из значений:

\[
\sigma = \min \left(\frac{R_e}{n_e}, \frac{R_m}{n_m} \right),
\]

где \(R_e \) – минимальное значение предела текучести металла труб, МПа;
\(R_m \) – минимальное значение предела прочности металла труб, МПа;
\(n_e \) – коэффициент запаса прочности по пределу текучести;
\(n_m \) – коэффициент запаса прочности по пределу прочности.

Значения \(n_e \) и \(n_m \) приведены в табл. 3.2.5 в зависимости от класса трубопровода.

| Таблица 3.2.5 Значения коэффициентов запаса прочности |
|---|---|---|---|---|
| Класс трубопровода | Подводный участок | Береговые и прибрежные участки в охранной зоне |
| | \(n_e \) | \(n_m \) | \(n_e \) | \(n_m \) |
| L, L1 | 1,18 | 1,75 | 1,23 | 1,78 |
| L2 | 1,22 | 1,88 | 1,28 | 1,92 |
| L3 | 1,25 | 2,0 | 1,33 | 2,05 |
| G, G1 | 1,18 | 1,75 | 1,23 | 1,78 |
| G2 | 1,20 | 1,78 | 1,27 | 1,81 |
| G3 | 1,22 | 1,81 | 1,33 | 1,92 |

Примечания: 1. Охранная зона прибрежных участков трубопровода – участки магистрального трубопровода от ближайшей к урезу воды запорной арматуры и далее по дну моря, на расстоянии не менее 500 м.
2. Коэффициенты запаса по согласованию с Регистром могут быть уменьшены при проведении специальных расчетов общей и местной прочности с учетом конкретных условий в месте укладки и расположения трубопровода на грунте.

3.2.6 Максимальные суммарные напряжения в трубопроводе \(\sigma_{\text{max}} \), МПа, обусловленные действием внутреннего и внешнего давления, продольных усилий (например, от теплового расширения и/или упругого изгиба участков трубопровода), а также внешних нагрузок, указанных в разд. 2 с учетом овалности труб, не должны превышать допустимых значений напряжений:

\[
\sigma_{\text{max}} = \sqrt{\sigma_x^2 + \sigma_{hp}^2 - \sigma_x \sigma_{hp} + 3 \tau^2} \leq k_o R_e,
\]

где \(\sigma_x \) - суммарные продольные напряжения, МПа;
\(\sigma_{hp} \) - суммарные кольцевые напряжения, МПа;
\(\tau \) - тангенциальные (касательные) напряжения, МПа;
\(k_o \) - коэффициент запаса по суммарным напряжениям.

Значения коэффициентов запаса \(k_o \) приведены в табл. 3.2.6 в зависимости от класса трубопровода.

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>Значения (k_o) для нормальных условий эксплуатации</th>
<th>Значения (k_o) для кратковременных нагрузок в процессе строительства и гидравлических испытаний</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, L1</td>
<td>0,8</td>
<td>0,95</td>
</tr>
<tr>
<td>L2</td>
<td>0,727</td>
<td>0,864</td>
</tr>
<tr>
<td>L3</td>
<td>0,696</td>
<td>0,826</td>
</tr>
<tr>
<td>G, G1</td>
<td>0,8</td>
<td>0,95</td>
</tr>
<tr>
<td>G2</td>
<td>0,762</td>
<td>0,905</td>
</tr>
<tr>
<td>G3</td>
<td>0,727</td>
<td>0,864</td>
</tr>
</tbody>
</table>

3.3 РАСЧЕТ СТАЛЬНОГО ПОДВОДНОГО ТРУБОПРОВОДА НА УСТОЙЧИВОСТЬ (СМЯТИЕ) ПОД ДЕЙСТВИЕМ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

3.3.1 Наряду с расчетом на действие внутреннего давления морской подводный трубопровод в обязательном порядке должен быть подвергнут...
прочностному расчету на действие внешнего гидростатического давления p_e (см. 3.3.3), способного на определенных глубинах смять стенку трубопровода (вызвать потерю устойчивости сечения) или создать в ней кольцевые сжимающие напряжения, превышающие допустимые (см. 3.2.6).

3.3.2 Прочностные расчеты морских подводных трубопроводов на чистое смятие следует выполнять для самых неблагоприятных условий — возможного минимального внутреннего давления и максимального гидростатического давления:

минимальное внутреннее давление, как правило, имеет место на этапах строительства и осушки внутренней поверхности трубопровода после гидравлических испытаний (в этих случаях оно будет равно атмосферному или даже меньше, если осушка выполняется вакуумным способом);

максимальному гидростатическому давлению соответствует максимальная глубина воды с учетом приливов, нагонов, сезонных и многолетних колебаний уровня моря.

3.3.3 Величина критического внешнего давления на трубопровод p_e, МПа, приводящая к смятию поперечного сечения, но не инициирующая пластических деформаций в стенке трубы (так называемое, упругое смятие), может быть определена по формуле

$$p_e = \frac{1}{k_1} \cdot \frac{2E}{1 - \mu^2} \left(\frac{t_c}{D_a} \right)^3,$$ (3.3.3)

где E — модуль нормальной упругости материала труб, МПа;

μ — коэффициент Пуассона;

D_a — наружный диаметр трубы, мм;

t_c — толщина стенки трубы, мм;

k_1 — коэффициент запаса, определяемый по табл. 3.3.5.

3.3.4 В зависимости от упругих и пластических свойств материала трубы и при определенных соотношениях диаметра и толщины стенки уровень кольцевых сжимающих напряжений может достичь предела текучести с увеличением внешней нагрузки еще до наступления смятия. Величина давления смятия p_y, МПа, определяется по формуле

$$p_y = \frac{2R_e}{k_2} \cdot \frac{t_c}{D_{int}}.$$ (3.3.4)
где $D_{внутр}$ – внутренний диаметр трубы, мм;
R_e – см. формулу (3.2.5);
t_e – толщина стенки трубы, мм;
k_2 – коэффициент запаса, определяемый по табл. 3.3.5.

3.3.5 Проверка несущей способности поперечного сечения подводного трубопровода на чистое смятие под действием внешнего давления выполняется по формуле

$$p_c \leq k_c \cdot p_{g_{\text{max}}},$$
(3.3.5-1)

где p_c – несущая способность поперечного сечения трубопровода, МПа, определяемая по формуле (3.3.5-2);
k_c – коэффициент запаса, определяемый по табл. 3.3.5;
$p_{g_{\text{max}}}$ – максимальное внешнее давление на трубопровод, МПа, определяемое по формуле (3.3.5-3);

$$p_c = \frac{p_y \cdot p_e}{\sqrt{p_y^2 + p_e^2}},$$
(3.3.5-2)

где p_y и p_e – критические нагрузки по упругому и пластическому смятию, определяемые по формулам (3.3.3) и (3.3.4), соответственно.

$$p_{g_{\text{max}}} = \rho_w \cdot g \cdot (d_{\text{max}} + h_w/2) \cdot 10^6,$$
(3.3.5-3)

где ρ_w – плотность морской воды, кг/м3;
g – ускорение свободного падения, м/с2;
d_{max} – максимальный уровень тихой воды по трассе трубопровода, м, учитывающий приливно-отливые явления и нагоны с обеспеченностью 10$^{-2}$ 1/год;
h_w – расчетная высота волны на проектируемом участке трубопровода, м, с обеспеченностью 10$^{-2}$ 1/год.

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, L1</td>
<td>2,0</td>
<td>1,05</td>
<td>1,5</td>
</tr>
<tr>
<td>L2</td>
<td>2,3</td>
<td>1,1</td>
<td>1,65</td>
</tr>
<tr>
<td>L3</td>
<td>2,5</td>
<td>1,2</td>
<td>1,8</td>
</tr>
<tr>
<td>G, G1</td>
<td>1,8</td>
<td>1,05</td>
<td>1,4</td>
</tr>
<tr>
<td>G2</td>
<td>2,0</td>
<td>1,1</td>
<td>1,5</td>
</tr>
<tr>
<td>G3</td>
<td>2,2</td>
<td>1,2</td>
<td>1,65</td>
</tr>
</tbody>
</table>
Формула (3.3.5-2) действительна при условии выполнения соотношения

\[15 < \frac{D_a}{t_c} < 45 \]

и величины начальной (заводской) овальности для труб не более 0,5 %. Овальность определяется по формуле

\[U = \frac{D_{a_{\text{max}}} - D_{a_{\text{min}}}}{D_a}, \quad (3.3.5-4) \]

где \(D_{a_{\text{max}}} \) и \(D_{a_{\text{min}}} \) — соответственно максимальный и минимальный наружные диаметры трубы, мм.

3.4 РАСЧЕТ СТАЛЬНОГО ПОДВОДНОГО ТРУБОПРОВОДА НА ЛОКАЛЬНОЕ СМЯТИЕ

3.4.1 Локальное смятие — потеря устойчивости первоначальной формы трубопровода в виде излома или коробления под действием внешнего гидростатического давления, продольных сил и изгибающего момента.

3.4.2 Проверка подводного трубопровода на устойчивость при его укладке под действием нагрузок, указанных в 3.4.1, должна быть выполнена согласно неравенству

\[
\left(\frac{P_{e_{\text{max}}}}{p_e} \right)^{n_1} + \left(\frac{M}{M_e} \right)^{n_2} + \left(\frac{T}{T_e} \right)^{n_3} \leq 1/n_c, \quad (3.4.2-1)
\]

где \(p_e \) — критическое внешнее давление, вызывающее локальную потерю устойчивости трубы, МПа, и определяемое по формуле (3.3.5-2);

\(M_e \) — критический изгибающий момент, кН·м, определяемый по формуле

\[M_e = (D_{a_{\text{in}}} + t)^2 t R_e \cdot 10^{-6}; \quad (3.4.2-2) \]

\(T_e \) — критическая продольная сила, кН, определяемая по формуле

\[T_e = \pi (D_{a_{\text{in}}} + t) t R_e \cdot 10^{-3}; \quad (3.4.2-3) \]

\(P_{e_{\text{max}}} \) — см. формулу (3.3.5-3);

\(M \) — расчетный изгибающий момент, определяемый с учетом поперечных сил от волнения, ветра, течения и изгибающих моментов при укладке трубопровода различными способами, кН·м;

\(T \) — расчетная продольная сила, определяемая с учетом продольных сил при укладке трубопровода различными способами, кН;

\(p_e, M_e \) и \(T_e \) — несущая способность трубопровода по отдельным видам действующих нагрузок (предельно допустимые значения того или иного силового фактора при условии, что остальные виды силовой нагрузки отсутствуют);

\(D_{a_{\text{in}}}, t, R_e \) — см. формулу (3.3.4);
n_1 – коэффициент запаса, принимаемый в соответствии с табл. 3.4.2, может быть увеличен при проведении испытаний на образцах труб при совместном действии нагрузок по методике, согласованной с Регистром;

n_1, n_2 и n_3 – коэффициенты, определяемые экспериментально на образцах труб при совместном действии нагрузок по методике, одобренной Регистром. Если неравенство (3.4.2-1) выполняется при $n_1 = n_2 = n_3 = 1$, то дальнейшее их уточнение не требуется.

Таблица 3.4.2

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>L, L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>G, G_1</th>
<th>G_2</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_2</td>
<td>1,2</td>
<td>1,4</td>
<td>1,6</td>
<td>1,1</td>
<td>1,3</td>
<td>1,5</td>
</tr>
</tbody>
</table>

3.4.3 При совместном воздействии изгиба и сжатия в расчетах на устойчивость (смятие) подводных трубопроводов следует принимать значение предела текучести на сжатие равным 0,8 минимального предела текучести материала труб.

3.5 РАСЧЕТ СТАЛЬНОГО ПОДВОДНОГО ТРУБОПРОВОДА НА ЛАВИННОЕ СМЯТИЕ

3.5.1 Лавинное смятие – явление распространения локального смятия сечения глубоководного трубопровода по трассе трубопровода. Явление лавинного смятия имеет место при условии, когда внешнее гидростатическое давление на больших глубинах превышает критическое значение p_r'.

3.5.2 Критическое значение величины гидростатического давления p_r', МПа, при котором может возникнуть лавинное распространение смятия, определяется по формуле

$$p_r' = 24 R_e \left(\frac{t_c}{D_a} \right)^{2.4},$$

где t_c – толщина стенки трубы, мм;
D_a – наружный диаметр трубы, мм;
R_e – минимальное значение предела текучести материала трубы, МПа.

Условием отсутствия лавинного смятия является выполнение неравенства

$$p_{g_{\text{max}}} < 1,2 p_r',$$

(3.5.2-2)
где \(p_{z_{\text{max}}} \) определяется по формуле (3.3.5-3).

При несоблюдении неравенства (3.5.2-2) для подводного трубопровода или его участка требуется введение специальных конструктивных мер по предупреждению лавинного смятия.

3.5.3 Для предупреждения возникновения лавинного смятия (защиты подводного трубопровода) должны быть приняты следующие меры:

- увеличение толщины стенки трубопровода по мере увеличения глубины моря;
- установка ограничителей смятия.

3.6 РАСЧЕТ СТАЛЬНОГО ПОДВОДНОГО ТРУБОПРОВОДА НА УСТАЛОСТНУЮ ПРОЧНОСТЬ

3.6.1 Общие положения.

3.6.1.1 Прочность трубопровода должна проверяться по усталостному критерию на базе линейной гипотезы суммирования усталостных повреждений

\[
\sum_{i=1}^{m} \frac{n_i(\Delta \sigma_i)}{N_i(\Delta \sigma_i)} \leq 1/n_y, \tag{3.6.1.1}
\]

где \(m \) — количество режимов нагружения;

\(n_i(\Delta \sigma) \) — количество циклов нагружения для каждого режима;

\(N_i(\Delta \sigma) \) — соответствующие точки кривой усталости материала труб для каждого режима;

\(\Delta \sigma_i \) — изменение напряжений за цикл нагружения, определяемое как алгебраическая разность наибольшего и наименьшего напряжений за цикл, МПа;

\(n_y \) — коэффициент запаса, принимаемый в соответствии с табл. 3.6.1.1.

| Значения коэффициента запаса при расчете трубопровода на усталость |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(n_y \) | L, L1 | L2 | L3 | G, G1 | G2 | G3 |
| 3,0 | 5,0 | 8,0 | 3,0 | 4,0 | 5,5 |

3.6.1.2 Оценка усталостной прочности трубопровода должна учитывать асимметрию циклических напряжений и двусошность напряженного состояния материала трубы.
3.6.1.3 Кривая усталости материала труб может быть получена путем специальных испытаний или взята из применимого международного или национального стандарта, например ГОСТ 25859-83, и согласована с Регистром.

3.6.1.4 При расчете на усталость должны учитываться:
рабочие циклы изменения давления между пуском и остановкой;
циклы нагружения при повторяющихся испытаниях давлением;
циклы нагружения, вызванные стеснённостью температурных деформаций в процессе эксплуатации;
вибрация, вызываемая срывом вихрей от подводных течений;
периодические волновые нагрузки.

3.6.2 Модель динамического отклика подводного трубопровода на переменные гидродинамические нагрузки.

3.6.2.1 Вихревая вибрация вдоль потока.

3.6.2.1.1 Амплитуда колебаний свободного пролета трубопровода вдоль потока, возбуждаемых срывом вихрей, определяется величинами приведенной скорости \(V_r \), коэффициента устойчивости \(K_s \), интенсивности турбулентности \(I_c \) и курсового угла потока \(\theta_{ref} \) (см. 2.7.5 – 2.7.7).

3.6.2.1.2 Основные требования к модели динамического отклика для колебаний свободного пролета трубопровода вдоль потока, возбуждаемых срывом вихрей, приводятся в разд. 1 приложения 7.

3.6.2.2 Вихревая вибрация поперек потока.

3.6.2.2.1 Амплитуда колебаний свободного пролета трубопровода поперек потока, возбуждаемых срывом вихрей, зависит от совокупности различных параметров, к которым в первую очередь следует отнести приведенную скорость \(V_r \), число Кюлегана-Карпентера \(K_C \), коэффициент скорости потока \(a \) и коэффициент устойчивости \(K_s \).

3.6.2.2.2 Основные требования к модели динамического отклика для колебаний свободного пролета трубопровода поперек потока, возбуждаемых срывом вихрей, приводятся в разд. 2 приложения 7.

3.6.2.3 Необходимый для проведения расчетов безразмерный коэффициент присоединенной массы, как для гладких, так и для шероховатых поверхностей трубы, определяется соотношением

\[
C_a = \begin{cases}
0,68 + \frac{1,6}{1 + 5 \cdot (d/D_a)} & \text{для } d/D_a < 0,8 \\
1 & \text{для } d/D_a \geq 0,8
\end{cases}
\]

(3.6.2.3)
где \(d/D_a \) — см. 2.5.3 и приложение 6.

3.6.2.4 Определение собственных частот и собственных форм колебаний участков подводных трубопроводов со свободными пролетами проводится на основе численного моделирования. При этом необходимо:
- установить положение статического равновесия;
- определить собственные частоты колебаний трубопровода;
- выполнить линеаризацию задачи о взаимодействии «труба-грунт»;
- оценить влияние геометрической нелинейности на динамический отклик рассматриваемой системы.

3.6.2.5 Прочность трубопровода по усталостному критерию при воздействии вихревой вибрации проверяется в соответствии с 3.6.1.

3.7 РАСЧЕТ СТАЛЬНОГО ПОДВОДНОГО ТРУБОПРОВОДА НА СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ

3.7.1 При воздействии проектного землетрясения подводный заглубленный или с обвалованием трубопровод должен оставаться в режиме нормальной эксплуатации, при этом должно выполняться условие:

\[\varepsilon_M \leq 0.1 \% \] (3.7.1)

где \(\varepsilon_M \) — общая изгибная деформация металла трубы, рассчитанная по критерию Мизеса с помощью численных методов (см. разд. 4 приложения 8).

3.7.2 При воздействии максимального расчетного землетрясения в подводном трубопроводе не должны появляться разрывы и зоны разгерметизации. Допускаются следующие повреждения: гофрообразование трубы, локальная потеря устойчивости стенки трубы, общая потеря устойчивости трубопровода, образование несквозных трещин в сварных швах, размеры которых допускаются нормами эксплуатации (см. 4.1.3 Руководства МПТ).

3.7.3 Сейсмостойкость подводного трубопровода при воздействии максимального расчетного землетрясения считается обеспеченной, если выполняются следующие условия:

3.7.3.1 Максимальная величина общей деформации по критерию Мизеса металла трубы \(\varepsilon_M \) не должна превышать 2 %.

3.7.3.2 Максимальная деформация сжатия \(\varepsilon_y \) не должна превышать величину осевой деформации гофрообразования \(\varepsilon_c \):
Величина деформации гофрообразования \(\varepsilon_c \) соответствует точке максимума диаграммы «продольная сжимающая сила – осевая деформация» и определяется путем испытаний труб в признанной Регистром лаборатории или путем расчетной методики, одобренной Регистром.

Для моделирования поведения труб в процессе потери устойчивости должен быть проведен расчет с помощью численных методов (см. разд. 4 приложения 7) с учетом физической и геометрической нелинейности.

3.7.3.3 Максимальная величина деформации растяжения не должна превышать 2%.

При этом должно выполняться общее требование:

\[
R_{e,m} \geq R_e,
\]

где \(R_{e,m} \) – минимальный предел текучести металла сварного шва, МПа;
\(R_e \) – минимальный предел текучести основного металла трубы, МПа.

3.7.3.4 Должно выполняться следующее соотношение между изгибной деформацией \(\varepsilon_M \) и критической деформацией \(\varepsilon_{t,cr} \) при изгибе трубопровода:

\[
\frac{\varepsilon_M}{\varepsilon_{t,cr}} \leq \Theta,
\]

где \(\Theta \) – параметр овальности трубы;

\[
\varepsilon_{t,cr} = \frac{t_c}{2 \cdot D_a};
\]

\[
\Theta = \sqrt{\frac{1 + (\sigma_{e'}^2)}{1 + (\sigma_{e'}/f)^2}};
\]

\[
f = \sqrt{1 + \left(\frac{\Theta_0 \cdot D_a}{t_c}\right)^2} - \frac{\Theta \cdot D_a}{t_c};
\]

\(\Theta_0 \) – расчетная овальность трубы, которая при отсутствии фактических данных поставщика труб принимается равной по табл. 4.5.5.3-2 для тела трубы;
Таким образом, при воздействии максимального расчетного землетрясения должно выполняться требование 3.7.3.3, в том числе:

\[\sigma_{\text{max}} \leq 1.1 R_e \] \quad (3.7.4-2)

Должна быть выполнена проверка максимальных значений перемещений, определенных по результатам численных расчетов.

3.7.5 Сейсмостойкость морского подводного трубопровода считается достаточной, если выполняются вышеуказанные условия.

3.7.6 В случае пересечения активных тектонических разломов с учетом возможных смещений грунта, должна быть выполнена оценка напряженно-деформированного состояния участков подводного трубопровода.

3.7.7 Результаты аналитических и численных рассмотренных выше решений по требованию Регистра должны быть подтверждены лабораторными или натурными испытаниями.
3.8 РАСЧЕТ ПРОЧНОСТИ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ТРУБОПРОВОДА ИЗ ГИБКИХ ТРУБ

3.8.1 Термины, относящиеся к несвязанным гибким трубам.

Внешняя оболочка — слой из экструдированного полимерного материала, используемый для защиты гибкой трубы от морской воды, предотвращения коррозии, абразивного истирания и фиксирующий проектное положение осевого силового слоя.

Внутренняя герметизирующая оболочка — слой из экструдированного полимерного материала, обеспечивающий герметичность трубы (предотвращение проникновения транспортируемой жидкости или газа в окружающую среду).

Каркас — металлический слой с межвитковым сцеплением, предназначенный для придания внутренней герметизирующей оболочке (или трубе в целом) способности воспринимать радиальные нагрузки (внутреннее и внешнее гидростатическое давление, локальные нагрузки).

Несвязанная гибкая труба — гибкая труба, состоящая из отдельных несвязанных (неинтегрированных) между собой полимерных и армирующих металлических слоев, допускающих относительное смещение между ними.

Осевой силовой слой — слой, образованный спиральной парной намоткой металлических плоских полос, ориентированных относительно образующей под углом от 20° до 55°, и обеспечивающий восприятие осевых усилий и внутреннего давления.

Промежуточная оболочка — слой из экструдированного полимерного материала, предназначенный для предотвращения контактного истирания металлических слоев.

Радиальный силовой слой — слой, образованный намоткой металлических полос с межвитковым сцеплением, ориентированных относительно образующей под углом, близким к 90°, и предназначенный для повышения сопротивления трубы радиальным нагрузкам.

Теплоизоляционный слой — слой материала с низкой теплопроводностью, используемый для обеспечения теплоизоляционных свойств гибкой трубы.

3.8.2 Термины, относящиеся к связанным гибким трубам.

Армирующий слой — слой интегрированного в эластомер спирально навитого троса, ориентированного, как правило, под углом 55° к образующей, предназначенный для полного или частичного восприятия растягивающих усилий и внутреннего давления.
Дополнительный слой — слой материала с низкой теплопроводностью, используемый для обеспечения теплоизоляционных свойств гибкой трубы.

Лейнер — герметичный слой из эластомерного материала, контактирующий с транспортируемой жидкостью/газом.

Покрытие — слой эластомера, контактирующий с внешней средой, предназначенный для герметизации внутренних слоев гибкой трубы и предотвращения коррозионных, абразивных и механических повреждений.

Связанная гибкая труба — гибкая труба, в которой металлическое армирование интегрировано в отверженный эластомер, содержащий слой текстиля для дополнительного армирования или разделения эластомерных слоев.

3.8.3 Общие требования к прочности гибких труб.

3.8.3.1 Как правило, расчетное давление гибких труб должно составлять не менее 1,6 МПа. При меньших значениях расчетного давления гибкие трубы должны удовлетворять требованиям разд. 6 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.8.3.2 Расчеты прочности гибких труб под действием расчетных нагрузок, в том числе нагрузок при укладке и испытательных нагрузок, должны быть одобрены Регистром и выполнены по методике, согласованной с Регистром. Расчетная методика может быть выполнена на основе национальных или международных стандартов, признанных Регистром допустимыми для применения, например, Стандарт ИСО 13628-2 — для несвязанных гибких труб и Стандарт ИСО 13628-10 — для связанных гибких труб.

3.8.3.3 Допустимый радиус изгиба гибких труб для хранения/эксплуатации/укладки должен определяться предприятием-изготовителем с учетом критериев 3.8.4, 3.8.5 и 3.8.6 и указываться в технической документации на трубы, подлежащей одобрению Регистром (см. 1.5.3.3). Для практического применения в эксплуатации рекомендуется увеличивать величину максимального радиуса изгиба по сравнению с минимальным радиусом при хранении (намотке на барабан):

- при статических условиях работы гибкого трубопровода — на 10 %;
- при динамических режимах — на 50 %.

3.8.3.4 Для гибких труб должна быть рассчитана долговечность с учетом влияния ползучести и деформационного старения полимерных слоев, коррозии и эрозии металлических слоев (см. 1.5.3.3.9). Расчетная долговечность должна превышать планируемый срок эксплуатации трубы не менее чем в 10 раз.
3.8.3.5 Величины расчетных параметров сопротивления трубы (внешнему и внутреннему давлению, растяжению, кручению), а также радиус изгиба гибкой трубы подлежат подтверждению по результатам типовых испытаний (см. 4.2.4).

3.8.4 Требования к прочности полимерных слоев несвязанных гибких труб.

3.8.4.1 Предельное состояние полимерных слоев несвязанных гибких труб определяется деформационными критериями: предельной деформацией ползучести и предельной деформацией изгиба.

3.8.4.2 Для всех комбинаций нагрузок максимально допустимое снижение толщины стенки внутренней герметизирующей оболочки вследствие ползучести материала слоя не должно превышать 30 %.

3.8.4.3 Максимально допустимая деформация изгиба внутренней герметизирующей оболочки не должна превышать:
- 7,7 % для полиэтилена и полиамида;
- 7,0 % для поливинилденфторида при статических условиях эксплуатации труб и при хранении труб, предназначенных для динамических режимов эксплуатации;
- 3,5 % для поливинилденфторида при эксплуатации в динамических условиях.

3.8.4.4 Максимально допустимая деформация внешней оболочки из полиэтилена и полиамида должна быть не более 7,7 %.

3.8.4.5 Для других полимерных материалов максимально допустимые деформации назначаются на основании технической документации, подтверждающей удовлетворение проектным требованиям по предельной деформации и одобренной Регистром.

3.8.5 Требования к прочности полимерных слоев связанных гибких труб.

3.8.5.1 Предельное состояние полимерных слоев связанных гибких труб определяется деформационным критерием: максимально допустимая деформация полимерных слоев не должна превышать более чем на 50% уровень предельной деформации состаренного материала.

3.8.6 Требования к прочности и устойчивости металлических слоев гибких труб.

3.8.6.1 Для металлических слоев гибких труб критерий прочности должен соответствовать выполнению условия

\[\sigma_i \leq k_i \cdot \min (R_e, 0,9 R_m), \]

где \(\sigma_i \) – максимальное расчетное напряжение в слое, МПа;

\(R_e \) – минимальное значение предела текучести металла слоя, МПа;

\(R_m \) – временное сопротивление металла слоя, МПа;

\(k_1 \) – коэффициент запаса, определяемый по табл. 3.8.6.1.

Таблица 3.8.6.1

<table>
<thead>
<tr>
<th>Значения коэффициентов запасов для расчетов прочности гибких труб</th>
</tr>
</thead>
<tbody>
<tr>
<td>Виды нагрузок на гибкие трубы</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Армирующие слои связанных гибких труб</td>
</tr>
<tr>
<td>Слои несвязанных гибких труб:</td>
</tr>
<tr>
<td>осевой силовой слой</td>
</tr>
<tr>
<td>каркас, радиальный силовой слой</td>
</tr>
</tbody>
</table>

Примечание. При учете случайных (аварийных) нагрузок при эксплуатации коэффициент запаса должен быть увеличен на величину согласованную с Регистром.

3.8.6.2 Каркас гибких труб должен быть рассчитан на устойчивость, при этом коэффициент запаса от величины критических напряжений \(k_{ib} \) должен составлять

\[
k_{ib} = 0,67 \quad \text{для} \quad (d_{\max} + h_w/2) \leq 300 \text{ м}; \quad (3.8.6.2-1)
\]

\[
k_{ib} = \left[\frac{(d_{\max} + h_w/2) - 300}{600} \right] \cdot 0,18 + 0,67 \quad \text{для} \quad 300 < (d_{\max} + h_w/2) < 900 \text{ м}; (3.8.6.2-2)
\]

\[
k_{ib} = 0,85 \quad \text{для} \quad (d_{\max} + h_w/2) \geq 900 \text{ м,} \quad (3.8.6.2-3)
\]

где \(d_{\max} \) и \(h_w \) – величины, определяемые по формуле (3.3.5-3).

3.8.7 Критерии локальной прочности гибкой трубы в районе узлов соединения.

3.8.7.1 Конструкция концевого соединительного фитинга должна гарантировать его совместную работу с оболочкой гибкой трубы. Предельное состояние зон соединения фитинга с оболочкой трубы определяется для всех возможных комбинаций нагрузок в соответствии с соотношением

\[
(\sigma_r, \sigma_e) \leq k_f \cdot R_e, \quad (3.8.7.1)
\]

где \(\sigma_r \) – растягивающее тангенциальное напряжение, МПа;

\(\sigma_e \) – эквивалентное напряжение (Мизеса), МПа;

\(R_e \) – минимальное значение предела текучести материала, МПа;

\(k_f \) – коэффициент запаса, равный (см. примечание в табл. 3.8.6.1):
для эксплуатационного режима – 0,55;
для процесса укладки – 0,67;
для гидравлических испытаний – 0,91.

4 МАТЕРИАЛЫ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

4.1.1 Требования настоящего раздела распространяются на подлежащие техническому наблюдению Регистра материалы и изделия из углеродистой, углеродисто-марганцевой, низколегированной стали и гибкие трубы, предназначенные для морских подводных трубопроводов.

4.1.2 Требования к сталям для морских подводных трубопроводов учитывают особенности трубопроводов для транспортировки жидкостей (включая нефте-, нефтепродуктопроводы, химические трубопроводы и водопроводы) и газопроводов в соответствии с классификацией подводных трубопроводов (см. 1.3).

4.1.3 Требования к сталям для морских подводных трубопроводов в соответствии с их классификацией учитывают различный уровень эксплуатационной надежности для трубопроводов в виде дополнительных знаков к символу класса трубопровода (см. 1.3.3):

L, G – сталь с базовым уровнем требований (для трубопроводов с базовым уровнем эксплуатационной надежности);
L1, G1 – сталь с дополнительными требованиями (для трубопроводов с повышенной эксплуатационной надежностью);
L2, G2 – сталь с дополнительными требованиями к коррозионной стойкости в агрессивных средах (для транспортировки агрессивных сред);
L3, G3 – сталь с дополнительными требованиями по вязкости и пластичности (для трубопроводов в сейсмически опасных регионах и ледостойких стойках).

При предъявлении комплексных требований к сталям для подводных трубопроводов (например, для транспортировки агрессивных сред в сейсмически опасных регионах) необходимо совмещение требований тех или иных уровней эксплуатационной надежности.

4.1.4 Сталь, отличающаяся по химическому составу, механическим свойствам, состоянию поставки или методу изготовления от указанного в настоящем разделе, подлежит отдельному рассмотрению Регистром.
этом должны быть представлены данные, подтверждающие возможность применения этих материалов по назначению. Допускается по согласованию с Регистром применение материалов в соответствии с требованиями национальных и/или международных стандартов.

4.1.5 Для подводных трубопроводов из гибких труб, удовлетворяющих требования настоящих Правил, в соответствии с 1.3.3 вводится дополнительный знак к основному символу класса. Требования к гибким трубам назначаются Регистром в зависимости от назначения трубопровода (см. 4.2.4).

4.1.6 Материалы, подлежащие техническому наблюдению Регистра, должны изготавливаться признанными Регистром предприятиями (изготовителями), имеющими соответствующий документ – Свидетельство о признании изготовителя (СПИ, ф. 7.1.4.1) / Свидетельство о типовом одобрении (СТО, ф. 6.8.3) (см. 4.2.1).

4.1.7 Общие положения, определяющие объем и порядок осуществления технического наблюдения за материалами, изложены в разд. 5 части I «Общие положения по техническому наблюдению» Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов и в 1.3 части XIII «Материалы» Правил классификации и постройки морских судов.

4.2 ОСВИДЕТЕЛЬСТВОВАНИЕ И ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ

4.2.1 Освидетельствование и признание предприятий (изготовителей) материалов и изделий.

4.2.1.1 Предприятия (изготовители), изготавливающие материалы и изделия в соответствии с требованиями настоящего раздела, до начала производства продукции, как правило, должны быть признаны Регистром. С этой целью осуществляется освидетельствование производства (первоначальное освидетельствование), которое включает:

.1 рассмотрение и одобрение технической документации, определяющей свойства материалов и условия производства;

.2 ознакомление с производством и существующей на предприятии системой контроля качества, проведение контрольных испытаний. В процессе выполнения этих мероприятий должно подтверждаться соответствие параметров производства и продукции требованиям представленной документации и правил Регистра, а также надлежащий уровень стабильности качества продукции;

.3 оформление результатов освидетельствования в соответствии с требованиями Номенклатуры объектов технического наблюдения Регистра
за морскими подводными трубопроводами (см. 1.6 Руководства МПТ) – Свидетельства о признании изготовителя (ф. 7.1.4.1) или Свидетельства о типовом одобрении (ф. 6.8.3) (при положительных результатах).

4.2.1.2 Все процедуры, необходимые для получения Свидетельства о признании изготовителя (ф. 7.1.4.1) и Свидетельства о типовом одобрении (ф. 6.8.3), документов, подтверждающих признание предприятия и его продукции Регистром, выполняются в соответствии с требованиями раздела 2 части III «Техническое наблюдение за изготовлением материалов» Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов и 2.6 Руководства МПТ.

4.2.1.3 Если прокат и/или трубные заготовки поставляются на трубопрокатный завод с других предприятий, то изготовители упомянутых полупродуктов для производства труб должны быть признаны Регистром (иметь Свидетельство о признании изготовителя (ф. 7.1.4.1)).

4.2.2 Освидетельствование в процессе производства (осуществление технического наблюдения).

4.2.2.1 Все материалы и изделия, изготавливаемые в соответствии с требованиями настоящего раздела, подлежат освидетельствованию при их изготовлении с проведением освидетельствований и испытаний в объеме требований настоящей главы и/или одобренной Регистром технической документации.

4.2.2.2 Техническое наблюдение в процессе производства включает:
- испытания и осмотр;
- оформление документов Регистра.

4.2.3 Испытания стальных проката и труб.

4.2.3.1 Контрольные испытания в процессе признания предприятия (изготовителя).

4.2.3.1.1 Испытания выполняются по представленной предприятием (изготовителем) и согласованной с Регистром программе. Программа составляетя на основе соответствующих требований Правил МПТ (см. 4.2.3.5), национальных и/или международных стандартов и иной одобренной Регистром технической документации.

4.2.3.1.2 Испытания выполняются в присутствии представителя Регистра по согласованном с Регистром методикам.

Место и время проведения испытаний должны быть заранее оговорены изготовителем. Отбор проб, методики испытаний, схемы вырезки образцов должны выполняться в соответствии с требованиями 4.3 Правил МПТ и соответствующими стандартами.
4.2.3.2 Испытания в процессе производства.
4.2.3.2.1 Испытания выполняются в соответствии с требованиями настоящих Правил и одобренной Регистром документацией на поставку продукции. Испытания также выполняются в присутствии представителя Регистра.
4.2.3.3 Общие положения.
4.2.3.3.1 Методы и методики испытаний выбираются в соответствии с требованиями 4.3. Методы проведения специальных испытаний, а также соответствующие критерии оценки, если нет указаний в настоящих Правилах, должны быть согласованы с Регистром.
4.2.3.3.2 Если проведение испытаний невозможно на предприятии (изготовителе) заявленной продукции, необходимые испытания должны быть выполнены в признанной Регистром лаборатории.
4.2.3.3.3 Если не оговорено иное, на пробы и образцы представителем Регистра наносится клеймо.
4.2.3.3.4 Результаты испытаний должны оформляться протоколом, содержащим следующие данные:
идентификационный номер;
дату проведения испытания;
наименование организации, проводившей испытания;
наименование организации-заказчика;
вид испытания;
вид и размеры испытываемой металлопродукции, марку материала и термообработку;
номер и наименование нормативного документа на проведение испытаний;
маркировку (номер плавки, партии, номер листа, трубы, размеры трубы/листа и т. п.);
место вырезки и ориентацию образцов;
результаты испытания;
любые отклонения от методики;
тип испытательной машины, метрологическую поверку.
Протокол, заверенный уполномоченным лицом проводящей испытания организации, направляется на рассмотрение в Регистр.
4.2.3.4 Неудовлетворительные испытания.
4.2.3.4.1 При неудовлетворительных результатах испытаний, если в соответствующих главах настоящего раздела не оговорено иное, повторные испытания должны выполняться с соблюдением следующих условий:
.1 при признании производства (первичальное освидетельствование), в случае неудовлетворительных результатов Регистр может приостановить
их выполнение до предоставления соответствующих пояснений и прекратить испытания, если это не связано с отрицательным влиянием на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т. п.;

.2 в процессе производства, при неудовлетворительных результатах хотя бы по одному из видов испытаний, дополнительные испытания должны быть выполнены на удвоенном количестве труб из предъявленной партии. В случае неудовлетворительных результатов одного из дополнительных испытаний партия бракуется.

Допускается приемка труб из отбракованной партии по результатам испытаний каждой из оставшихся труб партии. При этом партия также бракуется, если общее количество забракованных труб в партии превышает 25 %. В этом случае Регистр может приостановить осуществление технического наблюдения на предприятии за трубами, изготовляемыми по той же технологии, что и забракованная партия. Предприятие должно представить результаты анализа случившегося, а Регистр вправе потребовать выполнения контрольных испытаний в объеме первоначальных;

.3 в любом случае, при неудовлетворительных результатах по любому виду испытаний должна быть выявлена причина и определены корректирующие действия.

Если выявлено отрицательное влияние на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т.п., допускается осуществить ремонт/замену оборудования и/или образцов на другие образцы той же трубы и выполнить повторные испытания.

На предприятии, признанном Регистром, в процессе производства по согласованию с Регистром допускается предъявлять в качестве новой партии трубы, забракованные по механическим характеристикам, величине зерна, по испытаниям на коррозию, но прошедшие повторную термообработку;

.4 при необходимости дополнительно могут быть использованы требования, относящиеся к неудовлетворительным результатам испытаний, изложенные в 1.3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов;

.5 Регистр может потребовать повторения любых испытаний в присутствии своего представителя, если были перепутаны образцы или результаты испытаний, или если результаты испытаний не позволяют с необходимой точностью определить свойства материала;
 изготовленное изделие или полупродукт, свойства которых имеют отклонения от требований настоящего раздела, не влияющие на эксплуатационные характеристики конструкции или изделия, могут быть использованы по назначению только после специального рассмотрения Регистром этих отклонений и при наличии соответствующего обращения предприятия (изготовителя) и согласия заказчика.

4.2.3.5 Объем контрольных испытаний при признании предприятий (изготовителей) (первоначальное освидетельствование).

4.2.3.5.1 Объем контрольных испытаний определяется с учетом требований табл. 4.2.3.5.1 и указывается в программе испытаний, подготовленной предприятием и одобренной Регистром. Перед началом отбора проб и испытаниями в Регистр также предоставляется для согласования схема отбора проб и вырезки образцов.

В общем случае пробы для изготовления образцов для испытаний бесшовных труб отбираются непосредственно от трубы, а сварных труб – от проката и трубы.

В процессе освидетельствования производства Регистром должны быть выполнены испытания на свариваемость как при производстве бесшовных труб, так и при производстве проката/сварных труб.

Таблица 4.2.3.5.1

<table>
<thead>
<tr>
<th>Вид испытаний</th>
<th>Вид материала</th>
<th>Расположение проб и место вырезки образцов</th>
<th>Количество</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>плавок/листов, труб/проб от плавки</td>
<td>образцов от листа, трубы</td>
<td>всего образцов</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Химический анализ (4.3.4)</td>
<td>труба</td>
<td>от одного конца</td>
<td>2/10/1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>2/3/3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Испытания на растяжение (4.3.2)</td>
<td>труба</td>
<td>вдоль и поперек от двух концов</td>
<td>2/10/10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>поперек от двух концов</td>
<td>2/3/3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Испытание на сжатие после предварительного растяжения (4.3.2)</td>
<td>труба</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>поперек от одного конца</td>
<td>2/3/3</td>
<td>2</td>
</tr>
<tr>
<td>Испытание на сжатие (4.3.2)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>2/10/1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Испытание на загиб (4.3.9.4 и разд. 3 приложения 4)</td>
<td>труба</td>
<td>поперек от двух концов</td>
<td>2/10/2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Испытания на ударный изгиб для построения переходной кривой (4.3.3; 4.3.3.3)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>2/10/3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>поперек от двух концов</td>
<td>2/3/3</td>
<td>18</td>
</tr>
<tr>
<td>Испытание на ударный изгиб металла заводского сварного соединения (4.3.3, 5.1.2.3.1)</td>
<td>труба</td>
<td>поперек от двух концов</td>
<td>2/10/1</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Испытания на ударный изгиб после старения (4.3.3; 4.3.3.5)</td>
<td>труба</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>от одного конца (верх), поперек, 1/4 по ширине</td>
<td>2/3/3</td>
<td>9</td>
</tr>
<tr>
<td>Сегрегация серы (4.3.4)</td>
<td>труба</td>
<td>от одного конца</td>
<td>2/10/2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>прокат</td>
<td>от одного конца</td>
<td>2/3/3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Металлография (4.3.5)</td>
<td>труба от одного конца</td>
<td>2/10/2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>прокат от одного конца</td>
<td>2/3/3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Испытания на коррозию (4.3.9.5)</td>
<td>труба от одного конца</td>
<td>2/10/2</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>прокат от одного конца</td>
<td>2/3/1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Испытания по методике DWTT² (4.3.9.2, разд. 1 приложения 4)</td>
<td>труба поперек от одного конца</td>
<td>2/10/1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>прокат поперек от одного конца</td>
<td>2/3/1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Испытания по методике T₉⁶³ (4.3.9.6)</td>
<td>труба —</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>прокат поперек от одного конца</td>
<td>2/3/3</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Определение температуры нулевой пластичности NDT³ (4.3.9.7)</td>
<td>труба вдоль от одного конца</td>
<td>2/10/2</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>прокат поперек от одного конца</td>
<td>2/3/3</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>Испытание на CTOD⁴ основного металла (4.3.9.3 и разд. 2 приложения 4)</td>
<td>труба поперек от одного конца</td>
<td>2/10/1</td>
<td>9</td>
<td>18⁴</td>
</tr>
<tr>
<td></td>
<td>прокат поперек от одного конца</td>
<td>2/3/1</td>
<td>9</td>
<td>18⁴</td>
</tr>
<tr>
<td>Ультразвуковой контроль (4.3.8)</td>
<td>труба каждое изделие</td>
<td>2/10/10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>прокат каждое изделие</td>
<td>2/3/3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Испытание гидравлическим давлением (4.3.7)</td>
<td>труба каждое изделие</td>
<td>2/10/10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>прокат —</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
4.2.3.5.2 Объем испытаний листового проката – заготовок для труб (штрипса) определяется с учетом требований табл. 4.2.3.5.1. Для каждого технологического процесса испытания выполняются на 2 партиях. Партия должна состоять из 3 листов одной марки и плавки стали и одной толщины. Листы, представляемые для испытаний, отбираются подряд по ходу прокатки.

Характеристики проката должны удовлетворять требованиям 4.5, техническим условиям/спецификации на поставку стали, одобренным Регистром, и/или национальным или международным стандартам.

Если по единой технологии (включая режимы термообработки) производятся листы различной толщины и размеров, то по согласованию с Регистром допускается выполнять испытания на прокате максимальной (одна партия) и минимальной (вторая партия) толщины. В этом случае дополнительно должны быть представлены статистические данные (химический состав, механические свойства), подтверждающие стабильность качества поставляемого проката. Объем выборки по согласованию с Регистром.

4.2.3.5.3 Объем испытаний труб определяется с учетом требований табл. 4.2.3.5.1. Для каждого технологического процесса и размера труб испытания с целью подтверждения стабильного качества продукции выполняются на 2 партиях по 10 труб.

Партия должна состоять из труб металла одной марки, одной плавки, одного режима термообработки, одного диаметра и толщины стенки. Для
испытаний, по возможности, следует изготавливать опытные партии труб с максимальной величиной отношения толщины стенки трубы к диаметру, а в процессе испытаний — отбирать из опытных партий для механических испытаний трубы, имеющие максимальные величины отношения предела текучести к временному сопротивлению (по результатам испытаний на растяжение).

Результаты испытаний труб должны удовлетворять требованиям 4.5, техническим условиям/спецификации на поставку труб, одобренным Регистром, и/или национальным или международным стандартам.

4.2.3.5.4 Виды и число испытаний могут уточняться Регистром на основании представленной изготовителем предварительной информации. В частности, может быть уменьшено число представляемых для испытаний плавок, полу продуктов и категорий стали или, по усмотрению Регистра, испытания вообще могут не проводиться. Решения принимаются с учетом следующих положений:

1. производство уже признано другим классификационным обществом и существует документация, подтверждающая проведение соответствующих испытаний и их результаты;

2. для категорий труб и стали, на признание производства которых в Регистр поступила заявка, имеются статистические данные, подтверждающие стабильность результатов химического анализа и свойств;

3. подтверждаются условия неизменности технологии производства, состояния поставки и методик контроля и испытаний по сравнению с упомянутыми в 4.2.3.5.4.1;

4. признание производства труб из стали одного уровня прочности может быть распространено на трубы из стали уровнем прочности ниже при условии ее изготовления по тому же технологическому процессу, включая раскисление и измельчение зерна, а также метод разливки и состояние поставки, диаметр и толщину стенки трубы и методик контроля и испытаний;

5. изменение условий признания предприятия Регистром, по сравнению с заявкой;

6. имеется признание Регистра или иного классификационного общества на производство трубной стали, продуктов передела, таких как слябы, блюмы и трубные заготовки.

4.2.3.5.5 Если, исходя из условий применения, требуется подтверждение специальных свойств материала, то должны быть дополнительно представлены результаты или выполнены соответствующие испытания, подтвержд-
дающие эти свойства, например растяжение при повышенной температуре, испытания на усталость и т. д.

4.2.3.6 Объем испытаний при производстве.

4.2.3.6.1 Как правило, техническое наблюдение при производстве трубной стали и труб осуществляется Регистром на признанных им предприятиях (изготовителях) (см. 4.2.1). Объем испытаний в процессе производства определяется одобренной Регистром технической документацией на поставку продукции, национальными/международными стандартами, признанными Регистром, и требованиями настоящего раздела (см. табл. 4.2.3.6.1). В табл. 4.2.3.6.1 приведен минимально требуемый объем испытаний.

<table>
<thead>
<tr>
<th>Объем испытаний при производстве</th>
<th>Вид испытаний</th>
<th>Вид материала</th>
<th>Расположение проб и место вырезки образцов</th>
<th>Количество</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>плакок/ листов, труб/ проб от плавки</td>
<td>образцов от листа, трубы</td>
<td>всего образцов</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Химический анализ (4.3.4)</td>
<td>труба</td>
<td>от одного конца</td>
<td>1/50/1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>прокат</td>
<td></td>
<td></td>
<td>1/50 т/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Испытания на растяжение основного металла (4.3.2)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>прокат</td>
<td></td>
<td>поперек от одного конца</td>
<td>1/50 т/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Испытание на растяжение сварного соединения (4.3.2)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>прокат</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Испытания на ударный изгиб основного металла (4.3.3)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>прокат</td>
<td></td>
<td>поперек от одного конца</td>
<td>1/50 т/1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Табл. 4.2.3.6.1
<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Испытание</td>
<td>труба</td>
<td>1/50/1</td>
<td>12</td>
<td>12</td>
<td>Испытания при температуре<sup>2</sup>, определяемой минимальной температурой эксплуатации с учетом 4.2.3.6.2 и 4.3.3.3</td>
</tr>
<tr>
<td></td>
<td>на ударный</td>
<td>прокат</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>изгиб металла сварного соединения (4.3.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Определение вида излома по методике DWTT<sup>1</sup> (4.3.9.2, разд.1 приложения 4)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>прокат</td>
<td>поперек от одного конца</td>
<td>1/50 т/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Испытание на загиб (5.1.2.2.1)</td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>прокат</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Твердость по Виккерсу<sup>3</sup></td>
<td>труба</td>
<td>поперек от одного конца</td>
<td>1/50/1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>прокат</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ультразвуковой контроль (4.3.8)</td>
<td>труба</td>
<td>каждое изделие</td>
<td>1/50/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>прокат</td>
<td>каждое изделие</td>
<td>1/50 т/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Испытание гидравлическим давлением (4.3.7)</td>
<td>труба</td>
<td>каждое изделие</td>
<td>1/50/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>прокат</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

¹ Кроме проката и труб, предназначенных для трубопроводов с классом L – L2, а также для любых труб диаметром менее 300 мм.

² При отсутствии данных о минимальной температуре эксплуатации, испытания листовой стали проводятся при температуре равной -40 °C.

³ Для трубопроводов классов L2 и G2.

4.2.3.6.2 В общем случае от одной партии в 50 труб для испытаний выбирается одна труба.
Партия должна состоять из труб одной плавки, одной марки, одного режима термообработки, одного диаметра и толщины стенки. Для труб, предназначающихся для трубопроводов с минимальной температурой эксплуатации -20 °C и ниже испытания на ударный изгиб по требованию Регистра могут проводиться на каждой пятой трубе.

4.2.3.6.3 Испытания листового проката трубной стали выполняются на образцах, отобранных от одного листа партии. Партия должна состоять из листов одной плавки, одного состояния поставки и одного размера. Если не оговорено особо, объем партии не должен превышать 50 т.

4.2.4 Испытания гибких труб.

4.2.4.1 Общие положения.

4.2.4.1.1 Испытания гибких труб выполняются:
в объеме типовых испытаний при освидетельствованиях Регистром предприятия-изготовителя на предмет оформления Свидетельства о типовом одобрении (СТО, ф. 6.8.3) в соответствии с 2.6.1 Руководства МПТ;
в объеме испытаний в процессе производства гибких труб.

4.2.4.2 Типовые испытания гибких труб.

4.2.4.2.1 Типовые испытания гибких труб проводятся по программе, согласованной с Регистром. Программа должна быть составлена на основании требований Правил МПТ, национальных и/или международных стандартов и иной одобренной Регистром технической документации.

4.2.4.2.2 Типовые испытания проводятся в целях подтверждения основных расчетных параметров труб определенного типоразмерного ряда, диапазон которого должен быть установлен исходя из следующего:
внутреннего/внешнего диаметра;
количество и назначения слоев;
конструкции металлических и полимерных слоев;
процессов изготовления, в том числе углов намотки;
транспортируемой среды;
внутренней/внешней температуры среды;
условий и срока эксплуатации.

4.2.4.2.3 Каждый тип гибких труб должен пройти типовые испытания, которые, как правило, проводятся до разрушения образцов и должны состоять из следующего:
испытания на разрыв внутренним давлением;
испытания на устойчивость (смятие) под действием гидростатического давления;
испытания на разрыв растягивающей нагрузкой.
испытания на изгибную жесткость (проверки минимального радиуса изгиба гибких труб);
испытания на сопротивление кручению.

4.2.4.2.4 От каждого типа гибких труб отбирается от одного до трех образцов на каждый вид типовых испытаний. При производстве данного типа труб с различными диаметрами допускается выполнять испытания на трубах максимального диаметра.

4.2.4.2.5 По согласованию с Регистром состав типовых испытаний для гибких труб может быть изменен в зависимости от назначения труб. Виды и число испытаний могут также уточняться Регистром на основании представленной предприятием (изготовителем) предварительной информации: наличие сертификатов иностранных классификационных обществ, признания предприятия-изготовителя и т. д.

4.2.4.2.6 Методы и результаты типовых испытаний должны соответствовать требованиям 2.6.5.2 Руководства МПТ.

4.2.4.3 Испытания в процессе производства гибких труб.

4.2.4.3.1 Испытания в процессе производства гибких труб выполняются в соответствии с требованиями Правил МПТ по одобренной Регистром программе, разработанной на основании национальных и/или международных стандартов.

4.2.4.3.2 Каждая гибкая труба после изготовления должна проходить:
испытание на калибровку внутренней полости трубы;
испытание на гидростатическое внутреннее давление;
испытание на прочность сцепления (адгезию) между слоями (только для связанных гибких труб);
вакуумные испытания (только для связанных гибких труб).

4.2.4.3.3 В зависимости от назначения гибких труб по согласованию с Регистром проводятся специальные испытания, а именно:
испытания на замер электрического сопротивления (для гибких труб с внутренним каркасом и при использовании катодной защиты концевых фитингов);
испытания на способность к эксплуатации при пониженных температурах – морозоустойчивость (при наличии участков труб выше поверхности воды);
испытания на стойкость к агрессивным транспортируемым средам;
огневые испытания (при наличии участков труб выше поверхности воды).
Объем специальных испытаний согласовывается с Регистром, исходя из условий эксплуатации труб.
4.2.4.3.4 Методы и результаты испытаний должны соответствовать требованиям 2.6.5.3 Руководства МПТ.

4.3 МЕТОДЫ ИСПЫТАНИЙ СТАЛЬНЫХ ТРУБ И ПРОКАТА

4.3.1 Общие требования.
Испытания проката и труб, если не оговорено иное, должны выполняться в соответствии с требованиями Правил МПТ, разд. 2 части XIII «Материалы» Правил классификации и постройки морских судов, признанных Регистром национальных или международных стандартов и согласованной Регистром документации.

4.3.1.1 Испытания на трубах должны выполняться в соответствии с требованиями национальных или международных стандартов и/или одобренной Регистром документации:
для бесшовных труб – после окончательной термообработки;
для сварных труб – после окончательной формовки (экспандирования) и гидравлических испытаний.
Для труб диаметром до 300 мм, если не оговорено иное, образцы для испытаний на растяжение отбираются параллельно оси трубы, а для труб диаметром более 300 мм – в продольном и поперечном направлении.

4.3.1.2 Отбор проб от проката, в зависимости от категории и уровня прочности стали и вида испытаний, производится в соответствии с требованиями 3.2.5, 3.13.5 и 3.14.4 части XIII «Материалы» Правил классификации и постройки морских судов, разд. 2 части XII «Материалы» Правил классификации, постройки и оборудования ПБУ/МСП с учетом изложенного в настоящем разделе.

4.3.1.3 Образцы для испытаний на растяжение и ударный изгиб должны изготавливаться в соответствии с требованиями 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

4.3.2 Испытания основного металла на растяжение и сжатие.
4.3.2.1 Испытания на растяжение листа проводятся на плоских образцах полной толщины. Пробы вырезаются таким образом, чтобы середина рабочей части образцов находилась на расстоянии 1/4 ширины от края листа, образцы располагаются поперек направления прокатки.

4.3.2.2 При первоначальном освидетельствовании, выполняемом с целью признания предприятия (изготовителя) Регистром, испытания на растяжение металла трубы в продольном и поперечном направлениях для толщины менее и равной 20 мм проводятся на полнотолщинных образцах. При
толщине стенки трубы более 20 мм испытания выполняются как на цилиндрических образцах, так и на образцах толщиной равной толщине трубы. При больших расхождениях между результатами испытаний образцов обоих типов Регистр может потребовать выполнения послойного определения стандартных свойств на цилиндрических образцах и отдельного согласования методики правки полнотолщинных образцов при испытаниях в процессе производства.

Пробы от сварных труб вырезают таким образом, чтобы середина рабочей части образцов располагалась на 3 часа от шва трубы.

4.3.2.3 Металл проката испытывается на сжатие на двукратных цилиндрических образцах после предварительного растяжения на 2 % с целью определения предела текучести (эффект Баушингера), от листа отбирается два образца.

4.3.2.4 Основной металл трубы испытывается на сжатие на двукратных цилиндрических образцах, при изготовлении допускается правка только захватных частей.

4.3.2.5 При испытании металла трубы допускается снижение предела текучести на сжатие до 20 % по сравнению с минимальным пределом текучести на растяжение, если иное не указано Регистром.

4.3.3 Испытания на ударный изгиб.

4.3.3.1 Пробы вырезаются от проката на 1/4 ширины листа и от сварной трубы на 3 часа от шва. Испытания проводятся на образцах с острым надрезом. Кроме работы удара определяется процент вязким (хрупким) составляющей.

4.3.3.2 При испытаниях на ударный изгиб основного металла при первоначальном освидетельствовании производства труб требуется построение зависимости результатов испытаний от температуры по трем значениям из следующих: 0, -20 °C, -40 °C, -60 °C, -80 °C. Температуры испытаний указываются в программе испытаний, подлежащей одобрению Регистром. По требованию Регистра испытания на ударный изгиб проводятся как на металле проката, так и на металле труб.

4.3.3.3 В процессе производства труб под техническим наблюдением Регистра испытания на ударный изгиб основного металла и сварного соединения следует выполнять при температуре, указанной в технических условиях/спецификации или контрактной документации на продукцию, но не выше \(T^r_p - 10 \) °C для труб толщиной стенки менее или равной 20 мм, и не выше \(T^r_p - 20 \) °C для труб с большей толщиной стенки. Определение температуры \(T^r_p \) — см. 4.4.3.

4.3.3.4 В случае применения марок стали, не регламентированных настоящими Правилами, испытания могут проводиться при расчетной темпера-
туре. Температура испытаний определяется при согласовании документации на поставку труб. С целью сравнимости результатов для различных марок стали за температуру испытаний принимается температура, ближайшая к меньшей величине из указанного в 4.3.3.2 ряда температур.

В любом случае температура испытаний указывается в сертификатах качества предприятия (изготовителя).

4.3.3.5 Испытания на чувствительность к механическому старению проводятся при первоначальном освидетельствовании производства на образцах, изготовленных из проката, пробы отбираются аналогично пробам на ударный изгиб. Полосы металла, из которых впоследствии вырезаются образцы, подвергаются деформации растяжением на величину, соответствующую максимально допустимой при гибке труб, обычно до 5 %.

Изготовленные из подвергнутых деформационному растяжению полос образцы на ударный изгиб подлежат равномерному нагреву (искусственному старению) на 250 °С с выдержкой при этой температуре в течение часа с последующим охлаждением на воздухе.

Испытания на ударный изгиб выполняются при комнатной температуре (в пределах 18...25 °С) и при температуре соответствующей 4.3.3.3. Если не оговорено иное, испытания выполняются при первоначальном освидетельствовании предприятия и в случаях внесения изменений в технологию производства стали, а также по требованию инспектора Регистра, в сомнительных или спорных случаях, относящихся к качеству проката.

4.3.4 Химический анализ, сегрегация серы.

Пробы для химического анализа и сегрегации серы вырезаются от середины по ширине листа, в случае сварной трубы – напротив сварного шва.

4.3.5 Металлография.

4.3.5.1 Макроструктурный анализ проводится с целью определения структуры деформированного металла, нарушений его сплошности, присутствия флокенов и т. д. Как правило, макроструктурный анализ выполняется на поперечных образцах, отобранных от начала головного полупродукта или головной части раската. Если не указано иное, проведение макроскопического анализа требуется при первоначальном освидетельствовании предприятия, при внесении изменений в технологию производства и, по требованию инспектора Регистра, в сомнительных или спорных случаях, касающихся качества поставляемого проката.

4.3.5.2 Микроструктурный анализ проводится с целью определения размеров зерна стали.
Для металлолографического анализа пробы отбираются от 1/4 ± 1/8 ширины листа и на 3 часа от шва трубы. Фотографии должны представлять структуру на поверхности, 1/4 и 1/2 толщины листа или трубы. Микрофотографии должны быть выполнены при X100 и X400 увеличении. Определяется размер зерна и исходное зерно. Если не указано иное, проведение микроанализа требуется при первоначальном освидетельствовании предприятия, при внесении изменений в технологию производства и, по требованию инспектора Регистра, в сомнительных и спорных случаях, касающихся качества поставляемого проката.

4.3.6 Свариваемость.
Испытания на свариваемость при первоначальном освидетельствовании предприятия выполняются в соответствии с требованиями 5.1.2.2 и 5.2.4 части I «Морские подводные трубопроводы». Испытания на свариваемость, если не оговорено иное, должны охватывать все возможные методы сварки при изготовлении и монтаже трубопровода, включая ремонтную сварку.

4.3.7 Испытание гидравлическим давлением.
Каждая труба подвергается испытаниям гидравлическим давлением.
Должны быть предоставлены данные о методе расчета испытательного давления.
Контрольно-измерительные приборы для проведения испытаний должны быть надлежащим образом поверены и калиброваны.
Отчетная документация должна содержать сведения о приложенном давлении и продолжительности испытаний для каждой трубы. Время выдержки при испытательном давлении должно быть не менее 10 с.
Допускается не проводить испытания гидравлическим давлением на трубах, изготовленных на U и O-образных гибочных прессах. В этом случае предложенный альтернативный метод проверки прочности и сплошности труб подлежит отдельному согласованию Регистром после предоставления данных, свидетельствующих о равнозначности методов.

4.3.8 Неразрушающий контроль.
4.3.8.1 Контроль осуществляется в соответствии с признанными Регистром национальными и/или международными стандартами.
Процедуры контроля (технические методы, параметры, чувствительность, критерии) применяемые изготовителем, должны быть согласованы с потребителем.
4.3.8.2 Контроль подвергается каждая труба. Контроль выполняется после правки в холодном состоянии, формования, термообработки и раскат-
ки. Процедура контроля концов труб и продольных сварных швов согласуются отдельно с учетом 5.3.2.

4.3.8.3 Ультразвуковой контроль проката осуществляется для каждого листа/трубы.

4.3.9 Специальные испытания.

4.3.9.1 В табл. 4.3.9.1 представлены требования по номенклатуре специальных испытаний основного металла в зависимости от категории трубопроводов (см. 4.1.3). Сталь может быть допущена к производству трубопроводов только после проведения специальных, указанных в табл. 4.3.9.1 испытаний. По требованию Регистра объем специальных испытаний при первоначальном освидетельствовании производства может быть увеличен для трубопроводов любого класса.

Минимальный требуемый объем специальных испытаний определяется по согласованию с Регистром с учетом стабильности свойств поставляемого металла и класса трубопровода.

Табл. 4.3.9.1

Номенклатура специальных испытаний для сталей подводных трубопроводов

<table>
<thead>
<tr>
<th>Вид транспортируемой среды</th>
<th>Уровень эксплуатационной надежности</th>
<th>Базовый</th>
<th>Повышенный</th>
<th>Для транспортировки агрессивных сред</th>
<th>Для сейсмически опасных регионов и ледостойких стояков</th>
</tr>
</thead>
<tbody>
<tr>
<td>Жидкости и двухфазные потоки (L)</td>
<td>Не требуется</td>
<td>CTOD</td>
<td>Испытания на коррозию, CTOD</td>
<td>DWTT, NDT, CTOD, T_{kb}</td>
<td></td>
</tr>
<tr>
<td>Газы (G)</td>
<td>DWTT</td>
<td>DWTT, NDT, CTOD, T_{kb}</td>
<td>Испытания на коррозию, DWTT, NDT, CTOD, T_{kb}</td>
<td>DWTT, NDT, CTOD, T_{kb}</td>
<td></td>
</tr>
</tbody>
</table>

Примечания: 1. Испытания на коррозию включают испытания, указанные в 4.3.9.5.
2. Испытания по методу DWTT являются обязательными только для стали категории РСТ36 и выше, для труб с диаметром 300 мм и более.

4.3.9.2 Испытания по методу DWTT.

Пробу (заготовку) для изготовления образцов от трубы следует вырезать поперек продольной оси трубы, от листа – перпендикулярно направлению прокатки.

Как правило, испытания выполняются на металле проката и труб при первоначальном освидетельствовании производств (кроме продукции для
трубопроводов классов L – L2, категорий прочности сталей менее РСТ36 и труб диаметром менее 300 мм).

Для проката и труб трубопроводов классов L3 и G – G3 этот вид испытаний также проводится при одобрении партий продукции в целях определения вида излома при минимальной температуре эксплуатации \(T_{\text{min}} \).

Методика и количество испытаний, схемы вырезки образцов указаны в разд. 1 приложения 4.

4.3.9.3 Определение характеристик трещиностойкости металла (CTOD). Пробы вырезаются от 1/4 ± 1/8 ширины листа и на 3 часа от шва трубы.

По усмотрению Регистра количество труб, листов от плавки, предполагаемых к испытаниям и их толщина, а также температуры испытаний могут быть изменены в зависимости от предполагаемого применения стали или условий заказа.

Определения, общие требования к отбору проб и изготовлению образцов, оборудованию изложены в разд. 2 части XII «Материалы» Правил классификации, постройки и оборудования ПБУ/МСП.

Методика испытаний CTOD приводится в разд. 2 приложения 4.

Как правило, испытания выполняются на металле проката и труб при первоначальном освидетельствовании производств для трубопроводов классов L1 – L3 и G1 – G3.

4.3.9.4 Испытания на загиб.

Как правило, испытания выполняются на металле трубы при первоначальном освидетельствовании производства труб. Испытания также могут быть востребованы при первоначальном освидетельствовании производства проката.

Методика испытаний приводится в разд. 3 приложения 4.

4.3.9.5 Испытания на коррозию.

Испытания выполняются при наличии соответствующих дополнительных требований в заказной документации потребителя. Как правило, испытания выполняются при первоначальном освидетельствовании производства проката и труб для трубопроводов классов L2 и G2. Если не указано иное, испытаниям подвергаются по 6 образцов от каждого испытываемого изделия на два вида испытаний.

4.3.9.5.1 Определение стойкости к сульфидному растрескиванию под напряжением.

Методика испытаний приводится в разд. 4 приложения 4.

4.3.9.5.2 Определение стойкости к водородо-индукционированному/степеньчатому растрескиванию.
Методика испытаний приводится в разд. 5 приложения 4.

4.3.9.6 Испытания для определения температуры вязко-хрупкого перехода $T_{\alpha'\beta'}$.

Пробы вырезаются от 1/4 ширины листов толщиной не менее 14 мм. Регистр может потребовать проведения испытаний при первоначальном освидетельствовании производства проката для трубопроводов классов L3 и G1 – G3 для подтверждения достаточного сопротивления материала хрупкому разрушению.

Определения, общие требования к проведению испытаний и изготовлению образцов, оборудованию изложены в разд. 2 части XII «Материалы» Правил классификации, постройки и оборудования ПБУ/МСП.

4.3.9.7 Испытания для определения температуры нулевой пластичности (NDT).

Пробы вырезаются от 1/4 ± 1/8 ширины листов толщиной не менее 16 мм и на 3 часа от шва труб диаметром 530 мм и более и с толщиной стенки не менее 20 мм. Регистр может потребовать проведения испытаний при первоначальном освидетельствовании производства проката и труб для трубопроводов классов L3 и G1 – G3.

Определения, общие требования к проведению испытаний и изготовлению образцов, оборудованию изложены в разд. 2 части XII «Материалы» Правил классификации, постройки и оборудования ПБУ/МСП.

4.4 ВЫБОР МАТЕРИАЛОВ ИЗ СТАЛИ

4.4.1 В общем случае, выбор материалов из стали осуществляется в соответствии с требованиями разд. 2 и 3, а также с учетом требований 4.1 и 4.5.

4.4.2 Характеристики стали, применяемой для подводных трубопроводов, должны соответствовать особенностями применения и режимам эксплуатации трубопроводов. Сталь должна обеспечивать конструктивно-технологическую прочность трубопроводов для транспортировки углеводородов при заданной минимальной температуре эксплуатации и эксплуатационных нагрузках.

4.4.3 Выбор стали и сварочных материалов для трубопровода должен осуществляться в зависимости от минимальной температуры эксплуатации трубопровода или его участка T_p. Если не оговорено иное, минимальная температура для подводных трубопроводов принимается равной -10 °С, кроме...
участков, находящихся в зоне полного промерзания и переменного смачивания (зоне всплеска).

4.4.4 Плакированная сталь для трубопроводов назначается с учетом требований 3.17 части XIII "Материалы" Правил классификации и постройки морских судов.

4.5 СТАЛЬ ДЛЯ ПОДВОДНЫХ ТРУБОПРОВОДОВ

4.5.1 Общие положения.

4.5.1.1 Требования настоящей главы распространяются на свариваемую листовую и трубную сталь для подводных трубопроводов, подлежащих техническому наблюдению при их изготовлении.

4.5.1.2 Введены следующие обозначения категорий (марок) стали:
- сталь для подводных трубопроводов перед наименованием имеет символ РСТ;
- маркировка может завершаться обозначением W – сталь для сварных труб.

Уровень прочности определяется в зависимости от требуемого минимального значения предела текучести:
- сталь нормальной прочности – 235 МПа (уровень прочности в обозначении отсутствует);
- сталь повышенной прочности – 315 МПа, 355 МПа, 390 МПа (в обозначении стали соответственно указываются: 32, 36 и 40);

4.5.1.3 Допускается после специального рассмотрения Регистром, поставка труб из стали в соответствии с требованиями национальных и международных стандартов. При этом под специальным рассмотрением, кроме сопоставления справочных параметров, понимается возможность проведения дополнительных испытаний, которые могут подтвердить соответствие стали упомянутым выше категориям и ее применимость по назначению.

В табл. 4.5.1.3, составленной на основании сопоставления прочностных характеристик, приводятся соответствующие аналоги отечественных и зарубежных сталей.
Таблица 4.5.1.3

Соответствие марок стали,
поставляемых по отечественным и зарубежным стандартам

<table>
<thead>
<tr>
<th>Категория (марка) стали для подводных трубопроводов в соответствии с Правилами МПТ</th>
<th>Национальный класс прочности трубной стали</th>
<th>Зарубежный класс прочности трубной стали</th>
</tr>
</thead>
<tbody>
<tr>
<td>РСТ, РСТW</td>
<td>K38, K42</td>
<td>В</td>
</tr>
<tr>
<td>РСТ32, РСТ32W</td>
<td>K50</td>
<td>X46</td>
</tr>
<tr>
<td>РСТ36, РСТ36W</td>
<td>K52, K54</td>
<td>X52</td>
</tr>
<tr>
<td>РСТ40, РСТ40W</td>
<td>K55</td>
<td>X60</td>
</tr>
<tr>
<td>РСТ420, РСТ420W</td>
<td>K56</td>
<td>X65</td>
</tr>
<tr>
<td>РСТ460, РСТ460W</td>
<td>K60</td>
<td>X70</td>
</tr>
<tr>
<td>РСТ500, РСТ500W</td>
<td>K60, K65</td>
<td>X70</td>
</tr>
<tr>
<td>РСТ550, РСТ550W</td>
<td>K65</td>
<td>X80</td>
</tr>
<tr>
<td>РСТ620, РСТ620W</td>
<td>K70</td>
<td>X90</td>
</tr>
<tr>
<td>РСТ690, РСТ690W</td>
<td>K80</td>
<td>X100</td>
</tr>
</tbody>
</table>

4.5.2 Химический состав.
4.5.2.1 Химический состав стали и нормы $C_{экв}$ и P_{cm} должны удовлетворять требованиям табл. 4.5.2.1-1 – для трубного листа и сварных труб; табл. 4.5.2.1-2 – для бесшовных труб.

Химический состав может соответствовать требованиям признанных Регистром национальных, международных стандартов. В любом случае химический состав стали подлежит согласованию с Регистром при первоначальном признании производства на конкретную продукцию.

4.5.2.2 В процессе производства контролируется химический состав проката и труб (сварных и бесшовных).

4.5.2.3 Определение $C_{экв}$ является обязательным условием поставки всех категорий стали до уровня 500 МПа, включая сталь после ТМСР.

Определение P_{cm} является обязательным условием поставки всех категорий стали с уровнем прочности 460 МПа и выше. В остальных случаях, указание $C_{экв}$ и P_{cm} приводятся в сертификатах по требованию потребителя.

Углеродный эквивалент определяется по формулам:

\[
C_{экв} = C + \frac{Mn}{6} + \frac{(Cr + Mo + V)}{5} + \frac{(Ni + Cu)}{15}, \% ;
\]

\[
P_{cm} = C + \left(\frac{Mn + Cr + Cu}{20} + \frac{Mo}{15} + \frac{Ni}{60} + \frac{Si}{30} + \frac{V}{10} + 5B\right), \%.
\]
Таблица 4.5.2.1-1
Химический состав проката и основного металла сварных труб подводных трубопроводов

<table>
<thead>
<tr>
<th>Марка</th>
<th>PCTW</th>
<th>PCT32W</th>
<th>PCT36W</th>
<th>PCT40W</th>
<th>PCT420W</th>
<th>PCT460W</th>
<th>PCT500W</th>
<th>PCT550W</th>
<th>PCT620W</th>
<th>PCT690W</th>
</tr>
</thead>
<tbody>
<tr>
<td>С</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,14</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>Mn</td>
<td>1,35</td>
<td>1,65</td>
<td>1,65</td>
<td>1,65</td>
<td>1,65</td>
<td>1,75</td>
<td>1,85</td>
<td>1,85</td>
<td>1,85</td>
<td>1,85</td>
</tr>
<tr>
<td>Si</td>
<td>0,40</td>
<td>0,40</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
<td>0,45</td>
<td>0,50</td>
<td>0,55</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0,020</td>
</tr>
<tr>
<td>S</td>
<td>0,010</td>
</tr>
<tr>
<td>Cu</td>
<td>0,35</td>
<td>0,35</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,60</td>
<td>0,60</td>
</tr>
<tr>
<td>Ni</td>
<td>0,30</td>
<td>0,80</td>
<td>0,80</td>
<td>0,80</td>
<td>0,80</td>
<td>1,20</td>
<td>1,20</td>
<td>1,80</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0,10</td>
<td>0,10</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
</tr>
<tr>
<td>Cr</td>
<td>0,30</td>
<td>0,30</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>Al (общ.)</td>
<td>0,06</td>
</tr>
<tr>
<td>Nb</td>
<td>--</td>
<td>0,04</td>
<td>0,05</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>V</td>
<td>--</td>
<td>0,04</td>
<td>0,05</td>
<td>0,07</td>
<td>0,08</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Ti</td>
<td>--</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td>N</td>
<td>0,010</td>
</tr>
<tr>
<td>B</td>
<td>0,0005</td>
</tr>
<tr>
<td>Cₘₜₜ</td>
<td>0,36</td>
<td>0,34</td>
<td>0,37</td>
<td>0,38</td>
<td>0,38</td>
<td>0,39</td>
<td>0,41</td>
<td>0,44</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pₘₜₜ</td>
<td>0,19</td>
<td>0,19</td>
<td>0,20</td>
<td>0,21</td>
<td>0,21</td>
<td>0,22</td>
<td>0,23</td>
<td>0,25</td>
<td>0,27</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Примечания:
1. Для толщины более 35 мм и марок прочностью выше PCT550 допускается изменение химического состава по согласованию с Регистром.
2. Если при производстве стали использовались лом, следует контролировать максимальное содержание следующих элементов: 0,03 % As, 0,01 % Sb, 0,02 % Sn, 0,01 % Pb, 0,01 % Bi и 0,006 % Ca.
3. При уменьшении содержания углерода на каждые 0,01 % ниже максимального указанного значения допускается добавка 0,05 % содержания марганца выше указанных максимальных значений при максимальном увеличении содержания на 0,1 %.
4. Допускается легирование 0,5 – 1,0 % Cr по согласованию с Регистром.
5. Для марок прочностью выше PCT550 допускается легирование до 2,2 % Ni.
7. (Nb+V+Ti) не должны превышать 0,12 %.
8. Содержание Nb может быть поднято до 0,10 % по согласованию с Регистром.
9. Содержание B может быть поднято до 0,003 % по согласованию с Регистром.
10. Для трубопроводов классов L2 и G2 содержание С ≤ 0,10 %, P ≤ 0,015 %, S ≤ 0,003 %.
<table>
<thead>
<tr>
<th>Марка</th>
<th>Содержание элементов, % по массе, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,14</td>
</tr>
<tr>
<td>Mn</td>
<td>1,35</td>
</tr>
<tr>
<td>Si</td>
<td>0,40</td>
</tr>
<tr>
<td>P</td>
<td>0,020</td>
</tr>
<tr>
<td>S</td>
<td>0,010</td>
</tr>
<tr>
<td>Cu</td>
<td>0,35</td>
</tr>
<tr>
<td>Ni</td>
<td>0,30</td>
</tr>
<tr>
<td>Mo</td>
<td>0,10</td>
</tr>
<tr>
<td>Cr</td>
<td>0,30</td>
</tr>
<tr>
<td>Al (общ.)</td>
<td>0,06</td>
</tr>
<tr>
<td>Nb</td>
<td>–</td>
</tr>
<tr>
<td>V</td>
<td>–</td>
</tr>
<tr>
<td>Ti</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>0,010</td>
</tr>
<tr>
<td>B</td>
<td>0,0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C_{\text{экв}}$</th>
<th>$t_c \leq 15$</th>
<th>$15 < t_c < 26$</th>
<th>$P_{\text{см}}$</th>
<th>$t_c \leq 15$</th>
<th>$15 < t_c < 26$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,34</td>
<td>0,34</td>
<td>0,20</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,35</td>
<td>0,35</td>
<td>0,21</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>0,38</td>
<td>0,22</td>
<td>0,22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,39</td>
<td>0,39</td>
<td>0,23</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,40</td>
<td>0,40</td>
<td>0,24</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,41</td>
<td>0,41</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,42</td>
<td>0,42</td>
<td>0,27</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,43</td>
<td>0,43</td>
<td>0,29</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

П р и м е ч а н и я: 1. Для толщины более 26 мм и марок прочностью выше PCT550 допускается изменение химического состава по согласованию с Регистром.
2 - 10. См. табл. 4.5.2.1-1.

4.5.3 Механические свойства.

4.5.3.1 Механические свойства стали должны удовлетворять требованиям табл. 4.5.3.1.

Для проката следует учитывать запас на пластическую деформацию при изготовлении труб. Если не указано иное, для штрипса максимально допустимое отношение предела текучести к временному сопротивлению должно быть меньше, чем для металла трубы, по крайней мере, на величину 0,02.
Механические свойства металла труб

<table>
<thead>
<tr>
<th>Марка</th>
<th>РСТ</th>
<th>РСТ32</th>
<th>РСТ36</th>
<th>РСТ40</th>
<th>РСТ420</th>
<th>РСТ460</th>
<th>РСТ500</th>
<th>РСТ620</th>
<th>РСТ690</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Предел текучести (R_{\text{p}}, \text{МПа}) или (\text{мин.})</td>
<td>235</td>
<td>315</td>
<td>355</td>
<td>390</td>
<td>420</td>
<td>460</td>
<td>500</td>
<td>550</td>
<td>620</td>
</tr>
<tr>
<td>Отношение предела текучести к временному сопротивлению (макс.)</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,92</td>
<td>0,92</td>
<td>0,92</td>
<td>0,92</td>
<td>0,93</td>
</tr>
<tr>
<td>Относительное удлинение (A_{\text{t}}, %) (мин.)</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Угол загиба, ° (мин.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Работа удара \(KV, \text{Дж} \), в поперечном направлении, при \(T_{\text{r}} - 10 \degree \text{C} \) для труб с \(t_{\text{e}} \leq 20 \text{ мм} \) и при \(T_{\text{r}} - 20 \degree \text{C} \) для труб с \(t_{\text{e}} > 20 \text{ мм} \)

Класс трубопровода L1 – L2, G1 – G3 основной металл и металл сварного соединения при производстве труб всех классов.

<table>
<thead>
<tr>
<th>Для всех (D_{a})</th>
<th>29</th>
<th>31</th>
<th>36</th>
<th>39</th>
<th>42</th>
<th>46</th>
<th>50</th>
<th>55</th>
<th>62</th>
<th>69</th>
</tr>
</thead>
</table>

Класс трубопровода G1 – G3 и L3, основной металл

<table>
<thead>
<tr>
<th>(D_{a} \leq 610 \text{ мм})</th>
<th>40</th>
<th>40</th>
<th>50</th>
<th>57</th>
<th>64</th>
<th>73</th>
<th>82</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>(610 < D_{a} \leq 820 \text{ мм})</td>
<td>40</td>
<td>43</td>
<td>61</td>
<td>69</td>
<td>77</td>
<td>89</td>
<td>100</td>
<td>126</td>
</tr>
<tr>
<td>(820 < D_{a} \leq 1120 \text{ мм})</td>
<td>40</td>
<td>52</td>
<td>75</td>
<td>85</td>
<td>95</td>
<td>109</td>
<td>124</td>
<td>155</td>
</tr>
</tbody>
</table>

Вид излома DWTT, класс трубопровода L3 и G1 – G3:

85% волокна среднее, 75% минимальное при \(T_{\text{r}} \)

Критические температуры хрупкости NDT, \(T_{\text{kp}} \)

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>(t_{\text{e}} \leq 20 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 20 \degree \text{C})</th>
<th>20 < (t_{\text{e}} \leq 30 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 30 \degree \text{C})</th>
<th>30 < (t_{\text{e}} \leq 40 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 40 \degree \text{C}, T_{\text{kp}} \leq T_{\text{r}} - 10 \degree \text{C})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>(t_{\text{e}} \leq 20 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 30 \degree \text{C})</th>
<th>20 < (t_{\text{e}} \leq 30 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 40 \degree \text{C})</th>
<th>30 < (t_{\text{e}} \leq 40 \text{ мм})</th>
<th>NDT (\leq T_{\text{r}} - 50 \degree \text{C}, T_{\text{kp}} \leq T_{\text{r}} - 20 \degree \text{C})</th>
</tr>
</thead>
</table>

73
Продолжение табл. 4.5.3.1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTOD, мм, при (T_a), класс трубопровода L1 – L3, G1 – G3</td>
<td></td>
</tr>
<tr>
<td>(t \leq 20) мм</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 < (t \leq 30) мм</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>30 < (t \leq 40) мм</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
<td>0,25</td>
<td>0,30</td>
<td>0,35</td>
<td>0,35</td>
<td></td>
</tr>
</tbody>
</table>

Стойкость к сульфидному растрескиванию под напряжением, класс трубопровода L2 и G2:
отсутствие трещин после выдержки в растворе 720 часов при напряжении 85 % минимального нормированного предела текучести

Стойкость к водородо-индуцированному/ступенчатому растрескиванию, класс трубопровода L2 и G2:
CLR \leq 15 %

Примечания:
1. Приводятся требуемые средние значения работы удара по трем образцам при температуре, определенной в 4.3.3.3. На одном образце допускается снижение работы удара до 70 % от требуемой.
2. Требуемые значения работы удара в продольном направлении в 1,5 раза выше, чем в поперечном.
3. Для размеров \(D_a \) и \(t \) вне указанных пределов требования устанавливаются по согласованию с Регистром.
4. * только для сталей категорий прочности РСТ36 и выше.
5. Для классов трубопроводов L1 – L3, G1 – G3 полученные при испытании значения предела текучести в поперечном направлении не должны превышать установленные более чем на 130 МПа.
6. Величина временного сопротивления полученная при испытании образцов, вырезанных в продольном направлении, может быть ниже приведенных в таблице на 5%.
7. Отношение предела текучести к временному сопротивлению, полученное на образцах, вырезанных в продольном направлении, не должно превосходить регламентируемое табличей значение более чем на 0,02.
8. Определение работы удара \(KV \) и величины CTOD для металла сварного соединения производится в соответствии с требованиями разд. 5

4.5.4 Состояние поставки.
4.5.4.1 Рекомендуемые состояния поставки указаны в табл. 4.5.4.1.
4.5.4.2 Существуют следующие варианты термообработки проката: нормализация (N), контролируемая прокатка (CR), термомеханическая обработка (TМСР), закалка с отпуском (Q + T), закалка с прокатного нагрева с отпуском (Q* + T).
4.5.4.3 Сварные трубы изготавливают методом гибки с последующей сваркой. Трубы, как правило, проходят холодное экспандирование для достижения требуемых размеров. Пластическая деформация металла труб при
холодном экспанцировании не должна превышать 1,5 %. Бесшовные трубы изготавливают методом горячей или холодной прокатки.

Табл. 4.5.4.1

<table>
<thead>
<tr>
<th>Марка стали</th>
<th>Минимальная температура испытаний на ударный изгиб, не менее, °C</th>
<th>Состояние поставки при толщине</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$t_c < 12,5$ мм</td>
</tr>
<tr>
<td>PCT, PCTW</td>
<td>-10</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>CR</td>
</tr>
<tr>
<td>PCT32, PCT32W</td>
<td>-20</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>CR</td>
</tr>
<tr>
<td>PCT36, PCT36W</td>
<td>-20</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>CR</td>
</tr>
<tr>
<td>PCT40, PCT40W</td>
<td>-20</td>
<td>любое</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>CR</td>
</tr>
<tr>
<td>PCT420, PCT420W</td>
<td>При любых температурах испытаний на ударный изгиб</td>
<td>любые</td>
</tr>
<tr>
<td>PCT460, PCT460W</td>
<td></td>
<td>любые</td>
</tr>
<tr>
<td>PCT500, PCT500W</td>
<td></td>
<td>любые</td>
</tr>
<tr>
<td>Более прочные</td>
<td></td>
<td>любые</td>
</tr>
</tbody>
</table>

4.5.5 Осмотр.

4.5.5.1 Требования к качеству поверхности проката, ремонту для устранения дефектов поверхности должны соответствовать изложенным в 3.2.7 части XIII «Материалы» Правил классификации и постройки морских судов. Допуски по толщине проката должны соответствовать признанным Регистром стандартам и должны быть согласованы с потребителем.

4.5.5.2 Неразрушающий контроль выполняется в соответствии с требованиями 4.3.8. Сталь не должна иметь дефектов, препятствующих ее применению по назначению. Изготовитель должен гарантировать отсутствие поверхностных дефектов и внутренних несплошностей, размеры которых препятствуют проведению контроля сварных соединений неразрушающими методами контроля.
4.5.5.3 Контроль размеров, геометрии, массы проката и труб осуществляется изготовителем. Наличие свидетельства Регистра не освобождает изготовителя от ответственности, если материал или изделие далее оказались дефектными или не соответствующими согласованной документации или признанным стандартам по размерам, геометрии, массе.

Рекомендуемые требования к отклонениям размеров и качеству проката и труб представлены в табл. 4.5.5.3-1 и 4.5.5.3-2, соответственно.

Таблица 4.5.5.3-1

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Объем контроля</th>
<th>Величина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отклонения от плоскостности на 1 п/м</td>
<td>100 %</td>
<td>Не более 6 мм</td>
</tr>
<tr>
<td>Серповидность на 1 п/м</td>
<td>100 %</td>
<td>Не более 1 мм</td>
</tr>
<tr>
<td>Сплошность проката</td>
<td>100 %</td>
<td>Не допускаются расслоения, если их размер в любом направлении превышает 80 мм или площадь превышает 5000 мм². По прикромочным зонам шириной не менее 30 мм не допускаются расслоения любого размера</td>
</tr>
<tr>
<td>Качество поверхности</td>
<td>100 %</td>
<td>Не допускаются трещины, плёны, пузыри-вздутия, вкатанная окалина, раскатанные загрязнения. Допускаются отдельные отпечатки, риски, рябизна</td>
</tr>
<tr>
<td>Толщина проката при 7,5 < t < 40, мм</td>
<td>100 %</td>
<td>-0,4 / + (0,016 t + 1,2), мм</td>
</tr>
<tr>
<td>Ширина проката</td>
<td>100 %</td>
<td>-20/0, mm</td>
</tr>
</tbody>
</table>

1 Прочие толщины по согласованию с Регистром.

Таблица 4.5.5.3-2

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Объем контроля</th>
<th>Сварная труба</th>
<th>Бесшовная труба¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Диаметр концов трубы D ≤ 610 мм</td>
<td>100 %</td>
<td>большее из ± 0,5 мм или ± 0,5 % D, но не более ± 1,6 мм</td>
<td></td>
</tr>
<tr>
<td>Диаметр концов трубы D > 610 мм</td>
<td>100 %</td>
<td>± 1,6 мм</td>
<td>± 2,0 мм</td>
</tr>
</tbody>
</table>

1 Прочие диаметры по согласованию с Регистром.
Наибольшая разность диаметров концов одной трубы (для каждой измеренной трубы) 100 % 12,5 % \(t_c \)

Диаметр тела трубы, \(D_a \leq 610 \) мм 100 % больше из \(\pm 0,5 \) мм или \(\pm 0,75 \% D_a \), но не более \(\pm 3,0 \) мм больше из \(\pm 0,5 \) мм или \(\pm 0,75 \% D_a \)

Диаметр тела трубы, \(D_a > 610 \) мм 100 % \(\pm 0,5 \% D_a \), но не более \(\pm 4,0 \) мм \(\pm 1 \% D_a \)

Овальность концов трубы, \(D_a / t_c \leq 75 \) \(R^2 \) \(1,0 \% D_a \), но не более \(8 \) мм

Овальность концов трубы, \(D_a / t_c > 75 \) \(R^2 \) \(1,5 \% D_a \), но не более \(8 \) мм

Овальность, тело трубы \(R^2, s \) \(2,0 \% D_a \), но не более \(15 \) мм

Местные отклонения от круговой формы \(R^2 \) меньше чем \(< 0,5 \% D_a \), но не более \(2,5 \) мм

Толщина стенки \(t_c \leq 15 \) мм 100 % \(\pm 0,75 \) мм \(\pm 12,5 \% t_c \)

Толщина стенки, \(15 < t_c \leq 20 \) мм 100 % \(\pm 1,0 \) мм \(\pm 12,5 \% t_c \)

Толщина стенки, \(t_c > 20 \) мм 100 % \(+1,5 / -1,0 \) мм \(\pm 10 \% t_c \), но не более \(\pm 1,6 \) мм

Общая кривизна \(R^2 \) \(\leq 0,2 \% L^4 \)

Локальная кривизна \(R^2 \) \(\leq 1,5 \) мм на 1 м длины

Перпендикулярность концов \(R^2 \) \(\leq 1,6 \) мм от истинных 90°

Радиальное смещение у шва (лазерная сварка и СВЧ) \(R^2 \) \(\leq 0,1 t_c \), но не более \(2,0 \) мм

Радиальное смещение у шва (сварка под флюсом) \(R^2 \) \(\leq 0,1 t_c \), но не более \(2,0 \) мм

Длина трубы 100 % по требованию покупателя

Вес трубы 100 % \(-3,5 \% / +10 \% \) номинального веса

1 Требования к сплошности и качеству поверхности бесшовных труб – как для штрипса (см. табл. 4.5.5.3-1).
2 \(R \) означает испытания случайно выбранных 5 % труб, но не менее 3-х труб в смену.
3 Размеры тела трубы должны измеряться приблизительно в середине длины трубы.
4 \(L \) – длина трубы.
5 Толщина с учетом смещения у шва должна быть в пределах допуска на толщину стенки, при этом не менее фактической минимальной толщины стенки для каждой трубы.
4.5.6 Документация.
4.5.6.1 Каждая партия штрипса и труб, прошедших испытания, должна сопровождаться свидетельством Регистра, или документом предприятия (изготовителя), заверенным представителем Регистра. Как минимум, свидетельство Регистра должно содержать:
.1 номер заказа;
.2 номер строительного проекта, если известен;
.3 наименование, номер, размеры и массу штрипса/труб;
.4 категорию (марку) стали;
.5 номер партии или идентификационный номер, позволяющий идентифицировать поставляемый материал.
4.5.6.2 Обязательным приложением к свидетельству Регистра должны являться сертификаты качества предприятия (изготовителя), заверенные полномочным его представителем. Сертификат должен содержать результаты химического анализа, механических испытаний и, если требуется, ультразвукового контроля проката (трубы). Форма и содержание сертификата качества предприятия (изготовителя) должны быть согласованы с потребителем и Регистром.
4.5.7 Маркировка.
Каждый прокат и труба должны иметь четко нанесенные обусловленным способом и в обусловленном месте маркировку предприятия (изготовителя) и клеймо Регистра.
Маркировка, как минимум, должна содержать:
.1 наименование и/или обозначение предприятия (изготовителя);
.2 категорию стали в соответствии с требованиями настоящей главы и части XIII «Материалы» Правил классификации и постройки морских судов;
.3 номер партии, плавки или идентификационный номер в соответствии с принятой на предприятии системой, позволяющей проследить весь процесс изготовления проката/трубы.

4.6 МАТЕРИАЛЫ ГИБКИХ ПОЛИМЕРНО-МЕТАЛЛИЧЕСКИХ ТРУБ И ИХ СОЕДИНЕННЫХ ЭЛЕМЕНТОВ
4.6.1 Общие положения.
4.6.1.1 Выбор материалов должен осуществляться на этапе проектирования конструкции гибкого подводного трубопровода, исходя из необходимости обеспечения его герметичности, прочности, надежности и долговечности с учетом возможных изменений условий эксплуатации и свойств материалов на протяжении расчетного срока службы трубопровода.
Должны быть учтены также возможные изменения формы гибких труб и свойств материалов при всей последовательности операций хранения, транспортировки и укладки трубопровода с использованием барабанов (бунтов).

4.6.1.2 Для полимерно-металлических труб характеристики материалов слоев гибкой трубы должны соответствовать их функциональному назначению и режимам эксплуатации трубопровода.

Все силовые слои (каркас, радиальный силовой слой, осевой силовой слой) должны изготавливаться из стальных профилированных полос (в том числе с межвитковым сцеплением) или проволоки. Эти слои должны обеспечивать конструктивно-технологическую прочность гибких трубопроводов для транспортировки углеводородов при заданном эксплуатационном диапазоне температур и эксплуатационных нагрузках.

Герметизирующие (внутренняя оболочка, внешняя оболочка, лейнер), разделительные (промежуточные оболочки) и изоляционные слои должны изготавливаться из полимерных материалов.

Концевые фитинги должны изготавливаться из сталей, удовлетворяющих требованиям 4.4.

4.6.1.3 Все материалы, используемые в конструкции гибкой трубы, должны быть сертифицированы для применения в соответствующих окружающей (морская вода) и транспортируемой (природный газ, нефть и т. д.) средах в диапазоне проектных температур эксплуатации.

4.6.1.4 Назначение срока службы гибкого трубопровода должно учитывать деградацию механических свойств материала в процессе многолетней эксплуатации трубопроводов и подтверждаться расчетом.

4.6.2 Полимерные материалы.

4.6.2.1 Номенклатура контролируемых Регистром характеристик полимерных материалов, применяемых при изготовлении герметизирующих и разделительных слоев гибкой трубы, устанавливается на основании конструкции и назначения гибких труб, исходя из следующего состава параметров:

1. механические характеристики:
предел прочности при растяжении;
предельное относительное удлинение;
предел прочности при сжатии;
предел прочности при сдвиге;
предел прочности при изгибе;
модуль упругости;
ударная вязкость;
твердость;
сопротивление истиранию;
остаточная деформация сжатия;
.2 физические характеристики:
плотность;
коэффициент температурного расширения;
температура плавления;
температура размягчения;
диапазон рабочих температур;
водопоглощение;
газо-/водопроницаемость;
.3 другие характеристики:
коэффициент теплопроводности;
старение;
ползучесть;
химическое сопротивление к воздействию окружающей и транспортируемой сред;
сопротивление быстрой декомпрессии;
длговечность;
допустимые дефекты (чувствительность к надрезу).
4.6.2.2 Если внутренняя оболочка гибкой трубы представляет собой структуру, образованную совокупностью разнородных слоев, изготовитель должен экспериментально подтвердить способность неоднородного материала удовлетворять требованиям по условиям эксплуатации и сроку службы.
4.6.2.3 Для полимерных материалов, образующих изоляционные слои гибких труб, должны быть определены:
предел прочности при растяжении;
предельное относительное удлинение;
предел прочности при сжатии;
модуль упругости;
плотность;
коэффициент теплопроводности (в сухом состоянии и в воде);
температура плавления;
температура размягчения;
диапазон рабочих температур;
водопоглощение;
долговечность.
4.6.2.4 Для герметизирующих материалов должны быть определены: герметизирующие свойства;
температура плавления;
dиапазон рабочих температур;
dолговечность.
4.6.2.5 Для элементов плавучести должно быть определено влияние гидrostатического сжатия, водопоглощения и ползучести.
4.6.3 Металлические материалы.
4.6.3.1 Номенклатура контролируемых характеристик металлических материалов, применяемых при изготовлении гибких труб, силовых слоев композитных гибких труб и концевых фитингов, содержит следующие характеристики:
.1 механические характеристики:
химический состав;
макро- и микроструктуру металла;
временное сопротивление при растяжении;
предел текучести;
относительное удлинение;
ударная вязкость, определенная на образцах Шарпи, для концевых фитингов с толщиной стенок более 6 мм при минимальной температуре эксплуатации меньше 0 °С (см. 4.3.3.3);
tвердость основного металла и металла сварных соединений;
результаты испытаний на сплющивание и на раздачу для цельнометаллических труб;
модуль упругости и коэффициент Пуассона;
dанные по коррозионной стойкости при воздействии транспортируемой и внешней среды (морской воды);
dанные по эрозионной стойкости при воздействии транспортируемой среды;
кривая усталости при нагружении на воздухе и в коррозионно-агрессивных средах, моделирующих транспортируемую среду и морскую воду;
коэффициент температурного расширения;
.2 другие характеристики:
химический состав;
коррозионная стойкость;
эрозионная стойкость;
циклическая усталость/предел выносливости;
стойкость к водородно-индукционированному и сульфидному растрескиванию.
5 СВАРКА

5.1 ОБЩИЕ ПОЛОЖЕНИЯ

5.1.1 Требования настоящего раздела распространяются на сварку конструкций стальных подводных трубопроводных систем, подлежащих техническому наблюдению и освидетельствованию Регистром в соответствии с требованиями других разделов Правил МПТ.

5.1.2 Объем технического наблюдения.

5.1.2.1 При выполнении работ по изготовлению сварных труб и сварке трубопроводов и изделий для подводных транспортных систем должны выполняться требования части XIV «Сварка» Правил классификации и постройки морских судов и части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП с учетом требований настоящего раздела.

Техническому наблюдению Регистра подлежат:

испытания на свариваемость основного металла листовой стали (штрипса) и труб;
производственные сварные соединения (заводские) сварных труб;
teхнологические процессы сварки и монтажные сварные соединения, включая технологические процессы ремонта.

5.1.2.2 Объем контроля при испытаниях на свариваемость основного металла представлен в табл. 5.1.2.2.

5.1.2.2.1 Испытания по определению стандартных механических характеристик сварного соединения.

Пробы штрипса вырезаются от 1/4 ± 1/8 ширины. Пробы от трубы вырезаются со швом посередине. Сварка штрипса выполняется при уровне тепловложения, согласованном с Регистром, обычно соответствующем производственному значению для труб.

Испытания на растяжение сварного соединения штрипса проводятся в полной толщине. Испытания на растяжение заводского сварного соединения трубы проводятся для толщин до 32 мм – с правкой заготовок, для больших толщин допускаются испытания цилиндрических образцов с правкой только захватных частей заготовок.

На лицевой/корневой загиб испытываются полнотолщинные образцы без правки. Допускается предварительная деформация между двумя плоскостями образцов из трубы на корневой загиб.

Правка образцов на боковой загиб не рекомендуется.
<table>
<thead>
<tr>
<th>Вид испытаний</th>
<th>Расположение проб на штрипсе/трубе и место вырезки образцов</th>
<th>Минимальное количество листов или труб от плавки/листов или труб от партии</th>
<th>Минимальное количество проб от листа (трубы)</th>
<th>Минимальное количество образцов от листа (трубы)</th>
<th>Примечания</th>
<th>Общее количество образцов от плавки (партии труб)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Испытания сварного соединения (стыковой шов и продольный/спиральный шов трубы)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Испытания по определению стандартных механических характеристик (5.1.2.2.1), в том числе:</td>
<td>От одного конца</td>
<td>1/1</td>
<td>От листа – 2 шт. для 1 сварного стыка, от трубы – 1 шт. со швом</td>
<td>Одно тепловложение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Растяжение сварного соединения</td>
<td>Поперек шва, для штрипса в полной толщине</td>
<td>1/1</td>
<td>2</td>
<td>2</td>
<td>При комнатной температуре</td>
<td>2</td>
</tr>
<tr>
<td>Загиб (5.4.3)</td>
<td>Поперек шва</td>
<td>1/1</td>
<td>3</td>
<td>3</td>
<td>Лицевой с двух сторон и боковой, при комнатной температуре</td>
<td>3</td>
</tr>
<tr>
<td>Ударный изгиб (5.1.2.3.1 и 5.1.2.3.2)</td>
<td>Поперек шва (надрез по металлу шва, линии сплавления, зоне термического влияния в 2 и 5 мм от линии сплавления)</td>
<td>1/1</td>
<td>12/21</td>
<td>12/21</td>
<td>Температура испытаний устанавливается Регистром</td>
<td>12/21</td>
</tr>
<tr>
<td>Макроструктура, твердость по Виккерсу</td>
<td>Темплет по перек шва</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Специальные испытания</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Испытания на CTOD сварного соединения(^1) (5.1.2.2.2, 5.1.2.4 и 5.4.4)</td>
<td>От одного конца</td>
<td>3/1</td>
<td>От листа 8 шт. для 4-х сварных стыков, от трубы – 4 шт. со швом</td>
<td>36: ((7+5) \times 3)</td>
<td>Одно тепловложение. При трех температурах, устанавливаемых Регистром</td>
<td>36</td>
</tr>
<tr>
<td>Испытания на стойкость к сульфидному растрескиванию под напряжением(^2) (5.1.2.5 и 5.4.1)</td>
<td>От одного конца</td>
<td>3/1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Испытания на стойкость к водородоиндукционному ступенчатому растрескиванию(^2) (5.1.2.5 и 5.4.2)</td>
<td>От одного конца</td>
<td>3/1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^1\) Кроме проката и труб для трубопроводов класса \textbf{L} – \textbf{L2}.

\(^2\) Для проката и труб для трубопроводов класса \textbf{L2} и \textbf{G2}.

5.1.2.2.2 Испытания на CTOD сварного соединения.

При определении свариваемости металла штрипса или труб сварка выполняется в соответствии с требованиями 5.2.4 по специальной разделке кромок. Сварка выполняется при уровне тепловложения, соответствующего сварке монтажных стыков трубопровода. Исследуются две области ЗТВ.

Пробы штрипса вырезаются от 1/4 ± 1/8 ширины. Пробы от труб вырезаются со швом посередине. Сварка штрипса выполняется при уровне тепловложения, согласованном с Регистром, обычно соответствующем производственному значению для труб. Исследуются две области ЗТВ: вблизи линии сплавления («ближняя» по отношению к сварному шву) и у границы травимости («дальняя»). Количество образцов при каждой температуре и для каждой исследуемой области ЗТВ должно быть достаточным для получения трех корректных результатов. Как правило, при каждой температуре достаточно испытать по 7 образцов с надрезом по «ближней» ЗТВ и 5 образцов по «дальней» ЗТВ.
При испытаниях, проводимых при первоначальном признании предприятия (изготовителя) труб, а также при осуществлении технического наблюдения за сваркой монтажных стыков трубопроводов испытания на CTOD производятся при технологических параметрах процесса и способе разделки кромок, принятых при производстве, в соответствии с 5.4.4.

Разметка надреза производится:
- по центру сварного шва;
- по линии, проведенной таким образом, чтобы содержание металла шва и основного металла по обе стороны от линии соответствовало 50% ± 10%.

5.1.2.3 Объем испытаний при одобрении технологических процессов сварки должен соответствовать разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований настоящего раздела.

5.1.2.3.1 Для испытаний на ударный изгиб сварных соединений при подтверждении свариваемости следует изготавливать по три образца от середины шва, от линии сплавления и 2 и 5 мм от линии сплавления со стороны последнего прохода при сварке. По требованию Регистра могут быть выполнены дополнительные испытания на образцах, отобранных от противоположной поверхности.

5.1.2.3.2 При одобрении технологических процессов сварки выполняется программа испытаний по определению стандартных механических характеристик (см. табл. 5.1.2.2), в которой изменяется количество и расположение образцов на ударный изгиб. Следует изготавливать по три образца от середины шва, от линии сплавления и 2 и 5 мм от линии сплавления с каждой стороны шва. При толщине металла более 26 мм дополнительно изготавливается такой же набор образцов для корневой зоны шва. Дополнительно изготавливаются 3 цилиндрических образца на растяжение металла шва (от середины шва вдоль шва). По требованию Регистра могут проводиться испытания сварного шва на излом на образцах типа «nick-break» согласно Стандарту API 1104 с анализом дефектов в изломе по согласованной методике.

5.1.2.4 Испытания на CTOD металла сварного соединения обязательны для сварных соединений трубопроводов классов L1 – L3 и G1 – G3 (см. 4.1.3). Для трубопроводов классов L и G испытания на CTOD металла сварного соединения могут проводиться по требованию Регистра.

5.1.2.5 Коррозионные испытания обязательны для сварных соединений трубопроводов классов L2, G2 (см. 4.1.3). В прочих случаях испытания могут проводиться по требованию Регистра.

5.1.2.6 Объем испытаний производственных сварных соединений, если не согласовано иное, должен соответствовать требованиям для одобрения
технологических процессов сварки. Испытания на СТОД металла сварного соединения и коррозию производятся по требованию Регистра. Объем контроля производственных сварных соединений, если иное не согласовано с Регистром, должен составлять не менее 1 % стыков.

5.1.3 Техническая документация.
Техническая документация по сварке, представляющая на одобрение по проекту подводного трубопровода, указана в 1.5. Техническая документация, подлежащая рассмотрению Регистром в процессе одобрения технологических процессов сварки и сварочных материалов, должна соответствовать требованиям 6.1.3 и 4.1.2.1 части XIV «Сварка» Правил классификации и постройки морских судов.

5.2 ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К ПРОЦЕССАМ ИЗГОТОВЛЕНИЯ СВАРНЫХ КОНСТРУКЦИЙ ПОДВОДНЫХ ТРУБОПРОВОДОВ

5.2.1 Общие требования.
Настоящая глава распространяется на сварочные работы, которые выполняются в цеху, на месте укладки или монтажа. Рассматривается сварка углеродистой, низколегированной и плакированной стали. Последняя применяется плакировкой внутрь для трубопроводов классов L2, G2 (см. 4.1.3), транспортирующих агрессивные среды, если основной металл – углеродистая или низколегированная сталь – не удовлетворяет требованиям по коррозии.

Общие указания по сварке должны соответствовать разд. 2 части XIV «Сварка» Правил классификации и постройки морских судов, а также разд. 2 части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП.

5.2.2 Технологические процессы сварки.
Если иное не согласовано с Регистром, могут применяться следующие технологические процессы:
- ручная дуговая сварка плавящимся покрытым электродом;
- дуговая сварка порошковой проволокой без дополнительной газовой защиты;
- дуговая сварка порошковой проволокой в среде защитного газа;
- дуговая сварка плавящимся электродом в среде защитного газа;
- дуговая сварка вольфрамовым электродом в среде защитного газа;
- автоматическая дуговая сварка под флюсом;
- плазменная сварка;
высокочастотная сварка (СВЧ).

В заводских условиях рекомендуется применять автоматическую дуговую сварку под флюсом или в среде защитного газа.

5.2.3 Производственный персонал и квалификация сварщиков.

5.2.3.1 Все работы по сварке конструкций подводных транспортных систем, подлежащих техническому наблюдению Регистра, должны выполняться только квалифицированными сварщиками, надлежащим образом аттестованными и имеющими действующее свидетельство о допуске сварщика, выданное Регистром согласно разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов.

Общие требования по квалификации персонала должны соответствовать разд. 2 части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП с учетом требований настоящего раздела.

5.2.3.2 До проведения аттестационных испытаний сварщик должен путем обучения и практики получить знания в следующих областях:

- основные сварочные технологии;
- технические требования к сварочным процессам;
- соответствующие методы неразрушающего контроля;
- критерии приемки.

5.2.3.3 Испытания по аттестации сварщиков проводятся для соответствующих положений шва при сварке, марок материала и технологических процессов сварки. Сварщики должны быть аттестованы в области односторонней сварки встык труб в требуемом основном положении. По соглашению сварщики могут быть аттестованы только для выполнения некоторых видов сварных швов, проварки корня шва, с определенными присадочными материалами и электродами. Сварщики, выполняющие ремонтную сварку, могут быть аттестованы только в области заварки дефектов при условии, что выполняют только данные виды ремонтной сварки.

5.2.3.4 Аттестация должна проводиться с использованием того же самого или аналогичного оборудования, которое используется при монтаже и в реальных условиях на производстве и трубокладочном судне. Иные условия допускаются по согласованию с Регистром. Если перерыв в работе сварщика составляет более 6 месяцев, требуется дополнительная аттестация.

5.2.3.5 Сварщики, выполняющие подводную сварку «сухим способом», должны быть сначала аттестованы для наземной сварки и должны приобрести опыт сварки под водой. Аттестационные испытания сварщика, выполняющего подводную сварку, должны проводиться для конкретного предварительно аттестованного технологического процесса.
5.2.4 Основной материал. Свариваемость.
5.2.4.1 Сварка проб для одобрения основного металла по свариваемости проводится аттестованными сварщиками, погонная энергия при сварке проб должна соответствовать применяемой в производстве. Регистр вправе потребовать изменения условий сварки сертификационных проб.
5.2.4.2 Геометрия сварного соединения должна включать одну прямую кромку. Примеры подготовки кромок и конструктивные элементы сварного соединения показаны на рис. 5.2.4.2. Допускается, по согласованию с Регистром, проводить испытания на свариваемость на сварных соединениях с реальной (производственной) геометрией. В этом случае может быть увеличено количество испытательных образцов, необходимое для получения требуемого количества корректных результатов.

5.2.5 Сварочные материалы.
5.2.5.1 Сварочные материалы, применяемые для сварки конструкций подводных транспортных систем, подлежащих техническому наблюде-
ению Регистра, должны быть, как правило, одобрены Регистром. Порядок применения и одобрения сварочных материалов должен соответственно 2.5 части ХIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП с учетом требований настоящей главы.

5.2.5.2 Выбор сварочных материалов для сварки трубопроводной стали производится аналогично судокорпусной стали соответствующей прочностной категории. Для сварки трубопроводной стали следует применять материалы только с низким содержанием водорода категорий Н5 или Н10. Сварочные материалы для трубопроводов классов L2, G2 (см. 4.1.3) должны обеспечивать достаточную коррозионную стойкость сварных соединений.

При сварке стали повышенной и высокой прочности особое внимание должно уделяться предотвращению образования холодных трещин в зоне термического влияния и металле шва. Кроме того, необходимо соблюдать требования к соотношению между пределами текучести и временным сопротивлением металла шва и основного металла.

5.2.5.3 Должны быть составлены подробные рабочие инструкции по хранению, обращению, утилизации и повторной сушке расходных сварочных материалов. Особое внимание следует уделять обращению со сварочными материалами при подводной сварке «сухим способом». Должны быть разработаны рабочие инструкции по хранению и обращению применительно к расходным сварочным материалам на судах поддержки и в сварочных кабинах, а также по герметизации и передаче в сварочную кабину.

5.2.6 Общие требования к выполнению сварочных работ.

5.2.6.1 Для всех технологических процессов сварки, рассматриваемых в настоящем разделе и проходящих одобрение по требованиям Регистра, должны быть составлены подробные технологические инструкции. Технологические инструкции должны обеспечивать выполнимость всех оговоренных требований.

5.2.6.2 Технологические инструкции на сварку должны, как минимум, содержать следующие данные:
- категорию основного металла в соответствии с требованиями Правил МПТ и класс трубопровода;
- диаметр и толщину стенки труб (или их диапазон);
- разделку кромок и форму сварного соединения с допусками;
- технологический процесс сварки;
- количество и место расположения сварщиков;
- сварочные материалы (одобренные Регистром);
- состав газовой смеси и расход;

89
диаметр электрода/присадочной проволоки;
расход присадочной проволоки и флюса;
параметры сварки: ток, напряжение, род тока, полярность, скорость сварки, вылет электрода и угол между электродом и изделием для каждой дуги (или диапазон);
количество сварочных дуг и сварочных головок (подачу холодной или горячей проволоки);
положения при сварке и направление сварки;
наличие поперечных колебаний электрода;
диаметр мундштюка;
количество проходов (в том числе для кольцевых стыков – до начала перемещения трубоукладочного судна);
закрепление (внутри или снаружи);
температуру предварительного подогрева (если применяется);
временные интервалы между проходами;
диапазон температур перед наложением каждого последующего слоя;
термообработку после сварки (если применяется).

5.2.6.3 В случае подводной сварки «сухим способом» технологические инструкции на сварку должны также содержать следующие данные:
глубину воды (минимальную/максимальную);
давление внутри камеры;
состав газа внутри камеры;
наибольшую влажность в камере;
температуру в камере (минимальную/максимальную);
длину, тип и размер фала;
место замера электрических параметров сварки;
сварочное оборудование.

5.2.6.4 Технологические инструкции на ремонтную сварку должны быть разработаны на основе отчета об аттестационных испытаниях технологического процесса ремонтной сварки. Они должны включать следующую дополнительную информацию:
способ выборки дефекта, подготовку под сварку;
размеры зоны ремонтной сварки;
виды и объем неразрушающего контроля после выборки дефекта и после ремонта.

5.2.6.5 При внесении изменений в технологический процесс сварки проведение новых испытаний требуется в следующих случаях, если иное не согласовано с Регистром.
Основной металл:
повышение прочностной категории;
изменение состояния поставки;
изменение технологии изготовления;
любое увеличение P_c более, чем на 0,02, увеличение C_m более, чем на 0,03 и содержания углерода более чем на 0,02 %;
изменение предприятия-изготовителя.

Геометрия:
изменение диаметра трубы (по согласованию с Регистром);
изменение толщины штранса/стенки трубы вне диапазона 0,75 t_c...1,5 t_c;
изменение разделки кромок, выходящее за пределы допусков, указанных в утвержденных технических условиях;
центрирующие зажимы при сварке труб: замена внутреннего крепления на наружное и наоборот.

Технологический процесс сварки:
любое изменение вида сварки;
замена однодуговой сварки на многодуговую и наоборот;
любое изменение типа и модели оборудования (включая подводную сварку);
изменения электрических параметров, влияющие на режим переноса или производительность наплавки;
изменение типа, диаметра, марки сварочных материалов;
изменение вылета электрода за пределы допусков, указанных в утвержденных технологических инструкциях;
изменение состава и расхода защитного газа более 10 %;
изменение основного положения при сварке на положение, не соответствующее табл. 5.2.6.5;
изменение направления «вертикально вниз» на «вертикально вверх» или наоборот;
изменение однопроходной сварки на многопроходную или наоборот;
изменение полярности;
изменение погонной энергии при сварке вне диапазона ± 10 %, если иное не согласовано с Регистром;
изменение временных интервалов между проходами вне допустимых по утвержденным технологическим инструкциям;
снижение температуры предварительного подогрева (если применяется);
любое сокращение времени охлаждения сварного соединения по сравнению с аттестационным испытанием (для монтажной сварки);
любое изменение режима термообработки после сварки (если применяется); поперечные колебания электрода на расстояние более трех номинальных диаметров, если поперечные колебания не предусмотрены; сокращение количества сварщиков.

Таблица 5.2.6.5

<table>
<thead>
<tr>
<th>Положение при сварке аттестационной пробы</th>
<th>Положения при сварке, для которых не требуется дополнительная аттестация</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>PC</td>
<td>PA, PC</td>
</tr>
<tr>
<td>PF/PG</td>
<td>PA, PF/PG</td>
</tr>
<tr>
<td>PC + PF/PG</td>
<td>Все</td>
</tr>
<tr>
<td>H-L045</td>
<td>Все</td>
</tr>
</tbody>
</table>

Для подводной сварки «сухим способом», дополнительно:
любое изменение давления в сварочной камере;
любое изменение состава газа внутри камеры;
увеличение влажности в камере более чем на 10 % от уровня при аттестационном испытании.

5.2.7 Сварка трубопроводов из плакированной стали.

5.2.7.1 Общие требования к сварке трубопроводов с внутренним плакирующим слоем должны соответствовать 2.8 части XIV «Сварка» Правил классификации и постройки морских судов и 2.9 части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП, с учетом требований настоящей главы.

5.2.7.2 Производственная сварка участков с коррозионно-стойким плакированием может выполняться посредством одного из сварочных процессов, указанных в 5.2.2, за исключением дуговой сварки порошковой проволокой без защитного газа и высокочастотной сварки (СВЧ). Где это возможно, сварка должна выполняться двусторонним швом. Проход при заварке корня шва в односторонних (монтажных) сварных швах, как правило, должен выполняться ручной сваркой плавящимся покрытым электродом, дуговой сваркой вольфрамовым электродом в среде защитного газа или дуговой сваркой плавящимся электродом в среде защитного газа.

5.2.7.3 Окончательная разделка кромок под сварку должна выполняться механической обработкой. Допускается подшлифовка, при этом шлифовальные круги не должны ранее использоваться для углеродистой или низ-
колегированной стали. Применение огневой резки должно быть ограничено плазменной резкой.

5.2.7.4 Для очистки шва и плакировки перед наложением последующего валика коррозионно-стойкого металла должны применяться проволочные щетки из нержавеющей проволоки.

5.2.7.5 Сварочные материалы для сварки плакирующего слоя должны быть выбраны с учетом обеспечения коррозионной стойкости сварного соединения. Запрещается сварка низколегированными сварочными материалами по коррозионно-стойкому материалу. В случае невозможности гарантировать данное требование, весь шов сваривается коррозионно-стойким материалом.

5.3 КОНТРОЛЬ СВАРНЫХ СОЕДИНЕНИЙ

5.3.1 Общие требования.
Требования по контролю сварных соединений конструкций подводных трубопроводов должны устанавливаться в соответствии с указаниями разд. 3 части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП, с учетом требований настоящего раздела.

5.3.2 Объем контроля и оценка качества сварных соединений.
5.3.2.1 Объем контроля всех видов сварных соединений подводных трубопроводов устанавливается в размере:
- визуальный контроль – 100 %;
- ультразвуковой контроль и радиографический контроль – 100 % суммарно.
При этом, объем контроля каждым методом может варьироваться от 0 до 100 % в зависимости от способа сварки (вида типичных дефектов), а также возможностей применения (технических ограничений) и задействованного оборудования;
- магнитопорошковый контроль – 100 %, если иное не согласовано с Регистром.

5.3.2.2 Для кольцевых сварных швов трубопроводов из стали не прочнее PCT550(W), для которых накопленные деформации в результате монтажа и эксплуатации превосходят 0,3 %, а также для трубопроводов из стали большей прочности при аналогичных деформациях более 0,4 % следует проводить расчеты, подтверждающие вязкое разрушение таких сварных соединений с дефектами, допускаемыми 5.3.2.3 и 5.3.2.4.

5.3.2.3 Критерии оценки качества сварных соединений при визуальном осмотре и магнитопорошковом контроле представлены в табл. 5.3.2.3-1. Критерии качества при радиографическом контроле – в табл. 5.3.2.3-2. Лю-
бые не указанные в таблицах виды дефектов допускаются по согласованию с Регистром.

5.3.2.4 Нормы допустимых дефектов при ультразвуковом контроле ручным контактным эхометодом с использованием дефектоскопов общего назначения приводятся в табл. 5.3.2.4.

5.3.2.5 Допускается применение механизированных, автоматизированных и автоматических установок ультразвукового или рентгеновского контроля, обеспечивающих контроль 100 % длины шва, при этом по требованию Регистра объем совместного применения радиографического и ультразвукового контроля может быть более 100 %.

Методики неразрушающего контроля с уточнением критериев оценки качества сварных соединений с учетом типа используемого оборудования должны быть разработаны для каждого вида контроля и одобрены Регистром.

Таблица 5.3.2.3-1

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Критерий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Внешний профиль</td>
<td>Сварные швы должны иметь ровную поверхность и плавный переход к основному металлу, перекрытие кромок разделки должен быть не более 3 мм (6 мм - для автоматической сварки под флюсом)</td>
</tr>
<tr>
<td>Усиление</td>
<td>Наружное усиление: до 0,2 tₜ, но не более 4 мм. Внутреннее усиление: до 0,2 tₜ, но не более 3 мм</td>
</tr>
<tr>
<td>Вогнутость</td>
<td>Вогнутость снаружи не допускается. Вогнутость внутри должна иметь плавный переход к основному металлу, толщина сварного шва нигде не должна быть менее tₜ</td>
</tr>
<tr>
<td>Смещение кромок</td>
<td>Продольный/спиральный шов: до 0,1 tₜ, но не более 2 мм. Кольцевой стык: до 0,15 tₜ, но не более 3 мм</td>
</tr>
<tr>
<td>Трещины</td>
<td>Не допускаются</td>
</tr>
<tr>
<td>Подрезы</td>
<td>Отдельные:</td>
</tr>
<tr>
<td>Глубина d</td>
<td>допустимая длина не допускается</td>
</tr>
<tr>
<td>d ≥ 1,0 мм</td>
<td>50 мм</td>
</tr>
<tr>
<td>1,0 мм ≥ d > 0,5 мм</td>
<td>100 мм</td>
</tr>
<tr>
<td>0,5 мм ≥ d > 0,2 мм</td>
<td>не ограничена</td>
</tr>
<tr>
<td>d ≤ 0,2 мм</td>
<td>Суммарная длина подрезов размерами 1,0 мм ≥ d > 0,2 мм на любом участке сварного шва длиной 300 мм: < 4 tₜ, но не более 100 мм</td>
</tr>
<tr>
<td>Пористость поверхности</td>
<td>Не допускается</td>
</tr>
<tr>
<td>Зоны зажигания дуги</td>
<td>Не допускаются</td>
</tr>
<tr>
<td>Западания</td>
<td>Глубина: < 1,5 мм, длина до 1/4 Dₒ (Dₒ - диаметр трубы)</td>
</tr>
</tbody>
</table>

94
<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Критерий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Отдельные дефекты</td>
</tr>
<tr>
<td>Пористость</td>
<td></td>
</tr>
<tr>
<td>Отдельные поры</td>
<td>Диаметр до $t_c/4$, но не более 3 мм</td>
</tr>
<tr>
<td>Скопление</td>
<td>Поры до 2 мм, диаметр скопления максимум 12 мм, в скоплении площадь пор до 10%</td>
</tr>
<tr>
<td>Цепочка пор</td>
<td>Диаметр до 2 мм, длина цепочки до t_c</td>
</tr>
<tr>
<td>Шлаковое включение</td>
<td></td>
</tr>
<tr>
<td>Отдельное</td>
<td>Диаметр до 3 мм</td>
</tr>
<tr>
<td>Одиночные или параллельные цепочки</td>
<td>Ширина до 1,5 мм</td>
</tr>
<tr>
<td>Включения</td>
<td></td>
</tr>
<tr>
<td>Вольфрам</td>
<td>Диаметр до 3 мм</td>
</tr>
<tr>
<td>Медь, проволока</td>
<td>Если выявляется, не допускается</td>
</tr>
<tr>
<td>Непровар</td>
<td></td>
</tr>
<tr>
<td>Длина до t_c, но не более 25 мм</td>
<td>Ширина до 1,5 мм</td>
</tr>
<tr>
<td>Несплавление</td>
<td>Не допускается</td>
</tr>
<tr>
<td>Трешины</td>
<td>Не допускаются</td>
</tr>
<tr>
<td>Вогнутость шва внутри трубы</td>
<td>См. табл. 5.3.2.3-1</td>
</tr>
<tr>
<td>Подрез внутри трубы</td>
<td></td>
</tr>
<tr>
<td>Глубина до $t_c/10$, но не более 1 мм</td>
<td>До $t_c/5$, но не более 3 мм на длине до t_c, но не более 25 мм</td>
</tr>
<tr>
<td>Излишнее проплавление</td>
<td></td>
</tr>
</tbody>
</table>

Примечания:
1. Группа дефектов, разделенных участками шириной менее размера наименьшего из дефектов группы, должна рассматриваться как один дефект.
2. Отдельными считаются дефекты, которые разделены более чем 5-кратным размером самой крупной несплошности.
3. Общее количество несплошностей на любом участке сварного шва длиной 300 мм (суммарный размер) — длине сварного шва — до 10%. Исключаются несплошности, которые могут привести к свищам или уменьшают эффективную толщину сварного шва более, чем на $t_c/3$.
4. Не допускаются скопления несплошностей в поперечном сечении сварного шва, которые могут привести к свищам или уменьшают эффективную толщину сварного шва более, чем на $t_c/3$.
5. На пересечении швов никакие дефекты не допускаются.
<table>
<thead>
<tr>
<th>Максимальная допустимая амплитуда эхо-сигнала от дефекта</th>
<th>Максимальная условная протяженность допустимых несплошностей L, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опорный уровень 1 плюс 4 дБ</td>
<td>$L \leq t_c / 2$, но не более 10 мм</td>
</tr>
<tr>
<td>Опорный уровень минус 2 дБ</td>
<td>$L > t_c / 2$, но не более t_c или 25 мм</td>
</tr>
<tr>
<td>Опорный уровень минус 6 дБ</td>
<td>$L > t_c$, но не более 25 мм</td>
</tr>
<tr>
<td>В приповерхностных зонах, исключая центральную часть сварного соединения толщиной $t_c / 3$, суммарная длина дефектов на любом участке сварного шва длиной 300 мм до t_c, но не более 50 мм</td>
<td></td>
</tr>
<tr>
<td>Опорный уровень минус 6 дБ</td>
<td>В центральной части сварного соединения толщиной $t_c / 3$ суммарная длина дефектов на любом участке сварного шва длиной 300 мм до $2 t_c$, но не более 50 мм</td>
</tr>
<tr>
<td>Поперечные дефекты любой протяженности (дефекты типа «Т») не допускаются 3</td>
<td></td>
</tr>
</tbody>
</table>

1 Опорный (эталонный) уровень чувствительности определяется по боковому сверлению Ø3 мм в эталонном образце. Допускаются иные способы задания опорного уровня, обеспечивающие ту же чувствительность контроля. Требования к образцам для настройки чувствительности должны быть оговорены в процедуре контроля.

2 При толщине основного металла менее 12 мм центральная по толщине часть сварного соединения не рассматривается.

3 Дефект считается поперечным, если амплитуда эхо-сигнала от него при озвучивании в направлении продольной оси шва не менее чем на 6 дБ больше, чем при озвучивании под углом 90° ± 15° к продольной оси шва.

Примечания: 1. Если контроль может быть выполнен только с одной стороны сварного шва, максимальные допустимые амплитуды сигналов от дефекта (левый столбец в таблице) должны быть уменьшены на 6 дБ (в два раза).

2. Участки сварных швов, расшифровка дефектов в которых вызывает сомнение, должны быть подвергнуты радиографическому контролю и оценены по критериям для радиографического контроля.

3. Суммарная протяженность несплошностей с амплитудой отраженного сигнала, равной эталонному уровню минус 6 дБ и выше, на любом участке сварного шва длиной 300 мм не должна превышать $3 t_c$, но не более 100 мм, а на всей длине сварного шва – 12%.

4. На пересечении швов дефекты не допускаются.

5.4 МЕТОДЫ ИСПЫТАНИЙ

Методы испытаний сварных соединений аналогичны испытаниям, которые описаны для основного металла в разд. 4, кроме особенностью, рассмотренных ниже.
5.4.1 Определение стойкости к сульфидному растрескиванию под напряжением.

Испытаниям подвергают по три сварных образца от продольного шва одной из труб от партии. Испытания проводятся при четырехточечном изгибе полнотолщинного образца со сварным швом и неснятым усилением, выдерживаемого в испытательном растворе в течение 720 часов при напряжении, составляющем 85 % минимального нормированного предела текучести для основного металла трубы. Испытательный раствор и оценка результатов испытаний – такие же, как для основного металла.

5.4.2 Определение стойкости к водородо-индуцированному (ступенчатому) растрескиванию.

Испытания проводятся также как для основного металла, образцы изготавливаются поперек шва без снятия усиления, шов должен находиться посередине длины образца.

5.4.3 Определение способности к восприятию пластических деформаций при испытаниях на изгиб.

Испытания на изгиб проводятся также как для основного металла.

Усиление сварного шва следует снимать заподлицо с основным металлом. При снятии усиления механическая обработка должна проводиться в направлении вдоль образца.

5.4.4 Определение CTOD.

Общий порядок правки заготовок, испытаний и размер образцов из сварных соединений те же, что и для основного металла. Ниже указаны особенности испытания сварных соединений.

5.4.4.1 Для определения CTOD используются образцы с надрезом и предварительно выращенной из него усталостной трещиной. Вырезка образцов и нанесение надреза по металллу шва и ЗТВ производится на материале после окончания термообработки, при этом расположение надреза – по толщине, направление распространения трещины – вдоль сварного шва, если иное не указано в нормативной документации на металлопродукцию.

При аттестации сварочных процедур в случае требования проведения испытаний на CTOD надрез располагается в соответствии с программой аттестации, утвержденной Регистром, как правило, посередине сварного шва по линии, проведенной таким образом, чтобы содержание металла шва и основного металла по обе стороны от линии составляло 50 % ± 10 %.

5.4.4.2 При аттестации материала по свариваемости должны быть исследованы следующие структурные составляющие ЗТВ, которые имеют предположительно наихудшую трещиностойкость: область с крупнозернистой
структурой вблизи границы сплавления и область с неполным структурным превращением или отсутствием такого у границы ЗТВ с основным металлом. Схема районов ЗТВ многопроходного сварного шва со структурными зонами, для которых необходимо определение параметра CTOD, показана на рис. 5.4.4.2.

![Diagram](image)

а) повторно нагретые межкритически (1) и субкритически (2) районы ЗТВ с крупным зерном

б) граница между районами ЗТВ, нагретыми межкритически и субкритически

Примечание. AB — линия надреза.

Рис. 5.4.4.2
Районы ЗТВ многопроходного сварного шва. Выделены исследуемые зоны

5.4.4.3 В случае требования проводить испытание продольного сварного соединения трубы с реальной геометрией, где нет прямой кромки, следует размечать надрез таким образом, чтобы он пересекал как можно больший процент крупнозернистой составляющей у линии сплавления
(для исследования области с крупнозернистой структурой вблизи границы сплавления) или «дальней» ЗТВ (для исследования области с неполным структурным превращением у границы ЗТВ с основным металлом) в соответствии с рис. 5.4.4.3.

5.4.4.4 Одновременно с изготовлением сварных образцов от концов шва каждой сварной пробы следует вырезать поперечные макрошлифы. Целью их металлографического исследования является контроль присутствия исследуемых зон металла в достаточном количестве внутри центральной зоны образцов, составляющей 75 % их толщины.

5.4.4.5 При разметке положения надреза в сварном образце торцевые поверхности образцов (перпендикулярные направлению сварки) протравливаются, и линия надреза размечается таким образом, чтобы обеспечить наилучшее попадание в исследуемую зону.

Рекомендуется соблюдать угол между линией надреза и боковыми поверхностями образца в диапазоне 90 ± 5°, отклонение от данного диапазона должно быть указано в протоколе.

5.4.4.6 Так как сварные образцы испытываются в состоянии после сварки и имеют высокий уровень остаточных сварочных напряжений, требования по допустимым отклонениям от прямолинейности фронта усталостной трещины могут обеспечиваться за счет применения перед ее выращиванием процедуры бокового обжатия образца на участке нетто-сечения от 88 %, включая вершину надреза, с суммарной пластической деформацией не более 1 %. При обжатии допустимо неоднократное приложение нагрузки. Измерение глубины обжатия для определения пластической деформации должно проводиться с точностью не менее ± 0,0025 мм.

Рис. 5.4.4.3
Разметка образцов из трубы
5.4.4.7 Проверка эффективности обработки проводится по результатам замеров фронта усталостной трещины в изломе.

В тех случаях, когда испытывается материал зон высокой структурной неоднородности, для которых непосредственное определение σ_{ys} невозможно, предусматривается косвенная методика определения предела текучести. По результатам измерений твердости по Виккерсу HV в ЗТВ и основном металле определяется величина предела текучести σ_{ys} при комнатной температуре; для ЗТВ предлагается соотношение

$$\sigma_{ys} = 3.28 \text{HV} - 221. \quad (5.4.4.7)$$

5.4.4.8 После проведения испытаний должен осуществляться металлографический анализ для проверки наличия исследуемой микроструктуры внутри зачетной зоны – центральной части фронта трещины в пределах 75 % толщины образца. Для этого производится разрезка разрушенного образца на шлифы в соответствии с рис. 5.4.4.8, включающая следующие операции:

- вырезку изломов с обеих половин образца – со стороны металла шва и со стороны основного металла;
- разрезку изломов поперек плоскости излома вдоль линии усталостной трещины. Нижняя часть излома должна содержать усталостную трещину на 2/3 толщины;
- изготовление шлифов и выявление ЗТВ, фотографирование.

По результатам металлографии следует установить положение и длину требуемой микроструктуры внутри зачетной зоны. Доля исследуемой микроструктуры, необходимая для признания испытания корректным, принимается не менее 15 %, если иное не указано Регистром.

На рис. 5.4.4.8 представлена схема определения доли, %, исследуемой структуры по фронту трещины на примере анализа присутствия крупнозернистой структуры вблизи границы сплавления.

5.5 СВАРОЧНЫЕ МАТЕРИАЛЫ

5.5.1 Общие требования.

5.5.1.1 Для сварки подводных трубопроводов допускается применение сварочных материалов и их сочетаний, как правило, одобренных Регистром. Общие положения по допуску сварочных материалов устанавливаются согласно разд. 4 части XIV «Сварка» Правил классификации и постройки
Распилы
Фрезированный надрез
Усталостная трещина

Схема разрезки образцов

Вид в плане полированных половинок — шлифов с указанием метода подсчета процента крупнозернистой ЗТВ, пересекаемой фронтом усталостной трещины

Рис. 5.4.4.8
Порядок металлографического исследования после испытания

морских судов, а также требованиям 4.2 части XIII «Сварка» Правил классификации, постройки и оборудования ПБУ/МСП с учетом требований настоящей части.

5.5.1.2 Категории сварочных материалов должны соответствовать принятым в части XIV «Сварка» Правил классификации и постройки морских судов. Допускается применение иных материалов, если доказано, что свойства сварных соединений, выполненных с их помощью, удовлетворяют требованиям настоящего раздела.
5.5.2 Дополнительные требования.
Требования к стандартным и специальным характеристикам сварных соединений приводятся в табл. 5.5.2. Испытания на ударный изгиб проводятся при температуре, равной $T_p - 10^\circ$С для труб толщиной до 20 мм включительно и при $T_p - 20^\circ$С для труб с большей толщиной. Образцы вырезаются от поверхности со стороны последнего прохода при сварке, если не оговаривается иное (см. 5.1.2.3). Испытания на CTOD проводятся при температуре T_p.

5.6 ДОПУСК СВАРЩИКОВ

5.6.1 Требования к допуску сварщиков должны соответствовать разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов в части сварки труб. При аттестации сварка проводится на натурных образцах трубной продукции, параметры процесса сварки образцов должны быть согласованы с Регистром. Металл труб и сварочные материалы для аттестации должны быть одобрены Регистром.

5.7 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ

5.7.1 Перед проведением предварительной аттестации технологического процесса сварки производителю необходимо представить документацию, содержащую общую информацию о технологическом процессе, данные о практическом опыте его применения, а также о качестве сварного соединения (в соответствии с требованиями 6.1.3 части XIV «Сварка» Правил классификации и постройки морских судов).

5.7.2 Процедура одобрения технологических процессов сварки должна соответствовать разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов в части сварки труб с учетом требований настоящего раздела.

5.7.3 Сварные соединения, представленные на одобрение, должны пройти 100 % визуальный и измерительный контроль, ультразвуковой или рентгенографический контроль и контроль на отсутствие поверхностных трещин. Объем механических испытаний должен соответствовать 5.1.2. Особое внимание следует обратить на допустимость правки образцов, определенную в 5.1.2.2.1 и разд. 2 приложения 4.
Физико-механические свойства сварных соединений

<table>
<thead>
<tr>
<th>Свариваемая сталь</th>
<th>PCTW</th>
<th>PCT32W</th>
<th>PCT36W</th>
<th>PCT40W</th>
<th>PCT420W</th>
<th>PCT460W</th>
<th>PCT500W</th>
<th>PCT550W</th>
<th>PCT620W</th>
<th>PCT690W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Предел текучести металла шва, МПа (мин.)</td>
<td>235</td>
<td>315</td>
<td>355</td>
<td>390</td>
<td>420</td>
<td>460</td>
<td>500</td>
<td>550</td>
<td>620</td>
<td>690</td>
</tr>
<tr>
<td>Временное сопротивление металла шва и поперек сварного соединения, МПа (мин.)</td>
<td>400</td>
<td>440</td>
<td>490</td>
<td>510</td>
<td>530</td>
<td>570</td>
<td>610</td>
<td>670</td>
<td>720</td>
<td>770</td>
</tr>
<tr>
<td>Твердость сварного соединения по Виккерсу (макс.)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>320</td>
<td>350</td>
<td>370</td>
<td>370</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Угол загиба, ° (мин.)</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Работа удара KV, Дж, в поперечном направлении, при $T_{ж} = 10$ °C для труб с $t_z \leq 20$ мм и при $T_{ж} = 20$ °C для труб с $t_z > 20$ мм</td>
<td></td>
</tr>
<tr>
<td>Трубопроводы всех классов</td>
<td>Для всех D_a</td>
<td>29</td>
<td>31</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>46</td>
<td>50</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>СТОД металла сварного соединения и ЗТВ, мм, при $T_{ж}$ для трубопроводов классов L – L3, G – G3</td>
<td></td>
</tr>
<tr>
<td>$t_z \leq 20$ мм</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>20 < $t_z \leq 30$ мм</td>
<td>–</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>30 < $t_z \leq 40$ мм</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
</tr>
</tbody>
</table>
Продолжение табл. 5.5.2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стойкость к сульфидному растрескиванию под напряжением: отсутствие трещин после выдержки в растворе в течение 720 часов при напряжении 85 % минимального нормированного предела текучести</td>
<td></td>
</tr>
<tr>
<td>Стойкость к водородно-индукционному/ступенчатому растрескиванию: CLR < 15%</td>
<td></td>
</tr>
<tr>
<td>Примечания: 1. Приводятся требуемые средние значения работы удара по трем образцам при температуре, определенной в 4.3.3.3. На одном образце допускается снижение работы удара до 70 % от требуемой.</td>
<td></td>
</tr>
<tr>
<td>2. Для размеров D_a и t, вне указанных пределов требования устанавливаются по согласованию с Регистром.</td>
<td></td>
</tr>
</tbody>
</table>
6 БАЛЛАСТИРОВКА ПОДВОДНЫХ ТРУБОПРОВОДОВ

6.1 ОБЩИЕ ПОЛОЖЕНИЯ

6.1.1 Балластировку подводного трубопровода необходимо осуществлять для компенсации положительной плавучести, обеспечения устойчивости на донном грунте путем создания противодействия горизонтальным и вертикальным усилиям, создаваемым течениями и волнением, а также для защиты от ударных воздействий при транспортировке, монтаже и эксплуатации.

6.1.2 Балластировка подводных трубопроводов может осуществляться с помощью сплошных монолитных железобетонных и асфальтобетонных покрытий, наносимых поверх изоляции, а также путем установки одиночных чугунных, железобетонных и бетонных грузов.

6.1.3 Утяжеляющие покрытия для балластировки трубопроводов и защиты от механических повреждений должны быть одобрены Регистром и удовлетворять следующим требованиям:

- иметь достаточную плотность и толщину для обеспечения необходимой отрицательной плавучести трубопровода;
- иметь достаточную механическую прочность, чтобы противостоять повреждениям при транспортировке труб, монтаже и эксплуатации;
- иметь необходимую долговечность, химическую и механическую стойкость по отношению к морской воде.

6.1.4 В качестве одиночных балластных грузов могут применяться разъемные шарнирные или разъемные седловидные грузы, изготовленные из чугуна и железобетона, а также другие конструкции, одобренные Регистром.

6.1.5 Масса трубопровода, включающая массу труб, изоляции, балластного покрытия, если имеется, балластных грузов и т. п., должна обеспечивать силу веса, достаточную для создания отрицательной плавучести. Величина этой силы равна разности веса трубопровода со всеми комплектующими изделиями и покрытиями в воздухе и веса вытесненной трубопроводом воды.

6.1.6 Расчет балластировки подводного трубопровода должен вестись как для порожнего независимо от назначения (вида транспортируемой среды) и внешних условий в районе трассы. Масса транспортируемой среды во внимание не принимается.

6.1.7 Расчет требуемого количества балласта и/или расстояния между одиночными балластными грузами для незаглубленных (незасыпанных) в
данный грунт трубопроводов должен быть произведен, исходя из условий создания отрицательной плавучести для трубопровода, противосдвижного сопротивления волнению и течению, а также с учетом взвешивающих усилий, которые возникают в упругоискривленных участках трубопровода. Требуемый вес балласта в воде \(Q_b \), кН/м, определяется по формуле

\[
Q_b \geq \frac{F_g}{f_{fr}} \cdot k_{sl} + (F_v + q_u + q_s) k_e - Q_p
\]

(6.1.7)

где

- \(F_g \) — суммарная горизонтальная составляющая силового воздействия волн и течения, определяемая в соответствии с 2.5 и 2.6, кН/м;
- \(F_v \) — суммарная вертикальная составляющая силового воздействия волн и течения, определяемая в соответствии с 2.5 и 2.6, кН/м;
- \(f_{fr} \) — коэффициент трения или \(\tan \phi \), где \(\phi \) — наименьший угол внутреннего трения грунтов по трассе трубопровода на участках, где достигается наибольшее силовое воздействие от волн и/или течений;
- \(k_e \) — коэффициент запаса устойчивости трубопровода на всплытие, принимается равным 1,15 для классов трубопроводов L, L1 и G, G1; 1,2 — для классов L2 и G2; 1,25 — для классов L3 и G3;
- \(k_u \) — коэффициент запаса устойчивости трубопровода на сдвиг, принимается равным 1,1 для классов трубопроводов L, L1 и G, G1; 1,2 — для классов L2 и G2; 1,3 — для классов L3 и G3;
- \(q_u \) — взвешивающее усилие, возникающее при упругом изгибе трубопровода в вертикальной плоскости, кН/м;
- \(q_s \) — взвешивающее усилие, возникающее при наличии продольной растягивающей силы в упругоискривленном трубопроводе, кН/м;
- \(Q_p \) — вес единицы длины трубопровода в воде с учетом веса антикоррозионной защиты и изоляции (без учета веса транспортируемой среды), кН/м.

Величины взвешивающих усилий \(q_u \) и \(q_s \) определяются по согласованной с Регистром методике, исходя из параметров профиля трассы подводного трубопровода (длины и стрелек упругих прогибов трубопровода).

6.1.8 При наличии на трассе трубопровода донных грунтов со слабыми прочностными свойствами или грунтов, склонных к разжижению, должна быть подтверждена устойчивость трубопровода к всплытию или погружению.

Устойчивость к всплытию заглубленного в донный грунт трубопровода должна обеспечиваться определенной толщиной перекрывающего слоя грунта с учетом его остаточной сдвижной прочности.
6.2 СПЛОШНЫЕ БАЛЛАСТНЫЕ ПОКРЫТИЯ

6.2.1 Общие требования.
6.2.1.1 Проектирование, расчет основных параметров и технология нанесения сплошного балластного покрытия должны основываться на отечественных государственных и отраслевых стандартах, международных стандартах, относящихся к железобетонным конструкциям, например, ISO 21809-5, EN 1992-1 Eurocode 2, EN 10080.
6.2.1.2 Исходными параметрами для сплошного балластного покрытия служат:
объемный вес/вес в воде;
толщина покрытия;
плотность;
предел прочности на сжатие;
водопоглощение;
сопротивление удару;
сопротивление изгибу и сдвигу.
6.2.1.3 Минимальная толщина сплошного покрытия должна быть не менее 40 мм.
6.2.2 Исходные материалы для изготовления бетона.
6.2.2.1 Свойства и технические характеристики исходных материалов для покрытия (цемент, наполнители, арматура, вода и т. п.) должны соответствовать техническому заданию, паспортным данным и спецификации на поставку.
6.2.2.2 В качестве цемента для бетонного покрытия могут быть использованы отечественные цементы марок не ниже 400 по ГОСТ 10178-85, а также другие аналогичные марки цемента, удовлетворяющие требованиям EN 197, BS 12, ASTM C 150, DIN 1164 или других отечественных и зарубежных стандартов по согласованию с Регистром.
6.2.2.3 Наполнители бетона должны отвечать требованиям отечественных стандартов или правил, применяющихся при изготовлении сплошных бетонных покрытий.
Наполнители не должны содержать вредных компонентов в таких количествах, которые могли бы повлиять на прочность бетона, например, при изгибе трубопровода или вызвать коррозию армирующих материалов в случае водопроницаемости бетона.
Воспрещается использовать в качестве наполнителей компоненты, восприимчивые к воздействию щелочных составляющих.
Максимальная величина зерна и кривая гранулометрического1 состава наполнителя должны соответствовать требованиям EN 206, ASTM C 33 или другим стандартам.

Максимальный размер зерен гравия, железной или баривевой руды, используемых в качестве наполнителя, не должен превышать 10 мм.

6.2.2.4 Вода для затворения бетона не должна содержать вредных компонентов в таких количествах, которые способны ухудшить затвердевание, схватывание и прочность бетона или вызвать коррозию армирующих материалов. Вода для замеса бетона должна соответствовать требованиям ASTM C 1602, EN 1008 или ГОСТ 23732.

6.2.3 Железобетонное покрытие.

6.2.3.1 Состав бетона, включающий цемент, заполнитель и воду (см. 6.2.2.1 - 6.2.2.4), должен быть таким, чтобы обеспечить все требования, касающиеся свойств схватившегося и затвердевшего бетона, включая консистенцию, объемную плотность, прочность и долговечность, а также защиту арматуры от коррозии.

Бетон должен удовлетворять следующим требованиям:

- минимальная объемная плотность после затвердевания – 2200 кг/м3;
- водопоглощение не более 5 %;
- долговечность при эксплуатационной температуре равна сроку службы подводного трубопровода;
- минимальная прочность на сжатие через месяц после затвердевания – 40 МПа.

Прочность бетона на сжатие при испытаниях контрольных образцов из замесов и вырезанных непосредственно из бетонного покрытия определяется в соответствии с требованиями стандартов EN 206, ASTM C 39, ASTM C 42, BS 1881, BS 4019, BS 6089 или отечественных стандартов по согласованию с Регистром.

6.2.3.2 Стальная арматура для железобетонного покрытия должна состоять из цилиндрических каркасов, изготовленных посредством контактной сварки продольной и кольцевой арматуры из низкоуглеродистой стали или другой арматуры в соответствии с технологией, одобренной Регистром. Стальная арматура может также применяться в виде проволочной сетки

1 Гранулометрия (от лат. granulum – зерно), гранулометрический анализ – совокупность приемов определения содержания разных по величине фракций зерен в различных средах.
(сварной или плетеной), в том числе устанавливаемой посредством спиральной намотки (спиралеобразная сетка).

Диаметр, состояние наружной поверхности, прочностные характеристики и маркировка сталей для арматуры должны отвечать требованиям международных и отечественных стандартов, например, EN 10080, BS 4482 и BS 4483, DIN 488.

Рекомендации по размеру и размещению стальной арматуры приведены в табл. 6.2.3.2-1.

Диаметры прутков для арматуры, изготовленной в виде сварного каркаса, должны быть не менее 6 мм. Максимальное расстояние между кольцевыми прутками арматуры должно составлять 120 мм. Минимальное соотношение площади поперечного сечения продольной и кольцевой арматуры к площади бетона в покрытии должно составлять 0,08 % и 0,5 % соответственно.

Количество необходимых слоев в случае применения для армирования спиралеобразной сетки зависит от толщины бетонного покрытия и определяется по табл. 6.2.3.2-2.

Таблица 6.2.3.2-1

<table>
<thead>
<tr>
<th>Геометрические параметры</th>
<th>Продольная арматура</th>
<th>Кольцевая арматура</th>
<th>Тип арматуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диаметр прутка, мм</td>
<td>6 – 8</td>
<td>6 – 12</td>
<td>Сварной каркас</td>
</tr>
<tr>
<td>Расстояние (промежуток) между прутками, мм</td>
<td>75 – 300</td>
<td>75 – 120</td>
<td></td>
</tr>
<tr>
<td>Отношение площади сечения арматуры к площади сечения бетона, %</td>
<td>0,08 – 0,2</td>
<td>0,5 – 1,0</td>
<td></td>
</tr>
<tr>
<td>Диаметр проволоки, мм</td>
<td>1,5 – 4</td>
<td>1,5 – 4</td>
<td>Сварная проволочная сетка</td>
</tr>
<tr>
<td>Расстояние (промежуток) между проволоками, мм</td>
<td>50 – 200</td>
<td>25 – 100</td>
<td></td>
</tr>
<tr>
<td>Отношение площади сечения арматуры к площади сечения бетона, %</td>
<td>мин. 0,08</td>
<td>мин. 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Примечание. В качестве альтернативного материала для арматуры может быть использовано стекловолокно, если оно обеспечивает эквивалентную эффективность армирования.

Таблица 6.2.3.2-2

<table>
<thead>
<tr>
<th>Толщина бетонного покрытия, мм</th>
<th>Количество слоев</th>
</tr>
</thead>
<tbody>
<tr>
<td>До 60</td>
<td>1</td>
</tr>
<tr>
<td>61 – 100</td>
<td>2</td>
</tr>
<tr>
<td>101 – 140</td>
<td>3</td>
</tr>
<tr>
<td>более 140</td>
<td>4</td>
</tr>
</tbody>
</table>
6.2.4 Композитные покрытия.
6.2.4.1 По согласованию с Регистром для балластировки могут применяться покрытия на основе асфальта или битума.
6.2.4.2 В балластном покрытии на основе асфальтовой мастики могут использоваться заполнители в виде частиц стекловолокна и утяжеляющих материалов. Объемный вес таких покрытий должен быть не менее 2,5 т/м³.
6.2.4.3 Балластное покрытие на основе асфальтовой мастики должно наноситься на поверхность труб в горячем состоянии при температуре не более 140 °C. После нанесения состава поверх него наматывается слой стеклопластика, затем осуществляется уплотнение покрытия пневматическими молотками и охлаждение до значения температуры окружающей среды.

7 ЗАЩИТА ОТ КОРРОЗИИ

7.1 ОБЩИЕ ПОЛОЖЕНИЯ

7.1.1 Морской стальной подводный трубопровод должен быть защищен по всей площади наружной и внутренней поверхности антикоррозионным покрытием. Тип защитного покрытия следует выбирать в зависимости от свойств транспортируемых сред, особенностей трассы и конструкции трубопровода. Если укладка осуществляется протаскиванием трубопровода по дну, то наружное покрытие должно иметь достаточную прочность, чтобы исключить повреждения от трения о грунт. Нанесение покрытия следует выполнять в заводских условиях, на специализированной строительной площадке или на судне-трубоукладчике.
7.1.2 Изоляционное антикоррозионное покрытие должно быть одобрено Регистром и соответствовать требованиям технических условий на весь срок службы трубопровода по следующим показателям: прочность на разрыв, относительное удлинение при рабочей температуре, прочность на удар, адгезия к стали, предельная площадь отслаивания в морской воде, стойкость к морской воде, сопротивляемость вдавливанию.
7.1.3 Изоляция сварных соединений, арматуры и фасонных частей должна по своим характеристикам не уступать требованиям, предъявляемым к изоляции труб.
Изоляция мест подсоединения устройств электрохимической защиты и контрольно-измерительной аппаратуры, а также изоляция, восстановленная
на поврежденных участках, должны обеспечивать надежную защиту металла труб от коррозии.

7.1.4 В процессе транспортировки, погрузо-разгрузочных работ и складирования труб необходимо предусмотреть специальные меры, исключающие механические повреждения защитного изоляционного покрытия.

7.1.5 Стальные трубы и металлические компоненты гибких подводных трубопроводов, имеющие контакт с морской водой (соединительные концевые фитинги), должны быть защищены от внешней коррозии применением комбинации методов: антикоррозионные покрытия и электрохимическая (катодная или протекторная) защита.

7.1.6 Антикоррозионные покрытия, средства электрохимической антикоррозионной защиты должны соответствовать требованиям отраслевых стандартов (стандартов предприятий), национальных, международных стандартов и/или одобренной Регистром технической документации (см. 1.5.9).

7.2 ЗАЩИТА ОТ ВНУТРЕННЕЙ КОРРОЗИИ

7.2.1 Для стальных подводных трубопроводов и металлических компонентов гибких труб (соединительные концевые фитинги, каркас), транспортирующих коррозионно-активные среды, необходимо предусматривать меры, направленные на защиту внутренней поверхности трубопровода от коррозии. К таким мерам относятся:

- увеличение толщины стенки трубы с учетом прибавки на коррозионный износ;
- применение в качестве материала стальных труб, соединительных фитингов и каркасов гибких труб коррозионно-стойких материалов, удовлетворяющих требованиям 4.3.9.5.1 и 4.3.9.5.2;
- нанесение на внутреннюю поверхность труб антикоррозионного покрытия;
- предварительная обработка углеводородов перед транспортировкой с целью удаления из них воды или других веществ, способствующих коррозии;
- ингибитирование углеводородов.

7.2.2 Выбор способа антикоррозионной защиты должен отвечать условиям эксплуатации трубопровода, а результаты расчетов, подтверждающие эффективность действия защиты, должны быть одобрены Регистром.

7.2.3 Увеличение толщины стенки подводного трубопровода с учетом коррозионного износа осуществляется с целью компенсации потерь прочности трубопровода в результате утонения стенки из-за общей равномерной коррозии.
7.2.4 Необходимость введения прибавки на коррозионный износ и ее величина определяются, исходя из рассмотрения следующих факторов:
расчетного срока службы трубопровода, коррозионной агрессивности рабочей среды и условий эксплуатации;
предполагаемого вида коррозии;
эффективности дополнительных мер по защите трубопровода, снижающих интенсивность коррозионных процессов, например, путем химической обработки транспортируемых сред, покрытий и т. п.;
чувствительности приборов контроля внутренней коррозии, частоты проводимых осмотров и проверок;
последствий случайной утечки транспортируемых сред, требований надежности и безопасности;
эффективности системы контроля за рабочим давлением в трубопроводной сети и др.
7.2.5 Минимальная прибавка на коррозионный износ трубопроводов из углеродистых сталей, транспортирующих неагрессивные рабочие среды, должна составлять не менее 1 мм. При транспортировке коррозионно-агрессивных сред, в частности пластовой продукции, содержащей в своем составе воду, надбавка на коррозионный износ должна составлять минимум 3 мм. Для подводных трубопроводов, изготовленных из нержавеющих сталей и сплавов, надбавку на коррозионный износ вводить не требуется.
7.2.6 В случае использования нержавеющих сталей и сплавов следует учитывать следующие параметры:
прочностные свойства;
технологичность изготовления, включая свариваемость;
коррозионную стойкость, в том числе к межкристаллитной коррозии.
7.2.7 При выборе внутреннего антикоррозионного защитного покрытия должны учитываться следующие факторы:
химическая совместимость с транспортируемыми углеводородами, а также с другими веществами, включая вероятность введения ингибиторов (см. 7.2.8), контакт с которыми будет возможен в процессе монтажа, укладки и эксплуатации;
сопротивляемость эрозионным воздействиям транспортируемых сред и механическим повреждениям при очистке внутренней поверхности трубопроводов скребками;
сопротивляемость быстрой декомпрессии;
наличие надежных систем контроля качества основного покрытия труб и покрытия в районе монтажного соединения.
7.2.8 Для временной защиты внутренней поверхности от коррозии во время хранения, транспортировки и до заполнения следует использовать заглушки в виде пробок и муфт, наносить консервационный состав, вводить в полость трубопровода ингибированную жидкость.

7.3 ЗАЩИТА ОТ ВНЕШНЕЙ КОРРОЗИИ

7.3.1 Покрытия.
7.3.1.1 Для защиты от внешней коррозии морской трубопровод должен иметь антикоррозионное изоляционное покрытие (обычно многослойное), одобренное Регистром. При необходимости внешнее покрытие должно иметь наружный слой для защиты от механических повреждений в процессе формирования и при укладке в/на твердый грунт. Монтажное соединение (сварной шов) защищается однослойным или многослойным покрытием.
7.3.1.2 Внешнее покрытие выбирается на основании следующих требований:
- водопроницаемости и адгезии;
- учета изменения свойств в процессе эксплуатации;
- совместимости нанесения, включая участки монтажных соединений, со строительством, монтажом и ремонтом в морских условиях;
- совместимости с бетонным покрытием, если последнее применяется;
- совместимости с катодной защитой;
- совместимости с теплоизоляционным покрытием в случае применения последнего;
- обеспечения требований охраны труда с учетом вредных условий приготовления, нанесения и формирования.
7.3.1.3 Физико-механические свойства покрытия должны быть отражены в спецификации на поставку. К ним относятся:
- максимальная и минимальная толщина;
- плотность;
- адгезия;
- прочность при растяжении и удлинение;
- ударная прочность;
- катодное сопротивление;
- изгиб;
- теплопроводность;
- электрическое сопротивление;
- износостойкость;
способность к отверждению.

7.3.1.4 Производственная спецификация на покрытие должна отражать следующее:

- материал покрытия (технические условия на материал наносимого покрытия, включая сертификаты и акты испытаний для определения свойств материала);
- подготовку поверхности (технические требования производителя к степени подготовки поверхности перед нанесением покрытия);
- нанесение покрытия (технологический процесс нанесения с указанием величин основных параметров: температуры и относительной влажности воздуха, температуры поверхности трубы, времени нанесения, толщины сухого и мокрого слоя покрытия, расхода материала, времени сушки слоя покрытия и его полного формирования в зависимости от температуры воздуха и т. д.);
- контроль и испытания (технические условия на примененное покрытие, включая сертификаты и акты испытаний по определению параметров покрытия, перечисленных в 7.3.1.3);
- технологический процесс ремонта покрытия;
- транспортировку и хранение труб с нанесенными покрытиями (руководства и инструкции по транспортировке и хранению труб).

7.3.1.5 Подготовка поверхности труб перед нанесением покрытия должна включать: исправление дефектов (выравнивание сварных швов, скругление острых кромок до радиуса не менее 2 мм), очистку от масляных и других загрязнений, а также от окалины и продуктов коррозии.

Нанесение покрытия следует осуществлять не позднее чем через 4 ч после струйно-абразивной очистки на открытом воздухе и не позднее чем через 24 ч в закрытых помещениях.

7.3.1.6 Все покрытия должны подвергаться проверкам и испытаниям, включающим в себя:
- визуальный контроль;
- измерение толщины;
- определение сплошности покрытия;
- испытания отдельных труб на адгезию.

7.3.2 Специальные покрытия стояка и берегового перехода.
Специфика антикоррозионной защиты стояков и береговых переходов связана с наличием зоны всплеска, а также атмосферной и подводной зон.

Антикоррозионное покрытие в зоне всплеска должно быть рассчитано на неблагоприятные коррозионные условия в этой зоне, особенно при транспортировке подогретых жидкостей, например, нефти и нефтепродуктов.
Антикоррозионное покрытие в этой зоне должно быть защищено от механических повреждений, вызванных гидродинамическими воздействиями, льдом или плавучими объектами.

Для каждого отдельно взятого стояка или берегового перехода разделение на зоны (подводную, всплеска и атмосферную) должно приниматься в зависимости от конструктивных особенностей стояка или берегового перехода и превалирующих факторов окружающей среды. Для каждой из перечисленных выше зон могут быть применены различные виды антикоррозионных покрытий при условии их совместимости и выполнения 7.3.1.3 и 7.3.1.4.

7.3.3 Защитные покрытия монтажных соединений.

7.3.3.1 Для трубопроводов с бетонным или теплоизоляционным покрытием монтажное соединение должно иметь многослойную структуру покрытия, состоящую из антикоррозионного защитного покрытия и заполнителя. Последний должен обеспечить плавный переход покрытия монтажного соединения к основному покрытию трубопровода.

Для теплоизолированных трубопроводов, стояков и береговых переходов заполнитель должен обладать адекватными для основных покрытий свойствами.

7.3.3.2 При выборе защитного покрытия монтажных соединений должны быть выполнены требования, изложенные в 7.3.1.2, 7.3.1.3, 7.3.1.5, 7.3.1.6 и 7.3.2, с учетом значительной склонности сварных швов к коррозионным разрушениям. Защиту сварных соединений предпочтительно осуществлять многослойными хладнолами покрытиями или специальными полимерными манжетами.

7.3.3.3 Все работы по нанесению защитного покрытия монтажного соединения должны быть выполнены согласно одобренной Регистром технологии.

7.3.4 Катодная защита.

7.3.4.1 Подводные трубопроводы должны быть защищены от коррозионного износа катодной защитой. Отказ от применения катодной защиты для подводного трубопровода с учетом наличия других средств антикоррозионной защиты согласовывается с Регистром.

7.3.4.2 Техническая документация на катодную защиту подводного трубопровода должна быть одобрена Регистром и содержать следующее:

схему компоновки станции катодной защиты с обозначением расположения всех испытательных точек;

технические условия и спецификации на все необходимое оборудование, включая конструкцию анодов, электрические кабели и их защитные устройства, испытательные точки и т. п.;
технические условия на монтаж системы катодной защиты;
технические условия на предварительные и приемосдаточные испытания;
инструкции по эксплуатации и техническому обслуживанию системы катодной защиты.

7.3.4.3 Для обеспечения необходимой катодной защиты подводный трубопровод из углеродистых сталей должен иметь защитный потенциал в пределах от 0,90 до 1,1 В, относительно электрода сравнения – серебро-хлористое серебро/морская вода (Ag/AgCl/морская вода) в морской воде. Эти потенциалы относятся к соленому илу и морской воде с соленостью в пределах 32 – 38 %. При наличии анаэробных условий, например, в среде соленого ила и вероятности возникновения коррозии под обрастанием величину защитного потенциала следует брать равной – 0,90 В. Для защиты нержавеющих сталей величину поляризационного потенциала следует брать более чем – 0,55 В.

7.3.4.4 Для устранения возможности возникновения водородного распредесявкиания и коррозионной усталости основного металла и сварных швов должен быть определен минусовый предел защитного потенциала.

7.3.4.5 Для измерения потенциала между поверхностью трубопровода и морской водой могут быть использованы контрольные электроды сравнения следующих типов:
насыщенный каломель (КС1);
насыщенный медносульфатный;
серебро-хлористое серебро/морская вода (Ag/AgCl/морская вода);
цинковый сплав высокой чистоты, содержащий цинка минимум 99,9 % и железа не более 0,0014 %/морская вода;
анодный цинковый сплав/морская вода.

7.3.4.6 Величина плотности тока катодной защиты должна быть определена для следующего:
периода поляризации подводного трубопровода (начальная, средняя и конечная плотности тока);
поддержания поляризации (защитная плотность тока);
деполяризации.
Начальная плотность тока должна составлять 10 % значения защитной плотности тока. Система катодной защиты должна позволять регулировать плотность тока в зависимости от состояния поверхности подводного трубопровода и внешних условий.

7.3.4.7 Системы катодной защиты подводных трубопроводов могут обеспечиваться одной или двумя станциями катодной защиты, расположенными
на одном или на обоих концах трубопровода. Монтаж и испытания системы катодной защиты подлежат техническому наблюдению Регистра.

7.3.4.8 Материалами анодов катодной защиты могут служить смешанные окислы, активированный титан и платинированный ниобий, тантал или титан, сплавы платинового тантала, сплавы ниобия или титана в т. ч. платинированный титановый сплав, высокопроводящий металл со слоем оксидного покрытия, свинцово-серебряные сплавы (свинец с добавкой 1 – 2 % серебра).

7.3.4.9 Выбор типа выпрямителя катодной станции должен осуществляться, исходя из величин силы тока и напряжения, которые определяются расчетом при проектировании. Выпрямители должны применяться с регулированием постоянной величины тока и потенциала, при этом управление должно быть ручным, за исключением особых случаев. Кабели должны иметь изоляцию, пригодную для эксплуатации в морской воде, и внешнюю оболочку для защиты от механических повреждений. Электрическое соединение между анодом и анодным кабелем должно быть водонепроницаемым и механически прочным.

7.3.4.10 Катодная защита должна проектироваться и выполняться, исходя из следующих условий:

результаты расчета катодной защиты должны определять конечные значения следующих величин и параметров: суммарного защитного тока и расчетного напряжения; типа, количества и срока службы анодов; марок и сечений кабелей; схем анодных линий; типов катодных станций;

расчет катодной защиты выполняется исходя из условия, что при рекомендуемом расположении анодов достигается равномерное распределение потенциалов на защищаемой поверхности;

расчет защиты должен выполняться для двух этапов ее эксплуатации: в период формирования на защищаемой поверхности катодного осадка и эксплуатационного периода.

Если из-за эффекта экранирования другими элементами системы какие-либо участки поверхности недостаточно защищены, а установка дополнительных наружных анодов невозможна, то допускается использование комбинированной защиты сочетанием катодной и протекторной.

Следует учесть, что характер распределения потенциалов различен для катодной и протекторной защит: в первом случае потенциал анода более положительный, а во втором – отрицательный.

Ток на выходе трансформатора-выпрямителя должен быть, по меньшей мере, на 25 % выше тока, необходимого для защиты трубопровода в течение всего срока службы.
7.3.4.11 Аноды системы катодной защиты должны быть заглублены на берегу или уложены на дно.
Аноды должны обладать достаточно низким сопротивлением изоляции в электролите (морской воде), обеспечивая низкое сопротивление в цепи тока катодной защиты, чтобы выходное напряжение трансформатора-выпрямителя при максимальном токе на выходе по соображениям безопасности не превышало 50 В.
Общая масса материалов анодов должна превышать массу анодных материалов, расходуемых в течение расчетного срока службы при максимальном токе на выходе трансформатора-выпрямителя.
7.3.4.12 В случае нейтрального состава материала анодов, например, титановых анодов, покрытых платиной, рабочее напряжение анода должно быть ниже, чем напряжение пробоя внешнего слоя анода.
Во всех случаях необходимо расстояние между анодом и трубопроводом выбирать минимальным с тем, чтобы защитный потенциал секции трубопровода, расположенной вблизи анода, был выше отрицательного предела защитного потенциала (см. 7.3.4.4).
Плотность анодного тока должна быть меньше максимальной плотности тока для соответствующего материала анода, предлагаемого изготовителем.
7.3.4.13 При использовании катодной защиты для подводных трубопроводов и стояков необходимо выполнять требования по электрической изоляции от смежных конструкций (платформы или эстакады), на которые они выходят, с использованием изолирующих фланцев. Тоже самое касается подземного участка при выходе трубопровода из моря на берег.
7.3.4.14 Электрохимическая защита должна быть введена в действие не позднее 10 суток с момента окончания работ по укладке трубопровода.
7.3.5 Протекторная защита.
7.3.5.1 Техническая документация на систему протекторной защиты, представляющая на рассмотрение Регистру, должна содержать следующее:
технические условия, чертежи и спецификации на протекторы изготовителя;
результаты электрохимических испытаний протекторов (на электрохимическую емкость в морской воде, на изменение потенциала закрытого контура в морской воде);
расчет массы и количества протекторов в зависимости от расчетного срока эксплуатации трубопровода;
расчет сопротивления протекторов;
расчет площади защищаемой поверхности и защитного тока;
технические условия, чертежи и спецификации на установку и крепление протекторов.

7.3.5.2 При выборе материалов для изготовления протекторов предпочтение должно быть отдано сплавам, обладающим следующими параметрами:

высоким коэффициентом полезного использования растворяемого металла;
низкой анодной поляризуемостью;
стабильностью электрохимических характеристик во времени;
отсутствием условий образования на поверхности протекторов продуктов анодного растворения и поверхностных пленок.

7.3.5.3 Выбор материала для протекторов должен учитывать следующее:

условия работы протектора, погруженного в морскую воду, донный грунт или соленый ил;
расчетную теоретическую токоотдачу протекторов;
необходимое значение защитного потенциала трубопровода (см. 7.3.5.8);
расчетный срок службы трубопровода (протекторов); температуру среды, стенок труб и протекторов.

Алюминиевые сплавы для изготовления протекторов должны содержать легирующие добавки, ограничивающие или предотвращающие образование оксидного поверхностного слоя. Для исключения водородной деполаризации следует применять цинковые сплавы.

7.3.5.4 Для трубопроводов с теплоизоляцией протекторы должны быть установлены таким образом, чтобы по возможности исключить их нагрев. При транспортировке по морскому (в соленой воде) подводному трубопроводу подогретых жидкостей и достижении температуры протекторов более 50 °С установка цинковых протекторов запрещается.

7.3.5.5 Внешний диаметр кольцевых (браслетных) протекторов рекомендуется выбирать равным диаметру трубопровода с балластным покрытием и/или теплоизоляцией. При назначении внешнего диаметра кольцевого протектора превышающим диаметр трубопровода с балластным покрытием и/или теплоизоляцией, а также при отсутствии балластного покрытия и/или теплоизоляции боковые поверхности кольцевых протекторов должны быть выполнены в виде усеченного конуса.

7.3.5.6 Протекторы должны быть установлены на трубопроводе таким образом, чтобы избежать механических повреждений труб и протекторов, разрыва электрического соединения протекторов с трубопроводом, нару-
шения целостности изоляционных и балластных покрытий. После монтажа каждого протектора целостность его электрической цепи должна быть проверена приборным методом.

Стальная арматура балластного железобетонного покрытия не должна иметь контакт с трубой или протектором.

7.3.5.7 Способы установки протекторов на трубопроводе, в том числе технологические процессы приварки протекторов и присоединительных пластин, должны быть одобрены Регистром. Запрещается приварка протекторов и их присоединительных пластин на сварные швы трубопровода, минимальное расстояние от места приварки протектора или присоединительной пластины до сварного шва трубопровода – 150 мм.

7.3.5.8 По всей поверхности морского подводного трубопровода на всем его протяжении должно быть обеспечено непрерывное распределение потенциалов в течение всего срока службы. Минимальные и максимальные значения защитных потенциалов для морской воды приведены в табл. 7.3.5.8. Указанные потенциалы рассчитаны для воды с соленостью от 32 до 38 % при температуре от 5 до 25 °С.

Таблица 7.3.5.8

<table>
<thead>
<tr>
<th>Контрольный электрод</th>
<th>Минимальный защитный потенциал, В</th>
<th>Максимальный защитный потенциал, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Медно-сульфатный насыщенный</td>
<td>-0,95</td>
<td>-1,10</td>
</tr>
<tr>
<td>Хлорсереебряный</td>
<td>-0,90</td>
<td>-1,05</td>
</tr>
<tr>
<td>Цинковый</td>
<td>+0,15</td>
<td>0,00</td>
</tr>
</tbody>
</table>

8 МОНТАЖ И ИСПЫТАНИЯ ТРУБОПРОВОДОВ

8.1 ОБЩИЕ ПОЛОЖЕНИЯ

8.1.1 Монтаж, укладка и испытания подводных трубопроводов должны проводиться с учетом выводов и рекомендаций, которые получены по результатам оценки рисков этих процессов, выполненных на основании требований разд. 10 и приложения 3. Раздел оценки рисков должен быть включен в состав представляемой на рассмотрение и одобрение Регистром проектной документации, см. 1.5.10.

8.1.2 Перед монтажем, укладкой и испытаниями подводных трубопроводов Регистру должны быть направлены на рассмотрение:
1 техническая документация, указанная в 1.5.7, 1.5.3.2.1, 1.5.3.2.5;
2 технологическая документация на следующее:
хранение, транспортировку и погрузку-разгрузку труб;
сборку и сварку труб и плетей;
неразрушающий контроль, включая визуально-измерительный;
нанесение покрытий и изоляции на места сварки труб или плетей;
ремонтно-восстановительные работы по исправлению обнаруженных дефектов.
8.1.3 Перед началом технического наблюдения за постройкой подводного трубопровода необходимо проверить предприятие, осуществляющее его монтаж и укладку, на соответствие требованиям 1.10 Руководства МПТ и оформить Свидетельство о соответствии предприятия (ССП, ф. 7.1.27).
8.1.4 Перед монтажом и укладкой подводного трубопровода оборудование трубоукладочного судна (сварочное, системы позиционирования, механизмы натяжения) или иное оборудование, применяемое при других способах укладки, должно быть освидетельствовано Регистром.

8.2 ТРАССИРОВКА ТРУБОПРОВОДОВ

8.2.1 Выбор трассы и величины заглубления подводного трубопровода в донный грунт должен минимизировать влияние литодинамических процессов на работоспособность и надежность трубопровода.
8.2.2 По возможности трасса подводного трубопровода должна обходить зоны вечной мерзлоты донного грунта.
8.2.3 Для минимизации контакта трубопровода с килями дрейфующих ледовых образований и стамух трассу подводного трубопровода целесообразно направлять по линии максимальных глубин и параллельно направлению преимущественного дрейфа ледовых образований.
8.2.4 Береговой переход трубопровода в районах с сезонным ледовым покровом должен быть конструктивно выполнен как гидротехническое сооружение, спроектированное на восприятие ледовой нагрузки (локальной и глобальной) при расчетной толщине льда с обеспечением 10⁻² 1/год. Зону контакта защитного сооружения со льдом рекомендуется выполнять наклонной к горизонтальной плоскости с углом наклона к горизонту не более 45° в диапазоне высот от среднего уровня воды ± удвоенная расчетная толщина льда.
8.2.5 Выбор трассы должен минимизировать экологические риски и риски для биоресурсов моря.

121
8.2.6 При трассировке подводного трубопровода на участках значительного градиента глубин во избежание опасного изгиба трубы необходимо выполнения условия

\[R > 1000 \cdot D_a, \]

где \(R \) — радиус кривизны трассы трубопровода (в горизонтальной и вертикальной плоскостях), м;
\(D_a \) — наружный диаметр труб, м.

Использование при трассировке трубопровода радиусов меньшей величины, чем указано в формуле (8.2.6), подлежит согласованию с Регистром.

8.2.7 Береговой переход подводного трубопровода рекомендуется удалять от устьевых участков рек в замерзающих и арктических морях во избежание возможного размыва заглубленного трубопровода вертикальными потоками воды при интенсивном таянии льда.

8.2.8 Перед монтажом и укладкой подводного трубопровода должны быть проведены дополнительные изыскания по трассе трубопровода, если:

- период времени с окончания рабочих инженерных изысканий до начала монтажных работ составляет два года и более;
- в условиях грунта морского дна могли произойти значительные изменения;
- предполагаемый маршрут прокладки трубопровода проходит в районах, подверженных опасным воздействиям, например, сейсмически опасных;
- в районах прокладки трубопровода появились новые установки, объекты, трубопроводы и т. п.

8.2.9 При подготовке морского дна перед укладкой трубопровода по его трассе должны быть проведены следующие работы:

- осуществление мероприятий, предотвращающих нежелательные процессы размыва или наноса донного грунта;
- удаление потенциально опасных объектов;
- конструктивное оформление пересечений с ранее проложенными трубопроводами и кабелями, выходов трубопроводов на берег;
- подводные земляные работы.

8.2.10 Перед укладкой трубопровода в предварительно подготовленную траншею предприятие-строитель при участии инспектора Регистра должно производить проверку отметок продольного профиля траншеи. Переборы грунта в основании (дне) траншеи допускаются на глубину не более 0,5 м. Трубопровод должен быть подготовлен для укладки к моменту окончания работ по устройству подводной траншеи.
8.2.11 Укладка трубопровода на дно для последующего его заглубления в грунт допускается только при условии, что предварительными контрольными промерами и расчетами будет установлено, что радиусы изгиба трубопровода при укладке будут не менее минимально допустимых по условиям прочности.

Обетонированный трубопровод допускается укладывать после достижения бетоном проектной прочности.

8.2.12 Все работы по конструктивному оформлению пересечений с трубопроводами и кабельными трассами должны осуществляться в полном соответствии со спецификацией, которая определяет подетальные меры, направленные на избежание любых повреждений пересекающихся объектов.

Спецификация должна содержать в себе требования, относящиеся к следующему:
- минимальному расстоянию между пересекающимися объектами;
- координации пересечений;
- маркировке прокладываемой трассы;
- положению и ориентации пересекающихся объектов с обеих сторон;
- разработке и конструктивному оформлению пересечения;
- раскреплению трубопровода и составляющих его конструкций;
- установке несущих конструкций (опор) или гравийных оснований;
- мероприятиям, предотвращающим эрозионное воздействие на конструктивные элементы трубопровода;
- текущему контролю;
- допустимым отклонениям;
- любым другим составляющим конструкции пересечения подводного трубопровода.

8.2.13 При трассировке подводного трубопровода в сейсмически опасных районах должны быть выполнены следующие требования:
1. не допускается жесткое крепление трубопроводов к донному и береговому оборудованию. В случае необходимости таких соединений следует предусматривать устройство криволинейных вставок или компенсирующих устройств, размеры и компенсационная способность которых должны устанавливаться расчетом;
2. при пересечении трубопроводом участков трассы с грунтами, резко отличающимися друг от друга сейсмическими свойствами, необходимо предусматривать возможность свободного перемещения и деформирования трубопровода. При заглублении трубопровода на таких участках рекомен-
дует устройство траншеи с пологими откосами и засыпка трубопровода крупнозернистым песком;

3 пересечение трубопроводом зон активных тектонических разломов допускается под углом, близким к 90°. При этом следует применять, как правило, незаглубленный в донный грунт способ прокладки. При этом необходимо соблюдать определенную (трапециoidalную) форму траншеи с пологими откосами (не менее 1 : 2).

Длина участка пересечения трубопроводом активного тектонического разлома принимается равной ширине разлома плюс 100 м в каждую сторону от границ разлома. На границах пересечений трубопроводом зон активных тектонических разломов возможно применение конструкций для повышения гибкости трубопровода (устройство компенсаторов);

4 для обеспечения общей устойчивости подводного трубопровода при действии сейсмической волны, направленной вдоль продольной оси трубопровода, трубопровод может заглубляться в донный грунт. Величина заглубления рассчитывается с учетом диаграмм взаимодействия трубопровода с грунтом, физической нелинейности материала труб и возможной выпуклости участков трубопровода в вертикальной плоскости.

8.3 ДОПОЛНИТЕЛЬНЫЕ МЕРЫ ПО ЗАЩИТЕ ТРУБОПРОВОДА В РАЙОНАХ ИНТЕНСИВНОЙ ЛЕДОВОЙ ЭКЗАРАЦИИ

8.3.1 Общие положения.

8.3.1.1 В акваториях с сезонным ледяным покровом (замерзающие моря Каспийское, Балтийское, Охотское и т. д.) и на морском арктическом шельфе (Баренцево, Печорское, Карское моря, Байдарацкая губа и т. д.) при наличии признаков ледовой экзарации, выявленных в период изысканий инструментальными методами (подводная телевизионная съемка, сонарная съемка, водолазное обследование), трубопровод должен быть заглублен в донный грунт.

8.3.1.2 Величина заглубления подводного трубопровода в донный грунт назначается на основании расчетной величины экзарации, которая может быть определена на основании:
 параметров распределений борозд – см. 8.3.2;
 имитационно-статистического моделирования процесса экзарации – см. 8.3.3;
 параметров ледовых образований – см. 8.3.4.
При выборе способа определения расчетной величины экзарации следует отдавать предпочтение первым двум из указанных выше способов или их комбинации.

8.3.1.3 Величина заглубления трубопровода в донный грунт по его трассе может изменяться или приниматься равной нулю (незаглубленный в грунт трубопровод) в зависимости от глубины акватории, параметров экзарации и ледовых образований, для чего трассу трубопровода рекомендуется разбивать на участки. Величина заглубления в пределах участка принимается постоянной.

8.3.1.4 При отсутствии данных о параметрах экзарационных борозд в качестве критерия разбиения трассы на участки следует принимать:
- однородность участка трассы по грунту;
- повторяемость превышения осадками килей торосов глубины моря.
Разбивка трассы трубопровода на участки может быть также произведена по данным, полученным с помощью математического моделирования процесса экзарации, выполненного по методике, одобренной Регистром (см. 8.3.3).

8.3.2 Определение величины заглубления в зависимости от параметров распределений борозд.

8.3.2.1 Критериями разбиения трассы трубопровода на участки должны служить, в порядке приоритетности:
- параметры распределения глубины экзарационных борозд;
- частота пересечения экзарационных борозд трассой трубопровода;
- плотность экзарационных борозд на участке трассы.

8.3.2.2 При проведении оптимизации трассы прокладки трубопровода в целях минимизации затрат на устройство траншей для заглубления трубопровода в качестве критериев оптимизации следует использовать критерии, перечисленные в пунктах 8.3.1.4 и 8.3.2.1.

8.3.2.3 Для определения максимальной величины заглубления подводного трубопровода в донный грунт на участке трассы трубопровода в районах с интенсивной ледовой экзарацией должны быть определены следующие параметры:
- среднее количество (плотность) борозд на 1 км²;
- длина, ширина и глубина экзарационных борозд.
По данным о длине, ширине и глубине борозд определяются средние значения. Необходимо фиксировать координаты начала и конца борозд.

8.3.2.4 Указанные в 8.3.2.3 параметры определяются по данным инженерных изысканий, проведенных по трассе трубопровода (по участкам трассы) за срок не менее 5 непрерывных лет.
8.3.2.5 Расчетная величина экзарации заданной повторяемости h_N, м, рассчитывается по формуле

$$h_N = \bar{h} \cdot \ln (n_t \cdot T),$$ \hspace{1cm} (8.3.2.5)

где \bar{h} — выборочное среднее значение глубины экзарационных борозд за весь период наблюдений, пересекающих трассу в рамках участка, на котором выявлены признаки экзарации, м;

n_t — среднее количество борозд, пересекающих трассу за один год;

T — период повторяемости, лет (если не оговорено иначе, принимается равным 100 годам).

8.3.2.6 В случае, когда трасса трубопровода определена, величина n_t определяется непосредственно по данным инженерных изысканий.

8.3.2.7 В случае, когда известно только направление трассы трубопровода, а направление борозд имеет выраженный характер (распределение направления борозд имеет ярко выраженную моду), величина n_t определяется по формуле

$$n_t = n_f \cdot M [L |\sin (\phi)|],$$ \hspace{1cm} (8.3.2.7)

где n_f — плотность борозд на единицу площади, 1/км2;

ϕ — угол между бороздой и трассой;

$M[]$ — оператор математического ожидания.

8.3.2.8 Если направление борозд имеет равномерное распределение или ориентация борозд не может быть определена, то величина n_t определяется по формуле

$$n_t = 2\pi \cdot \bar{l} \cdot n_f,$$ \hspace{1cm} (8.3.2.8)

где \bar{l} — выборочная средняя длина борозды, км.

8.3.2.9 Величина заглубления подводного трубопровода в донный грунт H, м, на трассе (участке трассы) с выявленными признаками ледовой экзарации должна быть не менее определенной по формуле

$$H = h_N + \Delta \cdot k_0,$$ \hspace{1cm} (8.3.2.9)

где Δ — запас на величину заглубления, как правило, принимается равным 1 м (величина запаса может быть уменьшена при наличии соответствующего обоснования и расчета, выполненного по методике, одобренной Регистром).
k_0 – коэффициент запаса, учитывающий класс трубопровода, назначается в соответствии с табл. 8.3.2.9

Значения коэффициентов запаса на величину заглубления трубопровода	Класс трубопровода					
	L, L1	L2	L3	G, G1	G2	G3
k_0	1,0	1,2	1,3	1,0	1,2	1,3

8.3.3 Имитационно-статистическое моделирование процесса экзарации.

8.3.3.1 Расчетное значение ледовой экзарации на грунте морского dna может быть определено при помощи имитационно-статистического моделирования процесса экзарации, одобренного Регистром. При этом необходимо, чтобы методика учитывала ветровой режим, режим течений в ледовый период, приливно-отливные колебания уровня воды, профили глубин, свойства донных грунтов, статистические характеристики морфометрических параметров ледяных образований, полученные на достаточно представительной выборке.

8.3.3.2 Разбивка трассы трубопровода на участки производится в соответствии с 8.3.1.4.

8.3.3.3 Величина заглубления подводного трубопровода в донный грунт определяется в соответствии с 8.3.2.9 на основании расчетной величины экзарации h_{v}, полученной в результате математического моделирования этого процесса.

8.3.4 Определение величины заглубления в зависимости от параметров ледовых образований.

8.3.4.1 Для определения расчетной величины экзарации по параметрам ледовых образований для трассы (участка) подводного трубопровода должны быть определены следующие параметры:

- h_m – глубина моря с учетом отлива, м;
- h_k – среднее значение осадок килей дрейфующих ледовых образований, м;
- σ_h – среднеквадратичное отклонение осадки килей дрейфующих ледовых образований, м;
- T_R – среднее время существования ледовых образований, сут;
- V – средняя скорость дрейфа ледовых образований, км/сут;
- N – среднее количество дрейфующих ледовых образований на 1 кв. км в ледовый период.
8.3.4.2 Указанные в 8.3.4.1 параметры определяются для отдельных участков трассы трубопровода, в пределах которых их величины принимаются постоянными, по данным инженерных изысканий, проведенных за срок не менее 5 непрерывных лет.

8.3.4.3 Расчетная величина экзарации при определенных параметрах ледовых образований, указанных в 8.3.4.1, рассчитывается в следующей последовательности:

8.3.4.3.1 Определяются безразмерные значения \tilde{h}_k и λ_2 характеризующие осадку ледовых образований, соответственно по формулам:

$$\tilde{h}_k = \frac{h_k}{h_s} - \text{средняя относительная осадка дрейфующего ледового образования}$$

(8.3.4.3.1-1);

$$\lambda = \frac{\sigma_h}{h_k} - \text{коэффициент вариации осадки дрейфующего ледового образования}$$

(8.3.4.3.1-2).

8.3.4.3.2 По табл. 8.3.4.3.2 линейной интерполяцией по параметрам \tilde{h}_k и λ определяется вероятность единичного превышения осадкой ледового образования глубины моря P_0.

<p>| Таблица 8.3.4.3.2 |
|----------|-----------|-----------|-----------|-----------|-----------|</p>
<table>
<thead>
<tr>
<th>P_0</th>
<th>\tilde{h}_k</th>
<th>0,2</th>
<th>0,4</th>
<th>0,6</th>
<th>0,8</th>
<th>0,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>0,02119</td>
<td>0,0</td>
<td>0,002369</td>
<td>0,063711</td>
<td>0,11043</td>
<td>0,473398</td>
</tr>
<tr>
<td>0,4</td>
<td>0,000069</td>
<td>0,0</td>
<td>0,023542</td>
<td>0,130977</td>
<td>0,238911</td>
<td>0,446778</td>
</tr>
<tr>
<td>0,6</td>
<td>0,001554</td>
<td>0,055157</td>
<td>0,169684</td>
<td>0,289655</td>
<td>0,393701</td>
<td>0,367879</td>
</tr>
<tr>
<td>0,8</td>
<td>0,006738</td>
<td>0,082085</td>
<td>0,188247</td>
<td>0,286505</td>
<td>0,367879</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>0,1</td>
<td>0,15</td>
<td>0,21</td>
<td>0,265</td>
<td>0,321</td>
<td></td>
</tr>
</tbody>
</table>

8.3.4.3.3 Исходя из условия наличия контакта киля ледового образования с трубопроводом с обеспеченностью 10^{-2} 1/год определяется параметр a:

$$a = 0,99^{\frac{1}{0,6}} P_0 \cdot N \cdot V \cdot T_{9} \cdot T,$$

(8.3.4.3.3)

где T - планируемый срок эксплуатации трубопровода, лет.
8.3.4.3.4 В зависимости от параметров \(a \) и \(\lambda \) по данным табл. 8.3.4.3.4 вычисляется параметр \(Z \).

Таблица 8.3.4.3.4

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(Z)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>0,9999</td>
<td>0,99995</td>
</tr>
<tr>
<td>0,8</td>
<td>9,21</td>
<td>9,90</td>
</tr>
<tr>
<td>0,6</td>
<td>10,70</td>
<td>11,43</td>
</tr>
<tr>
<td>0,4</td>
<td>13,46</td>
<td>14,25</td>
</tr>
<tr>
<td>0,2</td>
<td>20,00</td>
<td>20,91</td>
</tr>
<tr>
<td>0,2</td>
<td>47,98</td>
<td>49,31</td>
</tr>
</tbody>
</table>

8.3.4.3.5 Определяется коэффициент заглубления \(K \) по формуле

\[
K = Z \cdot \lambda^2 \cdot \bar{h}_k. \tag{8.3.4.3.5}
\]

Коэффициент \(K \) является критерием необходимости заглубления подводного трубопровода в морской грунт на рассматриваемом участке трассы:
* если \(K \leq 1 \), то заглублять трубопровод не требуется;
* если \(K > 1 \), то требуется заглубление трубопровода.

8.3.4.3.6 Расчетная величина экзарации на рассматриваемом участке трассы трубопровода \(h_N \), м, определяется по формуле

\[
h_N = h_s \cdot (K - 1) \cdot k_g, \tag{8.3.4.3.6}
\]

где \(k_g \) – поправочный коэффициент, учитывающий свойства донного грунта, назначается в соответствии с табл. 8.3.4.3.6.

Таблица 8.3.4.3.6

<table>
<thead>
<tr>
<th>Вид грунта</th>
<th>Песок</th>
<th>Супесь, суглинок</th>
<th>Глина</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_g)</td>
<td>0,95</td>
<td>0,60</td>
<td>0,20</td>
</tr>
</tbody>
</table>

8.3.4.4 Разбивка трассы трубопровода на участки производится в соответствии с 8.3.1.4.

8.3.4.5 Величина заглубления подводного трубопровода в донный грунт определяется в соответствии с 8.3.2.9.
8.4 МОРСКИЕ ОПЕРАЦИИ ПРИ УКЛАДКЕ ТРУБОПРОВОДОВ

8.4.1 Требования настоящей главы относятся к трубоукладочным судам и баржам, осуществляющим укладку трубопроводов на морское дно. Судно-трубоукладчик должно иметь класс Регистра или признанного Регистром классификационного общества. Оно должно быть оснащено всеми необходимыми системами, устройствами и оборудованием для выполнения операций по укладке трубопроводов с учетом обеспечения соответствующей безопасности. Основные требования к судну отражаются в спецификации и относятся к следующему:

- якорям, якорным цепям, тросам и якорным лебедкам;
- раскреплению;
- позиционированию и оборудованию по наблюдению за его осуществлением;
- оборудованию динамического позиционирования и соответствующей системе координат;
- системам сигнализации;
- мореходным качествам судна в заданном районе;
- крановому оборудованию;
- трубопроводному монтажному оборудованию.

8.4.2 На судне должно находиться руководство по техническому обслуживанию всех систем и оборудования, обеспечивающего безопасность действия в процессе выполняемых операций. Перед эксплуатацией судно, его оборудование и системы должны быть освидетельствованы Регистром (см. 8.1.3).

8.4.3 Для позиционирования трубоукладочного судна необходимо иметь карту расположения якорных устройств. Судно, осуществляющее укладку подводных трубопроводов, должно работать в полном соответствии с предварительно утвержденной схемой расположения якорей, обеспечивающей требуемые усилия на натяжных связях. Схема должна содержать следующую информацию:

- предполагаемую трассу трубопровода и коридор для его укладки;
- расположение существующих трубопроводов и установок;
- места, запрещенные для постановки на якорь;
- положение каждого якоря и точки касания заземляющего кабеля;
- положение судна при движении каждого якоря и рабочие координаты судна после остановки перемещения якоря;
- управление якорями с учетом гидрометеорологических ограничений.
8.4.4 Необходимо определить минимальные расстояния между якорями, якорными цепями (тросами), кабелями и любыми другими существующими стационарными конструкциями подводных устройств, трубопроводов и кабелей.

8.4.5 Требования к системе позиционирования и точности ее действия должны быть определены для каждого конкретного судна и соответствующих внешних условий. Точность горизонтального позиционирования должна полностью соответствовать требованиям к допустимым отклонениям осевой линии трубопровода при укладке. Для контроля позиционирования должны быть разработаны соответствующие системы контроля, установлены контрольные точки.

8.4.6 Системы позиционирования должны иметь, как минимум, 100 %-ное резервирование для предупреждения ошибок или сбоев в позиционировании. Документация, отражающая, что система проверена в заданных пределах точности, должна быть подготовлена для ознакомления инспектору Регистра до начала работ по укладке трубопровода.

8.4.7 Судно, использующее систему динамического позиционирования, должно соответствовать требованиям Циркуляра ИМО MSC/Circ. 645 «Руководящие принципы для судов с системами динамического позиционирования».

8.4.8 До начала работ по монтажу необходимо осуществить проверку системы позиционирования с тем, чтобы убедиться, что все управляющие устройства работают в заданных пределах точности. Система дистанционного управления двигателями должна проверяться в рабочем режиме вместе с системой определения координат местоположения судна, а также при различных вариантах возникновения отказов.

Системы контроля, аварийной сигнализации и резервные системы должны проверяться в соответствии с принятыми методиками испытаний. Испытания должны проводиться под наблюдением инспектора Регистра.

8.5 СПОСОБЫ УКЛАДКИ ТРУБОПРОВОДОВ НА МОРСКОЕ ДНО

8.5.1 Подводные трубопроводы могут укладываться на морское дно различными способами, основными из которых являются: протаскивание по грунту, метод свободного погружения, укладка с трубоукладочных барж и судов, опускание со льда, укладки с использованием наклонного бурения. Возможны и другие способы или их комбинации.

8.5.2 При выборе способа укладки необходимо учитывать внешние условия, глубины акватории, рельеф дна по трассе трубопровода, свойства дон-
ного грунта, продолжительность периода льдообразования, вид транспортируемой среды, возможность создания растягивающих усилий в укладываемом трубопроводе, геометрические параметры трубы и свойства материала трубопровода.

8.5.3 Основой технологического процесса укладки подводного трубопровода должно являться перемещение его в створ трассы и опускание на дно. Технологические схемы укладки подводных трубопроводов должны отражать особенности размещения строительно-монтажной площадки, способов перемещения и опускания трубопровода в створ трассы, приложения растягивающих усилий к трубопроводу, регулирования плавучести трубопровода и способов наращивания плетей.

При укладке трубопровода возможно применение одной из основных технологических схем:

1. укладки с трубоукладчика с последовательным наращиванием плетей или с размоткой с барабана;
2. протаскивания трубопровода по дну с предварительным монтажом его на полную длину на береговой строительно-монтажной площадке;
3. протаскивания трубопровода по дну с последовательным наращиванием;
4. опускания трубопровода свободным погружением с предварительным монтажом его в створе трассы;
5. опускания трубопровода свободным погружением с последовательным наращиванием плетей;
6. придонной буксировки и опускания плетей в створ;
7. укладки с использованием наклонного бурения.

Возможно сочетание различных способов укладки на участках подводного трубопровода в зависимости от внешних условий и профиля трассы.

8.5.4 Укладка трубопровода протаскиванием по дну.

8.5.4.1 Технологические схемы укладки, указанные в 8.5.3.2 и 8.5.3.3, следует применять при укладке подводных трубопроводов малой протяженности. Выбор конкретной технологической схемы должен учитывать длину трубопровода, профиль его трассы, массу и плавучесть трубопровода, используемые тяговые средства и их возможное расположение (на берегу и/или на плавсредстве).

8.5.4.2 При протаскивании трубопровода (плети) радиус его изгиба на спусковой дорожке должен быть не менее величины, указанной в 8.2.5. При назначении меньшего радиуса изгиба (радиуса кривизны спусковых дорожек) прочность трубопровода (плети) должна быть подтверждена соответствующим расчетом.
Для уменьшения тягового усилия допускается применение понтонов, разгружающих за счет своей подъемной силы плети трубопровода и снижающих силы трения о донный грунт.

8.5.4.3 При использовании протаскивания должна быть разработана и представлена на рассмотрение в Регистр следующая технологическая документация:

технология сборки и сварки плетей трубопровода на строительно-монтажной площадке;
схема протаскивания с указанием параметров средств приложения усилий и способов анкеровки тросов;
технология наращивания плетей трубопровода;
схема установки понтонов и расчет прочности трубопровода (плети) в районе установки понтона (при использовании группы понтона); расчет тягового усилия и усилия страгивания трубопровода (плети);
конструктивная схема спусковой дорожки.

8.5.5 Укладка трубопровода буксировкой на плаву.

8.5.5.1 Применение технологических схем укладки, указанных в 8.5.3.4 - 8.5.3.6 и связанных с проведением морских операций с находящимися на плаву трубопроводами (плетями), должно ограничиваться допустимыми гидрометеорологическими условиями по трассе трубопровода во время укладки, а также должно учитывать глубину акватории, длину трубопровода (плети), массу и плавучесть трубопровода, используемые средства буксировки и способ опускания трубопровода на донный грунт.

8.5.5.2 При использовании буксировки на плаву для укладки трубопровода должна быть разработана и представлена на рассмотрение в Регистр следующая технологическая документация:
технология сборки и сварки плетей трубопровода на стапельной площадке;
схема спуска на воду со стапельной площадки и буксировки трубопровода (плетей);
конструктивная схема понтона и их установки (при отрицательной плавучести трубопровода или плети);
схема дополнительной балластировки трубопровода (плети) при избыточной положительной плавучести;
схема налива воды или отстроповки понтона;
расчет прочности трубопровода (плети) при опускании на донный грунт;
технология наращивания плетей трубопровода.

8.5.5.3 При значительной глубине акватории, приводящей к превышению допустимых напряжений при укладке, способ свободного погружения трубопровода (плети) должен быть дополнен приложением растягивающих
усилий или самонатяжением трубопровода (плети) при закреплении его концов к неподвижным береговым опорам. Расчет прочности трубопровода с определением необходимой величины растягивающих усилий должен быть представлен Регистру на рассмотрение.

В этих же целях при избыточной положительной плавучести трубопровода (плети) допускается применение временной (на момент проведения операции по укладке) утяжеляющей балластировки.

8.5.5.4 При составлении расчетных схем для проверки прочности погруженной части трубопровода (плети) необходимо учитывать ненулевые граничные условия от оставшейся на плаву части трубопровода (плети).

8.5.6 Укладка стальных трубопроводов с трубоукладчика.

8.5.6.1 Технологическая схема укладки подводного трубопровода согласно 8.5.3.1 должна соответствовать техническим параметрам трубоукладчика (включая способы опускания трубопровода и ограничения по производству работ по гидрометеорологическим условиям), учитывать глубину акватории и рельеф трассы, геометрические параметры и свойства материала труб.

8.5.6.2 При укладке трубопровода должна быть обеспечена его прочность и отсутствие начальных повреждений трубы после укладки в виде остаточных пластических деформаций и гофров (локальной потери устойчивости) стенки трубы и разрушения балласты или изоляции. При значительных глубинах укладки трубопровода необходимо применение натяжных устройств (приложение растягивающих усилий).

8.5.6.3 При использовании способа укладки трубопроводов с трубоукладчика с последовательным наращиванием плетей должна быть разработана и представлена на рассмотрение в Регистр следующая технологическая документация:

- технологическая и расчетная схема укладки;
- технология сборки и сварки плетей трубопровода;
- расчет прочности трубопровода при укладке.

8.5.6.4 Укладка J-способом должна предполагать приложение горизонтальной силы к верхнему концу трубопровода, достаточной для обеспечения безопасной укладки. Усилие должно создаваться специальными силовыми устройствами (натяжителями), системой динамического или якорного позиционирования трубоукладчика. Необходимо использовать достаточно надежные системы позиционирования с резервиованием не менее двукратного по суммарной тяге. Предпочтительно использование трубоукладчиков (трубоукладочных судов) полупогруженного типа или прекращение укладки при волнении, повышающем опасность получения начальных повреждений трубы.
8.5.6.5 Горизонтальная сила, приложенная к верхнему концу трубопровода при его укладке J-способом с трубоукладчика должна быть не менее величины \(F \), кН, определенной из следующих условий:

\[
S_x^2 - S_x \cdot S_{hp} < 0.9 \cdot k \cdot R_e^2 - S_{hp}^2 \tag{8.5.6.5-1}
\]

где \(S_{hp} \) — кольцевые напряжения, МПа, определяемые по формуле

\[
S_{hp} = \frac{ \rho_w \cdot g \cdot h \cdot D_{int} }{ 2 \cdot t_c } \cdot 10^4; \tag{8.5.6.5-2}
\]

\(S_x \) — суммарные продольные напряжения, МПа, определяемые по формуле

\[
S_x = S_1 + S_2; \tag{8.5.6.5-3}
\]

\(S_1 \) — продольные напряжения от горизонтальной силы, МПа, определяемые по формуле

\[
S_1 = \frac{ F }{ (D_{int} + t_c) \cdot t_c } \cdot 10^{-3}; \tag{8.5.6.5-4}
\]

\(S_2 \) — продольные напряжения от изгиба в районе минимальной кривизны трубопровода, МПа, определяемые по формуле

\[
S_2 = \frac{ M }{ \pi (D_{int} + t_c)^2 \cdot t_c } \cdot 10^4; \tag{8.5.6.5-5}
\]

\(M \) — наибольший изгибающий момент в трубопроводе, кНм, определяемый по формуле

\[
M = \frac{ E \pi D_{int}^4 \left[1 - (1 - 2t_c^2 / D_{int}^2)^{h} \right] h }{ 64L^2 } \cdot \frac{(1 + m)(2 + m)}{6^n \cdot [1 + (2 + m)^2 / 6^{(1+m)} \cdot h^2 / L^3]^{p^2}} \cdot 10^9; \tag{8.5.6.5-6}
\]

\(L \) — длина пролета провисающей части трубопровода, м, определяемая по формуле

\[
L = \sqrt{ \frac{2 \cdot F \cdot h}{ \gamma_p \cdot A } }; \tag{8.5.6.5-7}
\]

\(m \) — безразмерный параметр, определяемый по формуле

\[
m = \frac{ h \cdot \gamma_p \cdot A }{ 3F }; \tag{8.5.6.5-8}
\]

\(A \) — площадь поперечного сечения трубы, м², определяемая по формуле

\[
A = \pi \cdot t_c \cdot (D_{int} + t_c) \cdot 10^{-6}; \tag{8.5.6.5-9}
\]

где \(E \) — модуль нормальной упругости материала труб, МПа;

\(g \) — ускорение свободного падения, м/с²;

\(h \) — глубина моря на участке укладки, м;

\(\gamma_p \) — удельный вес трубопровода в воде, кН/м³;

\(\rho_w \) — плотность морской воды, кг/м³;

\(D_{int} \) — внутренний диаметр трубопровода, мм;
\(t_c \) – толщина стенок труб, мм;
\(k_o \) – коэффициент запаса прочности, назначаемый в соответствии с табл. 8.5.6.5.

Таблица 8.5.6.5

<table>
<thead>
<tr>
<th>Класс трубопровода</th>
<th>(L_1, L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(G, G_1)</th>
<th>(G_2)</th>
<th>(G_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_o)</td>
<td>1,0</td>
<td>0,95</td>
<td>0,9</td>
<td>1,0</td>
<td>0,95</td>
<td>0,9</td>
</tr>
</tbody>
</table>

8.5.6.6 При укладке трубопровода с трубоукладчика \(S \)-способом Регистру представляется на рассмотрение расчет прочности трубопровода, в результате которого назначается минимальное усилие на натяжителе с учетом геометрии стингера или слипа, при условии выполнения критерия прочности трубы на каждом участке трубопровода

\[
S_x^2 - S_{xp} \cdot S_{hp} + S_{hp}^2 < 0,9 \cdot k_o \cdot R_e^2,
\]

где \(S_x \) – суммарные продольные напряжения в трубе в опасных районах минимальной кривизны, МПа;
\(S_{hp} \) – кольцевые напряжения в трубе в опасных районах минимальной кривизны, МПа;
\(k_o \) – коэффициент запаса прочности, назначаемый в соответствии с таблицей 8.5.6.5.

8.5.6.7 При использовании укладки трубопроводов с трубоукладчика с размоткой с барабана должна быть разработана и представлена на рассмотрение в Регистр, дополнительно к указанной в 8.5.6.3, следующая технологическая документация:

- намотки трубопровода на барабан (сменную катушку);
- управление натяжением трубопровода.

8.5.6.8 Намотка трубопровода (плетей) на барабан не должна вызывать продольную деформацию трубы более 0,3 %. Трубоукладчик должен быть снабжен устройством для восстановления формы поперечного сечения труб при сматывании трубопровода с барабана.

8.6 ИСПЫТАНИЯ ПОДВОДНЫХ ТРУБОПРОВОДОВ ДАВЛЕНИЕМ

8.6.1 Общие положения.
8.6.1.1 Испытания подводных трубопроводов давлением следует производить после полной готовности участка или всего трубопровода (полной засыпки, установки арматуры, приборов и протекторов и т. п.), очистки и кон-
троля его полости с применением поршней, оснащенных приборами контроля, а также представления Регистру необходимой документации (см. 8.6.2).

8.6.1.2 Испытания трубопроводов давлением проводятся в два последовательных этапа: испытание на прочность и проверка на герметичность. Испытание на прочность и проверку на герметичность следует проводить гидравлическим способом, для газопроводов допускается проводить проверку на герметичность пневматическим способом.

Гидравлическое испытание трубопроводов водой при отрицательной температуре воздуха и/или воды допускается при условии предохранения трубопровода, арматуры и приборов от замораживания. Проведение испытаний давлением допускается только при действующей линии технологической связи.

8.6.2 Документация.

Испытания под давлением должны быть описаны в программе или технологической документации, которые подлежат одобрению Регистра до испытаний. Документация должна содержать следующее:

.1 инструкции по эксплуатации, включающие:
заполнение трубопровода испытательной средой;
метод и скорость создания избыточного давления;
оборудование/части оборудования, которые необходимо изолировать на период выдержки;
метод и скорость снятия давления;
обезвоживание и удаление испытательной среды;
осушку трубопровода изнутри, если необходимо;
противоаварийные меры и меры безопасности;
.2 оборудование и системы:
описание участка трубопровода, подлежащего испытаниям (размеры, клапаны, насосы и т. д.);
описание испытательной среды, включающее возможность использования химических добавок;
технические условия на измерительную аппаратуру и приборы (температура, давление, расход), включая их расположение и соединение;
описание проверок и маркировки;
распределение приборов измерения температуры вдоль трубопровода;
.3 расчеты:
влияния температуры и других внешних условий на давление, включая оценку чувствительности температуры испытательной среды к изменениям температуры морской воды;
теоретической диаграммы «давление-объем».

8.6.3 Меры безопасности.

Место проведения испытаний должно быть обозначено предупредительными знаками, чтобы предотвратить несанкционированный доступ персонала во время проведения испытаний на герметичность.

8.6.4 Испытания на прочность.

Испытание трубопроводов давлением на прочность проводится для проверки возможности работы трубопровода при рабочем давлении с определенным запасом. Минимальное давление при гидростатических испытаниях на прочность должно быть в 1,25 раза больше рабочего давления.

При гидростатических испытаниях на прочность суммарные напряжения в трубе не должны превышать 0,95 от предела текучести металла труб.

Скорость подъема/сброса давления в трубопроводе при испытании должна быть не более 0,1 МПа/мин, при достижении величины давления, равной 0,9 испытательного давления, скорость подъема/сброса давления должна быть снижена до 0,01 МПа/мин.

Время выдержки трубопровода под испытательным давлением (без учета времени нагнетания и/или сброса давления, а также выдержки для выравнивания температуры и давления) должно составлять не менее 12 ч.

Трубопровод считается выдержавшим испытание на прочность, если за период испытания падение давления составляет не более 1 % при непрерывном мониторинге величины давления и температуры или их дискретных замерах через каждые 15 мин.

8.6.5 Испытания на герметичность.

Испытания на герметичность подводного трубопровода проводятся после испытания на прочность путем снижения испытательного давления до величины, превышающей рабочее давление в 1,10 раз. Продолжительность проведения испытаний на герметичность определяется временем, необходимым для осмотра всей трассы трубопровода или испытуемого участка, продолжительность испытаний должна быть не менее 12 ч без учета времени нагнетания и/или сброса давления, а также выдержки для выравнивания температуры и давления.

Трубопровод считается выдержавшим испытание на герметичность, если за период испытания не обнаружены утечки, а изменение давления составляет не более ± 0,2 % при непрерывном мониторинге величины давления и температуры или их дискретных замерах через каждые 15 мин. При колебаниях температуры окружающей среды и уровня моря во время испытаний допускается изменение давления в трубопроводе до ± 0,4 %.
8.6.6 Испытательная среда.
Испытательной средой обычно является профильтрованная пресная вода или профильтрованная морская вода, которые могут подвергнуться химической обработке для предотвращения внутренней коррозии трубопровода.

8.6.7 Заполнение трубопровода и создание избыточного давления.
8.6.7.1 Во время заполнения испытываемого участка необходимо принять меры предосторожности, чтобы ограничить наличие воздушных пузырей до величины 0,2 % общего объема заполнения.
8.6.7.2 При всех способах испытания на прочность и герметичность для измерения давления должны применяться поверенные дистанционные приборы или манометры с пределом измерения, равным 1,25 испытательного давления, и классом точности не ниже 1.
8.6.7.3 Замеры воздушных пузырей на испытываемом участке выполняются во время первоначального создания избыточного давления. Это может быть сделано по диаграмме «давление – объем», основанной на величинах давления и объема, измеренных в процессе повышения давления.

8.6.8 Консервация испытываемого участка.
Для предотвращения внутренней коррозии необходимо произвести консервацию испытываемого участка после испытаний под давлением. Для этих целей можно использовать инертный газ или ингибированную воду.

8.6.9 Обезвоживание и сушка.
Сброс ингибитированной испытательной воды или ее утилизация должен быть согласован с национальным органом надзора. Если требуется осушка для предотвращения внутренней коррозии или образования гидратов, то подробное описание процедуры должно быть представлено в Регистр для одобрения.

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

9.1 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9.1.1 Общие положения.
9.1.1.1 Безопасность, эффективность и надежность эксплуатации морского подводного трубопровода должна обеспечиваться регламентированной системой технического обслуживания трубопровода, которая разрабатывается ее владельцем на основании требований надзорных органов, стандартов
предприятия, к которым принадлежит владелец трубопровода, и требований Правил МПТ.

9.1.1.2 Техническое обслуживание объектов морского подводного трубопровода должно включать:

- периодические осмотры трассы трубопровода;
- приборные обследования трассы трубопровода и собственно трубопровода (дефектация трубопровода);
- периодический контроль состояния объектов и систем трубопровода;
- гидравлические испытания трубопровода;
- ремонтные и ремонтно-профилактические работы, в том числе после возможного воздействия случайных и особых (аварийных) нагрузок.

9.1.1.3 Гидравлические испытания проводятся после ремонтов, переоборудования и истечения расчетного срока эксплуатации трубопровода, а также при не проведении (не полном проведении) дефектации при периодических осмотрах и обследованиях.

9.1.1.4 Периодический контроль состояния объектов и систем трубопровода должен проводиться в отношении:

- трассы трубопровода;
- труб и их соединений;
- катодной/протекторной защиты, балластировки и изоляции;
- запорной арматуры;
- систем автоматизации и сигнализации;
- фланцевых соединений;
- стояков и выходов трубопроводов на берег.

9.1.1.5 Участие Регистра в периодических осмотрах и обследованиях определяется качеством технического обслуживания трубопроводной транспортной системы ее владельцем и является необходимым условием подтверждения класса Регистра для подводного трубопровода.

9.1.1.6 Регламенты технического обслуживания объектов подводного трубопровода, входящих в Номенклатуру объектов технического наблюдения Регистра за морскими подводными трубопроводами (см. 1.6 Руководства МПТ), подлежат одобрению Регистром.

9.1.1.7 Любые изменения в регламентах технического обслуживания объектов подводных трубопроводов, указанных в 9.1.1.6, в том числе любых видах ремонта должны быть согласованы с Регистром.

9.1.2 Регламент осмотров и обследований.

Владелец подводной трубопроводной транспортной системы устанавливает порядок осмотров, обследований и регламент технического обслуживания.
живания трубопровода с указанием периодичности и состава их выполнения, включая объем начальных, периодических, специальных осмотров и обследований и способы их проведения (внутритрубная диагностика, измерение внешних дефектов и т. д.). Рекомендуется гармонизировать систему осмотров и обследований владельца трубопровода с системой периодических освидетельствований Регистра (см. 1.4 Правил МПТ и разд. 4 Руководства МПТ).

Документ, отражающий эти положения, представляется в Регистр на рассмотрение до принятия подводного трубопровода в эксплуатацию.

9.1.3 Периодические осмотры и обследования.

9.1.3.1 В процессе эксплуатации подводной трубопроводной транспортной системы должны проводиться периодические осмотры и обследования. Их выполнение является обязанностью владельца, который обязан уведомлять Регистр о сроках, методах и объемах контроля. Осмотры и обследования должны осуществляться под наблюдением инспектора Регистра признанной Регистром организацией по проведению подводных освидетельствований и/или внутритрубной диагностики подводного трубопровода в соответствии с требованиями 1.8 Руководства МПТ.

9.1.3.2 Основные требования к осмотрам и обследованиям, и оценке их результатов представлены в 9.1.4 и 9.1.5.

9.1.3.3 Сроки периодических осмотров и обследований и состав контролируемых параметров при их проведении следует устанавливать в соответствии с 4.1.2 и 4.1.4 Руководства МПТ. При этом необходимо учитывать действительное техническое состояние подводного трубопровода и возможность повреждений подводного трубопровода после экстремальных природных или техногенных воздействий (землетрясений, штормов, зафиксированных воздействий рыбопромысловых орудий и т. д.).

9.1.4 Сроки периодических осмотров и обследований.

При назначении сроков проведения периодических осмотров и обследований необходимо учитывать:

- прогнозируемые величины коррозионного и эрозионного износа труб и возможную деградацию механических свойств материала в процессе многолетней эксплуатации;
- наличие активных литодинамических процессов морского грунта;
- наличие явлений наносов/размыва и ледовой экзарации морского грунта, в том числе в районе берегового перехода трубопровода;
- изменчивость гидрометеорологических параметров акватории;
- результаты предыдущих осмотров и обследований.
Периодические осмотры и обследования следует проводить один раз в год по согласованному с Регистром регламенту, при этом следует руководствоваться указаниями 4.1.4 Руководства МПТ.

В случае экстремальных природных или техногенных воздействий на подводный трубопровод должны быть предусмотрены внеплановые осмотры и обследования, а также необходимый ремонт, объем которых согласовывается с Регистром.

9.1.5 Состав периодических осмотров и обследований.

9.1.5.1 Для оценки технического состояния и обеспечения дальнейшей безопасной эксплуатации подводного трубопровода, а также для планирования технического обслуживания периодические осмотры и обследования должны предусматривать следующие виды работ:

- общее обследование трассы подводного трубопровода, в том числе определение пространственного положения трубопровода и протяженности его провисающих участков;
- определение защитного слоя грунта (для заглубленных подводных трубопроводов);
- контроль состояния антикоррозионных покрытий;
- контроль состояния балластировки;
- внутритрубная диагностика и внешнее подводное обследование труб по выявлению дефектов (дефектация);
- контроль состояния арматуры;
- контроль состояния катодной/протекторной защиты;
- контроль работы систем автоматизации и сигнализации.

Состав параметров подводных трубопроводов, выявляемых в ходе указанных работ, должен соответствовать требованиям 4.1.2 и 4.1.3 Руководства МПТ.

9.1.5.2 При периодических осмотрах стояков дополнительно к вышеперечисленному в 9.1.5.1 выполняются:

- осмотр зажимных и крепящих болтов;
- осмотр состояния фланцевых соединений;
- оценка степени обрастания морскими организмами.

9.1.5.3 Оценка технического состояния арматуры подводных трубопроводов должна предусматривать:

- проверку работы дистанционных приводов;
- дефектацию фланцев и деталей крепежа;
- гидравлические испытания;
- дефектацию корпусов арматуры;
- дефектацию запорных и уплотнительных элементов.
9.1.6 Представление результатов периодических осмотров и обследований.

9.1.6.1 Владелец подводного трубопровода обязан представлять в Регистр на рассмотрение результаты периодических осмотров и обследований, выполненные в сроки и в составе, указанные в 9.1.4 и 9.1.5.

9.1.6.2 Владелец подводного трубопровода должен регистрировать и учитывать оформленные результаты периодических осмотров и обследований в течение всего срока эксплуатации трубопровода.

9.1.7 Модернизация.

Проект модернизации существующей транспортной системы должна получить одобрение Регистра. Вся документация с расчетами и пояснениями должна быть представлена в Регистр на рассмотрение до начала работ по модернизации и содержать следующую информацию:

- проект модернизации;
- оценку влияния окружающей среды при проведении модернизации;
- перечень оборудования для выполнения модернизации;
- контроль качества и критерии приемки.

9.2 РЕМОНТ ПОДВОДНЫХ ТРУБОПРОВОДОВ

9.2.1 Общие положения.

9.2.1.1 Ремонт подводного трубопровода (плановый, аварийный) должен проводиться на основе результатов его комплексных освидетельствований и дефектации, выполняемых в соответствии с 4.1.2 и 4.1.3 Руководства МПТ.

9.2.1.2 По результатам освидетельствований и дефектации должно быть установлено:

- уточнение местоположения дефектного участка трубопровода;
- планирование мероприятий по обеспечению безопасной эксплуатации трубопровода;
- выбор вида и способа ремонта;
- оценка технического состояния трубопровода до и после ремонтных работ.

9.2.1.3 Вид и способ проведения ремонтных работ, а также конструкторско-технологическая документация, разработанная для его осуществления (см. 9.2.2), должны быть одобрены Регистром.

9.2.1.4 Запрещается выполнение работ по выборочному ремонту дефектов, в том числе устранению недопустимых свободных пролетов (провисаний) и отложений, без разработки соответствующей технической документации.
9.2.1.5 Текущий ремонт, как правило, выполняется совместно с техническим обслуживанием подводного трубопровода согласно одобренному Регистром регламенту технической эксплуатации или документу его заменяющему и на основании действующих стандартов предприятия-владельца/оператора трубопровода.

9.2.1.6 Должно быть произведено обязательное освидетельствование Регистром отремонтированных участков подводного трубопровода в рамках ближайшего следующего периодического освидетельствования.

9.2.2 Техническая документация.

9.2.2.1 Ремонт любого назначения, выполняемый на конструкциях, устройствах и оборудовании подводной транспортной системы, должен выполняться в соответствии с технической документацией, одобренной Регистром.

9.2.2.2 Техническая документация ремонтных операций должна включать следующее:
 допустимые параметры погодных и гидрологических условий для проведения ремонтных работ;
 характер повреждений, подлежащих ремонту;
 технологическую документацию по выполнению сварки (при необходимости ее использования);
 условия выполнения ремонта, в том числе условия безопасного подъема нитки трубопровода выше поверхности воды для проведения работ (при необходимости его использования);
 перечень оборудования и инструментального обеспечения, необходимого для подготовки, выполнения ремонтных и послеремонтных работ;
 подготовка места проведения ремонта;
 технология выполнения ремонта;
 послеремонтные процедуры, включая методы неразрушающего контроля, испытания давлением и критерии приемки;
 требования безопасности труда и экологической безопасности.

9.2.3 Технология ремонта.

9.2.3.1 Ремонтные работы на подводных трубопроводах осуществляются специализированными предприятиями, имеющими Свидетельство о соответствии предприятия (ССП, ф. 7.1.27), выданное Регистром (см. 1.10 Руководства МПТ).

9.2.3.2 Для производства сварочных работ допускаются сварщики, имеющие действующее Свидетельство о допуске сварщика Регистра (ф. 7.1.30) в соответствии с 5.2.3. Сварочные материалы и технологии сварки должны быть одобрены Регистром.
9.2.3.3 После ремонта подводный трубопровод должен быть восстановлен с обоснованием расчетного срока эксплуатации в соответствии с проектными техническими требованиями к его конструкции и режимам эксплуатации. Необходимость в проведении испытаний давлением после ремонта должна рассматриваться в каждом отдельном случае с учетом состава проведенных ремонтных работ.

9.2.3.4 В случае значительных дефектов, которые могут привести к ограничению режимов эксплуатации трубопроводы и уменьшению расчетного срока эксплуатации, соответствующие расчетные обоснования подлежат специальному рассмотрению Регистром.

9.2.4 Ремонт конструкций трубопровода.

9.2.4.1 Трубы или трубопроводы с дефектами или повреждениями, превышающими нормы технических требований к допустимым величинам дефектов, подлежат ремонту.

Неисправности, подлежащие обязательному ремонту, включают:
- наружные повреждения труб;
- повреждения антикоррозионного покрытия трубы, балластных покрытий (грузов);
- повреждения систем катодной или протекторной защиты;
- дефекты сварных соединений;
- деформацию и прогиб (провисания) трубопровода;
- повреждения монтажных соединений;
- коррозионные повреждения;
- повреждения крепежа, контрольной аппаратуры и т. д.

9.2.4.2 Подлежат исправлению также дефектные участки трассы трубопровода: оголения трубопровода, наносы донного грунта, дефекты обваловки и конструкций пересечений с другими подводными трубопроводами и кабелями и т. д.

9.2.4.3 Наружные повреждения участков стальных трубопровода, такие как заусеницы, шероховатости и т. п. могут удаляться зачисткой. При этом минимальная толщина стенки трубы должна оставаться в пределах допуска.

9.2.4.4 Ремонт сварного шва, в котором методами неразрушающего контроля или визуальным осмотром обнаружены недопустимые дефекты, должен выполняться по одобренной Регистром технологии, включающей способы удаления дефекта и заварки дефектного участка. После ремонта проводится повторный контроль качества сварки визуально-измерительным контролем и неразрушающими методами.
9.2.4.5 Ремонт коррозионных и эрозионных участков разрешается только после их дефектации и оценки состояния на соответствие техническим требованиям. Решение о выполнении ремонта не должно приниматься, пока не установлена величина коррозионных повреждений.

9.2.4.6 Участки трубопроводов, имеющие недопустимые деформации и не подлежащие ремонту, должны вырезаться целиком с последующей заменой.

9.2.5 Ремонт транспортной системы без ее остановки.

9.2.5.1 Возможность ремонта трубопровода, приводящего к временной остановке его эксплуатации, допускается только после специального рассмотрения Регистром. Любой такой ремонт должен привести к полному восстановлению работоспособности трубопроводной системы или к ее работоспособности на оставшийся расчетный срок эксплуатации.

9.2.5.2 К неисправностям трубопровода, которые приводят к временной остановке его эксплуатации, относятся дефекты превышающие допустимые:

- коррозионные и эрозионные повреждения (наружные и внутренние);
- трещины различного происхождения;
- повреждения от внешнего воздействия с нарушением целостности покрытий, поверхности и геометрической формы трубы;
- недопустимое провисание трубопровода;
- значительное нарушение балластного покрытия (утрачено балластных грузов).

9.2.5.3 Замеренные при дефектации значения дефектов стенки трубы должны оцениваться одобренными Регистром методами в соответствии с 4.1.3 Руководства МПТ.

9.2.6 Ремонт поврежденного участка с установкой хомутов и других приспособлений и устройств, воспринимающих внутреннее давление транспортируемой среды, может применяться после специального рассмотрения Регистром.

Ремонт трещин сваркой по одобренной Регистром технологии разрешается в тех случаях, когда причины возникновения трещины известны и приняты меры по устранению этих причин.

9.2.7 Возможность проведения и способы ремонтных работ для гибких трубопроводов подлежат специальному рассмотрению Регистром.

9.2.8 При сварке и тепловой резке стальных трубопроводов, предназначенных для транспортировки пожаро- и взрывоопасных веществ, необходимо принимать специальные меры безопасности.
10 ОЦЕНКА БЕЗОПАСНОСТИ

10.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

10.1.1 Объектом оценки безопасности в данном разделе являются подводные:
внутрипромысловые нефте-, конденсато- и газопроводы;
магистральные нефте-, конденсато-, газо- и нефтепродуктопроводы;
распределительные нефтепродуктопроводы и газопроводы;
технологические продуктотраводы, содержащие опасные вещества.
10.1.2 Содержание раздела не распространяется на гибкие шланги и временные сборные трубопроводы, применяемые на морских нефтегазодобывающих сооружениях.
10.1.3 Оценка безопасности должна учитывать аварийные ситуации, возникающие в результате следующих воздействий и нагрузок:
eкстремальных гидрометеоусловий;
сейсмических явлений;
opасных геологических явлений на морском дне;
opасных гидрологических явлений;
внешних воздействий на трубопроводы;
явлений внутренней и внешней коррозии;
отказов технологического оборудования;
oшибки операторов при эксплуатации трубопровода;
сочетаний этих событий, явлений и условий.
10.1.4 При оценке безопасности должны быть рассмотрены следующие опасности и их последствия:
oшибки в проектировании трубопровода;
нарушения герметичности трубопровода;
повреждения и отказы средств защиты трубопровода;
изменение местоположения трубопровода относительно предусмотренного проектом;
взрывы;
пожары;
сочетания этих аварий;
другие возможные аварии.
10.1.5 Обязательными для представления в Регистр являются оценки безопасности трубопровода:
для персонала эксплуатирующей организации и для населения.
для окружающей природной среды;
для объектов и сооружений, расположенных в районах прокладки трассы трубопровода и размещения его сооружений.

10.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

10.2.1 Основные определения и пояснения, относящиеся к общим вопросам безопасности, приведены в 1.2.

10.2.2 В настоящем разделе приняты дополнительные определения.
Авария – опасное техногенное происшествие, создающее на объекте, определенной территории или акватории угрозу жизни и здоровью людей и приводящее к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного или транспортного процесса, а также к нанесению вреда окружающей природной среде.

Авария на трубопроводе – авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации. В дальнейшем под аварией понимается только такое происшествие, которое может привести к незапланированному (нештатному) попаданию транспортируемого опасного вещества (нефти, нефтепродуктов, конденсата и газа) в окружающую среду.

Анализ риска – процесс идентификации опасностей и оценки риска для отдельных лиц или групп населения, имущества или окружающей среды. Анализ риска заключается в использовании всей доступной информации для идентификации (выявления) опасностей и оценки риска заранее определенного события (аварии и связанных с ней ситуаций), обусловленного этими опасностями.

Безопасность в чрезвычайных ситуациях – состояние защищенности населения, объектов народного хозяйства и окружающей природной среды от опасностей в чрезвычайных ситуациях.

Безотказность – свойство изделия (объекта) сохранять работоспособность в течение некоторого времени или вплоть до выполнения определенного объема работы без вынужденных перерывов, например, на ремонт.

Идентификация опасности – процесс выявления опасности, признания ее существования и определения характеристик опасности.

Инициирующее аварию событие – событие, явление или внешнее условие, создающее самостоятельно или в сочетании с другими со-
бытиями, явлениями и внешними условиями возможность возникновения и развития аварии.

Исправное состояние — состояние объекта, при котором он соответствует всем требованиям нормативно-технической и/или конструкторской/проектной документации.

Критерий отказа подводного трубопровода — признак или совокупность признаков нарушения работоспособного состояния трубопровода, установленных в нормативно-технической и конструкторской документации.

Количественные показатели риска:

- индивидуальный риск — частота поражения отдельного индивидуума в результате опасных воздействий (факторов опасности), возникающих в аварийных ситуациях за определённый период времени;
- коллективный риск — ожидаемое количество людей, пострадавших в заданной степени в результате возможных аварий за определённый период времени;
- потенциальный территориальный риск — пространственное и временное распределение частоты реализации опасного воздействия определённого уровня;
- социальный риск — соотношение между частотой событий и тяжестью их последствий, выраженные в виде данных о частоте опасных событий (F), при которых возможно поражение заданной степени числа людей, большее определённого (N).

Надежность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технологического обслуживания, хранения и транспортировки.

Опасность — объективно существующая возможность (вероятность) негативного воздействия на общество, личность, природную среду, в результате которого им может быть причинен какой-либо ущерб, вред, ухудшающий состояние, придающий их развитию нежелательные динамику или параметры.

Опасность техногенного характера — состояние, присущее технической системе, промышленному или транспортному объекту, реализуемое в виде, поражающем окружающую среду при его возникновении, либо в виде прямого или косвенного ущерба для человека и окружающей среды в процессе нормальной эксплуатации этих объектов.
Опасные вещества — воспламеняющиеся, окисляющие, горючие, взрывчатые, токсичные, высокотоксичные вещества и вещества, представляющие опасность для окружающей природной среды.

Отказ — нарушение работоспособного состояния объекта.

Оценка риска — процесс определения степени риска анализируемой опасности для здоровья человека, имущества или окружающей среды. Оценка риска включает анализ частоты возникновения риска, анализ последствий и их сочетание.

Повреждение — нарушение исправного состояния объекта при сохранении его работоспособного состояния.

Пренебрежимый риск — степень риска, выше которой необходимо рассматривать и принимать меры по его устранению.

Приемлемый риск — риск, уровень которого допустим и обоснован, исходя из экономических и социальных соображений. Риск эксплуатации промышленного объекта (подводного трубопровода) является приемлемым, если его величина настолько незначительна, что ради выгоды (прибыли), получаемой от эксплуатации объекта, общество готово пойти на этот риск.

Работоспособное состояние — состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют нормативно-технической документации.

Риск — сочетание вероятности события и его последствий.

Сценарий аварии — максимально полное и формализованное описание следующих событий: инициирующего события аварии, аварийного процесса и чрезвычайной ситуации, потерь при аварии, включая специфические количественные характеристики событий аварии, их пространственные параметры и причинные связи.

Техногенная чрезвычайная ситуация — состояние, при котором в результате возникновения источника техногенной чрезвычайной ситуации на объекте, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб народному хозяйству и окружающей природной среде.

10.3 ОСНОВНЫЕ ПРИНЦИПЫ

10.3.1 Подводный трубопровод является объектом повышенной опасности (потенциально опасным объектом, опасным производственным объектом). Аварии на подводном трубопроводе обусловливаются крайне широким
спектром факторов, воздействующих со стороны окружающей среды и других объектов.

10.3.2 Оценка безопасности основывается на том, что проектирование, расчеты, изготовление, строительство, эксплуатация и техническое обслуживание подводного трубопровода должны отвечать всем требованиям нормативных документов Регистра и соответствовать наилучшим применяемым технологиям.

10.3.3 Оценка безопасности должна выполняться на всех этапах жизненного цикла подводного трубопровода, начиная с выработки замысла и концепции его создания.

10.3.4 Для оценки безопасности должна быть предоставлена следующая информация:
- условия окружающей среды;
- выполняемые функции, режимы и особенности эксплуатации трубопровода;
- расчетные воздействия и нагрузки;
- чертежи трассы, балластировки, подводных траншей, расположения протекторов, конструкций береговых переходов и т. п.;
- гидравлические расчеты, расчеты балластировки, обоснование материала и расчет толщины стенки трубопровода, эффективности антикоррозионной защиты, массы протекторов и др.;
- сведения о вспомогательных и обеспечивающих сооружениях;
- перечень и описание основных мероприятий, направленных на снижение вероятности возникновения аварий;
- описание мер, предусмотренных для уменьшения последствий аварий;
- принятые критерии приемлемого риска для персонала, населения и для окружающей среды;
- расчетное подтверждение того, что последствия экстремальных внешних условий и аварийных воздействий отвечают критериям достаточной безопасности.

10.3.5 Оценка безопасности производится в соответствии с концепциями безопасности, опирающимися на следующие принципы или их сочетания:
- принцип безусловного приоритета безопасности и сохранения здоровья людей по отношению к любым техническим и экономическим выгодам и преимуществам;
- принцип приемлемости риска, в соответствии с которым устанавливаются нижний допустимый и верхний желаемый уровни риска, а в этом интервале – приемлемый уровень риска с учетом социально-экономических факторов;
принцип минимальной опасности, в соответствии с которым уровень риска устанавливается столь низким, насколько это возможно;
принцип последовательного приближения к абсолютной безопасности.
10.3.6 В Правилах МПТ принята концепция «приемлемого риска» (ALARP – as low as reasonably practicable), реализующая принцип «предвидеть и предупредить» и принятая большинством международных и национальных классификационных обществ.
10.3.7 Анализ риска является составной частью системы управления безопасностью, задачей которой является предупреждение и уменьшение опасности трубопровода.
Анализ риска, являясь главным звеном в обеспечении безопасности, основывается на собранной информации и определяет меры контроля безопасности подводного трубопровода.
10.3.8 Оценка безопасности на этапах проектирования подводного трубопровода выполняется с целью выбора наиболее благоприятного варианта проектных решений, удовлетворяющего общим принципам и требованиям безопасности. Результат этой оценки должен подтвердить принятые в проекте правильные решения, которые обеспечивают требуемый уровень безопасности и не приведут в дальнейшем к необходимости внесения значительных изменений при проектировании и строительстве в связи с несоблюдением требований безопасности.
10.3.9 Положительная оценка безопасности подводного трубопровода должна подтвердить достаточно низкую вероятность людских потерь, финансового ущерба, социального и экологического риска. Результатом оценки безопасности должно служить подтверждение того факта, что подводный трубопровод соответствует критериям достаточной (приемлемой) безопасности.

10.4 ОСНОВНЫЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ АНАЛИЗА РИСКА
10.4.1 Для подводных трубопроводов обязательными являются анализ риска для персонала, населения и окружающей среды.
Анализ риска может производиться самостоятельно или в составе декларирования безопасности опасного производственного объекта. Его результаты должны рассматриваться при оценке и экспертизе безопасности, учитываться при технико-экономическом анализе, а также при анализе и оценке состояния безопасности промышленных объектов и регионов.
10.4.2 Анализ риска является средством выявления и определения опасностей и рисков. Анализ риска должен быть направлен на обоснование объективных решений о приемлемых и достигаемых на трубопроводе уровнях риска, что позволит выработать требования и рекомендации по управлению безопасностью.

10.4.3 Процесс анализа риска включает:
планирование и организацию работ;
идентификацию опасностей;
оценку риска;
выработку рекомендаций по снижению уровней риска (управление риском).
По каждому этапу анализа риска оформляется соответствующая документация.

10.4.4 Планирование и организация работ.

10.4.4.1 На этапе планирования работ следует:
obосновать необходимость проведения анализа риска;
выбрать анализируемую систему и обеспечить достаточно подробное ее рассмотрение;
определить исполнителей анализа риска;
определить источники и обеспечить получение информации об анализируемой системе, включая решения по обеспечению ее безопасности, а также информации об аналогичных системах;
оценить ограничения исходных данных, финансовых ресурсов, влияющих на объем и полноту анализа риска;
определить конечную цель и задачи анализа риска;
выбрать и обосновать методы анализа риска;
выработать и обосновать критерии приемлемого риска.

10.4.4.2 При определении исполнителей анализа риска следует изучить вопрос о необходимости и возможности привлечения экспертов, специалистов проектных организаций и представителей Регистра.

10.4.4.3 При определении цели и задач анализа риска следует рассматривать все этапы жизненного цикла подводного трубопровода (проектирования, строительства, ввода в эксплуатацию, эксплуатации и возможной реконструкции, вывода из эксплуатации).

10.4.4.4 При выборе метода анализа риска необходимо учитывать поставленные цель и задачи, сложность рассматриваемых процессов, наличие и полноту представления исходных данных.

10.4.4.5 Критерии приемлемого риска могут быть:
заданы нормативно-правовой документацией;
определиться на этапе планирования анализа риска с возможными уточнениями по мере выполнения этапов и получения результатов анализа.

Основными требованиями к выбору критерия риска являются:
их соответствие передовой мировой практике и наилучшим применяемым технологиям;
их обоснованность и определенность.

10.4.5 Идентификация опасностей.

10.4.5.1 Задачей идентификации опасностей является выявление, определение и максимально полное описание всех возможных для данного трубопровода опасностей. Выявление существующих опасностей осуществляется на базе информации об условиях эксплуатации данного объекта, опыта работы аналогичных или близких систем и экспертных данных.

10.4.5.2 Идентификация опасностей должна иметь систематический характер, обеспечивающий полноту рассмотрения и оценки значимости всех выявленных опасностей. Для подводных трубопроводов значимость опасностей определяется наличием в них опасных веществ и их смесей, потенциальная возможность их неконтролируемой утечки (выброса), возможности появления источников их воспламенения (взрыва) и наличием внешних (техногенных и природных) воздействий.

Важность этапа идентификации опасностей заключается в том, что невыявленные при идентификации опасности в дальнейшем не рассматриваются и не учитываются.

10.4.5.3 Для идентификации, анализа и управления опасностями, связанными с эксплуатацией подводного трубопроводного транспорта, необходимо вести регулярную и тщательную констатацию аварийных ситуаций с целью сведения к минимуму вызванных ими последствий. Наиболее опасными авариями являются повреждения и отказы, вызванные нарушением герметичности трубопроводов в результате разрывов и трещин по основному металлу трубы и по сварному шву, сквозные коррозионные свищи, неплотности соединений, утонение стенок трубы до недопустимых величин и т. п.

10.4.5.4 Сведения об авариях подводных трубопроводов должны содержать описание условий в начале аварии и мер борьбы с аварией, принимаемых для ликвидации ее последствий, информацию по развитию аварий, физические и статистические модели и др.

10.4.5.5 Предварительный анализ идентификации опасностей позволяет определить, какие элементы трубопроводной системы требуют более тщательного анализа, а какие представляют меньший интерес с точки зрения безопасности.
10.4.5.6 Результатом идентификации опасностей служит составление перечня нежелательных событий, приводящих к аварии. Идентификация опасностей завершается определением дальнейших направлений деятельности, а именно:

прекращение или прекращение проведения дальнейшего анализа ввиду незначительности опасности;

проведение более тщательного анализа риска;

выработка рекомендаций по снижению степени опасности.

10.4.6 Оценка риска.

10.4.6.1 На этапе оценки риска выявленные в процессе идентификации опасности необходимо проанализировать на предмет их соответствия критериям приемлемого риска. При этом критерии приемлемого риска и результаты могут быть отражены качественно в виде текста (таблиц) или количественно путем расчета показателей риска (приложение 2).

В случаях, когда имеется уверенность, что опасности и связанные с ними последствия событий незначительны или их вероятность весьма мала, допускается упрощенная оценка опасностей и принятие решений об их исключении из дальнейшего рассмотрения.

10.4.6.2 При выборе методов анализа риска приоритет следует отдавать качественным инженерным методам анализа риска, основанным на апробированных процедурах, специальных вспомогательных материалах (например, детально разработанных методических руководствах) и практическом опыте исполнителей. В тоже время количественные методы оценки риска бывают весьма полезны, а иногда и единственно допустимы, например, для сравнения различных вариантов проектных решений и/или при сопоставлении значимости опасностей различного происхождения, а также для подтверждения объективности получаемых результатов.

10.4.6.3 Оценка риска включает в себя анализ частоты инициирующих и промежуточных событий, анализ интенсивности проявления опасных воздействий и их последствий, а также анализ неопределенностей результатов.

Для анализа и оценки частоты событий, как правило, применяются следующие подходы:

используются статистические данные по аварийности и надежности подводных трубопроводов, аналогичных по конструкции и условиям эксплуатации рассматриваемому типу;

применяются логические методы анализа «деревьев событий» или «деревьев отказов».
выполняется экспертная оценка, учитывающая мнения специалистов в области трубопроводного транспорта.

10.4.6.4 При недостатке статистических данных, рекомендуется применять экспертные оценки и методы ранжирования риска. При таком подходе рассматриваемые события обычно разбиваются по величине вероятности и тяжести последствий на несколько групп (категорий, рангов) с оценкой риска по сочетаниям вероятности наступления и тяжести, например, с высокой, промежуточной, низкой и незначительной степенями риска. Как правило, высокая степень риска считается неприемлемой, промежуточная требует выполнения комплекса работ по снижению степени риска, низкая признается приемлемой, а незначительная может не приниматься во внимание (приложение 2).

10.4.6.5 Анализ последствий аварий включает в себя оценку воздействий на людей, окружающую среду и имущество третьих лиц. Анализ последствий должен учитывать оценки физико-химических характеристик опасных воздействий (пожаров, взрывов, выбросов токсичных веществ и т. п.). Для этого должны применяться апробированные модели аварийных процессов и критерии поражения объектов воздействия, включая собственно подводный трубопровод.

10.4.6.6 Оценка экологического риска включает в себя расчет следующих показателей:

- величины максимальных расчетных выбросов транспортируемых вредных веществ в окружающую среду, их интенсивности и продолжительности при авариях на участках трубопровода с учетом особенностей прохождения трассы, технических характеристик и режимов эксплуатации трубопроводов при нормальном режиме и при отказах систем контроля утечек и систем аварийного останова процесса перекачки;
- годовые частоты превышения заданных величин объема утечки (рекомендуется проводить расчет на превышение 0,5 тонны, 50 тонн, 500 тонн и 5000 тонн вредного вещества);
- среднегодовые частоты возникновения утечек и выбросов при нарушениях герметичности трубопроводов по всем причинам;
- средние величины объема утечки;
- средний суммарный объем утечки.

Расчет максимальных объемов утечек во всех режимах следует совмещать с гидравлическими расчетами трубопровода или проводить отдельно с использованием апробированных гидравлических моделей.

10.4.6.7 При оценке риска следует провести анализ неопределенности и точности результатов. Основными источниками неопределенностей являются...
ся недостаточность информации по условиям эксплуатации подводного трубо­провода, данных о надежности применяемого оборудования и комплектую­щих изделий, наличие человеческого фактора, а также предположения и допущения в принятых моделях аварийного процесса.

Анализ неопределенности представляет собой перевод неопределен­ностей исходных параметров и предположений, использованных при оценке риска, в неопределенности результатов. Причины неопределенности долж­ны быть идентифицированы и представлены в результатах.

10.4.7 Рекомендации по уменьшению риска.

10.4.7.1 Заключительным этапом анализа риска является разработка рекомендаций по уменьшению риска (управлению риском)

Уменьшение риска может достигаться мерами технического либо организационного характера, причем в период эксплуатации подводного трубопровода организационные мероприятия в ряде случаев могут компенсировать ограниченность возможных мер по уменьшению опасности.

При разработке мер по уменьшению риска следует учитывать их эффективность (влияние на уровень безопасности) и возможную ограниченность привлекаемых для этого ресурсов (финансовых и материальных). В первую очередь должны рассматриваться простые и требующие наименьших затрат рекомендации и меры.

10.4.7.2 В любом случае меры, уменьшающие вероятность аварии, должны иметь преимущество по сравнению с мерами, уменьшающими последствия аварий. Выбор мер уменьшения опасности имеет следующие приоритеты:

.1 меры, уменьшающие вероятность возникновения аварийной ситуации, включающие:

меры, уменьшающие вероятность возникновения отказа;
меры, уменьшающие вероятность перерастания отказа в аварийную ситуацию;
меры, относящиеся к системам противоаварийной защиты и контроля;
.2 меры, уменьшающие тяжесть последствий аварии:
меры, предусматривающие изменение концепции или конструкции подводного трубопровода, например, выбор соответствующей толщины стенки трубопровода, антикоррозионной защиты, изменение трассы и др.;
меры, касающиеся организации, оснащенности и готовности противоаварийных служб.

При равной возможности реализации разработанных рекомендаций пер­воочередными мерами безопасности служат меры предупреждения аварий.
10.5 МЕТОДЫ ПРОВЕДЕНИЯ АНАЛИЗА РИСКА

10.5.1 Выбор методов проведения анализа риска необходимо проводить с учетом цели и задач анализа, выбранных критериев приемлемого риска, особенностей подводного трубопровода, характера возможных опасностей.

Должны также учитываться наличие необходимой и достоверной информации, ресурсы, выделяемые для проведения анализа, опыт и квалификация исполнителей и другие факторы.

10.5.2 Методы анализа риска должны отвечать следующим требованиям:
- быть научно и методически обоснованными и соответствовать области своего применения;
- давать результаты в виде, который позволяет наилучшим образом понимать характер риска, вырабатывать и оценивать наиболее эффективные пути снижения риска;
- быть повторяемыми и проверяемыми.

10.5.3 В общем случае, на стадии идентификации опасностей следует применять один или несколько из перечисленных ниже методов анализа риска:
- проверочный (опросный) лист;
- "Что будет, если...?";
- комбинацию методов: проверочный лист и "Что будет, если...?";
- анализ опасности и работоспособности;
- анализ видов и последствий отказов;
- анализ деревьев отказов и событий;
- соответствующие эквивалентные методы.

Краткие сведения о перечисленных методах анализа риска и условиях их применения приведены в приложении 3.

10.5.4 Рекомендации по выбору методов анализа риска для различных этапов деятельности и функционирования подводного трубопровода (проектирование, трассировка, ввод в эксплуатацию и вывод, эксплуатация, реконструкция) представлены в табл. 10.5.4.

Методы могут применяться отдельно или в дополнение друг к другу. Качественные методы могут включать в себя количественные критерии риска, в основном, по экспертным оценкам с использованием, например, матрицы «вероятность-тяжест последствий» ранжирования опасности (см. приложение 2). Полный количественный анализ риска может включать все указанные методы.
<table>
<thead>
<tr>
<th>Метод</th>
<th>Проектирование</th>
<th>Размещение и транспорт</th>
<th>Ввод/вывод из эксплуатации</th>
<th>Эксплуатация</th>
<th>Реконструкция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Анализ «Что будет, если...?»</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Метод проверочного листа</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Анализ опасности и работоспособности</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Анализ видов и последствий отказов</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Анализ деревьев отказов и событий</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Количественный анализ риска</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
ЧАСТЬ II. РАЙЗЕРЫ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на добычные и экспортные гибкие райзеры различных типов и конструктивного исполнения, соединяющие в единую трубопроводную транспортную систему морские подводные добычные комплексы (ПДК) с морскими плавучими нефтегазо-добывающими комплексами/одноточечными плавучими причалами (ПНК/FSRM) или морскими стационарными платформами (МСП).

1.1.2 ПДК, в том числе шлангокабели и оконечные манифольды/переходники морских подводных трубопроводов, должны соответствовать требованиям Правил классификации и постройки морских подводных добычных комплексов (Правила ПДК).

1.1.3 При необходимости маневрирования (вращения) ПНК вокруг точки эксплуатации райзеры должны присоединяться к заякоренным турелям. При обеспечении возможности ухода ПНК с точки эксплуатации райзеры должны быть присоединены к заякоренным погружным буям, в том числе со встроенными турелями.

1.1.4 ПНК/FSRM и их турели должны удовлетворять требованиям Правил классификации, постройки и оборудования морских плавучих нефтегазо-добывающих комплексов (Правила ПНК), а МСП – соответствовать требованиям Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ (Правила ПБУ/МСП).

1.1.5 Требования настоящей части не распространяются на подводные шланги, которые должны отвечать требованиям разд. 6 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

1.1.6 Требования настоящей части могут применяться к существующим райзерам, построенным без технического наблюдения Регистра, с целью проведения освидетельствования технического состояния и оценки возможности присвоения класса Регистра.

1.1.7 Райзеры, выполненные по другим нормам, правилам или стандартам, могут быть одобрены Регистром альтернативно или в дополнение к требованиям настоящей части.
1.1.8 При проектировании, строительстве и эксплуатации райзеров должны выполняться требования надзорных органов.

1.1.9 Основания райзеров в части требований, касающихся конструктивному закреплению на донном грунте, должны соответствовать требованиям части IV «Фундаменты» Правил ПДК.

1.1.10 В остальном должны быть учтены требования 1.1.7 и 1.1.6 части I «Морские подводные трубопроводы».

1.2 ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

1.2.1 Определения.
Гибкий райзер — райзер, допускающий значительные отклонения от прямолинейности без существенного роста изгибных напряжений.
Гибридный райзер — райзер, состоящий из труб, изготовленных из различных конструкционных материалов.
Добычной райзер — вертикальная часть подводной трубопроводной системы, соединяющая подводные добычные комплексы с системами сбора/подготовки/хранения пластовой продукции морских плавучих нефтегазодобывающих комплексов/одноточных причалов (ПНК/FSPM) или морских стационарных платформ (МСП).

Примечание. Добычные райзеры могут быть использованы для закачки воды или газа в пласт, газлифта, а также для размещения шлангокабелей систем контроля и управления подводными добычными комплексами.

Натяжное устройство райзера/Компенсатор вертикальных перемещений — система натяжения райзера и компенсации вертикальных перемещений морских плавучих нефтегазодобывающих комплексов/одноточных причалов (ПНК/FSPM) относительно райзера.
Основание райзера — устройство для закрепления райзера, имеющего в конструкции элементы плавучести, на морском грунте.
Пакетный райзер — райзер, состоящий из пакета (пучка) параллельных труб райзера и шлангокабелей.
Полимерно-металлический райзер — райзер с гибкой полимерно-металлической трубой.
Полимерный композиционный материал (ПКМ) — гетерофазная система, образованная полимерной матрицей и наполнителем (армирующим материалом).
Пригруз – элемент райзера, имеющий отрицательную плавучесть, прикрепленный к райзеру для создания растягивающих усилий.

Райзер из ПКМ – райзер с трубой из ПКМ, состоящей из силовой внешней оболочки, герметичного внутреннего лейнера и узлов соединения.

Райзерная система – совокупность дополнительных систем, оборудования и устройств, обеспечивающих функционирование райзера (или нескольких райзеров) как общей трубопроводной транспортной системы.

Секция трубы райзера – сборочная единица трубы райзера, включающая узлы соединения (концевые фитинги) по концам.

Статическая упругая линия райзера – линия оси райзера в положении равновесия при действии только сил тяжести, сил плавучести и статических реакций со стороны ПНК/FSPM/MCIL.

Труба райзера – элемент райзера, формирующий канал транспорта пластовой продукции, воды или газа.

Экспортный райзер – вертикальная часть подводной трубопроводной системы, соединяющая системы отгрузки пластовой продукции морских плавучих нефтегазодобывающих комплексов/одноточечных причалов (ПНК/FSPM) или морских стационарных платформ (МСП) с подводными трубопроводными системами.

Элемент плавучести – элемент райзера, имеющий положительную плавучесть, прикрепленный к райзеру для создания растягивающих усилий.

1.2.2 Сокращения.
МСП – морская стационарная платформа;
МПТ – морской подводный трубопровод;
ПДК – подводный добычный комплекс;
ПКМ – полимерный композиционный материал;
ПНК – морской плавучий нефтегазодобывающий комплекс;
FSPM (Floating Single Point Mooring) – морской плавучий одноточечный причал.

1.3 КЛАССИФИКАЦИЯ

1.3.1 Присваиваемый Регистром класс райзера состоит из основного символа, дополнительных знаков и словесных характеристик, определяющих конструкцию и назначение райзера.

1.3.2 Основной символ класса, присваиваемый Регистром райзеру, состоит из следующих знаков: R®, R★ или R★★.
В зависимости от того, под наблюдением какого надзорного органа построен райзер, основной символ класса устанавливается следующим образом:

райзерам, построенным по правилам и под техническим наблюдением Регистра, присваивается класс с основным символом Р®;
райзерам, построенным по правилам и под наблюдением признанного Регистром классификационного общества или национального надзорного органа, присваивается класс с основным символом Р★;
райзерам, построенным без наблюдения признанного Регистром классификационного общества или национального надзорного органа, присваивается класс с основным символом Р*.

1.3.3 К основному символу класса добавляются три группы дополнительных знаков:
1.3.3.1 Дополнительные знаки, соответствующие назначению райзера:
Р — добычной, в том числе для закачки воды или газа в пласт;
Е — экспортный.
1.3.3.2 Дополнительные знаки, соответствующие виду добываемой/отгружаемой пластовой продукции:
G — газ;
L — жидкая или двухфазная транспортируемая среда, в том числе вода.
1.3.3.3 Дополнительные знаки, соответствующие материалу, из которого изготовлена труба райзера:
S — сталь;
Т — титановый сплав;
A — алюминиевый сплав;
C — ПКМ;
Н — гибридный райзер;
F — полимерно-металлическая труба.
1.3.4 К основному символу класса и дополнительным знакам добавляются словесные характеристики:
1.3.4.1 При добыче пластовой продукции с коррозионными свойствами (сероводородом) — corrosion-active.
1.3.4.2 Остальные словесные характеристики:
географический район;
вид транспортируемой среды;
рабочее давление, МПа;
максимальная температура транспортируемой среды, °С;
номинальный диаметр трубы райзера, мм/количество труб, шт.
Например: R*P L F, corrosion-active, Barents sea, 19 МПа, 30 °C, 300/1.

1.3.5 Присвоение класса Регистра означает подтверждение соответствия райзера предъявляемым к нему требованиям Правил МПТ и взятие райзера под техническое наблюдение на определенный срок с проведением всех предписанных Регистром освидетельствований для подтверждения класса. Присвоение райзеру класса Регистра подтверждается оформлением Классификационного свидетельства установленной формы.

1.3.6 В остальном требования к классификации райзеров должны соответствовать положениям 1.3.5 – 1.3.12 части I «Морские подводные трубопроводы».

1.4 ОБЪЕМ ОСВИДЕТЕЛЬСТВОВАНИЙ

1.4.1 Техническое наблюдение за райзерами состоит в проверке его соответствия требованиям Регистра при:
- рассмотрении и одобрении (согласовании) технической документации;
- освидетельствовании объектов технического наблюдения на этапах изготовления, постройки, эксплуатации, в том числе модернизации и ремонта.

1.4.2 Деятельность Регистра по классификации райзеров, техническому наблюдению на этапах, указанных в 1.4.1, осуществляется на основании договоров с заказчиками.

1.4.3 В процессе технического наблюдения за райзерами Регистр выдает акты освидетельствования (по окончании постройки, ежегодного/промежуточного/очередного) и, в случае необходимости, иные документы.

1.4.4 Общие требования к освидетельствованиям райзеров должны соответствовать требованиям 1.4.1 – 1.4.4 части I «Морские подводные трубопроводы».

1.4.5 Рекомендуется согласовывать сроки проведения периодических освидетельствований для объектов классификации Регистра на рассматриваемом морском нефтегазовом месторождении: морских подводных трубопроводов, райзеров и подводных добывных комплексов.

1.5 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.5.1 До начала постройки райзера на рассмотрение Регистру должна быть представлена техническая документация, позволяющая удостовериться, что требования правил Регистра по отношению к данному райзеру выполняются.
Документация по райзерам/райзерным системам должна содержать документы, указанные в 1.5.2 – 1.5.8.

1.5.2 Общая часть:
.1 спецификация райзера;
.2 чертежи райзера (схема рабочего положения, типовые детали и соединения);
.3 отчет по инженерным изысканиям в районе эксплуатации с указанием параметров течения, волнения и грунтов (при использовании устанавливаемых на дне оснований райзеров);
.4 перечень комплектующих изделий и оборудования с указанием основных технических характеристик, предприятия-изготовителя и наличия одобрения Регистром или другим классификационным/надзорным органом.

1.5.3 Документация на трубы райзера, включая узлы соединений:
.1 чертежи секций труб райзера, в том числе с концевыми фитингами (в случае разъемного соединения);
.2 спецификация на поставку труб или технические требования на закупку труб, сертификаты на трубы райзера и протоколы из испытаний;
.3 чертежи соединительных узлов труб райзера и соединения райзера/труб райзера к ПНК/FSPM/МСП и ПДК;
.4 чертежи сварных соединений трубы райзера, включающие разделку кромок под сварку, описание режимов сварки (в случае сварных соединений);
.5 виды и объемы испытаний;
.6 способы и объем неразрушающего контроля;
.7 сведения о транспортируемой среде;
.8 гидравлический расчет трубы райзера в положении равновесия (в положении статической упругой линии) и в положениях максимально допустимых относительных перемещениях верхней и нижней точки райзера по трем линейным степеням свободы (вертикальное перемещение, продольное и поперечное горизонтальные перемещения).

1.5.4 С чертежами и информацией по 1.5.3 необходимо представить следующие расчеты и другую проектную документацию:
.1 проект и руководство по морской операции монтажа райзера;
.2 расчет статического равновесного положения райзера (определение статической упругой линии райзера);
.3 расчет динамики райзера под воздействием течения, волнения и перемещений ПНК/FSPM/МСП, а также реакций со стороны ПДК или донного грунта.
2 РАСЧЕТНЫЕ НАГРУЗКИ

2.1 Расчетные нагрузки на райзеры должны учитывать следующие воздействия:

.1 давление на стенку трубы райзера, вызванное суммарным действием внутреннего давления транспортируемой жидкости или газа и наружным гидростатическим давлением воды;

.2 поперечная нагрузка, вызванная воздействием морского течения, скорость и направление которого в общем случае стратифицировано по глубине;

.3 поперечная нагрузка, вызванная воздействием волнового движения частиц воды (в зависимости от глубины установки райзера и параметров волнения);

.4 температурные нагрузки, вызванные разностью температуры транспортируемой среды в начальной и конечной точках райзера;
5 силы тяжести и силы поддержания всех элементов райзера, в том числе элементов плавучести/пригрузов;

6 реакции связей в узлах присоединения райзера к ПНК/FSPM/MСП, вызванные отклонением ПНК/FSPM/MСП от положения равновесия в результате совместного действия волнения, ветра, поверхностного морского течения и работы систем натяжных связей, динамического или якорного позиционирования;

7 реакции связей в узлах присоединения райзера к ПДК (основанию райзера) или взаимодействия с донным грунтом, в том числе вызванные сейсмическими нагрузками.

2.2 Помимо указанных в 2.1 нагрузок райзер должен быть проверен на воздействие нагрузок, действующих при монтаже и испытаниях райзера. Если не оговорено особо, величина каждого вида расчетной нагрузки должна быть увеличена на коэффициент значимости у в соответствии с табл. 2.1 части I «Морские подводные трубопроводы».

2.3 Расчетное давление на стенку трубы райзера \(p_0 \), МПа, определяется по формуле (2.2.1) части I «Морские подводные трубопроводы», в которой:

внутреннее давление \(p_i \), МПа, определяется гидравлическим расчетом райзера и является переменной по высоте райзера;

величина \(p_{g_{\text{min}}} \), МПа, определяется по формуле (2.2.2) части I «Морские подводные трубопроводы», в которой величину \(d \) следует принимать как минимальное отстояние верхней точки райзера от уровня тихой воды с учетом приливно-отливных явлений и нагонов, определенных с обеспеченностью \(10^{-2} \) 1/год.

2.4 Погонная поперечная нагрузка от морского течения в каждой точке райзера \(F_{c,r} \), Н/м, определяется зависимостью

\[
F_{c,r} = 0.95 \cdot \rho_w \cdot a_{cr} \cdot D_r^2 + 0.7 \cdot \rho_w \cdot (V_{cr} - V_c) \cdot |V_{cr} - V_c| \cdot D_r, \tag{2.4}
\]

где \(D_r \) — наружный диаметр конструкции райзера, м;
\(a_{cr} \) — ускорение точки райзера, вызванное его движением под воздействием течения, м/с²;
\(V_{cr} \) — скорость движения точки райзера, вызванная его движением под воздействием течения, м/с;
\(V_c \) — расчетная скорость течения (с учетом направления) на рассматриваемой глубине, определенная для данного географического района с обеспеченностью \(10^{-2} \) 1/год на основании инженерных изысканий, м/с;
\(\rho_w \) — плотность морской воды, кг/м³.
2.5 Погонная поперечная нагрузка от волнения каждой точке райзера

\[F_{w,r} = 0,8 \cdot c_a \cdot \rho_w \cdot a_{w,r} \cdot D_r^2 + 0,5 \cdot c_x \cdot \rho_w \cdot (V_{w,r} - V_w) \cdot |V_{w,r} - V_w| \cdot D_r, \]

(2.5-1)

где
- \(a_{w,r} \) — ускорение точки райзера, вызванное его движением под воздействием волнения, м/с²;
- \(V_w \) — скорость волнового движения частиц жидкости на рассматриваемой глубине, определенная для данного географического района с обеспеченностю 10⁻³ 1/год на основе инженерных изысканий (см. приложение 5), м/с;
- \(V_{w,r} \) — скорость движения точки райзера, вызванное его движением под воздействием волнения, м/с;
- \(c_a \) и \(c_x \) — коэффициенты инерционного и скоростного сопротивления, определенные по графику на рис. 2.5 в зависимости от числа Кюлегана-Карпентера \(KC \) (см. формулу (2.5-2)).

\[KC = V_w \cdot \tau / D_r, \]

(2.5-2)

где \(\tau \) — период волнения, определенный для данного географического района с обеспеченностю 10⁻³ 1/год на основе инженерных изысканий, с (см. приложение 5).

Рис. 2.5
Зависимости коэффициентов скоростного \(c_x \) (1) и инерционного \(c_a \) (2) сопротивления от числа Кюлегана-Карпентера \(KC \)

168
2.6 Реакции связей в узлах присоединения райзера к ПНК/FSPM/MСП и ПДК (грунтом морского дна) определяются для отклонений ПНК/FSPM/МСП от положения равновесия в результате совместного действия волнения, ветра и поверхностного морского течения с обеспеченностью 10^{-2} 1/год при эффективно функционирующей системе позиционирования.

2.7 Определение расчетных внешних нагрузок райзера должно проводиться для наиболее неблагоприятного их сочетания. Методики назначения расчетных нагрузок, в том числе разработанные на основании национальных и/или международных норм, стандартов и правил, должны быть одобрены Регистром при рассмотрении технической документации на райзеры.

2.8 Разделение расчетных нагрузок на райзеры в зависимости от физических явлений, определяющих их возникновение, должно соответствовать 2.1.2 – 2.1.6 части I «Морские подводные трубопроводы».

3 ТРЕБОВАНИЯ К ОПРЕДЕЛЕНИЮ ДИНАМИЧЕСКОГО ОТКЛИКА РАЙЗЕРА НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ И НАГРУЗКИ

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Анализ прочности райзера должен состоять из следующих этапов:
.1 определение статической упругой линии райзера в состоянии равновесия;
.2 определение динамического отклика добычного райзера при воздействии течения, волнения, а также реакций взаимодействия со стороны ПДК (или донного грунта) и со стороны ПНК/FSPM/MСП при их перемещениях;
.3 проверка критериев локальной прочности и устойчивости в каждой точке райзера.

3.2 ОПРЕДЕЛЕНИЕ СТАТИЧЕСКОЙ УПРУГОЙ ЛИНИИ РАЙЗЕРА

3.2.1 Определение статической упругой линии райзера должно проводиться по методике, одобренной Регистром, с использованием численных методов.

3.2.2 На первом этапе расчетов толщина стенки трубы райзера \(t_r \), мм, определяется как:
.1 для металлической трубы райзера

\[
 t_r = \frac{P_0 \cdot D_r}{2 \cdot R_e} + c_1, \tag{3.2.2}
\]
где \(p_0 \) – расчетное давление в трубе райзера в соответствии с 2.3, МПа;
\(D_r \) – наружный диаметр трубы райзера, мм;
\(R_s \) – минимальный предел текучести металла трубы райзера, МПа;
\(c_i \) – прибавка на коррозию, которая определяется как:
\[c_i = 0.2 \cdot T \quad \text{для стальных труб райзеров, мм;} \]
где \(T \) – планируемый срок службы райзера, лет;
\[c_i = 0 \quad \text{для труб райзеров из титановых и алюминиевых сплавов.} \]

2. Толщина стенки райзера из ПКМ определяется в соответствии разд. 2 приложения 9.

3.2.3 Расчет статической упругой линии райзера проводится с учетом действия следующих сил:
- силы тяжести;
- силы плавучести;
- температурных нагрузок;
- реакций связей в узлах присоединения райзера к ПДК или взаимодействия с донным грунтом;
- реакций связей в узлах присоединения райзера к ПНК/FSPM/МСП при их положении на тихой воде.

3.2.4 Силы тяжести и плавучести вычисляются отдельно для основной трубы райзера, пригрузов, плавучостей и других элементов райзерной системы с учетом массы и объема этих элементов. В расчетах статической упругой линии используются следующие обобщенные жесткости для металлических труб райзеров:

\[
C_L = 0.78 \cdot E \cdot (D_r^2 - D_{int, r}^2) \quad \text{– продольная жесткость; (3.2.4-1)}
\]
\[
C_B = 0.05 \cdot E \cdot (D_r^2 - D_{int, r}^2) \quad \text{– изгибная жесткость; (3.2.4-2)}
\]
\[
C_T = 0.1 \cdot E \cdot (D_r^2 - D_{int, r}^2) \quad \text{– крутильная жесткость, (3.2.4-3)}
\]

где \(E \) – модуль нормальной упругости материала труб райзера, МПа;
\(D_r \) – наружный диаметр трубы райзера, м;
\(D_{int, r} \) – внутренний диаметр райзера, м.

Соответствующие обобщенные жесткости для композитных райзеров приведены в 1.1.6 приложения 9.

3.2.5 Статический расчет упругой линии проводится с использованием численных методов с учетом больших перемещений (геометрической нелинейности). Толщина стенки трубы райзера, параметры элементов плавуче
сти, пригрузов и других элементов райзерной системы подбираются таким образом, чтобы все участки по длине райзера находились в состоянии растяжения во избежание общей потери устойчивости трубы райзера.

3.3 ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОГО ОТКЛИКА

3.3.1 Определение динамического отклика райзера проводится по методике, одобренной Регистром, с использованием численных методов. За исходное положение райзера принимается его статическая упругая линия. В динамическом расчете учитываются следующие внешние силы:

- силы тяжести (аналогично расчету статической упругой линии) и присоединенные массы воды;
- силы плавучести (аналогично расчету статической упругой линии);
- температурные нагрузки (аналогично расчету статической упругой линии);
- гидродинамические силы от течения, в том числе вихревая вибрация;
- гидродинамические силы от волнового движения жидкости;
- реакции связей в узлах присоединения райзера к ПДК или взаимодействия с донным грунтом;
- реакции связей в узлах присоединения райзера к ПНК/FSPM/MCT, вызванные отклонением ПНК/FSPM/MCT от положения равновесия в результате совместного действия волнения, ветра, поверхностного морского течения и работы систем натяжных связей, динамического или якорного позиционирования.

3.3.2 При рассмотрении взаимодействия райзера с ПНК/FSPM/MCT должно учитываться наличие натяжителей и/или компенсаторов вертикальных перемещений, а также режим движения транспортируемой среды по трубе райзера.

3.3.3 Рекомендуется применение методики трехмерного математического моделирования совместной динамики райзерной системы и ПНК/FSPM/MCT. Результатом должны являться суммарные максимальные значения внутренних усилий в каждой точке райзера, а именно: осевой силы, изгибающих и крутящих моментов.

3.3.4 Толщина стенки трубы райзера должна быть такова, чтобы во всех случаях динамического расчета выполнялись следующие условия:

1. отсутствие общей потери устойчивости трубы райзера;
2. выполнение требования к максимальным напряжениям:

\[\sigma_{\text{max}} \leq 0.5 \cdot R_e \]

(3.3.4)
где σ_{max} — максимальные напряжения по Мизесу (для металлических труб райзеров);

3 выполненiе требований по локальной устойчивости трубы райзера:
для металлических труб райзеров в соответствии с 3.4.2 части I «Морские подводные трубопроводы» при коэффициенте запаса $n_c = 2,0$;
для труб райзеров из ПКМ — см. разд. 4 приложения 9;
для полимерно-металлических труб райзеров — см. 3.8 части I «Морские подводные трубопроводы».

4 выполненiе требований по усталостной прочности сварных соединений (для металлических труб райзеров).

3.4 КРИТЕРИИ ЛОКАЛЬНОЙ ПРОЧНОСТИ ТРУБ РАЙЗЕРА

3.4.1 Металлическая труба райзера.
По результирующим значениям внутренних усилий проверяется локальный критерий прочности для металлических труб райзеров в виде максимальных эквивалентных напряжений σ_{max}, МПа

$$\sigma_{\text{max}} = 0,7 \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}, \quad (3.4.1)$$

где $\sigma_1, \sigma_2, \sigma_3$ — главные напряжения, МПа.

При этом должно выполняться условие (3.3.4).

3.4.2 Трубы райзера из ПКМ.
Требования к критериям локальной прочности труб райзера из ПКМ должны соответствовать разд. 1 приложения 9.

3.4.3 Полимерно-металлические трубы райзера.
Требования к критериям локальной прочности полимерно-металлических труб райзера должны соответствовать 3.8 части I «Морские подводные трубопроводы».

4 МАТЕРИАЛЫ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

4.1.1 Материалы и изделия, применяемые при изготовлении и монтаже райзеров и/или райзерных систем, подлежат освидетельствованию Реgi-
стро. Общие положения, определяющие объем и порядок осуществления технического наблюдения за материалами, изложены в разд. 5 части I «Общие положения по техническому наблюдению» Правил технического наблюдения за постройкой судов, изготовлением материалов и изделий для судов и разд. 1 части XIII «Материалы» Правил классификации и постройки морских судов.

4.1.2 Материалы для металлических труб райзеров, подлежащие техническому наблюдению Регистра, должны изготавливаться признанными Регистром предприятиями, имеющими Свидетельство о признании изготовителя (СПИ, ф. 7.1.4.1).

4.1.3 Трубы районеров из ПКМ и полимерно-металлические трубы райзеров должны быть одобрены Регистром с оформлением Свидетельства о типовом одобрении (СТО, ф. 6.8.3).

4.1.4 Технологические требования к материалам и изделиям, содержащие достаточную информацию, необходимую для заказа, изготовления и приемки продукции, должны быть представлены в Регистр для одобрения в виде спецификаций/технических требований в составе технической документации на райзеры (см. 1.5.3).

4.1.5 Общие требования к освидетельствованиям и техническому наблюдению Регистра за материалами труб райзеров должны соответствовать 4.2.1 и 4.2.2 части I «Морские подводные трубопроводы».

4.2 МЕТАЛЛИЧЕСКИЕ ТРУБЫ РАЙЗЕРОВ

4.2.1 Стальные трубы райзеров должны удовлетворять требованиям 4.5 части I «Морские подводные трубопроводы».

4.2.2 Трубы райзеров из других металлов и сплавов (алюминиевые и титановые сплавы) являются предметом специального рассмотрения Регистром.

4.3 ТРУБЫ РАЙЗЕРОВ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

4.3.1 Термины и определения.
Дополнительно к 1.2 вводятся следующие термины и определения для труб из полимерных композиционных материалов:

Армирующий материал — элемент слоя полимерного композиционного материала (ткань, лента, ровинг, волокно и т. д.), предназначенный для обеспечения его жесткости и прочности.
Лейнер — герметичный (как правило, металлический) слой трубы композитного райзера, контактирующий с транспортируемой средой.

Матрица — отверженный полимер, обеспечивающий совместность работы армирующих слоев полимерного композиционного материала.

Ортотропия — частный случай анизотропии, характеризующийся существованием трех взаимно перпендикулярных плоскостей симметрии материала.

Расслоение — потеря связи между слоями, входящими в состав слоистого полимерного композиционного материала.

Слой — основной структурный элемент полимерного композиционного материала, представляющий собой один слой армирующего материала, пропитанный связующим и отверженный.

Структура армирования — последовательность ориентации армирующих слоев в силовой оболочке из ПКМ относительно продольной оси секции трубы композитного райзера.

4.3.2 Общие положения.

4.3.2.1 Выбор материалов должен осуществляться на этапе проектирования конструкции трубы райзера из ПКМ, исходя из необходимости обеспечения ее герметичности, надежности и долговечности с учетом возможного изменения условий эксплуатации, свойств материалов на протяжении расчетного срока эксплуатации и режимов эксплуатации райзера, в том числе на предварительных этапах хранения, транспортировки и установки райзера.

4.3.2.2 Силовая оболочка трубы райзера должна изготавливаться из слоев ПКМ, которые должны обеспечивать конструктивно-технологическую прочность для транспортировки сред с заданными параметрами при действии расчетных нагрузок.

Герметичный внутренний лейнер и концевые фитинги должны изготавливаться из сталей, удовлетворяющих требованиям 4.5 части I «Морские подводные трубопроводы».

4.3.2.3 Все материалы, используемые в конструкции райзера из ПКМ, должны быть сертифицированы для применения в соответствующих окружающей (морская вода) и транспортируемой (природный газ, нефть и т. д.) средах в диапазоне рабочих давлений и температур.

4.3.2.4 Назначение срока службы райзера из ПКМ должно учитывать деградацию механических свойств материала в процессе многолетней эксплуатации райзеров.

174
4.3.3 Полимерные композиционные материалы.
4.3.3.1 Номенклатура контролируемых Регистром технологических ха­рактеристик процесса изготовления силовой оболочки трубы райзера, уста­навливается исходя из следующего состава параметров:

1. состав материала:
марка и тип армирующего материала (волокно, ровинг, лента, ткань);
тип переплетения ткани;
тип связующего (эпоксидное, полизэфирное и т. д.);
марка связующего;

2. технологические характеристики:
метод изготовления;
температура отверждения;
давление при отверждении;
режим отверждения;
метод контроля ориентации армирующего материала;
метод контроля массового/объемного содержания армирующего материала.

4.3.3.2 Номенклатура контролируемых Регистром характеристик слоев ПКМ, применяемых при изготовлении силовой оболочки трубы райзера, устанавливается исходя из следующего состава параметров:

1. механические характеристики:
модули упругости в направлении осей 1, 2 и 3;
модуль сдвига в плоскости армирования;
модули межслойного сдвига в плоскостях 1-3 и 2-3;
коэффициенты Пуассона в плоскостях 1-2, 1-3 и 2-3;
пределы прочности при растяжении в направлении осей 1, 2 и 3;
пределы прочности при сжатии в направлении осей 1, 2 и 3;
предел прочности при сдвиге в плоскости армирования;
пределы прочности при межслойном сдвиге в плоскостях 1-3 и 2-3;
коэффициент взаимного влияния компонентов нормальных напряжений;

2. физические характеристики:
плотность;
линейные коэффициенты температурного расширения в направлении осей 1, 2 и 3;
коэффициенты, учитывающие влияние влаги на свойства слоя ПКМ в направлении осей 1, 2 и 3;

3. Другие характеристики:
химическое сопротивление к воздействию окружающей и транспорти­руемой сред;
старение;
ползучесть;
долговечность;
допустимые дефекты.
4.3.4 Испытания труб райзеров из ПКМ.
4.3.4.1 Испытания труб райзеров из ПКМ выполняются в объеме:
tиповых испытаний при освидетельствовании Регистром предприятия-
изготовителя на предмет оформления Свидетельства о типовом одобрении
(СТО, ф. 6.8.3);
испытаний в процессе производства труб райзеров из ПКМ.
4.3.4.2 Типовые испытания труб райзеров из ПКМ.
4.3.4.2.1 Типовые испытания райзеров из ПКМ проводятся по программе,
одобренной Регистром. Программа должна быть составлена на основании
требований настоящего раздела, национальных и/или международных
стандартов.
4.3.4.2.2 Типовые испытания проводятся в целях подтверждения основных
расчетных параметров райзеров определенного типоразмерного ряда,
диапазон которого должен быть установлен, исходя из следующего:
внутреннего/внешнего диаметра;
количество и ориентации слоев ПКМ;
марки армирующего материала;
марки связующего;
метода изготовления;
температуры отверждения;
давления при отверждении;
режима отверждения;
конструкции лейнера;
внутренней/внешней температуры среды;
условий и срока эксплуатации.
4.3.4.2.3 Каждый тип трубы райзеров из ПКМ должен пройти типовые
испытания, которые, как правило, проводятся до разрушения образцов и
должны состоять как минимум из следующих испытаний на:
разрыв внутренним давлением;
устойчивость под действием гидростатического давления;
разрыв растягивающей нагрузкой;
сопротивление кручению.
4.3.4.2.4 От каждого типа трубы райзеров из ПКМ отбирается по три об-
разца на каждый вид типовых испытаний.
4.3.4.3 Испытания в процессе производства труб райзеров из ПКМ.
4.3.4.3.1 Испытания в процессе производства труб райзеров из ПКМ выполняются в соответствии с требованиями настоящего раздела по одобренной Регистром программе, разработанной на основании национальных и/или международных стандартов.
4.3.4.3.2 Каждый райзер из ПКМ после изготовления должен проходить как минимум:
испытание на калибровку внутренней полости;
дефектоскопию для определения площади внутренних дефектов;
испытание на гидростатическое внутреннее давление.

4.4 ПОЛИМЕРНО-МЕТАЛЛИЧЕСКИЕ ТРУБЫ РАЙЗЕРОВ

4.4.1 Термины и определения, относящиеся к полимерно-металлическим трубам райзеров, приводятся в 3.8 части I «Морские подводные трубопроводы».
4.4.2 Полимерно-металлические трубы райзеров и их соединительные элементы должны удовлетворять требованиям 4.6 части I «Морские подводные трубопроводы».
4.4.3 Требования к испытаниям полимерно-металлических труб райзеров должны соответствовать 4.2.4 части I «Морские подводные трубопроводы».

5 ЗАЩИТА ОТ КОРРОЗИИ

5.1 Требования к защите от внешней коррозии металлических труб райзеров, а также металлических соединительных элементов (концевых фитингов) полимерно-металлических труб и труб райзеров из ПКМ должны соответствовать разд. 7 части I «Морские подводные трубопроводы» в той части, насколько это применимо.
5.2 Для стальных труб райзеров и металлических компонентов полимерно-металлических труб (соединительные концевые фитинги и каркас), транспортирующих коррозионно-активные среды, необходимо предусматривать меры, указанные в 7.2 части I «Морские подводные трубопроводы».
6 ПОСТРОЙКА, МОНТАЖ И ИСПЫТАНИЯ РАЙЗЕРОВ

6.1 Перед постройкой и монтажом райзера/райзерной системы Регистром должна быть рассмотрена и одобрена техническая документация, указанная в 1.5.2 – 1.5.8, а также должна быть одобрена Регистром конструкторско-технологическая документация на следующее:

.1 предварительную сборку (изготовление) трубы райзера/секции трубы райзера;
.2 изготовление элементов плавучести, пригрузов и основания райзера (при этом следует учитывать 1.1.9);
.3 хранение, транспортировку и погрузку/разгрузку элементов райзера, указанных в 6.1.1 и 6.1.2;
.4 этапы предварительной сборки (изготовления) райзерной системы в целом, в том числе для гибридных и пакетных райзеров;
.5 требования к монтажу райзера/райзерной системы и подсоединение к системам и устройствам ПНК/FSPM/MСП и ПДК.

6.2 Объем и порядок технического наблюдения Регистра устанавливается перечнем объектов технического наблюдения за райзераами при постройке и монтаже, который разрабатывается предприятием и одобряется подразделением Регистра, осуществляющим техническое наблюдение. Перечень (или иной другой документ его заменяющий: инспекционно-проверочный план, план качества и т.д.) составляется на основании одобренной Регистром проектной и технологической документации и учетом Номенклатуры объектов технического наблюдения Регистра за МПТ и райзерами (см. 1.6 Руководства МПТ).

6.3 Для трубы райзера должна быть установлена запорная арматура, как на соответствующем элементе ПДК, так и на ПНК/FSPM/MСП.

6.4 При использовании стальных труб райзеров требования к выполнению сварных соединений должны соответствовать разд. 5 части I «Морские подводные трубопроводы».

6.5 Монтаж и испытания райзеров должны проводиться с учетом выводов и рекомендаций, которые получены по результатам анализа рисков этих процессов, выполненных на основании разд. 10 части I «Морские подводные трубопроводы».

6.6 В процессе проектирования райзерной системы для предотвращения появления и развития недопустимых деформаций изгиба необходимо предусматривать мероприятия по поддержанию в трубе райзера необходимого осевого растягивающего усилия.
6.7 Проект и руководство по морской операции монтажа райзера/райзерной системы на точке эксплуатации являются предметом специального рассмотрения Регистром. Морские операции по доставке элементов райзера/райзерной системы на точку монтажа должны соответствовать Правилам разработки и проведения морских операций.

6.8 Испытания райзера давлением следует проводить после его полного монтажа и соединения с системами и устройствами ПНК/FSPM/МСП и ПДК. При изготовлении трубы райзера на стадии предварительного изготовления по согласованию с Регистром допускается проводить ее гидравлические испытания на прочность до монтажа райзера.

6.9 Испытания давлением райзеров, предназначенных для транспортировки жидких сред, проводятся гидравлическим способом. Испытания райзеров для транспортировки газообразных сред проводятся, исходя из условий:

- испытания на прочность проводятся гидравлическим способом;
- испытания на герметичность проводятся гидравлическим способом, допускается замена на пневматический способ.

6.10 Испытания давлением проводятся по программе, одобренной Регистром. Программа должна содержать:

- метод и скорость создания избыточного давления;
- описание и схему расположения измерительного оборудования;
- метод и скорость снятия давления;
- метод обезвоживания и осушки;
- противоаварийные меры и меры безопасности.

6.11 Гидравлические испытания на прочность трубы райзера должны проводиться пробным давлением, равным не менее 1,25 рабочего давления. При испытаниях трубы райзера после монтажа с Регистром должны быть согласованы максимально допустимые величины внешних воздействий на райзер, получаемые им в процессе испытаний (волниение, течение, перемещения узлов присоединения райзера к ПНК/FSPM/МСП). Время выдержки испытательного давления должно быть не менее 12 часов.

6.12 При гидравлических испытаниях на прочность суммарные напряжения в стальной трубе райзера не должны превышать 0,95 от предела текучести металла труб. Требования к прочности полимерно-металлическим трубам райзера и трубам райзера из ПКМ в процессе гидравлических испытаний на прочность должны соответствовать 3.8 части I «Морские подводные трубопроводы» и приложения 9.
6.13 Испытание на герметичность проводят после испытания на прочность при испытательном давлении равном 1,1 рабочего. Время выдержки 12 часов. Райзер считается выдержавшим испытание на герметичность, если за период испытаний не обнаружены утечки, а изменение давления не превышает ± 0,2 % при контроле давления и температуры каждые 15 мин.

6.14 При выполнении требований настоящей части и по итогам положительных результатов всех освидетельствований, предусмотренных перечнем объектов технического наблюдения (см. 6.2), в соответствии с 1.3 райзеру/райзерной системе присваивается класс Регистра, означающий взятие райзера/райзерной системы под техническое наблюдение Регистра.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ РАЙЗЕРОВ

7.1 ОБЩИЕ ПОЛОЖЕНИЯ

7.1.1 Общие требования по техническому обслуживанию райзеров в эксплуатации должны соответствовать 9.1.1 части I «Морские подводные трубопроводы» в той степени насколько это применимо.

7.1.2 Владелец/оператор подводной трубопроводной транспортной системы, включающей райзеры, устанавливает порядок осмотров, обследований и регламент технического обслуживания райзеров с указанием периодичности и состава его выполнения, включая объем начальных, периодических, специальных осмотров и обследований, способы их проведения (внутритрубная диагностика, измерение внешних дефектов и т. д.) и допускаемые размеры дефектов. Рекомендуется гармонизировать систему осмотров и обследований владельца райзера с системой периодических освидетельствований Регистра (см. 7.2.1), при этом следует учитывать наличие в составе оборудования месторождения других объектов в классе Регистра, требующих аналогичных освидетельствований.

7.1.3 Документ, отражающий указанные в 7.1.2 положения (регламент технической эксплуатации, стандарт предприятия и т. д.) представляется в Регистр на рассмотрение до принятия райзера/райзерной системы в эксплуатацию.

7.1.4 Общие требования к периодическим осмотрам и обследованиям райзеров должны соответствовать 9.1.3 и 9.1.4 части I «Морские подводные трубопроводы» в той степени насколько это применимо.
7.2 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА РАЙЗЕРАМИ В ЭКСПЛУАТАЦИИ

7.2.1 Техническая эксплуатация райзеров, находящихся в классе Регистра, должна осуществляться под техническим наблюдением Регистра в форме периодических освидетельствований. В качестве общих требований к проведению освидетельствований райзеров Регистром могут быть применены 1.4.3.2 – 1.4.3.4 и 1.4.4 части I «Морские подводные трубопроводы».

7.2.2 Освидетельствования Регистра в целях оценки технического состояния и обеспечения дальнейшей безопасной эксплуатации райзера, а также для планирования его технического обслуживания, должны предусматривать:

1. подводные и надводные (при наличии участков райзера выше уровня воды) внешние освидетельствования, включающие контроль:
 • общего состояния конструкций, систем, оборудования и устройств райзера/райзерной системы;
 • труб и шлангокабелей райзера;
 • узлов соединения райзера с элементами ПДК и ПНК/FSPM/МСП, в том числе натяжных устройств, компенсаторов угловых и вертикальных перемещений, на турелях или погружных буях;
 • состояния антикоррозионных покрытий и средств катодной/протекторной защиты;
 • состояния элементов плавучести/пригрузов и узлов их крепления;
2. внутритрубную диагностику и/или внешний неразрушающий контроль трубы райзера, соединительных элементов и концевых фитингов;
3. измерение толщин трубы райзера и других конструкций и устройств (например, блока плавучести);
4. измерение толщин антикоррозионных покрытий и определение мест повреждения антикоррозионных и изоляционных покрытий;
5. измерение катодного потенциала металлических элементов райзера, защищаемых от электрохимической коррозии;
6. освидетельствования и проверки шлангокабелей, систем автоматизации и сигнализации;
7. освидетельствования арматуры (может выполняться при освидетельствованиях ПДК и ПНК/FSPM/МСП при установке арматуры на этих объектах).

7.2.3 Гидравлические испытания труб райзеров могут проводиться по требованию Регистра при не выполнении (или не полном выполнении) освидетельствований, указанных в 7.2.2.2 и 7.2.2.3, или после завершения срока эксплуатации райзера, принятого в проекте.
7.2.4 Освидетельствование узлов соединения райзера с элементами ПДК и ПНК/FSPM/МСП по согласованию с Регистром может выполняться в процессе периодических освидетельствований собственно ПНК/FSPM/МСП (в том числе турелей и погружных буев), и ПДК (в том числе оснований райзера и узлов соединения с элементами ПДК).

7.2.5 Периодичность указанных в 7.2.2 освидетельствований Регистра должна основываться на принятой в 1.4.4 части I «Морские подводные трубопроводы» и составлять для:

- надводной части райзеров/райзерной системы – 1 год;
- подводной части райзеров/райзерной системы – 2 года;
- катодной/протекторной защиты – от 3 до 5 лет;
- внутритрубной диагностики и/или неразрушающего контроля – по согласованию с Регистром, но не более 3 лет.

7.2.6 Подводные инспектирования и освидетельствования райзера/райзерной системы проводятся при помощи водолазов или телеуправляемыми/автономными необитаемыми подводными аппаратами.

7.2.7 Освидетельствования, указанные в 7.2.2, проводятся с участием признанных Регистром предприятий, имеющих Свидетельство о признании (СП, ф. 7.1.4.2).

7.2.8 Выявленные по результатам освидетельствований дефекты элементов райзеров/райзерной системы должны быть проверены на соответствие допустимым величинам дефектов на основании одобренного Регистром регламента (см. 7.1.3) или признанных Регистром стандартов, норм и правил.

7.2.9 В рамках периодических освидетельствований Регистром также должны быть одобрены подготовленные владельцем/оператором следующие расчеты:

- допустимости для дальнейшей эксплуатации выявленной минимальной толщины стенки трубы райзера;
- оценки скорости коррозионного износа трубы райзера;
- остаточного ресурса эксплуатации трубы райзера;
- допустимой величины рабочего давления,
- а также план мероприятий, обеспечивающих дальнейшую безопасную эксплуатацию райзера.

7.2.10 По результатам проведенных освидетельствований Регистром оформляются акты установленной формы, на основании которых при положительных результатах освидетельствований присваивается/подтверждается класс райзера.
7.2.11 После воздействия на райзер случайных (аварийных) нагрузок под техническим наблюдением Регистра должно быть проведено внеочередное освидетельствование, по результатам которого на одобрение Регистру должны быть предоставлены документы, указанные в 7.2.8 и 7.2.9. Принимаемые владельцем/оператором меры по итогам обследования для дальнейшей эксплуатации должны быть согласованы с Регистром.

7.3 РЕМОНТ РАЙЗЕРОВ

7.3.1 Конструкторско-технологическая документация на проведение плановых ремонтов или ремонтов после воздействия случайных (аварийных) нагрузок должна быть одобрена Регистром.

7.3.2 Ремонтные работы для райзеров должны проводиться под техническим наблюдением Регистра на основании одобренной технической документации, учитывающей в том числе результаты последних освидетельствований в соответствии с 7.2.2.

7.3.3 Должно быть произведено обязательное освидетельствование Регистром отремонтированных участков райзера в рамках ближайшего следующего периодического освидетельствования.

7.3.4 По завершении ремонта владельцем/оператором должны быть подготовлены и одобрены Регистром документы, подтверждающие безопасную эксплуатацию райзера/райзерной системы (см. 7.2.9).
ПРИЛОЖЕНИЕ 1

РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ НАДЕЖНОСТИ И БЕЗОПАСНОСТИ ПОДВОДНЫХ ТРУБОПРОВОДОВ НА МОРСКОМ ГРУНТЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 При существующем уровне технического развития подводного трубопроводного транспорта невозможно исключить вероятность его повреждений в процессе строительства и эксплуатации по различным причинам. К основным из них можно отнести:

вibration и перемещение трубопроводов под действием гидродинамических факторов;
механические повреждения трубопроводов и их покрытий якорями, травами, волокушами, килями судов, ледовыми образованиями и др.;
внешнюю и внутреннюю коррозию (см. разд. 7 части I «Морские подводные трубопроводы»);
неудовлетворительную балластировку трубопровода (см. разд. 6 части I «Морские подводные трубопроводы»);
дефекты сварки основного материала трубопровода (см. разд. 5 части I «Морские подводные трубопроводы»);
потерю устойчивости подводного трубопровода (см. разд. 3 части I «Морские подводные трубопроводы»);
провисание трубопровода в районе размыва донного грунта;
недостаточный контроль состояния подводных трубопроводов при строительстве и эксплуатации (см. разд. 9 части I «Морские подводные трубопроводы»).

Основными видами повреждений подводных трубопроводов являются разрывы и трещины по основному металлу трубы и по сварному шву, сквозные коррозионные свищи, неплотности соединений, утонение стенки трубы до недопустимых пределов в местах истирания о грунт, интенсивные коррозионные износы, вмятины, нарушения сплошности защитных покрытий и др. Наихудшими последствиями повреждений подводных трубопроводов являются утечки и аварийные выливы из них нефти и нефтепродуктов, конденсата, газов и сжиженных газов при нарушении герметичности.
1.2 Размывы грунта под трубопроводом могут быть обусловлены эрозионными процессами, вызванными действием волн и течений, литодинамическими процессами переформирования дна, что приводит к провисанию трубопроводов на участках значительной протяженности. По тем же причинам возможно обратное явление – занос трубопроводов, уложенных поверх дна или в траншею без засыпки. Под влиянием размыва песчаного (подвижного) грунта осадка трубопровода со временем может увеличиваться, произойдет самозаглубление трубопровода в морское дно и повышение его устойчивости в грунте.

На плотном жестком или скалистом грунте подводные течения могут привести к поперецному перемещению трубопровода и к дополнительным изгибным напряжениям.

Обтекание трубопровода, уложенного поверх дна, создает зону пониженного давления за трубопроводом (по направлению течения). За счет перепада давления происходит активизация процессов размыва грунта в районе укладки трубопровода.

1.3 На участке, где грунт под трубопроводом разыт, последний испытывает значительные по величине статические напряжения от действия внутреннего давления, собственного веса, силы лобового сопротивления потоку, гидростатического давления и динамические напряжения от знакопеременных гидродинамических сил, вызывающих колебания (вибрацию) трубопровода.

1.4 Одной из причин размывов дна в районе прокладки трубопроводов может служить воздействие мощных потоков воды от работающего движителя судов на мелководье. Опасность такого воздействия возрастает с уменьшением запасов глубины под днищем судна и увеличением мощности судового движителя.

1.5 Значительную опасность для подводных трубопроводов, особенно на мелководных участках, и в районах со значительным колебанием уровня воды, представляют механические повреждения трубопроводов и их покрытий якорями, килями судов, тралами, волокушами, ледовыми образованиями и другими объектами.

1.6 В регионах, акватории которых значительное время года покрыты льдом, наибольшую опасность для подводных трубопроводов представляют ледовые образования. Они отличаются большим разнообразием, изменчивостью свойств и могут существовать в любых проявлениях: ровный лед, лед с шугой под ним, торося, стамухи, айсберги. Разные виды ледовых образований оказывают разное влияние на конструкции трубопроводов при монтаже и в эксплуатации.
По максимальной толщине припайного и дрейфующего ровного льда ледовые образования можно разделить на четыре категории: легкие — до 30 см, средние — до 100 см, тяжелые — до 200 см и очень тяжелые — более 200 см. Тогда все перспективные на нефтегазоносность акватории морей России можно разделить на пять категорий (табл. 1). Следует отметить, что ледяные поля ровной толщины в российских морях наблюдаются далеко не всюду.

<table>
<thead>
<tr>
<th>Акватория</th>
<th>Каспийское, Балтийское моря, Азовско-Черноморский бассейн, юго-западный шельф о. Сахалин</th>
<th>Юго-западная часть Баренцева моря</th>
<th>Юго-восточная часть Баренцева моря, северо-восточный шельф о. Сахалин</th>
<th>Прибрежное мелководье Карского моря</th>
<th>Шельф Карского моря</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубины моря, м</td>
<td>30 – 200</td>
<td>70 – 330</td>
<td>15 – 100</td>
<td>0 – 10</td>
<td>50 – 150</td>
</tr>
<tr>
<td>Ледовые условия</td>
<td>Легкие</td>
<td>Легкие, средние</td>
<td>Средние, тяжелые</td>
<td>Очень тяжелые</td>
<td>Очень тяжелые</td>
</tr>
<tr>
<td>Средняя продолжительность ледового периода, мес.</td>
<td>0 – 2</td>
<td>0 – 2</td>
<td>3 – 9</td>
<td>9 – 10</td>
<td>9 – 10</td>
</tr>
</tbody>
</table>

Анализ сезонной изменчивости кинематических и морфологических параметров ледяного покрова акваторий месторождений нефти и газа арктических и дальневосточных морей России показывает отсутствие их аналогов в мировой практике.

1.7 Среди динамических явлений, имеющих место в морском ледяном покрове, особое место занимает дрейф крупных ледовых образований, которые при взаимодействии с морским дном могут привести к его экзарации. Вероятность экзарации морского дна ледовыми образованиями, возможность появления концентрированных дополнительных нагрузок на подводные трубопроводы от стамух и осевших на грунт айсбергов могут оказать определяющее влияние на выбор трасс трубопроводов, их конструкцию, величину заглубления в морское дно, сезонные сроки ведения монтажных работ, а главное — на безопасность постройки и эксплуатации.
1.8 Неординарный процесс представляет собой явление размыва морского дна воронками талых вод. Воронки размыва представляют собой кратеры, сформированные на мелководных участках дна. Речные и тальные воды, стекающие весной при таянии снега на поверхность припай, через имеющиеся промоины проникают под лед и устремляются с большой скоростью вниз по вертикали. За счет сил инерции и гравитации потоки этих вод закручиваются и размывают воронки в дне моря глубиной в несколько метров.

Сами по себе воронки размыва опасности для подводного трубопровода не представляют, но оголяя трубопровод, они способствуют опасному провисанию и создают условия уязвимости трубопровода со стороны ледовых киелей торосов и стамух, а при наличии открытых вод — якорей и других объектов.

1.9 Значительные площади арктических морей находятся под мерзлыми грунтами с различными геокриологическими условиями. При прокладке в этих грунтах трубопроводов, транспортирующих углеводороды при температуре, превышающей температуру окружающих мерзлых грунтов, последние начинают оттаявать и оседать. Это может привести к оголению трубопровода, сопровождающемуся возникновением дополнительных напряжений в трубе и других сопутствующих отрицательных явлений.

Для противостояния перечисленным негативным явлениям выбору величины заглубления трубопровода в мерзлый грунт должно предшествовать четкое технико-экономическое обоснование, а также должны быть приняты дополнительные защитные меры. К таким мерам, например, можно отнести применение труб с мощной теплоизоляцией (толщиной в несколько сантиметров), закрытой защитным металлическим кожухом. При относительно небольшой протяженности участков с мерзлыми просадочными грунтами возможно рассмотрение варианта инженерной защиты трубопровода, предусматривающего совмещение в одной траншее прокладки основного трубопровода и сопутствующего трубопровода — спутника малого диаметра, имеющего отрицательную температуру.

1.10 В регионах с повышенной сейсмической активностью могут происходить сдвиговые явления грунта, особенно по наклонным слоям, образуя деформации поверхности дна. Образование цунами может также привести к большим размывам дна и увеличению гидростатического давления на трубы. Поэтому при выборе трассы трубопровода необходимо проводить анализ геологического строения грунтового основания и геодинамических рисков.
2 ЗАЩИТА ПОДВОДНЫХ ТРУБОПРОВОДОВ ОТ ГИДРОДИНАМИЧЕСКИХ И МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ

2.1 Общие требования

2.1.1 Для обеспечения защиты подводных трубопроводов от повреждения, их бесперебойной и безопасной работы возможно применение различных способов, большинство из которых необходимо проработать еще на стадиях предэскизного и эскизного проектирования. К ним можно отнести: резервирование, введение ограничений на минимально допустимое расстояние между параллельно прокладываемыми нитями трубопроводов, укладку в траншею с последующей засыпкой, укрепление дна в мелководных, прибойных зонах и берегоукрепление в районе переходного участка трубопровода, подверженного наибольшему волновому воздействию.

2.2 Резервирование

2.2.1 Для обеспечения надежности транспортной системы допускается резервирование подводного трубопровода путем прокладки резервной нитки параллельно основной. Целесообразность резервирования должна быть подтверждена соответствующим технико-экономическим обоснованием.

2.3 Расстояние между параллельными нитками трубопроводов

2.3.1 Правильный выбор расстояния между параллельно проложенными трубопроводами в значительной степени обеспечивает безопасность эксплуатации подводного трубопровода и бесперебойность транспортировки рабочих сред. Расстояние между параллельными нитками трубопроводов определяется, исходя из условий, при которых авария или катастрофа одного трубопровода не приводит к выходу из строя ближайшего параллельно идущего другого трубопровода.

2.3.2 В общем случае, расстояние между параллельными нитями подводных трубопроводов следует назначать, исходя из инженерных геологических и гидрологических условий, режимов работы по оборудованию подводных траншей (если предусмотрены), удобства укладки в них трубопроводов, сохранности прокладываемого трубопровода в случае аварии на параллельно уложенном трубопроводе. В любом случае, минимальное расстояние между параллельными нитями подводных трубопроводов должно составлять:

- для газопроводов, заглубляемых в морское дно:
 - 30 м – при диаметрах до 1000 мм включительно;
 - 50 м – при диаметрах более 1000 мм;

- для газопроводов, проложенных поверх морского дна:
 - 100 м – при всех значениях диаметров.
Для нефте- и нефтепродуктопроводов эти расстояния могут быть такие же, как и для газопроводов, а при достаточном обосновании и с согласия Регистра они могут быть уменьшены.

2.4 Заглубление трубопроводов в траншею с последующей засыпкой

2.4.1 Эффективной мерой защиты подводного трубопровода от разрушающего воздействия волн, течений, штормов, ледовых образований, механических повреждений якорями, тралами, волокушами и т. п. является заглубление его в траншею с последующей засыпкой. Это весьма трудоемкое и дорогостоящее мероприятие, связанное с проведением большого объема подводных земляных работ.

2.4.2 Необходимость и степень заглубления трубопровода определяются гидрогеологическими условиями региона, вероятностью повреждения трубопровода в результате внешних и внутренних воздействий, экономическими соображениями.

На мелководье, особенно при вероятности появления ледовых образований, заглубление трубопроводов обязательно. Укладка подводных трубопроводов без заглубления и без засыпки возможна лишь при больших глубинах, однако в прибрежных зонах здесь также следует осуществлять заглубление трубопроводов. Относительно безопасными можно считать глубины от 25 – 30 м и более. Меньшие глубины требуют особого рассмотрения. При этом наиболее надежным будет то решение, которое основывается на самом тщательном изучении района трассировки трубопровода для каждого конкретного случая.

2.4.3 Заглубление трубопроводов в морское дно осуществляют обычно путем укладки в предварительно выкопанные или полученные размываем траншеи. Разработка скальных грунтов допускается как скалодробительными устройствами, так и взрывным способом, для чего необходимо согласование этой технологии с надзорными органами. Проектный профиль траншеи чаще всего принимается в виде трапеции. Требования к обустройству траншеи и выбор основных геометрических параметров (кругозна откосов, ширина траншеи, расстояние от боковой поверхности трубы до кабеля связи и т.п.) с учетом свободного прохода водолаза для осмотра трубопровода после укладки в траншею, объемов донных наносов, диаметров трубопровода и величины заглубления приводится в техническом проекте.

2.4.4 Возможно осуществлять заглубление трубопроводов после их укладки на дно с помощью трубозаглубительных снарядов или других специальных механизмов. Трубозаглубительные снаряды используют при возможности предварительной укладки трубопровода по естественному рельефу dna с допустимыми радиусами изгиба и при отсутствии скальных грунтов.
2.4.5 При наличии ледового покрова на мелководье траншея может прокладываться механизмом, осуществляющим свою работу через отверстия во льду.

2.4.6 Рост глубины траншеи требует приложения все больших усилий, поэтому глубокие траншеи следует прокладывать за несколько проходов. Альтернативой здесь может служить рытье более узких траншей с укреплением их стенок от возможного обрушения передвижным щитом.

2.4.7 Трубопроводы, уложенные в траншеи, засыпаются грунтом до проектных отметок, устанавливаемых с учетом предохранения трубопроводов от всякого рода механических воздействий. Уложенный на дно траншее и испытанный трубопровод перед засыпкой должен быть осмотрен водолазом.

В процессе водолазного обследования определяются:
- локальные подмывы (размывы), провисания и сдвиги трубопровода по отношению к проектной оси трассы, отклонения от проектных отметок;
- нарушения внешних антикоррозионных покрытий;
- нарушения целостности сплошных балластных покрытий и правильность расположения балластных грузов на трубопроводе.

Места обнаруженных дефектов обозначаются буйками и принимаются меры по ликвидации этих дефектов.

2.4.8 После укладки подводные трубопроводы засыпают до отметок, предусмотренных техническим заданием. Толщина слоя грунта над трубопроводом должна быть не менее проектной или превышать проектную не более чем на 20 см.

Способ засыпки траншей выбирают в зависимости от производства работ в зимний и летний периоды, ширины траншеи, глубины воды, скорости течения и объемов земляных работ.

Если по физико-механическим свойствам местный грунт не пригоден для засыпки, то его заменяют привозным. Иногда, при соответствующих условиях, для засыпки траншей с трубопроводами используют явление заноса при песчаных наносных течениях (см. 1.1), а также для самозаполнения воронок размыва (см. 1.8), что позволяет значительно снизить стоимость подводных земляных работ.

2.4.9 В исключительных случаях, если заглубление подводного трубопровода оказывается незэкономичным, а протяженность подводного перехода относительно небольшой, подводный трубопровод пригружают мешками с песком, каменной наброской, матрасами различных типов, покрывают полимерными щитами, железобетонными плитами и их сочетаниями.
2.4.10 Для обеспечения безопасности иногда трассу подводного трубопровода переносят в зону с более благоприятными условиями для строительства и эксплуатации, хотя это и может привести к увеличению протяженности и стоимости трубопровода.

2.4.11 В любом случае для определения трассы подводного трубопровода и необходимой величины его заглубления требуется проведение всесторонних исследований предполагаемого района прокладки трубопровода. Они должны включать тщательное изучение рельефа дна, глубин, состава донного грунта, статистических данных о ветре, волнении, течении, локальным переформированием поверхности дна во времени, продолжительности ледового периода, динамике ледового покрова, особенно крупных ледовых образований. Необходимо также знать местные особенности – наличие мерзлых грунтов под морским дном, вероятность теплового воздействия, транспортируемого по трубопроводам продукта на мерзлые грунты, образование воронок размыва донного грунта и др.

2.4.12 Жесткого нормирования величины заглубления подводного трубопровода нет и, в принципе, быть не может. В каждом конкретном случае, для каждого конкретного трубопровода вопрос о его защите и обеспечении безопасности эксплуатации должен решаться индивидуально, основываясь на исследованиях обстановки в районе прокладки трассы. Чем тщательнее будут выполнены эти исследования, тем более обоснованно может быть определена величина заглубления трубопровода и обеспечена безопасность его эксплуатации.

Некоторые обобщенные рекомендации по величине заглубления подводного трубопровода в грунт приведены в табл. 2. При отсутствии более надежных сведений они могут быть использованы на первых этапах проектирования подводного трубопровода (см. 8.3 части I «Морские подводные трубопроводы»).

Таблица 2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Преобладающий фактор внешнего воздействия на трубопровод</th>
<th>Величина заглубления</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Крупные ледовые образования</td>
<td>Величина заглубления определяется максимальной глубиной борозды экзарации плюс 1,0 м</td>
<td>Рекомендация дана без учета экстремальных случаев</td>
</tr>
</tbody>
</table>
Продолжение табл. 2

<table>
<thead>
<tr>
<th>№</th>
<th>Проблема</th>
<th>Описание</th>
<th>Условия и рекомендации</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Воронки размыва морского дна талыми водами</td>
<td>Величина заглубления слагается из глубины воронки плюс 1,0 м</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Мерзлые придонные грунты</td>
<td>При прокладке трубопроводов, транспортируемых углеводородов при температуре, превышающей температуру окружающих мерзлых грунтов, величина их заглубления должна выбираться исходя из условий, определяемых расчетами с использованием численных методов, которые позволили бы исключить процесс оттаивания и оседания, способный привести к «оголению» трубопровода</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Размывы донного грунта течениями, волнами, потоками от работающих судовых движителей</td>
<td>Величина заглубления определяется максимально возможной глубиной размытого грунта плюс 1,0 м</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Мерзлые придонные грунты</td>
<td>В условиях скальных грунтов, выходящих на поверхность дна, величина заглубления представляет сумму, равную диаметру трубопровода плюс 0,5 м</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Сдвижовые горизонтальные перемещения</td>
<td>С учетом скорости течения и волнения выбор величины заглубления должен быть таким, чтобы исключить опасные сдвижовые горизонтальные перемещения</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Течения, волнения</td>
<td>Величина заглубления в районах возможного якорения судов или других технических средств принимается равной 2,5 м</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Сдвижовые горизонтальные перемещения</td>
<td>При прохождении трубопроводов под дном пресных озер и водоемов величина их заглубления определяется из условий, полностью исключающих нарушение экологической чистоты этих водоемов</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Якорение морских технических средств</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Экологическая чистота вод</td>
<td>Величина заглубления в районах возможного якорения судов или других технических средств принимается равной 2,5 м</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Сложность осуществления заглубления</td>
<td>При прохождении трубопроводов под дном пресных озер и водоемов величина их заглубления определяется из условий, полностью исключающих нарушение экологической чистоты этих водоемов</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Крупные ледовые образования</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Якорение морских технических средств</td>
<td>Величина заглубления в районах возможного якорения судов или других технических средств принимается равной 2,5 м</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Экологическая чистота вод</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Сложность осуществления заглубления</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Крупные ледовые образования</td>
<td>В районах с крупными ледовыми образованиями величина заглубления может быть принята равной нулю (прокладка поверх дна)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Якорение морских технических средств</td>
<td>Величина заглубления в районах возможного якорения судов или других технических средств принимается равной 2,5 м</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Экологическая чистота вод</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Сложность осуществления заглубления</td>
<td>При невозможности обеспечения требуемой величины заглубления якорения судов или других технических средств применяется якорение судов или других технических средств</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Крупные ледовые образования</td>
<td>В районах с крупными ледовыми образованиями величина заглубления может быть принята равной нулю (прокладка поверх дна)</td>
<td></td>
</tr>
</tbody>
</table>

Использование тралов, волокуш и других буксируемых по дну объектов должно учитываться отдельно.

Рекомендации даны без учета экстремальных условий.
ПРИЛОЖЕНИЕ 2

КОЛИЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ АНАЛИЗА РИСКА

1 ОБЩИЕ ПОЛОЖЕНИЯ И ХАРАКТЕРИСТИКИ

1.1 Понятие риска применяется для измерения опасностей, объективно сопутствующих промышленной деятельности и проявляющихся в виде аварий, приводящих к ущербу здоровью и гибели людей, вредным воздействиям на окружающую среду, разрушениям материальных объектов и потерям имущества и выгод.

1.2 Измерение риска производится путем определения степени риска как совокупности показателей риска и их значений. Степень определяется по результатам анализа риска, который служит средством выявления существующих и потенциальных опасностей, определения нежелательных событий с оценкой возможной частоты и последствий их возникновения, и разработки рекомендаций по реализации мер по уменьшению степени риска в случае превышения приемлемого уровня риска.

1.3 В зависимости от целей анализа риска и имеющейся информации используются количественные или качественные показатели и методы анализа риска.

При количественном анализе основные результаты получают путем расчета численных показателей степени риска.

При качественном анализе его результаты представляются путем ранжирования и/или классификации частот возникновения и последствий аварий с использованием заранее определенных оценок и/или мнений квалифицированных экспертов.

Результаты анализа риска представляются в виде текстового анализа, количественных показателей, таблиц, диаграмм, графиков и других средств.

1.4 Степень риска аварий технической системы определяется на основании анализа совокупности значений показателей риска, выявленных при анализе нежелательных событий, способных при определенных условиях приводить к авариям (например, нарушение герметичности трубопровода и оборудования, отказ систем предупреждения, сигнализации и контроля, ошибки обслуживающего персонала, неблагоприятные гидрометеоусловия, внешние механические воздействия и др.).
В зависимости от основной причины возникновения рисков различают:

природные риски — риски, связанные с проявлением стихийных сил природы: землетрясения, наводнения, подтопления, бури, смерчи и т. п.;
технические риски — риски, связанные с опасностями, исходящими от технических объектов.

В зависимости от подвергаемых опасности объектов различают:
гуманитарные (социальные) риски — риски, связанные с угрозой жизни, здоровью или условиям жизнедеятельности людей;
имущественные (финансовые) риски — риски, связанные с опасностью потерь имущества, нарушения нормального функционирования подводного трубопровода, снижения результатов финансово-хозяйственной деятельности.
экологические риски — риски, связанные с неблагоприятными воздействиями на окружающую среду;

2 ПОТЕНЦИАЛЬНЫЙ ТЕРРИТОРИАЛЬНЫЙ РИСК

2.1 Потенциальный территориальный риск — пространственное распределение частоты последствий определенного уровня или приводящих к этим последствиям опасных воздействий определенного вида за определенный период времени. Например, потенциальный риск гибели человека на определенном участке территории определяется частотой появления на этом участке хотя бы одного смертельно опасного фактора аварий (ударная волна, химическое заражение, термическое воздействие пожара и т. п.).
Потенциальный риск характеризует опасный объект и территорию независимо от факта нахождения людей в месте проявления опасных воздействий.

2.2 На практике распределение потенциального риска определяется как набор значений частоты проявления опасности определенного уровня на участках территории для всех или отдельных источников (объектов и аварий на них) и всех или некоторых поражающих факторов аварий.

2.3 Потенциальный риск является промежуточной мерой опасности, используемой для оценки индивидуального и социального рисков.

Индивидуальный риск рассчитывается по известному территориальному риску с использованием распределения по участкам территории частоты пребывания на них конкретного человека.

Социальный риск определяется через известный территориальный риск по распределению численности, мест и времени пребывания людей в рассматриваемом районе.
3 ИНДИВИДУАЛЬНЫЙ РИСК

3.1 Индивидуальный риск — вероятность (частота) определенной степени поражения конкретного человека в результате воздействия исследуемых факторов опасности вида А за определенный период времени.

Индивидуальный риск при технических опасностях определяется потенциальным риском и распределением вероятности нахождения человека в районе возможного действия опасных факторов аварий в течение времени, достаточного для нанесения смертельного воздействия.

Индивидуальный риск во многом определяется принятыми мерами обеспечения безопасности (например, своевременным оповещением об опасности, применением средств защиты, эвакуацией и т. п.), обученностью людей действиям в опасных ситуациях и их защищенностью.

3.2 Индивидуальный риск измеряется вероятностью определенной степени последствий (гибели, ранения, потери трудоспособности) за определенный период времени (обычно за год).

3.3 При различных воздействиях (например, поражении ударной волной взрыва, термическом воздействии пожара, химическом отравлении вредными веществами или продуктами горения и т. п.) суммарный индивидуальный риск может определяться как сумма рисков для отдельных воздействий при условии их независимости.

3.4 На практике анализ индивидуального риска проводится не для конкретного человека, а в отношении групп людей, отличающихся примерно одинаковым временем пребывания в различных опасных зонах и применяющих одинаковые средства защиты. Обычно рассматривается индивидуальный риск определенных категорий обслуживающего персонала, персонала объекта в целом и населения окружающих районов.

4 СОЦИАЛЬНЫЙ РИСК

4.1 Социальный риск характеризует масштаб возможных аварий и катастроф и определяется в виде функции, имеющей общепринятое название FN-кривая. Под N, в зависимости от задач анализа, понимается или общее число пострадавших, количество погибших, или другой показатель тяжести последствий. Под F понимают частоту событий с тяжестью последствий, превышающей заданную величину N. Пример построения FN-кривых приведен в Правилах классификации, постройки и оборудования ПБУ/МСП.
4.2 Критерий приемлемой степени риска определяется в этом случае не ущербом в результате отдельного события, а кривой, построенной для всех возможных сценариев и последствий аварий.

Общераспространенным подходом анализа является использование двух кривых – для расчетного социального риска и приемлемого социально-гого риска. Если кривая расчетного риска хотя бы на одном участке проходит выше кривой приемлемого риска (большее число пострадавших при одной и той же частоте или более высокая частота для одинаковых последствий), то соответствующее проектное решение и/или принятое меры безопасности следует считать неприемлемыми и подлежащими пересмотру. Область между двумя кривыми определяет промежуточную степень риска, вопрос об уменьшении которой следует решать, исходя из технико-экономических соображений и путем согласования с Регистром.

4.3 В качестве переменной N можно принять материальный или экологический ущерб и построить соответствующие этим величинам F_N-кривые, которые будут служить, соответственно, мерой страхового или экологического риска.

5 КОЛЛЕКТИВНЫЙ РИСК

5.1 Коллективный риск является интегральной мерой опасности и определяет ожидаемое количество пострадавших в результате аварий на объекте территории за определенный период времени (например, за год или за весь период эксплуатации объекта).

5.2 Индивидуальный и коллективный риски могут быть переведены в сферу экономических и финансовых категорий. Для этого на практике используются подходы, связанные с различными определениями понятия «стоимость жизни»:

при выработке мер обеспечения безопасности – как величина дополнительных затрат на строительство и эксплуатацию объекта, необходимых для снижения коллективного риска на одну единицу;

при оценке ущерба – как величина затрат и компенсаций в случае гибели человека.

Определение содержания понятия и соответствующей величины должны производиться при определении критериев приемлемости риска.
6 ЭКОЛОГИЧЕСКИЙ РИСК

6.1 Под экологическим риском понимается мера ущерба, наносимого окружающей среде при авариях на опасном объекте.

6.2 Для оценки экологической безопасности могут использоваться следующие показатели:

в величины максимальных расчетных объемов, интенсивности и продолжительности выбросов транспортируемых вредных веществ в окружающую среду при авариях на участках трубопровода;

годовые частоты превышения заданных величин объема утечки (F/N-кривые);

среднегодовые частоты возникновения утечек и выбросов при нарушениях герметичности трубопроводов по всем причинам;

средние величины объема и средний суммарный объем утечек.

6.3 При определении экологического риска в стоимостном выражении (например, для целей страхования) могут использоваться следующие показатели:

статистически ожидаемая величина обязательных платежей и компенсаций за выброс вредных веществ в окружающую среду;

статистически ожидаемая величина затрат на мероприятия по ликвидации последствий выброса вредных веществ в окружающую среду.

Указанные величины следует рассчитывать в прямом стоимостном выражении и как риск ущерба (величина, определяемая произведением частоты аварии на ущерб).
МЕТОДЫ АНАЛИЗА РИСКА

В приложении представлены основные методы, рекомендуемые при проведении анализа риска. Приведены также типовые сценарии возможных аварий на морских подводных трубопроводах в виде деревьев отказов и дерева событий, развитие которых возможно после наступления аварийного события. Для информации указаны сведения об аварийности морских подводных трубопроводов.

1 Методы проверочного (опросного) листа (Check-List) и «Что будет, если...?» (What-If) или их комбинация относятся к группе качественных методов оценки опасности, основанных на изучении соответствия условий эксплуатации объекта (подводного трубопровода) действующим требованиям безопасности.

1.1 Проверочный лист служит методом подтверждения соответствия проектируемого или эксплуатируемого объекта действующим стандартам. Метод применим на любом этапе жизненного цикла объекта и позволяет идентифицировать имеющиеся опасности.

1.2 Проверочный лист, в случае необходимости, составляется для специфических ситуаций и применяется, например, для оценки правильности технологических операций, решения проблем, требующих повышенного внимания.

1.3 Результатом проверочного листа является перечень вопросов и ответов о соответствии подводного трубопровода требованиям безопасности. Пример составления проверочного листа для анализа аварийной ситуации приведен в Правилах классификации, постройки и оборудования ПБУ/МСП.

1.4 Метод проверочного листа отличается от метода «Что будет, если...?» более полным представлением исходной информации и результатов о последствиях нарушений требований безопасности.

1.5 Метод «Что будет, если...?» использует вопросы, которые начинаются со слов «Что будет, если...?» и рассматривает развитие ситуации, последующей после этих слов. Для исключения построения невероятных сценариев развития событий при аварийных ситуациях исполнители анализа риска, проводимого по этому методу, должны быть в меру осторожными и в достаточной степени реалистичными.

1.6 Метод анализа типа «Что будет, если...?» применим при проектировании, реконструкции или эксплуатации подводного трубопровода. Результатом его является составление перечня опасных участков, на которых
могут возникнуть аварии, а также предполагаемые методы предупреждений и профилактики аварий.

1.7 Рассмотренные методы достаточно просты при их заблаговременном обеспечении вспомогательными формами, унифицированными бланками для проведения анализа и представления результатов, относительно недороги и наиболее эффективны при исследовании безопасности хорошо изученных объектов с незначительным риском крупных аварий.

2 Анализ вида и последствия отказов (Failure Mode and Effects Analysis – FMEA) применяется для качественной оценки безопасности технических систем и используется для выявления неисправностей, служащих причиной или способствующих возникновению аварий. Особенностью этого метода является рассмотрение возможных отказов каждого блока технической системы (комплектующего изделия трубопровода) или отдельного элемента (вид и причина отказа) и вызываемых этим отказом воздействий при эксплуатации подводного трубопровода.

2.1 FMEA-анализ на этапе проектирования подводного трубопровода может быть использован для определения потребности в дополнительных мерах защиты трубопровода или в их сокращении. При реконструкции подводного трубопровода FMEA-анализ позволяет определить ее влияние на существующие конструкции и оборудование. Метод может быть применен во время эксплуатации трубопровода для выявления единичных неисправностей, способных привести к значительным последствиям.

2.2 Субъективность FMEA-метода требует привлечения к его применению нескольких экспертов, компетентных в вопросах технологических процессов трубопроводного транспорта и используемого оборудования. Метод анализа вида и последствий отказов может применяться в сочетании с другими методами определения опасностей, например, HAZOP-методом.

2.3 Анализ вида, последствий и критичности отказа (Failure Mode, Effects and Critical Analysis – FMECA) – аналогичен FMEA-анализу, но в отличии от последнего позволяет дополнить результаты анализа за счет того, что каждый вид отказа ранжируется с учетом двух составляющих критичности – сочетания вероятности (или частоты) и тяжести последствий отказа. Учет параметров критичности позволяет обосновать приоритетность мер обеспечения безопасности. Понятие критичности близко к понятию риска и поэтому может использоваться при количественном анализе риска аварии.

2.4 Результаты FMECA-анализа представляются в виде стандартизированных таблиц с полным перечнем оборудования и комплектующих изделий, ви-
дов и причин возможных отказов, частотой, последствиями, критичностью, средствами обнаружения неисправности (сигнализаторы, приборы контроля и т. п.) и рекомендациями по снижению опасности.

2.5 По тяжести последствий могут рассматриваться следующие критерии:

катастрофический — приводит к смерти людей, наносит продолжительный и масштабный вред окружающей среде, существенный ущерб материальным объектам;
критический (некритический) отказ — угрожает (не угрожает) жизни людей, окружающей среде, материальным объектам;
отказ с пренебрежимо малыми последствиями — отказ, не относящийся по своим последствиям ни к одной из первых трех категорий.

2.6 Рекомендуемые показатели (индексы) уровня и критерии критичности по вероятности и тяжести последствий отказа (события) приведены ниже в матрице «вероятность — тяжесть последствий» (см. табл. 1):

<table>
<thead>
<tr>
<th>Ожидаемая частота возникновения (1/год)</th>
<th>Тяжесть последствий</th>
<th>Отказ с пренебрежимо малыми последствиями</th>
</tr>
</thead>
<tbody>
<tr>
<td>Частый отказ</td>
<td>> 1</td>
<td>A</td>
</tr>
<tr>
<td>Вероятный отказ</td>
<td>1 – 10^{-2}</td>
<td>A</td>
</tr>
<tr>
<td>Возможный отказ</td>
<td>10^{-2} – 10^{-4}</td>
<td>A</td>
</tr>
<tr>
<td>Редкий отказ</td>
<td>10^{-4} – 10^{-6}</td>
<td>A</td>
</tr>
<tr>
<td>Практически невероятный отказ</td>
<td>< 10^{-6}</td>
<td>В</td>
</tr>
</tbody>
</table>

На практике для анализа могут быть выделены четыре группы объектов воздействия, которым может быть нанесен ущерб от аварии: обслуживающий персонал, население, окружающая среда, материальные объекты. В рассматриваемом случае ранг A соответствует самой высокой (неприемлемой) степени риска, требующей принятия незамедлительных мер обеспечения безопасности. Показатели B и C соответствуют промежуточным степеням риска, а ранг D — наиболее безопасным условиям.

В зависимости от ранга опасности:

A — обязательен детальный анализ риска, требуются особые меры безопасности для снижения риска;
В – желателен детальный анализ риска, требуются меры безопасности;
С – рекомендуются анализ риска и принятие мер безопасности;
Д – анализ и принятие мер безопасности не требуются.

При анализе рисков необходимо оценивать вклады рисков отказов составных частей (элементов) подводного трубопровода в общий риск аварии и использовать эти данные для выработки рекомендаций.

2.7 FMEA- и FMECA-методы могут применяться для анализа проектов или при реконструкции подводных трубопроводов. Как правило, анализ по этим методам выполняется группой специалистов из 3–7 человек с обязательным привлечением независимых экспертов.

3 Метод анализа опасности и работоспособности (Hazard and Operability Study – HAZOP) исследует влияние отклонений технологических параметров (давления, температуры и др.) от регламентных режимов с позиций возникновения опасности. HAZOP-метод может применяться при проектировании, реконструкции и эксплуатации подводных трубопроводов. По сложности и детальности получаемых результатов HAZOP-метод соответствует уровню FMEA и FMECA.

3.1 В процессе анализа для каждой линии (нитки) подводного трубопровода и его оборудования определяются возможные отклонения в работе, вызвавшие их причины, перечень мероприятий, направленных на обнаружение и недопущение этих отклонений, и рекомендуемых изменений, предложений или действий, способствующих повышению безопасности и/или работоспособности.

3.2 Для характеристики отклонений используются стандартные наборы ключевых слов (например, «нет», «больше», «меньше», «так же как», «другой», «инако чем», «обратный» и т. п.), помогающих систематическому выявлению всех возможных отклонений. Конкретное сочетание этих слов с технологическими параметрами подводных трубопроводов определяется спецификой транспортируемых по ним рабочих сред и соответствующими условиями. Примерами сочетания ключевых слов являются следующие:

НЕТ – отсутствие непосредственной подачи рабочей среды, когда она должна быть согласно технологическому процессу;

БОЛЬШЕ (МЕНЬШЕ) – увеличение (уменьшение) значений режимных переменных по сравнению с заданными (давление, подача, температура и т. п.);

ТАКЖЕ КАК – появление дополнительных компонентов – включений (воздух, вода, примеси);
ДРУГОЙ — состояние, отличающееся от обычного режима работы (пуск, остановка и т. д.);
ИНАЧЕ ЧЕМ — полное замещение процесса, непредвиденное событие, разрушение, разгерметизация и др.
ОБРАТНЫЙ — логическая противоположность замыслу, появление обратного течения рабочей среды.

3.3 Результаты анализа HAZOP-метода представляются на специальных технологических листах (таблицах). Величина опасности отклонений может быть определена количественно путем оценки вероятности и тяжести последствий рассматриваемой аварийной ситуации по критериям критичности аналогично FMECA-методу.

Кроме идентификации опасностей и их ранжирования HAZOP-метод, также как и FMECA-метод, позволяет выяснить неясности и неточности в инструкциях по безопасности и способствует их устранению. Оперативность и эффективность этого метода в значительной степени зависит от квалификации экспертов. Недостатки HAZOP-методов и FMECA-методов связаны с отсутствием в них возможностей анализа комбинаций и причинно-следственных связей событий, приводящих к аварии.

4 Логико-графические методы анализа «деревьев отказов и событий»

4.1 Методы анализа «деревьев отказов и событий» являются логико-графическими методами, используемыми для выявления причинно-следственных связей между событиями.

4.2 Метод анализа деревьев отказов (Fault Tree Analysis – FTA) позволяет выявить комбинации и последовательности отказов оборудования и комплектующих изделий, ошибок персонала и внешних (техногенных, природных) воздействий, приводящих к основному событию — аварийной ситуации. FTA-метод используют для анализа возможных причин возникновения аварийной ситуации и расчета ее частоты на основании знания частот исходных событий. Примеры составления и использования дерева отказов для анализа аварийных ситуаций приведены в Правилах классификации, постройки и оборудования ПБУ/МСП.

4.3 Метод анализа деревьев событий (Event Tree Analysis – ETA) представляет собой алгоритм построения последовательности событий, исходящих из некоторого основного события, которое при определенных условиях (наступление или отсутствие других событий, действий и/или условий) может привести к аварийной ситуации.

202
Для анализа развития аварийной ситуации дерево событий реализуется в виде диаграммного распределения рисков. Построение ветвей дерева событий производится начиная с событий, подсказываемых знаниями об авариях в прошлом, а также составлением приоритетных перечней опасностей, выявленных качественными методами анализа.

Частота каждого этапа развития аварийной ситуации определяется путем умножения предшествующего этапа на вероятности наступления и отсутствия события или условия, ожидаемого на этом этапе. Например, аварии с нарушением герметичности подводного нефте- или газопровода, в зависимости от создавшихся условий (появление источника воспламенения), могут развиваться как с воспламенением, так и без него. В свою очередь, произошедшее воспламенение в зависимости от условий (сброс давления в аварийной секции) может развиваться по сценарию струйного или очагового горения (пожар разлива).

Построение дерева продолжается до момента наступления событий, являющихся предметом анализа риска (поражение людей, выброс вредных веществ в окружающую среду и т. п.). Частные вероятности этих событий, наступивших при реализации различных сценариев, интегрируются для получения сводных показателей риска для анализируемого основного события.

4.4 Методы деревьев отказов и событий позволяют совместно рассмотреть события и условия различной природы — первичные отказы технологического и контрольного оборудования, функционирование систем обеспечения безопасности, действия операторов, внешние воздействия и т. п.

4.5 Методы деревьев отказов и событий являются достаточно трудоемкими и должны применяться для анализа проектов или реконструкции сложных и ответственных технических систем. Конкретные объекты количественного анализа риска (трубопроводная система в целом, ее секция или технологический узел, отдельные виды и сценарии аварий и т. п.) должны определяться на предшествующих этапах анализа риска.

5 Методы количественного анализа риска характеризуются расчетом показателей риска, приведенных в приложении 2, и могут включать в себя один или несколько вышеперечисленных методов или использовать их результаты.

5.1 Эффективность количественного анализа риска наиболее проявляется: на стадии проектирования опасных объектов; при оценке безопасности объектов, имеющих однотипное оборудование; при необходимости получения комплексной оценки воздействия аварии на людей, окружающую среду и материальные объекты;
при разработке перечня приоритетных мер по повышению безопасности объекта.

5.2 Выполнение количественного анализа предполагает высокую квалификацию исполнителей, большой объем информации по аварийности оборудования, учет особенностей окружающей местности, гидрометеоусловий, времени пребывания людей на территории объекта в зонах действия факторов опасности, режима пребывания населения в ближайших районах и других факторов.

На промежуточных стадиях анализа возникает необходимость в использовании математических моделей и расчетных методик для оценки физико-химических и других явлений, сопровождающих развитие аварий.

5.3 К ограничениям методов количественного анализа риска относится высокая трудоемкость, стоимость и продолжительность подготовительных и аналитических работ, а также возможность получения результатов, характеризующихся значительной статистической неопределенностью, не позволяющей достоверно обосновать практические мероприятия по обеспечению безопасности.

6 Типовые сценарии возможных аварий на морских подводных трубопроводах

Пример дерева типовых отказов для морского подводного трубопровода показан на рис. 1.

На рис. 2 и 3 приведены типовые сценарии возможных аварий на морских подводных трубопроводах в виде деревьев отказов, приводящих к нарушению целостности трубопровода при внешнем и внутреннем коррозионных износах.

Пример дерева событий, развитие которых возможно после наступления аварийного события – нарушения целостности подводного трубопровода в результате коррозионного износа, показан на рис. 4.

7 Сведения об аварийности морских подводных трубопроводов на основании зарубежного опыта эксплуатации подводных трубопроводов

В настоящее время наибольшие по численности, протяженности и опыту эксплуатации системы морских подводных трубопроводов сложились в Северном море и в Мексиканском заливе. Данные по аварийности подводных трубопроводов по этим системам имеются в следующих источниках:

по трубопроводам Северного моря – данные Британской Администрации по охране здоровья и безопасности (Health and Safety Executive, HSE);
Рис. 1
Дерево отказов для аварий на подводных трубопроводах (нарушение целостности трубы)
Дерево отказов для аварии, связанной с внешней коррозией подводного трубопровода
Дерево отказов для аварии, связанной с внутренней коррозией подводного трубопровода
Дерево событий для аварий на подводном трубопроводе (нарушение целостности трубы)
по трубопроводам Мексиканского залива – данные Офиса по безопасности трубопроводов Министерства транспорта США (Office of Pipeline Safety of the USA Department of Transportation).

Аварийность подводных трубопроводов характеризуется следующими показателями.

7.1 Трубопроводы Северного моря

По состоянию на конец 2000 г. в Северном море находились в эксплуатации 1069 стальных подводных трубопроводов диаметром до 40 дюймов с общим накопленным опытом эксплуатации более 300 000 км × год:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Все стальные трубопроводы</td>
<td>1069</td>
<td>22848,0</td>
<td>307246,0</td>
</tr>
<tr>
<td>до 9</td>
<td>552</td>
<td>5034,0</td>
<td>52973,0</td>
</tr>
<tr>
<td>от 10 до 16</td>
<td>266</td>
<td>3889,0</td>
<td>47536,0</td>
</tr>
<tr>
<td>от 18 до 24</td>
<td>126</td>
<td>4352,0</td>
<td>58843,0</td>
</tr>
<tr>
<td>от 26 до 40</td>
<td>84</td>
<td>8441,0</td>
<td>147571,0</td>
</tr>
<tr>
<td>нет данных</td>
<td>41</td>
<td>1131,0</td>
<td>322</td>
</tr>
</tbody>
</table>

За весь период эксплуатации данной системы морских подводных трубопроводов ее аварийность характеризуется следующими показателями:

<table>
<thead>
<tr>
<th>Диаметр трубопровода, дюймы</th>
<th>Наработка, км × год</th>
<th>Число случаев</th>
<th>Расчетная частота, 10^{-4} (км × год)^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>аварии, требующие ремонта</td>
<td>аварии с утечками</td>
</tr>
<tr>
<td>до 9</td>
<td>45679,0</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>от 10 и более</td>
<td>243843,0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>из них:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>от 10 до 16</td>
<td>44286,0</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>от 18 до 24</td>
<td>56728,0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>от 25 до 40</td>
<td>146052,0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
7.2 Трубопроводы Мексиканского залива

За период 1985 – 1999 гг. в Мексиканском заливе при накопленном опыте работы более 184 000 км × год имела место следующая аварийность по авариям, приводившим к утечкам в окружающую среду:

На основании приведенных данных при установлении критериев риска возникновения утечек (экологического риска) для проектируемых морских подводных трубопроводов можно рекомендовать следующие уровни управления риском по принципу ALARP:

- недопустимый уровень риска — 1,0 × 10⁻⁴ (км × год)⁻¹;
- пренебрежимый уровень риска — 0,5 × 10⁻⁵ (км × год)⁻¹;
- подлежащий анализу уровень риска — от 0,5 × 10⁻⁵ до 1,0 × 10⁻⁴ (км × год)⁻¹.

Установление и соблюдение таких уровней управления риском позволит обеспечить безопасность вновь строящихся морских подводных трубопроводов на уровне, превосходящем достигнутый в мировой практике.

При установлении критериев и анализе риска необходимо учитывать особенности участков трассы морских подводных трубопроводов, влияющие на степень опасности возникновения аварий:

- участки в пределах зон безопасности морских нефтегазодобывающих установок и скважин с подводным расположением устьев;
- участки с интенсивным судоходством, рыболовецкой и другой деятельностью на акваториях;

<table>
<thead>
<tr>
<th>Диаметры трубопроводов и объемы утечек</th>
<th>Наработка, км × год</th>
<th>Число утечек за период</th>
<th>Расчетная частота, 10⁻⁴ (км × год)⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>диаметром до 10 дюймов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>по объемам утечек (баррели)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>от 50 до 100</td>
<td>105390</td>
<td>7</td>
<td>0,66</td>
</tr>
<tr>
<td>от 100 до 1 000</td>
<td></td>
<td>2</td>
<td>0,19</td>
</tr>
<tr>
<td>от 1000 до 10 000</td>
<td></td>
<td>2</td>
<td>0,19</td>
</tr>
<tr>
<td>более 10 000</td>
<td></td>
<td>1</td>
<td>0,09</td>
</tr>
<tr>
<td>от 10 дюймов и более</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>по объемам утечек (баррели)</td>
<td>78879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от 50 до 100</td>
<td></td>
<td>1</td>
<td>0,13</td>
</tr>
<tr>
<td>от 100 до 1000</td>
<td></td>
<td>2</td>
<td>0,25</td>
</tr>
<tr>
<td>от 1000 до 10 000</td>
<td></td>
<td>4</td>
<td>0,51</td>
</tr>
<tr>
<td>более 10 000</td>
<td></td>
<td>1</td>
<td>0,13</td>
</tr>
</tbody>
</table>
участки с опасными геологическими явлениями;
участки с деформацией морского дна и береговых линий;
участки с опасными ледовыми и геокриологическими воздействиями;
участки, создающие в случае утечек опасность загрязнения особо охраняемых и чувствительных природных территорий.
ПРИЛОЖЕНИЕ 4

МЕТОДИКИ СПЕЦИАЛЬНЫХ ИСПЫТАНИЙ
СТАЛЬНЫХ ТРУБ И ПРОКАТА

1 ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ТЕМПЕРАТУРЫ ХРУПКОСТИ
ПО МЕТОДУ DWTT

1.1 Методика применима для испытания образцов из основного металла стальных труб диаметром 300 мм и более, толщиной стенки более 7,5 мм и листового проката, штритса (далее – листа) такой же толщины для их производства. Испытание состоит в изгибе нагружении до разрушения образца с концентратором одним ударом бойка свободно падающего груза или маятника копра. Испытывают серию, обычно из 10 образцов, при комнатной и пониженной температурах (два образца на температуру) с целью определения процента вязкой составляющей в изломах и построения зависимости «процент волокна – температура». В результате определяются:

температура, при которой образцы удовлетворяют критерию заданной доли волокнистой составляющей в изломе;

средняя и минимальная доля волокнистой составляющей в изломе при температуре эксплуатации для испытываемой категории стали.

Пробу (заготовку) для изготовления образцов от трубы следует вырезать поперек продольной оси трубы в соответствии с рис. 1.1. Пробу (заготовку) для изготовления образцов от листа следует вырезать поперек оси проката в первой четверти ширины листа.

Количество труб или листов, отбираемых для испытания, регламентируется табл. 4.2.3.5.1.1 части I «Морские подводные трубопроводы», если не указано иное. При вырезе пробы (заготовки) огневым способом припуск на механическую обработку от линии реза до края образца должен быть не менее 15 мм.

Правку проб от труб выполняют статической нагрузкой. Стрела прогиба после правки должна исключать поворот образца в плоскости действия нагрузки при испытании. Допускается применять образцы с невыпрямленной средней частью на длине до двух толщин, при этом оба конца пробы рекомендуется выпрямлять одновременно.

Общие указания по допустимости правки образцов аналогичны, представленным в разделе 2 настоящего приложения для образцов на CTOD.
Рис. 1.1
Схема вырезки образцов:
а — прямошовная труба с одним швом; б — прямошовная труба с двумя швами;
в — спиральношовная труба; L — длина образца

При наличии расхождения в результатах, полученных при испытаниях выпрямленных и невыпрямленных образцов, и при арбитражных испытаниях невыпрямленные образцы являются предпочтительными.

1.2 Испытаниям подвергаются призматические образцы с надрезом на растягиваемой поверхности, от которого при ударном нагружении распространяется трещина (рис. 1.2). Фрезерованный надрез запрещен. Допускаются прессованный надрез (а) и шевронный пропил (б).

Кроме процента волокнистой составляющей целесообразно регистрировать энергию, затрачиваемую на разрушение образца.
Рис. 1.2
Образец и оснастка для испытаний (t – толщина)

Принципиальная схема рекомендуемого приспособления для нанесения концентратора методом вдавливания и размеры рабочей части ножа приведены на рис. 1.3. Шевронный надрез выполняется дисковой фрезой или пилой, радиус при его вершине не оговаривается.

Требуемую мощность копра можно оценить по формулам:

\[
K_{DWTT_p} = 5.93 t^{1.5} KV^{0.544}, \tag{1.1}
\]

\[
K_{DWTT_{ch}} = 3.95 t^{1.5} KV^{0.544}, \tag{1.2}
\]

gде \(K_{DWTT}\) – энергия удара DWTT с шевроном (ch) и с прессованным надрезом (p);
\(t\) – толщина образца, мм;
\(KV\) – работа удара, Дж.
Образец устанавливают на опорах таким образом, чтобы удар бойка был нанесен со стороны, противоположной концентратору. Установка образца должна обеспечивать расположение концентратора симметрично относительно опор, и его ось должна совпадать с осевой линией бойка с точностью ± 2 мм. Образец должен располагаться на опорах копра и поддерживаться специальными упорами таким образом, чтобы исключить его боковое вращение во время удара при испытании. Скорость бойка в момент удара образца должна составлять не менее 5 м/с и, желательно, не более 6 м/с.

Охлаждение образцов производится в жидкости (спирте) с температурой, равной температуре испытания, с погрешностью ± 2 °С. Образцы толщиной 19 мм и менее после достижения заданной температуры выдерживают в ванне не менее 15 мин. Образцы толщиной более 19 мм выдерживают из расчета 1 мин на 1 мм толщины. Допускается предварительное охлаждение в криокамере.

Образцы должны извлекаться из ванны термостата и подвергаться разрушению в течение не более 10 с. Если образцы испытывают постоянно более чем через 10 с после извлечения из ванны, то необходимо переохлаждать их на величину температуры, устанавливаемую экспериментально, и проводить
измерение температуры до момента удара с помощью термопары, вставляемой в отверстие в образце глубиной не менее 15 мм.

1.3 При подсчете количества вязкой составляющей в изломе образцов толщиной до 19 мм включительно из рассмотрения исключают участки излома \(t \) (толщина образца), примыкающие к концентратору и месту удара бойка (рис. 1.4). Для образцов толщиной более 19 мм исключают из рассмотрения

Рис. 1.4
Типовые изломы образцов и порядок определения долей вязких составляющих в изломах
участки длиной не \(t \), а 19 мм с каждой стороны. При наличии расслоений в изломе не рассматривают кристаллические участки, перпендикулярные поверхности излома в раскрывшихся расслоениях (рис. 1.5).

Замечание. Хрупкая составляющая в расслоениях не учитывается при вычислении площади волокнистой составляющей.

Замечание. Хрупкая составляющая в расслоениях учитывается при вычислении площади волокнистой составляющей.

Рис. 1.5
Порядок учета площади кристаллических пятен в изломе

Количество вязкой составляющей в изломе \(B, \% \), вычисляют по формуле

\[
B = \left(\frac{F_{ac} - F_{cr}}{F_{ac}} \right) \cdot 100 \%, \\
\]

где \(F_{ac} \) – зачетная площадь излома, мм\(^2\); \(F_{cr} \) – площадь кристаллического(их) участка(ов) на изломе, мм\(^2\).

Поверхность вязкого излома характеризуется тусклым серым видом с характерными «волокнами» и обычно располагается под углом к боковой поверхности образца. Поверхность хрупкого излома на вид кристаллическая, без видимых следов пластической деформации на поверхности разрушения. Участки хрупкого излома обычно примыкают к основанию концентратора и месту удара. Площадь хрупкой составляющей определяют следующими способами:
измерением площади хрупкого излома с помощью планиметрирования на компьютере по фотографии или по оптической проекции поверхности излома;
визуальным сравнением поверхности излома с эталонными образцами или их фотографиями, на которых доля хрупкой составляющей заранее определена;
измерением размеров участков хрупкого излома и вычислением их суммарной площади.
Если излом кристаллический с губами среза менее 0,5 мм, то он считается имеющим 0 % вязкой составляющей. В промежуточных случаях допускается пользоваться формулами:

К рис. 1.4, а:

\[B = \left(1 - \frac{t_1 + t_2 + t_3}{3t}\right) \cdot 100 \% ; \]
(1.4)

к рис. 1.4, б:

\[B = \left(1 - \frac{(t_1 + t_2 + t_3) \cdot b}{3tb_p}\right) \cdot 100 \% ; \]
(1.5)

к рис. 1.4, в:

\[B = \left(1 - \frac{\sum F_i}{tb_p}\right) \cdot 100 \% . \]
(1.6)

Погрешность определения доли вязкой составляющей в изломе по настоящей методике находится в интервале ± 3 % с доверительной вероятностью \(P = 95 \% \).
Если в процессе испытания обнаружится несоблюдение температурного режима, неправильность центровки образца, несоосность приложения нагрузки по отношению к оси концентратора и другие нарушения работы копра, а также если образец имеет дефекты или некачественно подготовлен, независимо от того, обнаружено это до или после разрушения образца, результаты испытаний признают недействительными и проводят повторные испытания на таком же количестве образцов. Если разрушить образец одним ударом не
удалось, можно разрушить его вторым ударом, при этом полученный процент волокна следует считать нижней оценкой, что указать в протоколе.

Результаты испытаний записывают в протокол, в котором кроме указанного в 4.2.3.3.4 части I «Морские подводные трубопроводы», приводятся следующие сведения:

- максимальный запас энергии удара при испытании;
- высота подъема груза;
- скорость груза при ударе.

Результаты испытания представляются в форме следующей таблицы:

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>T, °C</th>
<th>Толщина, мм</th>
<th>Нетто-высота, мм</th>
<th>Зачетная площадь, мм2</th>
<th>Площадь кристалла, мм2</th>
<th>% волокна</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 ОПРЕДЕЛЕНИЕ CTOD

Для определения CTOD используются образцы с надрезом и предварительно выращенной из него усталостной трещиной. Вырезка образцов и наложение надреза по ЗТВ производятся после окончательной термообработки, при этом расположение надреза – по толщине, направление распространения трещины – поперек трубы.

Так как результат испытаний в значительной степени определяется толщиной образца, последнюю следует назначать максимально близкой к толщине исходного металла. Для металла труб, особенно для поперечных образцов, правка заготовок является неизбежной. Для того, чтобы ограничить дополнительно вносимую пластическую деформацию в зону надреза, рекомендуется осуществлять правку заготовок в виде «крылышка» (рис. 2.1). После этого можно проводить механическую обработку по толщине заготовок.

Допускаются черновины на боковых поверхностях образцов до 20 % толщины, за исключением зоны надреза (не менее толщины в каждую сторону от надреза).

<table>
<thead>
<tr>
<th>№</th>
<th>T, °C</th>
<th>Толщина, мм</th>
<th>Нетто-высота, мм</th>
<th>Зачетная площадь, мм2</th>
<th>Площадь кристалла, мм2</th>
<th>% волокна</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.1
Параметры правки трубных заготовок для изготовления образцов на трехточечный изгиб

<table>
<thead>
<tr>
<th>Отношение толщины стенки трубы t, к наружному диаметру D_o</th>
<th>Высота невыправленной заготовки h</th>
<th>Первая операция: правка всей заготовки до высоты h_j</th>
<th>Вторая операция: правка концов заготовки</th>
<th>Толщина образца на трехточечный изгиб</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$\leq 0,05$</td>
<td>$\leq 1,3 t_c$</td>
<td>t_c</td>
<td>не требуется</td>
<td>$\leq 0,95 t_c$</td>
</tr>
</tbody>
</table>
Продолжение табл. 2.1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,07</td>
<td>2,3 (t_c)</td>
<td>≥ 1,4 (t_c)</td>
<td>требуется</td>
<td>≤ 0,95 (t_c)</td>
</tr>
<tr>
<td>0,09</td>
<td>3,4 (t_c)</td>
<td>≥ 2,5 (t_c)</td>
<td>требуется</td>
<td>≤ 0,95 (t_c) с допустимыми черновинами</td>
</tr>
<tr>
<td>> 0,09</td>
<td>> 3,4 (t_c)</td>
<td></td>
<td>рекомендуются компактные образцы</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2.1
Правка поперечных заготовок из трубы
Предпочтительный тип образцов – изгибные, высота образца равна удвоенной ширине (рис. 2.2).

Образцы испытываются при управлении испытательной машиной по перемещению при квазистатическом нагружении со скоростью перемещения траверсы, обеспечивающей возрастание коэффициента интенсивности напряжений K_f в диапазоне 0,5 – 3,0 МПа·м$^{0.5}$/с. При испытаниях записывается диаграмма деформирования в координатах «нагрузка – раскрытие берегов трещины». Нагружение осуществляется до полного или частичного разрушения образца или до достижения максимума нагрузки. После испытаний производится проверка выполнения условий корректности.

Угол между линией надреза и боковыми поверхностями образца должен находиться в диапазоне 90 ± 5°.

При испытаниях основного металла трубы рекомендуется выполнять процедуру предварительного бокового обжатия, описанную в методике

Рис. 2.2
Предпочтительный тип образцов для испытаний на CTOD
для испытания сварных образцов (см. разд. 5 части I «Морские подводные трубопроводы»). Необходимость снятия напряжений таким методом может быть определена экспериментально на пробном образце.

После завершения изготовления образцов производится выращивание усталостной трещины при комнатной температуре. Режим циклического нагружения должен быть выбран в соответствии со следующими тремя условиями:

значение максимальной нагрузки цикла \(F_f \) на финальной стадии выращивания трещины должно быть не более

\[
F_f = \frac{B (W - a)^2 (\sigma_{yu} + \sigma_{yp})}{4S},
\] \((2.1) \)

где \(B \) – толщина образца;
\(W \) – высота образца;
\(a \) – текущая длина трещины;
\(S \) – расстояние между опорами;
\(\sigma_{yu}, \sigma_{yp} \) – предел текучести и предел прочности материала при температуре выращивания трещины;

значение максимума коэффициента интенсивности напряжений \(K_f \) в цикле должно быть не более

\[
K_f / E = 3,2 \cdot 10^{-4} \text{ м}^{0,5},
\] \((2.2) \)

где \(E \) – модуль упругости;

в испытаниях, которые дают корректные значения \(K_{1c} \) материала, величина \(K_f \) должна быть не более

\[
K_f = 0,6 \frac{\sigma_{yu}}{\sigma_{ys}} K_{1c},
\] \((2.3) \)

где \(\sigma_{ys} \) – предел текучести материала при температуре испытаний.

Для низколегированной стали расчет по формуле (2.1), как правило приводит к меньшим значениям нагрузки, чем по формуле (2.2), а условия корректности по \(K_{1c} \) не выполняются даже при наиболее низкой температуре испытаний. В этом случае формула (2.3) при выборе нагрузки не используется.
Дополнительно ограничивается нагрузка на начальном этапе выращивания усталостной трещины: не выше соответствующей уровню 1,3 K_f при размере трещины, равном глубине надреза.

Процедура проведения испытаний:

устанавливается масштаб диаграмм деформирования с тем, чтобы достичь соответствия рекомендациям стандарта по углу наклона упругого участка диаграммы и размеру диаграммы по оси Y;

осуществляется калибровка датчика раскрытия трещины;

образец помещают на опоры, устанавливают датчик раскрытия трещины и проводят охлаждение до заданной температуры испытаний;

нагружают образец с заданной скоростью перемещения нагружающей траверсы. Нагружение проводят до момента нестабильного разрушения образца (явлного срыва на диаграмме деформирования) или до момента явного перехода через максимум нагрузки. После этого датчик раскрытия трещины снимают и производят долом образца при температуре испытания;

выполняют необходимые измерения в изломе образца: длины исходной усталостной трещины и величины стабильного подроста трещины, если такой имеется.

Точность измерения усилия при испытаниях должна быть не менее ± 1 %. Точность измерения раскрытия берегов трещины должна превышать ± 0,003 мм при измерении перемещений до 0,3 мм и ± 1 % при больших перемещениях. Перед проведением испытаний производится замер толщины B и высоты W образца с точностью ± 0,1 %. Расстояние между опорами при испытании образца изгибного типа должно находится в пределах $S = 4 W ± 0,2 W$, а точность установки образца на опоры по совпадению линии действия нагрузки с надрезом должна быть ± 1 % S. Температура должна измеряться с точностью ± 2 °C, должны быть приняты меры для выравнивания температуры по толщине образца.

При наличии проскальзывания трещины номер n считается значимым, и значение CTOD определяется именно для этого события, если выполняется условие: $d_n > 5 \%$, где величина $d_n, \%$, определяется с помощью графических построений (рис. 2.3) по формуле

$$d_n(F_1) = 100 \left(1 - \frac{D_1}{F_1} \left(\frac{F_n - y_n}{D_n + x_n} \right) \right) \%,$$

где F — нагрузка,
D — перемещение.
В случаях, когда анализом поверхности излома может быть доказано, что скачок нагрузки и перемещения (раскрытия трещины) связан с образованием нераскрывшегося расщепления в плоскости, параллельной поверхности без участков излома кристаллического типа, данный проскок трещины может не рассматриваться как критическое событие.

Длина усталостной трещины в изломе измеряется в девяти равноотстоящих точках по сечению образца с точностью не менее ± 0,25 % от средней длины. Крайние измерения проводятся на расстоянии 1 % ширины образца от поверхности. Средняя величина исходной усталостной трещины \(a_0 \) рассчитывается как сумма семи внутренних измерений и полусуммы двух измерений у поверхности, деленная на восемь. Различие между любыми двумя из семи внутренних измерений длины трещины не должны превышать 10 % средней длины трещины.

Дополнительным требованием является проверка соотношения \(a_0/W \): оно должно находиться в диапазоне 0,45 < \(a_0/W \) < 0,55.

Расчет величины CTOD (обозначаемой в формулах как \(\delta \)) производится по формуле

Рис. 2.3
Порядок оценки скачков на диаграмме деформирования
\[\delta = \left[\frac{FS}{BW^{1.5}} \cdot f\left(\frac{a_0}{W} \right) \right]^2 \left(1 - \mu^2 \right) + \frac{0.4 (W - a_0) V_p}{2 \sigma_{ys} E} + \frac{0.4 W + 0.6 a_0 + z}{0.4 W + 0.6 a_0 + z} \]

(2.5)

где
- \(F \) – нагрузка в рассматриваемой точке диаграммы;
- \(V_p \) – соответствующая ей пластическая составляющая перемещения;
- \(E, \mu \) – модуль упругости и коэффициент Пуассона материала;
- \(\sigma_{ys} \) – значение предела текучести исследуемого материала при температуре испытаний.

Значение функции \(f(a_0/W) \) определяется из следующего соотношения:

\[f(a_0/W) = \frac{3 (a_0/W)^0.5 \left[1.99 - (a_0/W) (1-a_0/W) (2.15 - 3.93 a_0/W + 2.7 a_0^2/W^2) \right]}{2 (1 + 2 a_0/W) (1 - a_0/W)^{1.5}} \]

(2.6)

Величина \(\sigma_{ys} \) для температуры испытаний \(T, ^\circ C \), если не известна из эксперимента, может быть определена по формуле

\[\sigma_{ys} = \sigma_{ys} + 10^5/(491 + 1.8 T) - 189 \]

(2.7)

Результаты испытаний рекомендуется представлять в следующем виде:

<table>
<thead>
<tr>
<th>Стандарт №</th>
<th>Марка материала</th>
<th>Вид металлопродукции</th>
<th>Номер плавки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Состояние материала</td>
<td>Номер листа</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(шов и т. п.)</td>
<td></td>
</tr>
<tr>
<td>Номинальная толщина, мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тип образца</td>
<td>Сварочная процедура №</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ориентация трещины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Геометрические параметры</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Толщина (b), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ширина (W), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пролет (S), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Глубина надреза (h), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Толщина ножевых опор (z), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) после обжатия, мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общая высота (C), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Полувысота (H), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Диаметр отверстия (d), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Полурасст. между отв. (h), мм</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Параметры выращивания трещины

<table>
<thead>
<tr>
<th>Финальная макс. нагрузка выращивания трещины F_f, кН</th>
<th>Общее число циклов N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отношение мин. и макс. нагрузки R</td>
<td></td>
</tr>
</tbody>
</table>

Температура и прочность

<table>
<thead>
<tr>
<th>Температура испытания, °C</th>
<th>Предел текучести σ_y, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предел прочности σ_{fp}, МПа</td>
<td>При температуре испытания σ_{tp}, МПа</td>
</tr>
</tbody>
</table>

Излом

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>Среднее</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Δa</td>
<td></td>
</tr>
</tbody>
</table>

| Присутствие остановленного хрупкого подроста | Дефекты сварки |
| Расщепление металла параллельно поверхности | «Ступеньки» в изломе |

Использование результатов испытания

<table>
<thead>
<tr>
<th>K_C, МПа\sqrt{m}</th>
<th>Критическое событие</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{max}/F_c</td>
<td>CTOD, мм</td>
</tr>
</tbody>
</table>

Металлография (для образцов по ЗТВ)

Целевая структура по разметке

<table>
<thead>
<tr>
<th>Результаты металлографии</th>
<th>Шов</th>
<th>ЗТВ у л.с</th>
<th>ЗТВ дальн</th>
<th>Осн. металл</th>
<th>Заключение: целевая структура</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Приложения: фото излома, записи диаграмм нагружения.

3 ИСПЫТАНИЯ НА ИЗГИБ

Испытания на загиб на оправке обязательны при лицевом, корневом и боковом изгиbach (испытания на боковой изгиб проводятся только для сварных швов).

На лицевой загиб следует испытывать полнотолщинные образцы с черновой растягиваемой поверхностью. Предварительная деформация между
двуями плоскостями допускается только для образцов, где растягиваемой является внутренняя поверхность трубы, что продиктовано требованиями безопасности персонала. Правка образцов на боковой загиб не рекомендуется.

При толщине листового металла до 32 мм толщина образца должна быть равна толщине листа, при большей толщине допускается строжка образцов до толщины 25 мм с одной стороны. Ширина образца должна составлять от 1,6 до 5 толщин. Длина образца должна составлять \(L = 2 (a + d) + 100 + 50 \) мм, где \(a \) — толщина образца, \(d \) — диаметр оправки.

Для бокового загиба используются шлифованные темплеты толщиной 10 мм.

Образцы следует вырезать рядом с местами вырезки образцов для других типов испытаний, чтобы иметь возможность сопоставить результаты испытаний на изгиб с другими характеристиками металла. Резка заготовок под образцы на гильотинных ножницах не допускается. После механической обработки на гранях образца не должно быть поперечных рисок от режущего инструмента. Шероховатость механически обработанных поверхностей \(R_z \) не должна превышать 40 мкм. Острые кромки должны быть притуплены с радиусом не более 0,1 \(a \).

Если не указано иное в нормативной документации на металлопродукцию, диаметр оправок должен соответствовать приведенному в табл. 3.1, их твердость должна составлять 55 – 60 единиц HRC по нагружающей поверхности. Ширина опор должна быть больше ширины образца. Диаметр опорных валиков 30 – 50 мм. Расстояние между опорами в свету, если иное не указано в нормативной документации на металлопродукцию, принимают равным \(d + 2,5 a \).

<table>
<thead>
<tr>
<th>Минимальный гарантированный предел текучести основного металла, МПа</th>
<th>Диаметр оправки на лицевой/корневой загиб ((a - толщина образца))</th>
<th>Диаметр оправки на боковой загиб, мм ((толщина образца 10 \text{ мм}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>не более 390</td>
<td>(2a)</td>
<td>30</td>
</tr>
<tr>
<td>420 – 620</td>
<td>(4a)</td>
<td>40</td>
</tr>
<tr>
<td>690</td>
<td>(6a)</td>
<td>60</td>
</tr>
</tbody>
</table>

Испытание состоит в изгибном нагружении образцов сосредоточенной нагрузкой в середине пролета между опорами при комнатной температуре (рис. 3. 1, а, б).
В случае отсутствия видимых невооруженным глазом дефектов на образце в процессе испытания нагружение проводится до достижения требуемого угла загиба. После снятия нагрузки образец исследуется на наличие дефектов на растягиваемой и боковых поверхностях образца при требуемом угле загиба.

При наличии видимых невооруженным глазом дефектов на образце в процессе испытания нагружение останавливается. После снятия нагрузки образец исследуется на наличие дефектов на растягиваемой и боковых поверхностях образца при достигнутом угле загиба.

Осматривают боковые поверхности, кромки и наружную поверхность изогнутой части образца. Определение результатов испытаний в отношении допустимости обнаруженных дефектов производят в соответствии с нормативно-технической документацией на металлопродукцию. Если не указано иное, образец считают выдержавшим испытание при отсутствии излома, расслоений, надрывов и трещин, видимых невооруженным глазом.
Угол изгиба, если он менее 180°, измеряется согласно рис. 3.1, d, после снятия нагрузки. Изгиб на 180° осуществляется до параллельности сторон (рис. 3.1, e) или до соприкосновения сторон (рис. 3.1, f). Изгиб на опорах допускается выполнять до угла изгиба 140°.

4 МЕТОДИКА ОПРЕДЕЛЕНИЯ СТОЙКОСТИ К СУЛЬФИДНОМУ РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

Испытаниям подвергают по три образца от каждой испытываемой трубы. Если иное не указано в нормативной документации на металлопродукцию, испытательной средой выбидают раствор, состоящий из водного раствора хлористого натрия - 5 % NaCl и ледяной уксусной кислоты - 0,5 % CH₃COOH (pH раствора = 2,7), насыщенный сероводородом при давлении 0,1 МПа.

Испытания проводятся при постоянной нагрузке четырехточечным изгибом образца полной толщины или растяжении цилиндрического образца, выдерживаемых в испытательном растворе в течение 720 часов при напряжении, составляющем 85 % минимального нормированного предела текучести для труб. Критерий приемлемости - отсутствие трещин по данным магнитной дефектоскопии и металлографическому контролю на макрошлифах после испытания.

5 ОПРЕДЕЛЕНИЕ СТОЙКОСТИ К ВОДОРОДО-ИНДУЦИРОВАННОМУ/СТУПЕНЧАТОМУ РАСТРЕСКИВАНИЮ

Испытаниям подвергают по три образца от каждой испытываемой трубы. Если иное не указано в нормативной документации на металлопродукцию, испытательной средой выбирают раствор, состоящий из водного раствора хлористого натрия - 5 % NaCl и ледяной уксусной кислоты - 0,5 % CH₃COOH (pH раствора = 2,7), насыщенный сероводородом с концентрацией 3000 ppm при давлении 0,1 МПа.

Образцы выдерживают в испытательном растворе в течение 96 часов, после чего оценивается доля образовавшихся трещин в образцах.

Размер образцов 100 × 20 мм × толщина изделия.
По требованию Регистра производится количественная оценка поглощенного водорода (диффузия в течение 72 часов в глицерине при температуре 45 °C).

Внутреннее растрескивание оценивается методом микрофотографии (вырезкой шлифов и замерами трещин), критерий

\[CLR = \sum \frac{l_i}{L} \cdot 100\% , \]

где \(l_i \) — длина \(i \)-й трещины на шлифе размером \(L \times \) толщина изделия.
ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ СКОРОСТИ И УСКОРЕНИЯ ВОЛНОВОГО ДВИЖЕНИЯ ЧАСТИЦ ВОДЫ В ПРИДОННОМ СЛОЕ

1. Компоненты скорости и ускорения волнового движения частиц воды в придонном слое: $V_{w,x}$, $V_{w,z}$, $a_{w,x}$, $a_{w,z}$ определяются по таблицам 1 – 4 в зависимости от следующего:

- h — глубины моря в районе рассматриваемого участка трубопровода, м;
- H — высоты волн 1 %-ной обеспеченности в течение года, м;
- τ — периода волн 1 %-ной обеспеченности в течение года, с.

Промежуточные значения компонент скорости и ускорения определяются линейной интерполяцией.

2. Значения H и τ определяются по результатам инженерно-гидрометеорологических изысканий по трассе морского подводного трубопровода. Допускается использование Справочных данных Регистра по режиму ветра и волнения для назначения высоты и периода волн обеспеченностью 10^{-2} 1/год для тех районов морских акваторий (участков трассы трубопровода), где эти значения определены.

Расчетные значения скорости V_w и ускорения a_w определяются по формулам:

\[
V_w = \sqrt{V_{w,x}^2 + V_{w,z}^2},
\]

\[
a_w = \sqrt{a_{w,x}^2 + a_{w,z}^2}.
\]
Таблица 1

Горизонтальная компонента скорости \(V_{m,x} \), м/с

<table>
<thead>
<tr>
<th>Глубина моря (h) = 10 м</th>
<th>Период волны (\tau), с</th>
<th>Высота волны (H), м</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,24</td>
<td>0,48</td>
<td>0,72</td>
<td>0,96</td>
<td>1,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,37</td>
<td>0,74</td>
<td>1,10</td>
<td>1,45</td>
<td>1,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,43</td>
<td>0,88</td>
<td>1,32</td>
<td>1,74</td>
<td>2,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,47</td>
<td>0,98</td>
<td>1,48</td>
<td>1,95</td>
<td>2,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,51</td>
<td>1,06</td>
<td>1,60</td>
<td>2,10</td>
<td>2,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,53</td>
<td>1,13</td>
<td>1,70</td>
<td>2,22</td>
<td>2,65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h) = 20 м</th>
<th>Период волны (\tau), с</th>
<th>Высота волны (H), м</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,051</td>
<td>0,168</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,163</td>
<td>0,492</td>
<td>0,996</td>
<td>1,315</td>
<td>1,514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,235</td>
<td>0,709</td>
<td>1,417</td>
<td>1,863</td>
<td>2,248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,275</td>
<td>0,841</td>
<td>1,690</td>
<td>2,224</td>
<td>2,692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,301</td>
<td>0,932</td>
<td>1,890</td>
<td>2,488</td>
<td>3,011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,319</td>
<td>1,004</td>
<td>2,050</td>
<td>2,695</td>
<td>3,254</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h) = 30 м</th>
<th>Период волны (\tau), с</th>
<th>Высота волны (H), м</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,010</td>
<td>0,037</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,075</td>
<td>0,229</td>
<td>0,479</td>
<td>0,834</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,145</td>
<td>0,437</td>
<td>0,881</td>
<td>1,471</td>
<td>2,065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,191</td>
<td>0,575</td>
<td>1,156</td>
<td>1,916</td>
<td>2,744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,219</td>
<td>0,665</td>
<td>1,343</td>
<td>2,230</td>
<td>3,205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,237</td>
<td>0,727</td>
<td>1,481</td>
<td>2,470</td>
<td>3,551</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h) = 40 м</th>
<th>Период волны (\tau), с</th>
<th>Высота волны (H), м</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,002</td>
<td>0,018</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,034</td>
<td>0,182</td>
<td>0,418</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Глубина моря $h = 50$ м</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таблица высот волн, м</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>0,0001</td>
</tr>
<tr>
<td>7</td>
<td>0,015</td>
</tr>
<tr>
<td>9</td>
<td>0,057</td>
</tr>
<tr>
<td>11</td>
<td>0,101</td>
</tr>
<tr>
<td>13</td>
<td>0,133</td>
</tr>
<tr>
<td>15</td>
<td>0,155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 70$ м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Таблица высот волн, м</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0,017</td>
</tr>
<tr>
<td>9</td>
<td>0,111</td>
</tr>
<tr>
<td>11</td>
<td>0,272</td>
</tr>
<tr>
<td>13</td>
<td>0,427</td>
</tr>
<tr>
<td>15</td>
<td>0,546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 100$ м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Таблица высот волн, м</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>0,002</td>
</tr>
<tr>
<td>9</td>
<td>0,026</td>
</tr>
<tr>
<td>11</td>
<td>0,104</td>
</tr>
<tr>
<td>13</td>
<td>0,218</td>
</tr>
<tr>
<td>15</td>
<td>0,330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 125$ м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Таблица высот волн, м</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,008</td>
</tr>
</tbody>
</table>
Продолжение табл. 1

11	0,046	0,097	0,230	0,312	–
13	0,123	0,250	0,533	0,691	0,858
15	0,216	0,436	0,893	1,133	1,379

Глубина моря \(h = 150 \text{ м} \)

Период волны, \(\tau, \text{ с} \)	Высота волны \(H, \text{ м} \)				
	5	10	20	25	30
9	0,002	0,006	–	–	–
11	0,020	0,043	0,108	0,151	0,193
13	0,068	0,140	0,305	0,402	0,507
15	0,141	0,285	0,589	0,752	0,923

Таблица 2

Вертикальная компонента скорости \(V_{w,z} \) (м/сек)

<table>
<thead>
<tr>
<th>Глубина моря (h = 10 \text{ м})</th>
</tr>
</thead>
</table>

Период волны, \(\tau, \text{ с} \)	Высота волны \(H, \text{ м} \)				
	1	2	3	4	5
5	0,04	0,08	0,11	0,14	0,16
7	0,04	0,07	0,11	0,14	0,16
9	0,03	0,06	0,09	0,12	0,15
11	0,03	0,06	0,09	0,12	0,14
13	0,02	0,05	0,08	0,11	0,14
15	0,02	0,05	0,08	0,11	0,13

<table>
<thead>
<tr>
<th>Глубина моря (h = 20 \text{ м})</th>
</tr>
</thead>
</table>

Период волны, \(\tau, \text{ с} \)	Высота волны \(H, \text{ м} \)				
	1	3	6	8	10
5	0,008	0,026	–	–	–
7	0,014	0,042	0,081	0,101	0,111
9	0,014	0,041	0,079	0,100	0,117
11	0,012	0,037	0,072	0,093	0,110
13	0,011	0,033	0,066	0,087	0,105
15	0,010	0,030	0,062	0,083	0,101
Глубина моря $h = 30 \text{ м}$

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0,002</td>
</tr>
<tr>
<td>7</td>
<td>0,006</td>
</tr>
<tr>
<td>9</td>
<td>0,008</td>
</tr>
<tr>
<td>11</td>
<td>0,008</td>
</tr>
<tr>
<td>13</td>
<td>0,007</td>
</tr>
<tr>
<td>15</td>
<td>0,006</td>
</tr>
</tbody>
</table>

Глубина моря $h = 40 \text{ м}$

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,003</td>
</tr>
<tr>
<td>9</td>
<td>0,005</td>
</tr>
<tr>
<td>11</td>
<td>0,005</td>
</tr>
<tr>
<td>13</td>
<td>0,005</td>
</tr>
<tr>
<td>15</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Глубина моря $h = 50 \text{ м}$

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0,001</td>
</tr>
<tr>
<td>9</td>
<td>0,003</td>
</tr>
<tr>
<td>11</td>
<td>0,004</td>
</tr>
<tr>
<td>13</td>
<td>0,004</td>
</tr>
<tr>
<td>15</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Глубина моря $h = 70 \text{ м}$

<table>
<thead>
<tr>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>0,001</td>
</tr>
<tr>
<td>9</td>
<td>0,005</td>
</tr>
<tr>
<td>11</td>
<td>0,009</td>
</tr>
<tr>
<td>13</td>
<td>0,011</td>
</tr>
<tr>
<td>15</td>
<td>0,011</td>
</tr>
</tbody>
</table>
Продолжение табл. 2

Глубина моря \(h = 100 \) м						
Период волны, \(\tau, \) с	Высота волны \(H, \) м	5	10	20	25	30
9	0,001	0,003	–	–	–	
11	0,003	0,007	0,015	0,019	–	
13	0,005	0,011	0,021	0,026	0,031	
15	0,006	0,012	0,024	0,030	0,035	

Глубина моря \(h = 125 \) м						
Период волны, \(\tau, \) с	Высота волны \(H, \) м	5	10	20	25	30
9	–	0,001	–	–	–	
11	0,002	0,003	0,007	0,009	–	
13	0,003	0,006	0,012	0,015	0,018	
15	0,004	0,008	0,016	0,020	0,024	

Глубина моря \(h = 150 \) м						
Период волны, \(\tau, \) с	Высота волны \(H, \) м	5	10	20	25	30
11	0,001	0,001	0,003	0,004	–	
13	0,002	0,003	0,007	0,009	0,011	
15	0,003	0,005	0,010	0,013	0,016	

Таблица 3

Горизонтальная компонента ускорения \(a_{\text{м.с.}} \) (м/сек²)						
Глубина моря \(h = 10 \) м						
Период волны, \(\tau, \) с	Высота волны \(H, \) м	1	2	3	4	5
5	0,30	0,60	0,90	1,17	1,33	
7	0,32	0,64	0,94	1,22	1,45	
9	0,29	0,58	0,86	1,13	1,37	
11	0,26	0,52	0,80	1,07	1,32	
13	0,23	0,49	0,77	1,04	1,29	
15	0,21	0,47	0,75	1,02	1,27	

236
<table>
<thead>
<tr>
<th>Глубина моря</th>
<th>Период волны, (t), с</th>
<th>Высота волны (H), м</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = 20) м</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,064</td>
<td>0,211</td>
</tr>
<tr>
<td>7</td>
<td>0,146</td>
<td>0,433</td>
</tr>
<tr>
<td>9</td>
<td>0,163</td>
<td>0,485</td>
</tr>
<tr>
<td>11</td>
<td>0,155</td>
<td>0,463</td>
</tr>
<tr>
<td>13</td>
<td>0,142</td>
<td>0,427</td>
</tr>
<tr>
<td>15</td>
<td>0,129</td>
<td>0,395</td>
</tr>
<tr>
<td>(h = 30) м</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,013</td>
<td>0,046</td>
</tr>
<tr>
<td>7</td>
<td>0,067</td>
<td>0,205</td>
</tr>
<tr>
<td>9</td>
<td>0,101</td>
<td>0,304</td>
</tr>
<tr>
<td>11</td>
<td>0,108</td>
<td>0,324</td>
</tr>
<tr>
<td>13</td>
<td>0,105</td>
<td>0,314</td>
</tr>
<tr>
<td>15</td>
<td>0,098</td>
<td>0,294</td>
</tr>
<tr>
<td>(h = 40) м</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,003</td>
<td>0,023</td>
</tr>
<tr>
<td>7</td>
<td>0,030</td>
<td>0,163</td>
</tr>
<tr>
<td>9</td>
<td>0,064</td>
<td>0,322</td>
</tr>
<tr>
<td>11</td>
<td>0,079</td>
<td>0,393</td>
</tr>
<tr>
<td>13</td>
<td>0,081</td>
<td>0,404</td>
</tr>
<tr>
<td>15</td>
<td>0,079</td>
<td>0,391</td>
</tr>
<tr>
<td>(h = 50) м</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,013</td>
<td>0,184</td>
</tr>
<tr>
<td>9</td>
<td>0,040</td>
<td>0,424</td>
</tr>
<tr>
<td>11</td>
<td>0,058</td>
<td>0,582</td>
</tr>
</tbody>
</table>
Продолжение табл. 3

<table>
<thead>
<tr>
<th>Глубина моря $h = 70$ м</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Период волны, τ, с</td>
<td>Высота волны H, м</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>0,015</td>
<td>0,044</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,078</td>
<td>0,170</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,155</td>
<td>0,318</td>
<td>0,668</td>
<td>0,833</td>
</tr>
<tr>
<td>13</td>
<td>0,206</td>
<td>0,414</td>
<td>0,832</td>
<td>1,031</td>
</tr>
<tr>
<td>15</td>
<td>0,228</td>
<td>0,454</td>
<td>0,898</td>
<td>1,105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 100$ м</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Период волны, τ, с</td>
<td>Высота волны H, м</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>0,001</td>
<td>0,005</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,018</td>
<td>0,042</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,059</td>
<td>0,123</td>
<td>0,279</td>
<td>0,365</td>
</tr>
<tr>
<td>13</td>
<td>0,105</td>
<td>0,213</td>
<td>0,444</td>
<td>0,566</td>
</tr>
<tr>
<td>15</td>
<td>0,138</td>
<td>0,277</td>
<td>0,560</td>
<td>0,703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 125$ м</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Период волны, τ, с</td>
<td>Высота волны H, м</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>0,001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,005</td>
<td>0,013</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,026</td>
<td>0,055</td>
<td>0,131</td>
<td>0,178</td>
</tr>
<tr>
<td>13</td>
<td>0,059</td>
<td>0,121</td>
<td>0,257</td>
<td>0,334</td>
</tr>
<tr>
<td>15</td>
<td>0,091</td>
<td>0,183</td>
<td>0,373</td>
<td>0,473</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 150$ м</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Период волны, τ, с</td>
<td>Высота волны H, м</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>0,002</td>
<td>0,004</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,011</td>
<td>0,025</td>
<td>0,062</td>
<td>0,086</td>
</tr>
<tr>
<td>13</td>
<td>0,033</td>
<td>0,068</td>
<td>0,148</td>
<td>0,194</td>
</tr>
<tr>
<td>15</td>
<td>0,059</td>
<td>0,119</td>
<td>0,246</td>
<td>0,315</td>
</tr>
</tbody>
</table>
Таблица 4
Вертикальная компонента ускорения $a_{w,t}$ (м/сек²)

<table>
<thead>
<tr>
<th>Глубина моря $h = 10$ м</th>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,05</td>
<td>0,10</td>
<td>0,15</td>
<td>0,18</td>
<td>0,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,03</td>
<td>0,07</td>
<td>0,11</td>
<td>0,14</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,03</td>
<td>0,05</td>
<td>0,09</td>
<td>0,12</td>
<td>0,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
<td>0,11</td>
<td>0,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,02</td>
<td>0,04</td>
<td>0,07</td>
<td>0,10</td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,01</td>
<td>0,04</td>
<td>0,07</td>
<td>0,10</td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 20$ м</th>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,010</td>
<td>0,033</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,013</td>
<td>0,039</td>
<td>0,074</td>
<td>0,089</td>
<td>0,103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,010</td>
<td>0,029</td>
<td>0,057</td>
<td>0,075</td>
<td>0,091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,007</td>
<td>0,023</td>
<td>0,048</td>
<td>0,064</td>
<td>0,080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,006</td>
<td>0,019</td>
<td>0,042</td>
<td>0,058</td>
<td>0,074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,005</td>
<td>0,017</td>
<td>0,039</td>
<td>0,054</td>
<td>0,069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 30$ м</th>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,002</td>
<td>0,007</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,006</td>
<td>0,017</td>
<td>0,035</td>
<td>0,055</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,005</td>
<td>0,016</td>
<td>0,033</td>
<td>0,050</td>
<td>0,068</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,004</td>
<td>0,013</td>
<td>0,026</td>
<td>0,042</td>
<td>0,061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,003</td>
<td>0,011</td>
<td>0,022</td>
<td>0,037</td>
<td>0,055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,003</td>
<td>0,009</td>
<td>0,019</td>
<td>0,033</td>
<td>0,050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря $h = 40$ м</th>
<th>Период волны, τ, с</th>
<th>Высота волны H, м</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>–</td>
<td>0,003</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>0,002</td>
<td>0,013</td>
<td>0,028</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Продолжение табл. 4

<table>
<thead>
<tr>
<th>Глубина моря (h = 50 \text{ м})</th>
<th>Период волны, (\tau, \text{ с})</th>
<th>(\text{Высота волны} H, \text{ м})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,002</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,002</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,030</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,036</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,041</td>
</tr>
<tr>
<td>13</td>
<td>0,002</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,032</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,039</td>
</tr>
<tr>
<td>15</td>
<td>0,001</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,029</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h = 70 \text{ м})</th>
<th>Период волны, (\tau, \text{ с})</th>
<th>(\text{Высота волны} H, \text{ м})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>0,004</td>
<td>0,008</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,005</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,035</td>
</tr>
<tr>
<td>13</td>
<td>0,005</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,027</td>
</tr>
<tr>
<td>15</td>
<td>0,005</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h = 100 \text{ м})</th>
<th>Период волны, (\tau, \text{ с})</th>
<th>(\text{Высота волны} H, \text{ м})</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,002</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,011</td>
</tr>
<tr>
<td>13</td>
<td>0,003</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,015</td>
</tr>
<tr>
<td>15</td>
<td>0,003</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глубина моря (h = 125 \text{ м})</th>
<th>Период волны, (\tau, \text{ с})</th>
<th>(\text{Высота волны} H, \text{ м})</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>0,001</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,005</td>
</tr>
<tr>
<td>13</td>
<td>0,001</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,008</td>
</tr>
</tbody>
</table>

240
Глубина моря \(h = 150 \text{ м} \)

<table>
<thead>
<tr>
<th>Период волны, (\tau, \text{ с})</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>–</td>
<td>0,001</td>
<td>0,002</td>
<td>0,003</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>0,001</td>
<td>0,002</td>
<td>0,003</td>
<td>0,004</td>
<td>0,005</td>
</tr>
<tr>
<td>15</td>
<td>0,001</td>
<td>0,002</td>
<td>0,004</td>
<td>0,006</td>
<td>0,007</td>
</tr>
</tbody>
</table>
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ДЛЯ РАСЧЕТА ВОЛНОВЫХ НАГРУЗОК

1. Коэффициенты сопротивления c_d и инерции c_i при волновом движении частиц воды по нормали к оси трубопровода зависят от числа Кюлегана-Карпентера KC, относительной шероховатости k поверхности трубопровода и рассчитываются согласно графикам, приведенным на рис. 1-1, 1-2.

![Рис. 1-1](image)

Рис. 1-1
Коэффициент c_d в зависимости от числа Кюлегана-Карпентера KC и относительной шероховатости k поверхности трубопровода

Число Кюлегана-Карпентера KC определяется по формуле

$$KC = \frac{V_w \cdot \tau}{D^a},$$ \hspace{1cm} (1)

где V_w — скорость волнового движения частиц воды, м/с (см. 2.6.2 части I «Морские подводные трубопроводы»);

τ — период волнения, с (см. приложение 5);

1 Приложение подготовлено на основании правил признанного классификационного общества и имеет справочный характер.
2. В случае отстояния трубопровода от морского дна на расстояние d, м, (см. рис. 2) коэффициенты c_d и c_i рассчитываются по формулам:

$$ c_d(d/D_a) = c_d + (c_{db} - c_d) \cdot e^{-2.5d/D_a}; \tag{2-1} $$

$$ c_i(d/D_a) = c_i + (c_{ib} - c_i) \cdot e^{-2.5d/D_a}, \tag{2-2} $$

где

$$ c_{db} = 1.8 + 0.136 KC \quad \text{при } 0 \leq KC \leq 5; \tag{2-3} $$

$$ c_{db} = 1.25 + 2.14 \cdot 10^{-9} (KC - 160)^4 \quad \text{при } KC > 5; $$

$$ c_{ib} = 3.3 - 0.0375 KC \quad \text{при } 0 \leq KC \leq 8; \tag{2-4} $$

$$ c_{ib} = 1.742 \cdot KC^{-0.267} \quad \text{при } KC > 8; $$

3. Влияние частичного заглубления трубопровода на расстояние Δ от морского дна (см. рис. 2) на коэффициенты c_d и c_i определяется по рис. 3.

4. Для трубопроводов, расположенных в открытой траншее (см. рис. 4), влияние глубины δ, м, и уклона S, траншеи на коэффициенты c_d и c_i определяется в соответствии с табл. 4.
Рис. 2
Расположение трубопровода относительно морского дна

Рис. 3
Коэффициенты C_d и C_r в зависимости от относительного заглубления трубопровода Δ/D_o

Рис. 4
Схема трубопровода, расположенного в открытой траншее
Таблица 4

Влияние открытой траншеи на величину коэффициентов \(c_a \) и \(c_t \)

<table>
<thead>
<tr>
<th>(\delta_i/D_a)</th>
<th>0,5</th>
<th>1,0</th>
<th>1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(c_a(\delta_i, s_i)/c_{db})</td>
<td>0,8</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>(c_t(\delta_i, s_i)/c_{ib})</td>
<td>0,9</td>
<td>0,8</td>
<td>0,75</td>
</tr>
</tbody>
</table>

5. Коэффициент \(c_v \) определяется по формулам:

\[
\begin{align*}
 c_v &= 5,05 & \text{при } 0 \leq KC \leq 5,335 \\
 c_v &= 1,3 - 0,105 \frac{(KC - 80)}{KC^{0,5}} & \text{при } 5,335 < KC \leq 80 \\
 c_v &= - KC \cdot 0,001667 + 1,4333 & \text{при } KC > 80
\end{align*}
\]

6. Влияние отстояния трубопровода от морского dna \(d \) на коэффициент \(c_v \) определяется по формуле

\[
c_v(d/D_a) = c_v \cdot \exp^{-2,5d/D_a}.
\]

7. Влияние частичного заглубления трубопровода на расстояние \(\Delta \), м, от морского dna на коэффициент \(c_v \) определяется по рис. 7.

8. Для трубопроводов, расположенных в открытой траншее, влияние глубины \(\delta_0 \), м, и уклона \(S_t \) траншеи на коэффициент \(c_v \) определяется в соответствии с табл. 8.

Таблица 8

Влияние открытой траншеи на величину коэффициента \(c_v \)

<table>
<thead>
<tr>
<th>(\delta_i/D_a)</th>
<th>0,5</th>
<th>1,0</th>
<th>1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(c_v(\delta_i, s_i)/c_{sv})</td>
<td>0,85</td>
<td>0,7</td>
<td>0,65</td>
</tr>
</tbody>
</table>

9. При комбинации погонных нагрузок течения и воли величины коэффициентов \(c_{db}, c_{b}, c_v \) корректируются в зависимости от отношения \(\beta \) расчетных скоростей течения и волнового движения частиц воды (см. 2.5 и 2.6 части I «Морские подводные трубопроводы»), равного \(\beta = V_c/V_w \), в соответствии с рис. 9-1, 9-2 и 9-3.
Рис. 7
Зависимость коэффициента \(c_r(\Delta)/c_r \) от относительного заглубления трубопровода \(\Delta/D_z \).

Рис. 9-1
Коэффициент \(c_{ab} \) в зависимости от коэффициента \(\beta \).
Рис. 9-2
Коэффициент c_{s} в зависимости от коэффициента β

Рис. 9-3
Коэффициент c_{r} в зависимости от коэффициента β
Результатирующие величины $c_{db}(\beta)$ и $c_{ib}(\beta)$ будут справедливы для подводных трубопроводов, отстоящих от морского дна на расстояние d, м, для частично заглубленных трубопроводов и трубопроводов в траншее.
МОДЕЛЬ ДИНАМИЧЕСКОГО ОТКЛИКА ПОДВОДНЫХ ТРУБОПРОВОДОВ ПРИ ВИХРЕВОЙ ВИБРАЦИИ

1 КОЛЕБАНИЯ ВДОЛЬ ПОТОКА

1.1 Размах напряжений S_{IL}, порожденных вихревой вибрацией вдоль потока, вычисляется по формуле

$$ S_{IL} = 2 \cdot A_{IL} \cdot \frac{A_y}{D_a} \cdot \psi_{a,IL} \cdot \gamma_s, $$

где A_{IL} — амплитудное значение напряжений, порождаемое амплитудой перемещений $A_y = D_a$ при колебаниях свободного пролета трубопровода вдоль потока;

A_y / D_a — максимальная относительная амплитуда колебаний трубопровода вдоль потока при вихревой вибрации, зависящая от приведенной скорости V' и коэффициента устойчивости K_s;

$\psi_{a,IL}$ — поправочный коэффициент для коэффициента скорости потока a;

γ_s — коэффициент безопасности по амплитудным напряжениям ($\gamma_s = 1,05$).

1.2 При вычислении относительной амплитуды колебаний A_y / D_a используются расчетные величины приведенной скорости и коэффициента устойчивости

$$ V_{Rd} = V' \cdot \gamma_f; $$

$$ K_{sd} = \frac{K_s}{\gamma_k}, $$

где γ_f и γ_k — коэффициенты безопасности по собственной частоте и демпфированию, соответственно. При отсутствии экспериментальных данных рекомендуется принимать $\gamma_f = 1,2; \gamma_k = 1,3$.

1.3 Модель динамического отклика трубопровода в координатах $\left(A_y / D_a - V' \right)$ строится в соответствии со схемой, приведенной на рисунке 1.3.

1 Приложение подготовлено на основании правил признанного классификационного общества и имеет справочный характер.
1.4 Координаты точек ломаной, приведенной на рисунке 1.3, определяются по формулам

\[V_{IL, onset}^I = \begin{cases}
\left(\frac{1,0}{\gamma_{on}} \right) & \text{для } K_{Sl} < 0,4 \\
\left(\frac{0,6 + K_{Sl}}{\gamma_{on}} \right) & \text{для } 0,4 < K_{Sl} < 1,6 \\
\left(\frac{2,2}{\gamma_{on}} \right) & \text{для } K_{Sl} > 1,6
\end{cases} \]

\[V_{IL, end}^II = \begin{cases}
4,5 - 0,8 K_{Sl} & \text{для } K_{Sl} < 1,0 \\
3,7 & \text{для } K_{Sl} > 1,0
\end{cases} \]

\[\left(\frac{A_{y,1}}{D_a} \right) = 0,18 \cdot \left(1 - \frac{K_{Sl}}{1,2} \right) \cdot R_{r_1}; \left(\frac{A_{y,2}}{D_a} \right) = 0,13 \cdot \left(1 - \frac{K_{Sl}}{1,8} \right) \cdot R_{r_2} \]

где \(R_{r_1} (\varphi, \theta_{r_1}) \) и \(R_{r_2} (\varphi) \) — редукционные коэффициенты, учитывающие влияние интенсивности турбулентности и курсового угла потока (в радианах), определяемые в виде:
\[R_{n,1} = 1 - \pi \left(\frac{\pi}{2} - \sqrt{2} \cdot \theta_{rel} \right) (I_c - 0,03) \quad 0 \leq R_{n,1} \leq 1, \quad (1.4-1) \]

\[R_{n,2} = 1,0 - \frac{(I_c - 0,03)}{0,17} \quad 0 \leq R_{n,2} \leq 1. \quad (1.4-2) \]

\[\Psi_{n,\alpha} = \begin{cases}
0,0 & \text{для } \alpha < 0,5 \\
(a - 0,5) / 0,3 & \text{для } 0,5 < \alpha < 0,8 \\
1,0 & \text{для } \alpha > 0,8
\end{cases} \quad (1.4-3) \]

\[\psi_{on} = 1,10 - \text{коэффициент безопасности на начальное значение } V_{\kappa} \]

\[I_c - \text{см. } 2.7.5.4 \text{ части I "Морские подводные трубопроводы"}, \]

\[\alpha - \text{см. } 2.7.5.3 \text{ части I "Морские подводные трубопроводы"}. \]

2 КОЛЕБАНИЯ ПОПЕРЕК ПОТОКА

2.1 Размах напряжений \(S_{CF} \) порожденных вихревой вибрацией поперек потока, вычисляется по формуле

\[S_{CF} = 2 \cdot A_{CF} \cdot \frac{A_z}{D_a} \cdot R_k \cdot \gamma_z, \quad (2.1) \]

gде \(A_{CF} \) - амплитудное значение напряжений, порождаемое амплитудой перемещений \(A_z = D_a \) при колебаниях свободного пролета трубопровода поперек потока;
\(A_z / D_a \) - относительная амплитуда колебаний свободного пролета трубопровода поперек потока, возбуждаемых срывом вихрей при комбинированном воздействии течения и волнения, которая принимается в соответствии с графиками, приведенными на рисунке 2.2;
\(R_k \) - коэффициент понижения амплитуды колебаний вследствие демпфирования;
\(\gamma_z \) - коэффициент безопасности по амплитудным напряжениям (\(\gamma_z = 1,05 \)).

2.2 Модель динамического отклика трубопровода в координатах «\(A_z / D_a - V_{\kappa}^C \)» строится в соответствии со схемой, приведенной на рис. 2.2.

2.3 Координаты точек ломаной, приведенной на рис. 2.2, определяются по формулам:

\[V_{CF}^{R, \text{onset}} = \frac{3 \cdot \psi_{p conex, onset} \cdot \psi_{trench, onset}}{\gamma_{on}}, \quad V_{CF}^{R, \text{onset}} = 7 \cdot \frac{(7 - V_{CF}^{R, \text{onset}})}{1,15} \cdot \left(1,3 - \frac{A_z}{D_a} \right), \]
Рис. 2.2

Принцип построения модели динамического отклика свободного пролета трубопровода поперек потока

\[V_{CF}^{R_2} = V_{CF}^{R_{end}} - \left(\frac{7}{1,3} \right) \left(\frac{A_{z,1}}{D_a} \right), \quad V_{CF}^{R_{end}} = 16, \]

\[
\begin{align*}
\frac{A_{z,1}}{D_a} &= \begin{cases}
0,9 & \text{для } \alpha > 0,8 \\
0,9 + 0,5 \left(\frac{f_{n+1,CF}}{f_n} - 1,5 \right) & \text{для } 0,8 \leq \alpha \leq 1,5 \\
1,3 & \text{для } \alpha > 1,5 \\
0,9 & \text{для } \alpha \leq 0,8 \\
0,7 + 0,01 \cdot (KC - 10) & \text{для } \alpha \leq 0,8 \\
0,7 & \text{для } \alpha \leq 0,8
\end{cases}
\]

где \(\psi_{proxi, onset} \) — поправочный коэффициент, учитывающий близость морского dna

\[
\psi_{proxi, onset} = \begin{cases}
\frac{1}{5} \left(4 + 1,25 \frac{d}{D_a} \right) & \text{для } \frac{d}{D_a} < 0,8 \\
1,0 & \text{для } \frac{d}{D_a} \geq 0,8
\end{cases}
\]
ψ_{French, onset} – поправочный коэффициент, учитывающий влияние расположения трубы в/над траншей – см. рис. 2.3.

ψ_{French, onset} = 1 + 0,5 \left(\frac{\Delta_0}{D_a} \right), \quad (2.3-2)

где \ \frac{\Delta_0}{D_a} – относительная глубина траншеи, определяемая по формуле

\frac{\Delta_0}{D_a} = \frac{1,25 \delta_t - d}{D_a} \left(0 \leq \frac{\Delta_0}{D_a} \leq 1 \right), \quad (2.3-3)

\left(f_{n+1,cr}/f_{n,cr} \right) – отношение частот двух последовательных форм колебаний трубопровода поперек потока.

Рис. 2.3
Расположение трубопровода в траншее

2.4 Амплитуда колебаний свободного пролета трубопровода поперек потока, возбуждаемых срывом вихрей, может быть понижена вследствие влияния демпфирования. Понижающий коэффициент \(R_k \) определяется зависимостью

\[R_k = \begin{cases} 1 - 0,15 K_{sd} & \text{для } K_{sd} \leq 4 \\ 3,2 K_{sd}^{-1,5} & \text{для } K_{sd} > 4 \end{cases} \quad (2.4) \]
ОСНОВНЫЕ ТРЕБОВАНИЯ К ПРОВЕРКЕ ПРОЧНОСТИ СТАЛЬНЫХ ПОДВОДНЫХ ТРУБОПРОВОДОВ ПРИ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЯХ

1 ИСХОДНЫЕ ДАННЫЕ ПО СЕЙСМИЧЕСКОМУ ВОЗДЕЙСТВИЮ

1.1 Основной величиной, характеризующей сейсмическое воздействие, является расчетная балльность землетрясения \(I \) соответствующей повторяемости.

Расчет по линейной спектральной теории для случая проектного землетрясения (ПЗ) ведется исходя из нормированной спектральной плотности:

\[
S^H(\omega) = \frac{2}{\pi} \frac{m^2 + \omega^2}{m^4 + 2\alpha \omega^2 + \omega^4}
\]

где \(\alpha, \theta \) - коэффициенты спектральной плотности,

\[
\alpha = 6 \div 8,5 \text{ с}^{-1}; \\
\theta = 14 \div 20 \text{ с}^{-1}; \\
m^2 = \alpha^2 + \theta^2; \\
a = \alpha^2 - \theta^2.
\]

1.2 Спектральная плотность случайной функции сейсмического движения грунта соответствующей балльности \(I \) представляется в виде формулы (1.2) – см. рис. 1.2.

\[
S(\omega) = D \cdot S^H(\omega)
\]

Значения дисперсии \(D \) для интенсивности землетрясения 7, 8 и 9 баллов приведены в табл. 1.2

<table>
<thead>
<tr>
<th>Балльность, (I)</th>
<th>(D), (\text{м}^2/\text{с}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0,0625</td>
</tr>
<tr>
<td>8</td>
<td>0,25</td>
</tr>
<tr>
<td>9</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Табл. 1.2
1.3 Расчет нелинейного воздействия для случая максимального расчетного землетрясения (MP3) ведется исходя из акселерограммы стандартного землетрясения соответствующей балльности.

Коэффициенты спектральной плотности α и β могут приниматься в указанных в 1.1 диапазонах, дисперсия D определяется согласно балльности по табл. 1.2. Уточненные значения коэффициентов могут быть получены при обработке акселерограммы землетрясения, полученной в рассматриваемом регионе.

Величины максимальных расчетных ускорений в зависимости от балльности должны соответствовать табл. 1.3.

<table>
<thead>
<tr>
<th>Значения максимальных расчетных ускорений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Балльность, I</td>
</tr>
<tr>
<td>Сейсмическое ускорение a_e см/с2</td>
</tr>
</tbody>
</table>

2 ПАРАМЕТРЫ ПОДВОДНОГО ТРУБОПРОВОДА, УЧИТЫВАЕМЫЕ В РАСЧЕТАХ СЕЙСМИЧЕСКОЙ СТОЙКОСТИ

2.1 При составлении расчетной модели должны быть учтены следующие параметры подводного трубопровода и его трассы:
внутренний диаметр трубопровода;
толщина стенки трубы;
плотность материала трубы;
толщина балластного покрытия трубы;
плотность балластного покрытия трубы;
глубина заглубления МПТ в донный грунт (расстояние от верхней точки МПТ до уровня донного грунта);
внутреннее давление транспортируемого продукта;
ширина и высота обвалования трубопровода;
физико-механические характеристики материала (удельный вес) обвалования трубопровода;
диаграмма «напряжение-деформация» материала трубы;
глубина моря на рассматриваемом участке.

3 ХАРАКТЕРИСТИКИ ДОННОГО ГРУНТА

3.1 Характеристики донного грунта определяются по результатам инженерно-геологических изысканий, в результате которых определяются:
глубина соответствующего слоя грунта;
прочностные свойства слоя грунта, обычно включающие: плотность грунта, модуль Юнга, сцепление, угол внутреннего трения.

3.2 В случае отсутствия данных по прочности грунта, допускается принимать характеристики грунта по их типу в соответствии со следующим алгоритмом.

3.2.1 Поперечная (горизонтальная) динамическая жесткость K_L, МПа, определяется, как

$$K_L = \Delta F_L / \Delta \delta_L,$$

где ΔF_L — величина горизонтальной силы между трубопроводом и грунтом по длине трубопровода, кН/м;
$\Delta \delta_L$ — соответствующее горизонтальное смещение трубопровода, м.

1 Раздел приложения подготовлен на основании правил признанного классификационного общества.
Для определения K_L может быть применено следующее выражение:

$$K_L = 0,76 \cdot G \cdot (1 + \nu_g),$$

где G - модуль сдвига грунта, МПа;
ν_g - коэффициент Пуассона грунта.

3.2.2 Вертикальная динамическая жесткость грунта K_V, МПа, может быть определена с помощью следующего выражения:

$$K_V = \frac{0,88 \cdot G}{1 - \nu_g}.$$

(3.2.2)

3.2.3 Прочность грунта может быть определена по предельному значению модуля сдвига G_{max}

$$G_{max} = 625 \cdot \frac{OCR^{k_c}}{0,3 + 0,7 e_s^2} \sqrt{\sigma_a \sigma_s},$$

где σ_a - среднее эффективное напряжение, кПа;
σ_s - атмосферное давление (100 кПа);
\(e_s \) – коэффициент пористости грунта.

\(OCR \) – коэффициент переуплотнения грунтов, определяется как отношение давления, под которым грунт был ранее уплотнен, к давлению, действующему в настоящее время на грунт для глинистых грунтов, для песков принимается равным 1,0.

\(k_s \) – коэффициент, определенный экспериментальным путем в зависимости от числа пластичности грунта \(I_p \), может быть определен из графика рис. 3.2.3.

3.2.4 Число пластичности \(I_p \) определяется по результатам определения физико-механических характеристик грунтов в соответствии с требованиями действующих стандартов, например, ГОСТ 5180-84 и ГОСТ 25100-95.

Для глинистых грунтов число пластичности \(I_p \) может быть определено по табл. 3.2.4.

<table>
<thead>
<tr>
<th>Разновидность глинистых грунтов</th>
<th>Число пластичности (I_p)</th>
<th>Содержание песчаных частиц (2 – 0,5 мм), % по массе</th>
</tr>
</thead>
<tbody>
<tr>
<td>Супесь:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– песчанистая</td>
<td>1–7</td>
<td>≥ 50</td>
</tr>
<tr>
<td>– пылеватая</td>
<td>1–7</td>
<td>< 50</td>
</tr>
<tr>
<td>Суглинок:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– легкий песчанистый</td>
<td>7–12</td>
<td>≥ 40</td>
</tr>
<tr>
<td>– легкий пылеватый</td>
<td>7–12</td>
<td>< 40</td>
</tr>
<tr>
<td>– тяжелый песчанистый</td>
<td>12–17</td>
<td>≥ 40</td>
</tr>
<tr>
<td>– тяжелый пылеватый</td>
<td>12–17</td>
<td>< 40</td>
</tr>
<tr>
<td>Глина:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– легкая песчанистая</td>
<td>17–27</td>
<td>≥ 40</td>
</tr>
<tr>
<td>– легкая пылеватая</td>
<td>17–27</td>
<td>< 40</td>
</tr>
<tr>
<td>– тяжелая</td>
<td>> 27</td>
<td>не регламентируется</td>
</tr>
</tbody>
</table>

4 ПОСТРОЕНИЕ РАСЧЕТНОЙ МОДЕЛИ

4.1 Расчетная схема предполагает построение конечно-элементной модели, учитывая свойства материала трубы, параметры балластного покрытия, характеристики грунта и влияние морской воды для трех типов участков трубопровода: береговой переход;
линейный участок подводного трубопровода, незаглубленного в грунт, в том числе с обвалованием;
линейный участок подводного трубопровода, заглубленного в грунт.
Типовые структуры перечисленных конечно-элементных моделей показаны на рис. 4.1.1 – 4.1.3.

Рис. 4.1.1
Типовая структура конечно-элементной модели берегового перехода морского подводного трубопровода

Рис. 4.1.2
Типовая структура конечно-элементной модели линейного незаглубленного участка морского подводного трубопровода, проложенного в обваловании
4.2 ПАРАМЕТРЫ КОНЕЧНО-ЭЛЕМЕНТОЙ РАЗБИВКИ

4.2.1 Рекомендуемые параметры сетки могут быть приняты следующими:
горизонтальный продольный размер области моделирования – (180 ÷ 200) · \(D_a \);
вертикальный подразмер области от уровня дна до верхней поверхности модели – min \((20 ÷ 25) · D_a, H\); где \(D_a \) – внешний диаметр трубы и \(H \) – глубина моря;
горизонтальный поперечный размер области – (90 ÷ 100) · \(D_a \);
вертикальный подразмер области от уровня дна до нижней поверхности модельной области – (25 ÷ 30) · \(D_a \);
периметрический размер сетки по горизонтальным и вертикальным граням модели – \(D_a \);
размер сетки в поперечном сечении трубы по внутреннему периметру трубы – \((0,02 ÷ 0,025) · D_a \);
размер сетки вдоль трубы – \((0,04 ÷ 0,05) · D_a \).

4.2.2 Применяемые типы конечного элемента:
для трубы – оболочечный с возможностью учета физической и геометрической нелинейности;
для грунта – объемный с возможностью учета физической нелинейности поведения грунта по модели Друккера-Прагера;
для жидкости – объемный с возможностью учета физической нелинейности;
dля балластного покрытия – объемный;
dля учета взаимодействия трубопровода с грунтом элемент трения – одноузловой или двухузловой элемент.

5 ПАРАМЕТРЫ РАСЧЕТА

5.1 Расчет морского подводного трубопровода на сейсмостойкость проводится следующими методами:
линейно-спектральным методом для ПЗ;
прямым динамическим методом для МРЗ.

5.2 ЛИНЕЙНО-СПЕКТРАЛЬНЫЙ МЕТОД

5.2.1 Расчет воздействия ПЗ на заданный участок подводного трубопровода проводится в следующей последовательности:
.1 выбираются характерные точки анализа напряженно-деформированного состояния трубопровода;
.2 строятся амплитудно-частотные характеристики для деформаций в выбранных характерных точках $\varepsilon_{i}(\omega)$, где ω – частота возбуждающего сейсмического воздействия;
.3 вычисляются спектральные плотности деформаций в i-й точке:
$$S_{\varepsilon_{i}}(\omega) = \varepsilon_{i}^{2}(\omega) \cdot S_{\varepsilon}(\omega), \quad (5.2.1.3)$$
где $S_{\varepsilon}(\omega)$ – расчетная спектральная плотность сейсмического воздействия балльности I;
.4 вычисляется дисперсия деформаций в i-й точке:
$$D_{\varepsilon_{i}} = \int_{0}^{\omega} S_{\varepsilon_{i}}(\omega) d\omega, \quad (5.2.1.4)$$
.5 искомое расчетное значение деформации вычисляется как:
$$\varepsilon_{i,p} = 3 \sqrt{D_{\varepsilon_{i}}}, \quad (5.2.1.5)$$
5.3 ПРЯМОЙ ДИНАМИЧЕСКИЙ МЕТОД

Прямой динамический метод предполагает полное решение уравнений движения морского подводного трубопровода на рассматриваемом участке под действием землетрясения балльности l, заданной акселерограммой на временном участке не менее 10 секунд. При этом в расчете должна учитываться физическая нелинейность материала трубопровода и грунта, а также геометрическая нелинейность всех элементов системы. В качестве расчетных параметров, подставляемых в критерии, принимаются максимальные значения деформаций, полученных в процессе реализации.
ПРИЛОЖЕНИЕ 9

ПРОЧНОСТЬ И УСТОЙЧИВОСТЬ ТРУБ РАЙЗЕРОВ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

1 КРИТЕРИИ ЛОКАЛЬНОЙ ПРОЧНОСТИ ТРУБ РАЙЗЕРОВ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

1.1 ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1.1 Основным структурным элементом труб райзеров из полимерных композиционных материалов (ПКМ) является слой, представляющий собой один слой армирующего материала (ткани, ленты, ровинги, волокна и т.д.), пропитанный связующим и отвержденный.

1.1.2 Физические соотношения слоя ПКМ с учетом влияния воздействия температуры и влажности окружающей среды в локальной системе координат (1, 2, 3), связанной с направлением армирующих волокон (оси 1 и 2, расположенные в плоскости армирования, ориентированы параллельно и перпендикулярно к направлению волокон, ось 3 ориентирована в трансверсальном направлении), в случае трехмерного анализа напряженно-деформированного состояния (НДС) представляются в виде:

\[
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{bmatrix} = \begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 & 0 \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & 2Q_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 2Q_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & 2Q_{66}
\end{bmatrix} \begin{bmatrix}
\varepsilon_{11} - \alpha_1 \Delta T - \beta_1 \Delta m \\
\varepsilon_{22} - \alpha_2 \Delta T - \beta_2 \Delta m \\
\varepsilon_{33} - \alpha_3 \Delta T - \beta_3 \Delta m \\
\varepsilon_{23} \\
\varepsilon_{13} \\
\varepsilon_{12}
\end{bmatrix},
\]

где

\[
Q_{11} = \frac{E_{11}}{A} (1 - v_{23} \cdot v_{32})/\Delta,\ Q_{22} = \frac{E_{22}}{A} (1 - v_{13} \cdot v_{31})/\Delta,\ Q_{33} = \frac{E_{33}}{A} (1 - v_{12} \cdot v_{21})/\Delta,
\]

\[
Q_{12} = \frac{G_{12}}{A},\ Q_{55} = \frac{G_{13}}{A},\ Q_{66} = \frac{G_{12}}{A},
\]

\[
Q_{13} = \frac{E_{31}}{A} (v_{23} + v_{31} \cdot v_{23})/\Delta = \frac{E_{23}}{A} (v_{13} + v_{12} \cdot v_{23})/\Delta,
\]

\[
Q_{23} = \frac{E_{22}}{A} (v_{32} + v_{12} \cdot v_{32})/\Delta = \frac{E_{33}}{A} (v_{23} + v_{13} \cdot v_{21})/\Delta,
\]

\]

Приложение подготовлено на основании правил признанного классификационного общества и имеет справочный характер.
1.1.3 Для приближенных расчетов (случай плоского напряженно-деформированного состояния) рекомендуется использовать более простые соотношения:

\[
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{bmatrix}
= \begin{bmatrix}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & 2Q_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{11} - \alpha_1 \Delta T - \beta_1 \Delta m \\
\varepsilon_{22} - \alpha_2 \Delta T - \beta_2 \Delta m \\
\varepsilon_{12}
\end{bmatrix},
\] (1.1.3)

где

\[
Q_{11} = \frac{E_{11}}{(1 - v_{12} \cdot v_{21})};
Q_{22} = \frac{E_{22}}{(1 - v_{12} \cdot v_{21})};
Q_{66} = G_{12},
\]

\[
Q_{12} = v_{21} \cdot \frac{E_{11}}{(1 - v_{12} \cdot v_{21})} = v_{12} \cdot \frac{E_{22}}{(1 - v_{12} \cdot v_{21})}.
\]

1.1.4 Физические соотношения слоя ПКМ, произвольным образом ориентированного относительно оси трубы райзера (в глобальной системе координат x, y, z ось x направлена вдоль оси трубы, оси y и z ориентированы в тангенциальном и радиальном направлениях соответственно) в случае трехмерного анализа напряженно-деформированного состояния записываются в виде

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{xz} \\
\sigma_{yz}
\end{bmatrix}
= \begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{13} & 0 & 0 & 2\overline{Q}_{16} \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{23} & 0 & 0 & 2\overline{Q}_{26} \\
\overline{Q}_{13} & \overline{Q}_{23} & \overline{Q}_{33} & 0 & 0 & 2\overline{Q}_{36} \\
0 & 0 & 0 & 2\overline{Q}_{44} & 0 & \overline{Q}_{45} \\
0 & 0 & 0 & 2\overline{Q}_{45} & 0 & \overline{Q}_{55} \\
0 & 0 & 0 & 0 & 2\overline{Q}_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{11} - \alpha_x \Delta T - \beta_x \Delta m \\
\varepsilon_{22} - \alpha_y \Delta T - \beta_y \Delta m \\
\varepsilon_{33} - \alpha_z \Delta T - \beta_z \Delta m \\
\varepsilon_{12} - 1/2 \alpha_{xy} \Delta T - 1/2 \beta_{xy} \Delta m
\end{bmatrix},
\] (1.1.4-1)

где

\[
\overline{Q}_{11} = Q_{11} m^4 + 2(Q_{13} + 2Q_{66}) m^2 n^2 + Q_{33} n^4,
\]

\[
\overline{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66}) m^2 n^2 + Q_{12} (m^2 + n^2),
\]

\[
\overline{Q}_{13} = Q_{13} m^4 + Q_{23} n^4,
\]

\[
\overline{Q}_{16} = Q_{11} m^2 n - Q_{22} m n^2 - (Q_{12} + 2Q_{66}) (m^2 - n^2) mn,
\]

\[
\overline{Q}_{44} = Q_{44},
\]

\[
\overline{Q}_{45} = Q_{45},
\]

\[
\overline{Q}_{55} = Q_{55},
\]

\[
\overline{Q}_{66} = Q_{66}.
\]
\[
Q_{22} = Q_{11} n^2 + 2(Q_{12} + 2Q_{66}) m^2 n^2 + Q_{22} m^4, \\
Q_{23} = Q_{13} n^2 + Q_{23} m^2, \\
Q_{33} = Q_{33} m^2, \\
Q_{26} = Q_{11} m^2 n - Q_{22} m^2 n + (Q_{12} + 2Q_{66})(m^2 - n^2) mm, \\
Q_{36} = (Q_{13} - Q_{23}) mn, \\
Q_{44} = Q_{44} m^2 + Q_{44} n^2, \\
Q_{45} = (Q_{55} - Q_{44}) mn, \\
Q_{55} = Q_{44} m^2 + Q_{55} m^2, \\
Q_{66} = (Q_{11} + Q_{22} - 2Q_{66}) m^2 n^2 + Q_{66}(m^2 - n^2), \\
a_x = a_1 m^2 + a_2 n^2, b_x = b_1 m^2 + b_2 n^2, \\
a_y = a_1 n^2 + a_2 m^2, b_y = b_1 n^2 + b_2 m^2, \\
a_{xy} = (a_1 - a_2) mn, b_{xy} = (b_1 - b_2) mn.
\]

Здесь \(m = \cos \theta \), \(n = \sin \theta \), а отсчет угла \(\theta \) производится в положительном направлении.

Для приближенных расчетов (случай плоского напряженно-деформированного состояния) рекомендуется использовать более простые соотношения:

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy}
\end{bmatrix}
= \begin{bmatrix}
\frac{Q_{11}}{2Q_{16}} \\
\frac{Q_{12}}{2Q_{26}} \\
\frac{Q_{16}}{2Q_{26}}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{11} - \alpha_x \Delta T - \beta_x \Delta m \\
\varepsilon_{12} - \alpha_y \Delta T - \beta_y \Delta m \\
\varepsilon_{12} - \frac{1}{2} \alpha_{xy} \Delta T - \frac{1}{2} \beta_{xy} \Delta m
\end{bmatrix}. \tag{1.1.4-2}
\]
Здесь \(\sigma^{(i)}_{11} \) – предел прочности слоя ПКМ при растяжении в направлении оси 1;
\(\sigma^{(i)}_{22} \) – предел прочности слоя ПКМ при сжатии в направлении оси 1;
\(\text{Ф}^{*}_{11} \) – приведенный предел прочности слоя ПКМ при растяжении в направлении оси 2;
\(\sigma^{(i)}_{33} \) – предел прочности слоя ПКМ при растяжении в направлении оси 3;
\(\sigma^{(i)}_{12} \) – предел прочности слоя ПКМ при сжатии в направлении оси 2;
\(\sigma^{(i)}_{13} \) – предел прочности слоя ПКМ при сжатии в направлении оси 3;
\(\sigma^{(i)}_{23} \) – предел прочности слоя ПКМ при сдвиге в плоскости армирования;
\(\sigma^{(i)}_{33} \) – предел прочности слоя ПКМ при межслойном сдвиге в плоскости 1–3;
\(\sigma^{(i)}_{23} \) – предел прочности слоя ПКМ при межслойном сдвиге в плоскости 2–3.

Для каждого материала коэффициенты взаимного влияния нормальных компонент напряжений \(H^{*}_{12}, H^{*}_{13}, H^{*}_{23} \) должны определяться экспериментально.

1.1.6. При расчете общего напряженно-деформированного состояния трубы райзера из ПКМ используются следующие соотношения для вычисления продольной \(C_L \), изгибающей \(C_B \) и крутильной \(C_T \) жесткостей:

\[
C_L = 2 \pi R \bar{A}_{11}, \quad (1.1.6-1)
\]
\[
C_B = \pi R (\bar{A}_{11} R^2 + 2 \bar{B}_{11} R + \bar{D}_{11}), \quad (1.1.6-2)
\]
\[
C_T = 2 \pi R (\bar{A}_{66} R^2 + 2 \bar{B}_{66} R + \bar{D}_{66}), \quad (1.1.6-3)
\]

где
\[
\bar{A}_{im} = \frac{p}{\pi} \sum_{m=1}^{p} (q_{im}) (n_{m} - n_{m-1}), \quad (l, m = 1, 6),
\]
\[
\bar{B}_{im} = 1/2 \sum_{n=1}^{p} (q_{im}) (n_{n}^2 - n_{n-1}^2), \quad (l, m = 1, 6),
\]
\[
\bar{D}_{im} = 1/3 \sum_{n=1}^{p} (q_{im}) (n_{n}^3 - n_{n-1}^3), \quad (l, m = 1, 6),
\]
\(R \) – радиус контура поперечного сечения трубы райзера,
\(t_r \) – толщина стенки трубы райзера,
\(p \) – число слоев различных материалов (ПКМ, сталь и т. д.), образующих стенку трубы райзера,
\(n_{x} \) – координаты границ слоев стенки трубы райзера (\(-t_r/2 = n_0 < n_1 < ... < n_p = t_r/2 \)).
1.1.7 Разрушение композитных материалов, как правило, представляет собой последовательность множества локальных механизмов разрушения (разрушение матрицы, расслоение, разрушение волокон и т. д.), каждый из которых сопровождается локальными изменениями свойств материала.

1.1.8 Развитие локальных разрушений, сопровождающихся локальной деградацией свойств материала, ведет к снижению глобальной жесткости конструкции. Последняя оказывает влияние на характеристики глобального отклика райзерной системы на внешние воздействия (перемещения, изгибающие моменты и эффективное усилие растяжения). Поэтому при расчете труб райзеров из ПКМ необходим учет взаимного влияния общего и местного напряженно-деформированного состояния.

1.1.9 Учет взаимного влияния общего и местного напряженно-деформированного состояний труб райзеров из ПКМ рекомендуется выполнять одним из двух методов:

глобально-локальная процедура;
глобальный расчет с построением поверхности отклика.

Эти методы отличаются масштабным уровнем оценки предельного состояния и последовательностью вычисления общего и местного напряженно-деформированного состояния и прочности трубы райзера из ПКМ.

1.2 ГЛОБАЛЬНО-ЛОКАЛЬНАЯ ПРОЦЕДУРА

1.2.1 На первом этапе оценки предельного состояния определяется общее напряженно-деформированное состояние трубы райзера в целом. Полученные при этом внутренние усилия (осевая продольная сила, изгибающий момент, кручущий момент, внутреннее/внешнее избыточное давление) затем используются в качестве граничных условий для определения местного напряженно-деформированного состояния (местных полей перемещений, деформаций, напряжений).

1.2.2 Предельное состояние элемента трубы райзера определяется путем сопоставления местных полей напряжений с принятым критерием разрушения. Многократное повторение описанной вычислительной процедуры позволяет определить последовательность предельных состояний элементов трубы райзера, предшествующих общему разрушению.

\[q_{11} = \frac{Q_{11}}{Q_{22}}, \quad q_{16} = \frac{Q_{16}}{Q_{22}}, \quad q_{66} = \frac{Q_{66}}{Q_{22}}. \]
1.2.3 Местные разрушения элементов трубы райзера сопровождаются снижением ее жесткости, влияющим на общий отклик системы. Поэтому, для повышения достоверности расчета, необходимо повторить вычисления общего напряженно-деформированного состояния трубы райзера, учитывая при этом деградацию свойств материала. Полученные в результате расчета уточненные значения внутренних усилий (осевая продольная сила, изгибающий момент, крутящий момент, внутреннее/внешнее избыточное давление) используются в качестве граничных условий для определения местного напряженно-деформированного состояния (местных полей перемещений, деформаций, напряжений, внутреннего/внешнего избыточного давления) элемента трубы райзера.

Итерационная глобально-локальная процедура должна выполняться до тех пор, пока не проявится новый механизм разрушения (допускаемого при эксплуатации) вплоть до предсказания критического механизма разрушения (не допускаемого при эксплуатации).

1.3 ГЛОБАЛЬНАЯ ПРОЦЕДУРА С ПОСТРОЕНИЕМ ПОВЕРХНОСТИ ОТКЛИКА

1.3.1 В качестве альтернативы глобально-локальной процедуре рекомендуется процедура анализа местного напряженно-деформированного состояния и прочности, устанавливающая предельную поверхность отклика, используемая в последующем анализе общего напряженно-деформированного состояния и прочности трубы райзера из ПКМ.

1.3.2 Вначале на основе местного анализа процесса распространения разрушений как для труб, так и для соединений при всех возможных комбинациях нагрузок (изгибающий и крутящий моменты, эффективная продольная сила и внутреннее/внешнее избыточное давление) определяется общее предельное состояние. Общее предельное состояние представляется в виде поверхности в пространстве, независимыми координатами которого являются изгибающий/крутящий моменты, эффективная продольная сила и внутреннее/внешнее избыточное давление. Поверхность строится путем интерполяции множества точек (видов нагружения), получаемых из местного анализа процесса распространения разрушений. Такие точки могут быть получены для каждого механизма разрушения.

1.3.3 При расчете общего напряженно-деформированного состояния прочности начальное приближение выполняется по исходным жесткостным характеристикам, без учета деградации свойств материала. Затем, с ростом нагрузки, в определенных элементах райзерной системы происходит зарож-
дение и развитие повреждений, еще не приводящих к разрушению системы. В этом случае необходимо повторить расчет общего напряженно-деформированного состояния, используя редуцированные значения жесткостей поврежденных элементов системы. Редуцирование величин жесткостей выполняется в соответствии с реализуемым местным механизмом разрушения. Итеративная процедура выполняется до тех пор, пока не проявится новый механизм разрушения (допускаемого при эксплуатации) вплоть до предсказания критического механизма разрушения (не допускаемого при эксплуатации).

1.3.4 Пример глобальной процедуры с построением поверхности отклика.

Глобальный критерий разрушения устанавливается для секции трубы райзера. Как правило, такой секцией является элемент трубы райзера примерно 15 м длиной, представляющий собой трубу с двумя концевыми фитингами. Соединение двух секций также может быть смоделировано путем построения двух раздельных поверхностей отклика: одной для трубы и одной для элемента соединения. Для длинных непрерывных труб райзеров глобальный критерий разрушения обычно устанавливается только для трубы.

Секция трубы исследуется на воздействия давления Р, продольной силы А, изгибающего момента М и крутящего момента Т. Нагрузки, приложенные к секции трубы райзера, показаны на рис. 1.

![Схема нагружения секции трубы райзера из ПКМ.](image)

Необходимо подчеркнуть, что при проектировании металлических труб райзеров кручением, как правило, пренебрегают. Однако, это не допустимо для трубы райзера из ПКМ, прочность которого более чувствительна к сдви-гу и сильно зависит от структуры армирования. Поэтому приложение даже относительно небольших крутящих моментов может послужить причиной его разрушения.
Для каждой комбинации нагрузок выполняется анализ напряжений в каждой точке секции и производится проверка по всем критериям разрушения. По результатам строится четырехмерная поверхность разрушения секции трубы райзера. Типичная поверхность разрушения для ПКМ структуры армирования 0°/90° показана на рис. 2.

При нагружении трубы внутренним давлением напряжения, возникающие в волокнах, ориентированных в тангенциальном направлении, вдвое превышают напряжения в волокнах, ориентированных в осевом направлении (для простоты предполагается, что количество волокон в обоих направлениях одинаково). Для тонкостенной трубы можно считать, что величина предельного внутреннего давления, определяется максимальными напряжениями в волокнах, ориентированных в тангенциальном направлении, (условие, которое часто не реализуется для композитных райзеров). Расчет позволяет получить Р1 поверхности разрушения на оси давления. Это показано на рис. 3 для двумерного «Р – А» критерия разрушения.

Если труба райзера помимо внутреннего давления подвергается воздействию еще и осевой силы, то напряжения в осевых волокнах будут возрастать. Предел прочности осевых волокон, достаточный для восприятия осевой нагрузки и давления, позволяет получить точки Р2 и Р3 в глобальном критерии разрушения. Точка Р2 характеризует максимальную осевую нагрузку при действии максимального давления. Точка Р3 соответствует максимальной осевой нагрузке без учета внутреннего давления. Пренебрегая эффектами Пуассона и взаимодействием между волокнами, огибающая поверхности разрушения дается линиями между точками Р1, Р2 и Р3.
Под действием внешнего давления происходит локальная потеря устойчивости. Критическому давлению локальной потери устойчивости соответствует точка P_4. Если допустить, что на величину критического давления локальной потери устойчивости не оказывает влияние осевая нагрузка, то точка P_5 соответствует комбинированному воздействию максимального внешнего давления и максимальной осевой нагрузки.

Поскольку при проектировании райзеров стараются не допустить возникновения сжимающих осевых нагрузок, то поверхность разрушения не распространяется в отрицательном направлении полуоси «осевая сила».

Если к трубе райзера приложен крутящий момент, то при структуре армирования $0^\circ/90^\circ$ в волокнах напряжения не возникают. Крутящий момент будет восприниматься матрицей. Поэтому предельный крутящий момент в данном случае пропорционален прочности матрицы на сдвиг (см. рис. 4).
Очевидно, что реальные поверхности разрушения более сложны, поскольку более сложна структура армирования, кроме того, исследования должны выполняться для случая трехмерного напряженного состояния с учетом эффектов, возникающих на поверхности раздела «композит-металл». Целью этого примера являлась поэтапная демонстрация принципа построения поверхности разрушения.

2 ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ СТЕНКИ РАЙЗЕРА ИЗ ПОЛИМЕРНОГО КОМПОЗИТНОГО МАТЕРИАЛА

2.1 Выбор толщины стенки трубы райзера из ПКМ базируется на необходимости обеспечения прочности (устойчивости) и необходимого уровня безопасности райзера. Расчет должен выполняться для наиболее неблагоприятного сочетания возможных нагрузок.

2.2 Толщина стенки трубы райзера должна определяться исходя из следующих условий:
местной прочности трубы райзера;
достаточной локальной устойчивостью трубы райзера.

2.3 По значениям полей перемещений, деформаций и усилий, соответствующим положению упругой статической линии райзера при наиболее неблагоприятном сочетании возможных нагрузок, определяются элементы вектора деформации любого сечения трубы райзера из ПКМ в глобальной декартовой системе координат $x, y, z \left\{ \varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \varepsilon_{xy}, \varepsilon_{xz}, \varepsilon_{yz} \right\}$. Для каждого слоя ПКМ эти деформации преобразуются к деформациям в главных осях слоя $1, 2, 3 \left\{ \varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}, \varepsilon_{23}, \varepsilon_{13}, \varepsilon_{12} \right\}$ по формулам

$$
\begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
\varepsilon_{12} \\
\varepsilon_{13} \\
\varepsilon_{23}
\end{pmatrix} = [T]
\begin{pmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz} \\
\varepsilon_{xy} \\
\varepsilon_{xz} \\
\varepsilon_{yz}
\end{pmatrix},
$$

где $[T] = \begin{bmatrix}
m^2 & m^2 & 0 & 0 & 0 & 2mn \\
\frac{n^2}{m^2} & \frac{n^2}{m^2} & 0 & 0 & 0 & -2mn \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & m & -n & 0 \\
0 & 0 & 0 & n & m & 0 \\
-mn & mn & 0 & 0 & 0 & (m^2 - n^2)
\end{bmatrix}$.

272
и в соответствии с рекомендациями вычисляются напряжения $\{\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{23}, \sigma_{13}, \sigma_{12}\}$ в каждом слое. Затем, сопоставляя полученные значения напряжений с критерием прочности для каждого слоя, выполняется оценка предельного состояния.

2.4 При выполнении расчетов используются следующие коэффициенты безопасности для трубы райзера из ПКМ:

1 γ_F – коэффициент значимости нагрузки принимается в соответствии с табл. 1

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коэффициенты значимости компонентов нагрузки</td>
</tr>
<tr>
<td>Вид нагрузки</td>
</tr>
<tr>
<td>Внешнее гидростатическое давление</td>
</tr>
<tr>
<td>Давление внутренней жидкости: гидростатическое и динамическое</td>
</tr>
<tr>
<td>Уровни воды</td>
</tr>
<tr>
<td>Вес и плавучесть райзера, покрытия, обрастание, аноды, модули плавучести, содержимое и оснастка</td>
</tr>
<tr>
<td>Вес внутренней жидкости</td>
</tr>
<tr>
<td>Натяжение райзера</td>
</tr>
<tr>
<td>Приложенные перемещения и нагрузки, возникающие при активном позиционировании ПНК/FSPM/MCP</td>
</tr>
<tr>
<td>Температурные нагрузки</td>
</tr>
<tr>
<td>Взаимодействие райзера с грунтом</td>
</tr>
<tr>
<td>Волны</td>
</tr>
<tr>
<td>Внутренние волны и другие эффекты, обусловленные различием плотности воды</td>
</tr>
<tr>
<td>Течения</td>
</tr>
<tr>
<td>Землетрясения</td>
</tr>
<tr>
<td>Смещения ПНК/FSPM/MCP, обусловленные ветром, волнением и течением: среднее смещение от устойчивого волнового дрейфа, силы ветра и течений; волновые частотные движения; низкочастотные колебания</td>
</tr>
</tbody>
</table>

2 γ_{sd} – коэффициент моделирования парциальной нагрузки, учитывающий погрешности идеализации и систематические ошибки, возникающие при построении математических моделей конструкции. При использовании как аналитических, так и численных (например, МКЭ) методов расчета в пределах принятых допущений и ограничений $\gamma_{sd} = 1,0$. Если же эти методы применяются за пределами принятых допущений и ограничений, то, как минимум, должна приниматься величина $\gamma_{sd} = 1,1$. Кроме того, при использовании численных методов необходимо подтвердить сходимость вычислительной процедуры.
3 γ_M — коэффициент сопротивления материала, учитывающий погрешность определения свойств материала. Численные значения γ_M приведены в табл. 2.

<table>
<thead>
<tr>
<th>Степень эксплуатационной надежности</th>
<th>Коэффициент вариации пределов прочности ν</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\nu < 10%$</td>
</tr>
<tr>
<td>Хрупкий тип разрушения</td>
<td></td>
</tr>
<tr>
<td>Повышенной эксплуатационной надежности</td>
<td>1,22</td>
</tr>
<tr>
<td>Для транспортировки агрессивных сред</td>
<td>1,34</td>
</tr>
<tr>
<td>Для сейсмически опасных районов</td>
<td>1,47</td>
</tr>
<tr>
<td>Пластичный или вязкий тип разрушения</td>
<td></td>
</tr>
<tr>
<td>Повышенной эксплуатационной надежности</td>
<td>1,11</td>
</tr>
<tr>
<td>Для транспортировки агрессивных сред</td>
<td>1,22</td>
</tr>
<tr>
<td>Для сейсмически опасных районов</td>
<td>1,34</td>
</tr>
</tbody>
</table>

4 γ_{rd} — коэффициент моделирования сопротивления, учитывающий различия между фактическими и расчетными значениями предельного состояния (сопротивления), вычисленными по принятому критерию разрушения. Численные значения коэффициента γ_{rd} для каждого критерия разрушения приведены в табл. 3.

<table>
<thead>
<tr>
<th>Критерий разрушения</th>
<th>γ_{rd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Разрушение волокон</td>
<td>1,0</td>
</tr>
<tr>
<td>Растяжение матрицы</td>
<td>1,0 - 1,5</td>
</tr>
<tr>
<td>Расслоение</td>
<td>1,0 - 2,0</td>
</tr>
<tr>
<td>Остаточная деформация</td>
<td>1,0</td>
</tr>
<tr>
<td>Предел прочности ортотропных гомогенных материалов</td>
<td>1,25</td>
</tr>
<tr>
<td>Потеря устойчивости</td>
<td>1,0 - 2,0</td>
</tr>
<tr>
<td>Избыточные перемещения</td>
<td>1,0</td>
</tr>
<tr>
<td>Длительная прочность</td>
<td>0,1 - 1,0</td>
</tr>
<tr>
<td>Усталость</td>
<td>0,1 - 1,0</td>
</tr>
</tbody>
</table>
3 РАСЧЕТ ПРОЧНОСТИ РАЙЗЕРА
ИЗ ПОЛИМЕРНОГО КОМПОЗИТНОГО МАТЕРИАЛА
ПРИ ДЕЙСТВИИ ВНУТРЕННЕГО ДАВЛЕНИЯ

3.1 Разрушение (разрыв) трубы райзера из ПКМ может возникать в результате приложения внутреннего избыточного давления или комбинированного воздействия внутреннего избыточного давления, осевой силы и изгибающего и крутящего моментов. В этом случае по результатам расчета статической упругой линии райзера определяется положение поперечного сечения, в котором возникает наиболее неблагоприятная комбинация указанных нагрузок, для последующего расчета местного напряженно-деформированного состояния. Результатом расчета являются распределения напряжений и деформаций в каждом слое ПКМ и сопоставление их с критерием предельного состояния, указанного в 1.1.5.

3.2 Если хотя бы один из слоев ПКМ достигает предельного состояния, то необходимо определить основную причину его возникновения (разрушение волокон или разрушение матрицы). Особое внимание следует уделять предотвращению разрушения армирующих волокон, определяемого здесь как разрушение слоя ПКМ в направлении волокон (оси 1 локальной системы координат, связанной со слоем ПКМ). Разрушение волокон, воспринимающих силовые воздействия, не допускается. Могут быть допущены повреждения (растрескивание) матрицы и границы раздела «армирующий материал – матрица» (расслоение) при условии сохранения герметичности трубы райзера. Как правило, растескивание матрицы допускается для труб райзеров, содержащих в своем составе металлический или полимерный лейнер. При отсутствии лейнера герметичность подтверждается экспериментально.

3.3 В результате растескивания матрицы расслоения границы раздела «армирующий материал – матрица» может происходить снижение упругих характеристик и пределов прочности слоя ПКМ при сжатии и сдвиге, которое должно быть учтено при выполнении расчетов на устойчивость (величину критической нагрузки).

4 РАСЧЕТ ТРУБЫ РАЙЗЕРА ИЗ ПОЛИМЕРНОГО КОМПОЗИТНОГО МАТЕРИАЛА НА УСТОЙЧИВОСТЬ

При исследовании устойчивости трубы райзера из ПКМ могут использоваться два альтернативных подхода, основанные на рассмотрении:
отдельных элементов простой формы, таких как секции трубы, балки, пластины и оболочки; конструкции в целом.

4.1 ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ ТРУБЫ РАЙЗЕРА

4.1.1 Исследованию устойчивости отдельных элементов трубы райзера предшествует расчет статической упругой линии райзера, устанавливающий:
величины эффективных усилий, приложенных к детали/элементу трубы райзера прилегающими частями конструкции;
граничные условия для рассматриваемого элемента конструкции в терминах компонентов линейных и угловых жесткостей по всем направлениям.

4.1.2 При исследовании потери устойчивости отдельных элементов трубы райзера из ПКМ необходимо учитывать воздействие:
осевой сжимающей силы;
изгибающего момента;
крутящего момента;
внешнего избыточного давления,
а также влияние анизотропии и геометрических несовершенств на величину критической нагрузки.
Возможно рассмотрение комбинированного нагружения трубы райзера осевой растягивающей силой, изгибающим моментом, крутящим моментом и внешним давлением, или внутренним избыточным давлением, осевой растягивающей/сжимающей, силой, изгибающим и крутящим моментами.

4.1.3 В результате приложения продольной сжимающей силы может возникать глобальная (стержневая) форма потери устойчивости, локальная потеря устойчивости стенки трубы райзера или комбинация обоих форм потери устойчивости. В этом случае критические значения осевых нормальных напряжений, соответствующих глобальной \(\sigma_{cr \, global} \) и локальной \(\sigma_{cr \, local} \) формам потери устойчивости, а также значения допускаемых по условию устойчивости нормальных напряжений \(\tilde{\sigma}_{buckling} \) определяются следующими зависимостями:

\[
\frac{1}{\tilde{\sigma}_{buckling}} = \frac{1}{\tilde{\sigma}_{buck \, global}} + \frac{1}{\tilde{\sigma}_{buck \, local}}.
\] (4.1.3-1)

276
\[\sigma_{\text{buck global}} = k_{A \text{ global}} \sigma_{\text{cr global}} = \frac{R^2}{L^2} \frac{k_{A \text{ local}} \pi^2 E_{xx}}{2}; \]
(4.1.3-2)

\[\sigma_{\text{buck local}} = k_{A \text{ local}} \sigma_{\text{cr local}} = \frac{t_r}{R} \frac{k_{A \text{ local}} E_{xx} K_1}{3 (1 - \nu \nu_{xx})^{1/2}}, \]
(4.1.3-3)

gде
\(L \) — эффективная длина трубы райзера при рассмотрении глобальной формы потери устойчивости,
\(R \) — радиус контура поперечного сечения трубы райзера,
\(t_r \) — толщина стенки трубы райзера,
\(x \) — координата в направлении оси райзера,
\(\theta \) — координата в окружном направлении,
\(E_{xx} \) — эффективный модуль упругости в направлении оси райзера,
\(\nu_{xx} \) — эффективный коэффициент Пуассона в плоскости армирования,
\(K_1 \) — коэффициент анизотропии, вычисляемый по формуле:
\[K_1 = \left(2 \left[1 + \nu \right] \left(E_{yy}^{E_{xx}} \right)^{1/2} \left(E_{yy}^{E_{xx}} \right)^{1/2} \right)^{1/2} \]
(4.1.3-4)

Здесь \(E_{yy}^{E_{xx}} \) — эффективный модуль упругости в окружном направлении,
\(G^{E_{yy}} \) — эффективный модуль сдвига в плоскости армирования.

Заметим, что эффективные упругие константы определены только для симметричных композитов.

Понижающие коэффициенты, учитываемые влияние геометрических несовершенств \(k_{A \text{ global}} \) и \(k_{A \text{ local}} \) принимаются равными 0,67 и 0,5 соответственно.

Для случая кинематического возмущения допускается глобальная форма потери устойчивости, если она не инициирует локальной потери устойчивости, сверхнормативных перемещений и вибраций.

4.1.4 Если в элементах трубы райзера возникает изгибающий момент, то по достижении им критической величины происходит потеря устойчивости. Вычисление значения упругого критического изгибающего момента \(M_{cr} \) и значения допускаемого по условию устойчивости изгибающего момента \(\hat{M}_{buckle} \) производятся по формуле:
\[\hat{M}_{buckle} = k_M M_{cr} = \frac{1.3 k_M \pi R t_r E_{xx} K_1}{3 (1 - \nu \nu_{xx})^{1/2}}, \]
(4.1.4)

gде
\(R \) — радиус контура поперечного сечения трубы райзера,
\(t_r \) — толщина стенки трубы райзера,
x – координата в направлении оси райзера,
θ – координата в окружном направлении,
E_{xx} – эффективный модуль упругости в направлении оси райзера,
ν_{xx}, ν_{xy} – эффективные коэффициенты Пуассона в плоскости армирования,
K_i – коэффициент анзотропии,
k_s – понижающий коэффициент, учитывающий влияние геометрических несовершенств, как правило, принимается $k_s = 0.5$.

В процессе проектирования райзерной системы для предотвращения появления и развития деформаций изгиба необходимо предусматривать мероприятия по поддержанию необходимого осевого растягивающего усилия.

4.1.5 При кручении величина критического крутящего момента упругой потери устойчивости райзера $M_{T_{cr}}$ и величина допускаемого по условию устойчивости крутящего момента $M_{T_{buckle}}$ определяются в виде:

$$
\hat{M}_{T_{buckle}} = k_t M_{T_{cr}} = 21.7 k_t D_0^3 R^{5/4} \frac{L^{1/4} t^{3/4}}{A_0 D_0} \left[\frac{(A_{xx} A_{\theta \theta} - A_{xy}^2) t_r^2}{A_{\theta \theta} D_{xx}}\right]^{3/8},
$$

где R, L, t_r – радиус контура поперечного сечения, длина и толщина стенки трубы райзера, соответственно,
$A_{xx}, A_{\theta \theta}, A_{xy}$ – элементы матрицы мембранных жесткостей ПКМ,
$D_{xx}, D_{\theta \theta}, D_{xy}$ – элементы матрицы изгибных жесткостей ПКМ,
k_t – понижающий коэффициент, учитывающий влияние геометрических несовершенств, как правило, принимается $k_t = 0.67$.

Приведенная формула справедлива только для симметричных относительно срединной поверхности ПКМ, когда все элементы матрицы связанных жесткостей равны нулю, т. е. $B_{ij} = 0$ ($i, j = x, \theta$) и если

$$
\frac{1}{L^2} \leq \left(\frac{D_{\theta \theta}}{D_{xx}}\right)^{5/6} \left[\frac{(A_{xx} A_{\theta \theta} - A_{xy}^2) t_r^2}{12 A_{\theta \theta} D_{xx}}\right]^{1/2} \left(\frac{500}{R t_r}\right).
$$

4.1.6 При нагружении трубы райзера внешним давлением величина критического давления упругой потери устойчивости p_{cr} и величина допускаемого по условию устойчивости давления \hat{p}_{buckle} вычисляется по формуле:

$$
\hat{p}_{buckle} = k_p p_{cr} = \frac{3 k_p (D_{\theta \theta} - B_{\theta \theta}^2 / A_{\theta \theta})}{R^3}.
$$
Понижающий коэффициент \(k_p = 0,75 \) учитывает влияние геометрических несовершенств. Приведенная формула справедлива только для длинных труб. Для труб малой длины используется зависимость:

\[
\bar{p}_{\text{buckling}} = k_p p_{cr} = \frac{5,5 k_p D_\theta}{LR^{3/2} t_r^{1/2}} \left[\frac{(A_{xx} A_{\theta\theta} - A_{x\theta}^2) t_r^2}{A_{\theta\theta} D_\theta} \right]^{1/4},
\]
(4.1.6-2)

предполагающая симметрию ПКМ относительно срединной поверхности и справедливую только при выполнении следующего условия:

\[
\left(\frac{D_\theta}{D_{xx}} \right)^{3/2} \left[\frac{(A_{xx} A_{\theta\theta} - A_{x\theta}^2) t_r^2}{12 A_{\theta\theta} D_{xx}} \right]^{1/2} \left(\frac{L^2}{R t_r} \right) \geq 500.
\]
(4.1.6-3)

Величина \(p_{cr} \) определяет минимальное внутреннее давление, необходимое для предотвращения потери устойчивости трубы райзера. В процессе монтажа осушенного райзера \(p_{\min} = 0 \) приравнивается нулю, а то время как при монтаже с заполнением трубы водой \(p_{\min} = p_c \).

4.1.7 Проверка несущей способности райзера для всех рассмотренных случаев нагружения выполняется по формуле:

\[
\gamma_F \cdot \gamma_{sd} \cdot F \leq \frac{\bar{F}_{\text{buckle}}}{\gamma_{Mbuckle} \cdot \gamma_{Rdbuckle}},
\]
(4.1.7-1)

где \(F \) – значения действующих напряжений или сил (\(\sigma, M, T, p \));
\(\bar{F}_{\text{buckle}} \) – значения допускаемых по условию устойчивости напряжений или сил (\(\sigma, M, T, p \));
\(\gamma_F \) – коэффициент значимости парциальной нагрузки;
\(\gamma_{sd} \) – коэффициент моделирования парциальной нагрузки;
\(\gamma_{Mbuckle} \) – коэффициент парциального сопротивления;
\(\gamma_{Rdbuckle} \) – коэффициент моделирования парциального сопротивления.

При учете указанных выше понижающих коэффициентов коэффициенты \(\gamma_{Mbuckle} \) или \(\gamma_{Rdbuckle} \) могут быть приняты равными 1,0.

Коэффициент моделирования парциальной нагрузки \(\gamma_{sd} \) должен учитывать точность определения геометрических несовершенств и граничных условий.

При совместном действии осевой силы, изгибающего момента, крутящего момента и наружного давления устойчивость райзера считается обеспеченной, если удовлетворяется следующее неравенство:
\[\frac{F}{F_{\text{buckle}}} = \frac{\sigma}{\sigma_{\text{buckle}}} + \frac{M}{M_{\text{buckle}}} + \frac{M_T}{M_{T,\text{buckle}}} + \frac{p}{p_{\text{buckle}}} \leq \frac{1}{\gamma_F \cdot \gamma_{\text{sl}} \cdot \gamma_{M,\text{buckle}} \cdot \gamma_{R,\text{buckle}}}, \quad (4.1.7-2) \]

где \(\sigma, M, M_T \) и \(p \) – значения осевых сжимающих напряжений, изгибающего момента, крутящего момента и внешнего давления.

4.2 Расчет трубы райзера из полимерного композитного материала на устойчивость в целом

4.2.1 Исследование устойчивости конструкции трубы райзера в целом выполняется путем использования методов численного моделирования.

4.2.2 Применение методов численного моделирования требует выполнения оценки сходимости получаемого решения. Поэтому на первом этапе выполняется расчет значения критической нагрузки, используя в качестве исходных данных величины упругих характеристик ПКМ, определенные без учета деградации свойств материала. Полученные результаты уточняются путем повышения дискретизации конечно-элементной модели до тех пор, пока первое собственное число и соответствующая ему собственная форма не станут практически неизменны, не смотря на дальнейшие уточнения. Целью описанной процедуры является установление характерных форм потери устойчивости райзерной системы и оценка требуемой для последующего анализа дискретизации конструкции.

4.2.3 Дальнейшее уточнение математической модели предполагает учет геометрической нелинейности и выполнение пошагового анализа с проверкой на удовлетворение критерию разрушения на каждом шаге нагружения. Если прогнозируется появление таких разрушений, как растрескивание материала или расслоение, то последующее исследование нагружения должно выполняться с учетом деградации свойств ПКМ.

4.2.4 При оценке влияния геометрических несовершенств на величины критических нагрузок необходимо учест технологические допуски на изгготовление изделий из ПКМ.

4.2.5 Для трубы райзера из ПКМ, содержащего в своем составе лейнер, необходимо исследовать возможность его потери устойчивости, обусловленную тангенциальными сжимающими усилиями. При этом необходимо рассмотреть:

потерю устойчивости, обусловленную отрицательным внутренним давлением (т. е. вакуумом), без учета внешнего давления.
потерю устойчивости лейнера, обусловленную давлением, возникаю­щим в результате приложения к композитной стенке трубы райзера внешнего давления;

потерю устойчивости лейнера, обусловленную внешним давлением воды (рассматривается только в случае проникновения морской воды к внешней поверхности внутреннего лейнера);

гидравлический удар, вызываемый накопленным давлением в дефектах поверхности раздела между лейнером и композитной оболочкой трубы рай­зера, при внезапном падении давления внутри лейнера;

4.2.6 Расчет трубы райзера из ПКМ на лавинное смятие не выполня­ется, поскольку локальная потеря устойчивости труб райзеров из ПКМ не допускается.

5 КРИТЕРИИ ЛОКАЛЬНОЙ ПРОЧНОСТИ ТРУБ РАЙЗЕРОВ ИЗ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА В РАЙОНЕ УЗЛОВ СОЕДИНЕНИЯ

5.1 Для концевых фитингов соединения секций труб райзера из ПКМ, выполненных из металлических материалов, критерии локальной прочности должны соответствовать 3.4.1 части II «Райзеры».

5.2 Повышенное внимание следует уделять прочности соединения кон­цевого фитинга с металлическим внутренним лейнером и поверхности раз­дела силовой оболочки из ПКМ и металлического внутреннего лейнера (по­верхность раздела «металл – ПКМ»).

5.3 Расчет локального напряженно-деформированного состояния и проч­ности соединения концевого фитинга с металлическим внутренним лейне­ром и поверхности раздела «металл – ПКМ» должен выполняться на основе нагрузок и граничных условий, определенных по значениям полей переме­щений, деформаций и усилий, соответствующим положению упругой стати­ческой линии трубы райзера при наиболее неблагоприятном сочетании воз­можных нагрузок.

5.4 При выполнении расчета локального напряженно-деформированно­го состояния и прочности соединения концевого фитинга с металлическим внутренним лейнером и поверхности раздела «металл – ПКМ» должно быть учтено:

возможное несоответствие линейных коэффициентов температурного расширения соединяемых материалов;
влияние коррозии металла.

5.5 При расчету локального напряженно-деформированного состояния и прочности соединения концевого фитинга с металлическим внутренним лейнером необходимо учесть:
 продольную силу;
 изгибающий момент;
 крутящий момент;
 внутреннее/внешнее давление.