СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ В СТРОИТЕЛЬСТВЕ

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ПРАВИЛА ОБСЛЕДОВАНИЯ НЕСУЩИХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ

СП 13-102-2003*

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТРОИТЕЛЬСТВУ И ЖИЛИЩНО-КОММУНАЛЬНОМУ КОМПЛЕКСУ (ГОССТРОЙ РОССИИ)

Москва 2011

ПРЕДИСЛОВИЕ

- 1. РАЗРАБОТАН Федеральным государственным унитарным предприятием Конструкторско-технологическое бюро бетона и железобетона (ФГУП «КТБ ЖБ»), Государственным унитарным предприятием Научно-исследовательский проектно-конструкторский и технологический институт бетона и железобетона (ГУП «НИИЖБ»), 26-м Центральным научно-исследовательским институтом Минобороны России при участии Государственного унитарного предприятия Центральный научно-исследовательский и проектно-экспериментальный институт комплексных проблем строительных конструкций и сооружений им. В.А. Кучеренко (ГУП «ЦНИИСК им. В.А. Кучеренко», Государственного унитарного предприятия г. Москвы Научно-исследовательский институт московского строительства (ГУП «НИИ Мосстроя»).
- 2. ПРИНЯТ И РЕКОМЕНДОВАН К ПРИМЕНЕНИЮ в качестве нормативного документа в Системе нормативных документов в строительстве постановлением Госстроя России от 21 августа 2003 г. № 153.
- 3. ВНЕСЕН Федеральным государственным унитарным предприятием Конструкторско-технологическое бюро бетона и железобетона (ФГПУ «КТБ ЖБ»).
 - 4. ВВЕДЕН впервые.

СОДЕРЖАНИЕ

Введение	IV
1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	
4 Общие положения	4
5 Этапы проведения обследований и состав работ	6
6 Подготовительные работы	7
7 Предварительное (визуальное) обследование	7
8 Детальное (инструментальное) обследование	
8.1 Объемы детального обследования	
8.2 Обмерные работы	
8.3 Определение характеристик материалов бетонных	
и железобетонных конструкций	10
• •	10
8.4 Определение характеристик материалов металлических	
конструкций	14
8.5 Определение характеристик материалов каменных	
конструкций	17
8.6 Определение характеристик материалов деревянных	
конструкций	17
8.7 Особенности обследования фундаментов зданий	
и сооружений	
9 Нагрузки и воздействия	
10 Поверочные расчеты конструкций и их элементов	
11 Оформление результатов обследования	25
12 Техника безопасности при проведении обследования	
конструкций	26
Приложение A Перечень нормативных документов, на которые	
имеются ссылки в СП	
Приложение Б Статистическая оценка прочности бетона	30
Приложение В Нормативные и расчетные значения металлов	
и изделий из них	32
Приложение Γ Воздействие пожара на показатели прочности	
бетона и арматуры	39
Приложение Д Особенности обследования железобетонных	
конструкций, подвергшихся воздействию	
нефтепродуктов/	41
Приложение Е Свеления о разработчиках Свода правил	43

ВВЕДЕНИЕ

В настоящем Своде правил приведены основные положения, регламентирующие общий порядок подготовки, проведения и оформления результатов обследований несущих строительных конструкций зданий и сооружений и оценки их технического состояния.

Вопросы проведения инженерно-геологических исследований грунтовых оснований в настоящем документе не рассматриваются.

ПРАВИЛА ОБСЛЕДОВАНИЯ НЕСУЩИХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ

Дата введения 2003-08-21

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Настоящие Правила предназначены для применения при обследовании строительных конструкций зданий и сооружений жилого, общественного, административно-бытового и производственного назначения с целью оценки их технического состояния для определения возможности дальнейшей безаварийной эксплуатации конструкций и (или) необходимости их усиления.

Правила устанавливают процедуру проведения обследования строительных конструкций, определяют принципиальную схему и состав работ, позволяющих объективно оценить их техническое состояние, фактическую несущую способность и, в случае необходимости, принять обоснованные технические решения по проведению ремонтновосстановительных мероприятий и (или) работ по усилению.

1.2 Правила разработаны в соответствии с требованиями действующих нормативно-технических документов.

2 НОРМАТИВНЫЕ ССЫЛКИ

Перечень нормативных документов, на которые даны ссылки в настоящих Правилах, приведен в приложении А.

При исключении из числа действующих нормативных документов, на которые дается ссылка в настоящих Правилах, следует руководствоваться нормами, введенными взамен исключенных.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Диагностика - установление и изучение признаков и параметров, характеризующих состояние строительных конструкций зданий и сооружений, для определения возможных отклонений от нормативного уровня технического состояния конструкций и предотвращения нарушений нормального режима их эксплуатации.

Обследование - комплекс мероприятий по определению и оценке фактических значений контролируемых параметров, характеризующих эксплуатационное состояние, пригодность и работоспособность строительных конструкций и определяющих возможность их дальнейшей эксплуатации или необходимость восстановления и усиления.

Дефект - отдельное несоответствие конструкций какому-либо параметру, установленному проектом или нормативным документом (СНиП, ГОСТ, ТУ, СН и т.д.).

Повреждение - неисправность, полученная конструкцией при изготовлении, транспортировании, монтаже или эксплуатации.

Поверочный расчет - расчет существующей конструкции по действующим нормам проектирования с введением в расчет полученных в результате обследования или по проектной и исполнительной документации: геометрических параметров конструкции, фактической прочности строительных материалов, действующих нагрузок, уточненной расчетной схемы с учетом имеющихся дефектов и повреждений.

Критерии оценки - установленное проектом или нормативным документом количественное или качественное значение параметра, характеризующего прочность, деформативность и другие нормируемые характеристики строительной конструкции.

Категория технического состояния - степень эксплуатационной пригодности строительной конструкции, установленная в зависимости от доли снижения несущей способности и эксплуатационных характеристик конструкций.

Оценка технического состояния - установление степени повреждения строительных конструкций на основе сопоставления фактических значений количественно оцениваемых параметров со значениями этих же параметров, установленных проектом или нормативным документом для определения категории технического состояния.

Нормативный уровень технического состояния - категория технического состояния строительных конструкций, при котором количественные и качественные значения параметров всех критериев оценки технического состояния соответствуют требованиям нормативных документов (СНиП, ТСН, ГОСТ, ТУ, и т.д.).

Исправное техническое состояние - категория технического состояния строительной конструкции, характеризующееся отсутствием дефектов и повреждений, влияющих на снижение несущей способности и эксплуатационной пригодности.

Работоспособное техническое состояние - категория технического состояния строительной конструкции, при котором некоторые из численно оцениваемых контролируемых параметров не отвечают требованиям проекта, норм и стандартов, но имеющиеся дефекты и повреждения (например, деформации, а в железобетоне величина раскрытия трещин) в данных конкретных условиях эксплуатации не приводят к нарушению работоспособности, и несущая способность конструкции обеспечивается.

Ограниченно работоспособное техническое состояние - категория технического состояния строительной конструкции, при котором имеющиеся дефекты и повреждения, привели к некоторому снижению несущей способности, но отсутствует опасность внезапного разрушения, и функционирование здания или сооружения возможно при дальнейшем контроле состояния и условий эксплуатации конструкции (конструкций).

Недопустимое техническое состояние - категория технического состояния строительной конструкции и здания и сооружения в целом, характеризующееся значительным снижением несущей способности и эксплуатационных характеристик из-за возникших дефектов и

повреждений, при котором существует возможность разрушения конструкции и опасность для пребывания людей и сохранности оборудования (необходимо проведение страховочных мероприятий и усиление конструкций).

Аварийное техническое состояние - категория технического состояния конструкции и здания и сооружения в целом, характеризующееся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности разрушения (эксплуатация запрещается, необходимо срочное проведение противоаварийных мероприятий).

Степень повреждения - установленная в процентном отношении доля снижения несущей способности строительной конструкции по сравнению с проектным значением.

Несущие конструкции - строительные конструкции, воспринимающие эксплуатационные нагрузки и воздействия и обеспечивающие пространственную устойчивость здания.

Нормальная эксплуатация - эксплуатация конструкции, осуществляемая в соответствии с предусмотренными в нормах или проекте техническими условиями.

Эксплуатационные показатели здания - совокупность технических, объемно-планировочных, санитарно-гигиенических, экономических и эстетических характеристик здания, обусловливающих его эксплуатационные качества.

Текущий ремонт здания - комплекс строительных и организационнотехнических мероприятий с целью устранения неисправностей (восстановления работоспособности) элементов здания и поддержания нормального уровня эксплуатационных показателей.

Капитальный ремонт здания - комплекс строительных и организационно-технических мероприятий по устранению физического и морального износа, не предусматривающих изменение основных технико-экономических показателей здания и сооружения, включающих, в случае необходимости, замену отдельных конструктивных элементов и систем инженерного оборудования.

Реконструкция здания - комплекс строительных работ и организационно-технических мероприятий, связанных с изменением основных технико-экономических показателей (нагрузок, планировки помещений, строительного объема и общей площади здания, инженерной оснащенности) с целью изменения условий эксплуатации, максимального восполнения утраты от имевшего место физического и морального износа, достижения новых целей эксплуатации здания.

Модернизация здания - частный случай реконструкции, предусматривающий изменение и обновление объемно-планировочного и архитектурного решений существующего здания старой постройки и его морально устаревшего инженерного оборудования в соответствии с требованиями, предъявляемыми действующими нормами к эстетике условий проживания и эксплуатационным параметрам жилых домов и производственных зданий.

Моральный износ здания - постепенное (во времени) отклонение основных эксплуатационных показателей от современного уровня технических требований эксплуатации зданий и сооружений.

Физический износ здания - ухудшение технических и связанных с ними эксплуатационных показателей здания, вызванное объективными причинами.

Восстановление - комплекс мероприятий, обеспечивающих повышение эксплуатационных качеств конструкций, пришедших в ограниченно работоспособное состояние, до уровня их первоначального состояния.

Усиление - комплекс мероприятий, обеспечивающих повышение несущей способности и (или) эксплуатационных свойств строительной конструкции и здания и сооружения в целом.

4 ОБЩИЕ ПОЛОЖЕНИЯ

- 4.1 К проведению работ по обследованию несущих конструкций зданий и сооружений допускают организации, оснащенные необходимой приборной и инструментальной базой, имеющие в своем составе квалифицированных специалистов и уполномоченные действующим законодательством на проведение таких работ. Квалификация организации на право проведения обследования и оценки технического состояния несущих конструкций зданий и сооружений должна быть подтверждена членством в саморегулируемой организации (СРО) и соответствующим Свилетельством.
- **4.2** Необходимость в проведении обследовательских работ, их объем, состав и характер зависят от поставленных конкретных задач. Основанием для обследования могут быть следующие причины:

наличие дефектов и повреждений конструкций (например, вследствие силовых, коррозионных, температурных или иных воздействий, в том числе неравномерных просадок фундаментов), которые могут снизить прочностные, деформативные характеристики конструкций и ухудшить эксплуатационное состояние здания в целом;

увеличение эксплуатационных нагрузок и воздействий на конструкции при перепланировке, модернизации и увеличении этажности здания;

реконструкция зданий даже в случаях, не сопровождающихся увеличением нагрузок;

выявление отступлений от проекта, снижающих несущую способность и эксплуатационные качества конструкций;

отсутствие проектно-технической и исполнительной документации;

изменение функционального назначения зданий и сооружений;

возобновление прерванного строительства зданий и сооружений при отсутствии консервации или по истечении трех лет после прекращения строительства при выполнении консервации;

деформации грунтовых оснований;

необходимость контроля и оценки состояния конструкций зданий и сооружений, расположенных в зоне влияния вновь строящихся объектов;

необходимость оценки состояния строительных конструкций, подвергшихся воздействию пожара, стихийных бедствий природного характера или техногенных аварий;

необходимость определения пригодности производственных и общественных зданий для нормальной эксплуатации, а также жилых зданий для проживания в них.

4.3 При обследовании зданий объектами рассмотрения являются следующие основные несущие конструкции:

фундаменты, ростверки и фундаментные балки;

стены, колонны, столбы, пилястры;

перекрытия и покрытия (в том числе: балки, ригели, арки, фермы стропильные и подстропильные, плиты, прогоны);

подкрановые балки и фермы;

связевые конструкции, элементы жесткости;

стыки и узлы сопряжения несущих конструкций, соединения и размеры площадок опирания.

- **4.4** При обследовании следует учитывать материалы, из которых выполнены конструкции, их свойства и состояние.
- 4.5 При обследовании конструкций, подверженных коррозии, необходимо определить вид коррозии, зоны ее распространения и степень поражения. Это позволит установить причины коррозионного повреждения, оценить влияние повреждений на несущую способность конструкции, разработать обоснованные мероприятия по восстановлению несущей способности и дальнейшей защите от коррозии.

Такое же внимание необходимо уделять конструкциям в случае их биологического повреждения.

4.6 Оценку категорий технического состояния несущих конструкций производят на основании результатов обследования и поверочных расчетов. По этой оценке конструкции подразделяются на: находящиеся в исправном состоянии, работоспособном состоянии, ограниченно работоспособном состоянии и аварийном состоянии.

По результатам обследования и оценки категории технического состояния конструкции, принимается решение о её (их) дальнейшей эксплуатации. В случае:

- исправного и работоспособного технического состояния эксплуатация конструкций при фактических нагрузках и воздействиях возможна без ограничений. При этом, для конструкций, находящихся в работоспособном состоянии, может устанавливаться требование периодических осмотров;
- ограниченно работоспособного состояния конструкций необходимы контроль за их состоянием и за параметрами процесса эксплуатации (например, ограничение нагрузок, защиты конструкций от коррозии, восстановление или усиление конструкций) и выполнение защитных мероприятий. В случае продолжительной эксплуатации конструкции ограниченно работоспособного состояния без усиления, требуется проведение периодических повторных обследований, сроки которых устанавливаются на основании результатов проведенного ранее обследования;

- *недопустимого* состояния конструкций необходимо проведение страховочных мероприятий и мероприятий по их восстановлению и усилению;
- *аварийного* состояния конструкций их эксплуатация должна быть запрещена, необходимо срочное проведение противоаварийных мероприятий.
- **4.7** При обследовании зданий и сооружений, расположенных в сейсмически опасных регионах, оценка технического состояния конструкций должна производиться с учетом факторов сейсмических возлействий:

расчетной сейсмичности площадки строительства по картам ОСР-97; повторяемости сейсмического воздействия:

спектрального состава сейсмического воздействия;

категории грунтов по сейсмическим свойствам.

5 ЭТАПЫ ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ И СОСТАВ РАБОТ

5.1 Обследование строительных конструкций зданий и сооружений проводится, как правило, в три связанных между собой этапа:

подготовка к проведению обследования;

предварительное (визуальное) обследование;

детальное (инструментальное) обследование.

5.2 Состав работ и последовательность действий по обследованию конструкций независимо от материала, из которого они изготовлены, на каждом этапе включают:

Подготовительные работы:

ознакомление с объектом обследования, его объемно-планировочным и конструктивным решением, материалами инженерно-геологических изысканий:

подбор и анализ проектно-технической документации;

составление программы работ (при необходимости) на основе полученного от заказчика технического задания. Техническое задание разрабатывается заказчиком или проектной организацией и, возможно, с участием исполнителя обследования. Техническое задание утверждается заказчиком, согласовывается исполнителем и, при необходимости, проектной организацией - разработчиком проекта задания.

Предварительное (визуальное) обследование:

сплошное визуальное обследование конструкций здания и выявление дефектов и повреждений по внешним признакам с необходимыми замерами и их фиксацией.

Детальное (инструментальное) обследование:

работы по обмеру необходимых геометрических параметров здания, конструкций, их элементов и узлов, в том числе с применением геодезических приборов;

инструментальное определение параметров дефектов и повреждений;

определение фактических прочностных характеристик материалов основных несущих конструкций и их элементов;

измерение параметров эксплуатационной среды, присущей технологическому процессу в здании или сооружении;

определение реальных эксплуатационных нагрузок и воздействий, воспринимаемых обследуемыми конструкциями с учетом возможного влияния деформаций грунтового основания;

определение реальной расчетной схемы здания и его отдельных конструкций;

определение расчетных усилий в несущих конструкциях, воспринимающих эксплуатационные нагрузки;

расчет несущей способности конструкций по результатам обследования; камеральная обработка и анализ результатов обследования и поверочных расчетов;

анализ причин появления дефектов и повреждений в конструкциях;

составление итогового документа (акта, заключения, технического отчета) с выводами по результатам обследования;

разработка рекомендаций по обеспечению требуемых величин прочности и деформативности конструкций с рекомендуемой, при необходимости, последовательностью выполнения работ.

Некоторые из перечисленных работ могут не включаться в программу обследования в зависимости от специфики объекта исследования, его состояния и задач, определенных техническим заданием.

6 ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ

- 6.1 Подготовка к проведению обследований предусматривает ознакомление с объектом обследования, проектной и исполнительной документацией на конструкции и строительство здания, с документацией по эксплуатации и имевшим место ремонтам, перепланировкам и реконструкции, с результатами предыдущих обследований.
- 6.2 По проектной документации устанавливают проектную организацию автора проекта, год его разработки, конструктивную схему здания, сведения о предусмотренных проектом конструкциях, монтажные схемы сборных элементов, время их изготовления и возведения здания, геометрические размеры здания, его элементов и конструкций, расчетные схемы, проектные нагрузки, характеристики бетона, металла, камня и прочее.
- **6.3** По данным об изготовлении конструкций и возведении зданий устанавливают наименования строительных организаций, осуществляющих строительство, поставщиков материалов и конструкций, сертификаты и паспорта изделий и материалов, данные об имевших место заменах и отступлениях от проекта.
- 6.4 По материалам и сведениям, характеризующим эксплуатацию конструкций здания и эксплуатационные воздействия, вызвавшие необходимость проведения обследования, устанавливают характер внешнего воздействия на конструкции, данные об окружающей среде, данные о проявившихся при эксплуатации дефектах, повреждениях и прочее.

- 6.5 На этапе подготовки к обследованию на основании технического задания, при необходимости, составляют программу работ по обследованию, в которой указывают: цели и задачи обследования; перечень подлежащих обследованию строительных конструкций и их элементов; места и методы инструментальных измерений и испытаний; места вскрытий и отбора проб материалов, исследований образцов в лабораторных условиях; перечень необходимых поверочных расчетов и т.д.
- **6.6** Большинство работ по обследованию проводят в непосредственной близости к конструкциям, поэтому на подготовительном этапе решают вопросы обеспечения доступа к этим конструкциям.

7 ПРЕДВАРИТЕЛЬНОЕ (ВИЗУАЛЬНОЕ) ОБСЛЕДОВАНИЕ

- **7.1** Визуальное обследование проводят для предварительной оценки технического состояния строительных конструкций по внешним признакам и для определения необходимости в проведении детального инструментального обследования.
- **7.2** Основой предварительного обследования является осмотр здания или сооружения и отдельных конструкций с применением измерительных инструментов и приборов (бинокли, фотоаппараты, рулетки, штангенциркули, щупы и прочее).
- 7.3 При визуальном обследовании выявляют и фиксируют видимые дефекты и повреждения, производят контрольные обмеры, делают описания, зарисовки, фотографии дефектных участков, составляют схемы и ведомости дефектов и повреждений с фиксацией их мест и характера. Проводят проверку наличия характерных деформаций здания или сооружения и их отдельных строительных конструкций (прогибы, крены, выгибы, перекосы, разломы и т.д.). Устанавливают наличие аварийных участков, если таковые имеются.
- 7.4 По результатам визуального обследования делается предварительная оценка технического состояния строительных конструкций, которое определяется по степени повреждения и по характерным признакам дефектов. Зафиксированная картина дефектов и повреждений (например: в железобетонных и каменных конструкциях схема образования и развития трещин; в деревянных места биоповреждений; в металлических участки коррозионных повреждений) может позволить выявить причины их происхождения и быть достаточной для оценки состояния конструкций и составления заключения.

Если результаты визуального обследования окажутся недостаточными для решения поставленных задач, то проводят детальное инструментальное обследование. В этом случае, при необходимости, разрабатывается программа работ по детальному обследованию.

7.5 Если при визуальном обследовании будут обнаружены дефекты и повреждения, снижающие прочность, устойчивость и жесткость несущих конструкций здания или сооружения (колонн, балок, ферм, арок, плит покрытий и перекрытий и прочих), то необходимо перейти к детальному обследованию. По характеру имеющихся дефектов может быть определена направленность предстоящего детального обследования.

- **7.6** В случае выявления признаков, свидетельствующих о возникновении аварийной ситуации, необходимо незамедлительно разработать рекомендации и осуществить мероприятия по предотвращению возможного разрушения конструкций и обрушения.
- 7.7 При обнаружении характерных трещин, перекосов частей здания, разломов стен и прочих повреждений и деформаций, свидетельствующих о неудовлетворительном состоянии грунтового основания, необходимо проведение инженерно-геологического исследования, по результатам которого может потребоваться не только восстановление и ремонт строительных конструкций, но и укрепление оснований и фундаментов.

8 ДЕТАЛЬНОЕ (ИНСТРУМЕНТАЛЬНОЕ) ОБСЛЕДОВАНИЕ

8.1 Объемы детального обследования

8.1.1 Детальное инструментальное обследование в зависимости от поставленных задач, наличия и полноты проектно-технической документации, характера и степени дефектов и повреждений может быть сплошным (полным) или выборочным.

Сплошное обследование проводят, когда:

отсутствует проектная документация;

обнаружены дефекты конструкций, снижающие их несущую способность:

проводится реконструкция здания с увеличением нагрузок (в том числе этажности);

возобновляется строительство, прерванное на срок более трех лет без мероприятий по консервации;

в однотипных конструкциях обнаружены неодинаковые свойства материалов, изменения условий эксплуатации под воздействием агрессивных среды или обстоятельств типа техногенных процессов и пр.

Выборочное обследование проводят:

при необходимости обследования отельных конструкций;

- в потенциально опасных местах, где из-за недоступности конструкций невозможно проведение сплошного обследования.
- **8.1.2** Если в процессе сплошного обследования обнаруживается, что не менее 20 % однотипных конструкций, при общем их количестве более 20, находится в удовлетворительном состоянии, а в остальных конструкциях отсутствуют дефекты и повреждения, то допускается оставшиеся непроверенные конструкции обследовать выборочно. Объем выборочно обследуемых конструкций должен определяться конкретно (во всех случаях не менее 10 % однотипных конструкций, но не менее трех).

8.2 Обмерные работы

8.2.1 Целью обмерных работ является уточнение фактических геометрических параметров строительных конструкций и их элементов, определение их соответствия проекту или отклонение от него. Инструментальными измерениями уточняют пролеты конструкций, их

расположение и шаг в плане, размеры поперечных сечений, высоту помещений, отметки характерных узлов, расстояние между узлами и т.д. По результатам измерений составляют планы с фактическим расположением конструкций, разрезы зданий, чертежи рабочих сечений несущих конструкций и узлов сопряжений конструкций и их элементов.

- 8.2.2 Для обмерных работ, по мере необходимости, применяются измерительные инструменты: линейки, рулетки, стальные струны, штангенциркули, шупы, шаблоны, угломеры, уровни, отвесы, лупы, измерительные микроскопы, а в случае необходимости используют специальные измерительные приборы: нивелиры, теодолиты, дальномеры, различные дефектоскопы и прочее, а также применяют фотограмметрию. Все применяемые инструменты и приборы должны быть поверены в установленном порядке.
- **8.2.3** При обследовании конструкций, независимо от их материала, проводят следующие обмерные работы:

уточняют разбивочные оси сооружения, его горизонтальные и вертикальные размеры;

проверяют пролеты и шаг несущих конструкций;

замеряют основные геометрические параметры несущих конструкций;

определяют фактические размеры расчетных сечений конструкций и их элементов и проверяют их соответствие проекту;

определяют формы и размеры узлов стыковых сопряжений элементов и их опорных частей, проверяют их соответствие проекту;

проверяют вертикальность и соосность опорных конструкций, наличие и местоположение стыков, мест изменения сечений;

замеряют прогибы, изгибы, отклонения от вертикали, наклоны, выпучивания, перекосы, смещения и сдвиги.

Кроме перечисленного:

- в железобетонных конструкциях определяют наличие, расположение, количество и класс арматуры, признаки и степень коррозии арматуры и закладных деталей, а также состояние и фактическую толщину защитного слоя бетона с учётом его возможного повреждения;
- в бетонных, железобетонных и каменных конструкциях определяют наличие трещин и измеряют величину их раскрытия, а также глубину (степень) повреждения материала конструкций в результате неблагоприятных воздействий агрессивных сред, попеременного замораживания и оттаивания, пожаров и прочего;
- в металлических конструкциях проверяют прямолинейность сжатых стержней, наличие соединительных планок, состояние элементов с резкими изменениями сечений, фактическую длину, катет и качество сварных швов, размещение, количество и диаметр заклепок или болтов, наличие специальной обработки и пригонки кромок и торцов, учитывая при проверке степень коррозионного поражения;
- в деревянных конструкциях фиксируют наличие искривлений и коробления элементов, разрывов в поперечных сечениях элементов или трещин по их длине, наличие и размеры участков биологического поражения или повреждения от пожара.

При проведении обмерных работ определение площади поперечных сечений элементов металлических конструкций и арматуры в железобетонных конструкциях необходимо выполнять с учетом их коррозионного поражения.

8.3 Определение характеристик материалов бетонных и железобетонных конструкций

- **8.3.1** В бетонных и железобетонных конструкциях прочность бетона определяют механическими методами неразрушающего контроля по ГОСТ 22690, ультразвуковым методом по ГОСТ 17624, а также методами определения прочности по образцам, отобранным из конструкций, по ГОСТ 28570 и приложению 10 ГОСТ 22690.
- 8.3.2 До инструментального определения прочности бетона по 8.3.1 целесообразно предварительно любым оперативным (экспертным) методом (молотком Физделя, ультразвуковым поверхностным прозвучиванием и пр.) обследовать бетон по его поверхности в расчетных сечениях конструкций и их элементов с целью выявления возможного наличия зон с различающейся прочностью бетона.
- **8.3.3** Участки испытания бетона при инструментальном определении прочности в группе однотипных конструкций или в отдельной конструкции должны располагаться:
- в местах наименьшей прочности бетона, предварительно определенной экспертным методом;
- в зонах и элементах конструкций, определяющих их несущую способность;
- в местах, имеющих дефекты и повреждения, которые могут свидетельствовать о пониженной прочности бетона (повышенная пористость, коррозионные повреждения, температурное растрескивание бетона, изменение его цвета и пр.).
- **8.3.4** Число участков при инструментальном определении прочности бетона следует принимать не менее:
- 3 при определении прочности зоны или средней прочности бетона конструкции;
- 6 при определении средней прочности и коэффициента изменчивости бетона конструкции;
- 9 при определении прочности бетона в группе однотипных конструкций.

Число однотипных конструкций, в которых оценивается прочность бетона, определяется программой обследования и принимается не менее трех.

8.3.5 Фактическая прочность бетона в конструкциях, определенная неразрушающими методами или испытанием отобранных из конструкции образцов, является необходимым фактором для получения расчетных характеристик бетона.

Расчетные и нормативные характеристики бетона определяют согласно СНиП 52-01, разделу 5 СП 52-101, СП 52-102 в зависимости от условного класса бетона по прочности на сжатие. Значение условного класса бетона

по прочности на сжатие вычисляют для тяжелого бетона по формуле $B=0.8\,\overline{R}$, для легкого — $B=0.7\,\overline{R}$, где \overline{R} - средняя прочность бетона в группе однотипных конструкций, в конструкции или отдельной ее зоне, полученная по результатам испытаний неразрушающими методами или испытаниями отобранных из конструкций образцов бетона (раздел 6 СНиП 2.03.01).

При больших объемах работ по оценке прочности бетона целесообразно применить статистические методы оценки. Оценка прочности бетона с применением статистических методов приведена в приложении Б.

8.3.6 В практике обследования в ряде случаев, помимо оценки прочности бетона, может потребоваться определение и других его характеристик.

Определение плотности, влажности, водопоглощения, пористости и водонепроницаемости бетона следует проводить по ГОСТ 12730.0 - ГОСТ 12730.5.

Морозостойкость бетона определяют испытанием отобранных из конструкций образцов по ГОСТ 10060.0 - 10060.4.

Щелочность бетона определяют по значению pH поровой жидкости в соответствии с ГОСТ 5382.

Состав и структуру бетона определяют специальными методами химического, физико-химического и микроскопического анализа бетона.

Для определения температуры нагрева бетона при пожаре используют методы дифференциально-термического анализа и контроля изменения пористости цементного камня и его цвета.

8.3.7 Для проверки и определения системы армирования железобетонной конструкции (расположения арматурных стержней, их диаметра, толщины защитного слоя бетона) используют:

магнитный метод по ГОСТ 22904;

радиационный метод по ГОСТ 17625 (применяемый в случаях необходимости);

метод георадиолокации;

контрольное вскрытие бетона с обнажением арматуры для непосредственного замера диаметра и количества стержней, оценки класса арматурной стали по рисунку профиля и определения остаточного сечения стержней, подвергшихся коррозии.

Число конструкций, в которых определяются диаметр, количество и расположение арматуры, определяется программой обследования и принимается не менее трех.

Размеры повреждений арматуры и закладных деталей определяют по снимкам, полученным с помощью радиационного метода или непосредственными замерами после вскрытия арматуры.

8.3.8 Для определения фактической прочности арматуры из конструкции, где это возможно без ее ослабления, вырезают образцы и испытывают по ГОСТ 12004.

При определении прочности арматуры по данным механических испытаний число стержней одного диаметра и одного профиля, вырезанное из однотипных конструкций, должно быть не менее трех. Стержни должны

вырезаться из сечений тех участков конструкций, в которых несущая способность без вырезанных стержней обеспечивается.

8.3.9 Допускается ориентировочное определение прочности арматуры по рисунку профиля стержней, определяемому после ее вскрытия или по данным испытаний радиационным методом по ГОСТ 17625.

При ориентировочном определении прочности арматуры по рисунку профиля стержней количество участков, в которых определяется профиль стержней одного и того же диаметра в однотипных конструкциях, должно быть не менее пяти. В таком случае в расчет принимаются прочностные характеристики арматуры, соответствующие минимальному классу для арматуры такого профиля, применяемой в конструкциях данного типа.

8.3.10 В связи с тем, что арматурные стали одной марки или класса имели в действовавших в разные годы нормативных документах разные величины нормативных и расчетных сопротивлений, при обследовании необходимо определять годы проектирования и постройки здания или сооружения.

Если определение класса арматуры проводится по проектным данным (имеются чертежи конструкций с данными по классу арматуры или маркам примененной стали) без отбора и испытания образцов арматуры, то нормативные и расчетные сопротивления арматуры конструкций принимают согласно действовавшим ранее нормативным документам (НиТу 123-55, СНиП II-13.1-62, СНиП II-21-75, СНиП 2.03.01.) - см. таблицу В.2 приложения В и по СНиП 52-01, СП 52-101, СП 52-102. При обследовании конструкций, возведенных до 2004 г., нормативные и расчетные сопротивления арматуры можно принимать по таблице В.2 приложения В, а конструкций, возведенных после 2003 г. - по СНиП 52-01, СП 52-101 и СП 52-102.

При этом должно соблюдаться условие: арматура в обследованных конструкциях должна совпадать с проектными данными по соответствию рисунка профиля арматуры классу, диаметрам стержней, их количеству и расположению.

При отсутствии проектных данных и невозможности отбора и испытания образцов арматуры нормативные и расчетные сопротивления допускается принимать в зависимости от профиля арматуры в соответствии с п. 6.21 СНиП 2.03.01 или по таблице В.2 приложения В.

При выполнении поверочных расчетов по данным испытаний образцов арматуры, отобранной от обследованных конструкций, нормативные и расчетные сопротивления арматуры принимаются согласно п. 6.19 СНиП 2.03.01.

Если марку арматурной стали определяют на основании химического или спектрального анализа, то нормативные и расчетные сопротивления арматуры назначают в соответствии с нормами, действовавшими на момент постройки или изготовления конструкций (см. таблицу В.2 приложения В).

8.3.11 Определение типов и контроль качества сварных соединений арматуры на соответствие их ГОСТ 14098, ТСН 102-00 производится после вскрытия арматуры путем визуального осмотра и измерения геометрических параметров сварного соединения ультразвуковым методом по ГОСТ 23858 или радиационным методом по ГОСТ 17625, а также, когда

это возможно, путем механических испытаний, вырезанных образцов, по ГОСТ 10922.

Контроль сварных соединений закладных деталей производится в соответствии с ГОСТ 10922, радиационным методом по ГОСТ 17625, ультразвуковым методом или визуально.

8.3.12 При обследовании конструкций подвергшихся воздействию пожара, для получения достоверных данных рекомендуется установить:

время обнаружения пожара;

начало интенсивного горения;

зону распространения пожара и время интенсивного горения;

температуру в помещениях во время пожара;

место нахождения очага пожара;

средства тушения пожара;

максимальную температуру нагрева бетона, арматуры, закладных деталей и сварных соединений:

распределение температуры по участкам конструкций во время пожара.

Для более точной оценки технического состояния конструкций, подвергшихся воздействию пожара и влиянию на них средств тушения, необходимо установить:

изменение цвета бетона и образование на нём копоти и сажи;

глубину повреждения бетона (наличие трещин и микротрещин в бетоне); участки сколов бетона и оголения арматуры:

зоны отставания поверхностных слоёв бетона;

расслоение и отставание поверхностных слоев бетона от основного массива;

наличие и зоны нарушения сцепления арматуры с бетоном вследствие температурных деформаций металла;

площадь неповрежденных рабочих сечений элементов и прочность бетона в них;

прогиб конструкций и их возможное смещение.

Признаки, определяющие температуру нагрева бетона при пожаре, приведены в таблице Γ .1 приложения Γ . Возможное снижение прочности бетона и арматуры в зависимости от температуры нагрева приведено в таблицах Γ .2 и Γ .3 приложения Γ

8.3.13 Особенности обследования бетонных и железобетонных конструкций, подвергавшихся воздействию нефтепродуктов, приведены в приложении Д.

8.4 Определение характеристик материалов металлических конструкций

8.4.1 При обследовании металлических конструкций необходимо определить качество стали, из которой изготовлены конструкции, то есть установить марку стали, соответствие свойств стали стандарту на сталь этой марки и ее расчетным характеристикам. Для этого, по мере необходимости, определяют ее следующие характеристики:

марку стали или ее аналог в соответствии с действующими ГОСТ и ТУ на поставку металла;

прочностные характеристики - предел текучести, временное сопротивление;

пластичность - относительное удлинение и относительное сужение;

склонность к хрупкому разрушению - величину ударной вязкости при различных температурах и в результате старения;

свариваемость (в необходимых случаях).

Регламентируемый комплекс свойств стали, требуемый для группы конструкций и условий их эксплуатации, устанавливается согласно СНиП II-23 (таблицы 50, 53).

Исходными материалами для оценки качества стали являются рабочие чертежи и сертификаты на металл, электроды, сварочную проволоку, метизы, а также нормативные документы, действовавшие в период возведения объекта.

8.4.2 При отсутствии рабочих чертежей или сертификатов, а также при недостаточности содержащихся в них сведений при обнаружении в конструкции повреждений, которые могли быть вызваны низким качеством стали (расслой, трещины и т. д.), а также при изыскании резервов несущей способности конструкций определение качества стали производят путем лабораторного исследования образцов, изготовленных из проб, отобранных из обследуемых конструкций.

При лабораторном исследовании образцов стали, при необходимости, определяют химический состав, механические характеристики и другие показатели, необходимые для оценки состояния металла обследуемых конструкций.

Из элементов конструкций пробы отбирают в местах с наименьшим напряжением - из неприкрепленных полок уголков, полок на концевых участках балок и т.п. При отборе пробы должна быть обеспечена прочность данного элемента конструкции, в необходимых случаях места отбора должны быть усилены или устроены страхующие приспособления.

8.4.3 Отбор проб металла из металлических конструкций, изготовление и испытание образцов стали с целью определения их характеристик производят в соответствии с техническим заданием или программой работ и с учетом требований стандартов.

Порядок отбора проб (стружки) для определения химического состава производят в соответствии с ГОСТ 7565.

Химический анализ стали производят по ГОСТ 22536.0.

Допускается производить определение химического состава стали методом фотоэлектрического спектрального анализа по ГОСТ 18895 и методом спектрографического анализа по ГОСТ 27809.

Порядок отбора проб для механических испытаний образцов производят в соответствии с ГОСТ 7564.

Изготовление образцов и их испытание на растяжение производят по ГОСТ 1497.

8.4.4 Нормативные значения предела текучести или временного сопротивления стали определяют на основании образцов, отобранных из конструкций и испытанных в соответствии с ГОСТ 1497, или назначают в соответствии с марками стали обследуемых конструкций в соответствии с нормами, действующими в период выплавки исследуемой стали.

Марку стали устанавливают на основании химического или спектрального анализа путем сопоставления с нормами действующих стандартов.

Расчетные сопротивления стали R_y находят путем деления нормативных значений предела текучести $R_{y\pi}$ на коэффициент надежности по материалу γ_m , который принимают: для конструкций, изготовленных до 1932 г., и для сталей, у которых полученные при испытаниях значения предела текучести ниже 215 МПа, - 1,2; для конструкций, изготовленных в 1932-1982 гг., и для сталей с пределом текучести ниже 380 МПа - 1,1; для сталей с пределом текучести выше 380 МПа - 1,15; для конструкций, изготовленных после 1982 г., - по СНиП II-23.

Расчетные сопротивления стали не должны превышать значений, установленных ГОСТами, действовавшими в период выплавки исследуемой стали (см. таблицу В.3 приложения В).

Площади поперечных сечений элементов металлических конструкций принимают с учетом коррозионного поражения.

Для элементов конструкций, имеющих коррозионный износ с потерей более 25 % площади поперечного сечения или остаточную после коррозии толщину 5 мм и менее, расчетные сопротивления должны умножаться на коэффициент γ_{α} , принимаемый равным 0,95 для слабоагрессивных, 0,9 - для среднеагрессивных и 0,85 - для сильноагрессивных сред.

8.4.5 Для определения марки стали заклепок в заклепочных соединениях определяют химический состав металла заклепок и его временное сопротивление срезу. Химический состав стали заклепок определяют по ГОСТ 22536.0.

Временное сопротивление срезу материала заклепок допускается определять по результатам испытаний на растяжение по ГОСТ 1497 стандартных цилиндрических образцов диаметром 10 мм, вырезанных из этих заклепок. При этом значение временного сопротивления срезу принимают равным произведению временного сопротивления разрыву на коэффициент 0,58.

8.4.6 При определении механических свойств стали болтов производят испытание болтов на разрыв, испытание образцов на растяжение, измерение твердости, а в необходимых случаях определяют ударную вязкость. Для гаек измеряют твердость. Испытание болтов на разрыв производят с навинченной гайкой по ГОСТ 1759.0.

Химический состав стали болтов определяют по ГОСТ 22536.0.

- **8.4.7** Расчетное сопротивление срезу R_{bs} и растяжению R_{bt} болтов, а также сжатию элементов, соединенных болтами, R_{bp} принимают по СНиП II-23. Если класс прочности болтов установить невозможно, то расчетное сопротивление принимают как для болтов класса прочности 4,6 при расчете на срез и класса прочности 4,8 при расчете на растяжение.
- **8.4.8** Контроль качества сварных соединений металлических конструкций необходимо осуществлять методами, указанными в таблице 40 СНиП 3.03.01.

При оценке качества сварных соединений, по мере необходимости, определяют механические свойства металла шва испытанием на

растяжение цилиндрических образцов из сварного шва, ударную вязкость металла шва и околошовной зоны при одной из отрицательных температур: минус 20 °C или минус 40 °C; прочность и пластичность стыковых сварных соединений - испытанием на растяжение и изгиб в холодном состоянии плоских образцов сварных соединений, твердость металла шва и околошовной зоны. Требования к образцам, к их отбору и к методам испытаний должны соответствовать ГОСТ 6996.

- 8.4.9 Расчетные сопротивления сварных соединений назначают с учетом марки стали, сварочных материалов, видов сварки и положения швов, используя указания СНиП II-23. При отсутствии этих данных для угловых принять, что нормативное значение онжом сопротивления R_{win} равно нормативному значению металла швов временного сопротивления стали элемента R_{un} умноженному коэффициент надежности по материалу шва $\gamma_{wm} = 1,25$, коэффициент $\beta_f =$ 0.7 и $\beta_z = 1.0$, коэффициент условий работы конструкций $\gamma_c = 0.8$; для растянутых стыковых швов расчетное сопротивление металла шва по пределу текучести $R_{wv} = 0.55 R_v$ для конструкций, изготовленных до 1972 г., и R_{wv} = 0,85 R_v для конструкций, изготовленных после 1972 г.
- **8.4.10** При необходимости усиления конструкций с применением электросварки определяют свариваемость стали усиливаемых элементов путем сравнения их углеродного эквивалента, который не должен быть больше 0,62.
- **8.4.11** В чугунных конструкциях или их элементах определение качества чугуна производят путем лабораторного исследования его химического состава. Примерный химический состав отливок из серого чугуна приведен в таблице В.4 приложения В. Химический анализ чугуна производят по ГОСТ 22536.0.

Расчетные сопротивления чугуна по результатам химического анализа принимают:

для конструкций постройки до 1981 г. по таблице В.5 приложения В; для конструкций более поздней постройки по таблице 54 СНиП II-23.

8.5 Определение характеристик материалов каменных конструкций

8.5.1 При разрушающих методах физико-механические свойства каменных материалов (прочность, плотность, влажность и т.п.) стен и фундаментов определяют испытанием образцов и проб, взятых непосредственно из тела обследуемой конструкции или близлежащих участков, если имеются доказательства идентичности применяемых на этих участках материалов.

Отбор кирпича, камней и раствора из стен и фундаментов производят из ненесущих (под окнами, в проемах) или слабонагруженных элементов или конструкций, подлежащих разборке и демонтажу.

Для оценки прочности кирпича, камней правильной формы и раствора из кладки стен и фундаментов отбирают целые, неповрежденные кирпичи или камни и пластинки раствора из горизонтальных швов.

Для определения прочности природных камней неправильной формы (бута) из фрагментов камней выпиливают кубики с размером ребер 40-200

мм или высверливают цилиндры (керны) диаметром 40-150 мм и длиной, превышающей диаметр на 10-20 мм.

- **8.5.2** Прочность (марку) полнотелого и пустотелого глиняного обыкновенного, силикатного и трепельного кирпича определяют разрушающим способом по ГОСТ 8462.
- **8.5.3** Прочность (марку) раствора кладки при сжатии, взятого из швов наиболее характерных участков стен, определяют в соответствии с требованиями ГОСТ 5802.

Испытание кубов из отвердевшего раствора производят через сутки после изготовления, а из оттаявшего раствора - через 2-3 ч. Марка раствора определяется как средний результат пяти испытаний.

8.5.4 Расчетные сопротивления каменной кладки принимают по СНиП II-22 в зависимости от вида и прочности камня, а также прочности раствора, определенных в результате испытаний образцов, отобранных из конструкций и испытанных разрушающими методами в соответствии с действующими нормативами.

8.6 Определение характеристик материалов деревянных конструкций

- **8.6.1** Для взятия проб из конструкций деревянных перекрытий необходимо производить их вскрытие. Число мест вскрытий перекрытия по деревянным балкам должно составлять не менее трех при обследуемой площади до 100 м^2 и не менее 5 при большей площади. Для деревянных перекрытий по металлическим балкам эти цифры соответственно равны 2 и 4. Вскрываться должны полы (чистые и черные), стяжки, подготовка под полы, гидроизоляция, утеплитель или звукоизоляционная засыпка, подшивка, штукатурка.
- 8.6.2 Для определения физико-механических характеристик древесины и микоанализа из ненагруженных или слабонагруженных частей деревянных конструкций, имеющих повреждения и дефекты в не предусмотренных таблицей 1 СНиП II-25 условиях, высверливают керны или выпиливают бруски длиной 150-350 мм.

Выпиленные бруски маркируются, помещаются в полиэтиленовые пакеты и отправляются для лабораторных исследований, а места отбора брусков фиксируются на схемах конструкций, которые прикладываются к актам с результатами испытаний образцов древесины.

Из брусков выпиливают образцы, размеры которых устанавливают соответствующим ГОСТом для каждого вида испытаний

Элементы деревянных конструкций, из которых выпилены бруски древесины, подлежат восстановлению или усилению.

Влажность древесины определяют по ГОСТ 16483.7 и ГОСТ 16588.

Температуру и влажность в вентилируемых полостях перекрытий, чердачных и подвальных помещений определяют термометрами и психрометрами, а воздухообмен - с помощью анемометров. Плотность древесины определяют по ГОСТ 16483.1.

8.6.3 При выборе образцов особое внимание следует обращать на опорные и стыковочные узлы деревянных конструкций по всей их длине, а также на места болтовых, нагельных и гвоздевых соединений и на места контакта древесины с металлом, бетоном и кирпичной кладкой.

Тщательному обследованию при отборе образцов следует подвергать стропила в местах протечек кровли, в зонах, примыкающих к слуховым окнам. Должны быть отмечены естественные и искусственные пороки древесины, механические повреждения, увлажнение, биопоражение древесины и др.

8.6.4 Взятие проб для оценки биоповреждений деревянных конструкций производят при выборочных вскрытиях полов, перегородок, подшивок потолков и т. п. Площадь вскрытия должна быть не менее $0.5~\text{m}^2$ в промежутках между балками перекрытий и не менее $30~\times~30~\text{см}$ в перегородках. Признаки биоповреждений определяют визуально, а более точную диагностику проводят путем анализа отобранных проб древесины в лаборатории при микологических испытаниях.

Вскрытие деревянных конструкций производят в первую очередь в местах протечек: у наружных стен, на опорах балок, прогонов и ферм; в санузлах, в местах прохода коммуникаций; в перекрытиях и перегородках, разделяющих отапливаемые и неотапливаемые помещения и т. д.

Степень биологического повреждения элементов деревянных конструкций определяют путем отношения непораженной площади сечения элементов к его общей площади, на основе измерений глубины поражения древесины.

Глубину биоповреждений древесины грибами следует определять путем стесывания пораженной древесины до здоровой структуры. Вид грибкового заболевания можно определить по внешнему виду пораженной древесины или рассмотрев ее на срез под микроскопом.

Стойкость древесины к биоразрушению определяют по ГОСТ 18610, а параметры защищенности древесины устанавливают по ГОСТ 20022.0.

8.6.5 В висячих стропильных системах должны подробно обследоваться стыки нижнего и верхнего поясов по их длине, а также сопряжения поясов друг с другом, со стойками и раскосами, должна проверяться вертикальность плоскости висячих стропил. Из дефектных мест отбираются образцы для испытаний.

При обследовании наслонных стропил в обязательном порядке должны определяться прогибы (провисания) поясов, затяжек и собственно стропил. Особенно тщательно должны обследоваться узлы опирания наслонных стропил на стены и оцениваться состояние опорных узлов с точки зрения поражения их гнилью. В этих местах, при необходимости, отбирают древесину для испытаний.

8.6.6 При обследовании клееных конструкций (балок, рам, арок) в первую очередь следует обращать внимание на состояние клеевых швов, их расслоение. При обнаружении расслоения необходимо определить глубину разрушения клеевого шва с поверхности конструкции.

Следует обращать внимание на наличие гидроизоляционных прокладок под опорами арок и рам.

8.6.7 Предел прочности древесины при сжатии волокон определяют по ГОСТ 16483.10, а при сжатии поперек волокон - по ГОСТ 16483.11.

Предел прочности древесины при статическом изгибе определяют по ГОСТ 16483.3, а модуль упругости при статическом изгибе - по ГОСТ 16483.9.

Предел прочности древесины при местном смятии поперек волокон определяют по ГОСТ 16483.2.

Предел прочности древесины при скалывании вдоль волокон определяют по ГОСТ 16483.5, а при скалывании поперек волокон - по ГОСТ 16483.12.

8.6.8 В связи с отсутствием данных об изменении прочности древесины во времени расчетные сопротивления древесины конструкции в целом или ее частей, не пораженных гнилью, принимают по СНиП П-25 как для новой древесины. При поверхностном разрушении древесины гнилью размеры сечения деревянных элементов уменьшают на толщину слоя, пораженного гнилью, а кроме того, если среда влажная и древесина поражена мицелием, то при расчете следует ввести коэффициент 0,8.

8.7 Особенности обследования фундаментов зданий и сооружений.

- **8.7.1** Обследование фундаментов и оценка их технического состояния необходима для установления причин деформаций зданий и сооружений, разработки технической и проектной документации на ремонтновосстановительные работы, работы по усилению и реконструкции.
- **8.7.2** Обследование фундаментов должно проводиться в соответствии с существующими нормативно-методическими документами.
- **8.7.3** Состав, объем и методы обследования фундаментов намечают в зависимости от целей и методов реконструкции или нового строительства, уровня его ответственности и категории сложности инженерногеологических условий.
- **8.7.4** Сложность обследования фундаментов, обычно. связана необходимостью предварительной их откопки проведения инженерно-геологического исследования параметров грунтового основания. Поэтому до начала работ по обследованию от соответствующих организаций должно быть получено разрешение на проходку шурфов, бурение скважин и т.д. В местах исторической застройки проведение работ необходимо согласовать с органами охраны исторических памятников.
- 8.7.5 Перед проведением обследования фундаментов следует: ознакомиться с имеющейся проектно-технической документацией на обследуемое здание; с материалами ранее проведенных обследований, инженерно-геологических изысканий на данной площадке и на соседних участках, получить данные о наличии и местоположении вблизи или на территории объекта обследования существующих и существовавших ранее коммуникаций И подземных сооружений инженерных (подвалов, фундаментов снесенных колодцев, зданий, тоннелей, подземных выработок и прочего).

Предварительная визуальная оценка состояния надземных конструкций здания позволяет определить зоны наибольших деформаций и повреждений конструктивных элементов и наметить оптимальные места вскрытий фундаментов.

8.7.6 Одной из особенностей обследования фундаментов, а также подземных частей зданий или сооружений является обязательная фиксация и оценка технического состояния фундамента в местах проявления специфических деформаций, возникших при неравномерных осадках

частей зданий. В этих местах в надземных конструкциях образуются характерные трещины, по которым можно определить, какая часть здания осела сильнее и выявить возможные характерные деформации в узлах сопряжения конструкций перекрытий и покрытий со стенами и опорными конструкциями здания.

Причинами неравномерных осадок могут быть различные дефекты и повреждения как самих фундаментов, так и неблагоприятные особенности грунтового основания, в том числе вызванные техногенными воздействиями.

- 8.7.7 Для обследования фундаментов в грунте отрываются шурфы. Их отрывают с наружной или с внутренней стороны здания в зависимости от возможности и удобства откопки. Места отрывки (проходки) шурфов выбирают в районе обнаруженных деформаций (повреждений) конструкций. Количество шурфов зависит от конструкции фундамента, его состояния, конфигурации плана обследуемого сооружения, его площади и конкретных задач обследования.
- **8.7.8** В зависимости от состояния конструкций и поставленных задач обследование может быть сплошным или выборочным.

При сплошном обследовании фундаменты проверяют под каждой стеной и всеми колоннами.

При выборочном обследовании проверяют отдельные фундаменты, составляющие выборку, объем которой назначается в зависимости от состояния конструкций и задач проводимого обследования.

- 8.7.9 При обследовании фундаментов сооружений, состоящих из нескольких строительных объемов, местоположение шурфов выбирают таким образом, чтобы две стенки одного шурфа обнажали фундаменты разных частей здания, сопряженных друг с другом, что позволяет уменьшить количество шурфов.
- **8.7.10** Шурфы, обычно, отрывают не менее чем на 0,5 м ниже отметки подошвы фундаментов. Длина участка обнажаемого ленточного фундамента должна быть не менее 1 м.
 - 8.7.11 При обследовании фундаментов в пределах откопанного шурфа:

устанавливают: тип и конструкцию фундамента, его форму в плане и по высоте, геометрические размеры, глубину заложения подошвы, выполненные ранее усиления (если таковые имеются), наличие ростверка и искусственного основания;

изучают цоколи и нижние части стен, находящиеся под землей;

исследуют: материал фундаментов (рваный или постелистый бут, пиленый камень, бетон или железобетон); прочностные характеристики материалов;

отмечают состав и состояние связующего раствора или заполнителя (забутовки), а также наличие и сохранность гидроизоляционного слоя; для зданий исторической застройки проверяют наличие лежней и деревянных свай под фундаментами;

фиксируют имеющиеся дефекты и повреждения.

8.7.12 При наличии документации на существующие фундаменты, содержащей необходимые сведения об их конструктивном решении и

примененных материалах, и при условии, что конструкции здания находятся в работоспособном состоянии, допускается выполнить только выборочное контрольное шурфование (1 - 2 шурфа).

- 8.7.13 При обследовании конструкций подвалов и заглубленных сооружений необходимо проводить оценку технического состояния конструкций и состояния гидроизоляции, проверять степень влажности воздушной среды, состояние и водонасыщение строительных материалов этих конструкций, а также степень вымывания и утраты связующего материала в швах кладки.
- 8.7.14 В подвалах зданий и в заглубленных сооружениях при наличии повреждений наружных стен или при недостаточной прочности кладки может происходить выпучивание или выпирание стен внутрь помещений вследствие бокового давления грунта. При этом могут образоваться горизонтальные и вертикальные трещины в стенах, раскрыться горизонтальные швы в кладке стен, а в более серьезных случаях происходить сдвижки частей кладки с разломами. В таких случаях предусматривают страховочные мероприятия.

9 НАГРУЗКИ И ВОЗДЕЙСТВИЯ

- 9.1 На основании имеющейся проектно-технической документации или технического задания на обследование определяют нормативные значения постоянных и временных нагрузок, действующих на конструкции:
 - от веса стационарного оборудования;
 - от веса складируемых материалов;
- от мостовых, тельферных кранов, напольного транспорта и другого подъемного оборудования;
 - от веса ремонтных материалов и перемещаемого оборудования;
- от временных равномерно распределенных нагрузок, указанных в таблице 3 СНиП 2.01.07;
 - от ветра:
 - от снега.

Коэффициенты надежности по этим нагрузкам принимают в соответствии со СНиП 2.01.07.

- **9.2.** При обследовании объекта определяют следующие фактические нагрузки:
 - от собственного веса несущих и ограждающих конструкций;
- от веса полов, перегородок и внутренних стен, опирающихся на несущие конструкции;
- от веса технологической пыли, скапливающейся на покрытии и конструкциях.

Нагрузки от собственного веса сборных несущих конструкций определяют по чертежам и каталогам, действовавшим в период строительства обследуемого объекта, а при отсутствии чертежей - по результатам обмеров, полученным при обследовании.

Вес монолитных железобетонных несущих конструкций определяют по результатам обмеров, полученным при обследовании.

Собственный вес металлических конструкций можно определять по результатам обмеров основных элементов. К основным элементам относятся:

- в фермах пояса и стержни решетки;
- в балках и сплошностенчатых колоннах пояса и стенка;
- в сквозных колоннах пояса;
- в связях пояса и элементы решетки.

Полный вес конструкций определяют умножением собственного веса основных элементов на строительный коэффициент веса, принимаемый по таблице В.1 приложения В.

9.3 Нагрузки от стационарного оборудования определяют на основании анализа технической документации, уточненной результатами натурного обследования, составляют схему расположения стационарного оборудования с привязкой к разбивочным осям здания и указанием способа опирания на конструкции. Фактический вес оборудования принимается по паспортам.

В необходимых случаях на схему дополнительно наносят расположение коммуникаций с указанием их веса и мест крепления к конструкциям.

9.4 Постоянные нагрузки на конструкциях покрытий и перекрытий (звуко- и теплоизоляционные материалы, стяжки, гидроизоляция кровель, покрытие полов) определяют по результатам вскрытий с определением плотности и толщины слоев или по результатам взвешиваний материалов на вырезанных участках площадью от 0,04 до 0,25 м², при этом число вскрытий должно быть не менее трех на этаж и не менее шести - на 500 м² площади.

По результатам вскрытий вычисляется нормативная нагрузка

$$q_n = q_m + \frac{t_\alpha S}{\sqrt{n}} \, .$$

где q_m - среднее арифметическое значение нагрузки, полученной по всем вскрытым участкам;

 t_{α} -коэффициент Стьюдента (см. таблицу Б.1 приложения Б);

n - число вскрытых участков;

S - среднее квадратическое отклонение результатов взвешивания;

$$S = \sqrt{\sum (q_i - q_m)^2 / n - 1},$$

где q_i - вес i-го образца.

Коэффициент надежности по нагрузкам от собственного веса всех типов конструкций принимается равным 1,1.

- 9.5 Степень агрессивности среды определяют по СНиП 2.03.11 и пособиям.
- 9.6 При обследовании зданий и сооружений, эксплуатирующихся в сейсмических районах, целесообразно проводить микродинамические испытания по определению периода собственных колебаний, соответствующих ведущим формам, а также относительных перемещений рассматриваемых точек.

При проведении микродинамических испытаний используют:

вибродинамический метод с применением сейсмовибратора с заданными параметрами нагружения, устанавливаемого или непосредственно на конструкции здания или на грунт;

импульсный метод с помощью удара по несущим конструкциям пластичным грузом массой 30 - 50 кг.

10 ПОВЕРОЧНЫЕ РАСЧЕТЫ КОНСТРУКЦИЙ И ИХ ЭЛЕМЕНТОВ

10.1 Расчет зданий и сооружений и определение усилий в конструктивных элементах от эксплуатационных нагрузок производятся на основе положений строительной механики и сопротивления материалов.

Расчеты могут осуществляться инженерными методами в ручную или на ПЭВМ с использованием сертифицированных программ.

Расчеты выполняют на основании и с учетом уточненных обследованием:

геометрических параметров здания и его конструктивных элементов - пролетов, высот, размеров расчетных сечений несущих конструкций;

фактических опираний и сопряжений несущих конструкций, их реальной расчетной схемы;

расчетных сопротивлений материалов, из которых выполнены конструкции;

дефектов и повреждений, влияющих на несущую способность конструкций:

фактических нагрузок, воздействий и условий эксплуатации здания или сооружения.

10.2 Реальная расчетная схема определяется по результатам обследования. Она должна отражать:

условия опирания или соединения с другими смежными строительными конструкциями, деформативность опорных креплений;

геометрические размеры сечений, величины пролетов, эксцентриситетов; вид и характер фактических (или требуемых) нагрузок, точки их приложения или распределение по конструктивным элементам;

повреждения и дефекты конструкций.

При определении реальной расчетной схемы работы железобетонных конструкций необходимо, наряду с их геометрическими параметрами, учитывать систему фактического армирования и способы их сопряжения между собой.

- **10.3** Расчет несущей способности бетонных и железобетонных конструкций производят в соответствии со СНиП 52-01, СП 52-101 и СП 52-102.
- **10.4** Расчет несущей способности стальных конструкций производят в соответствии со СНиП II-23.
- **10.5** Расчет несущей способности каменных и армокаменных конструкций производят в соответствии со СНиП II-22.
- 10.6 Расчет несущей способности деревянных конструкций производят в соответствии со СНиП II-25.
- **10.7** Расчет конструкций зданий и сооружений, эксплуатирующихся в сейсмических районах, производят в соответствии со СНиП II-7.

10.8 На основании проведенного расчета производят:

определение усилий в конструкциях от эксплуатационных нагрузок и воздействий, в том числе и сейсмических;

определение несущей способности этих конструкций.

Сопоставление этих величин показывает степень реальной загруженности конструкций по сравнению с ее несущей способностью.

- 10.9 На основании проведенного обследования несущих строительных конструкций, выполнения проверочных расчетов и анализа их результатов делается вывод о категории технического состояния этих конструкций и может быть принято решение об их дальнейшей эксплуатации.
- В случае если усилия в конструкции превышают ее несущую способность, то состояние такой конструкции должно быть признано недопустимым или аварийным.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ОБСЛЕДОВАНИЯ

- 11.1 По результатам проведенного обследования составляют акт, заключение или отчет о техническом состоянии конструкций здания или сооружения, в котором приводятся сведения, полученные из проектной и исполнительной документации, и материалы, характеризующие особенности эксплуатации конструкций, вызвавшие необходимость проведения обследования.
- 11.2 В итоговом документе по результатам обследования приводятся планы, разрезы, ведомости дефектов и повреждений или схема дефектов и повреждений с фотографиями наиболее характерных из них; схемы расположения трещин в железобетонных и каменных конструкциях и данные об их раскрытии; значения всех контролируемых признаков, определение которых предусматривалось техническим заданием или программой проведения обследования; результаты проверочных расчетов, если их проведение предусматривалось программой обследования; оценка состояния конструкций с рекомендуемыми мероприятиями по усилению конструкций, устранению дефектов и повреждений, а также причин их появления.

Данный перечень может быть дополнен в зависимости от состояния конструкций, причин и задач обследования.

11.3 Заключение или отчет подписывается лицами, проводившими обследование, руководством структурного подразделения и утверждается руководителем организации, проводившей работу, или уполномоченным на это лицом.

12 ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ ОБСЛЕДОВАНИЯ КОНСТРУКЦИЙ

12.1 Перед обследованием конструкций намечается план безопасного ведения работ как с временным прекращением эксплуатации, так и без прекращения эксплуатации здания или отдельных его участков. План должен предусматривать мероприятия, исключающие возможность обрушения конструкций, поражения людей газом, током, паром, огнем, наезда транспорта и т. п.

- 12.2 Для обеспечения непосредственного доступа к конструкциям могут быть использованы имеющиеся в здании средства: мостовые и подвесные краны, переходные площадки и галереи, технологическое оборудование и т. п. При отсутствии таковых устраивают подмости, леса и площадки, настилы, люльки, приставные лестницы, стремянки.
- **12.3** При производстве работ по обследованию конструкций работники, проводящие обследование, обязаны соблюдать требования СНиП 12-03-2001 и СНиП 12-04-2002 по технике безопасности и безопасности труда в строительстве.
- 12.4 Лица, проводящие натурные обследования, должны в соответствии с ГОСТ 12.0.004 пройти вводный (общий) инструктаж в отделе охраны труда предприятия, а также инструктаж непосредственно на объекте, где будет проводиться обследование, проводимый уполномоченным лицом. Проведение инструктажа фиксируется в специальном журнале с росписью лица, проводившего инструктаж, и работника, прошедшего инструктаж.
- **12.5** Лица, проводящие обследование, должны использовать необходимые защитные приспособления и спецодежду:

защитные каски по ГОСТ 12.4.087:

предохранительные пояса по ТУ 36-2103 с указанием места закрепления карабина и страховочных канатов по ГОСТ 12.4.107 (при необходимости);

спецодежду, которая не должна иметь болтающихся и свисающих частей во избежание зацепления с движущимися частями механизмов и токопроводящими элементами;

аппараты и приспособления для защиты глаз и дыхательных путей, применяющиеся на данном предприятии в соответствии с имеющимися вредными факторами: маски, очки, респираторы, противогазы, кислородные изолирующие приборы, вентилируемые скафандры и т. д.

- 12.6 Все работы по осмотру, обмерам и испытаниям конструкций на высоте более трех метров, как правило, проводятся с подмостей. Выполнение этих работ без подмостей допускается только при невозможности их устройства, с обязательным применением предохранительных приспособлений (натянутые стальные канаты, страховочные сетки и т. д.) и монтажных поясов.
- **12.7** Ежедневно перед началом работ необходимо провести проверку состояния лесов, подмостей, ограждений, люлек, лестниц; в случае их неисправности должны быть приняты необходимые меры по ремонту.

ПРИЛОЖЕНИЕ А

(обязательное)

ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ, НА КОТОРЫЕ ИМЕЮТСЯ ССЫЛКИ В СП

СНиП 2.01.07-85*	Нагрузки и в	воздей	іствия		
СНиП 2.03.01 - 84*	Бетонные и	желез	обетонные конструкт	ции	
СНиП 52-01-2003	Бетонные и	желез	обетонные конструк	ции	
СП 52-101-2003	Бетонные	И	железобетонные	конструкции	без
	предварител	ьного	напряжения арматур	Э Ы	

СП 52-102-2004	Предварительно напряженные железобетонные
СНиП 2.03.11-85	конструкции
СНиП 3.03.01-87	Защита строительных конструкций от коррозии
СНиП II-7-81*	Несущие и ограждающие конструкции
СНиП II-7-81 СНиП II-22-81	Строительство в сейсмических районах
	Каменные и армокаменные конструкции
СНиП II-23-81*	Стальные конструкции
СНиП II-25-80*	Деревянные конструкции
СНиП 12-03-2001	Безопасность труда в строительстве. Часть 1. Общие требования
СНиП 12-04-2002	Безопасность труда в строительстве. Часть 2. Строительное производство
ΓΟCT 7565-81 [*]	Чугун, сталь и сплавы. Метод отбора проб для химического состава
ГОСТ 22536.0-87	Сталь углеродистая и чугун нелегированный. Общие
1001220000	требования к методам анализа
ГОСТ 18895-97	Сталь. Метод фотоэлектрического спектрального анализа
ГОСТ 7564-97	Прокат. Общие правила отбора проб, заготовок и образцов
1001700177	для механических и технологических испытаний
ΓΟCT 1497-84 [*]	Металлы. Методы испытаний на растяжение
ΓΟCT 1759.0-87	Болты, винты, шпильки и гайки. Технические условия
ΓΟCT 6996-66*	Сварные соединения. Методы определения механических
10010,,000	свойств
ГОСТ 8462-85	Материалы стеновые. Методы определения пределов
1001010200	прочности при сжатии и изгибе
ГОСТ 5802-86	Растворы строительные. Методы испытаний
ΓΟCT 16483.1-84	Древесина. Метод определения плотности
ΓΟCT 16483.2-70*	Древесина. Методы определения условного предела
	прочности при местном смятии поперек волокон
ГОСТ 16483.3-84	Древесина. Метод определения предела прочности при
	статическом изгибе
ГОСТ 16483.5-73	Древесина. Методы определения предела прочности при
	скалывании вдоль волокон
ΓΟCT 16483.7-71*	Древесина. Методы определения влажности
ΓΟCT 16483.9-73*	Древесина. Методы определения модуля упругости при
	статическом изгибе
ΓΟCT 16483.10-73*	Древесина. Методы определения предела прочности при
	сжатии вдоль волокон
ΓΟCT 16483.11-72*	Древесина. Метод определения условного предела
	прочности при сжатии поперек волокон
ΓΟCT 16483.12-72*	Древесина. Методы определения предела прочности при
*	скалывании поперек волокон
ΓΟCT 18610-82*	Древесина. Метод полигонных испытаний стойкости к загниванию
ГОСТ 20022.0-93	Защита древесины. Параметры защищенности
ΓOCT 28570-90	Бетоны. Методы определения прочности по образцам,
1 001 203/0-30	отобранным из конструкций
ГОСТ 12.0.004-90	ССБТ. Организация обучения безопасности труда. Общие
1 001 12.0.007-90	положения
ГОСТ 12.4.087-84	ССБТ. Строительство. Каски строительные. Технические
1 001 12.7.007-04	условия
	JANOBIN

ГОСТ 12.4.107-82	ССБТ. Строительство. Канаты страховочные. Общие
ГОСТ 5382-91	технические требования Цементного производства. Методы
1001 3362-91	химического анализа
ΓΟCT 12004-81*	Сталь арматурная. Методы испытаний на растяжение
ΓΟCT 12730.0-78	Бетоны. Общие требования к методам определения
	плотности, влажности, водопоглощения, пористости и водонепроницаемости
ΓΟCT 12730.1-78	Бетоны. Метод определения плотности
ΓΟCT 12730.2-78	Бетоны. Метод определения влажности
ΓΟCT 12730.3-78	Бетоны. Метод определения водопоглощения
ΓΟCT 12730.4 -78	Бетоны. Метод определения показателей пористости
ΓΟCT 12730.5-84*	Бетоны. Метод определения водонепроницаемости
ΓΟCT 23858-79	Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы
	контроля качества. Правила приемки
ΓΟCT 14098-91	Соединения сварные арматуры и закладных изделий
	железобетонных конструкций. Типы, конструкция и размеры
ГОСТ 16588-91	Пилопродукция и деревянные детали. Методы определения
TO CT	влажности
ГОСТ 22690-88	Бетоны. Определение прочности механическими методами неразрушающего контроля
ΓΟCT P 53231	Бетоны. Правила контроля и оценки прочности
ΓΟCT 17624-87	Бетоны. Ультразвуковой метод определения прочности
ΓΟCT 17625-83	Конструкции и изделия железобетонные. Радиационный
	метод определения толщины защитного слоя бетона, размеров и расположения арматуры
ΓΟ CT 10060.0-95	Бетоны. Методы определения морозостойкости. Общие
	требования
ΓΟCT 10060.1-95	Бетоны. Базовый метод определения морозостойкости
ΓΟCT 10060.2-95	Бетоны. Ускоренные методы определения морозостойкости
	при многократном замораживании и оттаивании
ГОСТ 10060.3-95	Бетоны. Дилатометрический метод определения морозостойкости
ГОСТ 10060.4-95	Бетоны. Структурно-механический метод ускоренного
	определения морозостойкости
ГОСТ 22904-93	Конструкции железобетонные. Магнитный метод
	определения толщины защитного слоя бетона и
	расположения арматуры
Γ OC T 10922-90	Арматурные и закладные изделия сварные, соединения
	сварные арматуры и закладных изделий железобетонных
	конструкций. Общие технические условия
ГОСТ 27809-95	
ГОСТ 27809-95 ОСР-97	конструкций. Общие технические условия

приложение б

(справочное)

СТАТИСТИЧЕСКАЯ О ЦЕНКА ПРОЧНОСТИ БЕТОНА

Статистическая оценка прочности бетона при обследовании конструкций применима в следующих случаях:

- 1. Прочность бетона определялась на основании испытания отобранных из конструкции образцов в соответствии с ГОСТ 28570.
 - 2. Прочность бетона определялась методом отрыва со скалыванием.
- 3. Прочность бетона определяется по предварительно установленным экспериментально градуировочным зависимостям, по результатам параллельных испытаний одних и тех же участков конструкций методом отрыва со скалыванием и другими методами неразрушающего контроля (ультразвуковым, пластической деформации, упругого отскока и ударного импульса). При этом среднее квадратическое отклонение градуировочной зависимости S_T не должно превышать 15 % среднего значения прочности бетона образцов или участков конструкций, использованных при построении градуировочной зависимости, а коэффициент корреляции г должен быть не менее 0,7.

При наличии образцов, отобранных из конструкций, можно построить градуировочную зависимость между прочностью бетона образцов, испытанных на прессе, и косвенными характеристиками прочности этих же образцов, полученных при их испытании неразрушающими методами.

В случае построения градуировочной зависимости по данным параллельных испытаний одних и тех же участков методом отрыва со скалыванием и другим неразрушающим методом средняя квадратическая ошибка градуировочной зависимости S_T определяется по формуле

$$S_T = \sqrt{S_{Th.m.}^2 + S_{Tm.o.c}^2}$$

где $S_{\mathit{Th.M}}$ - средняя квадратическая ошибка построенной градуировочной зависимости;

 $S_{\mathit{Тм.o.c.}}$ - средняя квадратическая ошибка построенной градуировочной зависимости метода отрыва со скалыванием, принимаемая: а) при анкерном устройстве с глубиной заделки 48 мм - 0,04 от средней прочности бетона участков, использованных при построении градуировочной зависимости; б) глубиной 35 мм - 0,05 средней прочности; в) глубиной 30 мм - 0,06 средней прочности; г) глубиной 20 мм - 0,07 средней прочности.

Класс бетона определяется по формуле

$$B = R_m (1 - t_\alpha V),$$

где R_m - средняя прочность бетона по результатам испытаний;

 t_{α} - коэффициент Стьюдента (см. таблицу Б.1);

V - коэффициент вариации прочности, который определяется по формуле

$$V = S_m / R_m$$

где S_m - среднее квадратическое отклонение прочности.

При оценке прочности бетона по образцам или методу отрыва со скалыванием среднее квадратическое отклонение прочности бетона в конструкциях или в партии конструкций вычисляют следующим образом:

$$S_m = \sqrt{\frac{\sum_{i=1}^{n} (R_i - R_m)^2}{n - 1}}$$

где $R_{\rm i}$ - прочность бетона отдельного образца или участка конструкции, испытанного методом отрыва со скалыванием;

 $R_{\rm m}$ - средняя прочность бетона в конструкции или партии конструкций;

n - число испытанных образцов или испытанных участков в конструкции.

При контроле прочности бетона в конструкции или партии конструкций неразрушающими методами по градуировочной зависимости S_m определяется следующими формулами.

В случае когда за единичное значение прочности принимается прочность бетона на контролируемом участке

$$S_m = \left(S_{n.m} + \frac{S_T}{\sqrt{n-1}}\right) \frac{1}{0.7r + 0.3}$$

где $S_{{\scriptscriptstyle H.M}}$ - среднее квадратическое отклонение прочности, полученное по данным испытаний неразрушающими методами;

 S_T - средняя квадратическая ошибка градуировочной зависимости;

r - коэффициент корреляции градуировочной зависимости;

n - число участков испытаний прочности в конструкциях.

В тех случаях когда в качестве единицы прочности бетона может быть принята средняя прочность бетона конструкции или части конструкции, вычисленная как среднее арифметическое значение прочности контролируемых участков конструкций, среднее квадратическое отклонение прочности бетона S_m определяется по формуле

$$S_m \sqrt{S_{\scriptscriptstyle H.M}^2 + \frac{S_T^2}{P}}$$

где P - число контролируемых участков в конструкции.

Таблица Б.1 - Значение коэффициента Стьюдента t_{α} при обеспеченности 0,95 (одностороннее ограничение)

Число испытаний	t_{α}	Число испытаний	t_{lpha}
2	6,31	12	1,80
3	2,92	13	1,78
4	2,35	14	1,77
5	2,13	15	1,76
6	2,01	20	1,73
7	1,94	25	1,71
8	1,89	30	1,70
9	1,86	40	1,68
10	1,83	∞	1,64
11	1,81		

ПРИЛОЖЕНИЕ В

(справочное)

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ МЕТАЛЛОВ И ИЗДЕЛИЙ ИЗ НИХ

Таблица В.1 - Строительные коэффициенты веса стальных сварных и клепаных конструкций

Наименование	конструктивные решения	Коэффициент
конструкций		веса
Стропильные фермы	Из парных уголков, пролетом:	
	24 м	1,3
	30-36 м	1,22
	Из труб, пролетом 30-36 м	1,1
Подстропильные	Из парных уголков пролетом:	
фермы	12 м	1,25
	18 м	1,3
	24 м	1,35
Колонны	Сплошные, постоянного сечения по высоте	1,3
	Сплошные, переменного сечения по высоте	1,5
	(ступенчатые)	
	Ступенчатые с нижней ступенью сквозной, верхней -	1,7
	сплошной крайнего ряда	
	То же, среднего ряда	1,55
Подкрановые балки	Сплошные, пролетом:	
	6, 12, 18 м	1,2
	24, 30 м	1,25
	Сквозные, пролетом 18-30 м	1,15
Тормозные балки	Пролетом 6-18 м	1,2
Тормозные фермы	пролетом 6-24 м	1,35
Связи	Крестовые	1,05
	Портальные	1,15
	Распорки, тяжи	1,05
Прогоны	Сплошные	1,05
	Сквозные	1,2
Стропильные фермы	Пролетом:	
	18-24 м	1,37
	30 м	1,33
Подстропильные	Пролетом:	
фермы	5-12 м	1,23
	15-18 м	1,4
Колонны	Сквозные ступенчатые	1,85
	Сплошные постоянного сечения	1,35
Подкрановые балки	Сплошные пролетом:	
	5-12 м	1,25
	15-18 м	1,26
	Сквозные пролетом	
	15-24 м	1,33
Тормозные балки	Пролетом 5-12 м	1,27
Тормозные фермы	Пролетом 5-18 м	1,36

Таблица В.2 - Нормативное и расчетное сопротивления арматурных сталей

Вид арматуры	Нормативные сопротивления,	Расчетные сопротивления, МП (кгс/см²)	
	МПа (кгс/см ²)	Растянутой	Сжатой
1	2	3	4
<u>Стержневая.</u>			_

	10.5		
Горячекатаная, круглая, полосовая, квадратная	185	155	155
CT0	(1900)	(1600)	(1600)
Постройка до 1995 г.			<u> </u>
Горячекатаная, круглая, полосовая, квадратная	185	165	165
C70	(1900)	(1700)	(1700)
Постройка с 1995-1962 г			
Горячекатаная, круглая (гладкая) класса А-І, а	235	205	205
также полосовая, угловая и фасонная из группы	(2400)	(2100)	(2100)
марок стали Ст3.			
Постройка до 1986 г.			
Горячекатаная, круглая (гладкая) класса А-І.	235	225	225
Постройка с 1986 по 2004г.	(2400)	(2300)	(2300)
Холодносплющенная периодического профиля из	445	355	355
стали марок Ст0 и Ст3.	(4500)	(3600)	(3600)
Постройка до 1962 г.			_
Горячекатаная периодического профиля,	275	235	235
имеющая выступы с одинаковым заходом на	(2800)	(2400)	(2400)
обеих сторонах профиля (винт), класса A-II из			
стали марки Ст5.			
Постройка до 1962 г.			
Горячекатаная периодического профиля,	295	265	265
имеющая выступы с одинаковым заходом на	(3000)	(2700)	(2700)
обеих сторонах профиля (винт), класса А-ІІ.	, ,	` ′	
Постройка с 1962 по 1986 г.			
Горячекатаная периодического профиля,	295	280	280
имеющая выступы с одинаковым заходом на	(3000)	(2850)	(2850)
обеих сторонах профиля (винт), класса А-ІІ.	(- /		()
Постройка с 1986 по 2004г.			
Горячекатаная периодического профиля,	440	315	265
упрочненная вытяжкой, класса А-ІІв	(4500)	(3250)	(2700)
.Постройка с 1962 по 1976 г.	(1000)	(5250)	(2700)
Горячекатаная периодического профиля,	390	335	335
имеющая выступы, с одной стороны правый	(4000)	(3400)	(3400)
заход, а с другой - левый («елочка»), класса А-	(4000)	(3400)	(3400)
III.			
Постройка до 1986 г.			
Горячекатаная периодического профиля,			+
имеющая выступы, с одной стороны правый			
заход, а с другой - левый («елочка») класса А-III.			
Постройка с 1986 по 2004г.	390		
Диаметр 6-8 мм	(4000)	355 (3600)	355 (3600)
Диаметр 10-40 мм		365 (3750)	365 (3750)
Горячекатаная периодического профиля,	540	390	335
упрочненная вытяжкой, класса А-Шв.			
Постройка с 1962 по 1976 г.	(5500)	(4000)	(3400)
			+
Горячекатаная периодического профиля,			
упрочненная вытяжкой, класса А-Шв с			
контролем:		440 /4=00	200
удлинения и напряжения	540	440 (4500)	390
только удлинения	(5500)	390 (4000)	(4000)
Постройка с 1976 по 1986г.			
Горячекатаная периодического профиля,			_
упрочненная вытяжкой, класса А-Шв с			
контролем:	540		
удлинения и напряжения	540	490 (5000)	200 (2000)
удлинения и напряжения только удлинения	(5500)	450 (4600)	200 (2000)
Постройка с 1986 по 2004г.		+30 (4000)	200 (2000)
13001ponka © 1700 ilo 20041.			

Горячекатаная периодического профиля, класса	590	495	355
A-IV.	(6000)	(5000)	(3600)
Постройка с 1962 по 1976 г.			
Горячекатаная периодического профиля, класса	590	490	390
A-IV и термически упрочненная класса Ат-IV.	(6000)	(5000)	(4000)
Постройка с 1976 по 1986 г.			
Горячекатаная периодического профиля, класса	590	510	450
A-IV и термически упрочненная класса Aт-IV.	(6000)	(5200)	(4600)*
Постройка с 1986 по 2004г.	` ′	, ,	. ,
Горячекатаная периодического профиля, класса	790	630	390
A-V и термически упрочненная класса Aт-V.	(8000)	(6400)	(4000)
Постройка с 1976 по 1986 г	, ,	, ,	\
Горячекатаная периодического профиля, класса	785	680	500
A-V и термически упрочненная класса Aт-V.	(8000)	(6950)	(5100)*
Постройка с 1986 по 2004г.	, ,	, ,	·
Горячекатаная периодического профиля,	980	785	390
термически упрочненная класса Aт-VI.	(10000)	(8000)	(4000)
Постройка с 1976 по 1986 г	' '	, ,	` ´
Горячекатаная периодического профиля, класса	980	815	500
A-VI и термически упрочненная класса Aт-VI.	(10000)	(8300)	(5100)*
. Постройка с 1986 по 2004г.	` ′	` ′	`/
Горячекатаная периодического профиля	1175	980	500
термически упрочненная Ат-VII.	(12000)	(10000)	(5100)*
Постройка с 1986 по 2004г.	()	(2000)	(2100)
Проволочная			
Проволока арматурная обыкновенная В-І.			
Постройка до 1976 г.	440	245	245
Диаметр 6-8 мм	(4500)	(2500)	(2500)
То же, постройка с 1976 по 1986 г.	540	310	310
Диаметр 3-5,5 мм	(5500)	(3150)	(3150)
Проволока арматурная периодического профиля	(00,00)	(5150)	(3130)
Вр-І.			
Постройка с 1976 по 1986 г.			
Диаметр 3-4 мм	540 (5500)	345 (3500)	345 (3500)
» 5 мм	515 (5250)	335 (3400)	335 (3400)
// J. MANA	313 (3230)	333 (3400)	333 (3400)
Проволока арматурная периодического профиля			
Проволока арматурная периодического профиля Вр-I.	490	410	375
Постройка с 1986 по 2004г. Диаметр 3-5 мм.	(5000)	(4200)	(3850)**
Проволока высокопрочная гладкая В-ІІ.			
Постройка с 1962 по 1976 г.			
•	1060 (20000)	1105 (11200)	250
Диаметр 2,5 мм 3 мм	1960 (20000)	1105 (11300)	350
» 3 мм	1860 (19000)	1050 (10700)	(3600)
» 4 мм	1760 (18000)	990 (10100)	
Проволока высокопрочная гладкая B-II.			
Проволока высокопрочная гладкая В-п. Постройка с 1976 по 1986 г.			
•	1860 (19000)	1205 (12200)	
Диаметр 3 мм » 4мм	1760 (18000)	1205 (12300)	200
_	1665 (17000)	1135 (11600)	390
	` '	1080 (11000)	(4000)
» 6 мм	1570 (16000)	1010 (10300)	
» 7 мм	1470 (15000)	950 (9700)	
» 8 мм	1370 (14000)	880 (9000)	
Проволока высокопрочная гладкая В-ІІ.			
Постройка с 1986 по 2004г.	1500 (15200)	1050 (10750)	
Диаметр 3 мм	1500 (15300)	1250 (12750)	500
» 4-5 мм	1400 (14250)	1170 (11900)	500

	» 6 мм	1300 (13250)	1050 (10700)	(5100)**
	» 7 мм	1200 (12200)	1000 (10200)	
	» 8 мм	1100 (11200)	915 (9300)	
Проволока высокопрочная периодиче	еского			
профиля Вр-ІІ. Постройка с 1962 по				
Диаметр	5 мм	1665 (17000)	930 (9500)	
» »	6 мм	1570 (16000)	880 (9000)	350
»	7 мм	1470 (15000)	815 (8300)	(3600)
»	8 мм	1370 (14000)	765 (7800)	
Проволока высокопрочная периодиче			()	
профиля Вр-II. Постройка с 1976 по				
Диаметр	3 мм	1760 (18000)	1135 (11600)	
Anamerp »	4 MM	1665 (17000)	1080 (11000)	390
" »	5 MM	1570 (16000)	1010 (10300)	(4000)
" »	6 мм	1470 (15000)	950 (9700)	(1000)
<i>"</i>	7 MM	1370 (14000)	880 (9000)	
<i>"</i>	8 MM	1275 (13000)	825 (8400)	
Проволока высокопрочная периодиче		1273 (13000)	623 (6400)	
профиля Вр-II. Постройка с 1986 по				
		1500 (15300)	1250 (12750)	
Диаметр	3 мм 4 - 5 мм	1400 (14250)	1170 (11900)	500
»	4 -3 mm 6 mm	· '	' '	
»		1200 (12200)	1000 (10200)	(5100)**
»	7 мм	1100 (11200)	915 (9300)	
»	8 мм	1000 (10200)	850 (8700)	
Арматурные канаты класса К-7.				
Постройка с 1976 по 1986г.				
Диаметр	4,5 мм	1860 (19000)	1205 (12300)	
<u></u>	6 мм	1800 (18550)	1170 (11900)	390
	7,5 мм	1760 (18000)	1135 (11600)	(4000)
	9 мм	1700 (17500)	1105 (11300)	(.000)
	12 мм	1665 (17000)	1080 (11000)	
	15 мм	1600 (16500)	1040 (10600)	
Арматурные канаты класса К-7.	I VIIVI	1000 (10500)	1010 (10000)	
Постройка с 1986 по 2004г.				
Диаметр	6-12 мм	1500 (15300)	1250 (12750)	500
диаметр »	0-12 мм 15 мм	1400 (14250)	1160 (12050)	(5100)**
	1.5 MM	1400 (14230)	1100 (12030)	(3100)
Арматурные канаты класса К-19.				500
Постройка с 1986 по 2004г.	14	1500 (15200)	1250 (12750)	500
Диаметр	_ 14 мм	1500 (15300)	1250 (12750)	(5100)**

^{*} Указанные значения R_{sc} принимают в расчете для конструкций из тяжелого, мелкозернистого и легкого бетонов. При расчете конструкций из бетона этих видов на кратковременное действие нагрузки принимают значения $R_{sc} = 400 \, M\Pi a$.

Для конструкций из ячеистого и поризованного бетона во всех случаях следует принимать значения $R_{sc}=400\,\mathrm{MHa}$ (4100 $_{\mathrm{RC/CM}}^{2}$).

B случае расчета конструкций из бетона этих видов на кратковременное действие нагрузки, а также при расчете конструкций из ячеистого и поризованного бетонов на нагрузки всех видов значения R_{sc} следует принимать для арматуры классов:

Bp-I – 340 MΠa (3500 $_{\kappa zc/cm}^{2}$);

B-II, Bp-II, K-7 u K-19 $-400 \, \text{MHa} \, (4100 \, \text{kec/cm}^2)$.

Таблица В.3 - Минимальные значения временного сопротивления и предел текучести для сталей, выплавлявшихся в СССР в 1931-1980 гг. по действующим в то время ГОСТам

^{**} Указанные значения R_{sc} принимают при расчете конструкций из тяжелого, мелкозернистого и легкого бетонов.

Марка стали	Стандарт,	Толщина проката,	Минимальные зна	
	технические	мм, или разряд	временное	предел
	условия	толщин	сопротивление	текучести
1	2	3	4	5
Ст0с	ГОСТ 380-41	1.10	2200	1000
Ст0	ГОСТ 380-50	4-40	3200	1900
СтІ	OCT 4125	4-40	3200	1900
Ст2	OCT 4125	1.10	4300	1900
	ГОСТ 380-41	4-40	3400	2100
C 2	ГОСТ 380-50		3400	2200
Ст3	ОСТ 4125 ГОСТ 380-41	4-40	3800 3800	2200 2200
	FOCT 380-50	4-40	3800	2400
	FOCT 380-57	Разр. 1	3800	2400 (2500
	ГОСТ 380-60	Pasp. 2	3800	200 (2400)
	ΓΟCT 380-60*	Pasp. 3	3800	2100/2200
	ΓΟCT 380-00	До 20	3700/3800	2300/2400
	ΓΟCT 380-71*	21-40	3700/3800	2200/2400
	1001 380-71	41-100	3700/3800	2100/2300
		Св. 100	3700/3800	1900/2200
СтЗ	OCT 12535-38	Св. 100	3800	2300
Мостовая	ΓΟCT 6713-53	4-40	3800	2400
Мостовая	ΓΟCT 6713-53	4-40	3800	2300
Ст4	OCT 4125	4-40	4200	2300
CIT	ΓΟCT 380-50	T-40	4200	2600
	ΓΟCT 380-60	Разр. 1	4200	2600
	ΓΟCT 380-60*	Pasp. 2	4200	2500
	1001300-00	Pasp. 3	4200	2400
Ст5	OCT 4125	4-40	5000	2300
C15	ΓΟCT 380-50	1 10	5000	2800
	ΓΟCT 380-60	Разр. 1	5000	2800
	ΓΟCT 380-60*	Разр. 2	5000	2700
	100130000	Разр. 3	5000	2600
СХЛ-2	ТУ	4-40	4800	3300
01012	НКЧМ-303	1 10	1000	3300
НЛ1	ГОСТ 5058-49	4-40	4200	3000
НЛ-2	ГОСТ 5058-49	4-40	4800	3400
МСтТ	ГОСТ 9458-60	6-40	4400	3000
M12	ЧМТУ ЦНИИЧМ	21-32	4600	3300
	54-58			
09Γ2	ГОСТ 5058-87	4-10	4600	3100
09Г2Д		11-24	4500	3000
		25-30	4400	3000
	ГОСТ 19281-73	4-20	4500	3100
	ГОСТ 19281-73	21-32	4500	3000
09Г2С	ГОСТ 5058-65	4-9	5000	3500
09Г2СД	ГОСТ 19281-73	10-20	4800	3300
	ГОСТ 19282-73	21-32	4700	3100
		33-60	4600	2900
09Г2С термоупрочненная	ГОСТ 5058-65	10-32	5400	4000
10Г2С	ЧМТУ	4-10	5200	3600
	ЦНИИЧМ 246-61	11-32	5000	3500
	ГОСТ 5058-65	33-60	4800	3400
10Г2СД	ГОСТ 5058-57	4-32	5000	3500
10Г2С1	ГОСТ 5058-65	10-40	5400	4000
термоупрочненная				

10Γ2C1	ГОСТ 5058-65	4-10	5200	3600
10Г2С1Д		11-32	5000	3500
		33-60	4800	3400
	ГОСТ 19281-73	4-9	5000	3500
	ΓΟCT 19282-73	19-32	4800	3300
		33-60	4600	3300
14Γ2	ΓOCT 5058-65	4-9	4700	3400
	ΓΟCT 19281-73	_		
	ΓΟCT 19282-73	10-32	4600	3300
14Γ2	ΓΟCT 5058-65	10-32	5400	4000
термоупрочненная				
15ХСНД	ΓΟCT 5058-57		_	
(СХЛ-1, НЛ-2)	ΓΟCT 5058-55		_	
<u> </u>	ΓΟCT 19281-73	4-32	5000	3500
	ГОСТ 19282-73			
10ХСНД	ΓΟCT 5058-57	4-32	5400	4000
(СХЛ-4)				
		33-40	5100	3700
	ГОСТ 5058-65	4-32	5400	4000
	ГОСТ 19281-73			
	ГОСТ 19281-73	33-40	5200	4000
15ХСНД	ГОСТ 5058-65	10-32	6000	5000
термоупрочненная				

^{*} В скобках даны возможные повышенные значения механических характеристик при поставке проката с дополнительной гарантией по пределу текучести.

Таблица В.4 - Примерный химический состав отливок из серого чугуна

Чугун	Примерный химический состав, %						
	С	Si	Mn	P	S	Cr_	Ni
				Не более			
СЧ_12-28	3,0-3,5	1,8-2,4	0,6-1,0	0,6	0,15	0,15	0,5
СЧ_15-32	3,3-3,6	2,2-2,5	0,6-1,0	0,4	0,15	0,15	0,5
СЧ 18-36	3,2-3,5	2,0-2,4	0,7-1,1	0,4	0,15	0,15	0,5
СЧ 21-40	3,1-3,4	1,7-2,1	0,8-1,2	0,3	0,15	0,3	0,5
СЧ 24-44	3,0-3,3	1,3-1,7	0,8-1,2	0,3	0,15	0,3	0,5
СЧ 28-48	2,9-3,2	1,2-1,6	0,8-1,2	0,2	0,15	0,3	0,5
СЧ 32-48	2,8-3,1	1,1-1,5	0,8-1,2	0,2	0,12	0,3	0,5
СЧ 32-52	2,7-3,0	1,5-1,5	0,8-1,2	0,2	0,12	0,3	0,5
СЧ 36-56	2,6-2,9	1,1-1,5	1,0-1,4	0,2	0,12	0,3	0,5
		1,3-1,8	0.8-1,2			0,5	
СЧ 40-60	2,5-2,8	1,1-1,3	1,0-1,4	0,02	0,02	0,3	0,5
		1,3-1,8	0,8-1,2			0,5	
СЧ 44-64	2,5-2,7	2,5-2,9	0,2-0,4	0,02	0,02	0,3	0,5
						0,3	

Таблица В.5 - Расчетные сопротивления R, кгс/см², для отливок из серого чугуна. Год постройки до 1981 г.

^{**} Механические характеристики для кипящих сталей (слева от черты) и для спокойных и полуспокойных (справа от черты)

Напряженное состояние	Условные	Расчетные сопротивления МПа (кгс/см ²)			
	обозначения	отливок из серого чугуна		угуна	
		СЧ 12-28 СЧ 18-36 СЧ 24		СЧ 24-44	
		СЧ 15-32	СЧ 21-40	СЧ 28-48	
Растяжение центральное и при изгибе	R _t	45 (450)	55 (550)	80 (800)	
Сжатие центральное и при изгибе	R _c	150 (1500)	190 (1900)	260 (2600)	
Сдвиг (срез)	$R_{\rm S}$	35 (350)	45 (450)	60 (600)	
Смятие торцевой поверхности (при наличии пригонки)	R _P	225 (2250)	280 (2800)	390 (3900)	

ПРИЛОЖЕНИЕ Г

(справочное)

ВОЗДЕЙСТВИЕ ПОЖАРА НА ПОКАЗАТЕЛИ ПРОЧНОСТИ БЕТОНА И

АРМАТУРЫ

Таблица Г.1 - Значение максимальных температур нагрева бетона

Цвет бетона	Максимальная температура нагрева	Возможные дополнительные признаки
	бетона, °С	
Нормальный	300	Нет
Розовый до красного	300-600	Начиная с 300 °C - поверхностные трещины, с 500 °C - глубокие трещины, с 572 °C - раскол или выкол заполнителей, содержавших кварц
Серовато-черный до темно-желтого	600-950	700-800 °C - отколы бетона, обнажающие в ряде случаев арматуру, 900 °C - диссоциированный известняковый заполнитель и цементный дегидратированный камень сыплются, крошатся
Темно-желтый	Более 950	Много трещин, отделение крупного заполнителя от растворной части

Таблица Г.2 - Снижение прочности бетона на сжатие после пожара

Вид твердения бетона и условия твердения	Снижение прочности бетона после пожара, %, при максимальной температуре его нагрева, °C						
_	60	120	150	200	300	400	500
Тяжелый с гранитным заполнителем,	30	30	30	30	40	60	70
естественное							
То же, тепловлажностная обработка	15	20	20	20	20	30	45
То же, с известняковым	15	20	20	25	25	40	60
заполнителем							
Легкий с керамзитовым	10	10	10	10	10	15	20
заполнителем, тепловлажностная							
обработка							

Примечания

- 1 В таблице указано, на сколько процентов снижается значение прочности бетона после пожара по сравнению со значением прочности бетона до пожара.
- 2 Прочность бетона после его нагрева до температур ниже 60 °C принимается равной ее значению до пожара.
 - 3 После нагрева до температур выше 500 °C значения прочности бетона принимаются равными нулю.
 - 4 Промежуточные значения снижения прочности бетона устанавливаются линейной интерполяцией.

Таблица Г.3 - Снижение прочности арматуры после пожара

Положение арматуры в конструкции, наличие предварительного напряжения	Класс арматуры	Снижение прочности арматуры после пожара, %, при максимальной температуре ее нагрева, °С 300 400 500		
За пределами зоны анкеровки независимо от преднапряжения	A-I, A-II, A-III	Нет	Нет	Нет
	A-IV, A-V, A-VI	»	5	10
	Ат-IV, Ат-V, Ат-VI	»	10	20
	B-II, Bp-II, K-7	»	30	60
В зоне анкеровки арматуры, ненапрягаемой	A-II, A-III, A-IV A-V, A-III,	Нет	20	40

	A-IV At-V			
То же, предварительно напряженной	A-IV, Ат-IV	>>	25	50
	At-V, A-V	>>	30	60
	A-VI, Aт-VI	>>	35	70
	Bp-II, K-7	»	45	90
	B-II	»	60	-

Примечания

- 1 В таблице указано, на сколько процентов снижается значение прочности арматуры после пожара по сравнению со значением прочности арматуры до пожара.
- 2 Прочность арматуры (за исключением класса B-II) после нагрева до температур выше 500 °C принимается равной нулю; для класса B-II это значение принимается после температуры нагрева выше $400\,$ °C.
- 3 Промежуточные значения снижения прочности арматуры устанавливаются линейной интерполяцией.

приложение д

(справочное)

ОСОБЕННОСТИ ОБСЛЕДОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ, ПОДВЕРГШИХСЯ ВОЗДЕЙСТВИЮ НЕФТЕПРОЛУКТОВ

Железобетонные конструкции, эксплуатируемые в зданиях и сооружениях, технологический процесс в которых связан с применением нефтепродуктов, их переработкой, могут быть подвержены отрицательному воздействию этих продуктов. Наибольшему воздействию, обычно, подвержены перекрытия.

При обследовании конструкций, пропитанных нефтепродуктами, в дополнение к прочему, необходимо:

- произвести общий осмотр конструкций, зафиксировать расположение участков и зон пропитки;
- определить глубину пропитки с нижней (потолочной) поверхности конструкции контрольным вскрытием бетона сначала на глубину 20-30мм;
 - установить вид нефтепродуктов, пропитавших железобетон.

Пропитка железобетона различными видами нефтепродуктов по-разному сказывается на состоянии и прочности конструкции:

- минеральные масла всех марок и мазуты снижают прочность бетона и сцепление арматуры с бетоном;
- дизельное топливо и масляные эмульсии снижают прочность бетона и сцепление арматуры, но в меньшей степени, чем масла и мазуты;
 - керосин и бензин, практически, не снижают прочность бетона.

Прочность бетона, промасленного нефтепродуктами, можно определять механическими методами неразрушающего контроля, например, методом пластической деформации по ГОСТ 22690. Определенную таким методом прочность, следует умножить на коэффициент 0,85. Полученное произведение можно считать прочностью бетона, пропитанного нефтепродуктами.

Для сравнения и получения большей полноты данных при анализе состояния промасленного бетона целесообразно параллельно с определением прочности на промасленном участке, определить прочность бетона в непромасленных участках конструкции.

Наиболее точные результаты при определении прочности промасленного бетона даёт применение метода отрыва со скалыванием.

Не допускается определение прочности бетона, пропитанного нефтепродуктами, ультразвуковым методом.

Прочность бетона, пропитанного смазочными маслами, можно ориентировочно установить по эмпирической формуле, если известна прочность бетона до пропитки, интенсивность пропитки и длительность действия масел. Для бетона нормальной плотности прочность пропитанного маслами бетона $R_{\delta M}$, МПа, выражается эмпирической зависимостью:

$$R_{\scriptscriptstyle \tilde{O}M} = R_{\scriptscriptstyle \tilde{O}} \left(1 - \frac{2t}{21} \right),$$

где R_{δ} – прочность бетона до пропитки, МПа;

t — время воздействия масел, годы.

Зависимость прочности бетона от длительности воздействия на него смазочных масел справедлива в течение 7-8 лет от начала пропитки. Точность определения прочности бетона по этой приближенной зависимости составляет до 20%.

Следует учитывать, что сопротивляемость бетона, пропитанного нефтепродуктами, воздействию динамических нагрузок с частотой колебаний от 100 до 800 циклов в минуту примерно в 10 раз меньше, чем непропитанного. Поэтому на участках перекрытия вблизи механизма возбудителя динамических нагрузок необходимо вибрографом контролировать колебания конструкций. В случае появления на ленте вибрографа волнистой кривой или пиков, отражающих значительную амплитуду колебаний, следует принять меры по усилению несущей конструкции или удалению источника динамических нагрузок с пропитанного маслами участка перекрытия.

ПРИЛОЖЕНИЕ Е

(справочное)

СВЕДЕНИЯ О РАЗРАБОТЧИКАХ СВОДА ПРАВИЛ

Настоящий Свод правил разработан группой специалистов в составе: ОАО «КТБ ЖБ» инженер Н.В. Волков инженер Ю.Д. Рыбаков д - р техн. наук А.Н. Давидюк канд. техн. наук О.А. Ларин

Ключевые слова: обследование строительных конструкций, техническое состояние, несущая способность конструкций, усиление конструкций, эксплуатационные показатели здания, реконструкция здания

47