РОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ТЕССТРОЙ СССР)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ИС—01—08/67 ОТКРЫТЫЕ КРАНОВЫЕ ЭСТАКАДЫ

выпуск 4*

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ ЭСТАКАД ПОД КРАНЫ МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТНЫЕ, ГРЕЙФЕРНЫЕ И МАГНИТНО— ГРЕЙФЕРНЫЕ СО СТАЛЬНЫМИ РАЗРЕЗНЫМИ ПОДКРАНОВЫМИ БАЛКАМИ

Центральный виститут такорих проектов проскт дать Ваши замечании и превколюмия по улучнению качестве направляемого Вам проекта

THROBOR RPOEKT
Наименование проекта
Проектная организация-автор проекта
Замечания о недостатках в проекте (перациональные объемно-планировочные
в конструктивные решения, онибки, опечатки, полиграфические дефекты в т.п.)
в предложения по ях устранению ,
Поднись доджностного лица наименование организации и не адрес
4, ,
ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ ГОССТРОЯ СССР
Москва, Б-88, Спартаковская ул., 2a, корпус В Сдано в печать //21/ 1974 зда Заказ № 40/9 Тирам //00 экз.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (FOCCTPOR CCCP)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

серия ИС-0I-08/67 ОТКРЫТЫЕ КРАНОВЫЕ ЭСТАКАДЫ

выпуск 4^*

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ ЭСТАКАД ПОД КРАНЫ МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТНЫЕ, ГРЕЙФЕРНЫЕ И МАГНИТНО—ГРЕЙФЕРНЫЕ СО СТАЛЬНЫМИ РАЗРЕЗНЫМИ ПОДКРАНОВЫМИ БАЛКАМИ

РАЗРАБОТАНЫ государственным проектным институтом киевский промстройпроект ПРИ УЧАСТИИ НИИЖБ И НИИСК И ГКИЕВ И

УТВЕРЖЛЕНЫ и введены в действие с 1/к1-67г. Приказом Госетроя СССР от 15/VII - 1967 г Ng 112

Настоящий выпуск 4* составлен взанен выпуска 4 в связи с введением в действие с 1/х п-672. навых типовых чертежей стальных разрезных подкрановых балок (выпуск 1/67 серии K3-01-57), утвержденных приказам Госстрая СССР и 174 от 11/2-672

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ

COLEDSCAHUE.	41				
	Nº Nº	N:N: cro.		NºNº ANCTOB	NºK° CTP:
Coleparnie.	_	2	Узлы сопряжения колони с фундаментани		
Пояснительная записка.	_	3-5	/Y3A61 1+4/	17	22
TABANYA WHOPOB FABAPHTHOISE COCEM OTERPHITOISE			73.00 7:47 Yandi 5÷12	18	23
EPANOBOUS SCTAKAL	1	6	y ₃ λοι 13÷21.	• -	23 24
COCEMBI RPANOBBIC MATPYSOK. HOPMATHEMBIE ICPANO-		•	Yangi 22+28	19 20	25
BUE MATPYSKM.	2	7		20	25 26
CICEMA HAPPYSOK HA KONOMHUI. HOPMATHEMUE ICPA-	_	•	Вилы по Л-А;Б-Б		27
HOBBIE HAPPYSKY HA KONOMHOI, HOPMATHBHBIE BET-			Уэлы 29÷32 Уэлы 33-135	22	28 28
POBLIE HAPPYSEN HA KONCTPYKLINN SCTAKAL.	3	8	Уэлы ,33÷35 Уэль 20 11	23	29
ТАБЛИЦА МАРОК КОЛОМИ ОТКРЫТЫХ КРАНОВЫХ		U	Узлы 36 ÷41	24	29
∋CTAKA1	4	9	LONONHITENDINGE SAKALHOIE SAEMEHTOI B CO-		-
HOMENICATURA CEOPHOIX JEELESOBETOHHOIX	4	9	ЛОННАФ ДЛЯ КРЕПЛЕНИЯ ВЕРТИКАЛЬНЫХ СВЯЗЕЙ	25	30
KONOHH. TABAHUA PACOCOLA MATERMANOB.	5	10	LONONHITENDHOLE BARNALHOLE BAEMENTOL B KUNOH-		
HOMEHICAATURA CTAABHOOK KOHCTRUKUHH	6	11	наж для крепления посадочных площадок.		31
TABANGA MAPOR SAEMENTOB OMORPOAETHOR	•	71	Y3EA 42.	26	31
KPANOBOIC OCTAKAA MOL MOCTOBOIE DAEKTPHYECKHE		-	ДЕТАЛИ УСТРОИСТВА ПРОЖОДОВ ВДОЛЬ КРАНОВЫХ		
MAPHINTHISE KPAHISI PRYSONOLISEMHOCTOS 5; 10:	-		лутей. Концевые улоры.	27	32
15/3 n 20/5 t	~		Нормативлые нагрузки на фундаменты край-		
ТАБЛИЦА МАРОК ЭЛЕМЕКТОВ ОДНОПРОЛЕТНЫХ	7	12	MMSC KONOMM MOL MOCTOBBLE BAEKTPHYECKNE MAT-		
	-		MNTHWE EPANW.	28	<i>3</i> 3
KPAHOBBIDG SCTAKAA ROA MOCTOBBIE SAEKTPHYEC-			Нормативные нагрузки на фундаменты край-		
KHE PPENDEPHOLE KPAHOL POYSONOLEEMHOCTOR	_		HUS KONOUN TO A MOCTOBBIE DAEKTPHYECKNE		
5;10; 15 n 20T.	8	13	FPEN PERNOLE ICPANOL.	29	34 .
TABANUA MAPOR SAEMENTOB OLHORPOAETHUR			Нормативлые нагрузки на фукдаменты край-		
KPAHOBEIX OCTAKAL, NOL MOCTOBEIE OMEKTPHYEC-			HAZ KONOHH TIOL MOCTOBBLE ƏNEKTPHYECKHE MAF		
KNE MATHITHO-TPEHODEPHOLE KRAHOL TRYSONOAL			MNTHO-PPEN WEPHOLE RPANOL	30	35
EMMOCTERO 5/5; 10/10; 15/3 N 20/5T.	9	14	HOPMATUBHUE HAPPYSEN HAPPYHLAMENTU CPEL-		
TABANYA MAPOK SAEMENTOB ABYXCIPOAETHUX			HUX ROADHH HOL MOCTOBUE DAERTPHYECKHE		
KPAMOBERS OCTAKAL MOCTOBER MERTPHYEC.			MATHUTHOLE EPAHOL	-51	36
KNE MATMNTHLIE KPAMOI TPYSONOLIEMHOCTLO			MOPMATHBRUE MATPYSIN MA DYNAAMENTOI CPEA-		
5;10;15/3 n 20/5r	10	15	MUSC KONOMIN NOA MOCTOBBIE BAERTPHYECKHE		
TABANUA MAPOR BAEMENTOB ABYXCHPOAETHOIC COA.			FPENDEPHOLE KANOL	32	3 7
MOBBOC OCTARAL MOLTOBBLE BAERTPHYECKHE			MORMATHBABLE HAPPYSEM HA SYMLAMERTS CREA-		
PREHOPEPHOLE EPAROL PROBOTOL SEMMOCTOR 5;10;			MMX KONOMH TOLL MOCTOBBIE SAEKTPMYECKHE		
15 n 20r.	11	16	HATHITHO- FRENCHENHIE COANDI.	<i>3</i> 3	<i>3</i> 8
TABANUA MAPOR SAEMENTOB ABYCCIPOAETH GICC ROA-			The state of the s		
HOBOIX SCTARAL HOLTOBOIE SAERTPHYERRE					
MAPMATHO-PREMERPHOLE RPANDI PRYSONOASEMHO-					
стьго 5/5; 10/10; 15/3 и 20/5т.	12	17			
MAPKHPOBOYNAS COEMA OAHONPOAETHOIO KPAHO-	•	•/			
BONC SCIARAL C OTHETRAMH FOLOBER PELOCA					
8,200 H 9,700	13	18			
MAPENPOBOUNAS COCEMA OMOTIPOAETHEIOC EPANO-					
BOX SCTARAL C OTMETRON FOLOBRY PEACE 12.700	14	19			
MAPKHPOBOYHAS COCEMA ABXOCHPONETHOOC KPAMO-	·	,0			
BOIX SCTARAL C OTHETRON FORDERN PEROCA 8,200		•			
и 9.700	15	2o.			
MAPKIPOBOYHASI COCEMA ABOOTIPOAETHEDE KIDAHO-	. •	2			
BOW SCTARAL C OTMETRON POLOBEN PEACE 12.700	16	21.			
	• -	A			

TK 1967r: Содержание

Пояснительная записка.

ї Общая частв.

CT POWIT POEKT

1. В рабочие чертежи выпусков 1÷4 серии ИС-01-08 издания 1967г./ИС-01-08/67/ внесены изменения, связанные с действующими требованиями Госгортехнад зара к площадкам для посадки на краны и с заменой конструкций лестниц в соответствии с приказом Главстальконструкции от 10 июна 1966г. №36.

2.В настоящем выпуске приведены материалы для проектирования OMKPGIMGIX KPOHOBSIX SCMOKOO NOO KPOHGI MOCMOSSIE SAEKMAUYECKUE MOCнитные, грейферные и магнитно-грейферные грузоподъемностью 5; 10; 15 и 20 т со стальными разрезными подкрановыми балками.

Указанные краны в настоящее время не востированы и их технические характеристики приняты по данным заводов - изготовителей, приведенным в каталоге кранового оборудования / шифр 1-308 /, выпищенном всесоюзным научно-исследовательским и проектным инстититом механической обработки полезных ископаемых / Механобр. Ленинград, 1965 г. / Перечень кранов, расстатренных в данном вылиске, приведен в таблице І.

Ταδλυμα Ι

	Грузо- подъем- ностъ	Макси- мальная высогла		3060д-изготовитель	л [№] Заводского чертежа	Письмо завода да подглвержа ческие хара	у- изготовите Ванощее техни Ктеристики
,	T	<i>подъем</i> а М	М		10,5,113,12	Nō	<i>Aama</i>
			K,	раны мостовые электри	ческие мое	нитные	
1	5		11÷26	Не установлен*	Габаритный	_	
2	10	16	11÷34,5	Ташкентский завод "Подъемник"	6-633	6800-0FK	23/X-64r.
3	15		11÷32	Узловский машиностро	54.60	040 571	07/7 00
4	15 <u> </u> 3	16/18	77732	ительный завод	Г 11 - 60 киталог	840-BTH	27/ <u>I</u> T-65r.
5	20/5	12/14	10,5÷31,5				
			KA	одны мостовые элект,	оические а	рейферные	
1	5	16	11÷32	Тишкентский завод "Подъемник"	6-634	6800-0FK	23/ <u>X</u> -64r.
2	10	20	77.52	Узловский машино- строительный завод	Γ10-60	840-6TM	27/1-651.
3	15	23	16, 5÷31,5	Ленинградский завод []ТО им. Кирова	0,700.051	1-2-6/1127	17/27-641.
4	20			1110 Uni. Noposo			- /-
				раны мостовые электри	YECKUE MO	гнитно-грес	<i>Тферные</i>
1	5/5		/1÷34,5	Ташкентский завод "Под ге мник"	6-635	6800-0FK	23/x̄-64 r.
2	10/10	15	11÷32	Узловский машиностроц-	Γ16-60	9//0 57/4	/
3	15/3	16/18	// -02	MENGHGIÙ 30800	T15-60	840-5ТИ	27/ <u>lī</u> ~65 r.
4	20/5	13,5	25÷31.5		Γ17-60		

креплено.

В cbomeemcmeuu c п. 9.1 и приложениями 🕅 и 📶 СНиЛ 🛭 - В.3-62 от крвітвів крановые эстакодві под мостовые электрические магнитные, грейферные и магнитно-грейферные краны отнесены к совружениям с тржелым режимом раболы.

з.Номинальные пролеты эстакад (рассторния между разбивочны-МИ ОСЯМИ КОЛОНН) ПРИНЯГПЫ 18; 24 и 30 м. Привязка оси кранового пути к разбивочным осям во всех случаях 750 мм. Пролеты кранов соответст-

венно равны 16,5; 22,5 и 28,5 m.

4. Номиналеная высота эстакад (отметка головки кранового релеса) принята 8,200; 9,700 и 12,700 м. Указанные отметки установлены, исхоθα υз βειςοπει κραμοβοέο ρελέςα 150mm υ βειςοπει ποθκραμοβού δαλκυ μα onope 1450 mm.

Условная отметка ±0,000 соответствует ,уровню головки рельса железнодорожного пити, расположенного в пределах эстакады.

5. В настоящем выпуске разработаны однопролетные и двухпролетные открытые крановые эстакады. Лутем повторения нужного количества средних рядов колонн из двихпролетных эстаков на базе принятых решений могут быть получены иногопролетные эстакады C HUNKHGIM YUCAOM DPONEMOB.

6. Привязка колонн крайних рядов к продоленым разбивачным осям принята:

а) "Нулевар"- для эстакад с отметками головки кранового релеса

8,200 и 9,700 m; _ б) 250 mm — для эстакад с атметкой головки кранового рельсы 12,700m. В средних рядах разбивочная ось располагается по оси симметрии Колонн

7. Длина температурного блока принята равной 72м в соответствии с размерами унифицированных типовых секций для предприятий нашиностроения. Шиг колонн вдоль эстакады-12м. Поперечные температурные швы осуществляются на двойных колоннах без вставки. The armon ace membergimuphose with commercial coose pada, a ocu колонн смещаются с оси температурного шва на 500 мм.

8 Разработынные решения эстакой допускоют два случая ввода

железнодорожных путей: вдоль и поперек эстакады.

При вводе железнодорожного пути вдоле эстакады он должен располагаться со стороны противоположной кабине крана. В этом случае приврзка оси пути к крайней разбивочной оси должна быть не менее 3850 мм при колоннах размером 1400 мм и не менее 4100 мм при колоннах размером 1900мм. Привязка оси пути к средней разбивочной оси должна быть не менее 3400 мм.

При вводе железнодорожного пути поперек эстакады он может быть росположен в любом щоее, кроме связевого, и должен быть увязан с расположением лестниц на посадочные площадки. Привяз-

ка оси пути к оси колонны должна быть не менее 2750мм.

9. Планировка площадки и тип покрытия пола решаготся при разработке конкретного проекта и должны обеспечить отвод атмос-

ферных вод.

10. В состветствии с правилами Госгортехнадзора расстояние от задней стенки кабины крана до ерани колонны должно быть не менее 400 мм. Для обеспечения указанного требования при заказе кранав должна реше осоро озоворена иравазка каране к оса крановозо илил.

> СЕРИА ТK MC-01-08/67 Пояснительная записка. 1967-

11. BCEFO B AAHHOM BUITYCKE PACCMATPHBAETCSI 186 FABAPHTHUIX CXXEM OTERBITAINE ICPANOBAICE DETAKAL.

AM OFOSHAYERING LABAPITHOIX CXEM UPHHATOL MIGOPOL, B KOTOPOLIX: MEPBASI LIMOPA (PUMCKASI) OBOSHAYAET YUCAO MPOAETOB SCTAKAAGI; BTOPASI LIHOPA - PODAET SCTARAJOI B METPAS; TPETGR LIMPPA - OTHETICY FOLOBER INPAHOBOFO PEROCA & METPAC; YETBEPTAS LINOPA- POSONOLIEMHOCTO KPAHA B TOMMAC; SYKBENNON HMAEKC Y YETBEPTON LIMPPO OFOSHAYAET THIN KPANA: M-MATHATHOIM;

I - rpeńфernuń;

MI- MATHITHO- FPE MODEPHOIN.

TABANUY WIMPOS FABAPITHEIX CXEM CM. HA ANCTE I HACTORILLE TO BUTYCKA.

12. CEPHSI NC-01-08/67 "OTEPHITHE KRAMONNE SCTARALHI" PASPA 50TAHA ANS I-II CHEFOBBUE H'BETPOBBUE PAYONOB CCCP 110 CHMI II-A.11-62 (19) PAC-YETHOR SHMHER TEMPEPATYPE HE HISE-40°C.

13. COMPLET MATERNAMOS AND PROEKTING OFFICIAL KRAHOBOX OCTARAL NOL RPANOI MOCTOBOIE OMERTPHYECRIE MATHITHOE, FPENDEPHOIE II MAPHITHO-PREMAREPHUE PRYSONOLISEMHOCTORO 5: 10: 15 H 20T CO CTALONOL-MN PASPESHOIMN ПОДКРАНОВЫМИ БАХКАМИ COCTONT NO 3x BOINYCKOB: BUILYCK 4. MATERNANU AND IDOEKTHROBAHND OCTARAL HOLKPANU MOCTOBULE

PARTONYECKNE MATHITINGE, FRENDERINGE I MATHITIO-PRENDER-HOLE PRISONALEMMOCTOR 5: 10:15 n 20T CO CTANDINAM PARPENHI-MM MOAKPAMOBUMM BANKAMM.

BUNYCK2. PASOUNE VEPTEREN CEOPHODE RELESOBETONHODE PONCTPYRYNN. BUILDERS. CTANOMOVE KOMCTPYRUMM.

II. KOHCTPYKTHBHOLE PELLEHMA.

1. DCTAKAAGI ПОД КРАМЫ MOCTOBGIE DAEKTPHYECKHE MARHITHGIE, ГРЕЙФЕР-HOLE IN MAPRIMITHO-PREMOPENHOUS KONCTPYRTHBHO PEWENGI AMANOFIYHO OCTARA-AAM NOA KPANIS MOCTOBSIE ENEKTPHYECKHE OBILLETO HABRAYEHING NO FOCT 3332-54. TIPHBE LEMMON & BOITYCKE ! MACTORILLEN CEPHN.

2. AAR BOEX PACCMOTPENHOW B HACTORIUM BOINVOKE TABARNTROW COSEM OTRADITUDE RAPAROBULO DETAINAL PAMMENENUI FONCTANELLIN CEOPHULO SE-LEGOBETOMMON CONOMIN A TAKERE CTANOMINE BEPTIMEANOMINE CORREDITIONO TATEAGNOW PEPM, AECTHILL II NOCALOUNGE NAOULALOK, NPHBELENNOE B BU-MYCKAX 2 M 3 HACTO SILLE H CEPHH.

3. MOAKPAHOBOIE BANKH BO BCED CAYYARD PRINTING CTANOROLE PARPERHOLE ПО COPTAMENTY ВЫПУСКА 1/67 СЕРИИ ЮЭ-01-57 НА ОСНОВЕ РАСЧЕТА НА ПРОЧНОСТЬ, JEECTROCTO M YCTOMYMBOCTO.

TIPH KPAMAX PRISONOLLEMMOCTOR ST-H3 CTANH MARKH CT. 3:

THE KPAHAX PRYSOLOUSEMHOCTOR 10.15 P. 20T - H3 THIS COLET POBAHHON CTAAM. YCAOBHA NOCTABRH CTAAH HAPRH CT.3, MAPRA HHSEOMETHPOBAHHOÙ CTAAH M YKABAMMA TIO MATOTOBAEMMIO BAAOK TIPMMAMAIOTCA B COOTBETCTBMM C PEROMERAALINGHM, PHOBE LEMMONN B BUNYCKE I/67 CEPM RJ-01-57.

ABH ERNIEM KRANOBOW MOCTOB, THANKS TOPMOSHOE CBASH & BALE CALOURDE TOPMOSHODE BALOK CXEMOL TOPMOSHODE BALOK APABE-LEMOI HA AMOTE 6 MACTOSILLETO BOITYCKA.

5. ALA YCTPONCTBA RPANOBOIC NYTEN CLEAYET NPHMENATO CNEUMAGNOE KPAMOBBIE PENDOBI KP-60 M KP-70 NO FOCT 1121-62 B COOTBETCTBUM C MAC-PPO BACACOM AANDEMA JABOAOB - NOTOTOBNITEAEN . KPENAENNE PEAGCOB PPO-

M3BOANTO MA MAAHKAXE C WAROM 750MM C MCMOAGOBAHNEM AETANEN, MPMBE AEM. MOKE ACEPHN KO-OI-57 BUTTYCE VIII.

ACAR CHARGARON SORNERS B RIMENTARY OTOMINACARY RIMENTARY OF RAL имеющих по сортаменту серии C9-01-57 вып. I/67 ширину верхнего пояса MEHEE 400MM, NOCKEAMSSI AONDENA BOITG KONCTOURT UBNO YBENNYENA AO 400MM (BES NAMEMENINA OCTANOMONO PASMEPOB CEYEMNA/.

6. BUSOP THIIA KONGESOFO YROPA B SABUCHMOCTH OT THIIA H FPYSOROAS-EMHOCTH KPAHA PROPERTY OF THE STANDORNOOF HANDETE 27 HACTOR WETO BUINDERA. KONCTPYKUNN YNOPOB ПРИМЯТЫ ПО СЕРИМ КЭ-01-57,

7. AND THOUGHA BAONS KANDONIC TITEN B YPOBRE BEAUTH TO AKPAHOBBIA BANOR CAYSEAT CTENEN TOPMOSHORE BANOR. THE PASPASOTEE KONKRETHORO PRO-EKTA NO MATEPHANAM CEPHH AND SESONACHOCTH NOOXOAA NO TOPHOSOMM SAX-KAM HA YYACTKAX HALOFOAOBKAHN KOAONH CAELYET TIPELYCMOTPETS TAMLYCSI, KREMAEHINE KOTOPOOC HE LONSEHO MPENSITCTBOBATO CBOSOLHOM V MEREMEME-HHIO BALOK.

OFPAJELIETINE TIPOZOLOS TIPELYCMOTPERO CTANORISMINITEPINAMIN BOLCOTON 1200 MM C OLHON CTOPONO: NO KPANNIM PRIAM CHAPY PH. NO CREANIM PRIAM-C MOSON CTOPONOI.OFPASCAENNE NO CPEANNM PRAAM BANPOEKTHPOBANO NTCH VHOBORAGI IN ARVIDOL RHHAPAROAGO RAL-MIGHMAGO

AMABOEGAON HOLDE TO BEEN COOPENAL MODES ON BEENAL RABOLOX ALA PEMONTA XOLOBON YACTH RPANA II CMENDI XOLOBOIX ROLEC TIPN YCAO BHH YKAAAKH MOC HA CITELLHAADHDIE PACTIPEAEAHTEADHDIE EPYCOSI.

M. HAPPYSICH H PACYET KOHCTPYICHNIN.

1. THE PACYETE KONCTONICUMÓ OT KPOITONE KRAHOBONE OCTARAA KRAHOBONE MA-TPYSKIN ПРИНЯТЫ OT IBYXX MAKCHMANSHO CEANSENHSKX KPAHOB OINHAKOBON ΓΡΥΘΟΠΟΛΙΕΜΗΟΟΤΗ /ΠΡΗ ΗΕΟΦΑΤώΣ ΕΥΦΕΡΑΣ/.

2. CHEFORYIO M BETPORYIO MAIPYSICH HA KONCTPYKUMM SCTAKAA, BETPO -I ARBABAD, YCHNHS OT TEMMEDATYPHOLIX BOOLEHCTBUH-CM. B PABABAE TO SCRITTE A BROWN 3 ARICCH BUTTYCKA THACTOS WE'N CEPHN TAM SEE TOPHBEAETHU YKASAMMS NO PACHETY KONCTPYKLINH OT KPOIT OF KOAHOBOX SCTAKAA.

W. YKABAHMA NO NPHMEHEMMO YEPTEZEN CEPHM.

1. TPM PASPAGOTKE KONKRETHORO PROEKTA OTKRATON KRAMOBONISCTAKA-461 NO MATEPHANAM MACTORILLETO BOILVERA PEROMENAJETOR CAEAULUM NO -PALOR PASOTOI:

a) TO TABLULE HANCE 1 B cootbet tenne texhology econ same ten MODOSPATO FASAPHTHYIO COCEMY SCTARADO;

 δ) no tabanyam mapor exementos ectaral nonse lennum na ancta ≈ 7.12 , AND BUSPANHON TABAPHTHON COCHO ONDEAENTS MAPKIN KONCTPYKTHBNOW PAE-MENTOS IN HOMEP ANCTA MONTAGENOM COCEMOI;

в) руководствуясь приведенными в настоящем выпуске решениями, PASPASOTATE MONTA SENSIO CIZENY HADSEMMON YACTH OCTARADO;

2) NO MATPYSEAM, NOMBELEMNOM ALA BOISPANNOM TABAPHTHOM COCEMOI & TABANYAX HOPMATHBROW HAPPYOR HA ФУНДАМЕНТЫ (ANCTO 28:33), SAMPOER THPOBATO PYHAMENTU SCTARADU C YYETOM PEROMENAALINI, NOMBEAENных в разделе її поясинтельной записки выпуска ї настоящей серии.

TK

MOGENITEANNAS BATHERA.

NC-01-08/6

- 2. При разработке индивидуальным типовых проектов открытых крановых эстакал по материалам настоящего выпуска в случае маличия агрессивных воздействий долфиы быть предусмотрены мероприятия по элщите конструкций от коррозии в соответствии с требованиями СНиП I-B. 27-62, Защита строительных конструкций от коррозии. Материалы и изделия, стойкие против коррозии" и СН 262-63 "Указания по проектированию антикоррозийной защиты строительных конструкций промышленных зданий в производствах с агрессивными средами". При этом объем необходимых проективх материалов долфен соответствовать требованиям "Указаний о составлении и сомефании проективіх материалов по антикоррозийной защите строительных конструкций зданий, сооруфений и инфенерных коммуникаций в производствах с агрессивными средами" (дополнение к СН 202-62 и СН 227-62).
- 3. Основные положения по монтажу конструкций открытых крановых эстакал приведены в разделе \overline{Y} пояснительной записки выпуска 1^* настоящей серии.

4 Конструкции открытых крановых эстака со стальными разреалыми подкрановыми балками под мостовые электрические магнитные, грейферные и магнитно-грейферные краны, а такфе узлы сопряжемия отдельных элементов проверены расчетом и могут приниматься для районов с сейсмичностью 7 и 8 баллов без изменений.

Методика расчета конструкций с учетом действия сейснических сил приведела в пояснительной записке выпуска 1 настоящей серии.

SCLOBHOLE OFOSHAYERHA:

COBIARA HA AETAAS

HOMED LETAKH

HOMED MICTA, THE METAND MISOEPAGEEMA

MAPKHPOBEA LETAKH

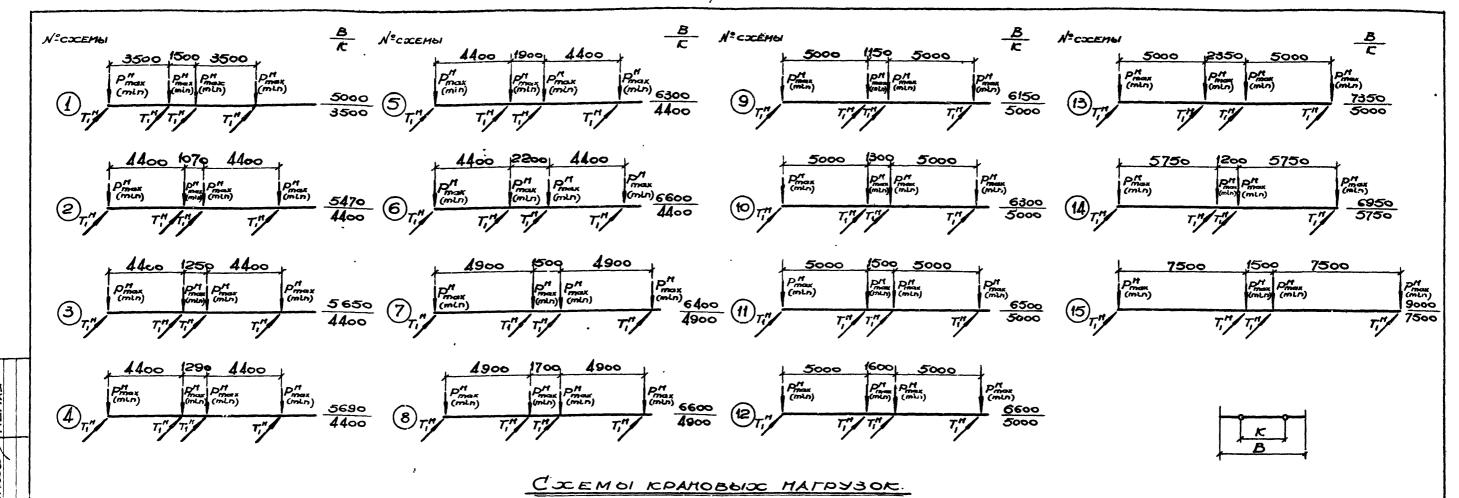
HOMED AETAAH.

HOMEP ANCTA, FAE AETAAS SAMADENPOBANA

9382-06 6

TABANUA WIMPOB PABAPUTHON COMEM OTERBITOR EPANOBOR OCTARAL W. HOPPOI COCEM OTHETICA & O OTHETEA! WHO POI COCEM PONOSEM 258 CONOBEN S ПРИ При магнитно При JCK H3 2 CKH3 ПРИ Прп MAN HATKITHO ACD4/108070 W KOPAHOSO MATHINTHOUSE PREMISERIAL *TPEHODEPHADO* FPEHODEPHODE FPEHODEPHOD MATHITHELE PEALCA &D TO PENGCA 2 3 KPAHAOC KPAHAX KPAHAX KRAMAX KP4HAX KPANAX I-18-82-Qm I-18-8.2-Qr I-18-8.2-Qmr 8,200 8.200 II-18-8.2-Qm II-18-82-9r II-18-82-0Hr 5 10 10 I-18-9.7-QH I-18-9.7-Qr I-18-9.7-QH 18 9.700 15 18 9,700 II-18-9.7-Qm II-18-9.7-Qr II-18-9.7-Qmr 15 20 20 CTARAGE 40/ ¥ 1-24-82-Qm 1-24-82-Qr 1-24-82-QM 8.200 II-24-8.2-Qm II-24-82-Qr II-24-82-Qmr 8,200 5 5 10 Ď I-24-9.7-QH I-24-9.7-QH I-24-9.7-QM 9,700 9.700 1-24-9.7-Qn 1-24-9.7-Qr 1-24-9.7-Qnr 10 15 21 Ä OLHOPPOAETHOIE 20 15 I-24-12.7-Qn I-24-12.7-Qr I-24-12.7-Qm 12.700 12,700 1-24-12.7-Qn 1-24-12.7-Qr 1-24-12.7-Qnr 20 W ŏ ğ 1-30-82-Qm 1-30-82-Qm 1-30-82-Qm 8.200 8.200 א 5* 5* 40 10 A 9.700 I-30-9.7-QM I-30-9.7-Qr I-30-9.7-QMF II-30-9.7-Qm | II-30-9.7-Qr | II-30-9.7-Qmr 9,700 10 30 15 15 30 20 I-30-12,7-Qm I-30-12.7-Qr I-30-12,7-Qur 12.700 1-30-12,7-QM 11-30-12.7-Qr 11-30-12,7-QMr 12,700 20

Примечания:


- 1. AAR OBOSHAYEHING PABADHTHOIX CXEM RIPHINGTU WARPOL & KOTOPOLX:
 - ПЕРВАЯ ЦИФРА (PHMCKAЯ) ОБОВМАЧАЕТ ЧИСЛО ПРОЛЕТОВ ЭСТАКАДЫ;
 - BTOPAS LIMEDA MODAET SCTARALO B METPAX;
 TRETOS LIMEDA OTMETRY FOLOBRA ROAHOBOTO
 PELOCA B METPAX!
 - HETBEDTAS LIMODA PRYSONOLSEMMOCTO ROAMA B T; BYRBEMMOE MHALKOON Y HETBEDTON LIMODPON (M, P. MAN MF) OBOSMÂNANOT THIS REPARTA:
 - M- MATHITHON;
 - " TPENDEPHON:
 - Mr- MATHITHO-TPEHPEPHOIN.

- 2. KA \$\frac{1}{2}O^{\text{f}} B & KOOTE SCTAKAA & COOTEETCTBYET EAMMAR OTMETKA KRANOBON \(\frac{1}{2}\text{CONTOURLY HEMBH-CHHO OT FRYSOMOLEHMOCTH HITHMA KRANOB.
- 3. OTHETEN POLOGEN EPANOBOPO PENGEL, YEASAMHGE B TABANUE, YETAMOBAENGI, NEWGASI MS BOKETGI EPANOBOPO PENGELA 150MM M BOICOTGI POLEPANOBOM BAKEN MA OPPOPE 1450MM.
- 4. ПРИВЯЗКА КОЛОНИ К ПРОДОЛЬНЫМ РАЗБИВОЧ-НЫМ ОСЯМ ПРИНЯТА:
 - -ALS COAMMON PSAOS:
 - CH COAMOBOTO PENSCA 8.200 H 9.700
 - 6) "250" AND SCTARAL C OTHETRON POLOBRA EDAMOBORO DELBOA 12.700.

- AM CPENTAGE PASS PASS PARTIES OCH BO BCECC CAPYAGC COBRANTO OCHO CHIMET-PATI KONONTHI.
- *Кралы ностовые электрические-магнитные грузоподвемностью Q=5т пролетом L_{пр}=28,5м в настоящее время не выпускаются.

TK TABAHUA WHOPOB FABAPHTHODE CEMUCOLOB/ET

OTEPOITOE EPANOBOE SCTAEA 4. DOWNER MET

	HOPMATHBHOIE KRAHOBBIE HAPPYSKH.															
8	Ť	MAI	HNTI	16/E	KRA	HW.	TPE	HODEP	MOVE	KPA	M61.	MAC	HHTH	D-FPE	MYODE	PHUE
PRYSOMOABEMIN KPAMA T	TOCAET MOCTA KDAHA	Nº COCEMA ROAMOBON HALPSSEN	EDTHA EPA	BAEH CA KPA CANGUASI HOBASI PYSIKA PMLn	TONE. PEYN.		I O S	BEPTHIC KPAHO MAFPS		Aria None-	≠EMME + TH	1 4 4 5	EDTHE EPAN	ANEH ANEHAR ANEHAR COBAR	MA.	TPOLONG HOE TOPHO- SEEME ±Trip
	16,5	1	10,4	3,6	0,24	±1,04	5	11.0	3,3	924	±1,1	4	11.0	3,2	0,20	±1,1
5	22.5	11	12,4	4.9	0,24	±1,24	5	12,6	4,4	0,24	±1,26	4	12,6	3,8	0,20	±1,26
	28,5						13	14.7	6,9	0,24	±1.47	10	14.7	6,8	0,20	±1,47
	16,5	2	14,2	2,9	038	±1,42	8	17.2	4.8	0,47	±1,72	7	21,00	7,63	0.47	±2,10
10	22,5	3	15,8	3,9	0,38	±1,58	8	18,7	7.5	047	±1,87	7	23,00	88,8	047	£2,30
	28,5	9	18,4	5,9	<i>Q</i> 38	±1,84	12	21,1	8,6	047	t2,11	7	25,00	11,23	0,47	±2,50
	16,5	6	19.85	1,90	0,53	±1,99	14	30,8	6,4	් ,83	£3,08	8	19,94	4.9	0,57	±1,99
15	22,5	6	21,85	3,90	0,53	±2,19	14	32,8	9,4	0,83	t3,28	8	21,84	6,5	0.57	t2,18
	28,5	12	23,85	5,90	953	±2,39	14	35,8	13,3	983	±3,58	12	24,04	9,3	0,57	±2,40
	16,5	6	21,45	4.72	2,73	±2,15	14	35,2	7,3	1.1	t3,52	15	25,1	6,9	983	±2,51
20	22,5	6	23,95	542	0,73	±2,40	14	38,2	9,8	1.1	±3,82	15	27,6	7,9	983	t2,76
	28,5	12	26,95	7,27	0,73	±2.70	14	41,2	13,8	1,1	±4.12	15	31,1	8,4	0,83	±3,11
	PACH										POPM					

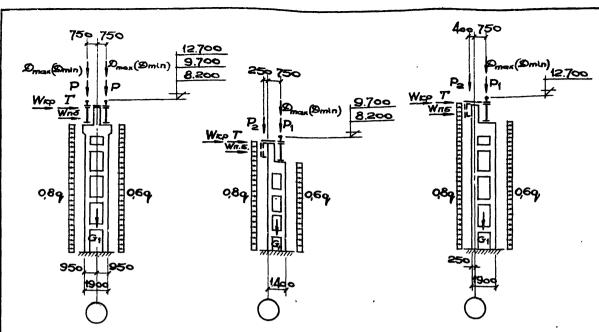
ЗНАЧЕНИЕТ, УМНОЖАЕТСЯ НА КОЭФФИЦНЕНТ об ПРИНИМАЕМЫЙ ПО ТАБЛИЦЕ 47

KNEBEKNN - IIIAGMETPONINDOEKT r. K we 8.

CHn∏ [-B.3-62

PHMEYAMMA:

- 1. Крановая магрузка в клфаом пролете принята от 18 у одинаковых кранов магнитных, грейферных или магнитногрейферных-грузоподвемностых 5,10,15 и 20т, предмазмаченных для работы на открытом воздуже.
- 2. ВЕТРОВЫЕ НАГРУЗЕЛ НА КОНСТРУКЦИЙ ЭСТАКАЛ, А ТАКФЕ НА ТОРЦЫ КРАНОВ В ПОПЕРЕЧНОМ НАПРАВЛЕНИИ, ПРИВЕДЕНИЮЕ НА ДАННОМ ЛИСТЕ, ОПРЕДЕЛЕНЫ ПО НОРМІТИВНОМУ СКОРОСТНОМУ НАПОРУ РАВНОМУ 25°Г/м² ДЛЯ СЛУЧАЯ, КОГДА КРАНЫ НА-ХОДЯТСЯ В РАБОЧЕМ СОСТОЯНИИ, В СООТВЕТСТВИИ С ДАННЫМИ ГОСТ (451-65.
- 3. CHEROBAR MARPYSICA AAR IVPANONA CCCP 110 CHMI II-A.11-62.
- 4. Полеэмая магрузка ма конструкции ходовой галерен принята равной $200^{\kappa 7}\!/\!n^2$


- 5. Собственный вес конструкций при-НЯТ ПО ФАКТИЧЕСКИМ ДАННЫМ.
- 6. THE PACYETE KONORN & THOUGHOMEN MATPHEM OF TEMPERATUPHENE BOSLEHCTBHH, HESOLE IS TEPETALA TEMPERATUP

 \$ to 40°
- 7. B TABAMUASE MA LAMMOM ANCTE TIPM-BELEMOI MOPMATHEMOIE KPANOSOIE M BETPOODIE MATPYSIEM.

PARTIE TO CONTRETE TRANSPORT IN THE CONTRET TRANSPORT IN THE CONTRETE TRANSPORT IN THE CONTRETE

TK CXEMЫ KDAHOBЫX HAPPYSOK.
1967. HOPMATHBHЫE KPAHOBЫE HAPPYSKH.

CEPMG MC-01-08/67 Butter Jinet 4* 2

 $P_*P_{1}*G_{2}*G_{5}*95(G_{5}*N_{1}*N_{2})$ $P_{2}*G_{4}*95(G_{5}*N_{1}*N_{2})$

TAEG 2 - COSCIBENHON BEC HOLICPA -HOBOT BANKH.

G3 - COECTBEHNOIN BEC EPANO-BOTO NYTH.

G4 - COBCTBENNIN BEC BCTIOMO-TATEABHON DEPHOL.

G5-собственный вес тормозной балки.

 N_1 - HOLESMAR HAPPSKA HA SOLEDADOS OF FALEPED.

N2 - CHETOBASI MATPYSKA MA
OHEROLOS

G1 - COBCTBENHON BEC ROLOHNOL.

WRP- MATPYBRAMA RONOMMY OT BETPA MA TOPUL EPAMOB.

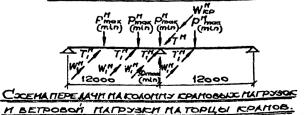
WILE-HAPPYSEA HA ROACHINY OF BETPA HA NOARPAHOBYIO BAAKY.

Y - PABROMERNO-PACTIPE AEAEMHASI HATPYSKA OF BETPA HA KOAOHHY.

DMAK-MAKCHMANGNOE (MNHMMANGNOE) BEP(min)
THEANGHOE AABLEHNE OT KPAHOB
HA KONOMHY.

Т - ГОРИЗСИТАЛЬНОЕ ДАВЛЕНИЕ КРАНОВ НА КОЛОНКУ ПРИ ПОПЕРЕЧ-НОМ ТОРМОФЕНИИ.

COMEMA MATPYSOK MA KONOMMOI OTKPOITOIC KPAMOBOIC SCTAKAL

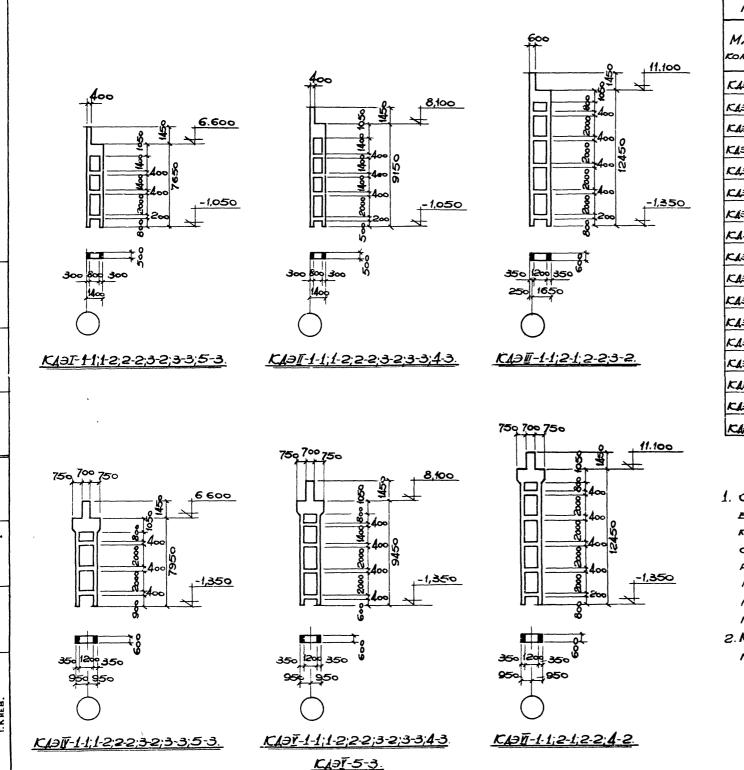

Hor	MATH	BIINE	KPA	MOBU	E MATI	PYSKI	1 HA A	COVO	416)	(r).		
MOCTE	401		TH MTT PA NO		1	Ý DE P		MATHNTHO-TPEH- DEPHOLE RPANOL				
$ ilde{ i}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	X R Y	Д ^Н Д _{Мак}	නි ^{rt} කැ _ත	±T"*	Ø [™]	D™ min	±T"*	D _{Man}	Ø ^H Min	±7"*		
	18	32,97	11,41	±0,76	32,5	9,7	±0,71	33,55	9,76	±961		
5	24	36,21	14,31	±0,70	37,2	13,0	±0,71	38,93	11,74	∓0 '€5		
	30	_			34.7	16,3	±057	43,2	19,99	±0,59		
	18	43,7	8,9	±1,17	49,9	13,9	±1,36	72,5	10,73	±1,36		
10	24	46,9	11,6	±1,13	54,2	21,8	±1,36	79,8	12,76	±1,36		
'	30	54,7	17,5	±1,13	61,2	24,9	±1,36	88,2	17,11	± 1,36		
	18	55,9	14,5	±1,72	87.5	18,2	±2,36	57,7	14,21	±1,65		
15	24	62,5	17,2	±1,72	93,2	26,7	±2,36	63,2	18,85	±1,65		
	30	66,6		±1,66	101.7	37,8	±2,36	69,8	27,06	±1,66		
	18	62,2	13,69	±2,12	1090	20,73	±3,12	62,5	17,18	±2,07		
20	24	69,46	15,72			T	1	K	19,68	±2,07		
	30				jj	ł	±3,12			±2,07		

* 1ЛЯ РАСЧЕТА КРЕПЛЕНИЯ ТОРМЭННЫХ КОНСТРУКЦИЙ К КОЛОППАМ ЭПЛЧЕНИЕ 1^n УМНОФЛЕТСЯ ПА КОЭФФИЦИЕПТ 6, ПРИНИМАЕМЫЙ ПО ТЛЕЛИЦЕ 17СНИП 1-8.3-62.

Примечание: Нормативные крановые нагрузки и общие примечания см. на дисте 2.

KNEBCKNÁ ACTPOMAPDEKT r Kneb

HOPM	HOPMATHENEIE BETPOSSIE HAPPYSKH MA POPUSI KPAHOB H KONCTPYKLINH SCTAKAL(T).														
	ž	Q	COCPE, CHAA C HOAFP BAAKS	AOTOHE TBETP ANOBY	RANN AN AS	BETPO	HA HA PEAGC OT BETPA OT BETPA						W _{EP}		
Грэзо поде ЕНПОСТ КРАПА - Т	!TPOAET	HOPMATHENS COOPOCTHON 1 BETPA 9.0 KT/M	rmale ne,	PETAPEDRALE CPARA	MATRIMTRO- FPENDEPRAE ROARBI	MACHINTHOLE	PENPEDNUE 1	HAMMING- TPEINFEPTINE RPANOI	MATHITIESE	(PENPEPTINE RPAME	MATHHTHO- IPEHAREPHAE ROPATIOI	MAITHITHUE RPAMBI.	PENDEPRINE RPATOL	MALTHITHO- TPETIDEPTION ESOATISI.	
	18		0,44	0,44	0,44	052	0,67	0,61	026	034	931	0,74	1,00	0,93	
5	24	1	0,44	0.44	0,44	0,64	0,68	0,63	932	0,34	0,32	0,94	1,00	0,97	
	30	1		0,44	0.44	I –	0.79	9,69		940	0,35		0,93	1,03	
	18	1	0,55	0.55	0,55	964	0,83	988	0,32	0,42	0,44	0,99	1,22	1,29	
10	24	İ	0,55	0.55	0,55	0,67	984	0,90	0,34	0,42	0,45	1,00	1,22	1,30	
110	30			0.55	0,55	0.73	0,85	091	0,37	0,43	0,46	1,10	1,25	1,33	
 	18	25	0,55	0,55	0,55	0,74	1,08	0,85	0,37	0,54	0,43	1,11	1,54	1,26	
,		1	0,55			0,75	1,08	0,86	038	0,54	0,43	1,13	1,54	1,26	
15	24	1	0,55	0,61	0,55	0.82	1,10	988	0,41	0,55	0,44	1,20	1,56	1,28	
	30		055	0,61	0,55	1	1,08	1,51	0,43	0,54	076	1,28	1,54	1,89	
	18	ļ	0,55	0,61	0,55	0,85	-	1,51	0,43	954	9,76	1.28	1,54	1.89	
20	24		0,55	0,61	0,55	0,86	1,08	<u> </u>			0,76	1,30	1,56	1,89	
ı	30	l	055	061	0,55	0,88	1.10	1,51	0,44	955	0,76	1,30	<u> </u>		


TK CXEMA MAIPYSON MA KOAOMINI. HOPMA-KRANOBNE MAIPYSON MA KOAOMINI. HOPMA-THB MILE BETPOBNE MAIPYSON MA KOM-1968: CTPYCLIMM SCTAKAA.

AEROBA	MOJOGOBA				
780	Honay				
Koncreyne.	TPOBEPHA				
CABSCRAH	CAMONETOB (TPOBEDM)	CAPITTOROS	HEMAS.		
6.00 CABSCKAN KONCTOSTA	Mature	Care of	Mucus	,	
TACAA	(¥.770.	rom.	T		

		TABA	пца ма	POE K	CONOTT	OTE	POITO	E KP,	41086	σε э с	TAKAA	ι.			
683	13	Тип		MAPI	EH K	010 H r	1 NPK	KP	AHA	æ:		3			
559 =		17111	MAFRINTH	ekal sag	оподвем.	11007610	PEHOE	Prible (P)	Y30/10/L&E/	unoctero	MATRITTO- TPE HODEPHOLOGIEN.				
OTMETICA TO- NOBER FOUND BOTO PEAGU M	POAE 3CTAE,	E O A O H M &I	5	10	15/3	20/5	5	10	15	20	5/5	10/10	15/3	20/5	
		KPAĤNSS	KAƏI-1-1	KA3I-2-2	KA3T-2-2	KA9I-3-2	KAƏI-1-1	KJ3I-2-2	K4ƏI-3-3	K49I-5-3	KAÐI-1-1	K49I-2-2	K49I-2-2	F49I-3-2	
	18	CPEAMS	KAƏ <u>IV</u> -1-1	KA917-1-2	KAƏİŸ-2-2	<i>C.</i> ₽ <u>I₹</u> -3-2	K49i <u>Y</u> -1-1	Ľ ≬ ∋ <u>ĭ</u> ṽ-2-2	KAƏ <u>I</u> <u>V</u> -3-3	кдэ <u>і</u> ў-5-3	K4917-1-1	K431 <u>F</u> -2-2	K.1.911-3-2	K491 <u>F</u> -3-2	
		Кранняя	KA9I-1-1	K43I-2-2	KA3T-2-2	K49I-3-2	KADI-1-1	KA3I-2-2	KA9I-3-3	K43I-5-3	KAST-1-1	KVƏĹ-5-S	KAƏI-2-2	K.19I-3-2	
8.200	24	CPEAMAS	1-1- <u>Vi</u> e43	KA9 <u>1</u> 1-1-2	K49jj-2-2	KAƏ <u>I</u> Y-3-2	K49[F-1-1	KYƏ <u>11</u> .5-5	K.L.Ə.[Ÿ-3-3	KAƏ <u>I</u> <u>F</u> -5-3	KAƏIT-1-1	K13@-2-2	F.4.319-3-2	<i>КДэ</i> <u>і</u> ў-3-2	
		Крайняя	_	K49I-2-2	ICA3I-2-2	KA9I-3-2	KA9I-1-1	KA9I-2-2	<i>CA</i> ЭГ-3-3	KA3I-5-3	KA9I-1-2	C49I-2-2	K49I-5-2	K49I-3-2	
	30	CPEANSS	_	<i>€13</i> <u>1.</u> 5-5	KYƏ <u>I</u> I-5-5	K43 <u>ir</u> -3-2	KAƏ <u>I</u> V-1-1	KYƏ <u>I</u> <u>1</u> -5-5	KAƏI <u>V</u> -3-3	K43IV-5-3	KAƏ <u>I</u> F-1-2	K4911-3-2	K#3 <u>[k</u> -3-5	K/J#-3-2	
		KOAHHSISI	KA9 <u>1</u> [-1-1	K49[-2-2	<i>Ľ∤</i> ∋ <u>Ī</u> -2-2	K19 <u>1</u> -2-2	KAƏ <u>I</u> I-1-1	K19 <u>I</u> -2-2	KAƏ[[-3-3	K49 <u>I</u> Ī-4-3	KAƏ <u>I</u> Ï-1-1	K43 <u>I</u> -2-2	KJ.Ə <u>I</u> I -2-2	KAƏ <u>II</u> -3;2	
	18	CPEANSS	KAST-1-1	KAƏ <u>T</u> -1-2	KA9 <u>V</u> -2-2	KA9 <u>F</u> -3-2	KA9 <u>V</u> -1-1	KA9 <u>T</u> -2-2	KAƏ <u>T</u> -3-3	кдэ <u>г</u> -4-3	кдэў-1-1	C49 <u>V</u> -2-2	KAƏŽ-3-2	KA97-3-2	
9.700		KPAĤNSISI	KAƏ <u>I</u> Ī-1-1	KJ3 <u>I</u> -2-2	KYƏ <u>I</u> I-5-5	KJƏ <u>I</u> -2-2	K43T-1-1	КДЭ <u>Т</u> -2-2	EAƏ <u>I</u> [-3-3	KAƏ <u>T</u> -4-3	KLƏ <u>I</u> I-1-1	KAƏ <u>I</u> I-2-2	KAƏ <u>I</u> I-2-2	K4∋Ī-3-2	
3.700	24	CPEANSS	KADY-1-1	KAƏ[-1-2	K49[-2-2	K43 <u>V</u> -3-2	KA9[-1-1	KJ9 <u>F</u> -2-2	た .5-∑e 1 ン	KA9[-5-3	KAƏ <u>T</u> -1-1	KA9 <u>T</u> -2-2	KA9I-3-2	KA9[-3-2	
		KOAHHASI	_	KY9 <u>I</u> -5-5	KAÐĪ-2-2	K49 <u>1</u> -2-2	KAƏ <u>I</u> I-1-1	KL9 <u>I</u> -2-2	K.4.9[[-3-3	K49 <u>I</u> I-4-3	KAƏ <u>I</u> I-1-2	K49 <u>T</u> -2-2	K13 <u>II</u> -2-2	KA311-3-2	
	30	CPEAMS	_	C19 <u>1</u> -5-5	K49¥-2-2	K49 <u>T</u> -3-2	KAƏ <u>Y</u> -1-1	ГДЭ <u>Т</u> -2-2	K49F-3-3	≿.6 - <u>7</u> -5-3	r.1- <u>7</u> -1-2	к д э <u>т</u> -3-2	KYƏ <u>I</u> -3-5	K.13 <u>F</u> -3-2	
		KPANNSS	KAƏ <u>II</u> -1-1	KA91[-1-1	KAÐII-1-1	КДЭ <u>Ш</u> -1-1	KAƏ <u>II</u> -1-1	KA9 <u>#</u> -1-1	K4911-2-2	₹ ₹9 <u>11</u> -3-2	ra=1-1-1	KAƏ <u>I</u> I-1-1	KA911-1-1	KA311-2-1	
40.75	24	CPEAMS	KAƏM-1-1	KA9 <u>II</u> -1-1	ICA=11-1-1	KA311-2-1	KA31-1-1	KA3 <u>11</u> -1-1	K.19 <u>1</u> 1-2-2	K4ə <u>rī</u> -4-2	кдэ <u>й</u> -1-1	KA9 <u>11</u> -1-1	КДЭ <u>Й</u> -1-1	KAÐ <u>T</u> -2-1	
12.700		KPAHHSISI		KA311-1-1	CAÐĪ-1-1	KAST-1-1	KAƏ <u>II</u> -1-1	КДЭ <u>Ш</u> -1-1	K T ∋ <u>li</u> -5-5	<i>K.⊯∭-</i> 3-2	СДЭ∭-1-1	K 4 ∋ <u>W</u> -1-1	KAƏ <u>II</u> -1-1	K4911-2-1	
	30	CPEARS		KA317-1-1	KA3 <u>1</u> 1-1-1	KA3jī-2-1	KAƏ[[-1-1	KAƏ <u>V</u> I-1-1.	K.1.3)[[-2-2	<i>เม</i> ลฺซฺ-4-2	KA9 <u>11</u> -1-1	KA9 <u>II</u> -2-1	CLƏ[[-1-1	r.4911-2-1	

TK TABANUA MAPOK KOAONN 1967# OTKPHITHE KÁNOBHE SCTAKAA.

CEPHS MC-01-08/67. Bunyce Jungt

PACEOL MATERMANOB MA CEOPHOLE SELESOBETONNOLE KONCTRYKLING.

					· .						
Марка колоппы	ВЕС КОЛОН- И Ы Т	PACX MATER BETON M3	CTAIN	MAPKA	A. 1.0	МАРКА КОЛОППЫ	l	PACX HATEN BETOMA U ³	CTANH	MADICA	PACXOA CTALM MA 1 H 3 BETOMA ICT:
KA9I-1-1	8,50	3,41	426,9	300		KAƏ <u>İ</u> V-1-2			<i>5</i> 83,3	300	102
K49I-1-2	8,50	3,41	436,9	300	128	K49[v-2-2	14.4	5,74	660 _i 1	300	115
KAƏT-2-2	8,50	3,41	507,2	300	149	KJƏ <u>V</u> -3-2	14,4	5,74	740,2	300	129
K49I-3-2	8,50	3,41	593,8	<i>30</i> 0	174	K.L.Ə 3-3	14,4	5,74	7882	ರಂಂ	137
KA9I-3-3	8,50	3,41	617,8	300	181	KJƏIĬ-5-3	14,4	5,74	1116,9	400	195
CL9I-5-3	8,50	3,41	943,0	400	276	KAƏ <u>F</u> -1-1	16,7	6,66	590,9	300	89
KAƏI-1-1	191	4.02	5591	300	137	ГДЭ <u>Г</u> -1-2	16,7	6,66	6199	300	92
KA9[[-1-2	10,1	4.02	560,1	300	139	K¶∋ <u>Ī</u> -2-2	16,7	6,66	691,3	300	104
K13 <u>I</u> F-2-2	10,1	402	6 54 ,0	300	163	KAЭ <u>Т</u> -3-2	16,7	6,66	787,4	300	118
KA9 <u>I</u> F-3-2	10,1	402	771.7	300	192	KAƏ <u>T</u> -3-3	16.7	6,66	835A	300	125
KAƏ <u>I</u> I-3-3	10,1	4,02	795,7	300	198	K.13 <u>T</u> -4-3	16,7	6,66	911,7	300	137
KAƏ <u>I</u> Ī-4-3	10,1	4.02	1031,8	400	257	C.13[-5-3	16,7	6,66	1158,4	400	174
KAƏM-1-1	19,5	7.80	796,8	300	103	KA30-1-1	20,2	8,06	8349	300	104
KA311-2-1	19.5	7.80	950,4	300	122	KAƏYI-2-1	20,2	8,06	961,7	300	119
K1911-5-5	19,5	7,80	974.4	300	125	KAƏ[[-2-2	20,2	806	1009,7	300	125
<i>≿.</i> £- <u>j</u> ij∈1,3-2	19.5	7,80	1497,2	400	192	KA3KT-4-2	202	8,06	20029	400	249
KAĐ <u>I</u> F-1-1	14.4	5,74	5633	300	98		<u> </u>				

MANMEYAMMS:

- 1. Обозначение марок колони принято следующее: Буквенная часть марки КДЭ. Обозначает тип колонныколония двужветвевая эстакай, первая цифра ў. Римская ў. Обозначает типоразмер колонны, вторая цифра эсарактеризует несущую способность колонны данного типоразмера, третья цифра указывает на различия в колонная данного типоразмера, вызванные наличнен закладныя элементов для опирання подкрановых балок.
- 2. Kolonhu, norbelennue ha lanhom aucte, paspabotahu b bundere 2 hactormen cephn.

TK HOMENEARTYPA CEOPHOLO FEAE-30EETOHHOLO EOAOHH 1967: TAEAMUA PACOCOLA MATEPHAAOB.

-		TKAAT				KPANC		- /					· · · · · · · · · · · · · · · · · · ·		044046	ти под постава и постава	04.00/	10/23	СЦП	- '-
 	The		VAFHH	THUE	CPANS			4) EPH6	A IC M.		MACHHI	20-5056	PEPHUE			CIATION & CERTAINCE	01-00/6	7 86//	IYCK	:5
TP330-	TPOAET KPAHA	2 C		HMBROAE- THPOBAH- HAS CTAKG.	Beicota Ceyenna	BEC ICT:	Cr.3	MASCONE THROBAH- HASI CTANO	Высота сечепня	BEC Kr.	Cr.3	HHBROAE FHPOBAH- HAS CTAA6	-	BEC EF.	HAMME- HOBAMME KOMCTPYK UM M	С же ма копструкции		Высота констри ций	BEC Kr	- 11
5	16,		26* 125*		1050	1950	124*			1705	425*		4	1815	0 K .		B\$-1	950	300	,†
	22,		20		1050	1015	<u>425*</u>		1050	1815	426* 427*	=	1050	1950	EAST.		B-2	1200	310	٦
	16,			140*		1870	466	440*		1870	421	144		2090 2555	E ST	12000	B\$-3	1350	330	5
10	22		_	440*	-	1870		141*	1	2060	+=-	144	1	2555 2555	25.8	ϕ				1
1	28,			441*		2060		442*	1300	2170		445	1	2710	a	+ +	Bc-1	 	1064	
	16,	5	_]	442*		2170		445		2710		442*		2170	7 20		Bc-2	6100	1257	-
15	22,	5		443*	1300	2275		453		3045		143*	1300	2275	10		Bc-3	7	1064	IJ
L	28,	5		<u> 443*</u>		2275		· 453		3045		444		2555	BER	12000	Bc-4	7600	1240	,
	16,	5		∡ 43*		2275	4_	<i>45</i> 3	1450	3045		444		2555	7 2		Bc-5	10600	1562	2
20	22,			<u> 444</u> 444		2 5555		155 15€		3225 3300		A 44		2555 2710			1-1	4800	224	
			OPM		5AAK							 		2/10	- I	4	1-2	6300	301	٦
A DAY	SPSKA						252	A 77 20 1 3	Z 0 1.						CTHN4.	4	1-3	9300	526	:
MON CONTRACT	N S		Cx	EMA E	SAAKH.		70 P33	10 10 10 10 10 10 10 10 10 10 10 10 10 1	BE		ПРИ	MEYAHN	<u>g:</u>		7. 9	F E	1-4	8100	471	
		PHOP	REMAR	CTAA6	<u> </u>	BCHOMOFATE	16-			1. x	APARTE	PHETHK	A CTAAR	H SAFE.	8	7/	1-5	9600	535	i
	HSAEBASY 9	CT 10	-90×6	_90	7.	OCE TION	O ARM.	T5-1 100	ව ර 88 50	n sche d a an n ral e-ùnu 2. B	1 TOPMO: EPHH IC: ISTOTOB: S CEPHH SEC TOP	3K6)	(EHUS TO ALOK TO BUTYCK POYHOK R 5/67 BUT E BALOK	NBELE- I/67, OKCTPYK- YCE 3 · NPNBE-	.,		Л-6	12600	910	
йпий	μ"	-5 <u>-</u>		MATO RAI		ь <u>вспоног</u> А блой фер				ДЕП Б СВЯЗЕ З.В БАЛОК ВЫПУС	EB SYE EM: CEYEM NO COP E I/67, C	TX BECA HASS TIC TAMENTS OTMEYER	BERTHR DARPAHO CEPHH K INSIX * W INSIX TO	Альных 18ых 19-01-57 11 прину	AOYMOIG AAKN.		B OAHOH S SAHOH	1400	_	
KOA	250" 4 x 169	<u></u>	90×6		90×6	Oce uove		75-2 HS	5 0 785,0	YBEAN MUSI K MOBOL 4.B	YNTG 10 CPENAEN CO PEAG EC NO14	400мм. ПЯ СПЕ! СА КА П. СРАКОВЬ!	AAA OBEG	C RPM -	Посл		Thougage B abyo yposksx	1400	_	
		Ó	ONONE	SAATO EAN	. ఈ ల్	CO ROAKPAN	20 080/r			ГО УВ ПОЯСА		ия шия	ины ве	DOCHERO		CERMIN OFPAGENTINE 6-12,0M	/7- 3	1200	120	
EAHHH	1000		9046	_	90*6	SCO TO ALER		75-3 (50	00,1601,0						NEP OFPAS	CERLING OLDWAY VERTING FISOM	п-4	1200	2 09	1
CPE		6		12000	(80H 5AA	CH.								TK	HOMEHENATYPA CT EOHCTPYEU	TA AA HI	~~~	d€ uc-ot	

***		MOARPAHOBAS	BAAKA'/CEYEMME 67 CEPMN KJ-01-57	Toomosmag	BCTOMOTATEAN	BERTHKAALHAS	Lect		Nº AMOTA
ШнфР Эстакалы .	Осповная	¢π.3	HUSKONETHO- BAHHASI CTANS.	BANKA	MASI ФЕРМА	СВЯЗЬ.	HA MOCALOUMYFO MALES	HA JOGLOBYIO TANEPEIO.	МАРКИРО ВОЧНОЙ СЖЕМЬ
T-18-8.2-5м.	2427.4.4	125*			B\$-1				
- 24-8.2-5m	КДЭТ-1-1	425*			240 1	1			
- 18 - 8.2 - 10 m		_	140*						
- 24-8.2 - 10m	_		140*						
-30-8.2-10m	KA9I-2-2		441*						
-18-8,2-15m		_	442 *		B\$-2	Bc-l	A-1	1-4	İ
- 24 - 8.2 - 15m	_		443*						
I - 30-8.2 - 15m			A 43*						
:-18-8.2-20m			A 43*						
Г-24-8.2-20н	KA3I-3-2		144						
T-30-8.2-20M			144	T5-1					1
T - 18 - 9,7 - 5m	K.L.Ə.II-1-1	T 56*		, 2					13
T-24-9.7-5M	CEOF 1	125*	_		B\$-1				
Г- 18- 9.7 - 10н		_	140*						
Г-24-9.7-10м	<u>]</u> :		140*						}
T-30-9.7-10H			A41 *						
т - 18 - 9.7 - 15м		_	112 *			Bc-3	1-2	1-5	
Т-24-9.7 - 15 н	K13[[-2-2	-	143 *		Bф-2				
T - 30 - 9.7 - 15H		_	443*						}
Т - 18 - 9.7 - 20н		-	143*						1
T - 24-9.7 - 20m		_	144						
Г-30-9.7 - 20м		_	144						
T-24-12,7-5H		125*			B-1				
T-24-12.7-10M		_	140*	1		1			
T-30-12.7-10H			441*						
T - 24 - 12.7 - 15H	KA∋ <u> </u> -1-1		143*	T.5-2		Bc-5	⋏ -3	1-6	14
T - 30 - 12.7 - 15H			A43*	1	B\$-2				
I - 24-12.7 - 20H	7	_	144	1					
I - 30-12.7-20m	7		144	1					1

PHMEYAMAR.

- 1. CONCTRUCCION CEORNAIS DE SOS ETONINAIS ROMONN PLANASOTA NOI B BONINCE 2.
- 2 Конструкции стальных вертикальных связей, вспомогательных ферм и лестниц разработанны в выпуске 3.
- 3. CIEMBI TOPMOSHOW BALOK CM. HA AKCTE 6.
- 4. Посадочные площаден разработать вконкретном проекте в соответствии с решениями, приведенными в выпуске 3.
- 5. Β CEYEHRAX ΠΟΔΕΡΑΠΟΒΟΙΧ ΕΛΛΟΚ, ΟΤΜΕΥΕΠΗΘΙΧ*, ШИРИНУ ΒΕΡΙΧΗΕΓΟ ΠΟΘΙΟΑ ΚΟΝΟΤΡΥΚΤИΒΝΟ ΥΒΕΛΗΨΗΤΕ ΔΟ 400ΜΗ ΔΛΑ Ο 5ΕΟΠΕΥΕΠΗΡΙ ΚΡΕΠ-ΛΕΝΗΡΙ ΟΠΕΙΜΑΛΟΝΟΓΟ ΚΡΑΠΟΒΟΓΟ ΡΕΛΟΚΑ ΜΑ ΠΛΑΝΚΑΙΧ.

TK	TABANUA MAPOE ЭЛЕМЕНТОВ OLMOПРОЛЕТНЫХ	CEPI	19
	КРАНОВЫХ ЭСТАКАІ ПОІ МОСТОВЫЕ	HC-01	08/67
19681.	EXECTPHYECKHE MATHITHOLE RPANDI PRYSOMOLISEMHOCTORO 5,10,15/3 H 20/5T.	выпуск 4 *	MET

		MODICIPANOBICA	SAARA (CEYEMHE V I/67 CEPHH	TOPMOSHAR	Вспомога-	BEPTHEANS-	LECT	ппца.	Nº AHCTA
ШПФР ЭСТАКАДЫ.	Соловная Колонна.	<i>R3-01-57)</i> Ст.3	HISKOAETHPO- BANNAS CTAAS.	5AAKA	TEABHAS \$\phi EPMA	MAS CBSS&	НА Посадочную Плоцадку.	HA	MAPKUPOBOY HOM COCEMBI
I-18-8.2-5r.		124*	_				ихоцида.	TAXEPEIG.	
I-24-8.2-5r	KA3I-1-1	125*	_		B1			[İ
I-30-8.2 -5r	·	426*]					
I-18-8.2-10r	1		440*	}		1			
I-24-8.2-10r	KA3I-2-2		A41*		2.4.0				
I-30-8.2 -10r			142*	I	B\$-2				
I-18-8.2-15r			145]					
I-24-8.2-15r	_ KA3I-3-3		453]		Bc-1	Λ-1	1-4	
I-30-8.2-15r			155]					
I-18-8.2-20r			155		B\$-3				
I-24-8.2-20r	KJ9I-5-3	_	455	1					
I-30-8.2-20r		_	156	T5-1					
I-18-9.7-5r		124*	_	751					13
I-24-9.7-5r	<i>⊏.1-1-1</i>	A 25*			B\$-1				
I-30-9.7-5r	7.	¥26*	_	1					
I-18-9.7-10r		_	140*						
I-24 - 9.7 - 10r	KA9[-2-2	_	. 441 *	1					
I-30-9.7-10r		_	442*	1	B\$-2	D - 3	4.0		
I-18 - 9.7 - 15r		_	145	1		Bc-3	1-2	1-5	
I-24 - 9.7 - 15r	KA91-3-3	_	153	1		7			
I-30-9.7-15r	1 .	_	455						
I-18 - 9.7 - 20r	•		155	1	B\$-3	!			
I-24-9.7-20r	KA3 1-4-3		155	1					
I-30 - 9.7 - 20r		_	156	1					
I-24 - 12.7 - 5r		125 *	_		1				
I-30 -12.7 - 5r	r12#-1-1	126*	_	1	B\$-1				1
I-24-12.7-10r	KA911-1-1	_	141*	1	- / -	7			ł
I-30-12.7-10r	1		142*	T.5-2	B\$-2		4.5	1	1
I-24 - 12.7 - 15r		_	153	1		Bc-5	€- λ	<i>∖</i> 1-6	14
I-30-12.7-15r	K19 <u>11</u> -8-2		155	1	7-6-2			1	
I-24-12.7-20r			455	1	B\$-3				
I-30-12.7-201			456	† -					

ПРИМЕЧАНИЯ:

- 1. Конструкции сборных фелезобетонных колони PASPA FOTATION B BUTTYCKE 2.
- 2. KONCTPYRILING CTANOMOUS BEDTHKANOMOUS CBROSEN, BCHOMORATEROHOUS OPERM IN RECTIONAL PASPABOTAROI B BUINDERE 3.
- 3. COMEMBI TOPMOSHOR BAKOK CH. HA LYCTE 6
- 4. NOCALOURNE MACHALEN PASPABOTATO B COR-

KPETHOM RPOEKTE & COOTSETCTSHIN C PEWE-HHAMM, THUBE LEHHOMM & BOITYCKES.

5. B CEYEMMSOC MOLICPAMOBEIC BAKOR, OTHEYEN-MONTH WARDING BEDWARD MONCA KONCTPYK-THERO YEENHUTG TO TOOM TY OPECUERE. MMA RPETIAEMMA CREUNALBHOFO RPANOBOFO PENOCA MA MAMICADO.

TK TABANILA MAPOR SAEMENTOS OLNORPO- CEPMS NCO1-08/67 AETHORE REAMOSAIR SCHARAL NOL MOCTOBAIR MC-01-08/67 SOUNDE CHARAL PDY SOUNDE ANCE SO

			HORPONETHOUSE EHGEPHOLE KI B BANKA-L-		Вспомога-	BEPTHEALS-	LECTHI		Nº AMETA
Шифр	OCHOBHAS	MOARPAHOBAS (CEYEMME NO CEPHN RE	56/19CKY 1/67 -01-57).	TOPMOSHASI	TEAGHASI COEPMA	HAR CERSS.	HA VIOCA A O YH Y IO	MA	МАРКИРОВОЧН СОСЕМЫ.
OCTARALOI.	KONOMITA	CT 3	HHSKOKETHPO- BAHHAS CTAKE.	BAAKA.	GENTA.		ПЛОЩАДКУ.	TAMEPERO	
I-18-8.2 <i>-5n</i> r	FIST 1.1	425*			_ , ,				
I-24-8.2 -5mr	CASI-1-1	126*		1	B\$-1				
[-30-8,2-5mr	K-1-1-2	A27				+			
I-18-8.2-10mr			144						
I-24-8.2-10Hr			144				İ		
<u> Г- 30 - 8.2 - 10 нг</u>	KA9T-2-2		145	1		-			
[- 18 - 8,2 - 15mr	1 "		442*	l		الحا		1 , ,	
- 24 - 8,2 - 15иг	1		443*	1	B\$→-2	Bc-1	A-1	1-4	
[- 30-8,2 -15mr			144					1	
T - 18 - 8,2 - 20нг			444	·				i	
[-24-8,2-20MF	KAƏI-3-2		144						
- 30 -8.2 -20нг.			145	T5-1					- /-
- 18 - 9.7 -5mr	KAĐĪ-1-1	£25*							13
- 24 - 9.7 - 5MF	CASE 1	426 *			B\$ -1				
- 30-9.7-5 Hr	KA3I-1-2	127]		4			1
- 18 -9.7 - 10 Hr			144	į			ļ.		
- 24-9.7 - 10 mr			144				į		
- 30-9.7 - 10mr	Z-2- <u>J</u> ety		445			Be-3	1-2	Λ-5	
- 18 -9.7 - 15mr	1		442*		B%-2				
- 24-9.7 - 15mr]		A43*	1	De E				
- 30-9.7 - 15mr			144	İ					
- 18 - 9.7 - 20mr			A44		1				
- 24-9.7 - 20нг	€.3. []€£3		144]					
- 30-9.7-20MF	1		145						
- 24-12.7-5MF		126*							
- 30 - 12.7 - 5mr		127	_	Ţ	B\$-1	}			
- 24 - 12.7 - 10Mr	кдэії-1-1		444]		7	1		
- 30 - 12.7 - 10mr	1		145	T.5-2		Bc-5	1-3	1-6	14
- 24 - 12.7 - 15mr	1		443*		B\$-2				·
- 30 - 12.7 - 15mr	1		144		D4-5				
- 24 - 12.7 - 20mr		_	444	1					
- 30 - 12.7 - 20Hr	KA911-2-1		445	1			i		

Примечания.

CPETHOM RPOERTE B COOTBETCTBUM C PEWE-HUSHM, RPUBE LEHNOWH B BOUYCKE 3.

^{1.} CONCTPUELLING COOPHODE SELESOBETONHOUSE RO-LONG PASPASOTANO B BOUNDERE 2.

². Конструкции стальных вертикальных связей, вспомогательных ферм и лестниц разработаны в выпуске 3.

^{3.} COZEMЫ TOPMOSHODE BANOK CM. HA MICTE 6.

^{4.} MOCADOMINIE MADILLARIN PASPABOTATE B KOM-

^{5.} B CEYENTAX NOLEPAROBONC BALOR, OTHE-YENHOW "WIPHIN' BEACHERO NOACA KON -CTPYKTHONO VBEANYHTO LO 400MM ALA OBEC-NEYENDA KPENLENDA CHEUNALONO KPA-HOBOTO PELOCA NA NAMIKAX.

	Ословная	KONOKKA	Подкрановая повыпуску ^Т /67	BANKACEYEMME	TOPMOSKA		15/3 H 20	BEPTHEAM	JERBO RAH	AECTI		Nº AMETA
Шифр Эстакалы	KPAHKETO PSAA	CPEAMERO PSIAA	C73	HASKONETH- POBAHMASI CTANO	По	По Средпему Ряду.	TEABMASI COPEPMA	Nokoaohham Kpańnero Pala	CPEAMERO	НА ПОСАДОЧНУЮ ПЛОЩАДКУ.	HA XOAOBYIO FAAEPEIO	MAPKHPO BOYKON CXEMB
Ī-18-8.2-5 m.			126*				B1					
Ī-24-8.2-5m	ICA9I-1-1	KA3 <u>IV</u> -1-1	125*									
[-18-8.2-10M	-	K43 <u>I</u> Ĭ-1-2		140*								
<u> </u>		<i>кдо<u>и</u> 1 г</i>		140*								
<u> Г – 30 –8.2 – 10н</u>	K13I-2-2			141*								
<u>Г-18-8.2-15 м</u>	1	K43 <u>1</u> 7-2-2	<u> </u>	142*			B\$-2	Bc-1	Bc-2	ル-1	1-4	
<u> </u>				143*								
<u>Г-30-8.2 -15м</u>		,		143*		1						
<u> -18-8.2-20m</u>				443*								
<u> Г – 24 – 8.2 – 20н</u>	KA3I-3-2	₹ 19 <u>1</u> 7-3-2		144	i							15
<u> - 30-8.2 - 20н</u>				144	1							1 13
<u> </u>	KA3[[-1-1	KA97-1-1	756*		T5-1	T5-3	B\$-1					
<u> </u>			A25*	-					•			
- 18 - 9.7 - 10m		K49 <u>V</u> -1-2		140*								
<u>Т -24-9.7 -10 м</u>				141 *								
T-30-9.7 -10M	1			142 *				Bc-3	Bc-4	1-2	1-5	
<u>[–18 – 9.7 – 15 м</u> <u>[–24 –9.7 – 15 м</u>	<i>∟∟</i>	£₹3 <u>₹</u> -5-5		443 *			B¢-2		4			
<u>[-30-9.7 - 15 m</u>	†			443 *								
-18 - 9.7 - 20m	•			443 *								
-24-9.7 -20M		KJ3 <u>V</u> -3-2		144								
T -30 - 9.7 - 20M	1		-	444								
7 -2 4 1 2 .7-5н	KAƏII-1-1	K49½-1-1	125*				Bop-1					
I - 24 - 12.7 - 10н		,0405		140*								
-30-12.7-10M				441 *	<i>T5</i> -2					, _		1
-24-12.7-15m	кдэ <u>ії</u> -1-1	K19jī-1-1		143*	72 2		B\$-2	₿c-5	Bc-5	λ-3	1-6	16
-30 -12.7 -15m		~дэц-1-1	_	443*			D40-5					
-24-12.7 _ 20н				144					l			
Ī -30 -12.7 - 20м		K49M-2-1		444								

Примечания:

KNERTCKNÝ - NPOMETPOÚNPOEKT - KNER 1. Конструкции сборных фелезобетонных колони разработаны в выпуске 2.

2. KONCTPYCHIN CTANDIDO BEPTHEANDIDO CBA-SEÑ, BCHOMCTATENDIDO DEPM N AECTHUL PASPABO-TANDI B BDITYCKE 3.

3. COMEMBI TOPMOSHOW BANDE CM. HA LICTE 6. 4 NOCALOUNDIE MOMALEN PASPABOTATE BEONE-

EPETHOM PROCETE B COOTBETCTBUNC PE-WENTRMN, PHBELEPHOMM B BUTTCES. 5.B CEYENTRE POLEPHOBOR BANDE, OTME-YENTODE, * WITHING BEPENETO PORCA KON-CTPYCTURNO YBEANYUTE LO LOOMM LAR OBECTEYENIR REPETAETUR CTELUANOROTO EPANOBOTO PENOCA MA TAAKKAS.

TK	TABANYA MAPOR SAEMENTOB ABYXCHPO-	серня NC-01-08/6	7
1968r.	TABANUA MAPOR ƏAEMENTOB ABYXIPO- AETHOIX RPAHOSOIX ƏCTARAA TOA MOCTO- BOIE ƏAERTPHYECRME MARMITHOIE RPAHOI IPYSOTOABEMHOCTOO 5,10 : 15/3 N 20/5 T.	BUTTYCH ATC	Ħ

W MODEP	OCHOBHAS	KONOHHA	Подкраповая Повыпуску I/67	BANKA (CEYEMME TÇEPHH KƏ-01-57,	TOPMOSK AS	BAAKA.	BCHOMOTA . TEAGHAR DEP	BEPTHRANG	4	LECT		Nº AHCTI MAPICHPO
SCTARA461	KPAĤHEFO P914	CPEAHETO PAAA	C7:-3	MASKOAETH- POBAHHAS CTAA6.	ПО КРАЙПЕМУ УДЕЧ	По CPEДПЕМУ PЯДУ.	ma no kpań - nemy pały.	По колонкам Крайнего Ряда .	No KONOMMAM CPEAMERO PAAA	HA TOCALOYHVIO TILOULALKY	HA XOAOBYIO TANEPEIO	
∏ - 18 - 8.2-5r			124*	_								
<u> </u>	KA9I-1-1	KAƏ <u>I</u> <u>V</u> -1-1	125*]		B1					
Ĭ -30-8.2-5r			A26*	_				1				1
<u> </u>				140*	1							
I -24-8.2-10r	K19I-2-2	₹.2-2 1		A 41 *	1		B2					
Ī -30-8.2-10r				442 *	1		Dep-2					
Ĩ - 18 - 8.2 -15 r				145	1]		
<u> </u> - 24 -8.2 -15r	<i>K4∍I-3-</i> 3	だんシ 変-3-3		A 53	1			Bc-1	Bc-2	1-1	1-4	
<u>I</u> - 30 -8.2-1 5 r				4 53	1							
<u> </u>			_	Д 53	1		B\$-3					
<u> [</u>] - 24 - 8.2 - 20r	KA9T-5-3	E-5-3		455	1		l					
<u> </u>				456	1		İ	ļ				/_
Ī - 18 - 9.7 - 5r			124 *		T5-1	T5-3						15
<u> </u>	KAĐĪ:-1-1	K49 <u>V</u> -1-1	125 *]		B\$-1					
[- 30-9.7-5r			126*]	1						1
I = 18 - 9.7 - 10r				140*	1							
<u> </u>	K.4∋[[-2-2	<i>Ƙ</i> ДЭ <u>ү</u> -2-2		141 *]		B\$-2					
₫ - 30 - 9.7 -10r	7			142*	1		2	Bc-3	Bc-1	1-2	1-5	
<u> </u>				145]		1	De-3	De-4	1-2	χ	Ì
i - 24-9.7-15r	¯ <i>κ₄э፱-3</i> -3.	KAƏÏ-3-3		453	1							
Ū - 30-9.7-15r	7	1		A53]							
<u>1</u> - 18 - 9.7 - 20r		K49¥-4-3		153]		B3					
<u> </u>	F.4-3 [-4-3	KA97-5-3		155								
1-30-9.7-2or		(A) 1 0 'S		156			1					
Ī - 24-12.7-5r			125 *									
<u> </u>	_ - κ <u>λ</u> ϶ <u>Ψ</u> -1-1	KAƏ11-1-1	¥26*	_]		B\$-1					1
<u> </u> - 24-12.7-10r	□ ►五夕町-1-1	Maii-1-1		441*				1				
<u> - 30-12.7-10r</u>				142*	T5-2		B\$-2	Bc-5	Bc-5	1-3	<i>∖</i> -6	16
<u> </u> - 2 4 - 12.7-15r	F12#-2-2	F10F 0 =		4 53						/ /	^ _	.
Ī - 30-12.7-15r.	- K¥∋ <u>m</u> -5-5	K#3/11-5-5		∡ 53			B-3		1			
Ī - 24-12.7-20r				155	1	1	B4-3					
I - 30-12.7-20r	- / / / / / / / / / /	K4911-4-2		456	7	1	1		l			1

PHMEYAHHA:

1 KONCTPYCHIN CEOPHER SELESOBETONHERS ECONH PASPABOTANEI B BEITYCKE 2.

2. KONCTPUCLING CTANDRICE BEPTHEANDRICE CBSSEM, BCHOMOPATENDRICE PEPM IN AECTHMU PASPAEOTANDI B BOINVERE 3.
3. CXEMBI TOPMOSHDICE BANDE CM. MA MICTE 6.

КРЕТНОМ ПРОЕСТЕ В СООТВЕТСТВИИ С РЕШЕ — НИЯМИ, ПРИВЕ ДЕПНЫМИ В ВЫПУСКЕ З. 5.В. СЕЧЕНИЯЖ ПОЛКРАНОВЫЖ БАЛОК,ОТМЕЧЕННЫЖ * ШИРИНУ ВЕРЖЕГО ПОЯСА КОНСТРУКТИВНО УВЕЛИЧИТЬ ДО 400МИ ДЛЯ ОБЕСПЕЧЕНИЯ КРЕПЛЕНИЯ СПЕЩИЛЬНОГО КРАНОВОГО РЕЛЬСА НА ПЛАНКАЖ.

4. MOCALOYMOR MOMALICH PASPABOTATE B KOM-

TK TABANUA MAPOK SAEMENTOB ABYOGNOMETHOW CEPMS
KRAMOBOW SCTAKAA NOA MOCTOSOE SAEKKC-01-08/67
IPHYECKHE FPEMBERNOE KRAMO FPYSOMOLZEMHOCTON 5,10,15 N 207.

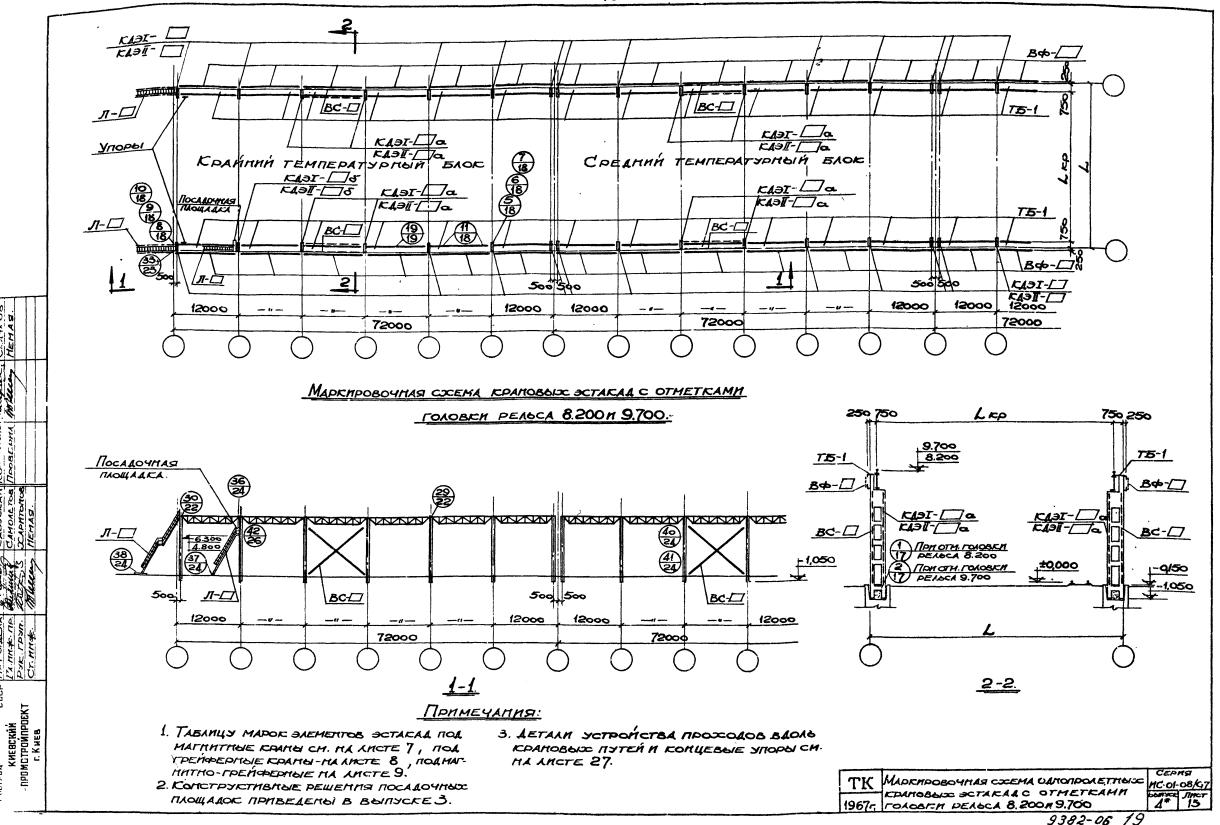
4 11

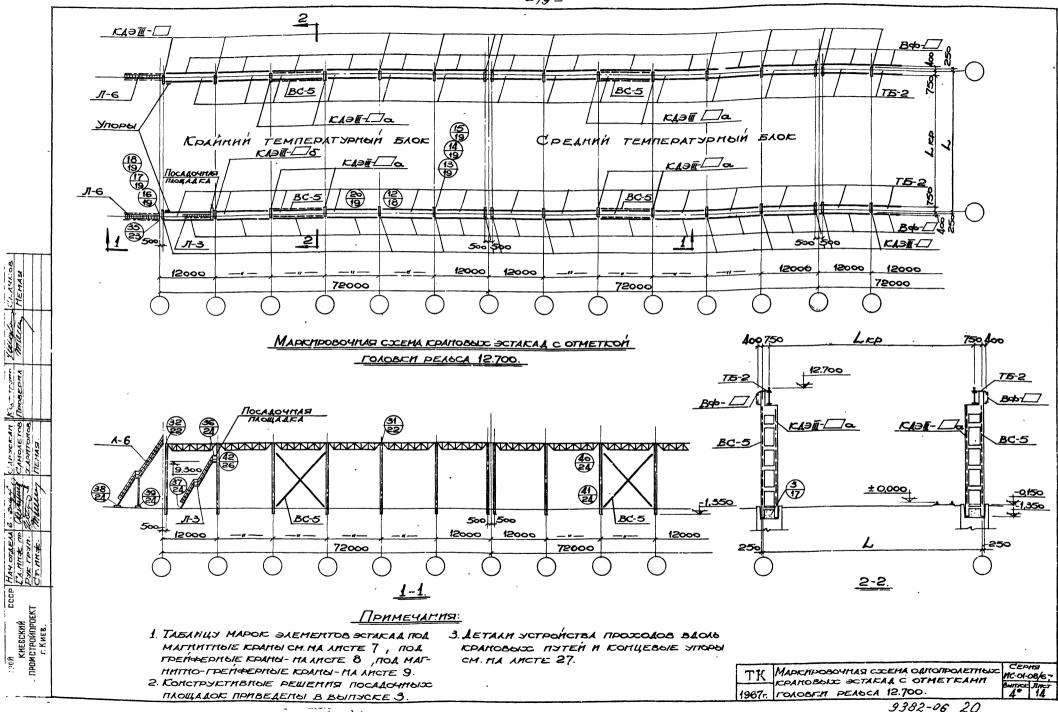
			_	
3 ABSEPT	HEMAS.			
100	Frank 16			
Koncress	TROSEPITA			
6 GABLY CABUCAN KONCTONE	CAMORETOB	CAPMTS/106	BATYPITEB	
 6 au By	2000/3	Rate 3	Spark	
 HAYOTA	TA.MR#-17A	DYR rPYR.	Cr. mrse.	
בבמם	nearkui,	MEDILANIN	- I-CMIII-UCA	F. NMEG.

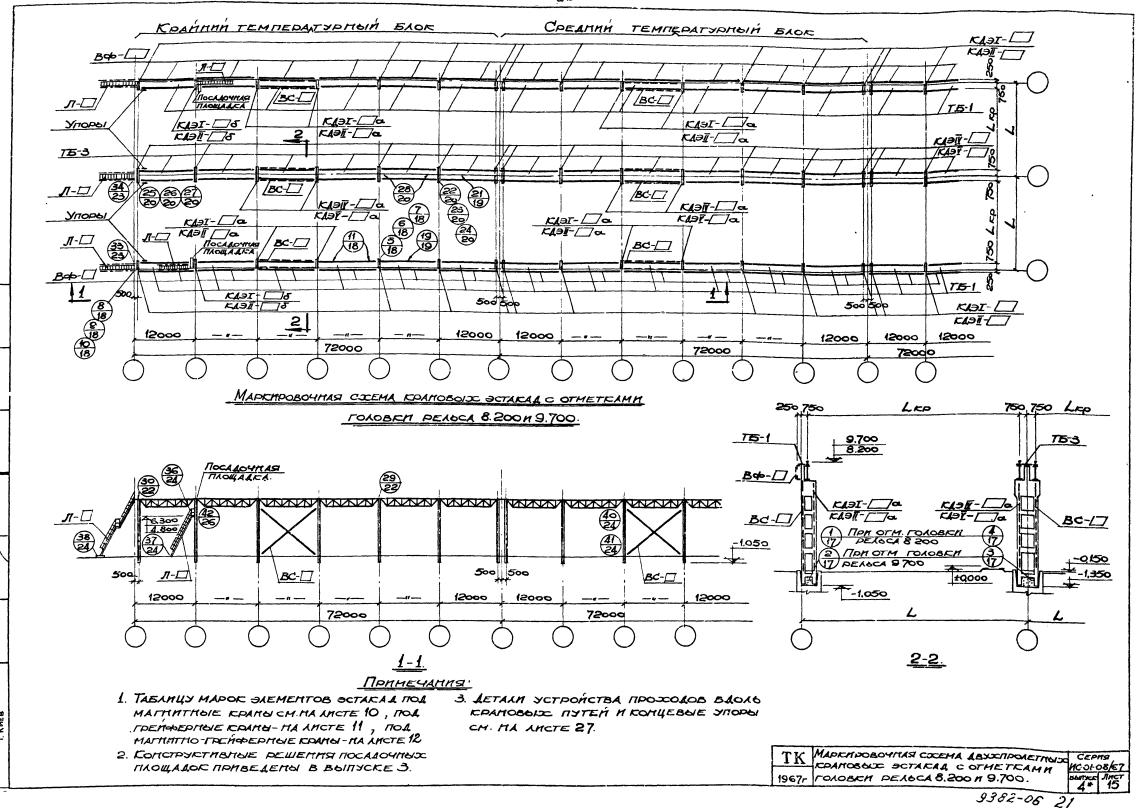
,,,	OCHOBHAS	KOAOHHA	MOBULY THE	БАЛКА (CEYEMME 7СЕМИКЭ-01-57	TOPMOSH	ABEMMOO BAR BANKA	Всломога-	BEPTHEARE	MASI CBASE	LAECTE		Nº ANCTA
Шифр Эстакалы	CPAHHETO PAAA	CPEAMERS PAAA		MAKOAETH- POBAMASI CTAA6.	Πο ΓΡΑΠΝΕΜΎ P A AY	No CPEAHEMY PAAY.	ТЕЛЬПАЯ ФЕРМА ПО КНАЙМЕНУ РЯДУ.	ПО КОЛОНГИН КРАЙНЕГО РЯДА.	NO KONOMHAM CPEAKERO PAAA	НА ПОСАДОЧ- НУЮ ПЛО - ЩАДКУ.	HA JOOHOBYRO FANEPERO	МАРКЛРО ВОЧКОЙ СЖЕМЫ
- 18 -8.2 -5HT	71-T1-1	~10W 1 1	A25*	·								
-24-8.2-5HF	KAƏI-1-1		126*				B\$-1					
- 30 -8.2 -5нг	2-1-Iela	K19[-1-2	127									
- 18 -8.2 -10нг		ĽДЭ <u>І</u> Т-2-2		.444								
-24-8.2-10HF				444								
-30-8.2-10Hr	KA9I-2-2	raji-1-1 raji-1-1		145				Bc-1	Bc-2	1 1-1	1-4	
- 18 - 8.2 - 15mr				442*			₿\$-2		,			
-24-8.2-15mr		r1510-2-3		A43*			D4.2					
- 30-8.2-15нг		r#3ii.2.5		144								
- 18 - 8.2 - 20MF	rləI-1-1 rləI-1-1		144									
- 24 - 8.2 - 20Mr	CA31-3-2			144								
- 30-8.2 - 20MT	-1-1-1ela 1-1-1ela -1-1-1ela 2-1-1ela		145	75-1					<u> </u>		15	
-18-9.7-5mr	EAST-1-1	C/97-1-1	125*		1 7 5 7		1					
-24-9.7-5Hr			426*		Į		B\$-1					
- 30-9.7 -5нг		127		1	T5-3		1			}		
-18-9.7-10мг			144				}					
-24-9.7 -10mr			444	4	ļ			1				
- 30-9.7-10HF			_	445	1			Bc-3	Bc-4	1-2	1.5	
- 18 - 9.7 - 15mr			142*			B\$-2		1				
- 24 - 9.7 -15mr			443*	1	1	DTE						
<u>- 30 - 9.7 - 15нг</u>			444	4		1					1	
- 18 - 9.7 - 20MF			144	1						}		
- 24 -9.7 - 20нг			144	1	Ì							
- 30-9.7-20нг			4.45		4		ļ		ļ			
- 24-12.7-5нг.		156*		1		B 90-1	1					
- 30-12.7-5HF			 	1		27.	4					
- 24-12.7-10mr - 30-12.7-10mr	₹49<u>₩</u>-1-1	F107-2 1		144	4							
- 24-12.7-15Hr		K J ∋ <u>I</u> I-2-1		445	75-2			Bc-5	Bc-5	1-3	1-6	16
		KA911-1-1		143*	1		B\$-2				Ί .	'
<u>- 30-12.7-15мг</u> - 24-12.7-20мг			 	144	4							
	KAƏ∏-2-1	1-2-1 ELA	1 -			'			1		1	1

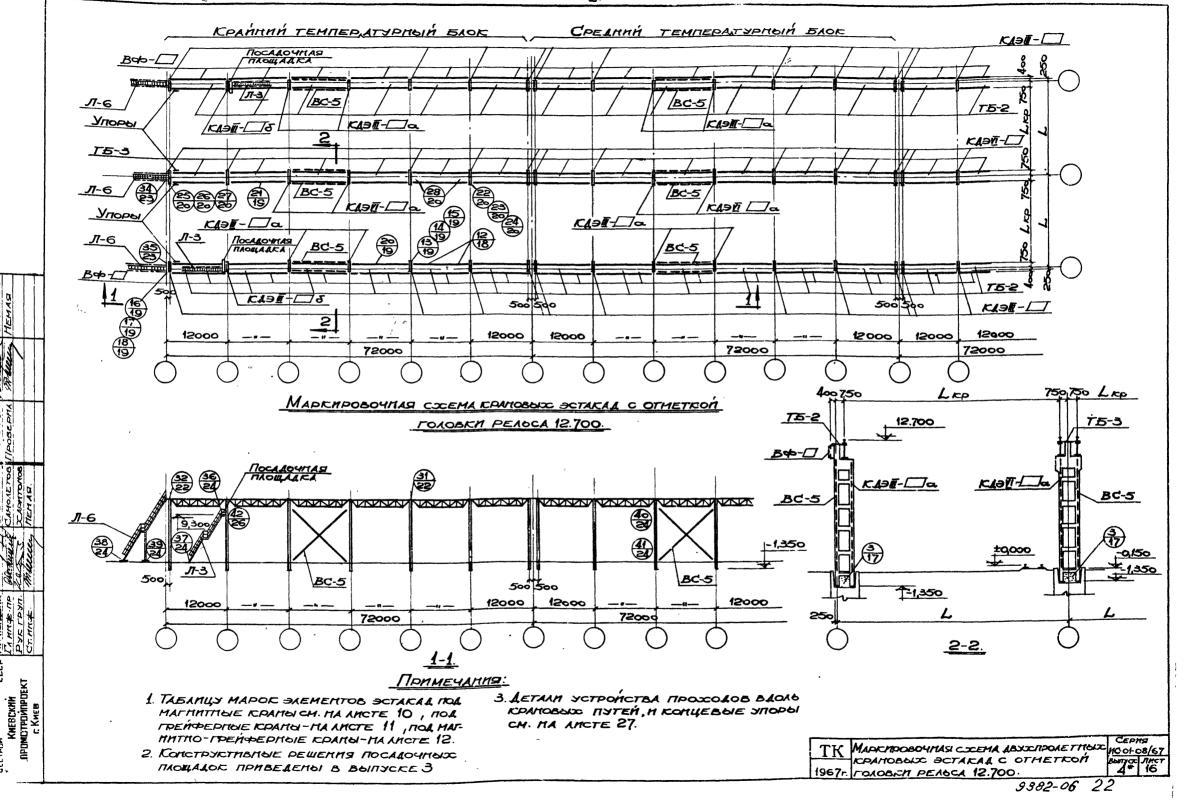
ПРИМЕЧАНИЯ:

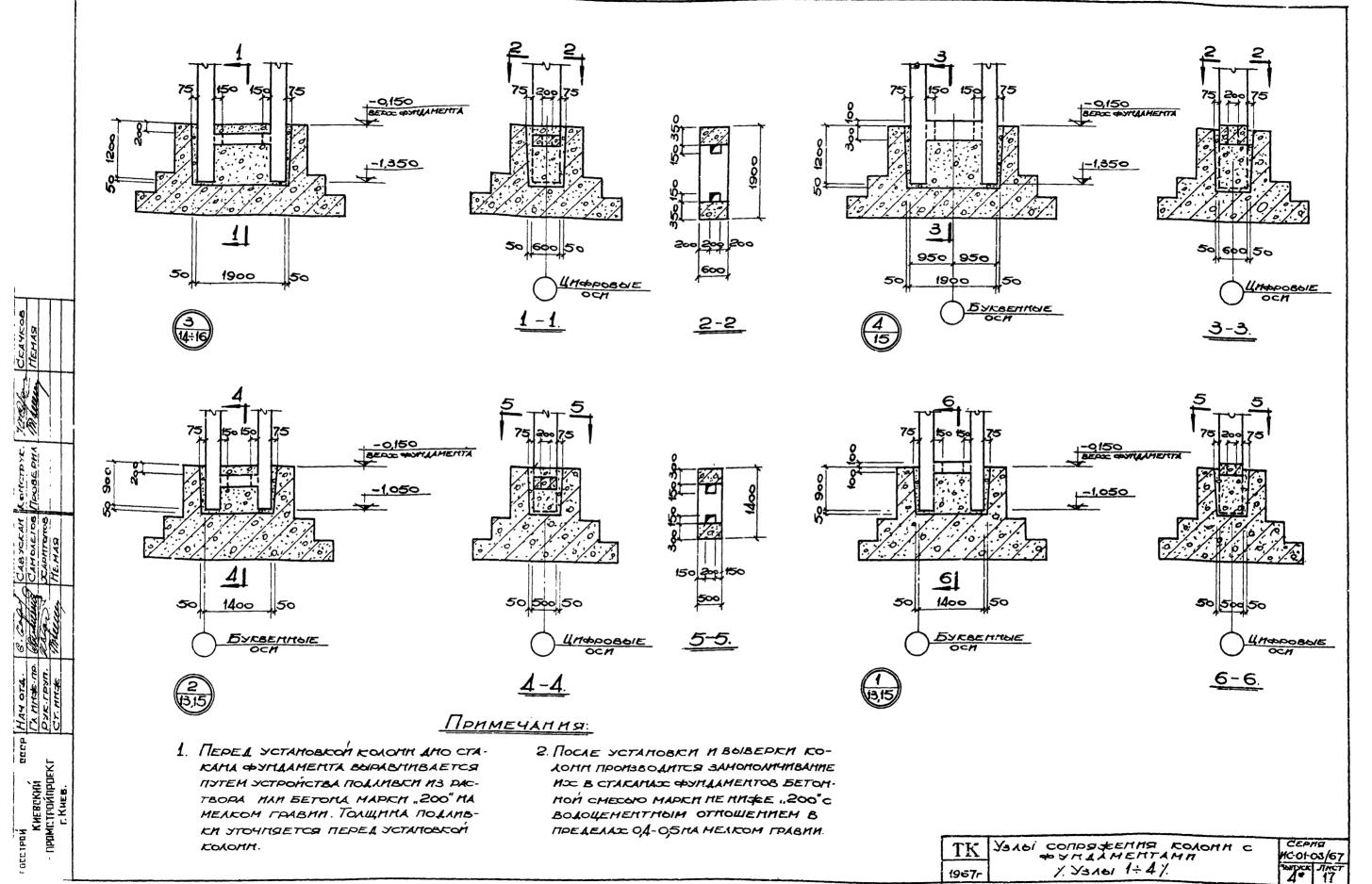
1. Конструкции сборных фелезоветонных колони ' разработаны в выпуске 2.

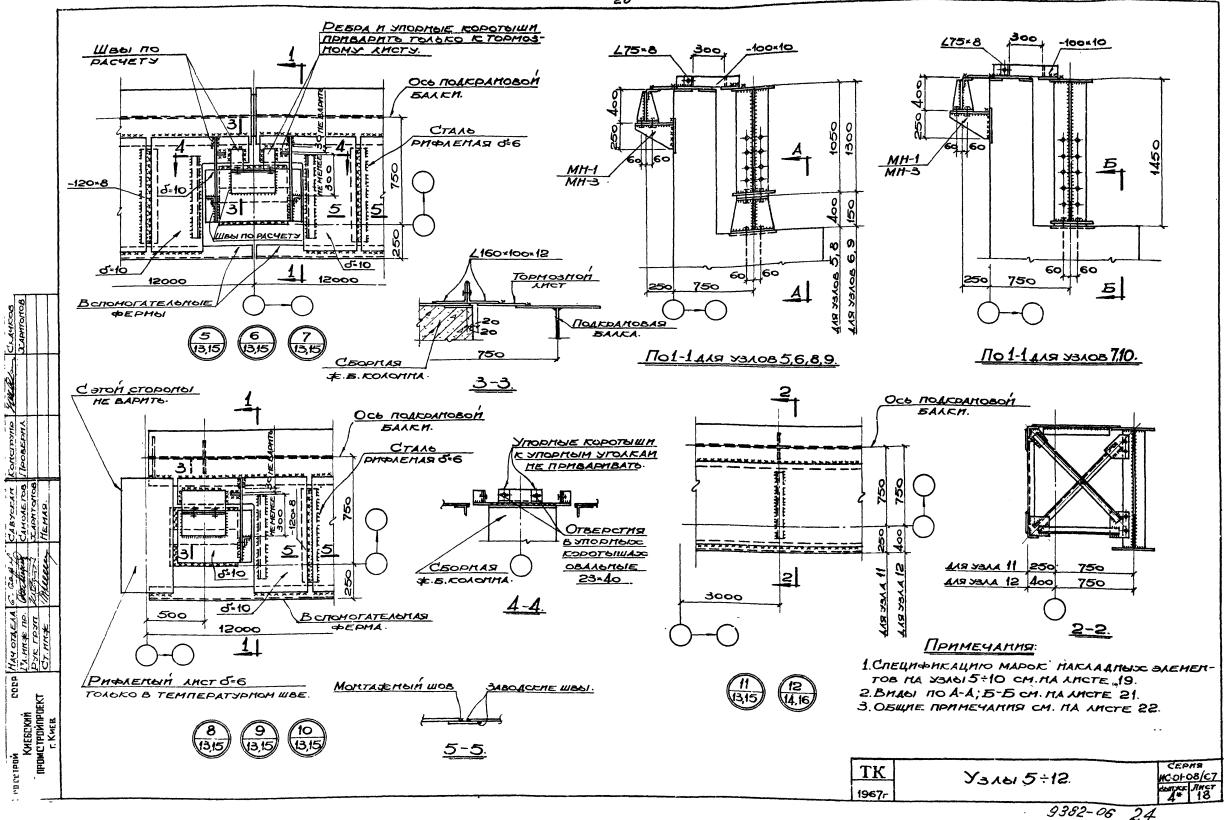

2. KONCTPYRLINN CTANDHOUX BEPTHEANDHOUX CBRSEN, BCNOMO-FATEADHOUX CHEPH IN ACCTHING PASPASOTATION B BOUNDERS 3. 3. CIXEMON TOPMOSHOUX BANOK CM, MA ANCTE 6.

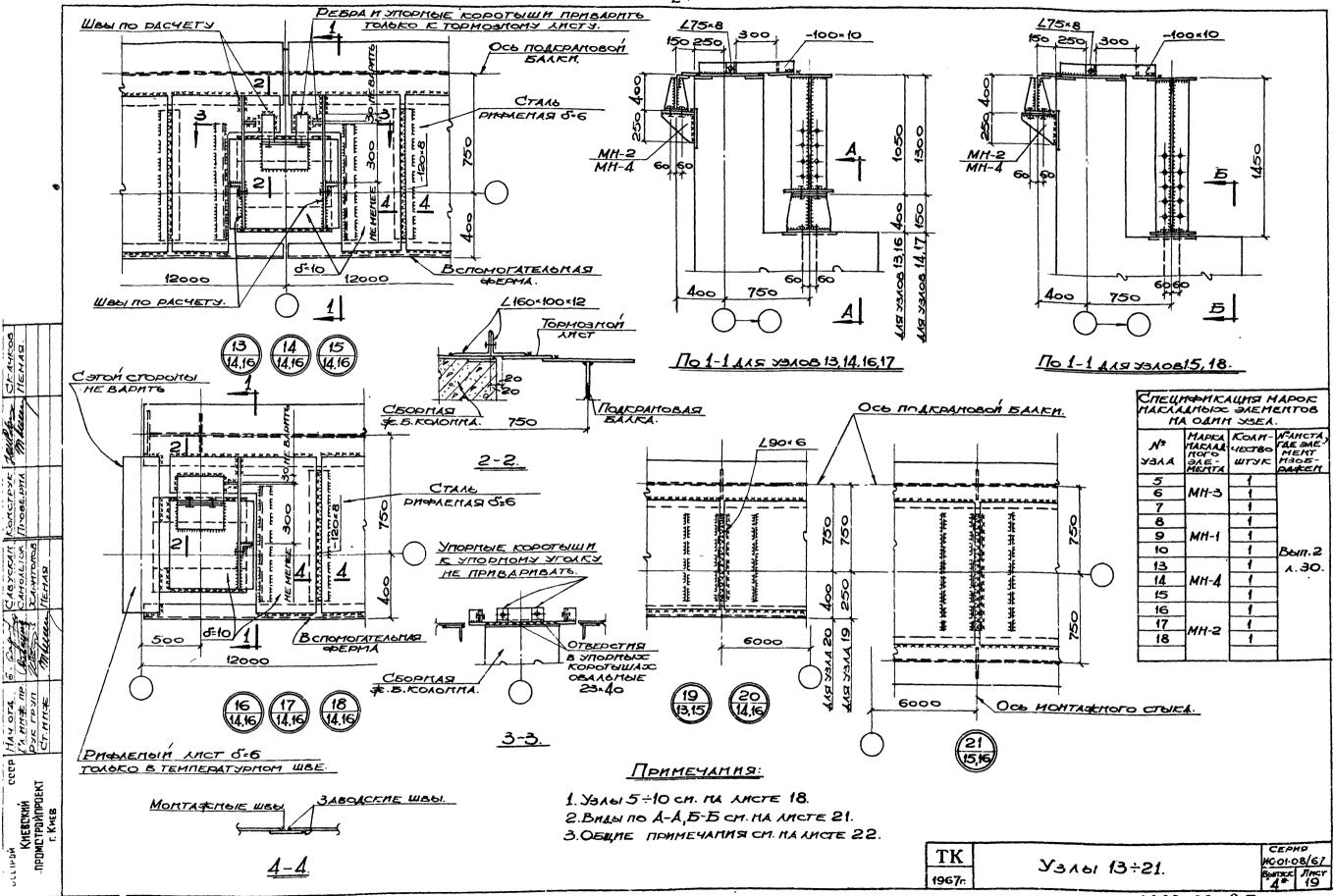

4. MOCALOURNE MADMALEN PASPABOTATE BEOKEPET-

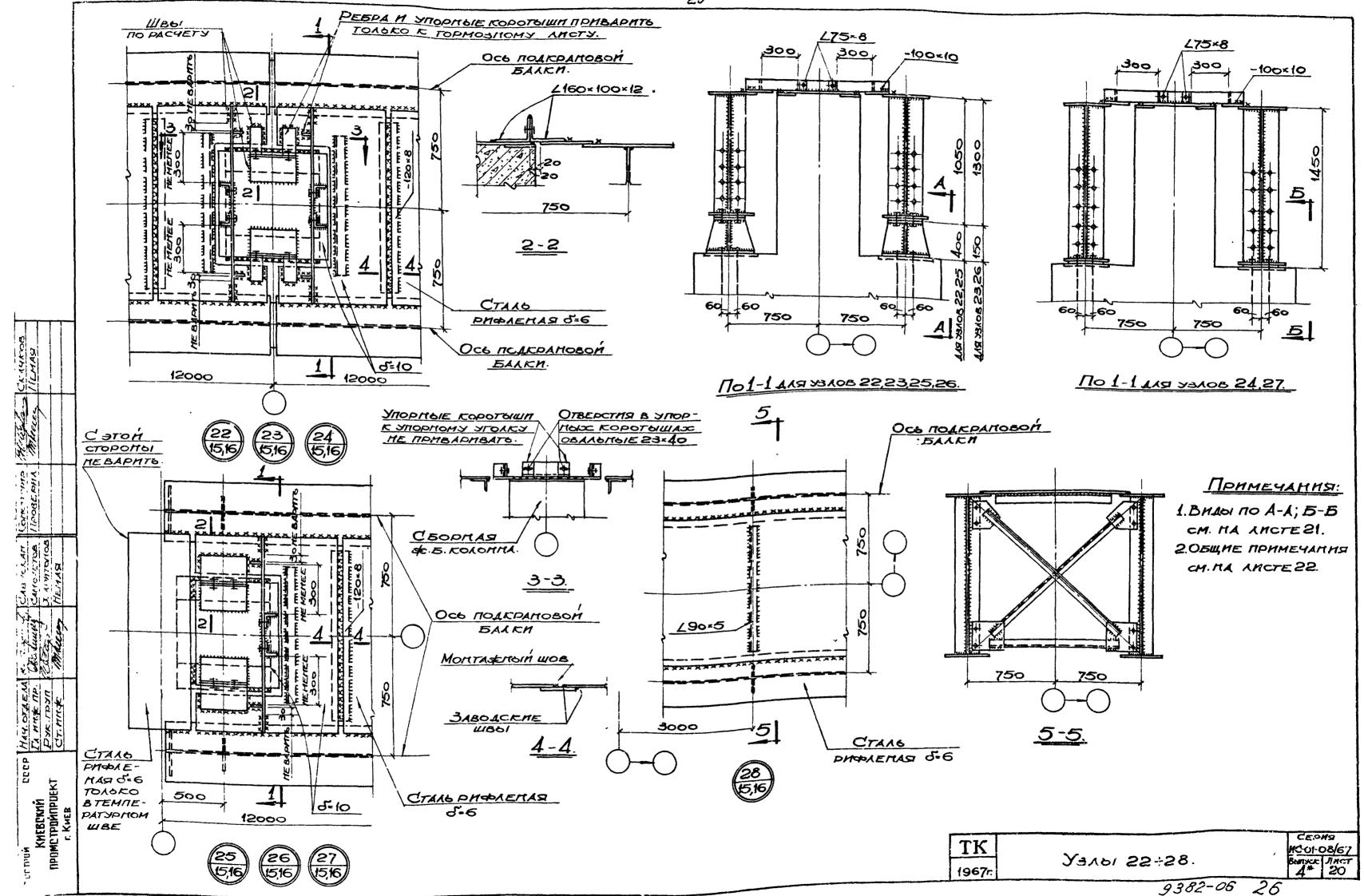

HOM PROEKTE B COOTBETCTBHH C PEWERHAMM, PRIBE LEHROMM B BUNDERE 3.

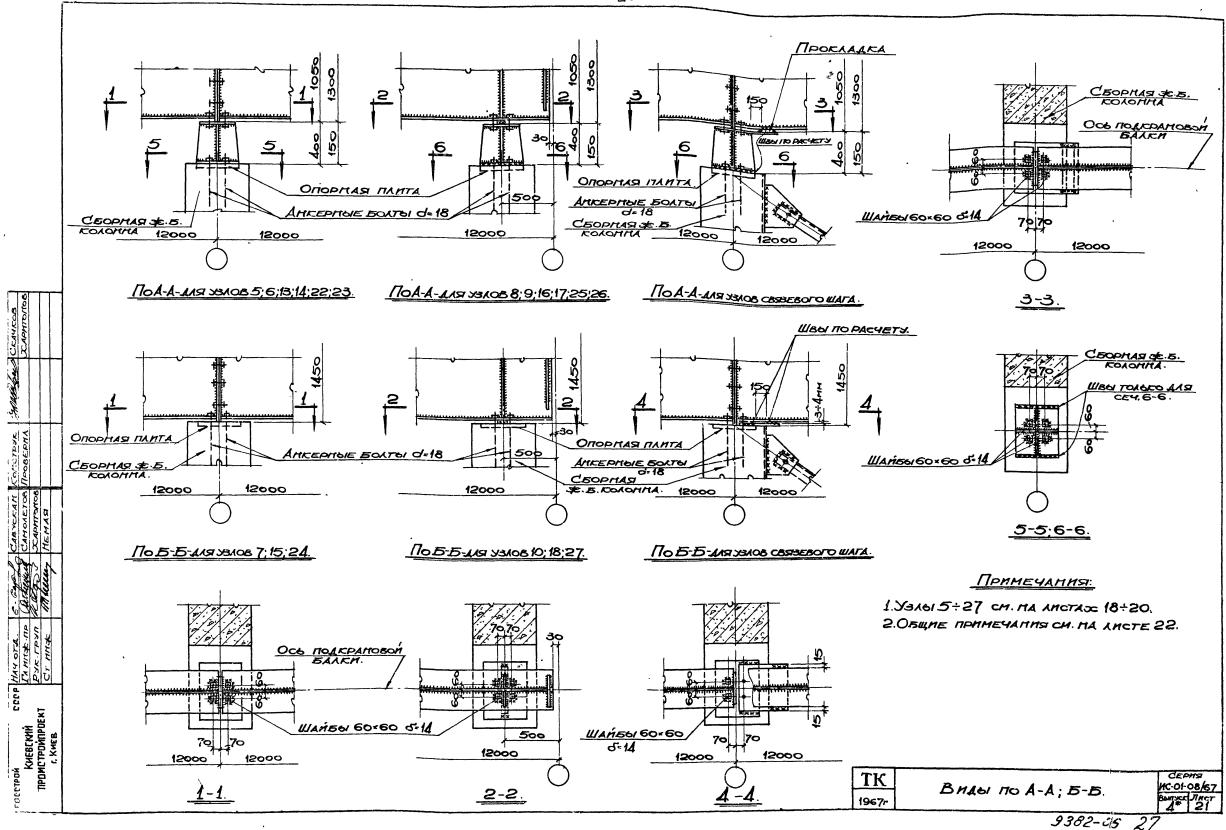

3. B CEYEMHOR MOREPANOBOR BANOK, OTHE — YEMMOR, WIPHIN BEPCHETO MORCA KONCTPORTIBINO YBEAMYNTO LO LOOMH AND OBECHEVENIN KPEMAEHING CHE-UMANOMORO KPANOBORD PENOCA HA MAHKAC.

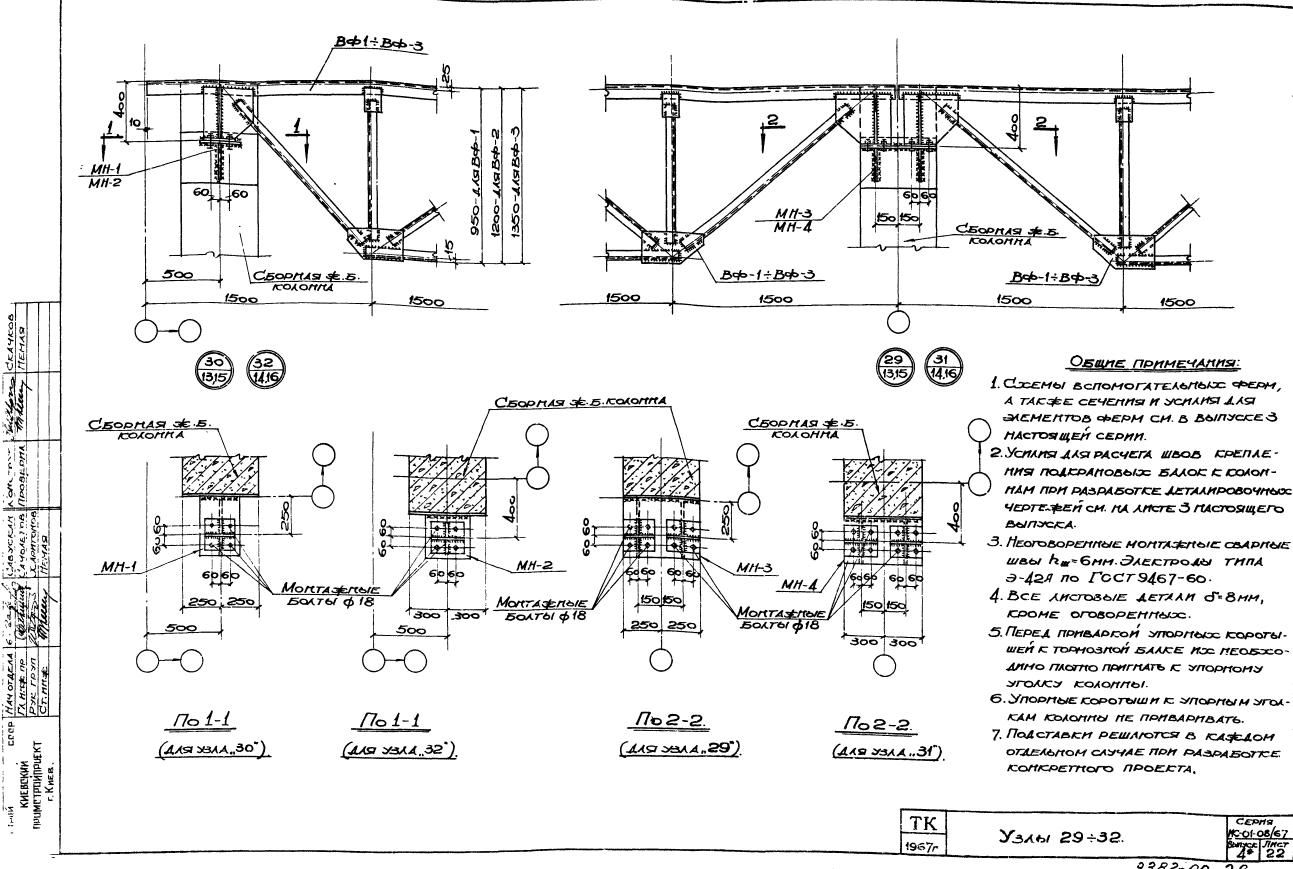

TK	TABANUA MAPOR BAEMENTOS ABYCTIPOAET-	CEPI MC-Ol-	-
1968	MBIX ICPANOBBIX PCTAKA I NOL MOCTOBBIE BAEKTPNYECKHE MAFMNTNO-PPENDEPNBIE KPANBI PPYSONOLBEMNOCTBIO 5/5; 10/10; 15/3 H 20/5 T.	4	1

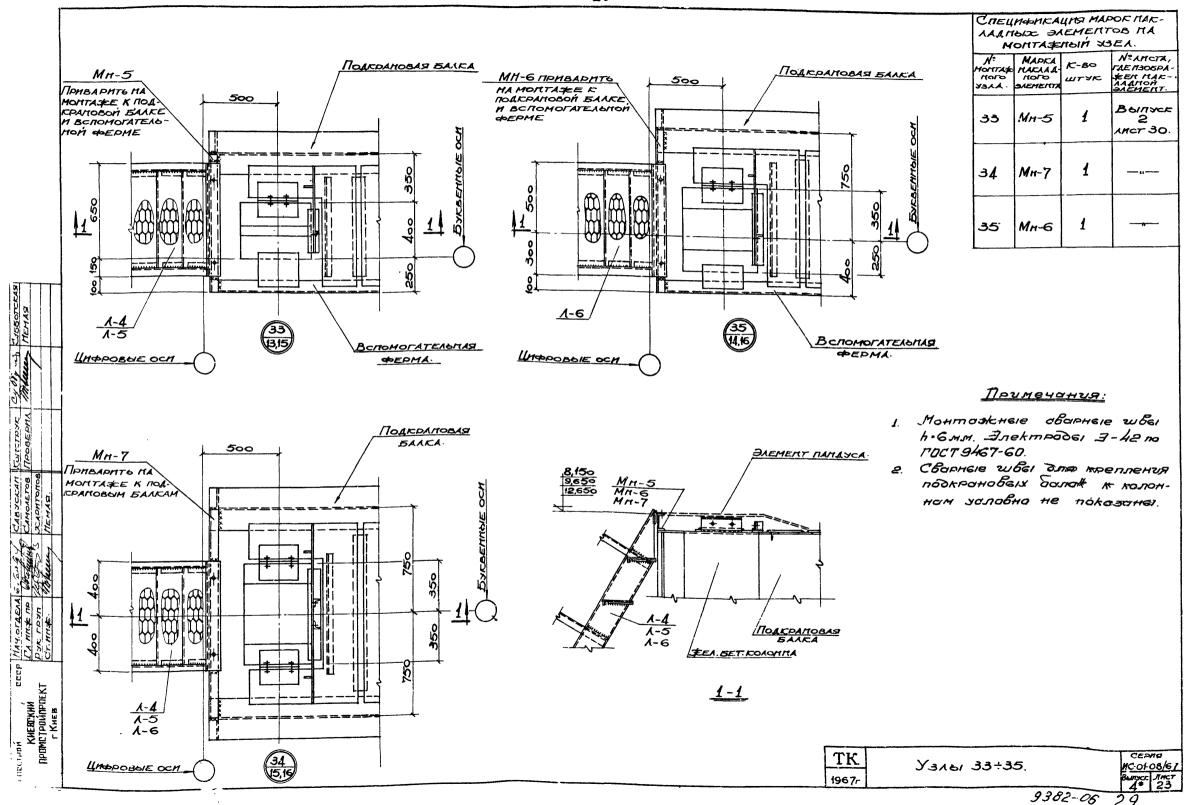


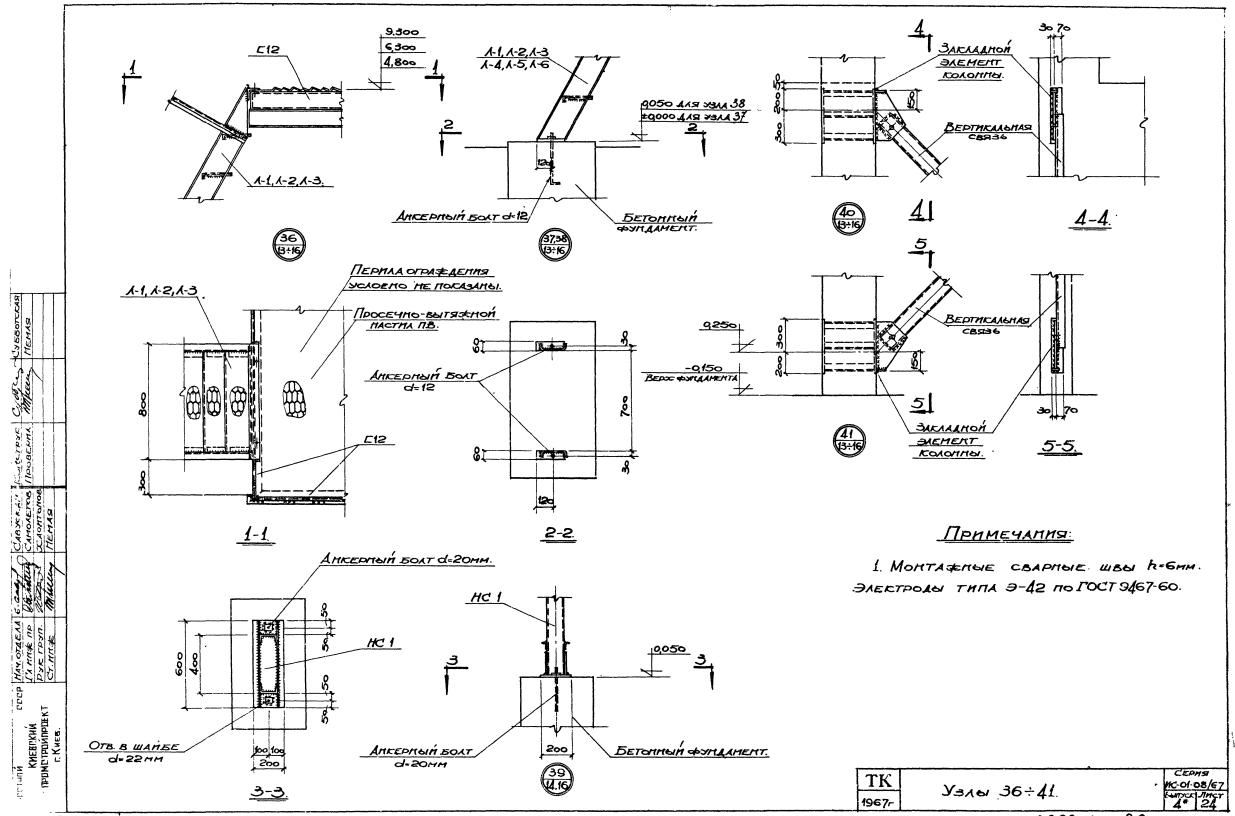


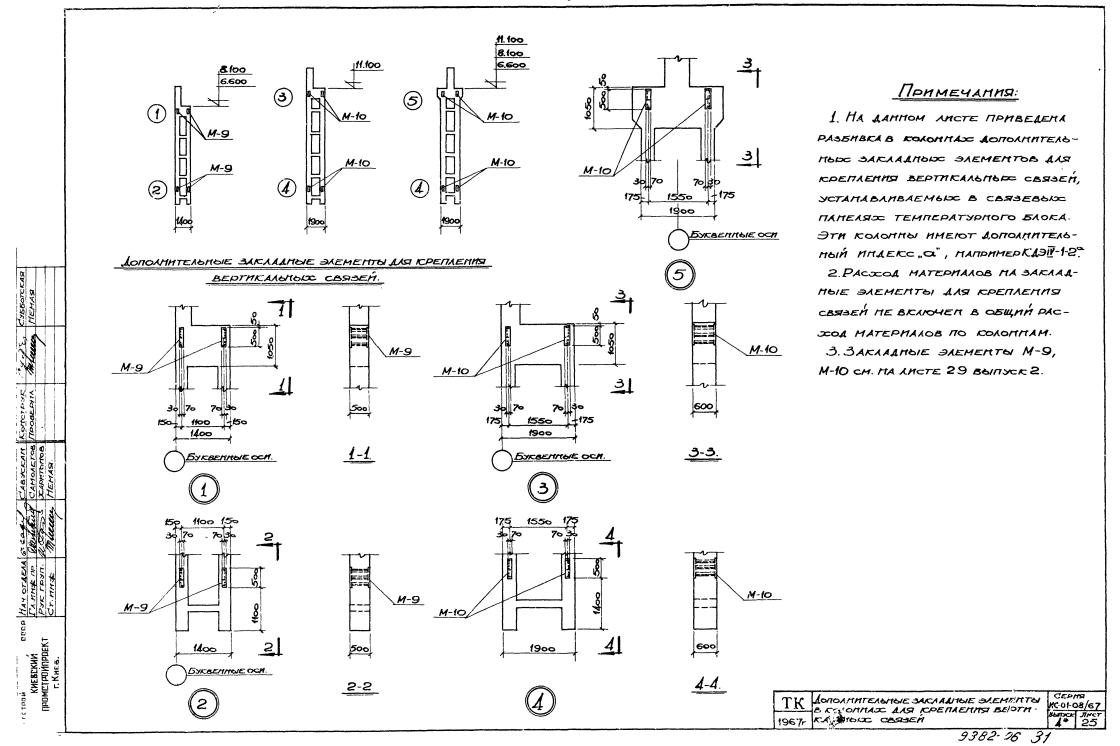


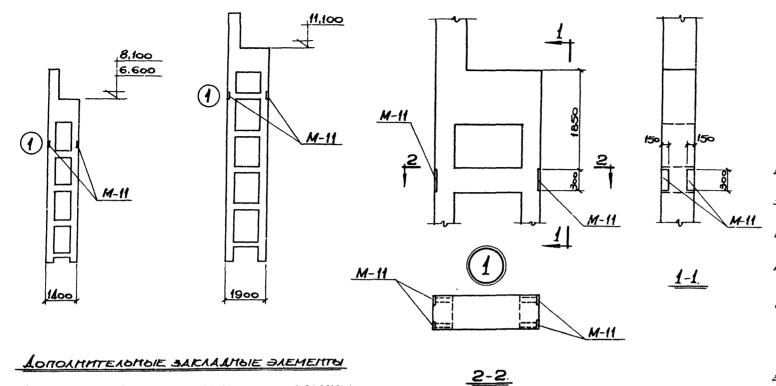



9382-06 23

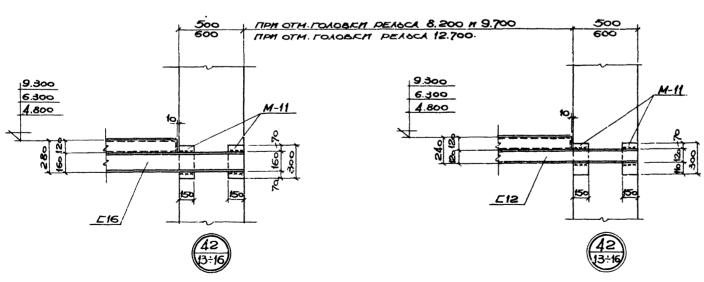








9382-06


B KOLOHHAX ALA KPENLEHHA NOCALOYNOX

При решении посадочной площадки

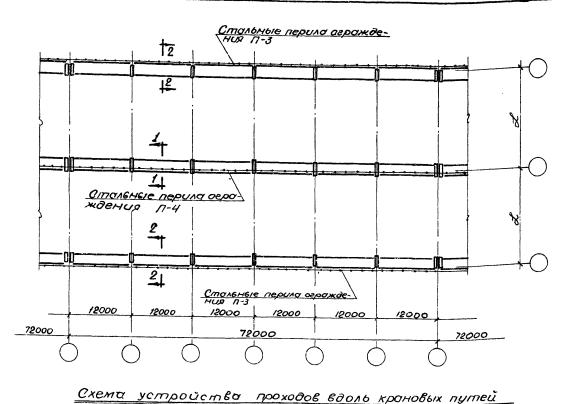
B LBYX YPOBHAX

MACK.

KNEBCKNÝ IPOMETPOŇIPOEKT F. Kner

ПРИМЕЧАНИЯ:

1. HA JAHHOM ANCTE PARBELENA PAS-ENBRA B ROADHHAX ADHOMMITENSHOW BARLAAMBIE SAEMENTOS ANS REPERAE-HMA LOCATORIDE LYOMY TOWN YOUR STA KO-AOHNO HHEIOT AONONNITEAGNOIN HHAEKO "O" HAMPHMED KASI-1-15


2. PACOCOA MATERNALOS NA SAKNALINGIE SWHOOLYOU BHHAVIAGA BYT 1914AMAVE MACHALOR HE BRAIDHEN B OBJUMN PACOCOL MATERNALOS NO KOLOHNAM.

3. BAKHARMON ELEMENT M-11 CM. HA ANCTE 29 BOINSON 2.

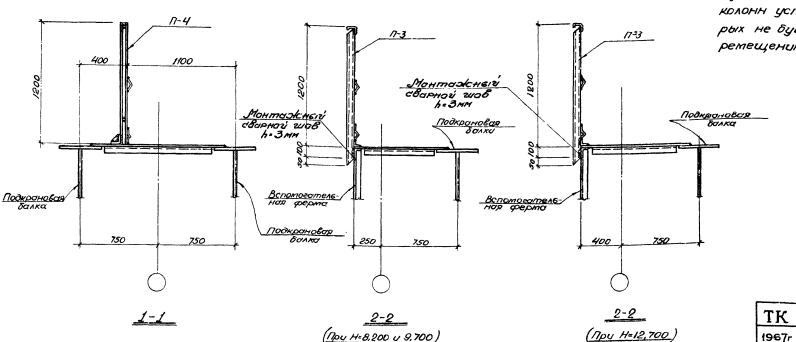
4. MONTAGENCIE CBAPHOIE WBOI hu=6MM. ЭЛЕКТРОДЫ ТИПА Э-42 ПО [OCT 9467-60.

При решении посадочной глощалки B OAHOM YPOBHE.

ADDONMITEADADE SARAADADE SAEMEN- CEPTS
TO B KONOMMAS AND KPETAEMEN TO MC 01-08/67 CALOUNDIX MADILALOR.

dana

Пипы и сечения концевых упоров Грузоподъемность крана в т. Mun Kpaina 15 20 πυη ψηορα 1 Магнитный I45 Сечение упора I 45 I 55 I53 Mun ynopa Ũ Грейферный Сварной двутавр Сварнай двуглавр Сечение упора I95 T 55 Μυη μπορα Магнитно-I I I Ι грейферный I 45 Сечение ипора **I**55 I55 I 55


Примечания:

- 1. Чертежи концевых упоров типов I и I приведены в серии K3-01-57 выпуск $I/_{67}$.
- 2. Секции перил ограждения П-3 и П-4 разработаны на листаж 10,11 выпуска 3.
- 3. Монтажные сварные швы hu= 6 mm, краме асабо оговаренных. Электрады типа Э-42 по 1001.9467-60.
- 4. При разработке рабачих чертежей для обеспечения безопасности прохада вдоль крановых путей следует предусмотреть в пределах колонн устрайство пандусав, крепление котарых не будет препятствовать свободному перемещению подкрановых балок.

Детали устройства проходов

вдоль крановых путей.

KOHUEBBIE UNOPEI.

9382-06 33

CEPHS

MC-01-08/67 Benixed Jinet 4* 27

	- [1 - 1										 	****								OTHETEA					12.7	 %o		
Š	ALTA SCTAKA H	OTMETICA	4 /2	р л о	DBEH	PE	へらて	<u> 8</u> .	200		(OTHETEA							B ADOLONGAIOM	OTTO TREA	Tox	T					В продо И ДЛРАВ	AEHHH
13	¥ V		7 2	B	ПОПЕРЕ	MON	M MAI	TPABA	EMHH	BRIPGAON-HOM HATPASAETIMH			u Z	Впоп					MATIPABAEMIN	111	THE TE		EPEYMO	-		T	TEMNE-	
18	ETS	Шнфр	3	Πo	CTO. KOM	MBAS	MATE	YSKA	ВЕТРО	TEMMENA TOPMO-	15	HOPP	10 E	FICCIO	-				TEMITE TOOMS.	W/AdoD		Flocts				BETPO	DATYP.	atenne
5	JAE /		AOA	اسحاج	Ar- A		- 1	OPMO-	BASI	TYPHOE FETHE	iž		7ko AE	SHHAS	A			BAST 1:AT-	COSACH M	∋CTARAA61	A B	HAT	1.4		TOPMO-	HAT-	BOSAEÁ-	
[by3	100	-DCTAKA161	U	1		×	ילח לי	kerne	KAF-	BOSGEN N CTRKE BETER	3CT/	4.C.4.461		PXSKA					CTEME BETER	•	+	PUSKA	Marx	win	#EMME	DYSKA	CIBRE	_
		T 10 00 -	M	-2	89 1,6	5 9	57	t6,23	±9,9	±9,45 -	H	3-9.7-5н	M	-289	1,65	0,57	±Z37	±11,9	±632 -	I-18-12.7-5H	M	 -						_
l	18	I-18-8.2-5m	N	17.	37 329		1.41			- ±1,44	T-45	3-9.7-5M	N	18,97	32,97	11,41	<u> </u>		±1,88	<u>Ī</u> -18-12.7-5м	NQ							
		I-18-8.2-5M	Q			. •		t0,76	±1,33	±1,40 ±1,35	11 10		Q	<u> </u>	<u> </u>		±076	±1,3€	±977 ±1,41	,	 	1-1	181	072	+880	±18,6	±6,75	
l		I-21-8.2-5m	M		89 1.8			5,75	±11,5		I-21	1-9.7-5м	M	-2,89	1,81	0.72	16,60	113,6	±6,32 - - ±2,15	I-24-12.7-5m	M		36,21		-0,03			+3,44
5	24	<u>Г</u> -24-8.2-5м	N	17	37 36,	21 14	1,31	_		- ±1,66	π	1-9.7-5H	N	18,97	36,21	14,31	+070	+156	±0,77 ±1,61	<u>II</u> -24-12,7-5M	Q	-	50,21	-	±070	±1,62		
İ		<u>II</u> -24-0.2-5M	Q	1	- -	- -		1970	±1,52	±1,40 ±1,55			Q	 -	 -		10,70	-1,36			M							
ļ		I-30-8.2-5m	M	 -		-	=-		. —		<i>I</i> -30	0-9.7- <i>5</i> м	M	┼=-	├		 	 		I-30-12.7-5H	N	_		_				
	30	Ĩ-30-8.2-5u	N N	+-	= =	-+-					<i>II-</i> 30	D-9.7-5M	Ø	+=	 _		-	1		Ī-30-12.7-5 <i>H</i>	Q			_				
 	-		Q	+			45		+126	±9,45 —	 		M	-286	2,19	0,45	±11,35	北	±6,32 -	T 49 4074	M							
	18	I-18-8.2-10M			86 2,19 3,04 43,			29,60	-16,0	_ ±1,95	1	3-9.7-10m	N		43.9	8.9	-		_ ± ද 39	I-18-12.7-10M	N							
	"	Ĩ-18-8,2-10m	Q	_	,04 43,			±117	±167	±1,40 ±1,73	<u> </u>	8-9.7-10M	Q	_			±1,17	±1,70	±977 ±1,79	<u>I</u> -18-12,7-10m	Q						1075	
			M		,86 2,3	50					ll .		M	-2,86	2,35	058	±10,96	s :15,3	±632 <u> </u>	I-24-12.7-10m	M	-3,74	2,35	938	±1435	±295	76,/3	±409
100	24	I-24-8.2-10m	N	18	04 46,	9 1	1.6			- FS0S	ll	4-9.7-10m	100	19,64	46,9	11,6	<u> </u>	<u> </u>	- ±2,60	I-24-12.7-10M	N	29,74	46,9	11,6		±1,78		
.		Ĩ-24-8.2-10M	Q	1	_ _	.	_ [t1,13	±1,69	±1,40 ±1,89	1-2	4-9.7-10м		<u> </u>	<u> </u>				±077 ±1,95	•	M	-274	274	088	4/35	±21,6	±6,75	_
		T-20-2040	M	-2	86 2,7	4 0,	88	± 9, 27	±13,4	±9,45 -	<i>I-3</i> c	D-9.7-10M	M				11092	116,1	±6,32 - ±2,95	I-30-12.7-10H	N	297/	54.7	175		_	_	±4,56
	30	I-30-8.2-10M	N	18,	04 54,	7 17	7,5			- ±2,30	— —	0-9.7-10m	N	19,64	54,7	l	1413	+1.81	±0,77 ±2,21	Ĩ-30-12.7-10M	Q	_		-	±1.13	±4,87	±960	±2 <u>45</u>
		I-30-8.2-10M	<u> </u>	ı	_ _			11.13	±1,78	±1,40 ±2,15	<u> </u>	3,7-!OM	Q	-	=		±1,13	2 +46 3	±632 —	_	M			_				
		I-18-8.2-15M	M	-5	84 2,8	3 0	73	14,10	±13,6	±9,45 -	()	8-9.7-154	M	1008	55,9	115	-	, -, <u>-</u>	- ±2,96	I-18-12.7-15M	N		_					
	18	<u>I</u> I-18-8.2-15н			38 <i>5</i> 5,	9 14	4,5		+180	- ±2,31 ±1,40 ±2,16	<u> </u>	8-9.7-15м	Q	19,30		-	#.72	±1,82	1977 ±222	I-18-12.7-15m	Q	_				_=_		
			Q		84 3,1						1)		M	-284	3.13		1		1632 -	I-24-12.7-15m	M	-3,73	3,13	୧ 86	t21,84	±22,1	±675	
15/	24	I-24-8.2-15H			64 3,13 ,38 62,			CIA,IC	-10,7	- ±2,55	ii .	1-9.7-15M	N		62,5	172	_	_	- ±326	II-24-12.7-15M	N	3008	62,3	17,2		±1,91		<u>±5,0</u> +268
/3	3 - 4	II-24-8.2-15M	Q	Ţ.		-		1.72	±1,81	±1,40 ±2,38	1-24	4-9.7-15 m	Q				±1,72	±1,84	±0,77 ±2,44	2 44 .2.7 .0.7	W	-	-	-	=1,/2	1330	+675	_
		T 00.45	M	-2	84 3.3	3 1	19	13,61	±14,3	±9,45	11	0-9.7-15m						±17.1	±632 -	I-30-12,7-15m	N	3,/3	<i>5,</i> 55 66,6	7,19	- ZI,06	±23,0		±5,39
	30	I-30-8,2-15m	N	18	58 66,	6 2	37			1 - 1-2.77		D-9.7-15M	N	19,98	66,6	23,7		-	- ±3,54	Ĩ-30-12.7-15H	Q	3000	00,0	2 3,/	+166	±1,97		
_		I-30-8.2-15μ	Q				- :	±1,66	±!,88	#1,40 #2,59	-		Q		 -				±077 ±2,65	_	M	_			-1,00			
		I-18-8.2-20M	M	-2	81 3,1	1 0	68	17,38	±14,9	t945 -	I-18	3-9.7-20m						21170	±632 — — ±336	I-18-12.7-20H	N	_			_			
	18	Ĩ -18-8.2-20M			,72 62,	2 13	69			- ±264	<u>I</u> T-18	1-9.7-20M	NQ	20,32	62,2	13,63	+212	# 98	±0,77 ±2,52	Ĩ-18-12.7-20M	Q	_						
2		# 10 0.E EUM	Q							±1,40 ±246	! !		M	281	3 47	0.79			t632 -	T - 4 4	M	3,67	3,47	0,79	±2692	t24.0	t6,75	
1%	24	I-24-8.2-20M	M	-2	81 3,4	7 0	79	17,56	113,0	- ±2,90	11	1-9.7-20M	N		69,46		T -	T -	- ±37,0	I-24-12.7-20m II-24-12.7-20m		3039	69,46	15,72				±560
	24	I-24-8.2-20M		_	72 69,5	16 /	- 1		±1.96		<u> </u>	1-9.7-20м	Q	1-	_		±2,12	±2,0	±0,77 ±2.77	<u># 24-12./ 20M</u>	G				±2,12	±206	1675	2301
		F 3. 0		-2	81 2 0	1 4	05	1738	±15.2	±9,45 -	T-30	0-9.7-20M	M		3,91			5+18'S		I-30-12.7-20M	M	-3,67	13,91	1,05	+2692	124,3	-6,73	±6,16
	30	<u> </u>		18	72 781	62	108	_		_ ±3,22	#1	9.7-20 н		2032	78,15	21,08	<u> </u>	 	- ±4,10	I-30-12.7-20M	N	30,39	78,16	21,08	+212	±2,08		
		<u> 1</u> -30-8,2-20м	Q		_ _	-	_ :	2!2	±1,98	±1,40 ±3,01			Q	上二		<u> </u>	±2,12	±202	±0,77 +3,07	l	Id							-
			+N		Abres.	MM					70	MMEUAH	HCI.															
	- Yo #	O,150																										
_	1-12.8	PEA CONTIAMENTA 1. B TAGANUE PONBEAENGI HOPMATNBHOLE HAPPYSKI B YPOBNE																										
		+0,0	+1	1					9	HODMATHE	HOIE	MATPYSICK	IB I	ПРОЛ	0161	OH I	НАПР	ABAE	MMM									CEP
		, ,	1		£.					OT TOPMO	SEEM	19 M BET	-PA	(N-E	BERTH	1 KAA	6/1/AS	a, Q-r	OPM-	TK HOPMAT	n Brie	HE H	AMPYS	KH H	A opyl	KAAME	PITES	4C-01-0
	سر				~		-			BOMTALOMA	9) AA1	761 ANSI OF	YMA	LAMET	tT08	CBS	EBO	x KO	KOMM	FOAMMY	∞	COKO	TH NO	A MO	ctobe	PIE SKI	EC-	A#
	C	OCEMA HAPDYSO	-30-8.2-20M M -2.81 3.91 1.05 ±17,38 ±15.2 ± -30-8.2-20M Q ±2.12 ±1,98 ± -30-8.2-20M Q ±2.12 ±1,98 ± -4	TOM ALMME	TEM	MERATYRM	oro	51.0	orca /	$\leq M$				1967- TONYER	KHE	: MAT	MALL	76/三	CPAN	101.								

PHMEYAMMS:

- 1. B TASAMUE MONBEARNOI MOPMATHBRIDIE MAPPYSICH B YPOBME BEDERETO OBPESA ФУКДАМЕКТА.
- 2. Нормативные нагружи в продольном направлении от тормо желия и ветра (N-вертикальная, Q-гори-SONTALBHAS) AANOI ALS SOVINAMENTOB CRESEBOX KOLOHN TON ALMHE TEMPEDATYPHORO BLOKA 72M

TK HOPMATHBHOLE HAITDYSKH HA OPHLAMENTO MCONOBIET MCONOBIET MCONOBIE MECTORIE MAINTHOLE COARD. LEDANOL. 1967 TRUYECKHE MAINTHOLE COARD. 28

		HOPMATHER	WE HATPYSKH HA PYHAAMEN	ГЫ КРАЙНИС	KONONII NOA MOCTOBOLE SKEKTPHYECKHE PPEHPEPHOLE KPAHOL
g	2				OTHETEA POLOBEN PELOCA 12.700
ZEHMOC	SCTATEAGE M	W MOD	DAOBEM PEACE 8.200 B PROJECTION PLANTERS BETTO TEMPOR TOPMO	111	B ПОПЕРЕЧНОМ НАПРАВЛЕНИИ. ВПРОДСЛЕНИИ НАПРАВЛЕНИИ НАПР
ey30/lq	POKET.	JCTAKA A&I	A L TOPMO BAR TYPHOE SERME TAIT- TOPMO MAIT BORDEN M BARCA MOX MIN SEEMED DYSKA CTBIE BETED	OCTAKA ADI	S PASKA MEXX MLD REPUBLICAN BETED SCTARALO SPAKE MAN DETARALO SPAKE MAN DETARALO SPAKE BETED STATE BOS- M
<u>u</u> _	18	I-18-8.2-5r	M -2.91 1,63 0,49 15,82 ±11,9 ±9,45 — N 17,47 32,5 9,7 — — ±1,51	I-18-9.7-5n	M -291 1.63 0,49 ±6,89 ±14.2 ±6,32 - I-18-12.7-5r M
		<u> </u>	$Q + 2071 \pm 157 \pm 140 \pm 141$	<u>I</u> -18-9.7-5r	Q - - E 0/1 E 1/30 E 0/1 E 1/30
5	24	I-24-8.2-5r	M -2.91 1,86 0,65 ±5,82 ±12,1 ±9,45 - N 17,47 37,2 13,0 ±1,68	I-24-9.7-5r	N 19.06 37.2 13.0 ±2.18
		<u>II-24-8.2-5r</u>	Q ± 071 ±1.59 ±1.60 ±1.57	<u>ii</u> -24-9./-3/	W 402 174 082 +724 +168 ±675
	30	I-30-8.2-5r <u>I</u> I-30-8.2-5r	M -2.91 1.74 0.82 ±4.67 ±10.3 ±9.45 — N 17.47 34.7 16.3 — — ±1.91	I-30-9.7-5r <u>I</u> I-30-9.7-5r	M -2.91 1.74 0.82 ±5,53 ±12.4 ±6,52 \overline{I} -30-12.7-5 \overline{I} N 19.06 34.7 16.3 \overline{I} - 2.46 \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I} \overline{I} \overline{I} \overline{I} \overline{I} -30-12.7-5 \overline{I}
-	$+-\parallel$		Q ±0.57±1.38±1.40±1.78 M -285 2.5 0.7 ±11.15±16.5±9.45 -		M -2.85 2.5 0,7 ±13,19 ±17,3 ±632 - T-18-12 7 105
	18	I-18-8.2-10r II-18-8.2-10r	N 18,19 49,9 13,9 +217 Q +1,36 ±1,89 ±1,40 ±203	I-18-9.7-10r II-18-9.7-10r	Q ±1,36 ±1,93 ±0,77 ±2,09 I-18-12.7-10r Q
10	24	I-24-8.2-10r <u>I</u> -24-8.2-10r	M -2.85 2.72 1.09 ±11,15 ±14,6 ±9,45 - N 18.19 54,2 21.8 ±2,34	I-24-9.7-10r <u>I</u> -24-9.7-10r	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	30	I-30-8.2-10r	Q +1,36 ±1,91 ±1,40 ±2,18 M -2,85 3,06 1,25 ±11,15 ±14,8 ±9,45 - N 18,19 61,2 24,9 ±2,59	T-30-9.7-10r	M 2.85 3,06 1.25 ±13.19 ±17.7 ±632 - I-30-12.7-10r M -3.73 3,06 1.25 ±17.27 ±23.7 ±675 - I-30-12.7-10r N 29.88 61.2 24.9 ±5.0
		701-5.8-0E- <u>II</u>	Q ±1,36 ±1,93 ±1,10 ±2,42	<u>II</u> -30-9.7-10r	4 1136 1136 - 977 - 240
	18	I-18-8.2-15r	M -2.78 4.38 0.91 \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(I-18-9.7-15r II-18-9.7-15r	M -2,78 4,38 0.91 122,09 121,1 16,52 I-18-12,7 15r N
		<u> </u>	Q ±236 ±230 ±1,40 ±339 M -278 4.66 1.34 ±1935 ±17,6 ±9,45 -		M -278 4,66 1,34 ±2289±21,1 ±632 - M -3,66 4,66 1,34 ±2997±28,1 ±6,75 -
15	24	I-24-8.2-15r [[-24-82-15r	N 19.45 93.2 26.7 +3.84 Q + +2.36 12.30 11.40 13.59	I-24-9.7-15r I-24-9.7-15r	N 21.05 93.2 26.7 ±4.86
		I-30-8,2-15r	M -2.78 5.09 1.89 ±19.35 ±17.6 ±9.45 - N 19.45 101.7 37.8 ±4.16	I-30-9.7-15r	M -2.78 5.09 1.89 ±2289±21,1 ±632 - I-30-12.7-151' M -3.66 5.09 1.89 ±2997 ±28,1 ±6,75 - ±7.8
	30	<u> </u>	Q ±236±230±1,40=3,89	<u>[</u>]-30-9.7-15r	Q +2,36 ±2,32 ±0,77 ±3,95 11-30-12.7-15r Q ±2,36 ±2,38 ±0,6 ±4.15
	18	I-18-8.2-20r	M -2.74 5.0 1.03 ±2558 ±17.6 ±9.45 - N 20,0 100,0 20,73 ±4.10	I-18-97-20r	M -2.74 5.0 1.03 ±3026 ±21.1 ±6.32 - I-18-12.7-20r M
		<u>II</u> -18-8,2-20r	Q ±3,12 ±230 ±140 ±3,83	<u>II</u> -18-5.7-20r	Q +3,12 ±232 ±0,77 ±3,89 11-18-12.7-20" Q
20	24	I-24-8.2-20r	M -274 5,43 1,39 ±25,58 ±17,6 ±9,45 - N 20,0 108,5 27,84 ±4.43	I-24-9.7-20r II-24-9.7-20r	M -2.74 5.43 1.39 ±3026 ±21.1 ±632 - I-24-12.7-20r M -3.61 5.43 1.39 ±39.62 ±28.1 ±6.75 - N 21.6 108.5 27.84 ±5.60 II-24-12.7-20r N 31.68 108.5 27.84 ±8.2
		<u> [</u> -24-8.2-20r	Q ±512 ±230 ±140 ±4.13	•	
	νΘ	Ĩ-30-8.2-20r <u>Ī</u> -30-8.2-20r	M -2.74 5.85 1.97 ±2558 ±17,6 ±9,45 — N 20,0 117,0 39,19 — — ±4,75		N 21.6 117.0 39.19 ±6.0 1-30-127-201 N 31.68 117.0 39.19 ±8.8
		<u>"-30-0.8-20"</u>	Q ±3,12 =230 =140 =445	MAFUAHUO	Q - - +3.12 +2.32 +0.77 +4.49 1 -30 - 12.7 - 20r Q - - - +3.12 +2.38 +9.6 +4.73

TO 150

TO 100

THE PERMANENTA BROADAETHIN

KHEBCKNN -- Opdiajovinpoekt -- Kheb.

Примечания.

- 1. B TABANGE NOMBEAENS NOPHATUBINGE MATPYSIN B YPOBILE BEPXINETO OFFESA ODYNAAMENTA.
- 2. HOPMATHBRUE HAIDUSKH B MODAONOM MAMPABAEHHH OT TOPHOGERHES H BETDA (N-BEPTHRANDHAS, Q-TOPHONTANG-MAS) LAME AND PURLAMENTOB COSSEBUX KOLOMI MPH ANNHE TEMMEDATUPHOFO BLOKA 72m.

TK HOPMATMBRIDIE MARDYSKIN MA CHYMANMENTON MCO1-08/67
1967- KRANMEN KONOMM NON MOCTOBUE SKERTON-BUNGS JUST 1967-4 29

2 1		E HAFPYSKH HA &YHAAMEHT			OTHETE	FOLOBEN DELOCA 12	.700
2 Z C	TMETEA	TONOBEH PENGCA 8.200.	OTMETRA	FOLOBEN PEABLA 9.700	U FILI WA	LIE B HOHEDEYHOM MANDABA	BARRA
AACH AACH TAACH		B ПОПЕРЕЧНОМ ПАПРАВЛЕНИИ НАПРАВЛЕНИИ	- 114-F	B ПОПЕРЕЧНОМ НАПРАВЛЕНИИ НАПРАВЛЕНИИ О ТОСТО- КРАНОВАЯ НАГРИЗКА ВЕТРО ТЕМПЕ-ТОРИО- ВАЯ РАТУРИЕ ФЕНИЕ	ШНФР	0 5 VIOCTO- KANTOBASI MATPYSIKA	
POSSON SECTION	ARAAOI	MATTON A TOOMO MAT BOARD METER SETEN	BCTAKAA61	U & PYSKA MOX MIN SEMMEDYSKA CTRME BETED	OCTAKA1,61	M	EXPICA CTEME
	-8,2-5 _M	M -288 1,68 0,49 ±5,0 ±11,4 ±9,45 - N 17,57 33,55 9,76 ±1,51 Q ±0,61 ±1,52 ±1,40 ±1,41	I-18-9.7-5mr II-18-9.7-5mr	M -288 1,68 0,49 ±5,92 ±13,8 ±6,32 - N 19,17 33,55 9,76 - - - ±1,96 Q - - - ±961 ±1,55 ±0,77 ±1,47	I-18-12,7-5мг <u>I</u> I-18-12,7-5мг	Q	
		M -288 1.94 9.59 ±508 ±11.7 ±9.45 - N 1757 3893 11.74 ±1.68	I-24-9.7-5mr	M -2.88 1.94 0.59 ±6.01 ±14.1 ±6.32 - N 19.17 3893 11.74 ±2.18	I-24-12.7-5mr II-24-12.7-5mr	11 22 1 2 2 2 1 1 1 1	±18,9 ±6,75
/5 T I-2	1-8.2-5mr	Q +062 ±1,55 ±1,40 ±1,57 M -2,88 2.16 0.99 ±4,83 ±122 ±9,45 -	I-30-9.7-5mr	Q + t062 ±1,58 ±0,77 ±1,63 M -2,88 2,16 0,99 ±5,72 ±14,7 ±6,32 - ±2,46	I-30-12.7-5mr	M -4,08 2.16 0.99 ±7,50 N 29,27 43,2 19,99 -	
30 I-30 II-3	0-8.2-5MT 0-8.2-5MT	N 17,57 43,2 19,99 ±1,91 Q ±0,59 ±1,62 ±1,40 ±1,78	<u>I</u> -30-9.7-5mr	N 19,17 43,2 19,99 — — ±2,46 Q — — — ±0,59 ±1,64 ±0,77 ±1,84 M -2,81 3,62 0,54 ±13,18 ±18,5 ±6,32 —	II-30-12.7-5mr	Q to59	±1.71 ±0,60
18	-6.2-10Mr	M -281 3,62 0,54 ±11,16 ±15,4 ±9,45 — N 18,87 72,5 19,73 — — ±3,01 Q — — ±1,36 ±2,03 ±1,40 ±2,81	I-18-9.7-10мг <u>II</u> -18-9.7-10мг	N 2047 725 10.73 ±3.83 Q ±1.36 ±206 ±0.77 ±2.87	I-18-12.7-10mr II-18-12.7-10mr	Q	
100		M -2,81 4.0 0.64 ±11,16 ±15,6 ±9,45 - N 18,87 79,8 12,76 ±3,28	I-24-9.7-10mr	M -2.81 4.0 0.64 ±13,18 ±18,6 ±632 - N 2047 79,8 12.76 ±4,16	I-24-12.7-10mr <u>I</u> I-24-12.7-10mr	1 300 (1/3/01/2/0)	±250 ±6,75 +2,14 ±960
I-30	-8,2-10мг (Q ±1,36 ±205 ±1,40 ±306 M -281 4,4 0,86 ±11,16 ±15,8 ±9,45 -	I-24-9.7-10Mr I-30-9.7-10Mr	Q - - - ±1,36 ±2,08 ±0,77 ±3,12 M -2,81 4,40 9,86 ±13,18 ±18,9 ±6,32 - N 20,47 88,2 17,11 - - ±4,55	I-30-12.7-10mr	M -3.70 4.4 986 ±1726 N 3057 88.2 17.11 -	
1 30!		Q ±1,36 ±2,07 ±1,40 ±3,35		M -2.83 2.89 0.71 ±16.0 ±17.6 ±632 -	<u>Г</u> -30-12.7-10нг І-18-12.7-15нг		±2,17 ±0,60
1 118 11		M -2.83 2.89 0.71 ±43.53 ±14.7 ±9.45 — N 18.55 57.7 14.21 — — ±2.48 Q — — ±1.65 ±1.93 ±1.40 ±2.31	I-18-9.7-15mr <u>I</u> I-18-9.7-15mr	N 2015 577 14.21 ±3,16 Q ±1,65 ±1,96 ±0,77 ±2,37	I-18-12.7-15mr	_3	
1 /212/1	-8.2-15mr	M -2.83 3,16 0,95 ±13,53 ±14.8 ±9,45 - N 18,55 63.2 18.85 ±2,68	I-24-9.7-15mr	M -2,83 3,16 0,95 ±160 ±17.7 ±632 - N 20,15 63.2 18,85 ±3,42 Q ±1,65 ±1,98 ±0,77 ±2,56	I-24-12.7-15mr II-24-12.7-15mr	M -3,72 3,16 0.95 ±20.9 N 30,25 63,2 18,85 — Q ±1,65	+201 ±050
<u> </u>	-8.2-15mr -8.2-15mr	Q +1,65 ±1,34 ±1,40 ±2,50 M -2,83 3,49 1,35 ±13,6 ±15,0 ±9,45 - N 18,55 69,8 27,06 ±2,91	I-30-9.7-15mr	M -2,83 3,49 1,35 ±16,1 ±18,0 ±632 - N 20,15 69,8 27,06 ±3,71		M -3.72 3.49 1.35 ±21.1 N 30,25 69.8 27,06 —	±24,0 ±6,75
	-8.2-15нг	M -280 3.13 0.86 ±16.97 ±19.9 ±9.45 -		Q ±1,66 ±2,00 ±0,77 ±2,78 M -2,80 3,13	I-30-12,7-15mr I-18-12.7-20mr	A	
	-82.20Mr	N 18.94 62,5 17,18 ±3,02 Q ±2,07 ±2,57 ±1,40 ±2,82	I-18-9.7-20мг II-18-9.7-20мг	N 2054 625 17.18 +3.84 Q +2.07 +2.6 +0.77 +2.88	<u>∏</u> -18-12.7-20mr	Q M -368 3/3 098 \$263	±31,6 ±6.7:
	-8.2-20Mr	M -2.80 3,43 0,98 ±16,97 ±19,9 ±9,45 — N 18,94 68,7 19,68 — — ±3,29 Q — — ±2,07 ±2,57 ±1,40 ±3,07	I-24-9.7-20mr [-24-9.7-20mr	M 2,80 3,43 0,98 ±20,5 ±23,8 ±6,52 - 44,18 N 20,54 68,7 10,68 + ±4,18 Q + ±20,7 ±2,6 0,77 ±3,13	I-24-12.7-20mr II-24-12.7-20mr	N 3963 68,7 19,68 Q ±207	 12,66 ±060
30 I-30	-8,2-20иг	M -280 3.87 1.05 ±1697 ±19.9 ±9.45 - N 18.94 77.4 20.92 ±3.66	I-30-9.7-20mr	M -2.80 3.87 1.05 ±20,5 ±23,8 ±6,32	I-30-12.7-20mr II-30-12.7-20mr	1 30,03 1 (4 8038 -	±31,6 ±675 ±2,66 ±0,60
<u>I</u> I-30	+ /	Q ±207 ±257 ±140 ±342	1450-9.7-20MF	Q ±2,07 ±2,6 ±0,77 ±3,48		4 - - 120/	1-5001-000
- 0.150 Ур. верха	STIMAMENTA +Q	Y-M B NOTEPEHROM OFFER POTE	ПРИВЕЛЕНЫ НОРМА ПДАМЕНТА.	THEMSE MAPPISKIN & SPORME BEPTCHET			
	4Q	T. L. MISH N BETF WEST STREET STREET	PA (N-BERTHEA	РОДОЛЬНОМ НАПРАВЛЕНИМ ОТ ТОРНОФЕ ВАД ВПАД (RAMONATIOENPAN ДАНЫ ДЛЯ ВОПНИТАРЕННЕЕ ТЕМПЕРТУРНОГО	TK HOPMATH	BHWE HAPPYNEH HA ФУН.	AAMEMTOI DAERTPH -
		A CHYMAAMENTOL. BLOKA 72M.			1967 GECKUE	LEGACITY FOLL MOCTOBOLE	JACK! PM

Примечания:

- 1. B TABANUE PRIBEAEND HOPMATHENDE MATPUSKI E SPORME BEPTETE OBDESA OPYHAAMERTA.
- 2. HOPMATHBHUE MAPPUSEM B MADADADHOM HAMPABAEMIN OF TOPMOSE HAR A BETPA (N-BEPTHEANDARY, Q-POPHSONTANDARA) LAND LAS CONCENTED CONSTRUCTED CONSTRUCTED ANNA THE TEMPSON CONTRACTOR OF THE PROPERTY OF THE P 510KA 72M.

Ð	3	OTMETRA					20	OTMETE	4 5	0408	EN	OF A	SCA S	9.700		OTMETE	(10	10BK	H P	EASC	A R			-
8	3	OTMETRA	7 7		-		RAPONONAM	241	-						B TIPOAOAbHOI HATIPABAETHII	7	ш <u>§</u>		EPEYN			EMMI	BAPOR KANDAL	(BA
E .	5162	WMOP	150			(ATIPABAEMHII			120	flocto-				BETPO	TEMME TOPM	ШИФР	35	/locro	(DAMO)	BASI MAI	PYSKA	BETPO-	TEMME:	1
3	120	ШИДОР		TOCTO	(PAMOBASI F	TOMO BASI	TYPHOE SICE		1 4 6	SHHAG	A	4	TOPMO		PATYP. JEETH		19.2	SHMAS	1	1	Toppero-		PATYPH BOSAEЙ	
Ş,	18	SCTARA461	13 3	rur	AA	TOPHO BAST	BOBAEH M	11	1 - 7	MATPYS	4	4	1	, .	COMENT M CTBHE BETEI	1	5 3	HATPOS KA	max	mun	SERME.	[CTB/E	
2	100/		+	PYSKA		#EFOIE PYSICA	CTIME BETT	-ρ	0 8	EA			EENNE!				M	<u> </u>	 _ 	_	<u> </u>			1
			M		24,73 8,5				M	ļ <u>-</u>	24.73		±7.37	¥11.9	±6,32 - - ±2,0		N	_	-	_	_			
	18	[[-18-8,2-5m	N	28,20	32,97 11,41	1 - 1	- ±1,5		N	30,49	32,97			±1,36		7	0	_	_	_	_	_		
		11 10 0,2-07	Q	<u> </u>		±0,76 ±1,33	the same of the sa	7	Q	ļ <u> </u>			±0,76 ±6,78				M	-	27.16	10.73	±8,89	±18,6	±6,75	5
			M	<u> </u>	27,16 10,7		7	-	M				±6,/0 -	13,0	±2,30	4 /	N	3296	36,21			_	_	
5	24	Ī-24-8.2-5m	N	28,20	36,21 14,3		- ±1,7			3949	36,21			1.56	±077 ±1,74	1 11 67 16.7 47	Q	_	_	-	±0,70	4,62	±96	
		<u> </u>	Q	<u> </u>		±970 ±1,52	T		Q	<u> </u>			±0,70	1.36		` 	M	 	_			-		
			M	<u> </u>	 	 = =	 		M	 = -			=			T-20 10- 5	N			-	_	^		1
	30	<u>П</u> -30-8.2-5н	N	 - -		+=+=	+=+=	I-30-9.7-5M	N	 -						<u> </u>	Q				_			_
-			Q	 - -	32 2 60	±9,60 ±12,6	+0.45		M	+=-		6,66	±11,35	±15.1	±6,32 -		M	_	-	-				-
•	ا أ		M		32,8 6,66	-	- ±1,5		N	+		8,9	-11,50		- ±2,50	T 10 107 10	N		<u> </u>					_
	18	IT-18-8.2-10M		29,47	43,7 8,9	±1,17 ±1,6	1		Q	31.77	45,7		±1,17	±1,70	±0,77 ±1,9	<u>1</u> -18-12.7-10м	Q			_				_
	H	-	Q	 	150 07	±9,27 ±12,7			M	 	35,2		1096		±6,32 -		M		35,2	8.71	±14,35	±20,5	±6,75	2
			M	=	35,2 8,7		- +2	<u>_</u>	N	31,77		11.6	_		- ±278	<u>iī-24-12.7-10</u> m	N	35,27	46,9	11,6	-			_
10	24	<u> Ī</u> -24-8.2-10н	N	29,47	46,9 11,6	±1,13 ±1,69		1 1 54-3./-10/	Q		-		+1,13	±1,72	±077 ±20	3	Q	<u> </u>				\$1,78		
	\vdash		M		41.0 13.1	±9,27 ±13,4			M	-	41.0		±1096	±16,1	16,32 -	4	M		41,0	1	±14,35	12/6	+6,75	5
			<u> </u>	29,47	54.7 17.5		- #2/	13 # 30 07 40	N	31,77	54,7	17,5			_ ±3,12	<u>І</u> І-30-12.7-10м		35,27	54,7	17,5			<u> </u>	_
	30	<u>I</u> Ī-30-82-10м	0	29,47			±1,40 ±2.	[-30-9.7-10M	Q	T _	_				±0,77 ±2,34		Q		<u> </u>		±1,13	±1,87	,	ì
	+-1		M	-	41,9 10,85				M		41.9	10,85	1668	±16,3	±6,32 -	4	M	<u> </u>	 - -			<u> </u>		-
	1		N	2021	55,9 14.5		_ 12	II-18-9.7-15M	N	32,52	55,9	14.5			_ ±3,14		N/	 -	 -	_				-
	18	<u>∏</u> -18-8.2-15 _M	0	30,21	35,5 14.0	±1,72 ±1,86	±1,40 ±2	10-9.7-15M	Q	Ī -	_	-	±1,72	±1,82	±0,77 ±2,3	<u> </u>	14		4			+ 004	+0.74	_
	-		M		46,9 12,9		±9,45 -	•	M	<u> </u>	46,9	12,9	±1665	t16,5			M	-	46,9		±21,84	± 22,1	16,/5	_
15/	24	T 0/ 00 /c	N	 	62,5 17,2		- ±2;	8 <u>II</u> -24-9.7-15m	N	32,52	62,5	17,2			- 13,4	1 2 -47	N	33,95	62,5	17,2	+170	±1,91	+06	-
13	7 -4	<u>I</u> -24-8,2-15m	0	_		±1,72 ±1,81	±1,40 ±2		Q				±1,72	±184	<u> +632 -</u>	74	M	$\vdash \equiv$	500	17.7		±230		
	· 🗔		M	-	500 17.7	±13,61 ±14,3	±945 -	_	M	 -	590		±16,1	±17,1	_ ±3,7	1	N	350#	66,6	23.7			_	
· ·	30	Ĩ-30-8.2-15m	N	30,21	66,6 23,7		- 129		N.	32,52	66,6	23,7			±0,77 ±2,7	" " JU 16./~ IUM	Q				+166	±1,97	+0.6	- :
•		<u> </u>	0			±1,66 ±1,86	±1,40 ±2	71	Q	<u> </u>	<u></u>		±1,66			4	M	_	+-		21,00	-1,37	-	-
			M	_	46,65 10,2	7 ±17,38 ±14,5	±9,45 -	— _ `	M	 -			±20,56	±1/,6	- ±3,5	T 18 127 2	N	1_	<u> </u>		\	_	_	_
	18	<u>Г</u> -18-8,2-2он	N		62,20 13,69	9	- ±2,		N	33,14	62,2	13,69					Q	1_	1_	_	_			_
	.~	2 1	Q	 		±2,12 ±1,95	±1,40 ±2,	58	9	 -			±2056	±1,98	±0,77 ±2,6	1	M	+-	52,1	11,72	±2692	+24,0	±6.7	į
2~			M	_	52,10 11.79		±9,45		M	7	52,10		2056	±10,U	- ±3,8	6 1-24 127 20	141	36,64	1		_	_	-	_
1/5	24	<u>Ī</u> -24-8.2-20м		3984	69,46 15,72	2	- 130		W	33,14	69,46		- ±2,12	+20	±0,77 ±2,8	7 1 24-16./ 601	Q	T -	_	-	±2,12	±2,06	±0,6	3
-		<u> </u>	Q	_		±2,12 ±1,96	±1,40 ±2,		Q M	┼═	58,62	15.01	±2055		±6,32		M		58,62	15,81		±24,3		5
		·	M		58,62 15,8	1 +17,38 +15,2			M	 	1		-=4.0		- ±4,2	₽ <u>#</u> -30-12.7-20+	. N	36,64	78,16	1	_			-
	30	<u>Ī</u> Ī-30-8.2-20м	N	3084	78.16 21.0	8 t2,12 ±1,98	_ ±3	№ <u>Т</u> -30-9.7-20м	6	33,14	1016	21,08		±2,02		" 30 1E./-20	6	T -	T	T	±212	1208	±06	š

-0,150 Ур. берха фундам. *М В ПОПЕРЕЧКОН *И ПАПОАВЛЕНИИ.

CREMA HAPPYSOK HA ФУНДАМЕНТЫ.

- 1. B TAEANUE PRIBEAENE HOPMATHEME HAPPYSCH & YPOBHE BEDOCHETO OBPESA OPYHAAMENTA.
- 2. HOPMATHBRIGE MAPPYSCH B PROLONDROM MAPPABAEHHH OF TOPMOSECHISH IN BETPA (N-BEPTIKANDHAS; Q-POPISONTANDHAS) ANNU LAS TEMPEDATYPHOPO BAOKA 72M.

TK HOPMATHENEWE HAPPYSKH HA OBYHLAMENTON MCO1-08/67
CPENHOW KONOHIN HOL MOCTOBUE SAEKTPH SUBJECT JAKET 1967: YECKHE MAPHHTHOLE KPAHON.

4 31

ا	1,	7	TOLOBEN PEAGE 8,200. OTMETER TOLOBEN PEAGE	9.700 UTM	Bringle
OKSEHR	KET	Шифр	В В поперечном направления направления	IPABAEHHH HAMPABAEHHH	0.5
Pyson	7100 C7455	OCTARA161	HAT- BOSAEH H SCTARALO SOME MATERIAL MA	MAI- BOSAEN H SCTAK	A A O D BASKA WHOK MIN SERVED STAKE OTHE
	18	<u> </u>	M - 24,4 7,26 ±5,82 ± 11.9 ± 9,45 - N 28,37 32,5 9,7 ± 1,64 1 - 18-9,7-5 - N 30,67 32,5 9,7	16,89 ±14,2 ±6,32 = ±2,14	
5	24	Ī-24-8.2-5r	M - 27,9 9,75 ±5,62 ± (2,1 ±9,45 - N 28,57 37,2 13,0 ± 1,6!	6.89 ±14.5 ±6.32 - ±2.35 ±0.71 ±1.65 ±0.77 ±1.76	2.7-5r Q ±0.71 ±1.68 ±0.6
	30	∏-3 0-8.2-5r	$M - 260 122 \pm 4.67 \pm 10.3 \pm 9.45 - M - 260 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 \pm 1.00 = M - 26.0 12.2 \pm 1.00 = M - 26.0 = M - 26.0 12.2 \pm 1.00 = M - 26.0 12.2 \pm 1.00 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = M - 26.0 = $	5.53 ±12,4 ±6,32 - ±263 + ±263 ±263 ±263 ±263	27-5r Q ±057 ±1.47 ±0.6
	18	I-18-8.2-10r	M - 37,4 10,4 ±11.15 ±14.5 ±9.45 - M - 57,4 10,4 ±	13.19 ±17.3 ±6.32 — — — ±2.96 — — ±2.96 — 1.36 ±1.93 ±0.77 ±2.22	M
fo	24	I-24-8.2-10r	N 29,78 54,2 21,8 ±2,46 Q* ±1,86 ±1,91 ±1,40 ±2,30	1.36 ±1.75 ±6.52 - ±3.16 - 1.36 ±1.94 ±0.77 ±2.37 [I-24-12.]	7-10r Q ±1,36 ±2,0 ±0,6
	30	[-30-8.2-10r	N 29,78 61:2 24.9 ±2,72 II-30-9.7-10r N 32,08 61.2 24.9	+ 3,48 :1,36 ±1,96 ±0,77 ±2,61	N 3557 61.2 24.9
	18	<u>I</u> I-18-8.2-15r	$N = 2.29 = 87.5 = 18.2 = - = \pm 3.76 = 1.0 = 1.$	2289 ±21.1 ±632 — ±4.78	
15	24	II-24-8.2-15r	N 3229 93.2 26.7 +397 <u>I</u> -24-9.7-15r N 3459 93.2 26.7	+5,05 236 +2,32 +0,77 +3,78	7-15r N 38,09 93,2 26,7
	3 0	<u> </u>	$M - 76.2 = 28.4 \pm 19.35 \pm 17.6 \pm 9.45 - M - 76.2 = 28.4 \pm 19.35 \pm 17.6 \pm 19.45 - M - 76.2 = 28.4 \pm 19.35 \pm 101.7 = 37.8 \pm 19.35 \pm 19.3$	2289 t21,1 t6,32 - t5,4 236 t232 t0,77 t4,03	7-15r N 38,09 101,7 37,8 +2,36 ±2,38 ±0,6
	18	<u>I</u> -18-8.2-20r	M - 75.0 15.53 12558 117.6 19.45 -	3026 ±21.1 ±6.32 — ±5.35 <u>1</u> -18-12.7 3.12 ±2.32 ±0.77 ±4.01	2 2or N
20	24	[[-24-8.2-2cr	M - 81.5 20.9 ±2558±17.6 ±945 - M - 81.5 20.9 ± N 3842 108.5 27.84 ±4.55	3026 ±21,1 ±632 — — — — ±5,76	Q F5/2 12,00 - 1
	3 0	Ĩ-30-8.2- <i>2</i> 0r	M - 87.6 29.4 +2558±17.6 +9.45 - M - 87.6 29.4 ± N 33.42 117.0 39.19 ±4.86	30,26 ±21,1 ±6,32 - ±6,16 3,12 ±2,32 ±0,77 ±4,62 I -30-12.	N 39,18 117,0 39,19

COCEMA HAPPYSOK HA CONHARMENTO!

1 B TABANUE NONBEACHOI MODMATMBROIC MATPYSKI B SPOBNE BEDX. HETO OBPESA CHYMLAMENTA.

2. HOPMATHEMENT E MATPLEMENT OF TOPMOSEHHAR H BETPA (N-BEPTHEANDRAS) Q-TOPHSONTANDRAS)
ANTO AND SYMMETTOE CERSEBONC RONOMIN MPH ANNIE TEM-MEDATYPHOFO BAOKA 72M.

TK HOPMATHEMELE HAPPUSEN HA CHUMAMENTON MC-01-08/67 MC

		OTHETTA	70/08/5/1	DEADCA 6	8.200)	OTMETRA	rox	OBE	N P	E	A 9.70	,		OTMETKA							
ָ בֿ בֿ	18	OTFIETRAT	THETRA FOLOBEN DELACA 8.200 BIPOLONGHOM BIPOLONGHOM HATIPABLEMIN					ы	Впоп	EPEYIN	M MA	TPABAETH	IN BIPOL	loabtom Baettin		JE BAS	Впоп	EPEYN	OM HA	ЛРАВ/	ЛЕНИН	В ПРОД <u>НАПРА</u>
43	A F	WHOOP	D TOOTE KANOSAS HAITDISKA BETPO TEHTIE TOPHO				TOCTO KDANOBASI MATPYSKA BETPO					PO TEMNE	TOPHO	Шифр	10,2	1		BASI HAI	AXECG	BETPO	TEMNE PATYP	
g g	100		A PANTAS U	TOBASI ITAI DISK	BAS	PATYPIT JEEHN	티	12/2	annua		Д	BA	SI PATYP T- BOJAF	I Good IVE	OCTARALO!	AKE S	GHHAG HAT-	14.	1	Торио	BASI HAT-	HOE. BOSAE
	20	OCTARAJOI.	TAN MAR-	•	HAT- TE PYSKA	CTBNE BETE	OCTARALOI C	0 3	PY3KA			#EMME PX				8	PYSKA	max	min	*EHHE	AZEKA	CTBME
				16 7,32 ±5,0				M				15,92 ±13	8,8 ±6,33	3 -		M		 -	 			
	18	<u>I</u> - 18-8.2-5mr	N 28,57 33	5 976 -	I -	_ E1,64	41 // _ //E. C) 7-5-/	N	30,87	33 ,55	9,76			±2,13	<u>I</u> I-18-12.7-5m⊓	N		 -				
		1 10-0.2-0MI	Q	_ ±0,6	1 ±1,52	±1,40 ±1,53	2 10 0.7 01.11	Q	<u> </u>			±061 ±1,				14	┝═	29,2	881	+788	±18,9	±675
			M - 29.	2 8,81 +5,0	8 ± 4.7	±9,45 -		M	 -	29,2	8,81	±6,01 ±14	,1 ±6,5e	±235		N	3308	38,93		-		
<u>/</u>	24	<u>Ī</u> -24-8.2-5µr	N 28,5738,5	3 11.74 -	 -	- ±1,81	Ĩ-24-9.7-5mr	N/	30,87	38,93	11,/4	1062 416	58 ±077	±0,77 ±1,76		Q	_	-		±0,62	±1,65	±0,60
3			Q	±06	2 ±1.55	±1,40 ±1,65		14	 -	-		±5,72 ±14	7 ±63	2 -		M	_	32,2			±19,7	ı
				2 15,0 ±4,8	3 ±12,2	+9,45 -		M	30,87	12,2	200			±2,63	<i>T</i> 3 - 40 7 5	N		43,2				
	30	<u> </u>	N 2857 43.	2 20,0 -	7464	- ±2,04 1 ±1,40 ±1,90		0	50,07	43,2	_	±0,59 ±1,6	54 ±0,77	±1,97	<u>I</u> -30-127-5mr	Q				±q59	±1,71	±060
		Phone I	4					M	+	54.4		±13,18 ±18				M						
		· <u>}</u>	M - 34, N 31,13 72,	4 8,06 ±11,10	6 210,4	- ±3,14	T 48 0 7 45	N	33,43		10.73		- -	<u> ±4.0</u>	<u>Г</u> -18-12.7-10нг	N						_=
	18	Ī-18-8,2-10Hr	N 51,15 /2,	- ±134	5 1203	±1,40 ±8,9	1	Q	_		_	±1,36 ±2,				Q		<u> </u>				
		{	M = 50	9 9.56 ±11.16				M	_	59,9	9,56	#3,18 ±18	6 ±63	≥		M	_=_		1	±17,26	±25 ₀	±6,75
γ.	21	<u> </u> <u> </u>		8 12,76 -	_	- ±3,4	I-24-9.7-10Mr	N	33,43		12,76			±4,35	II-24-12.7-10HM	N	36,93	79,8	12,76		±2,14	+060
10	24	11-24-6,2-10Mr	Q	- ±1,30	6 ±205	±1,40 ±3,18	2 -4 -1, 1-11	Q	<u> </u>			±1,36 ±2				Q	 	=		1	T	ł.
		93	M - 65	7 12,8 ±11,10	6±15,8	±9,45 -	_	M				±13,18 ±18	9 ±633	2 -		M	200			±17,26	±25,3	
	30	I-30-8,2-10mr		2 17.11 -	_	_ t3,72	TI		33,43	88,2	17,11			±4.72	<u> </u>	N	26,32	882		+126	±2,17	+06
		# 50 6,2-10MF	Q	- 12 - ±1,30	5 ±2,07	±1,40 ±3,4	, 2 00 0,, 10,,,	Q				±1,36 ±2	1 197	7 13,54		4	 	+=-		-1,56		
				2 10,67 ±13,5	3 ±14.7		-	M				±16,0 ±1	7,6 200	±3,34	T 10 10 - 15	N				-		_
	18	<u>I</u> -18-8.2-15µr	N 30,49 57,	7 14.21 -		- ±2,60			32,79	5/./	14,21	±1,65 ±1,5	6 ±07		1 1 10 (C./~10m)	Q	_	-	_			
			Q - -	±1,6:	5 *1,93	±1,40 ±2,4:	· · · · · · · · · · · · · · · · · · ·	R	1	122		±16,0 ±1.				M	_	47.5	14,12	±20,9	±23,8	±6.7:
Y			M - 47.		3 = 14,0	- ±2,8		N	32,79					±3,58	[-24-12.7-15mr	N	36,29		18,85			
3	24	<u>II</u> -24-8,2-15mr	N 3049 63,	2 18,85 -	= +101	±1,40 ±2,6.		Q	JE,(9		-	±1,65 ±1,9	8 ±0.7	7 ±2,68	11 24-12.7-15Mr	Q					±2,04	
	- ,-		4	3 20,3 ±13,6				M	1_	52,3		±16,1 ±18		1		M		52,3	293	±21,1	+24,0	
			M - 52,: N 3049 69,	8 2705 -	- 15,0	- ±3,0		N	32,79		27,06		_ _	±3,87	11 コロー1ン ソーバー	N	36,29	69,8	27,06		<u> </u>	<u> </u>
	30	<u>I</u> I-30-8.2-15µr	Q	- +166	±1.96	±1,40 ±2.8		Q			_	±1,66 ±2	0 ±97	7 290	2 -0 (E,/-I)MI	Q		<u> </u>	<u> </u>	±1,66	±206	±0,6
			M - 46	8 12,89 ±16,9	7 ±19.9	±9,45	,	M		46.8	12,89	±20,5 ±25	3 <u>8 ±63</u>		,	M	<u> </u>	 -			 	
		-	N 31,29 62;	5 17.18 -	_	_ ±3,14	T-18-07-20-1	N	33,59	62,5	17,19			±4,01	<u>II</u> -18-12.7-20MF	N	<u> </u>	↓ =_	 		<u> </u>	-
	18	. <u>I</u> I-18-8.2-20мг	Q	_ ±20	±2,57	±1,40 ±2,94	<u>I</u> -18-9.7-20Mr	Q	<u> </u>			±2,07 ±2,				Q	<u> </u>	+=			1.246	4674
				5 14,75 ±16,9	7 ±19,9	±9,45 -		M				±20,5 ±25	3,8 ±6,3	2 -		M		51,6	14.75	±26.3	±31,6	19/5
Y	24	<u>I</u> I-24-8,2-20mr	N 31,29 68,	7 19,68 -		- ±3,42			3359		19,68			±4,35	<u>I</u> -24-12.7-20mr	1	37,09	68,7	19,68	+227	±2,66	106
2	-4	<u>"</u> 24-0,2-20mr	Q	- ±2,0	±2,57	±1,40 ±3,19		Q				±2,07 ±2,			,	Q	 -	501				
	1		M - 58,		7 ±19,9	±9,45 -	_	M	<u> </u>			±20,5 ±2:	3,8 ±6,32	14 94		M	3700				±31,6	-
30	<u>I</u> -30-8,2-20mr	N 31,29 77,4	1 2092 -	_	- ±3,75	<u>I</u> -30-9.7-20mr	NQ	33,59	77.4	20,92	±2,07 ±2		±4,81	<u>I</u> I-30-12.7-20MM	Q	121,09	H.CA.	5035	1	±2,66	+06	

B ROTEPEYNOM HATTPABAENNI COCEMA MAPPOSOK MA ON MAMENTO.

PHMEYAM 19:

- 1. B TABANGE TIPHBEAEMS HOPMATHEMSE HAPPYSKI B YPOBHE BEDOCHETO OSPESA ONHAMERITA.
- 2. HOPMATHENUE MAI PUSICH & TIPOLONGHOM MATIPABLETIAN OF TOPMO SETHING IN BETPA (N-BEPTHICANGHAS, Q-FOPHSON-ТАЛЬНАЯ) ДАНЫ ДЛЯ ФУНДАМЕНТОВ СВЯЗЕВЫХ КОЛОНН ПРИ ДЛИНЕ ТЕМПЕРАТУРНОГО БЛОКА 72м.

ТК Нормативные нагрузки мафунданенты ис. 01-08/67 г. ческие магнитно-грепферные краны. 4 33