ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ИС—0I—08/67 ОТКРЫТЫЕ КРАНОВЫЕ ЭСТАКАДЫ

выпуск 6

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ ЭСТАКАД ПОД КРАНЫ МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТНЫЕ ГРЕЙФЕРЬЫЕ И МАГНИТНО — ГРЕЙФЕРНЫЕ СО СТАЛЬНЫМИ НЕРАЗРЕЗНЫМИ ПОДКРАНОВЫМИ БАЛКАМИ

-	ового проектирования просит дять Ваши замечания о качества направляемого Вям проекта.
	ТИПОВОЙ ПРОЕКТ(номер проекта)
Наименование проекта	•••••
Проектава организация-с	p spoekra
Замечание о недостатках	юекте (нерациональные объемно-планировочные и
конструктивные решения,	бки, опечатки, полиграфические дефекты и т.п.)
и предложения но их устра	ию
Подпись должностного	ліца, наименование организации и ее адрес
• • • • • • • • • • • • • • • • • • • •	•••••
ЕНТРАЛЬНЫЙ ИНСТИТУТ Т	пового проектирования госст роя ссс р
	ви, Б-66, Спартаковская ул., 2а. корпус В
Сдано в печа Заказ <i>№ 1</i> 0	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ГОСУДАРС: ВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ИС—0I—08/67 ОТКРЫТЫЕ КРАНОВЫЕ ЭСТАКАДЫ

выпуск 6

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ ЭСТАКАД ПОД КРАНЫ МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТНЫЕ, ГРЕЙФЕРНЫЕ И МАГНИТНО — ГРЕЙФЕРНЫЕ СО СТАЛЬНЫМИ НЕРАЗРЕЗНЫМИ ПОДКРАНОВЫМИ БАЛКАМИ

РАЗРАБОТАНЫ
ГОСУДАРСТВЕННЫМ ПРОЕКТНЫМ ВИСТИТУТОМ
КИЕВСКИЙ ПРОМСТРОЙПРОЕКТ
ПРИ УЧАСТИИ ИИИКБ И НИИСК 2r КИЕВ 2

УТВЕРЖДЕНЫ
ГОССТРОЕМ СССР 31. XII-658г
ПОСТАНОВЛЕНИЕ Ж109

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ МОСКВА

	COLEPSEANNE.	NºNº ANCTOB	<i>\f≈\f</i> !* €Tp.	M	Nº Nº Anctob	NºN° CTP:
			, 9	M АРКИРОВОЧНАЯ СЖЕМА ДВУЖПРОЛЕТНЫХ КРАМОВЫХ ЭСТАКА $m{1}$ С ОТМЕТКАМИ ГОЛОВКИ РЕЛЬСА $m{8}$.200 и $m{9}$.700 .	17	22
	Comeragne.			МАРКИРОВОЧНАЯ СОСЕНА ДВУОСПРОЛЕТНЫХ КРАНОВЫХ ЭСТА- КАД С ОТМЕТКОЙ ГОЛОВКИ РЕЛЬСА 12.700.	18	23
1	Поясинтельная записка.	- April 1994	3÷5	Узлы сопряжения колони сфундаментами / Узлы 1+4/.	19	24
	TABANUA WHOPO'S PABAPHTHEIX CXEM OTKPEITEIX KPA- HOBEIX OCTARAL.	ť	6	Уэлы 5÷12	20	25
	CXEMBI ICPANOSSICE NATPYSOK HOPMATHRIBIE ICPANOSSIE NATPYSKIN	2	7	Узлы 13÷21.	21	26
1			,	Y3A& 22:28.	22	27
	COSEMA MATPYSON HA ESASMING.	3	8	Виды по А-А,Б-Б	23	28
	HOPMATHBHOIE REPAROSOIE MATPUSCH MA KONOMMOI M BETPO-	4	•	Уэлы 29÷32.	24	29
	BUE HAIPYSICH HA KONCTPYRUHH SCTAICAA.	4	9	Y3A61 33 ÷35	25	<i>3</i> 0
	TABANILA MAPOIC ROMONNI OTRIPUTURE EPANOBURE DETAINA .	5	10	Узлы 36 ÷ 41.	26	31
H	HOMENKARTYPA CEOPHOLIC GENESOBETONHOLIC KONOMM. TABANYA PACIDOAA MATEPHANOB.	6	11	Дополнительные элклалые элементы в колонилос для крепления вертикальные связей.	27	32
	Номенклатура стальных конструкций, принятых по серии КЭ-01-57			ДОПОЛНИТЕЛЬНЫЕ ЗАКЛАДНЫЕ ЭЛЕМЕНТЫ В КОЛОМНАЭС ДЛЯ КРЕПЛЕНИЯ ПОСЛДОЧНЫХ ПЛОЩАДОК. УЗЕЛ 42.	28	33
Щ	BUTINE II/67.	7	12	ДЕТАЛИ УСТРОЙСТВА ПРОЖОЛОВ ВДОЛЬ БРАНОВЫХ ПУТЕЙ. Концевые упоры.	29	34
	Номенклатура стальных конструкций, разработанных в серинИС-01-08/67 Выпуск З.	8	13	ПОРМАТИВЛЫЕ НАГРУЭКИ НА ФУПДАНЕНТЫ КРАЙ КИХ КОЛОПИ ПОД МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТКЫЕ КРАНЫ .	<i>3</i> 0	35
_	TABANILA MAPOR SAEMENTOS OLNORPOAETNOSE KRANOBSIC SCTA- KAL NOL MOCTOSSIE SAEKTRIVECKHE MAPHITHISE KRANSI PY-		. 4	Нормативлые пагрузки на фукламенты крайких ко- лони пол мостовые электрические грейферные краны	31	3 6
	TABANUA MAPOR SAEMENTOB CANCIPOAETHOISE REANOSCISE	9	14.	HOPMATHBRIDIE HAPPYSKM NA DYNAMERTO KPANNOC KO- AONR NOO HOCTOBUE BRETTHYECKNE MANNITHO PENDERNUE KPAND.	32	37
	ЭСТАКАД ПОД МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ ГРЕЙФЕРИЫЕ КРАПЫ ГРУЗОПОДЗЕМНОСТЬЮ 5;10;15 И 20Т.	10	15	HOPHATHBRUE HAPPYSKH HA SPYNIAMENTU CPEINNE KOAONN NOI MOCTOBUE BAEKTPHYECKNE MAPHHTRUE KPANU.	3 3	38
	TABANUA MAPOR SAEMENTOB OLIKOTPONETTISISC KRAMOBSISC SCTARAL TOL MOCTOBSIE SAEKTRIYECKIE MATRINTRO-TPERFERISIE KRAMSI			HOPMATHBASIE HAPPYSKA HA GYMAMERTOS CPEANAS KOAONA NOA MOCTOBSIE SKEKTPAYECKHE PPENGEPASIE KPANSI.	34	39
	грузолодьемностью 5/5; 10/10, 15/3 и 20/5т.	11	16	HOPMATHEMBIE HAFPYSICH MA ФУГЦАМЕНТЫ СРЕДНИЗ КОЛОНН ПОД МОСТОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАГНИТНО-ГРЕЙФЕРНЫЕ КРАНЫ.	35	40
	TABANYA MAPOR SAEMENTOS ASSETPONETNOSE EPANOSESE SCIARAA NOA MOCTOBOIE SAEKTPNYECKNE MAL'HNTHOIE KPA- NOI POSONOASEMNOCTORO 5; 10; 15/3 N 20/5 T.	12	17	ВАРИАНТЫ ЗАГРУЖЕНИЯ КРАНАМИ ОТКРЫТЫХ КРАНОВЫХ ЭСТА- КАД ПРИНИМАЕМЫЕ ПРИ РАСЧЕТЕ ФУНДАМЕНТОВ, ПРАВИЛО ЗНАКОВ.	<i>3</i> 6	41
4	TABANYA MAPOK SAEMENTOS ASSECTIPOMETHOSE KPANOSOSE SCTAKAA NOL MOCTOSOE SAEKTPHYECKHE PPEMPEPHOE KPANO	_	•7	Kolonnoi Klei-1-1;klei-2-4;klei-2-5;klei-3-5;klei-3-6; klei-5-6;klei-5-7;klei-1-1;klei-2-4;klei-2-5;klei-3-5; klei-3-6;klei-5-7./orllyboynoin yepte*/.	37	42
	PPYSOROLISEMHOCTERO 5;10;15 H 201.	13	18	r	٦,	44
1	TABANUA MAPOK SAEMENTOS ABYCHPONETNOS KPANOBOS SCTACAA NOA, MOCTOROS SAEKTPHYEKENE MARNHTNO-FPEN- PERNOS KPANO FRYSONOAZEMNOCTOS 5/5; 10/10; 15/3 N 20/5T.	14	(9	Колонны КДЭЙ-1-1; КДЭЙ-2-4; КДЭЙ-2-5; КДЭЙ-3-5; КДЭЙ-3-6; КДЭЙ-4-6; КДЭЙ-4-7; КДЭЙ-1-4; КДЭЙ-2-4; КДЭЙ-2-5; КДЭЙ-3-5; КДЭЙ-3-6; КДЭЙ-4-6; КДЭЙ-5-6; КДЭЙ-5-7. /ОПАЛУБОЧНЫЙ ЧЕРТЕФЕ/- Колонны КДЭЙ-1-3: КДЭЙ-1-1-1: КДЭЙ-2-4: КДЭЙ-2-5; КДЭЙ-3-5;	<i>3</i> 6	43
1	Маркировочная соена однопролетных краповых		,•	Колонны КДЭЁ-1-3; КДЭЁ-1-4; КДЭЁ-2-4; КДЭЁ-2-5; КДЭЁ-3-5; КДЭЁ-3-6; КДЭЁ-1-3; КДЭЁ-1-4; КДЭЁ-2-4; КДЭЁ-2-5; КДЭЁ-4-5; КДЭЁ-4-6; ОПАЛУБОЧНЫЙ ЧЕРТЕЖ	39	44
	SCTARAL C OTMETRAMN FONDERN PEAGEA 6.200 M 9.700	15	20	YEAN 43 ÷ 48. BARAAMHE BARMENTH M-12+M-15.	40	45
	МАРКИРОВОЧИЛЯ СОСЕНА ОДИОПРОЛЕТИНОЕ КРАНОВНОЕ				ŧ	•
'	OCTARAL C OTMETRON POLOBRA PERSCA 12.700.	16	21	TK COLEDSCAMME.		MC-O

Пояснительная записка

I. OBWAS YACTO.

1. В настоящем выпуске приведены материалы для проектирования открытых краковых эстакад под краны мостовые электрические магнитные, грейферные и магнитно-грейферные грузоподземностью 5; 10; 15 и 20 т со стальными перазрезными подкрановыми балками.

Указанные краны в мастоящее время не гостированы и их технические жарактеристики приняты по данным заводов-изготовителей, приведенным в каталоге кранового оборудования (шифр 1-308), выпущениом Всесоголюм научно-исследовательским и пректым институтом механической обработки полезных исколаемых /Механобр. Ленинград, 1965г.). Перечень кранов, рассмотренных в данном выпуске, приведен в таблице 1.

TABAHUA 1.

1 1 1 1	1							
	NºN:	rojen-	MAKCH- MANNAA BUCOTA	Перия	3aboa-hapotobhteas	N° Baboackoro	TEAR, MOSTES	BOAA-H3FOT OS N EPJEAAPOULEE SCAPAKTEPHCTHRH
	n.n.	HOCTE	MOABEMA	M	onday has by barnens	YEPTE\$¢A.	N²	AATA
		r	М					
			KPAT	161 MOCI	TOBWE SKEKTPHYEC	THE MATHH	THUE	
	1	5		11÷26		FAEAPHTHWH		
	2	10	16	11+34,5	TAURENTCRHH 3ABOL "NOLZEMNHE"	6-633	6800-0ric	23.¥.64r.
	3	15		11÷32	Узловский машино-	[11-60	04	
	4	15/3	16/18	11752	СТРОИТЕЛЬКЫЙ ЗА- ВОД	KATAAOF	040-51 H	27.1.65r.
A B S C C A A A H O A E T D B A P A P A P A P A P A P A P A P A P A	5	20/5	12/14	10,5÷31,5				
CAMO				EPAH	W MOCTOBUE SAEKTI	onyeckne ri	РЕИФЕРИЪ	/E
The state of the s	1	5	16	11+32	Taurencenh Sabo a "Подземник"	6-654	6800-0FK	23. ¥.64r.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	10	20	11-52	Y3AOBC RH M MAWHNO- CIPOHT EASH OM 3 ABOA	r10-60	840-5TH	27. E.65 r.
3 8 6	3	15	23	16.5÷31.5	ЛЕПИПГРАДСКИЙ ЗАВОД ПТО ПИ. КПРОВА	0,700.061	1-2-6/1127	17.Æ.64r.
47° 77 8	4	20			TO THE TOPPOSE	0,, 00.00	7	
FA. III				KPAHOI	MOCTOBBLE SAEKTPHY	ECRME MATRI	итно- <i>гр</i> ей	DEPHOLE.
E E	1	5/5		11+34,5	Tawkentcknú 31801 "Nolgemnne"	6-635	6800-0FK	25.¥.64r
PEKT	2	10/10	11÷32	Узловский машино-	T16-60			
KAN.	3	15/3	16/18		CTPONTEAGNOIN 3A-	<i>Γ15-</i> 60	840-5TH	27. [.65 ₇ .
POH KMFRCKNÅ POMCTPOÁNPOEKT FKMFR.	4	20/5	15,5	25÷31,5	BOA.	F17-60		
PON C	4	-7/5	,-			•		

* HISTOTOBAENHE EPANA B NACTORMEE BREMS IA KONKPETNIM IABO-AOM HE IAKPENAENO.

В соответствии с п. 9.1 и приложениями $\overline{\mathbb{I}}$ и $\overline{\mathbb{I}}$ СНи $\overline{\mathbb{I}}$ -В.3-62 открытые крановые эстакады под мостовые электрические магнитные, грейферные и магнитно-грейферные краны отнесены к сооружениям с тяжелым режимом работы.

2. РАЦИОНАЛЬНОСТЬ ПРИМЕНЕНИЯ НЕРАЗРЕЗНЫХ ПОЛЕРАНОВЫХ БАЛОК ОПРЕДЕЛЯТСЯ ПО МЕТОЛИКЕ, ПРИВЕЛЕННОЙ В П. 41 ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ СЕРИИ КЭ-01-57 ВЫП. $\mathbb{Z}/67$ "СТАЛЬНЫЕ НЕРАЗРЕЗНЫК ПОЛЕРАНОВЫЕ БАЛКИ ПРОЛЕТАМИ 6 и 12 метров пол мостовые электрические краны грузо по 1 бемностью 5-75 тони."

3. Номинальные пролеты эстака (расстояния между разбивочными осями колони) приняты 18, 24 и 30м. Привязка оси кранового пути к разбивочным осям во всех случах 750мм. Пролеты кранов соответственно равны 16.5; 22.5 и 28.5м.

4. Номинальная высота эстака́ (отметка головки кранового рельса) принята 8 200; 9.700 и 12.700 и. Указанные отметки установ лены, исходы высоты кранового рельса 150мм и высоты подкрановой баки на опоре 1450мм.

YCAOBHAR OTMETRA ±0.000 COOTBETCTBYET YPOBRIO FONOBRIO PEACA & EAEBROADPOXENOTO ПУТИ, РАСПОЛОЖЕННОТО В ПРЕДЕЛАЖ ЭСТАКАДЫ.

5. B HACTORMEM BUILDICKE PASPAGOTANO OLHORPOLETTINE HABYRPOLETHNE OTRPOITNE KPAHOBNE SCTAKALNI.

RYTEM ROBTOPERIA HYSENOTO KONHYECTBA CPELINIX PALOB KOLONN HS

ABYX RPOLETHNIX SCTAKAL HA BASE RPHHATONX PEWEHNN MOLYT BUTG

ROLLYCHON MHOLORPOLETHNE SCTAKALNI C HYSENOM YHOLOM RPOLETOB

6. Привязка колони крайна жолея продольным разън-вочным меро мюнича:

Q/. HYNEBAY"-AND OCTAKAA C OTHETKAMH FONOBRH KPAHOBOFO PEAGEA-8.200 H 9.700M.

5/ 250HH- AND SCTARAL C OTHETRON FOLOBER RPANOBOFO PEAGCA 12.700M.

B средних рядах разбивочная ось располагается по оси симметрии колоки.

7. ДЛИНА ТЕМПЕРАТУРНОГО БЛОКА ПРИНЯТА РАВНОЙ 72M В СООТВЕТСТВИН С РАЗМЕРАМИ УНИФИЦИРОВАННЫХ ТИПОВЫХ СЕКЦИЙ ДЛЯ
ПРЕДПРИЯТИЙ МАШИПОСТРОЕНЬЯ. ШАГ КОЛОНІ ВДОЛЬ ЭСТАКЛАІ— 12M. ПОПЕРЕЧНЫЕ ТЕМПЕРАТУРНЫЕ ШВЫ ОСУЩЕСТВЛЯЮТСЯ НА 180ЙНЫХ КОЛОННАХ БЕЗ ВСТАВКИ. ПРИ ЭТОМ ОСЬ ТЕМПЕРАТУРНОГО ШВА СОВМЕЩАЕТСЯ
С ОСЬЮ РЯДА, А ОСИ КОЛОНИ СМЕЩАЮТСЯ С ОСИ ТЕМПЕРАТУРНОГО ШВА
НА 500 НМ

ПРИ ВВОЛЕ ФЕЛЕЗНОЛОРОФИЛОГО ПУТИ ВЛОЛЬ ЭСТАКЛІМ ОМ ЛОЛФЕН РАСПОЛАГАТЬСЯ СО СТОРОНЫ, ПРОТИВОПОЛОФИЛОЙ КЛЕНИЕ КРАМА. В ЭТОМ СЛУЧАЕ ПРИВЯЗКА ОСИ ПУТИ К КРАНПЕЙ РАЗБИВОЧНОЙ ОСИ ДОЛФЕНА БЫТЬ НЕ МЕПЕЕ 3850МИ ПРИ КОЛОННАЖ РАЗМЕРОМ 1400МИ НЕ МЕНЕЕ 4100МИ ПРИ КОЛОННАЖ РАЗМЕРСЯ 1900МИ. ПРИВЯЗКА ОСИ ПУТИ К СРЕДНЕЙ РАЗБИВОЧНОЙ ОСИ ДОЛЖНА БЫТЬ НЕ МЕПЕЕ 3400МИ.

PH BBOAL JEENESHOLOPOTENOTO NYTH NONEPER SCTARALU ON MOTET BOITG PACHOLOGEN B MOSOM WATE, ROOME CBREESOTO, IL LOXUEN SUITG YES BANC PACHOLOGENHEM LECTHIL HA NOCALOYNDIE TROUGALEM.

> TK 1968r

MOSCHYTEAGHAS BANHERA

PHEASKA OCH NYTH K OCH KONOMHOL AONSENA SOITO HE MEHEE 2750 MM.

9. Планировка площадки и тип покрытия пола решаются THE PASPASOTEE KOREPETROPO THOEKTA I LONGEROL OSECTEUNTS OF-BOA ATMOCOPERHOUSE BOA

10. B COOTSET CTBMM C SPABMAAMM TOCTOPTECCHAASOPA PACCTORNIE OT SAANEN CTENEN KABNING KPANA TO FRANK KONONING TONSENO BOITG HE MENEE 400MM. AAR OBECREYENNE YKASAMMOTO TPEBOBANNE TPH SAKASE KPAHOB ADNIENA EGITG OCOEO OFOBOPENA MPHBASIKA KABHROLE OCH KPAROBOTO TYTH.

11. BCETO B AAHHOM BOINYCKE PACCHATPHBAETCH 186 (ABAPHT-HOICE COSEM OTERBITATION REPARABAGE SCHARAL.

АЛЯ ОБОЗНАЧЕННЯ ГАБАРИТНЫХ СОСЕМ ПРИНЯТЫ ШИФРЫ, В КОТОРЫХ: MEPSAR LIMPPA PHMCKAR O 503MAYAET YHCAO MPONETOB BOTAKAAN; BTOPAS LHOPA- MPONET SCHARALOIB METPAX;

TPETOSI LINODA-OTMETRY FOLOSKIN KPANOSOFO PELOCA B METPASC; YETBEPTAS LIMPPA- L'PYSONDABEMNOCTO ICPANA B TONNAC;

BYRBERNOIN HRAEKC Y YETBEP TON LIMAPOI O BOSHAYAET THE KPARA: M-MATKHTHOIÁ:

I'- FREM DERNOIM:

HEBUKHA STROMINDUE F. KME IS.

MI-MATHNTHO- FREHDERNOIN.

TABANLY WIMPOR FABAPHTHOUS COSEM OM HA AMOTE 1

HACTOSMETO BUTYCKA.

12. CEPHS MC-01-08/67 , OTEPOITHE EPANOBHE SCTARALH! PASPAEOTAHA ALS I-II CHEFOSOICE H BETPOBOICE PAHOHOB CCCP HO CHAN I A 11-62 APA PACYETHOÙ SUMMENTEMMEPATYPE ME MAGE -40°C.

13 KOMMAEKT MATEPHANOB AND PROEKTHPOBAHHO OTKPOITGIOC KPANOBOX OCTARAL ROLL RPANOL MOCTOBOLE OMERTPHYECKHE MATHITHOLE, PPENDEPRINE IN MARKINTHO- PPENDEPRINE PRISONOLISEMHOCTOR 5:10:15 M 20T CO CTANONOMIN HEPASPESHOIMH HOAKPAHOBOIMH BANKAMIN COCTONT H3 3 BAITYCKOB!

Выпуск Б. Материалы для проектирования эстакад под крапы MOCTOBOLE SAEKTPHYECKHE MARKHTROLE, PPENDEPHOLE M MACHITHO-FPEHPEPHOLE PRISONOLEMMOCTOR 5; 10, 15 M 20T CO CTARENUMM HEPASPESHEMM NO LICPAROBEIMM BAR-

BUILDER 2. PABOYNE YEPTEGEN CEOPHUS GELESOSETONHOUS KON-CTPYKUNÁ.

BOINYCE 3. CTANOHOLE FORCTPYKLINH.

I. KONCTPYKTHBUOLE PEWEHHA.

1. OTEPOITOIE REPARABOLE SCHARALOL CO CHANDIOLIMIN HEPASPEST HUMM HOAFPAHOBUMM BANKAMM, HPMBEAEHHULE B HACTORILEM BUITS-RE, KONCTPYRTHBHO PEWENGI AHANOTHYHO SCTARALAM HOL RPAHOL MOCTOBOLE SAEETPHYECKHE MARKHTHOLE, FPENDEPHOLE M MARKHTHO-FPEN-DEPUBLE CO CTANDIMIN PASPESITOIMIN MOLEPATIOBOIMIN BANEAMIN, PASPAGO ТАННЫМ В ВЫПУСКЕ 4^* НАСТОЯЩЕЙ СЕРИИ.

2. ANS ECEX PACCMOTPENHOIX & HACTOSILLEM BOINSCRE FASA. PHTHOLDE COCEM OTERBITADO EPAHOBOLOS SCTARAL RIPHHITAL CEOPHOLE *EAE305ETOHHOIE ABXXBETBEBBIE KOADHHOI, KOTOPBIE OTAHYARTCS OT СООТВЕТСТВУЮЩИЗС КОЛОНИ, РАЗРАБОТАННЫЕ В ВЫПУСКЕ 2 НАСТОЯЩЕЙ CEPHN, TOAGKO KONCTPYKLHEN BAKAANHOD BAEMENTOB 4A9 ONMPANNS MOAKPAHOBOUR BANOK.

OTALYBOYHOLE YEPTERN YKASAHHOLE ROLOTH TRABEAENOL MA AHCTASE 37+39.

3. Noakpanobbie baakh bo bcec cayyasic pphhistbi ctaabhbie HEPASPESHOIE NO COPTAMENTY BUNUCKA I/67 CEPNN K3-01-57 KA OCHOBE PACHETA HA HOUHOCTS, *ECTROCTS H YCTOHUHBOCTS:

TIPH RPANACE FRYSOROASEMHOCTON 5T - HS CTANH MARCH CT.3; THE RPAHAS PRISONAL SEMENOCTION 10, 15 M 20T - H3 KMSKONETHPO" BAHHOH CTANH

Условия поставки стали марки Ст.З, марка низколегировач-HOH CTANN IN YKASARING TIO HISTOTOBIERINO BANOK TIPHRINANTOS B COOT-BETCTBHH & PEROMENALUISHIN, TIPHBE LEHROIMH B BOITYCRE 4/67 CEPNH K9-01-57.

 $oldsymbol{A}$ $oldsymbol{A}$ MODE ABNICTION REPUBLIC TOPMOSTON CONTROL CONT B BHAE CHAOWHERE TOPMOSHERE BAKOR. COCEME TOPMOSHERE BAKOR RPHBEAEHOI HA MICTE 7 HACTORILLETO BOINYCKA.

5 CITALANUE BEPTHICALANUE CERSH ME LA KOLONHAMH, BCHO-MOFATENBROIE DEPMOI, RECTHILL IN ROCALOUNDIE TROUBARK TOPHISTO TO BUTTORUEN CEPHN.

6 ALS UCTPONCTBA KPANOBOW NYTEN CAEAYET NPHMENSTOCHE-LHANGHOLE KPAHOBELE PENGCOI KP-60 H KP-70 TO FOCT 4121-62 B COOT-BETCIBHH C MACROPTHUMH AAMHUMH JABOLOB-HSTOTOBHTEAEN, KPEME MME PEAGOOB PROMISSOANTS HA PLANEAGE C WAROM 750MM CHCROAGGOBA HHEM LETALEN, TIPHBELENTION B CEPHN KJ-01-57 BUTTON YILL.

AAR OBECHEYENIR YRASAHROFO EPENAENIR B CEYERIRSC ΠΟΛΕΡΑΠΟΒΕΙΣ ΕΑΛΟΚ, ΜΜΕΡΟЩΗΣ ΠΟ COPTAMENTY CEPHN C9-01-57 BOIN IN WIPHITY BEPOCHETO NOSCA MENEE 400MM, NOCAEANSS AONSCHA BUTE CONCEPTATION SEAMYERA AO 400MM / BES ISHEHEMING OCTARE-HUS PASMEPOB CEYEMMA/.

7. Belsop thra conceboro yropa & sabhchmocth of thra h PYSOROLIEMNOCTH EPANA RPOHSBOAMTCS TO TABANUE, TOMBELENHON HA AHCTE 29 HACTORILLETO BOINVERA KONCTPYELLHA YNOPOB MPHINGTOL ПО СЕРИИ КЭ-01-57 ВЫПУСК \$_/67.

8. ALR TROCOAL BLONG KRANOBOK TISTEN BYPOONE BERKA MOLKPAHOBOIC BANOE CAYGEAT CTENKH TOPMOSHOIC BANOK. PH PAS-PASOTRE KOMPPETHORO RPOEKTA NO MATERHANAM CERUM AND BESONAC-HOCTH TROUGHA TO TOPMOSHOM BAKKAM HA YYACTIKAW HALL OFONOBICA MH ROADHH CAEAYET PREAYCHOTPETS PAHAYCSI, RPENAEHHE ROIDPONE HE ADAJEHO PREPATETBOBATO CBOSOAHOMY REPEHEMENHO SANOK.

OFPAGAENHE PROXOLOB PRELYCHOTPENO CTALCHOIMH PEPHALMI BOICOTON 1200MM C ORNON CTOPONOI: ON NONNER MMOOST NOTOCOMB CPEANIM PALAM - C MOSON CTOPONO. OFPAJELENHE NO CPEANIM PALAM MY MYTH.

XODOBAS FAMEPES TO BOEH CBOEH AMME MOSET BOTTO HOTOME. BOBAMA AND PEMONTA DOLOBON YACTH KPANA M CMENO DOLOBODE KO-LEC ULM ACVORNI AKVATEN HOC LA CLETTHAVORDE DACUDE TEVALENDE BPYC6A.

■. HAIPYBEH H PACYET KONCTPYKLHH

1. THE PACYETE CONCEPTELLING OFFICE EPAROBOIX SCTA-KAL EPANOBOLE HAPPYSKH HPHRATOL OF LBYE MARCHMANONO CENNEEN-HOW MARRATHOW, PPERPERNOW HAR MARHATHO-FREMPERNOW KOA-HOB OAHNAKOBON PPYSONOABEMHOCTH.

MOSCHHTENSHAS BAHHCRA

2. CHEFORYIO H BETPORYIO HAFPYSKH HA RONCTPYKLINH SCTARAL, BETPOSYM HAPPYSKY HA BOROSGIE NOBERXHOCTH KPA-HOB, MONESHYIO MAPPYSKY HA XOLOBYIO PALEPEN, YCHANS OFTEH-REPATYPHOX BOSLENCTBUN - CM. B PASLENE I ROSCHUTENONON SA-THECH BOITYCEA 1 HACTORMEN CEPHY; TAM JEE TOUBE LENG YEASA-THE TO PACYETY KONCTPYEUNH OTEPHITHIX RPANOBOX SCTARAL.

N YKASAMUR NO MPHMEMEMHIO YEPTESEEN CEPHH.

1. TPN PASPA SOTKE KOKKPETKOPO POPEKTA OTKPNITON KPARO-BON ACTARALM NO MATERNAMAM MACTORILLE O BUNICKA PEROHENLY-ETCS CAEASIOWNY TOPSANC PASOTOI!

CA/ NO TABANGE HA ANCTE 1 B COOTBETCTENH C TEXHONOPHYECKIN

BALAMMEM MOLOBRATO FABARMINING COCEMY SCTARALO:

5/ NO TABANUAM MAPOR DAEMENTOB DOTARAA, NAMBEAENNUM MA AMCTAZ 9+14. AAR BEISPANNON FABAPHTNON COMEME ONPELEANTE HAP-EN CONCIPUETHBRUIX SAEMERTOB N ROMEP ANCIA MORTAGERON CXEMU!

B/FYKOBOACTBYRCS TPHBEAENTISHIN B MACTORILLEM BOINYCKE PEWENNYMM, PASPA STATE HONTASEN ON CHENY MARIAGEN NO CHENY

OCTAKAA61;

2/ NO MATPUSEAM, NORBELENNON ALB BOISPANNON LABARATION COMEMBIA TABANLAN MOPMATHBUS MAPPADE HA PYMAAHENTOI /AUCTO 30+35/, BAMPOERTUPOBATO SYNAAMENTO SCTARALOC YYETOM PEROMENALLINÍ, PRIBELEMIONO & PASLEAE IL POSCHITEAGNON SARINGEN BUITYCKA I MACTORMEN CEPMN.

2. TPH PASPABOTIE MILHENLYAKENEW H THROBOW RPOERTOB OTCPOITOD CPANOBOID DCTARAN ON LABORD CONDENS CONTROL CONTROL OF THE CONTROL C KA B CAYYAE HAAHYHA AFPECCHBHOW BOBAEHCTBHH AONDENU BUTO FIPE-AYCMOTPERGI MEPORPRATUR RO BALLATE KONCTPYKLUM OT KOPPOSUM B COOTBETCTBUN C ТРЕБОВДИИЯМИ СНИЛ I-B.27-62 "ЗАЩИТА СТРОИТЕЛЬНОЖ CONCTPUE LIMÍ OT COPPOSIMA. MATERNANSI NI NIGERNA, CTONENE PROTHB COPPOSHH"H CH 262-67 "VEASAHHR TO TPOEETHPOBARHIO ARTHROP-РОЗИЙНОЙ ЗАЩИТЫ СТРОЛТЕЛЬНЫЕ КОИСТРУКЦИЙ". ПРИ ЭТОМ ОБЫМ MEOSCOLMMON TPOERTRON MATERNAAOB LOASER COOTBETCT80-BATE TPESOBARIAR "YEARSHIP O COCTABE H COLEPSEAMIN POERTHUX MATERNALOS TO ARTHROPPOSHHON SALLATE CTPONTELO-NOISE RONCTPYRUM 34ANMÍ, COOPY LENNÍ N HREEREPHOISE ROMMY НИГАЦИЙ В ПРОИЗВОДСТВАЖ С АГРЕССИВЛЫМИ СРЕДАМИ" (ДОПОЛИЕ-THE E CH 202-62 H CH 227-62).

3. Ocrosnoie nologenny no montagey conceptellin oteral-THE CPANOSHIE SCTAKAL PANBELENGI B PASLEAE TOSCHITEAGNON

BARNORN BEIRYCKA PRACTORILEN CEPHN.

4. KONCTPYKLINH OTERNITHISE RPANOBUSE SCIARALCO CTARG-HOIMM MEPASPESHOIMM HOAFPAHOBOIMM BAAKAMM HOA MOCTOBOIE DAEK-TPHYECRIE MARRITROIE, PRERIDEDITOE I MARRITRO-PRERIDEDITOE EPAILO, A TARGEE YSAGI CONFRIGENIA OTAEAGNOW BAEMERTOS MPOSE-PENOI PACYETOM W MOFYT TIPHTHMATOCA ALA PAÑONOB C CEÁCHNY-MOCIOM 7 N & BALLOB BES HSMEMENNI.

METOANKA PACHETA KONCTPYKUNÁ C YYETOM AEÁCTBNA CENCHNYECKIOC CHA TIPHBELENA B BUTTYCKE 1" MACTOSMEN CEPHN.

YCLOBURGE OFOSHAYERING:

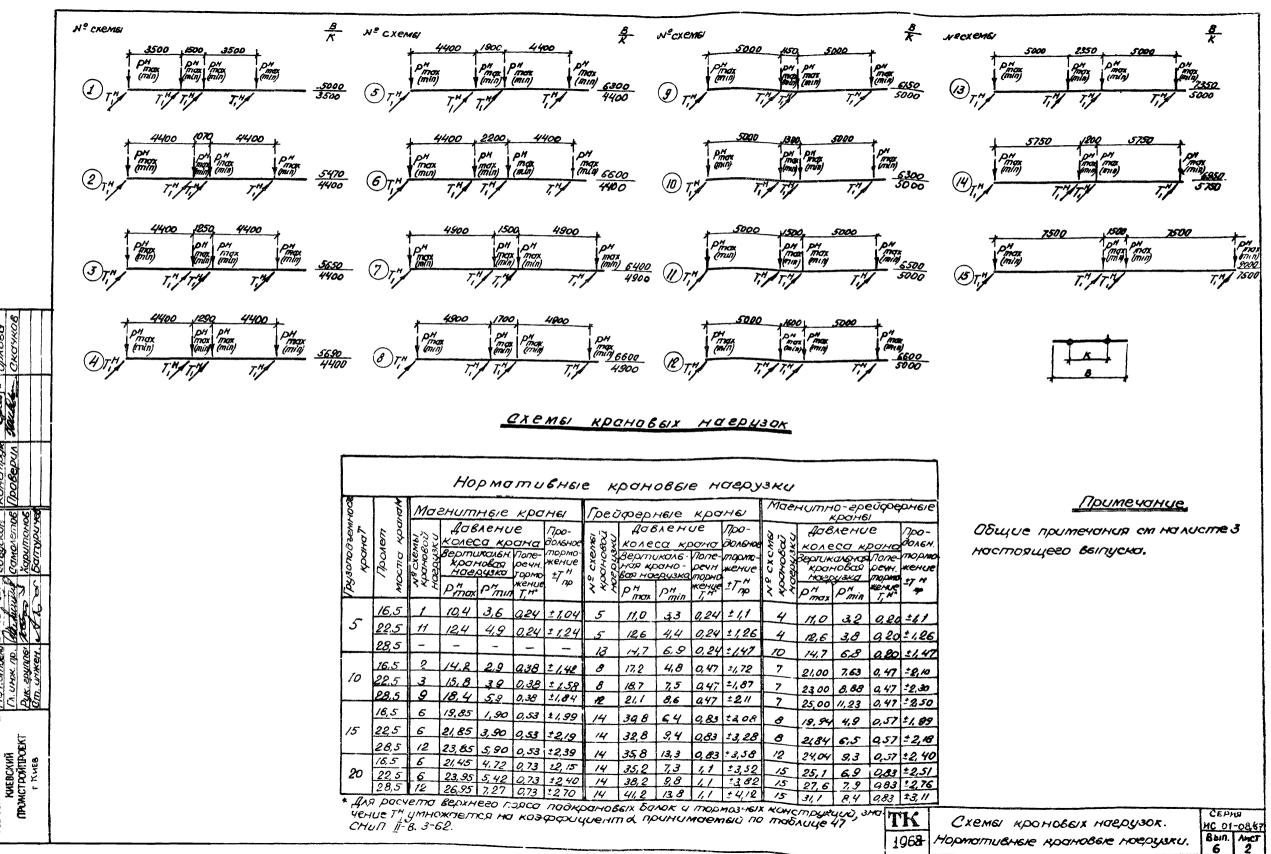
HOMEP LINCTA, FAE AETALS HSOSPASKEMA.

MADENPOSEA AETAIN AHOMED AETAAN.

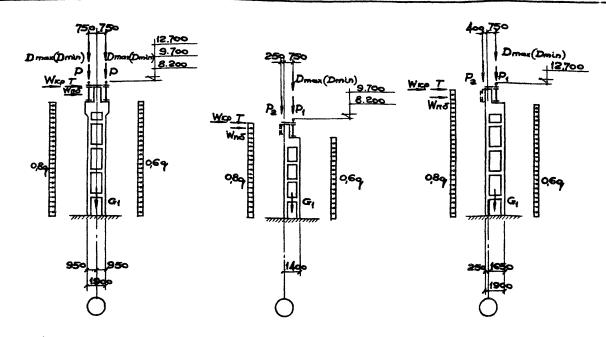
HOMEP ANCTA, FAE AETAAG SAHAPICHPOBAHA.

MOSCHITEALINA BATHCEA

8 2		8	Ommena	\$ 6	и	luppe cx	em	8 8			45	Олителир	000 S	·	PP61 CXE	~
Хароктерист Ка эстоков	Эскиз	npoven	головки крановог релеса м	12 1 1	При маенитных кранах	При грейферных кранах	При матичить -грейферных Кринф			Эскиз	10	20л 08 КИ Кран 08 024 рел6са Н	STORAGI STORAGI	При маенитных кранах	При Грейферных Кронах	При навнитно гредферных кранах
			8.200	5	<u>ī</u> -18-8,2-QM	I-18-8.2-Qr	<u>T-18-8.2-Qra</u>					8,200	5	I-18-8,2-Qm	Ī-18-8,2-Qr	I-18-8,2-Qm
	10	18	9.700	10 15	<i>_ī-18-9.</i> 7-Qm	<u> </u>	<u> ī</u> -18-9.7-Qm			1a ta f	18	9.700	10 15 20	<u>ii</u> -10-9.7-Qm	<u>I</u> -18-9,7-0 r	I-18-9,7-QMF
96	***			20					20	 		8, 200		<u> </u>	<u> </u>	Ī-24-82-8m
cmaka			9.700	5	I-24-8.2-QH I-24-9.7-QM		I-24-8,2-Qmr I-24-9,7-Qmr	JRODE!	18/4	+ + 0	24	9.700	5 10 15	Ī-24-9,7-QM		
9		24	12,700	10 15 20			I-24-12,7-Qm	scmo		00000000000000000000000000000000000000	24	12,700	20	Ī-24-12,7-Qm	!!-24-12.7-Qr	Ā-24-127- Q A
THE								THE	Ø							
роле			8.200	**	<u> I-30-8,2-Q</u> m	Ī-30-8,2-Qr	I-30-82-Qmr)pove	DOS*HOUS			8.200	5*	Ī-30-8,2-QH	<u>I</u> -30-8,2-Qr	<u>iī</u> -30-8,2-Qm
Однопрол		30	9,700	5* 10	Ī-30-9.7-QM	Ĩ-30-9.7-Qr	[-30-9,7-Qmr	6yx0		1	30	9,700		<u>IĪ</u> -30-9,7-0 H	Ī-30-9.7-Qr	<u>ī</u> -30-97-0m
0	ð Ó	30	12.700	15 20	<u>[</u> -30-12,7-Q _M	<u> [-30-12,7-Q</u> r	[-30-12,7-Qmr	77		\circ \circ	-	12.700	20	Ī-30-12,7-Qp	<u>#</u> -30-12,7-Qr	j-30-127 -0 m


Примечания:

- 1. Для обозначения габаритных схем приняты инфоры,
- в которых:
 первая цифра (ринскар) обозначиет число пролестов
 эстакады:
 - вторая цифра пролет эстока і эє в метрох; третья цифра - отметку головки кранового рельса в метрах;
 - л нетрах; Учетвертоя цифра – грузоподземность крана в т; Буквенные индексы у чэтвертай цифры (н,г ихинг) обозничают тип крана
 - м- магнитный;
- r- грейферный;
- мг<u>-</u> маенитно-грейферный.


- 2. Каждай высат эстакады соответствует единая отметка крановой консоми, негависима от грузоподъемность и типа кранов
- 3. Отнетки гиловки кранового релба, указанняе в тоблице, установлены, исходя из векоты кранового релба 150 км и высоты подкрановой балки на опоре 1450 мм
- 4. Привязка колонн к продолы ын разбивочның осям принятта:
 -для крайних рядов:
 - $d_{\rm p}$, нумевар * $\partial_{\rm n} p$ эстикад с отметкани головки кранового рельса $\theta.200$ и 9.700,
 - б) "250" для эстакай с отметкой головки крамового рельса 12,700.
- для средних рядов разбивочная осе во всех случаях совладает с осью симметрии колонны

* Краны мостовые электрические маенит» ные ерузоподъемностью Q • 5 т пролетом в пр 28,5 м в настоящее время промашленностью не выпискомотся.

 ΓK Madruga wuqopos sasapumnen exem wc-or-os/67 omkpsimsix kpahosux semakas $\frac{1968}{6}$ in Met

9382-08 8

COCEMA MATPYSOK MA KONOMMEN OTKPENTEN KPAMOBEIO ECTAKAL

$$P_2 = G_2 + G_3 + 0.5 (G_6 + N_1 + N_2)$$

$$P_2 = G_4 + 0.5 (G_5 + N_1 + N_2)$$

FAE: G2 - COECTBEHNOIN BEC NOARPANOBON BAKEN;

G3 - COSCTBERNOIN BEC EPAROBOTO NYTH;

GA - COECTBERROIN BEC BCROMOTATEABRON DEPMBI;

G5 - COECTBENHUN BEC TOPMOSHON BAAKN;

N1 - MONESMAS MAPPYSKA HA CONOBYRO PANEPERO;

No - CHEFOBAR MATPYSKA MA SCOROBYIO FALEPEIO;

GI - COECTBENHOW BEC DOLONHO!

WED - MATPYSEL HA KOLOHHY OF BETPA HATOPULO KDANOB,

WINS - MATPYSEA HA KONDHHY OT BETPA HA MORKPAMOBYIO BANKY;

Q - PABMOMEPHO PACHPELEAEHMAN MAPPYERA OF BETPA MA KONOMNY,

Dres - HARCHMANDIOE (MHRHMANDHOE) BEPTHRANDHOE AABAERHE OT (MIN) EPAHOB HA KONOHHY;

1 - FORMSONTARGHOE MABRETHE KRAHOB HA KOROHAT HOM HOME-

Примечания:

- 1. Срановая нагрузка в каждом пролете принята от 2^{∞} одина ковых кранов нагнитных, грей
 ферных нан магнитно-грейферных грузопольен
 постью 5,10,15 и 20т, преднавначенных для рабо
 ты на открытом воздуже.
- 2. ВЕТРОВЫЕ МАГРУЖИ НА КОМСТРУКЦИМ ЭСТАКЛА, А ТАКФЕ МА ТОРЦЫ КРАНОВ В ПОПЕРЕЧНОМ МАП-РАВЛЕНИМ, ПРИВЕДЕМНЫЕ МА ЛИСТЕ 4, ОПРЕДЕЛЕНЫ ПО МОРМАТИВЛОМУ СКОРОСТИОМУ НАПОРУ, РАВЛОМУ 25 КГ/м² ДЛЯ СЛУЧАЯ, КОГДА КРАНЫ МАЖОДЯТСЯ В РАБОЧЕМ СОСТОЯМИМ, В СООТВЕТСТВИМ С ДАЛИНИМ ГОСТ 1451-65.
- 3. Спеговая нагружка для <u>Ії</u>ранопа СССР по СНнП <u>I</u>I-A.11-62.
- 4. NONES HAR MAIPUSKA MA KONCTPUKLIMIN XOLOBON FAMEREN RIPHINGTA PABHON 200FF/H?
- 5. Совственный бес конструкций принят по фактическим данным.
- 7. В ТАБЛИЦАЖ НА ЛИСТЕ 4 ПРИВЕДЕЛЫ НОРИАТИВЛЫЕ СРАНОВЫЕ И ВЕТРОВЫЕ ПАГРУЗКИ.

 ПРИ ОПРЕДЕЛЕНИИ РАСЧЕТНЫМ НАГРУЗСИ НЕОБ
 ЖОДИМО НОРМАТИВЛЫЕ НАГРУЗКИ УМИОФЕНТЬ НА КОЗФФИЦИЕЛТЫ ПЕРЕГРУЗКИ В СООТВЕТСТВИИ Ф СИЛП I-A.11-62.

						HOP	MATH	161161	EK	PAHO	BOIE	HAI	EVG	EN I	YA K	010	nno	(r))				
İ	OC74		MAI	MHTI	IOIE I	CPAH	5/-	[PEN	opEP/1	6/E	KPAI	161.	-FPE	MAI	HHTH			KPA	MOI.	FREM DE	Me	PLPTOL	LMANOI.
I	ž	. 3				C	CEM	4	HALL))	Æ	N=1.							CXE	1A HA	PSSO	C N. 2	·
	BOTOGEE RPAKA QT	PONET CTARAL	KONOMINE HA BTOPE ME OT K	SI, MATTRA SHI KOMOH COV:U,A SATSIPMO	MATPYSK BAEMMON HATPE AOMME O TEMMEN MOTO O	E BHH3. TGEH RO TROHUA DATYP-	EPETITOE 1046ETITE 7 N *	KOAO, TA MA BTOI AOMME (TEMME)	BI, HATIPA POH KO" OT KOMUA PATYP -	TAPPYSK BAETITISH HA TPE KOAOMI KOMUA T TYPHOFO	E BHH3. TEEH TE OT TEMNEPA	2 5	MA BTOPE	OT KOMUA	HATPET JOHNE	BILITS TEEN ROT OF ROAT- TEPATYP	HEDENIOE MOSEME TH	ВЕРТИКАЛЬНСІЕ ОТРЫВЛО НАГРУЗКИ ПА ТРЕТЬЮ КОЛОННУ КОПЦА ТЕМПЕРАТУРНОГО ОТСЕКА.			KHY		
L	<i>X</i> 4	ñ			D _Z masc		10 3 4	D, masc	·	1	T	15 8 T	D _i max	D, min	D _M more	DH min	50	D_{max}^{H}	Dmin	D ⁿ mase	D_{mln}^{H}	D ^M masc	Dinin
		18	37,60	13,03	36,61	12,70	±0,76	37,50	11,25	36,08	10,82	±0,71	38,33	11,14	37,18	11,02	±0,61	-567		-5,58		_	
	5	24	41,40	16,37	39,93	15,80	±0,70	43,00	15,00	41,33	14,43	±0,71	48,83	13,22	42,59	12,84	±0,62	-600	-2,35				-1,94
L		30	_	_	_	_	_	47,50	22, 2 9	45,42	21,32	±0,57	49,42	22,85	49,69	22,10	±0,59			-7,00	-3,31	-7,08	-3'56
		18	49,70	10,15	4840	9,90	±1,17	57,33	15,98	55,21	15,41	±1,36	70,58	25,60	68,04	27,42	±1,38	-7,25	-1,48	-8,42	<u> </u>	-10,25	†
	10	24	55,00	13,57	53,40	13,20	±1,13	62, 2 3	24,98	6003	24,08	±1,36	77,25	29,80	74,52	28,77	±1,38	-8,09		-9,17		-11,25	
												±1,36						-8,85	-2.84	-10,17			-5,50
1			66,90				1	13	1	5	1	±2,36	11	1	1	1	±1,65	-10,10	-997				-2,40
	15	24	73,60	13,15	70,80	12,60	±1,54	105,58	30,27	102,01	29,23	±2,36	72,67	21,65	70,11	20,87	±1,65	-11,16	-1,99	1		-10,67	
		30	79.40	19,65	76,60	18,90	21,54	115,33	42,83	111,34	41,36	±2,36	80,08	30,97	7617	29,85	±1,66	-11,42	-2,84	1-10,17	 	-11,75	
ſ		18	72,30	15,91	69,50	15,30	±2,12	113,33	23,51	109,47	22,70	±5,12	70.00	19,25	67,27	18,49	±2,07	-1991	-2,41	1		-9,00	
1	2 ₀	24	8070	1827	77.60	17.60	±2.12	123,00	31,56	118,80	30,48	±3,12	77,00	22,04	73,97	21,17	±2,07	72,61	 	 	 	-9,83	1
Í	•	30	89.70	2421	85.50	23.30	±2,12	132,67	44,44	128,13	42,92	±3,12	8683	23,44	83,35	22,51	±2,07	-1292	-3,50	-18,58	-6,21	-11,17	-3,03
╁						,		<u> </u>	<u> </u>	-	-									ΕΡΕΠΛ			

LABAETHE MA KONOTHE

OT BETPA HA TOPUN

100

1.00

0.93

1.22

1.22

1,25

1.54

1.54

1.56

1,54

154

1,56

993

0.97

1.03

1,29

1,32

1,35

1,26

1,26

1,28

(.89

1,89

1,89

KPAHOS

HOPMATHBHOLE BETPOBOLE HAPPYSEN

WTE.

0,67

0,68

0.79

0,83

084

085

1,08

1,08

1.10

1,08

1.08

1,10

KPARO

0,52

0.64

0.64

067

0,73

0,74

0.75

082

0,85

086

088

COCPEACTO-LEMMAN CHAA BETPOBASI MATPYSEA MA KOAOMINY OT BETPA HA MA TOPEL KPAMA

TOPUDI EPAMOB I KONCTPYELINI OCTAKAL (T)

061

063

069

088

0,90

0,91

0.85

0.86

0.88

1,51

1,51

1.51

0.26

932

0,32

0,34

0,37

937

360

041

0,43

0,43

044

LABAEHHE KONEC

KPANA MA PEAGE OT BETPA HATOPELL KPA.

0.34

0,34

0.40

042

042

0.43

0.54

0,54

0.54

954

0,55 0.44

931

932

935

044

045

046

0.43

943

0.76

0,76

0,55 0,76 1,30

0,74

0,94

0,99

1.00

1,10

1.07

1,10

1,19

1,28

1,28

LEKON

S SILLE

KWEBEKWE MET DUMPDEKT F. KWEB

8 14

MA

HODMATHBRA POLTHON FIA BETPA G. ET!

25

AT TROVE

ŋ

18

24

30

18

24

30

is

24

18

24

30

10

15

20

YALLA ONEBOTAGALON

WAS

POEM CEPANOI

044

0,44

0.44

0,44

0.44

044

0,55

044

055

055

061

061

944

0.44

0,44

0.44

0.44

044

044

044

0.44

044

044

0,44

0,44

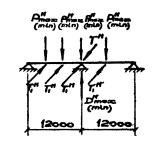
044

044

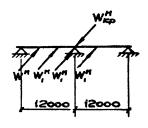
044

044

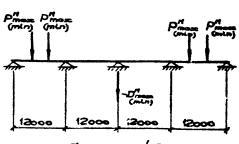
044


0,44

0.44


0,44

0.44


AND PACYETA ICPETAEMING TOPMOSTOR KOHCTPYKLING K DONOHNAM BRAYERNE TH YMMOJERETCS HA KOSPPHILITERT &, MPM-HMMAEMON TO TABLULE 47CHUT I B.3-62.

CXEMA Nº1 MEPELAYH KPAMOBOLC HATPYSOK HA KOLOHHY

COEMA **ПЕРЕДАЧИ НА КОЛОПИУ ПАГРУЗКИ** OT BETPA HA TOPUN EPANOB.

COCEMA Nº2 MERS AAYN KRANOBON MATRYSKH HA KOLOMMY.

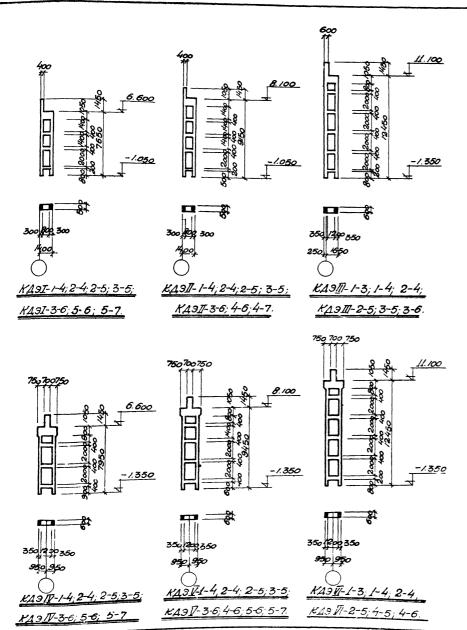
RPHMEYARHS:

I HOPMATHBUBIE EPANOBUE MAT-PYSEN ON HA AMOTE 2 2 COCEMY MATPYSOK HA KONOM-HU H OBUME TIPHHEYAMMS CM. MA AMOTE 3.

HOPMATHEMBIE REAMOBBIE MATPYSKA MA KONOMHUM BETPOBUE MATPYSEM MA KOMETPYRUMM SCTARAL.

6 9382-08 10

CEPHO


MC-01-08/67

MINER ANCT

				MAPKH	KONOR	H NPH	KPAHA	20:						
₹9 ₹ 8₹ <i>₹</i>	44	Tun	MACHITHE	5/XC	ONOABEMH	OCTON	TPEHOPEH	PHOIX PPS	301104BEM	H0670H0	MATHHI FPY 3	HO - FPEHO O ROADEM	YOCTEN	
OTMETKA TOJOBKH KPAHOBO! PEJBOA	PONET SCTAKAA	KOSOHHDI	5	10	15/3	20/5	Ĵ	10	15	20	5/5	10/10	15/3	20/5
<u> </u>	- (6)	КРАЙНЯЯ	KA3I-1-4	KA3I-2-4	K431-2-5	K431-3-5	KA91-1-4	K49I-2-4	KA3I-3-6	K491-5-6	KA9T-1-4	K49I-2-5	KA9T-2-5	1
	18	СРЕДНЯЯ	KA317-1-4	KA3II-1-4	кдЭД-2-5	K43 <u>IV</u> -3-5	KA9IV-1-4	KA9 <u>IV</u> -2-4	K43II-3-6	кдэ <u>Г</u> ў-5-6	KA917-1-4	KA3[[-2-5	1	
	24	<i>КРАЙН</i> 99	K49T-1-4	KA3I-2-4	KA3T-2-5	K49I-3-5	KA91-1-4	K49I-2-4	KA3I-3-6	KA3I-6-6	K43I-1-4	K49I-2-5		1
200	24	CPEAH99		кдэ <u>Г</u> У-1-4	K43[V-2 5	K49IV-3-5	KA3[V-1-4	KA314-2-4	KA310-3-6	KA3II-5-6	KA918-1-4	кдэ <u>Л</u> -2-5		KA9 <u>I</u> V-
		KPAHH99	_	K49I-2-4	KA3I-2-5	K49I-3-5	KA9I-1-4	EA31-2-5	KA3I-3-6	KA3I-5-7	K497-1-4			
	30	СРЕДНЯЯ	_	K49 <u>[</u> V-2-4	KA9[V-2-5	KA9_P-3-5	KA9 <u>[V</u> -1-4	K43 <u>N</u> -2-5	кдэ <u>П</u> -3-6	KA919-5-7	KA3[]-1-4	K49N-3-5	КД9 <u>Г</u> Р-3-5	1
	$\neg \dagger$	KPAHH99	KA3D-1-4		K49II-2-5					KA3II-4-6		K49II-2-5		KA30-2
	18	GPEAH99	K49V-1-4	KA3I-1-4	кдэ¥- 2-5	149¥-3-5	KA9]-1-4	KA9V-8-4	KA91-3-6	KA9¥-4-6	кдэ]-1-4			1
		КРАЙН99	KA911-1-4	KA311-2-4	K49II-2-5	кд911-2-5	KA311-1-4	K43]-2-4	KA911-3-6	KA911-4-6	KA311-1-4	KA911-2-5		KA30-
ססד	24	СРЕДН99	каэТ-1-4	KA3V-1-4	KA9[-2-5	449I-3-5	KA38-1-4	K491-2-4	KA98-3-6	MA38-5-6	KA98-1-4	KA31-2-5	KA3]-3-5	K491-
	_	КРАЙНЯЯ	_	KA9]]-2-4	кд9 <u>1</u> 1-2-5	KA3II-2-5	x4911-1-4	K4911-2-5	KA311-3-6	X4311-4-7	KASII-1-4	KA911-2-5	KA3[[-2-5	K4911-
	30	СРЕДНЯЯ	-	KA9 <u>V</u> -2-4	K49[-2-5	K43 <u>V</u> -3-5	KA3¥-1-4	KA91-2-5	KA91-3-6	KA38-5-7	каэТ-1-4	KA91-3-5	KA9P-3-5	KA9]-
	~	КРАЙНЯЯ	K49II-1-3	кдэТ-1-3	X4911-1-4	K43II-1-4	KA911-1-3	K43II-1-3	K43 II - 2-5	KA3II-3-5	K43II-1-3	KA3II-1-4	KA311-1-4	K43 III - 2
- 1	24	СРЕДНЯЯ	X4911-1-3	KA9∐-1-3	каэД-1-4	K4911-2-4	K4317-1-3	K49D-1-3	KA9E 2-5	x43¶-4-5	<i>кдэШ-1-</i> 3	K4311-1-4		1
2.700	30	КРАЙ НЯЯ		K43II-1-3	KA9II-1-4	KA3II-1-4	к <u>дэш-1-3</u>	KA9D-1-4	KA9M-2-5	KA311-3-6	KA9II-1-3	KA9III-1-4	KA9 II - 1-4 .	T
- 1	احد	СРЕДНЯЯ	_	КДЭ <u>Г</u> і-1-3	кд9Д-1-4	KA9 <u>V</u> j-2-4	K4311-1-3	K43D-1-4	KA911-2-5	KA9[]-4-6	K13[[-1-3	K4911-2-4	BA911-1-4	K4917-2

Киваски: Пранстройпровкт

ТАБЛИЦА МАРОК КОЛОНИ ОТКРОІТОЖ КРАНОВОЇЖ ЭСТАКАД

BATU

KNEBCRNY OPJMCTPUNDUEKT

			PACO	04	MATER	PHAJOB					
HA C	50PHD			E305E	TOHHE	NE KOHO	TPYK				
MAPKA	BEC	PACO	04 14.708	MAPKA	PACTODA CTAJIH	MAPKA	BEC	PACOC	4708	MAPKA	PACACOA CTAVINI NA INI
KONOHHB	/ ronavie	SETONA M ³	GTANH	SETONA	HA [H 3 BETOHA KT	KONOHHOI	XARANNA T	MB	CTANTH	SETOHA	SETON,
K <u>19</u> I- -4	4 8.5	3.41	446.7	300	131	K13[V-2-5	14.4	5.74	688.6	300	120
KA,3I-2-	4 8.5	3.4/	5/7.0	300	152	KA91V-3-5	14.4	5.74	768.7	300	134
KA,9I-2-	5 8.5	3.41	535.7	300	/57	KA318-8-6	14.4	5.74	786.4	300	137
K49I-3-	5 8.5	3.4/	622.3	300	182	KA9]] -5-6	14.4	5.74	//39./	400	198
КДЭІ-3-6	5 8.5	3.4/	640.0	300	188	K49TV-5-7	14.4	5.74	1146.7	400	200
КД9 <u>Т-5-6</u>	8.5	3.41	965.2	400	283	KA3V-1-4	16.7	6.66	610.7	300	92
K49I-5-7	8.5	3.41	972.8	400	285	<i>кд9</i> Г-2-4	16.7	6.66	701.1	300	105
KA9 <u>I</u> I- I-4	4 10.1	4.02	569.9	300	142	KA91-2-5	16.7	6.66	7/9.8	300	108
KA9II-2-4	4 10.1	4.02	663.8	300	165	KA9V-3-5	16.7	6.66	8/5.9	300	122
KA311-2-5	5 10.1	4.02	682.5	300	170	NA91-3-6	16.7	6.66	833.6	300	/25
KA9][-3-5	5 10.1	4.02	800.2	300	199	KA3I-4-6	16.7	6.66	933.9	300	140
K43II-3-6	10.1	4.02	8/7.9	300	203	KA3I -5-6	16.7	6.66	1180.5	400	177
KA3II-4-6	10.1	4.02	1054.0	400	262	KA317-5-7	16.7	6.66	188.2	400	178
KL9][-4-7	10.1	4.02	1061.6	400	264	<i>КДЭ<u>Й</u>-1</i> -3	20.2	8.06	844.7	300	105
KA3III- 1-3	19.5	7.80	806.6	300	103	KA911-1-4	20.2	8.06	863.4	300	107
KA9II- 1-4	/9.5	7.80	825.3	300	106	K43[1-2-4	20.2	8.06	990.2	300	/23
KA9III-2-4	19.5	7.80	978.9	300	/25	K43[]-2-5	20.2	8.06	1007.9	300	125
K1911-2-5	19.5	7.80	996.6	300	128	X1917-4-5	20.2	8.06	2024.7	400	25/

Примечания:

KA30-4-6

1. ОВОЗНАЧЕНИЕ МАРОК МОЛОНИ ПРИНЯТО СПЕДУЮЩЕЕ: ВУКВЕННАЯ ЧАСТЬ МАРКИ КДЭ ОБОЗНАЧАЕТ ТИП МОЛОННЫ- КОЛОННА ДВУЖВЕТВЕВАЯ ЭСТАКАД, ПЕРЕЧЯ ЦИФРА /РИМСКАЯ! ОБОЗНАЧАЕТ ТИПОРИЗМЕР ВОЛОННЫ, ВТОРАЯ ЦИФРА ЖАРАКТЕРИВУЕТ НЕСУЩУЮ СПОСОБНОСТЬ МОЛОННЫ ДАННОГО ТИПОРАЗМЕРА, ТРЕТЬЯ ЦИФРА УКАВОРВЛЕТ НА РАЗЛИЧИР В КОЛОННАХ ДАННОГО ТИПОРАЗМЕРА, ВЫЗВАННЫЕ НАЛИЧИЕМ
ЗАКЛАДНЫХ ЭЛЕМЕНТОВ ДЛЯ ОПИРАНИЯ ПОДКРАНОВЫХ БАЛОК.

19.5

19.5

14.4

14.4

K1911-3-6

KA3IV-2-4

7.80

7.80

5.74

5.74

15194

1527.0

583.

669.9

400

400

300

195

196

102

117

2. KONOHHU, NPHBELEHHUE HA AAHHOM NUCTE, PASPASOTAHU HA NUCTAX 37-39
AAHHOTO BUNICKA, A TAKKE 8 SUN 2. HACTOSILLEN CEPHM.

TH HOMEHKAATYPA COOPHOX XCATESOSE- MC-O-COSS.
TOHHOX KOAOHH
1968. TABAHUA PACXOAA MATEPHAAOS.
6 6

20.2 8.06 2032 3 400

252

								/70	AKPA	HOBbil	. BA	JIKU										
[PY30-	PROJET		MATH	HTHWE	KPAH	161				ГРЕЙФЕ		KPAR	101			MATE	HATHO-FF	РЕ ЙФЕР.	MWE K	PAHЫ		
HOADEM	- KPAHA	KPAHHH NPOJI	H	СРЕДНІ ПРОЛІ	18	Высота	BEG		KPAH	H H H E T	CPEAH	मूर्ग 7	BUICOTA	8EC		KPAHHI NPONE	7	CPEAMM		Высота	BEC	
HOGTE	IM	G7.3	HU3KONE- FUPOB. CTAND	C7.3	HH3KONE- THPOB. CTAND	GEYEHNÜ	KPAHHHH NPONET	CPEAHUN NPONET	C7.3	HH3KONE- FHPOB. CTAND	C7: 3	443KOJE. 1-4408. C74Jb	СЕЧЕНИЙ	КРАЙНИИ ПРОЛЕТ	CPEAHHH NPONET	GT 3	HH3KOJE- FHPOB GTAJIB	CT3	MASKO- DEFHPOB CTANO	Ceyehnă	KPAHHHH NPONET	PROJE
	16.5	423*		A 21 *	-		1670	1445	121*		A20*	_		1495	1380	A 22*		120*			1580	138
5	22.5	423*		420*			1670	/380	423*		421 *			1670	1445	124*		12/*			1780	144
	28.5					ļ			A 23*		4,21*		1050	1670	1445	A24"		A 21*			1780	144
	16.5		42/*		420*		1485	1400		4 23*		421*	,,,,,	1650	1450		A 25*		A 22*		1885	/53
10	22.5		A 22*	_	421*		1570	1450		A 24 *		A 21 *		/775	1450		426*		124*		2030	178
	28.5		424*		421*	1050	1775	1450		A 25 *		A22"		1885	/535		A 27		124*	1050	2/30	17:
	16.5		A24* A25*		421*		1775	1450		447		446*	1300	2680	2460		124		12/*		/775	14
15	22.5		426*		424*		1885	/535		4 37	*****	A27	1050	2630	2080 2460		A25* A 26*		A23* A24 *		1885 2030	16
	28.5		A25*	_	A23*		2030	/735		A 49		446 *	1300	2890 2890	2460		4 26		422*		2030	15
20	16.5 22.5		426*	_	423*		1885	1620		A 49		A46 *		2950	2860		A 26*		4 24*		2030	17.
H	28.5		428	-	A 25 *		2030	1620 1835		A 53		452 *	1450	3/80	2860		1,28		124*		2300	17
	1 -0 -0			M031			2500 N K U	1055		455				1 0.00		L	<u> </u>	<u> </u>	L	<u> </u>	A	1
КОЛОНИ	EOJOMN St St	80	- 90			90×6	1 8	CONDITION OF A TEXT	×	KPAHA	75-4			5 8 5.0	H MS GEP	подкра ни К9-	РИСТИКА ПНОВЫХ 01-57 ВС	и тормо Илуск 🎚	— H BISEKT BHUIC B 1/67.	AJIOK TIPI	18едена	8
7 р 4 й н и й	250" , HW	9//	PHODER - 30	148 GTANU 8-6		20.6	24,092	BATIKH BOTOMOTAT PEPNE TOAKPANC	~	5 10 15	75-5	//50	72	95.O	8EP 3. (123- 1708 YEHM	TWKAJI 60 B CEVEHM O/-57 BU CA KOM B KPEIJIE	PMOSHDIX HDIX GB. 19X NOAM DINYCH II/ CTPYNTHE INNS CNEU KPANOBE	93E N. 1894 HOBEN: 167, OTME 13HO YBEN 1447 EHOVO	C SARON EYEHHOD DWYWTO DRPANOS	х по сор с ⁴ , ширь до 400 г эго репьц	TAMENTS INY BERS WI ANG C I NA TINA	Y GEI CHE DBEG
C P E A H H H	1	300		18 CTAND 6-6 90×6		90,06		MAKMAHOI BAJIKH MOAKKAHO BAJIKH	BON	20	75-6	150	o 11	P31.0	MON	TOMEN INPH	IBHOFO IKJIATYPA RTDJC J	YBENH4	ЕМИ Я Ш	ІИРИНЫ	BEACHE	₹/ 0

Наитено- вание констр.	Схема конструкции	Марка конструк.	Высота конструк	Bec ne	NN? NUCMOB	B
8		BФ-1	950	300		
70	VVVV V	8 - 2	1200	310		
волотое ательская Ферта	2000	<i>8Ф-3</i>	1350	330	12	
8	0					
		BC-1	6100	1064	2	١.
8	1	<i>8C-2</i>		1257	3	1
CEASE		8C-3	7600	1064		t
\$ 8	/2000	BC-4		1240	4	
вертикольн ая связв	72000	BC-5	10600	1562	5	
		1-1	4800	224	6	
.09		1-2	6300	301		
,		13	9300	526		L
8		1-4	8100	47/	6	
ğ		1-5	9600	535		
Десшнппа		A-6	12600	910	6	

КИЕВСКИЙ ПРОМСТРОЙПРОЕКТ

5an	ено- ис прук	Схема конструкции	Марка конспрук.	Вексота конструк	Bec K2	NNº NUCMOB
1461e	יסאט		HOULOOKO RODNOM SONOM	1400	-	lš
Noca doynere	πλοщοθκυ		Moutoders S deyr Spoener	1400	-	14
δ	ения	CENTAR DEDANGENTA L-12,0m	11-3	1200	120	10
Nebun	OBDOXOGE	2000 2000 Cekus oppandenus &-12,0m	17-4	1200	209	11

Примечание:

1. Характеристика стали и электродов для изготовления изображенных на данном листе стальных конструкций приведена в серии HC-01-08/67 8611. 3.

Номенклатура стальных конструкций, к-оговы разработтанных в серии ис-оговы в выпуск з

42/* 124* 124* 125* 26* 26*		A21° A21° A21° A22° A24° A25° A25°			BC-I	<i>I</i> I-/	л-4	
24* 24* 25* 26* 25* 26* 28		A2/* A2/* A22* A24* A23* A23*			8 C−1	<i>ภ-1</i>	J-4	
24* 25* 26* 25* 25* 26*	-	A21* A22* A24* A25* A25*	-			<i>0,</i> -7	0 ,- 7	
25* 26* 25* 26* 28	= = = = = = = = = = = = = = = = = = = =	A22* A24° A23* A23°						
26 * 25 * 26 * 28	-	A 24° A 23° A 23°				l	,	1
26* 28		A 23*		1		1		
28		A 23*		1				
28		1 25*						
	40.5		1					
	121*		T5-4	<i>8</i> 9-/				
	A20 *				l			15
2/*		420*	_					
.22*		A 2/°	_					
24*		121*	1		BC-3		л-5	
24*		421*	_		80 5	J7-2	JI-5	
25*		A 22*					•	
26*		424*	_					
25*		423*	4			1		
26*		A 23*	_					
28		425°	1	1				
	420*		}		1	1		
22*		A 2/*	_		1		1	
24*		421*	1					
25*		₹ 22*	76-5		BC-5	J7-3	5-6	16
26*		424*	_				1	
26*		423*	4		l	Ì		
28		A 25°				1		
T.Y H.Y	СЕРИИ КЭ-О	1-57 ВЫЛУС 1 ПОЯСА КОІ	08ых 54лок X II/67, Отмече НСТРУКТИВНО	енных * ши	OH-			

OLHORPONETHOIX KPAHOBOX SCTAKAL TOL MOCTOBOLE STEKTPULECKUE

PEPNA

TOPMOSHAA

BANKA

BCHOMOPATERS BEPTHKAND

HAS

C6980

SECTHHUDI

XXXXXXXXX

TAREPERO

HA

THOMALKY

MOGALOVNYKO

Nº JUCTA

MAPKHPO-

ВОЧНОЙ

COCEMBI

KOPCTPYKLINU CEOPHEIX MENEZOEETOHHEIX KOJOHH PASPABOTAHOI HA JUCTAX 37+39.

TABNULA MAPOK

OCHOBHAS

KONOHHA

MHGOD

GCTAKAAL)

ЭЛЕМЕНТОВ

KPAHHHH TIPOSTET

GT3

MATHUTHLE KPAHLI TPYSONOADEMHOCTON 5; 10; 15/3 4 20/5 T

GREAHHM PROPET

C73

HUSKONETH

POBAHHAR

Подкрановая БАЛКА (СЕЧЕНИЕ ПО СЕРИИ КЭ-01-57 BUINVER 11/67)

Huakoneru-

POBAHHA9

- ЗЕЙ, ВСПОМОГАТЕЛЬНЫХ ФЕРМ И ЛЕСТНИЦ РАЗРА-BOTAHOI B BUINYCKE 3
- COCEMBI TOPMOSHOIX BAJION OM HA JUCTE ?
- Конструкции стальных вертикальных свя 400мм для обеспечения крепления специаль-HOTO KPAHOBOTO PENDCA HA TATAYKAX

TABINULA MAPON SIEMENTOS CANORDONETHUZ CERNE KOAHOBOIX SCTAKAR NOR MOCTOBOIE
SNEKTONYECKHE MATHHYHOLE KOAHOI
TOYSCNOZDENHOCTOKO 5 10, 15/3 H 20/57 MC-CV 08/67 6

SABSEPT	HEMAS			
Same	Malle			
LONCTOYND	NOOBEDMA			
CABYCKAN	CAMONETOB	EAPHTUHOB	BATYPHYEB	
MAY OTAENA 6. CREAL PO GABYCKAN	Markelis	CEESS !	Alon	
144.074E.114	Ch. MAN. A.D.	LING JANG	GT. HHAK.	
000		<u>x</u>	PDEKT	

		MOAKPAHOB,	19 54ЛКА (CE 9-C/-57 86//	YEHHE NO CE	PHH				NECTH	нца	Nº SINCTA
Шифр	OCHOBHA9	КРАЙНИЙ		СРЕДНИИ	RPOSET	TOPMOSHAS	Вспомога-	BEPTHKAND	HA NOCADO4-	HA XOADBYIO	MAPKHPO
ЭСТАКАДЫ	колонна	С т. 3	HHBKONETH POBAHHAR CTAND	C7. 3	НИЗКОЛЕГН РОВАННАЯ СТАЛЬ	BANKA	TENDHAQ ФЕРНА	MA9 C8936	ную площадку	PANEPENO	BOYHOŬ CXEMB
I-18-82-5r		421*		420*							
I-24-8.2-5r		A 23*		121 *							
I-30-8.2-5r		4 23*		121*			<i>8</i> Ф-∫				
T-18-8.2-10r			A 25 *	_	121*		07 1				
7-24-8.2-10r	КДЭТ-2-4		A 24 *		121*			BC-/	ו-ת	5-4	1
T- 30-8.2-10r	7		A 25 *		1,22*]			1
T-18-8.2-15r			447*		1 46 *		<i>8</i> P-2				
7-24- 8.2-15/-	<i>КД9Т-3-6</i>		A 37		4 27		8P-1	1	ł		
7-30-8.2-15-			1 49	_	A46 *		202.2	1			1
T-18- 8.2-20r			149		446 *		<i>89</i> -2				
-24-8.2-20r	RA9I-5-6		A 52 *		A52 *		1	1			1
T-30-8.2-20r			A 53		A 52 *	T5-4	<i>8</i> P -3				15
7-18-9.7- 5r		421 *		120 *							
7-24-9.7-5r	KA911-1-4	4 23 *		12/ *	-						
7-30-9.7-5r		A 23 *		42/ *							
T-18-9.7-10r			423*		12/*		890-1				1
T-24- 9.7-10r	K19II-2-4		124*		121*		·	BC-3	1-2	A-5	l
- 30-9.7-105	1		A 25 *		422*				·· ~		
- 18-9.7-15r			447 *		446*		8 - 9-2	1			
- 24-9.7-15;	KA9II-3-6		437		427		8P-/	1			
- 30-9.7-15/	1		149*		A 46 *			1			i
-18 - 9.7-20r			149		446*		BP-2	1			1
- 24-9.7-20r	KA911-4-6		A 52 *		452 *			1			l
- 30-9.7-20r		_	A 53		452*		<i>8</i> \$ - 3				
- 24-12.7-51	1	A 23*	-	12/*	452			 			
- 30-12.7-5r	W1077 1 *	423*		12/*							
- 24-12.7-10r	KA3[[-1-3		124*		12/*		8 \$ -1				
-30-12.7-10r	7		125+		422*	775.5			<i>Л</i> -5	л-6	16
-24-12.7-15r			437		427	75-5		BC-5	37-3		,,,
-30~12.7-15-	KA9III-2-5		149		A46 *		80-2	1			
-24-12.7-20r			452+		152 *		<i>8</i> Ф-2	1			
-30-12.7-20r	K49III-3-5		453		A 52 *		<i>39</i> -5				

TK TABUNUA MAPOK PURENTOS QUADRETHOIX APAHOSEIX POTAKAL POL MOGTOBULE PRANTE PRENDEPHOLE RANTE PRANTE PRANT

CABHO MC-01-08/67

^{1.} KONCTRYKLING CEORNERS MERESOBETORNERS KORONN PASPABOTAHOI HA JUCTAX 37+39.

^{2.} Конструкции стальных вертикальных связен вогомогательных ферм и лестниц РАЗРАБОТАНЫ В ВЫП.З. 3. COMEMBI TOPMOSHOUX BAJION OM. HA JUICTE 7.

^{4.} B CEVEHURIE MODERPANOBOUR BANOK NO COPTAMENTY GEFNU K9-01-57 BOIN TIGT OTMEYEHHOLX * WUPNHY BEPXHE-ГО ПОЯСА КОНСТРУКТИВНО УВЕЛИЧИТЬ 40400ММ АЛЯ ОБЕСПЕЧЕНИЯ КРЕПЛЕНИЯ СПЕЦИАЛЬНОГО КРАНОВОГО PENBOA HA TUTAHKAT.

	MATHUTHO	Подкранова:	9 645KA (GE 9-0!-57 86IN.	YEHUE 10 YCK II/67)	CEPUH	TOPMOSHAR		BEPTHKAND	Лестни	'UA	Nº SHOTA MAPKHPO
WHOR	OGHOBHA9	KPAHHHH	POSET	CPEANNA		5A N PA	TENBHAN	H48	HA	HA	ВОЧНОЙ
GCTAKAA 61	KONONHA	C7.3	HU3KO- NETHPOBAH HA9 CTANO	G7. 3	HH3KO- NETHPOBAH- HAS CTAND		ФЕРМА	0893b	ПОСАДОЧНУЮ П-ЛОЩАДКУ		COEMO
T-18-8.2-5 Mr		422 *	_	420*							
T-24-8.2-5 Mr	KA9I-1-4	A 24 *		<u>A</u> 21 *							1
T- 30-8.2-5 Mr] '	A 24 *	_	A 21 *							1
T- 18-8.2-10Mr		_	A 25 *		122*						}
T-24-8.2-10MF	† I	****	A 26*		A 24 *						
T- 30- 8.2-10 Nr	KA9I-2-5		A 27		1 24*			1			
7- 18- 8.2-15Mr	LAGIE 5		1 24*		A 21 *			BC-1	0-1	<i>s</i> 1-4	
r- 24-8.2-15Mr	1 [1 25*		A 23'	1				-	
- 30-8.2-15Mr		Фильцор	A 26*		A 24 *	1					
- 18- 8.2-20MF		*******	A 26*		A 22 *						
- 24- 8.2-20MF	KA97-3-5	- Constant	A 26*		A 24 *	(15
- 30-8.2-20MF			1 28		A 24*	75-4					_
- 18-9.7-5 Mr		A 22 *		1, 20 *	_	1					
T- 24- 9.7- 5 MT	KA3[-1-4	A 24 *		A, 21 *		1					
- 30-9.7-5 mr		<u> 1</u> 24 *	_	<u> </u>	_						
- 18-9.7-10Mr		Warner to the same of the same	A 25*		A, 22*	1	<i>89</i> 0-[
7-24-9.7- 10Nr		***	A 26 *		4 24*	1	070-1		- 0	A-5	
- 30-9.7-10Mr	KA.317-2-5		£ 27		A 24 *			Bc-3	<i>л</i> −2	01-5	1
- 18- 9.7- 15Mr	1220 E S		4 24*		1 2/	1					1
- 24- 9.7-15MF	1 [A 25*		A 23°	1					
- 30-9.7-15MF		400	4, 26*		A. 24°	1			İ		
- 18- 9.7-20mr			4 26*		A 22*	1					
- 24-9.7-20Mi	KA911-3-5	-	1, 26*		1 24*	1		1			
- 30-9.7-20Mr		~~	4.28		1. 24*						
- 24- 12.7-5 MT	14077 1-7	<u>A</u> , 24 *		4 21 4]				
- 30-127-5 Mr	K49III-1-3	A 24 *	_	<u>A</u> 2/ *	_						
- 24-12.7-10mr		*****	4 26 *		A 24 *		l.				
- 30-12.7-10 A F	14077 I-li		1 27		A 24*	75-5					16
- 24-12.7-15mr	<i>кд9Ш-1-4</i>	-	A 25 *		A 23*	1	}	Bc-5	<i>S</i> -5	vr-6	"
- 30-12.7-15 MT	<u></u>	_	1 26 *		1 24*	1					
- 24- 12.7-20mr			A 26 *		1 24*			İ			
- 30 - 12.7 - 20Mr	K43II-2-4		1 28		A 24 *	1					

PHMEYAHUS:

KNEBCKNÝ Nejmotogůnpoekt Rkes

L. KONGTPYKUM GEOPHEIX WENESOEETOHHEIX KONOHH PABPAEOTAHE! HA SHCTAX 37:39.

^{2.} KONGTPYKLINI GTANDHOIX BEPTHKANDHOIX CBRSEH, BCHOMOFATENDHOIX PEPM II NECTHUL PABPADOTAHOI B BDINYCKS 3.

^{3.} CXEMBI TOPMOBHOIX BANOK CM. HA JUCTE 7.
4. B CEYEHURI TOAKPAHOBOIX BANOK TO COPTAMENTY CEPHM
X9-01-578617. II/67,0TMEYEHHOIX WUPHHY BEAXHETO PORCA KOPICTPYKTUBHO YBEJUYUTO AO 400MM AND OBECTEYEHUR KPETTE
HUR CTELLYANOMOTO KPAHOBOTO PEJIGCA HA TIJAHKAX.

200
Києвский Пермстройпроєкт

	14ГНИТНЕ Основна	9 KOJOHHA	NOAK	PAHOBAS KS-	545KA (CE -01-57 80	HEHUE INYCK II/67/	TOPMO.		BCTIOMOTA- TEJOHAS	BEPTHKA CB936		SECTH	MUA	MAPKHP
ШиФР ЭСТАКАДЫ	NPAHHETO P3AA	СРЕДНЕГО РЯДА	KPAHMHH	HU3KO- NETHOOBAH- HAS CTAND	СРЕДНИ	HU3KO- JETHPOBAH- HAS CTAJID	/10 KPAHHEMY P94Y	ПО СРЕДНЕМУ РЯДУ	PEPMA	ПО колоннам крайнего ряда	ПО КОЛОННАМ СРЕДНЕТО РЭДА	НА ПОСАДОЧНУЮ ППОЩАДКУ	HA 20408YO 74.11EPEHO	BOYHON
II-18-8.2-5M	K49T-1-4		<u>A</u> 23* <u>A</u> 25*		<u>421*</u> <u>420*</u>	=								
II-24-8.2-5m II-18-8.2-10m		KA9IV-1-4		A 2/ *		A 20°								
<u>II-24-8.2-10m</u> II-30-8.2 <i>-</i> 10m	K49I-2-4			A 24*		A 21 *					_			
II- 18-8.2-15m II-24-8.2-15m	K49I-2-5	KA9IV-2-5		A 24*		A 2/* A 22*				<i>8c-1</i>	8 0-2	N-1	J1-4	
II- 30-8.2-15m			_	A 25*		A 24°								
II- 18- 8.2-20m II- 24-8.2-20m	K49T-3-5	K49IV-3-5		4 26*	_	4 23"								
II- 30-8.2-20m II-18- 9.7-5m	WOTA /			A 28	1.2/*	Д 25°	T5-4	75-6						17
II-24-9.7 5m II-18-9.7-10m	K49II-1-4	K49II-1-4	<u>A</u> 23*		420*		,							
II- 24-9.7-10M	кдэ]]-2-4			A 22*		4.21			8Φ-1					
<u>II- 30-9.7-10m</u> II- 18- 9.7-15m	*			A 24* A 24*		A 21 *				<i>₿c</i> -3	BC-4	J-2	J-5	
<u>II- 24- 9.7-154</u> II- 30-9.7-154		<i>КД9∏-2-5</i>	=	1 25° 1 26°		<u>A 22°</u> A 24°								
II- 18- 9 7-20M II- 24-9.7-20M	K43II-2-5	K49 I7-3-5		A 25*	_	A 25*								
II- 30-9.7-20m				1.28		A 25°								ļ
II- 24-12.7-5m II- 24 -12.7-10m	<i>KД9Ш-1-</i> 3	KA9[]-1-3	<u>4 23*</u>	A 22*	<u>120*</u>	121 *								
II- 30-12.7-10m II- 24-12.7-15m		VIOTII.	_	A 24*		A 21 *	75-5			BC-5	8c 5	<i>s</i> 7-3	<i>√1</i> -6	18
II- 30- 12.7-15m II- 24-12.7-20m	кдэШ-1-4	K49[]-1-4		4 26*		A 24°								
II- 30-12.7-20m		K4917-2-4		A 26°		A 25°								

Примечания:

B BUTYCKE 3.

- 1. LONGTPYKUHH CEOPHOIX XESTESOBETONHOIX KONOHH PASPASOTAHU HA MICTAR 37-39 2. KONCTPYKLUN CTANIBHBIX BEPTUKANDHBIX CB93EH, BOTOMOTATEROHOIX PEPM H DECTHUL PASPASOTANDI
- 3. COCEMBI TOPMOSHOIX BAROK CM. HA JUCTE 7.
- 4. 8 CEYEHURE TOAKPAHOSOIR BANOK TO CONTAMENTY GEPHH K9-01-57 BUT 1/67, OTMEYENHOLOCH, WHPHHY ANS OBECNEVENUS KPENNEHUS CRELUANDHOFO

BEATHERO ROSCA KONCTAVKTHENO YBERHANTO AO 400mm KPAHOBOTO PENDOA NA TMAHKASE.

DOA MOCTORNIE BOEKTPUYECKUE

Шпфр	Основная	KONOHHA	MOAKPA!	HOBBIE BATE EPHN K9-01-5	THE CEYE	THUE NO	TOPMO BAJI	BHAQ KA	BOTOMOFATERS HAS DEPMA	. ВЕРТИК. СВЯЗ.		JECTHM	44	N° JIHCT MAPKHA
ЭСТАКАДЫ	КРАЙНЕГО	CPEAHETO	КРАЙНИЙ .	POSET	СРЕДНИЙ.		170 KPAHHEMY	CPEAHEMY	ПО КРАЙ IEMS РЯДУ	NO KOJOHHAM	770 МОЛОННАМ	HA DOCABONNYMO	HA XOAOBYIO	BOYHOR
	PSAA	PSAA	G7:3	MUSKONETH POBAHHAS CTANO	C7.3	POBAHHAS CTAJIO	РЯДУ	РЯДУ		RAMHETO PSAA	CPEAHETO PSAA		TATEPERO	
II-18-8.2-5r			121*	_	120*									
II-24-8.2-5r	K49I-1-4	KA9IV-1-4	423*	_	121*		1							
II-30-8.2-5r			425*		42/*	-								
II-18-8.2-10r			_	£ 23 *		121*	1		89-1					
II-24-8.2-10r	K43I-2-4	KA9II-2-4		1 24 *		1,21*]							
II- 30-8.2-10r				1 25 *		1 22*	1							
II- 18-8.2-15r			_	1 47 *		146*	1	1	<i>8</i> 4 -2	BC-1	<i>8G</i> -2	n-1	1-4	
II-24-8.2-15r	K49T-3-6	K4911-3-6		4 37		1 27	1		BФ-1					
II- 30-8.2-15r				1 49		1 46*	1	1	BØ-2	•				
II-18-8.2-20r				1 49		446*	1		27-2	1				1
II- 24-8.2-20r	K49T-5-6	KA3[[-5-6		1 52 *		A 52*	1	1	89.3					
I- 30-8.2-20r			_	A 53		4 52*	1					<u> </u>		17
II-18-9.7-5-			121 *		420*		7-4							
II-24-9.7-5r	KA3][-1-4	KA91-1-4	123*	_	121 *	1	75-4	75-6						
1-30-9.7-5-			423+	_	121*	1	1							
II-18-9.7-10r				A 23 *		421*	1		89-1					
II-24-9.7-ior	K1917-2-4	K49[-2-4		124 *		121							<i>s</i> −5	
II- 30-9.7-10r	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A 25 *		4 22*	1			<i>8c-</i> 3	BC-4	J1-2	JA-5	
II- 18-9.7-15r				447*		A 46*	1		84.2					
IJ-24-9.7-15r	KL9][-3-6	KA9I-3-6		437		1 427	1		84-1					
II- 30-9.7-15r				149		446*	1		89-2					1
II-18-9.7-20r				449		146*	1		572]				
# 24-9.7-20r	X1977-4-6	K1917-4-6	_	A 52*		4.52*	1		89-3					
1-30-9.7-20r	436								09-5					<u> </u>
II-24-12.7-5r	7-5- 123* - 121* -											1		
I-30-12.7-5r	K43II-1-3	KA911-1-3	A23*		121 *	 	1							1
II- 24-12.7-10r	7,12	7220		424*		121	1		89-1				1	1
II-30-12.7-10r				A 25*		1 22*	76-5			BC-5	BC-5	<i>J</i> -3	25	18
II-24-12.7-15r	кдэД-2-5	K491/-2-5		437		4 27	1			00-5	000	"		
11-30-12.7-15-	14 M-8-2	743E-8-5		449		146*	1		<i>8\$</i> -2		1			1
II-24-12.7-20r	K13II-3-5	K4317-4-5		4 52*		4.52*	1	1	80-3	1				
II- 30-127-20-		- C-F- MOHP.	_	453		452*	1	1	0,400	1	1	1		1

MPUMEYAHUS:

Госствой Киевский Гудистронпорект скиев

^{1.} Конструкции сворных железоветонне ж колонн PASPABOTAHOI HA JINGTAX 37-39.

^{2.} Конструкции стальных вертикальных связен

³ CXEMOI TOPMOSHDIX BAJOK CM. HA JUCTE 7.

^{4.} В СЕЧЕНИЯХ ПОДКРАНОВОХ ВАЛОК ПО СОРТАМЕН-TY GE. DUN X3-01-57 BOIN 11/67, OTMEYENHOLX , WULDHHY BEPXHED THE TABLINA TUBIO YBEJHUNTO AO 400 MM AND OBECIEVE THE TABLINA MAPOK STEMENTOS ASXXTPONETHOUS TOURS TO THE TABLINA MAPOK STEMENTOS ASXXTPONETHOUS THE TABLINA TO THE TABLINA MAPOK STEMENTOS ASXXTPONETHOUS THE TABLINA MAPOK STEMENTOS ASXXTPONETHOUS THE TABLINA MAPOK STEMENTOS ASXXTPONETHOUS TOURS ASXXTPONETHOUS TOURS ASXXTPONETHOUS TOURS ASXXTPONETHOUS TOURS ASXXTPONETHOUS ASXXTPO BGOOMOPATEJOHDIX DEPM N JECTHULL PASPABOTAHDIB BOOT HUS KPEDJEHUS CAELHAJIDHOFO KPAHOBOFO PEJOCA HA TIMAHKASC

			MATHUTHO-F		0861E 6451K		E NO CEPHH	·	103H49 K4	BCDOMOTA- TENDHAR		74.05MA 9	SECTE		A SHOTA
	ШнфР	1 /2 - 1 - 1 - 1	Consumme	КРАЙНИЙ		СРЕДНИЙ		170	170	COEPMA TO	/TO KOJOHHAM	170 KOJOHHAM	HA MOCALOVHUMO	HA 2008410	BOYHON
	GGTAKAA bi	KPAH HEFO PAAA	CPEAHETO PAAA	C7. 3	Низколеги- РОВАННАЯ СТАЛЬ	G7:3	HUSKONETH POBAHHA9 CTAND	хоайнему Ряду	СРЕДНЕМУ РЯДУ	PSAY	КОЛОННАМ КРАННЕГО РЭДА	CPEAHE TO PSAA	ПЛОЩАДКУ	PANEPERO	CZEMOI
	I-18-8.2-5MF			122*		120*									
	17-24-8.2-5 MT	KA9T-1-4	KA911-1-4	A 24 *		121 *						į	1		
	I- 30-8.2-5 Mr	<u> </u>		1 24		121*				1					
	II- 18-8.2-10mr	1			1,25 *		1.22	<u> </u>							1
	II- 24-8.2-10MT]	KA9II-2-5		426		124	1							
	1-30-8.2-10MF	WOT OF			127		1 24	1							
	II-18-8.2-15MF	KA9I-2-5			124"		121	1			BC-1	BC-2	J-1	5-4	1
	II-24-8.2-15MT	1			A 25 *		A 23 *	1							
<u>k</u>	II- 30-8.2-15MF		KA917-3-5		4 26 *		124	4					1		
HEMAG HEMAG	II-18-8.2-20mr				1 26		122								
WW WW	II- 24-8.2-20Mr	KA3I-3-5			1 26 *		1.24								
	II-30-8.2-20M-				1 28		124					<u> </u>	ļ	ļ	17
3	II-18-9.7-5 Mr	4		<u>A 22 *</u>		120*					j				
183	II-24-97-5 MT	KA3II-1-4	<i>1</i> 43 <i>∑</i> -1-4	A 24 *		121*		75-4	T5-6	84-1					
TIOOSE OND TITLERY	I-30-9.7-5 Mr			A 24 *		121					1				
9 5	II-18-9.7-10MF]			A 25 *		A 22 "								
100%	I-24-9.7-10Mr]	K491-2-5		A 26 *		124				BC-3	BC-4	<i>J</i> -2	J-5	
908	II-30-9.7-10MF	K13II-2-5	., -		1 27		1.24								l
86	II- 18-9.7-15MF				4.24 *	<u> </u>	1 21								1
8 8 8	II-24-9.7-15MT]			A 25 *		A 23				Ì				
Савускин Самолетог Харитсног Батуричее	II-30-9.7-15MF		W407 7 6		A 26 °		124								ł
BJC MON TYP	II-18-9.7-20Mr		KL97-3-5		A 26 *		A 22								1
2222	II- 24-97-20 MT	K491-3-5			A 26 *		A 24 *								}
Massill	II-30-9.7-20MF				1 28		A.24	ļ							
3 3 0 0	II-24-12.7-5MT	KA9II-1-3	K49VI-1-3	4.24		121									1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	II- 30-12.7-5MT	12,514 1 5	14311 1 0	1,24		12/				1					
	I-2/-127-10MT	j			4 26 *		124 *				86-5	BC-5	J-3	Jr€	1
EMA III	II-30-12.7-10 MT	K13/1-4	K49VI-1-4		4 27		424*	75-5			200	000	07-5		18
22 0 5	II-24-12.7-15Mr	K4311-1-4	K43VL-1-4		4 25 *		4 23							l	1
DY CT. MAY	II-30-12.7-15MT				4 26 *		A 24 °						1		
	1-24-12.7-20MT	KA9.II-2-4	VIOTE O		A 26 *		124*				1		1	1	
	II-30-127-20M-	14321-6-4	K4317-2-4		A 28		A 24 *						1		
130	MPUME	YAHU9:													
CC DÚTPOEKT AEB	1. KOHCTPYKUM	CEOPHERS	XENE305ETO	א אונסאא	DONH 4.	B CEYEHA	ISC POAKE	AH0801X 5	AJOK 110 C	OPTAMENTS	,				

ZAX.

GEPHH K3-OI-57 вып II/67, ОТМЕЧЕННЫХ, #ШИРИНУ ВЕРЖНЕГО ПОЯСА

КОНСТРУКТИВНО УВЕЛИЧИТЬ ДО 400 ММ ДЛЯ ОБЕСПЕЧЕНИЯ

KPERNEHUS GREUNANDHOFO KPAHOBOFO PENDOA HA RNAH

MAPOK STEMENTOB

MATHUTHO-FPEUPEPHWE KPAHW

TABJIHUA

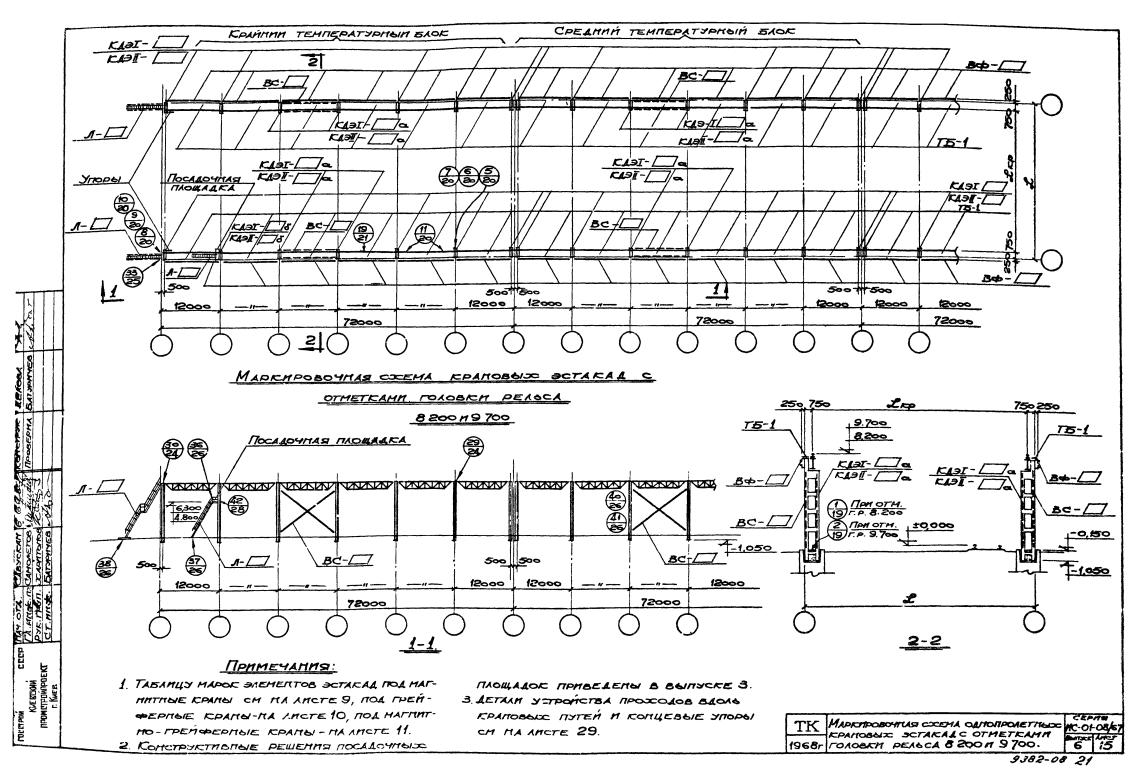
PABPABOTAMOI HA JUCTAX 37-39.

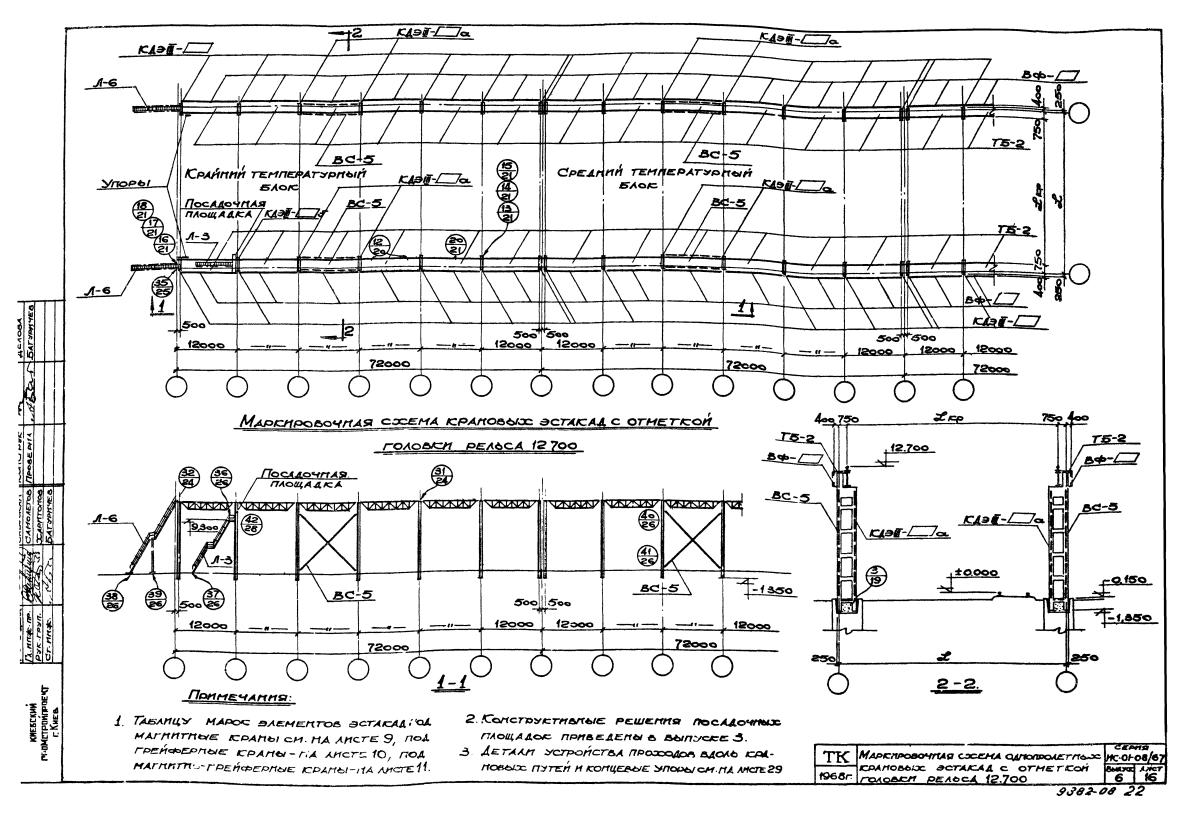
2. Конструкции стальных вертикальных связей,

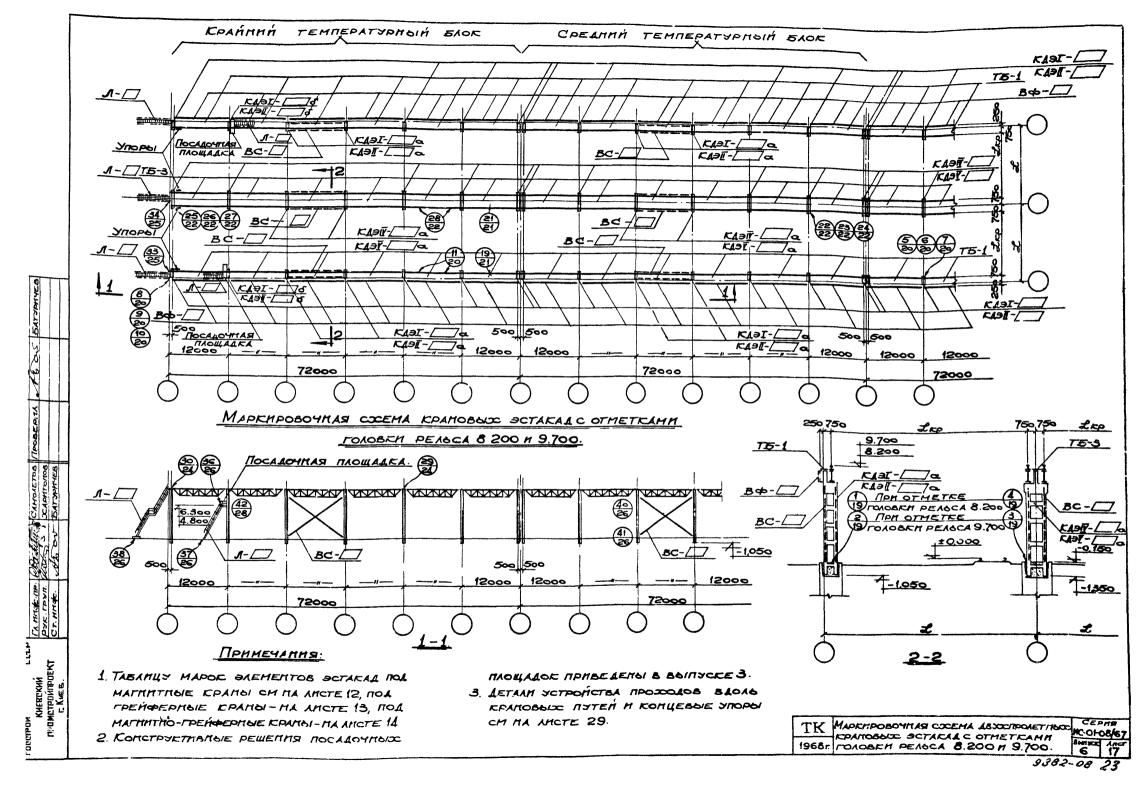
3. GOEMBI TOPMOBHOISE BASION ON HA STUCTE ?

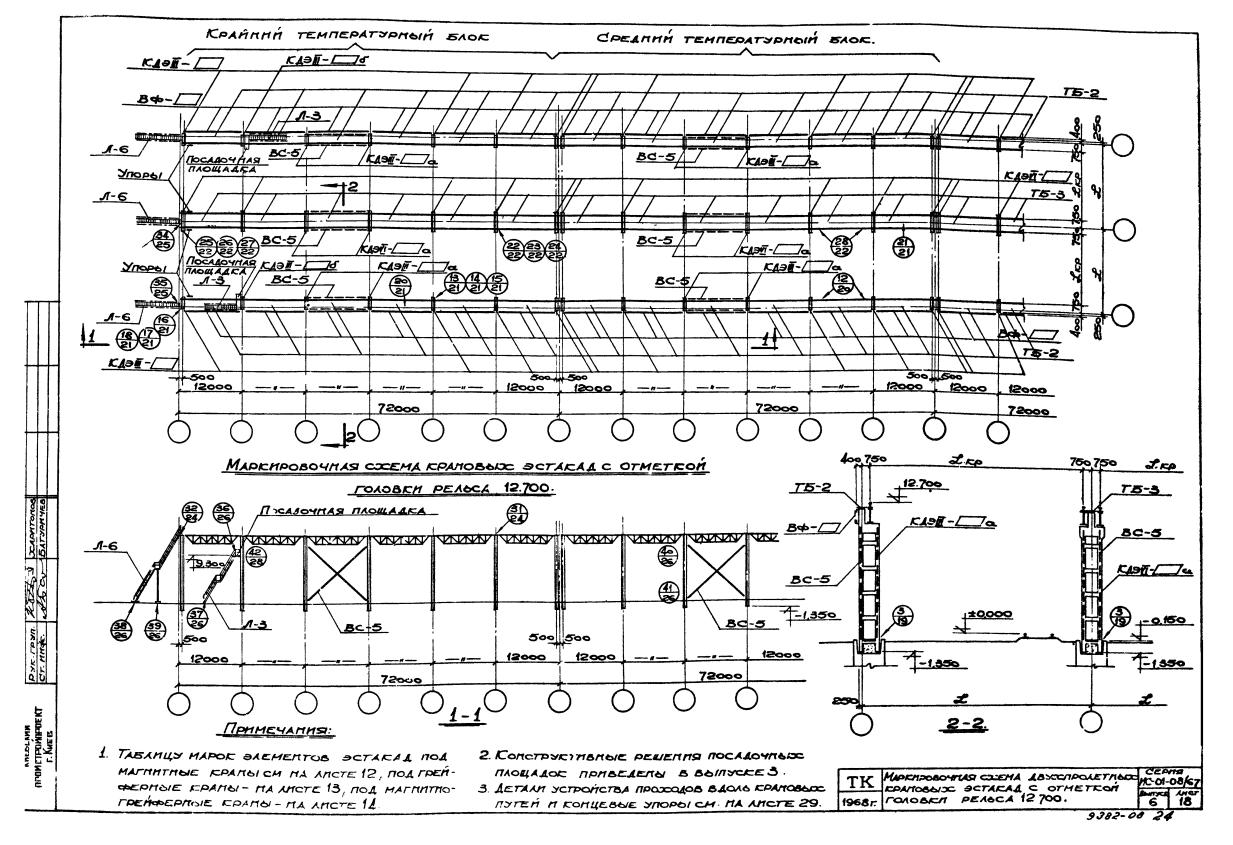
Вопомогательных ферм и лестниц разработаны в выпо

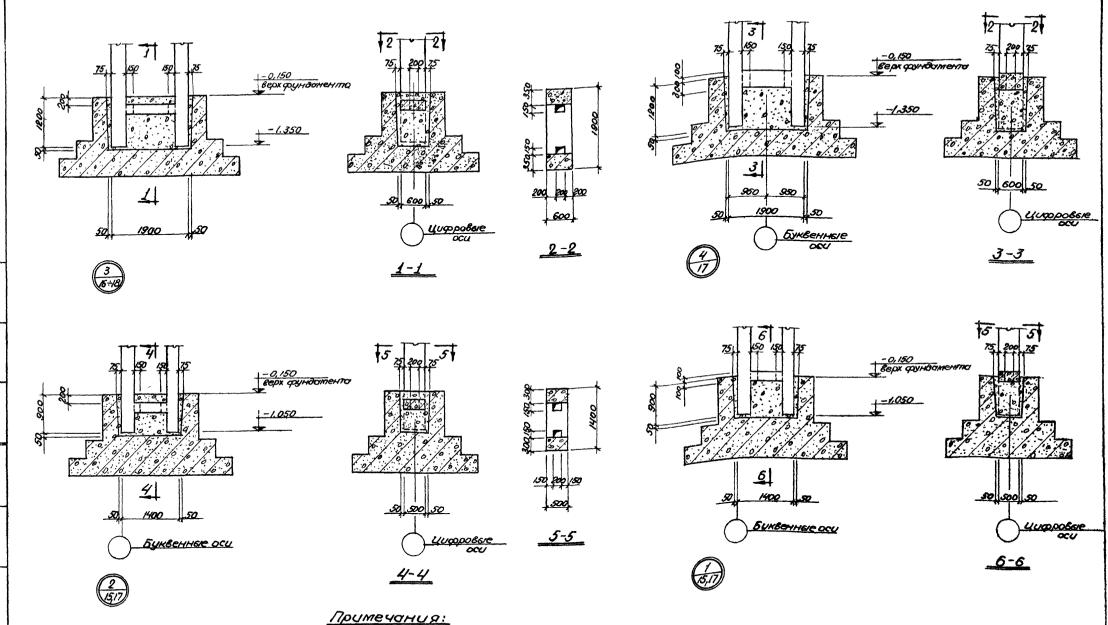
ABYXTIPOJETHUX KPAHOBUX SCTAKAA TOA MOCTOBUE


ГРУЗ 0 704 ВЕ МНОСТЬЮ 5/5; 10/10; 15/3 и 20/5 Т.

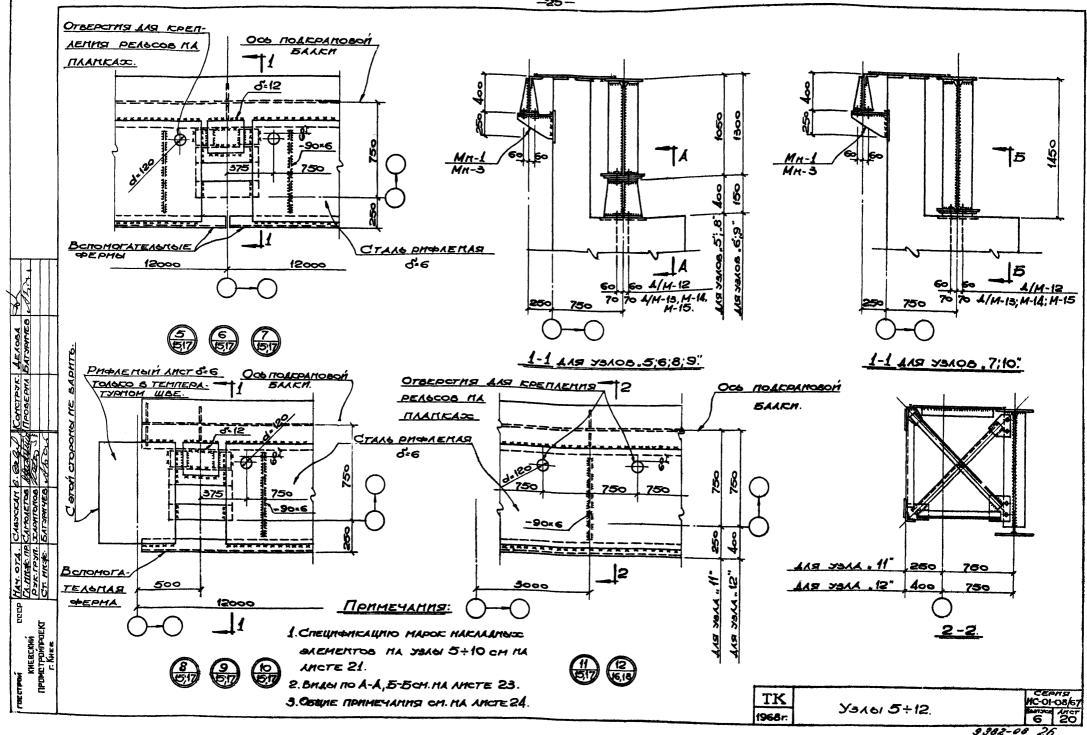

TK TABAHUA MAPOK SAEMENTOB ABYZAPOAETHOLE MC-OFOB/67

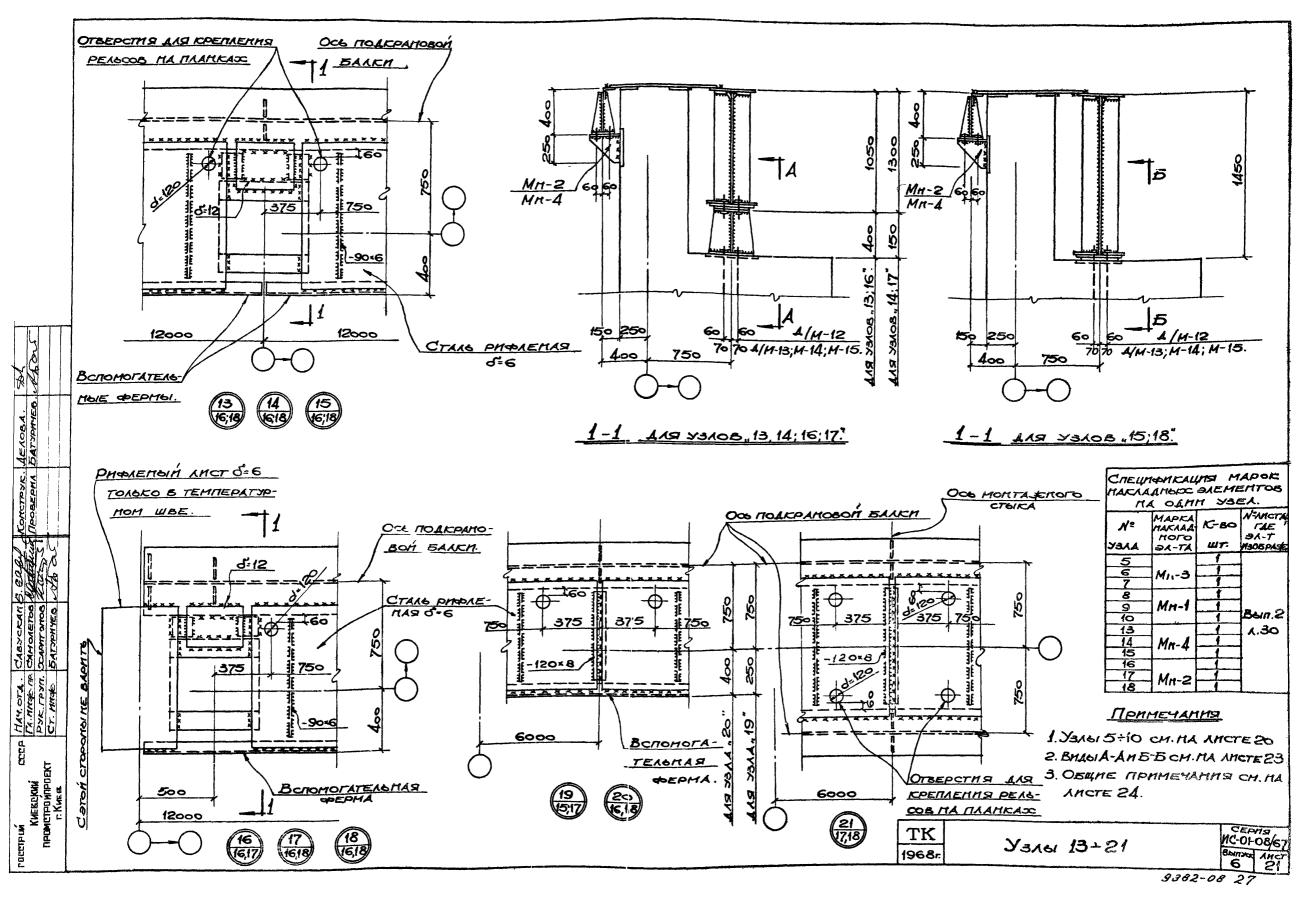

RPAHOBOLE SCENARA ROLL MOCTOBOLE SAENTPHVECKHE MACHINIO-PPEUPEPHOLE RPAHOLI PYSO60-1001

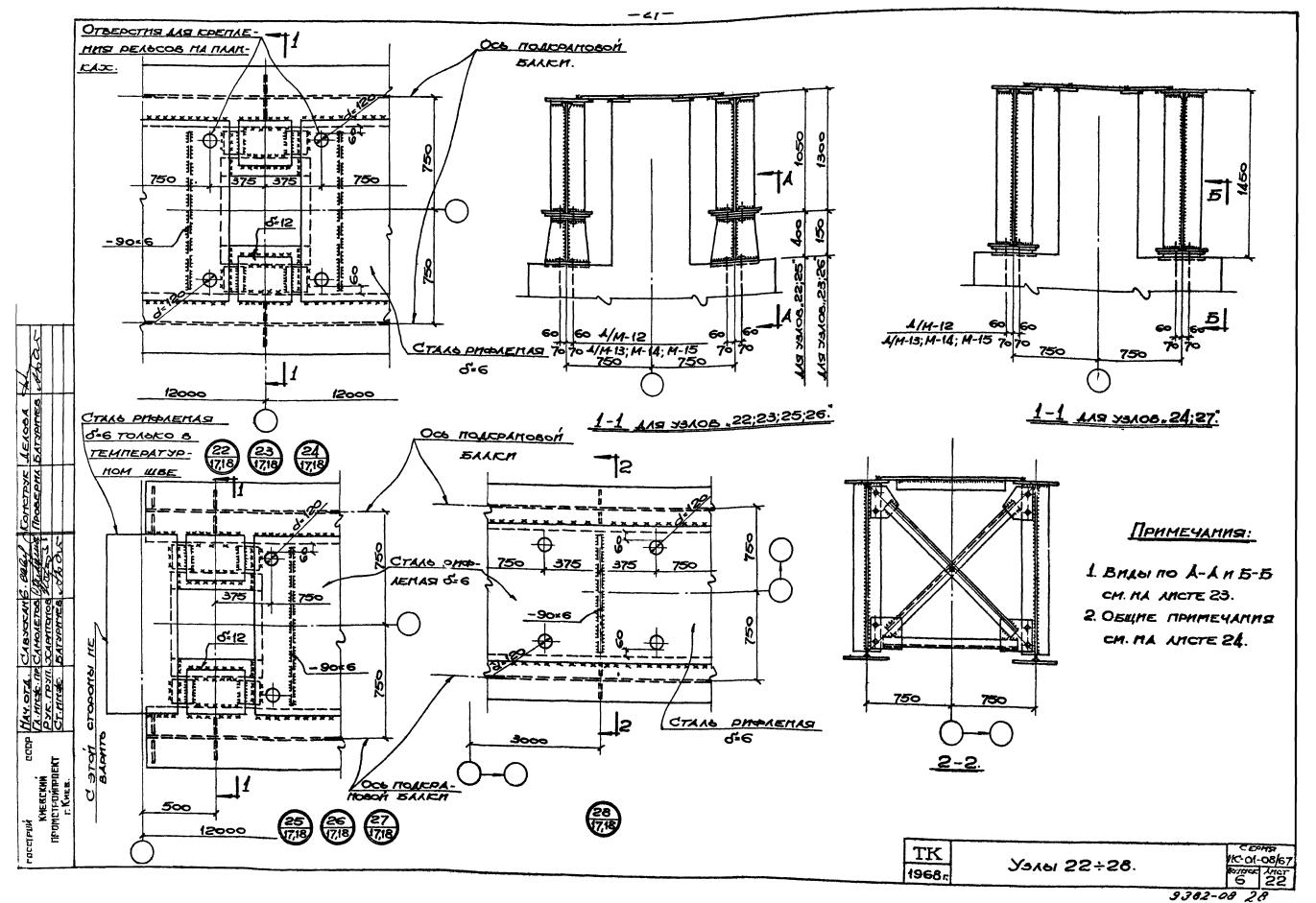

1968: TOLLDEMHOCTORO 5/5, 10/10, 15/3 M 20/57 4382-08 20

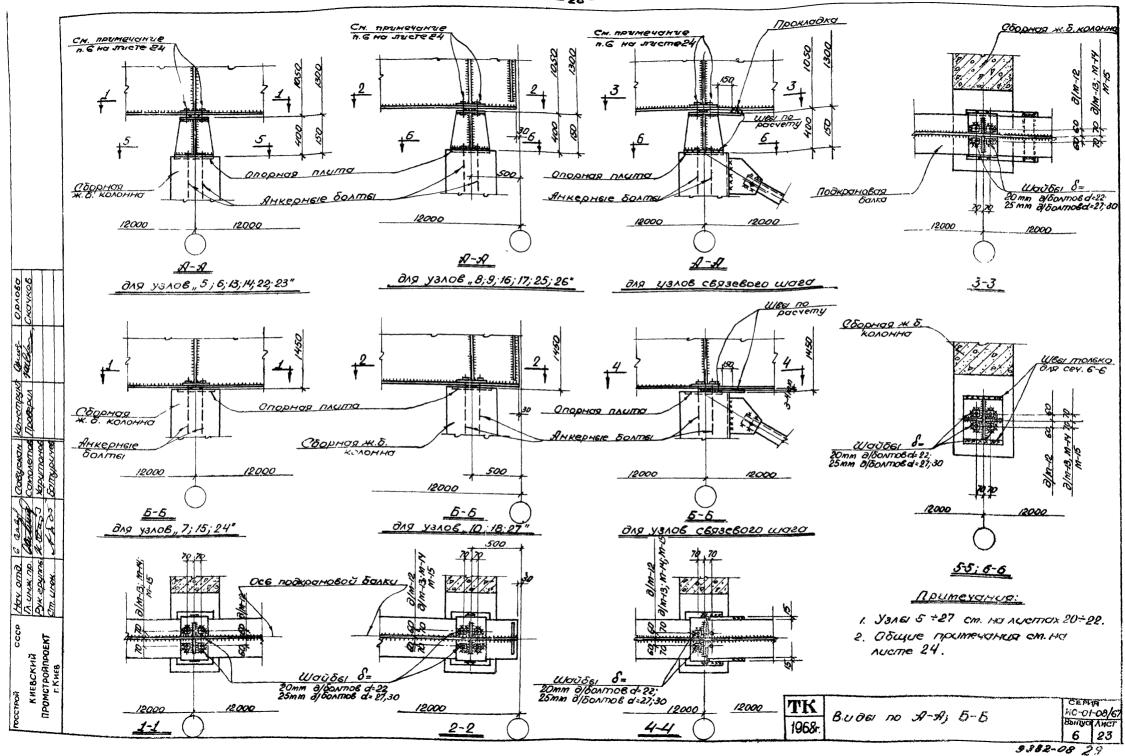

STEKTPHUECKHE

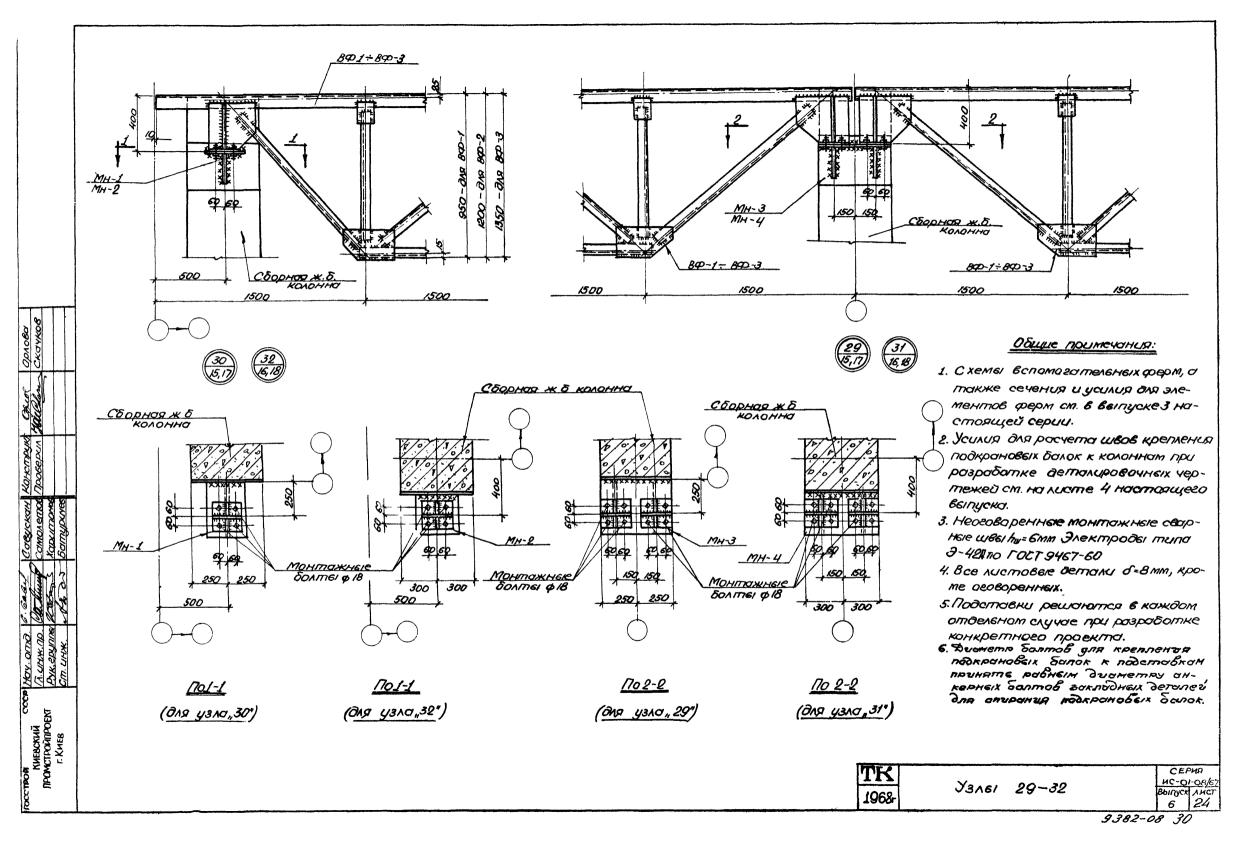
н Перед установкой колонн дно стакана фундатента выравнивается путем устройства подливки из раствора или бетона марки, 200" на телком гравии

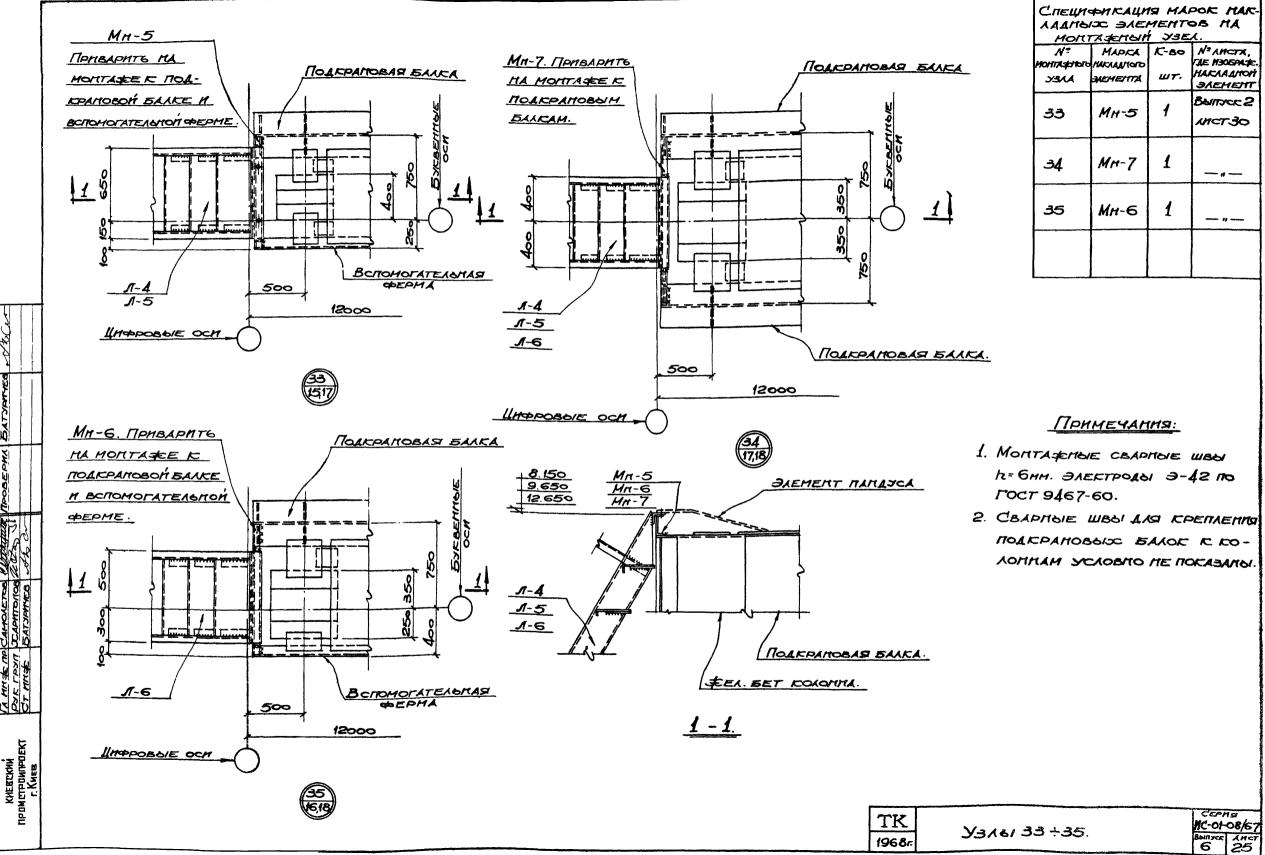

KKEBCKIÑ IIBCMCT BOKIIBOEKT F. KWEB

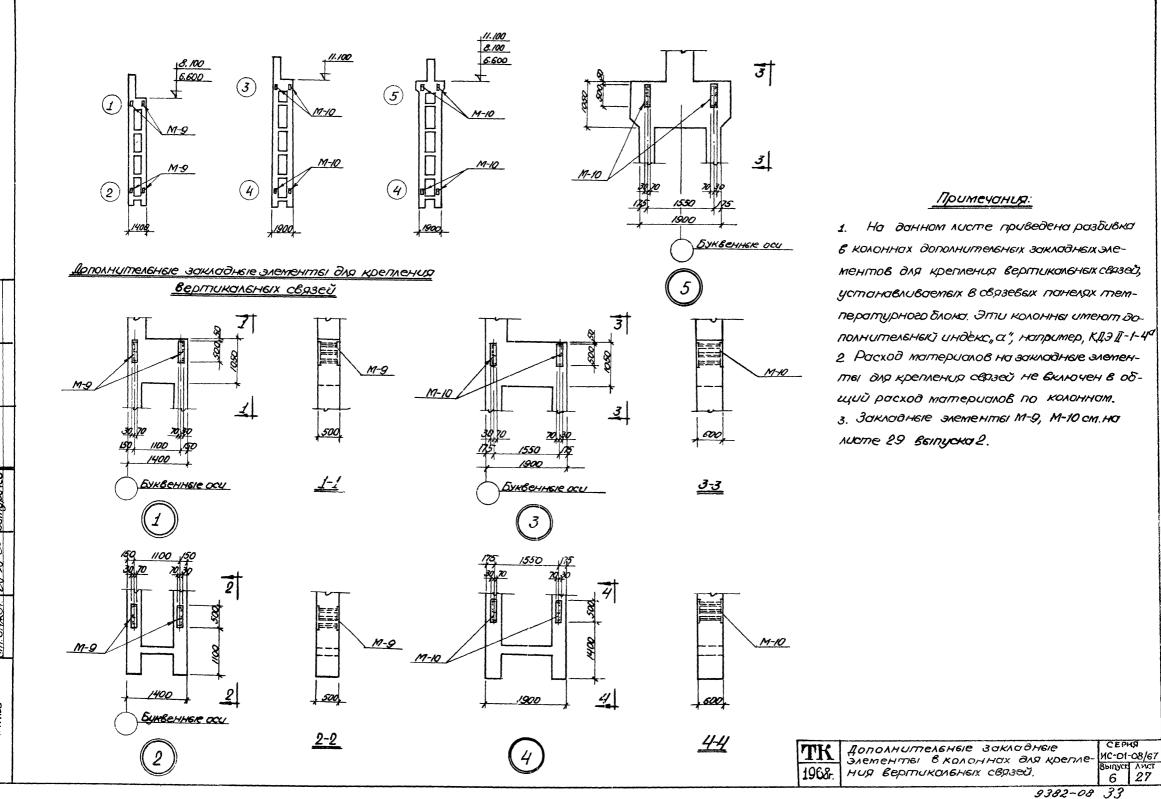

Полщина подливки уточняеттся перед установкой колонн.

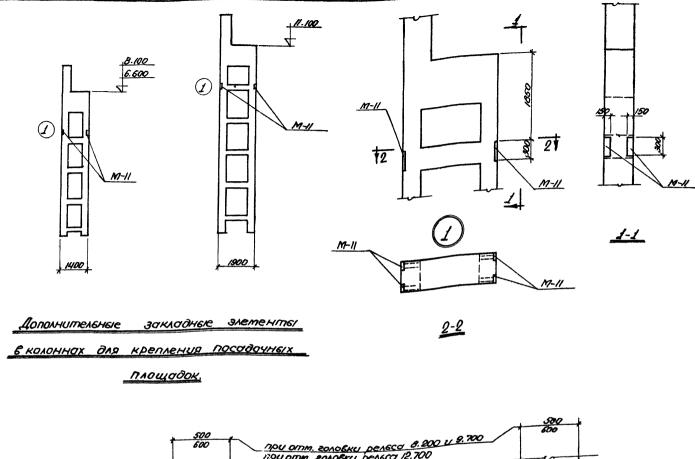

2. После установки и выверки колонн производится замоноличивание их в стаканах фундаментов бетаннай смесью мархи не ниже, 200" с водоцементным отношением в пределах 9,4-0,5 на мелют гравии.


ТК Узлы сопряжения колонн с фун- ис-от-ов/е вып. лист 6 19


9382-08 25

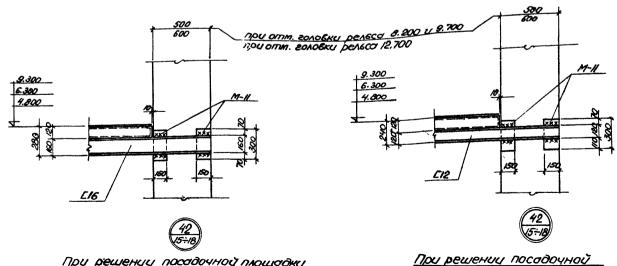






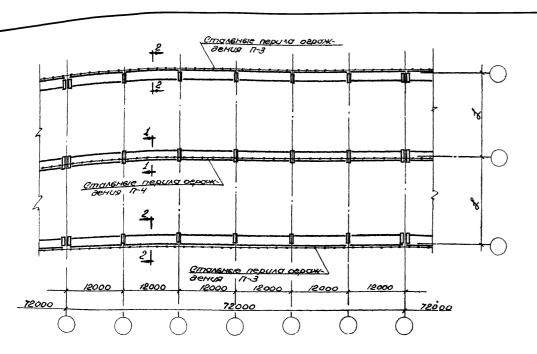
LEKOBA BATYMYER

KONCTPYC.



Примечания:

- 1. На данном листе приведена разбивка в колоннах дополнительных заклодных элементов для крепления посадочных площадок. Эти колонны имеют дополнительный индекс, б," например, КДЭ [-1-46.
- 2. Раскод материалов на закладнеге элементві для крепления посадочных площадок не включен вобщий расход материалов по колоннам.
- 3. Закладной элемент M-11 см. на листе 29 выпуска 2
- 4. Монглажные сворные швы ha=6mm. Электроды типа 9-42 по ГОСТ 9467-60.



площодки водном уровне.

При решении посадочной площаджи

ТК Пополнительные закладные элемен ты в колоннах для крепления по-

Выпуск лист 6 28 9382-08 34

Схема устройства проходов вдоль крановых путей

OPNOBO

Halle

Koncmoyer

Милы и сечен	ия концебых	ynop	06		
		Coyson	oonwas 60	ME KPO	WO & M
Mun Kpaka		5	10	15	20
	Mun ynopa	Ī	Ī	I	Ī
Могнитный	Cevenue ynopa	<i>145</i>	I 45	<u> 1</u> 55	<i>155</i>
2	Пип упора	I	Ī	I	Ĩ
Срейферный	Сечение упора	Ĩ 45	£55	CEOPHOU A BY MOST	CEOPHOL OBUMBE
Маенитно-	Μυπ γπορα	Z,	I	Ī	I
-2рейферный	Сечение упара	145	I 55	155	<i>75</i> 5

Примечания:

- Чертежи концевых упоров типов [и ії при-Bederisi & cepuu K9-01-57 €SINYCK I HOLVEME 38.
- 2. Секции перил овраждения П-3 и П-4 разработаны на листах ЮН выпуска 3.
- 3. MOHITIOXIHEIE CEOPHEIE WEEL hu =5mm, khome ocobo оговоренных Электроды типа 3-42.
- 4. При розроботке рабочих чертежей для обеспечения безоласности прохода бдоль крановых путей следует предустотреть в пределах колони устройство пандусов, крепление котторых не будет препятотвобать свободному перемещению подкра-**ΗΟΒΕΙΧ ΘαΛΟΚ.**

Детали устройства проходов вдоль крановых путей. 1968 Konuessie ynopsi

ис-от-ов/67 Выпуск лист 6 29

2	ASI	L		C	THE	TEA	(10	AOBA	H P	E/6	CA 8				OTH	ETKA	rond	BEM	PEA	6CA					OTHE	TRA	T					ВПРО
7770	TAKAASI			.,		μģ	BI	TOTE	AE-HITC	MM	WIPAE	MESTHI	B TIPOS HATIPA	OVENIUM SVENIUM		Ŋ	BRE	MEPES			<i>NEMPI</i>	B POAC MARIPAR	MEMMIN			3,13	Bron			AMPABA	EMIN	HAME
30	X S	:	Ш	11 4	6	20	floca	KAN	TOBAST	HACI	AJEK O		TEMME		Шпфр	13	I Floor	·	BASI HA		BETPO BASI	TEMME.	TOPMO alosinne		Under		Посто	· }	SASI (TAI		BETPO	PATY
ξŞ	FH	e	CTA		-	14.17	SIMMA	S AFD	YKANG	rus 7	OPMO- EEMHE	raa Harpyb	PATYP MOE	SPERME M	SCTARAL	P 5	STATE	3 SEPTHI	CANUAGA	TOPI O-	HATPOS	HOE	n	∌c7	akaabi	SA	GHMA9 MATPYS	Вечн	CANG (ASI	TOPHO-	ECGTAN	NOE
/PX30 KP/	100					24	HATPO ICA	1	14.	十	7	W	BOMEN CTBME	BETEP		บ	NA O	-	Asmin	T	W	CTBME	8ETEP			08	RA	Africas	Atmen	7	W	CYB/IL
<u> </u>	<u> </u>	╫				M	-2.8	7 1.8		_			±9,45	_		_ /^	1 -2.8		1	±7,37	±11.90	±632										
	18		-18-					2 87					_	±1.44	I-18-9.7-6 II-18-9.7-6	<i>>M</i>		37,6	13 03				±1.88			<u></u>	ļ	 	 	<u> </u>	<u> </u>	
	•	Į Ū	- 18-	82	-5м	a		-			±0,76	±1,55	±1,40	±1,35	110-9.7-	3M (±1,36					+	1	-			11000	10.70
		Τ,				M	-2,8	2,0	7 0,8				±9,45		I-24-9.7-	om 🗠	1 -2.8	2.07		±€,78	±13,8	±632	T		-12.7-5H	M	28.72	2.07	0.82	±889	±18,60	= 0.75
5	24	-H -			2-5H	N	17,0	2 41.	4 16:					±1.66	II-24-9.7-	Z., LA		41,4	16,37	±0.70	±1,56	+077	±2,15	<u>I</u> I-24	-12.7-5m	Q	E0/E	41,4	-	±0,70	±162	±0.6
		4	- 24	-0.2	2-5H	Q				_	±0,70	±1,52	±1,40	±1,55		37 10	4=	+=	 -	±0,76	11,56	20,77				1	†	 	 	13,10	-1,00	
									-	_				-		-	+	1						١.								
	30		_				<u> </u>		+-	\dashv				 		 	_	1								L	<u> </u>	<u> </u>				<u> </u>
		╫┈				+		-		-	+060	+1950	±9,45	_			1 -2.8	2,49	0,51	±11,35	±15,10	£6,32					ļ	 	<u> </u>			├
	18				-10M	M	-2.6	3 2,4 5 49.	9 Q5	-	13,00	-16,00	-	±1,95	I-18-9.7-1 I-18-9.7-1				10,15				±2,39	-		-			 	 		
	10	Į Į	-18-	8,2	-10 <i>H</i>	N/Q	17.3	9 43.	119	=	±1.17	±1,67	±1.40	±1.73	H-10-9.7		2 -				±1,70					M	-3,71	2,75	0.68	±1435	+20%	+67
						M	-2.6	3 2,7	5 0,6				±9.45		I-24-9.7-1	COM		2,75		±10,96	±1530	±638	+5'eo		-12,7-10 <i>M</i>	N	29,20			-1455		
la	24				-10H	N	17.5	_			-	-		#50S	11-24-9.7-	104 1		55,0	13,57	=	±1,72	+077	1	<i>[[-24</i>	-12.7-10 <i>m</i>	R	-	-		±1,13	±1,78	±0,60
		"	-24-	92	-10H	Q								±1,89			<u> </u>	3 3.11	1.00		±16,10			7-20	- 107 10	M	-3.71	3,11	1,00	±14,35	±21,60	±675
		1	- 30-	8 2	-10m	M	-2,8	3 3,1	1,0	00	<u>*927</u>	±13,4c	±9.45		<i>I-3</i> 0-9.7-	10M	<u>1 -2,8:</u> V 19,10		+	-1036		_	+2,95	t .	-12,7-10m -12.7-10m	N	29,20	es 'S	19.94			
	30	11 .			- 10m	N	17,5	o 68,	S 181				=	±230	[[-30-9.7-	104	2 -	155,5	-	±1.13	±1,81	±0,77	±2,21	13 00	10.(1014	Q	<u> </u>			11,13	±1.87	±0,60
		#-				Q		1				±1,78		±2,15			4 -28	1 3,34	952		±15,91	1632				<u></u>	<u> </u>	 	ļ		ļ	
	10	I	- 18-	5 .2	- 15M	M					±12,60	±1527	±9.45	±246	I-18-9.7	ואכו		66,9	6,48				±3.15			_	 	 	 	├	<u> </u>	
	18	I	-18-	8.2	-15н	NQ	178	9 66,	9 6,4	_	±1,54	±1.76	±1,40	1	<u> [</u>] - 18 - 9.7 -	15M	7 _				±1,78			ļ		M	-	200		±19,56	40130	+67
	-	+				M	-5.8		B 0.6				±945		I-24-9.7-		1 -2,8		0,66	±14.94	±16,21	+632		I-24	· 12.7-15H	N	2959	368	13,15	±19,56	201,10	-
E /	21	I			-15m	N	17.8			_	-10.00		_	±2.66	II-24-9.7-	15H L	V 19.49		13,15		-	±077	±3,41	<u>I</u> I-24	-12.7-15м	Q		73,5	13.10	±1,54	±188	±0,60
73	24	"	-24-	-82	-15m	Q	1=		-	-	±1,54	±1,78	±140	±2,62			? -	1=			±1,81			7	40 W 15	M	-3,70	3,97	0,98	±1956		
		7			-15M	M	-28	1 3,9	7 0,5	8	±18.60	±14,22	±9.45		I-30-9.7-	15M	1 -2.8 V 19,4:	-	1965	=14.94	1.1/100	T	±3 66	16	-12.7 - 15M -12.7 - 15M	N	2959		19,65			
	30	11		•	-15н -15н	N	17.8	79	4 19,	65			1=	±287	[[-30-9.7-	77 AJ	7 19,4	78,4	19,65	4	± 1,90	±077			15.7 TOM	Q		<u> </u>		±1,54	±1,96	±c'ec
		#		<u></u>		Q	_	4=	- -	_	±1,54	±1,87	±1,40	±2,82	-			3.62	0,80		±17.80					_	<u> </u>	<u> </u>	<u> </u>			├─
		Z	-18-	8,2	-20н	-	-27	_		_	±1738	±14,90	±9,45	±2,64	I-18-9.7-	20M	V 19,87		15.91	_	<u> </u>		±336			-	 	ļ		 	<u> </u>	├—
	18	11		•	-20н			7 72		91		+10=	+140	±2,64	<u>I</u> [-18-9.7-	204	2 =			±2,12	11,98	±0,77	±525				+	-		1,500=	104-	100
	 	+				Q		9 4.0		-	16.16 11722	+1500	±9,45	1	I-24-9.7-			4.04		±2056	±16,00	+632	A 11 730	16 '	-12.7-20H	***	29,94		-	±5€'85	±24,00	±6,7
20/	24				- 20M	A/	18.2		منسوست		11/30	-120		±290	I-24-9.7-	204	V 19,8	80,7	Ţ	_=		4077	±3,70 ±2,77	<u>I</u> -24	12.7-20H	Q	-	1 -	10,27		±2,06	<u> </u>
/5	~ 4	4	-24-	8,2	- 20H	Q	10,5	163	110	_	±2,12	±1,96	±1,40	±271			2 =	+==	 		±200			7	10	M	-3.55	4.49		 	+2430	+
	<u> </u>	1	• .			LA	-27	9 44					±940		I-30-9.7	-20M		4.49		±2056	+ 18.20	1.836	+4.10	7 1.30	-12.7-20M -12.7-20M	14	29.94		24.21			_
	30	В			2-20M	M.	16.2							+3.55	11-30-9.7-	لاسوج	V 19.8	7 69.7	24,21	1010	±202	±077	13.07		12.1.20M	Q		<u> </u>		±2,12	80,St	±0'ec

BAPHANTO SAIT YEEMING OTEPHTOD KOANOBOUS OCTA-KAL KPANAHIN B NONEMENTOM MANPABAENINI, ПРИНИМАЕНОЕ ПРИ РАСЧЕТЕ ФУНДАМЕНТОВ, ПРАВИЛО ЭПАКОВ И ОБЩИЕ ПРИМЕЧАНИЯ СИ. НА МИСТЕ 36. TK HOPMATHERNE HAPPYSKH NA GYNLAMENTE MC-01-08/67
EPANHING KOAONH NOL MOCTOBOLE SAEK-BUNKK ANCT
1968 TPHYECKHE MAPHITTIOLE KPANOL. 6 30

İ			Норм	НАДНУФ ДП НЯСУЧТАН ЭЮПВИТА	ЕПТЫ КРАЙПИХ	CONOMN TO A MOCTOBOLE SAEKTPHYECKHE FPENDERERANO.	
- \	12	127	OTHETK	A FONOBER PENGEA 8.200.	OTHETRA	C TOLOBEM PEASCA 9.700. OTMETER FOLOBEM PEASCA 12.700	
	HITO	AKALO		В ПОПЕРЕЧНОМ МАПРАВЛЕМИИ МАПРАВЛЕМИ	1	U D HOTE PERIOD HANDABACHINI	TPOAOASTOM TIPABAETIM
	0.486	8 2	ШИФР	O TIOCTO TOPHO TOPHO TATES SEIN TOPHO TATES SEIN TOPHO TATES SEIN TOPHO TATES	re l	O DIOCTO BAS PATOR SEETING OF TOPHO BAS PAT	MIRE TOPMO
	YSONO	PPONET 2	9CTAKA461	STATION BEPTHEAMING TOPHO HATOUS HOE H	ETARAL Ы	THAT BOSAET BETED	IOE N BETED
	7633	(II)	T 10 00 0	M -2,89 1,88 9,56 ±5,82 ±11,9 ±9,45 -	7.40.077.5-	M -289 1.88 0.56 ±6.89 ±142 ±6.32 -	TB/IE
		18	I-18-8,2-5r [-18-8,2-5r	N 17.19 37.50 11.25 ±1.5		N 18,70 37,50 11.25 ±1,96	
			I-24-8.2 <i>-5</i> r	Q + ±071 ±1,57 ±1,40 ±1,40 M -2,89 2,15 0,75 ±5,82 ±12,1 ±9,45 -	I-24-9.7-5r	M -2.89 2.15 0.75 ±6.89 ±14.5 ±6.32 - I-24-12.7-5r M -4.01 2.15 0.75 ±9.02 ±19.4 ±6	
	5	24	1-24-8.2-5r	N 17.10 43.00 15.00 ±1.60 Q ±0.71 ±1.59 ±1.40 ±1.5	II-24-9.7-5r	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		2-	I-30-8,2-5r	M -2,89 2,38 1.11 ±4,67 ±10,3 ±9,45 — N 17.10 47.50 22.29 — — ±1,9	I-30-9.7-5r	M -2.89 2.38 1.11 ±5.53 ±12.4 ±6.32 — I-30-12.7-5r M -4.01 2.38 1.11 ±7.24 ±16.8 ±6 N 18.70 47.50 22.29 — — ±2.46 I-30-12.7-5r N 28.78 47.50 22.29 — —	6,75 — — ±3,88
		30	<u> </u>	Q ±057 ±1,38 ±1,40 ±1,7	8 4 -38-9.7-31	$Q = - + \pm 0.57 \pm 1.41 \pm 0.77 \pm 1.84$ $Q = - + \pm 0.57 \pm 1.47 \pm 0.00$	o'eo
		18	I- 18-8,2-10r <u>ii</u> -18-8,2-10r	M -2.83 2.87 9.80 ±11.15 ±14.5 ±9.45 - N 17.73 57.33 15.98 ±2.1	TI II (0 -3.1 IV)	N 19.34 57,33 15,98 ±2,79	
H				Q ±1,36 ±1,89 ±1,40 ±29. M -2,83 3,12 1,25 ±11,15 ±14,6 ±9,45	I-24-9.7-10r	M -283 3 12 1.25 ± 139 ± 175 ± 632 - 7-21-127-10, M -3,71 3,12 1.25 ± 17,27 ± 23,4 ± 6	
	10	24	I-24-8,2-10r <u> </u> T-24-8,2-10r	N 17.73 6233 24.98 ±2.3 Q ±136 ±1.91 ±1.46 ±2.1	1 1-21-9.7-10r	$N = 19.34 = 233 = 24.98 \pm 136 = 1.94 \pm 0.77 = 2.24$ $II = 24 - 12.7 - 10r$ $II = 2.34 = 2.35 =$	
			I-30-8,2-10r	M -2.83 3.52 143 ±11.15 ±14.8 ±9.45 -	I-30-9.7-10r	M -2,83 3.52 1,43 ±13,19 ±17,7 ±6,32	6,75 — ±5,06
		30	<u> -30-8,</u> 2-10r	U - ±1,36 ±1,93 ±1,40 ±2,4		Q ±1,36 ±1,96 ±0,77 ±2,48 Q ±1,36 ±2,03 ±0	360 ±2,72
		18	I-18-8.2-15r	N 1870 9917 9061 T36	I-18-9.7-15r	N 2930 99.17 20,61	
0			<u>[</u> [-18 -8,2-15r	Q ±2,36 ±230 ±1,40 ±3,3 M -2,74 5,28 1,51 ±19,35 ±17,6 ±9,45 -	9	M -2.74 5.28 1.51 ±289 ±21,1 ±632 _	
i deli	15	24	I-24-8.2-15r II-24-8.2-15r	N 18,70 105,58 30,27 ±3,84		1468C - N 3039 10558 30.27	+7,25 0,60 ±3,89
			I-30-82-15r	M -2.74 5.77 2.14 ±19,35 ±17,6 ±9,45 -	I-30-97-15r	M -2,74 5,77 214 +22,89 +21.1 +632 I-30-12,7-15r M -3,62 5,77 2,14 +29,97 +28,1 +6	5,75 — — ±7,80
3		30	<u> </u>		1 11.20 - 07-15r	Q ±236 ±232 ±0,77 ±3.95	
		18	1-18-6,2-201		I-18-9.7-20r	M 2:/0 5,67 1,18 ±3026 ±21,1 ±6,32	
		10	<u> ii</u> -18-8,2-20r	Q +3,12 ±250 ±1,40 ±3,8	B 12-10-19-7	Q ±3,12 ±2,32 ±0,77 ±3,89 M -3,57 6,15 1,58 ±39,62 ±28,1 ±6	6,75 —
	20	24	I-24-8,2-20r II-24-8,2-20r	M -2.70 6.15 1.58 ±2558 ±17.6 ±9.45 — N 19.18 123,00 31.56 — — ±4.4	I-24-9.7-20r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- ±8.26
4				Q +3,12 t230 ±1,40 ±4,15 M -2.70 6,63 2,22 t25,58 ±17,6 ±9,45	I-30-9.7-20r	M -2.70 6.63 2.22 ±30,26 ±21,1 ±632 - I-30-12.7-20r M -357 6.63 2.22 ±3962 ±28,1 ±6	
		30	I-30-8,2-20r [[-30-8,2-20r	N 19,18 132,67 44,44 — — ±4,75 Q — — ±3,12 12,30 ±1,40 ±4,4	11-30-97-20r	N 2078 132,67 44,44 ±6,50 1-30-12.7-20 Q ±3,12 ±2,38 ±0,77 ±4,49 1-30-12.7-20 Q ±3,12 ±2,38 ±0	960 ±4,73
	L		j	4 1 1 1 1 2 1 2 2 2 2 2 3 3 4 4 5			

MPHMEYAMME:

BAPMANTO SAPPYERMS OTKPOTTON KPANOBOR SCTA-KAL KPANAMI B ПОПЕРЕЧНОМ МАПРАВЛЕНИИ, ПРИКИМАЕ-MOIE ПРИ РАСЧЕТЕ ФУКДАМЕНТОВ, ПРАВИЛО ЭКАКОВ И ОБЩИЕ ПРИМЕЧАНИЯ СМ. НА ЛИСТЕ 36.

TK	HOPMATMEMBIE MARYUSKM MA GYMAA YEMTU	MC-OI-	OR
1968r	RPANTING KOLONIN HOL MOCTOBOLE DAEKTPHYECKNE FPENDEPHOLE KPANOL	выпуск 6	A.

16	ō	OTMETE	A 170/	OBK	H PEA	S ASO	.200			OTHE	TEA	roxe	BKM	PEN	5CA 9.	700		OTHETA	=A	roxa	BEH	PEASO	EA f	2.700	,
10,	KAR		T T		 	OM MATIPA		Bripo	ABACKINI ABACKINI		T	Впоп	EPEYH	IOM IT	VIPABAETO		PABAEMIN		2	BANO	NEPEYN	10M MA	NPABA!	EMM	BI
ASCH!	2 × × ×	Шифр	S CT BY	oco K		R KATPYSK	CA BETT	PO-TEMPLE		Шифр	OB 6/E	GHHAD			TOPHO HA	UST PAT	INE TOPMO	W1140P	SBEVE HCTBY	/locro-]	BASI HAI	T_	BAR	PA
30/TG	NA TE	ЭСТАКАДЫ	11121	Ar- D	SEPTHICANI	TOPHO	TE K	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E M BETEP	SCTARAAM	CM	MATPOS KA	ВЕРГИІ	RANSKAR	SEINE K	A BOS	DE M AEK BETER	PCTARALO	CMA	MATPYS KA	BEPTHK	Canbriagi I	SCETTIFE.	KA	803 CT
1635	7/102		8 23		Aimax Air		W				TW B	5	L _{Imax}		7 N ±5,92 ±1=		41E		+ 8	1	Limax	Aimin	T	W	-
	18	I-18-82-5Hr	M -2		1,92 0,5 38,33 11,		- -		±1,51	I-18-9.7-5 мг II-18-9.7-5 мг	17	18,78					- ±1,96			 	1				F
		[[-18-8.2 <i>-5</i> mr	Q			- ±0,6		52 ±1,40		<u> </u>	M	-2,86	 2,19	0,66	±0,61 ±1,6	55 ±0 1,10 ±6		I-24-12.7-5mr	M			+		±18,90	±6
5/5	24	I-24-8.2-5нг [[-24-8,2-5нг				3,22 —			±1,68	7) <i>11~24-9 /~3H</i> (18,78	43,83		 to:62 ±1,	 58 ±0	±2,18	1-21-127-5mg	NQ	28,88	45,83		±962	±1,65	
	\vdash		Q M -	2,86 2	 2,47 1,			55 ±1,40 20 ±9,49		I-30-9.7-5нг	M	-2,86		1,14		1.70 ±6	1	I-30-12.7-5mm	M		2,47		+	±19.76	±6
	30	<u>Г</u> -30-8,2-5нг <u>Г</u> -30-8,2-5нг	N 17	18 4	49,42 22	2,85 ±0,5	 50 ±1	 62 ±1,4c	±1,91 = ±1.78	<u>Г</u> -30-9.7-5мг		18,78		_	±959 ±1.		77 ±1,84	- <u>I</u> I-30-12.7-5mr	Q					±1.71	to
		I-18-8,2-10HF	M -2			28 ±11,3		,40 ±9,45		I-18-9.7-10HI	1 M	-2,78 19,81			±13,39 ±18	50 ±6	- 1 3'53	<u> </u>							二
	18	<u> </u>	N 18	8.21 7 —	70,58 25,			03 ±1,40	t253		Q				±1,38 ±2, ±15,39 ±18			I-24-12.7-10mr	M	-3.67	3,86	1,49	±17,53	125,25	±6
40/	24	I-24-8,2-10Mr	W 10	2,78 3 8,21 7	3,86 1,4 77,25 29.	9.80	_ _	.76 ±9,45	±2,78	I-24-9.7-10mr II-24-9.7-10mr	_N	19,81	3,66 7725				- ±3.55	11-21-12.7-10Hr	NQ		77,25	29.80	±1.38	±2,16	±c
10/		<u>I</u> Ī-24 -8,2 - lomr	Q		= =	— ±1,36		2.07 ±1,40 5,96 ±9,40		-	M	-2,78	4.20	1,89	±1,38 ±2 ±13,39 ±19		1	I-30-12.7-10M	M	-3,67		1,89			
	30	I-30-8,2-10mr	NIS		4.20 1.8 84.00 37.	7.70	.	-	±2,98	I-30-9.7 - 10нг [[-30-9.7 - 10нг	1 /1		84,00		 ±1,38 ±2	 12 ±0	- ±380 77 ±3,00	<u>Г</u> -30 - 12.7-10мг	N Q	29,91	84,00	3/,/0	±1,58	±2,19	±c
-	+		Q - M -2	2.80		- ±1,34 82 ±13,5	8 ±2/ 53 ±1/	09 ±1,4c	5	I-18-9.7 - 15M	M	-2,80		0,82				-	-		<u> </u>				
	18	I-18-8,2 - 15нг II-18-8.2 - 15нг	N 17		66,42 16,	32 -	- -	93 ±1Ac	±2,48	I-18-9.7 - 15mr		19,49	66,42		±1,65 ±1,		77 ±2,37		M	-369	3,63	108	+20.90	±23,80	±6
		I-24-82-15mr	M -2	2,80 3		08 ±13,5		,80 ±9,45		I-24-9.7-15mm		-2,80 19,49			±16,00 ±17	70 ±6.	_ ±3,42	יות כו -/,2 - 24 יוו ון	- N		72.67	21,65			<u> </u>
15/3	24	<u>I</u> -24-8.2-15нг	1 N 117	,89 76 —	 	- ±1,65		94 ±1,40	±2,50	_ [[-24-9.7-15mr	Q				±1,65 ±1, ±16,10 ±18			I-30-12.7-15нг	M		4.00	1,55		±2400	1
	30	I-30-8,2-15HF	N 17		4.00 1.5 80,08 30,		-	00 ±945	±2,91	I-30-9,7-15мг Ī-30-9,7-15мг	, <u> N</u>	19,49		30,97		 00 ±0	- ±3,71	11-30-12.7-15mr	1 14	29,59	80,08 —		<u>+1,66</u>	∓5 '0€	±0
		Ĩ~30-8,2 - 15mr	Q -			- ±1,66	5 ±1,5	96 ±1,40	5 ±2,72		14	-2.77	3.50	000	12-50 +2	3,80 ±6	32 -								-
	18	I-18-8,2-20нг II-18-8,2-20нг	N 18	33 ?	3,50 0.5 70,00 19,6	.96 ±16,9 .25 —	- _		1=2,55	I-18-9.7-2онг <u>I</u> I-18-9.7-2онг	NQ	19,93	70,00	19,25	+2.07 ±2	 60 ±0	77 ±2.88		 			1:0	ود حدد	131,60	+6
1 1			M -2	<u>-</u> ≥,77 ÷	- - 3,85 1,1	- ±2,0; 10 ±16,5	7 ±2; 37 ±19	57 ±1,40 90 ±9,45	5 -	I-24-9.7-20H	M N	-2.77	3,85	1.10	120,50 t2:	3,80 ±6,	32 - - ±4.'8	I-24-127-20Hr	N	-3,65 30,02	77.00	22,04	_		_
20/5	24	[-24-8,2-20мг [-24-8,2-20мг			77.00 22:	204 -	. -	- - 57 ±1,40	13,29	11-21-07-20-	·Q	1-			±2,07 ±2.	60 ±0	77 ±3.13	I-30-12.7-20MF	14	-3,65	4.34			±2,66 ±31,60	
	\prod	I-30-8,2-20HP	M -2	2.77 4	4.34 1,1 86,83 23,	17 +16,9	7 ±19	90 ±9,45	5 — ±3,66	Г-30-9,7-20нг ∏-30-9,7-20нг	M	-2,77 19,93	4.34 86,83	22/1	±2050 ±2: ±2,07 ±2;	- -	- ±4,65	11-30-127-20HC	N Q	SODE	4,34 8683	23,44	 ±2.07	±2,66	10

PHMEYAHHE:

ВАРИАНТЫ ЗАГРУЖЕНИЯ ОТКРЫТЫХ КРАНОВЫХ ЭСТАКАЛ КРАНАНИ В ПОПЕРЕЧНОМ НАПРАВЛЕНИИ, ПРИНИМАЕМЫЕ ПРИ РАСЧЕТЕ ФУНДАМЕНТОВ ПРАВИЛО ЗНАКОВ И ОБЩИЕ ПРИ-МЕЧАНИЯ СН. НА ЛИСТЕ 36.

TK	НОРМАТИВЛЫЕ НАГРУЗКИ НА ФУНДАМЕНТЫ КРАЙИИХ КОЛОНИ ПОД МОСТОВЫЕ ЭЛЕКТРИ	CEP119 IC-01-08/67	
968r.	YECKNE MATRITIO- PENTEPROJE KRAMOI	6 38	

	·	ATHBRUE HA						TOA PEAD			€ 9AEICT					PEAG		00	
SOTOL SEHMOGS PAITA Q T ET SCTARALS	HAPANU S	TOCTO KPANOBA	T; HATIPABAEKINI R MATPYSKA BET	Bridanamon natidabaethin po- Tempe- Topho is patop seenine		8/8/3 12/8/18	NONEPE KPAN	HOM MAI	IPABAE PYSKA	BETPO-TI BASI PAIPUS- KA BE	IPOAOASTOM AITOABAEMINI EMITE TOPMO- ATTIP GERUE NOE N DALEM BETEP	III Mech D	CMAOSENE DE LE TETEMA	B 110 /locto- SHMASI MAIPS	ОПЕРЕЧ Крано	INOM MAI BASI MAT APHAITTN'S APPSEEMEN EPAMAM	TPABAE!	BIPO-TEI BASI PA (AIPOS- FI EA BOX	TYP- ACE YOE P BAEH-BE
FP34 FEB FIPOME		PYSKA Almax Azma	1 5,67	CTBME		80 FA	Almax . 28,20	2750 4,25 6,61 5,67	7' ±7,37 — ±0,76	# ±11,90 ± ±1,36 ±	6,32 — — ±2,06 0,77 ±1,54		8			2max Aorp		W	CTE
5 24	Ĩ-24-8.2-5m M	1 — 31.05 30,00 1 27,21 41,40 39,9 1 — — —	4.50 ±5,75 ±11;	50 ±945 -	<u>ũ</u> -24-9.7-5м	M N 29,5 Q	31,05 = 51 41,40 = 5	9,93 6,00 — —			632 — — ±2,32 0,77 ±1,74	<u>#</u> -2 4 -12.7-5m	N Q			993 6,00			_ ±:
30	[-18-8.2-10m A	1 — 37.28 36,3 1 28,19 49,70 48,44	5,44 ±9,60 ±12, 5,7,25 — —	60 ±945 — — ±1,98 67 ±1,40 ±1,85	 <u>I</u> -18-9.7-10м	M - N 30,4: Q -		6,30 5,44 840 7,25	T 1	<u></u> _L	6,32 — ±2,56 0,77 ±1,92								
10 24	[-24-8,2-10н <u>М</u>	1 28,19 55,00 53,4 1 — — —	6,07 ±9,27 ±12 6,09 — —	2,70 ±9,45 — — ±2,15 69 ±1,40 ±2,01	<u>iī</u> -24-97-10m	Q M -	9 55,00 5	 5,30 6,63	±1,13 ±10,96		±278 0,77 ±2,08 632 —	*****	Q M	33,99 	55,00 53 46,65 45	 i30 6,63		 1,78 ±0	- ±
	<u> </u>	1 28,19 62,26 60,4c	8,83 — — ±1,13 ±1,7 5,7,56 ±12,60 ±13	±2,43 78 ±1,40 ±2,27 ,27 ±9,45 - - ±2,34	Ĩ-18-97-15m	Q — M — N 30,9	50,18	 8,30 7,56	±1.[3 ±14.94	±15,91 ±	0,77 ±2 34 6,32 — _ ±2,99	[[-30-127-10n	Q				±1,13	:1,87 ±0	
	<i>A</i>	1 — — — 1 — 55,25 53,10 1 28,61 73,60 70,80	- ±1,54 ±1,7 5 8,37 ±1265 ±13,6 6 11,16 - ±1,54 ±1,7	±2,54 78 ±1,40 ±2,50	<u> </u> -24-97-15m	Q	73,60		±14,94 — ±1,54	±16,21 ±	±3,24 0,77 ±2,56	<u> </u>	M N Q M	3435	73,60 70	8,10 8,37 9,80 11.16 ——————————————————————————————————	±1,5/ 1	 1,88 ±0	- ± 60 ± 75
30	I-30-8,2-15m N	76,60 28,61 80,40 76,60	- ±1,54 ±1,8	- +2,75 37 ±1,40 ±2,70 90 ±9,45 -		M -	60,40 7 54,23 5	210 8,18	± 1,54 ±20,56	 ±1,90 ±	_ ±3,50 0,77 ±2,76	<u>Ī</u> -30-12.7-15н	N		30A0 76	60 11,42			_ ±
000	II-18-8,2-20H M G M II-24-8,2-20H M	7 2930 7230 6959 1 — — — — 1 — 60,53 5834 7 2930 80,70 77,60	0 10,91 — — ±2,12 ±1,5 0 9,13 ±17,38 ±15 0 12,18 — —	- ±2,76 95 ±1,40 ±258 90 ±9,45 - - ±3,03		Q — M —	60,53	9,50 10,91 	±2,12 ±20,56	±18,00 ±1	377 ±2,64	<u> </u>	Q	35,10 é	3970 77 	(60 12,18	±2,12 ±	5,06 ‡0	- ±
30	<u>Г</u> -30-82-20м М	67,28 64.9 29.30 89.70 86,5		;eo ±9,45 — - — ±3,35	<u>ї</u> -30-9,7-20н	M	67.28 6 0 89.70 6	4.90 9.70 5,50 12,92 	±20,56	#18,20 ±	532	Ũ-30-12,7-2oн	M N Q			.90 9.70 50 1292 	±26,92 ± ±2,12 ±		_ ±
MADY LIBH	APHANTO SAFP	Примечание всегия открычном паправы паментов, пра на ансте 36	— Тых крановьк ЛЕНИИ, ПРИПИ ЦВИЛО ЭНАКОВ	IMAEMOIE								LTT COFAR	TH.C	roker	TM MOA	M MA OPE MOCTOBE KPANO	JE BREI	CTPN-	CEPN NC-01- Bunyck 6

	Нормативные нагрузки на фундаменты средних колони под мостовые электрические грейферные краны.																															
S OTMETKA FOLOBEH DELGCA 8.200												Отм	OTMETICA POLOBICH PEASCA 9.700 BIIDOLONISTICM								OTHETRA POAOBRH PEAGCA 12.700											
ĺ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	KAA										OMENTOH BAETHII		4	В поперечном направлении на						IS TIPOA HATIPA	easton Baston		. 8	BITO	ПЕРЕ	YMOY	1 MAN	TPABAG	EMM.	В ПРОДО КАПРА	HONGAR
	NO B	D.	Шино	100	Посто	KPAI	TOBAS	HAIT	N'AEK	ВЕТРО	TEMME- PATYP-	TOPMO-	Шифр	85/1	Посто	-			_	+	1	TOPHO	Шифр	36/6	Посто	-1	HOBAS				TEMME	1
	25	1.38	∌CTARAA61	102		RAP #1	BAPHA	HT Nº 2	TOPHO	BASI HAIT- PYSKA		SKE/ME M	SCTAKA A BI	TAN	RANHR	BAP.Nº1 3.ATP. KPATUH	BAPHA	KENNSI KENNSI KALANN	TOPHO-	MAT- PYSKA	MOE	#EJINE H	SCTAFAA	TINO	SHHAS HAF-	BAP.N.	BAPMA	MTN 2 EENNS MAMN	TOPMO-	MAT- PSBRA	PATYP. HOE	M
	TPN3X	NPONE			HAIT- Pyska		KPA	HAMH	SEE 1711		BOSAEN CTBNE	BETEP			PYSKA				7	W	BOBAEÍ CTBME	BETEP		508	PASKA		Azmax		7	W	BOSAEH CTBNE	BETEP
	=	111		M			42max			W ±11.90				M		28,13	12 max 27,06		±6,89	± 1420	1632					11/mcax	-2/12	G, F				
1		18	<u>I</u> T-18-8,2-5r	N			36,08		T -			±1,64	<u>I</u> I-18-9.7-5r		29,77	37,50	36,08	5,58		-	- ±0,77	±2,14	-	-								\vdash
				Q	_			422	±0,71	±1,57 ±12,10	±1,40 +945	±1,53		Q	=	3225	31,00	4.82	±6,89					M	_	32,25	31,00	4.82	±9.02	±1940	±6,75	
1	5	24	<u> </u>	NI			31.00 41,33		_			±1,81	<u> </u>	N	29.77	43,00	41,33	642	_			±2,35	<u>F-24-12.7-5r</u>		33.27	4300	41,33	6,42				±3,48
				Q					±0,71	±1,59		, ,		Q	=	35,63	34.07		±0,71			=1,/6		Q		 35,63	34.07	 525	±7,24	±1,68	±6,75	-
		30	<u> </u> -30-82-5r	M			34.07 45,42		±4.67	±1930	±9,45	±2,04	<u>∏</u> -30-9.7-5r	N				7,00				±2,63	<u>I</u> -30-12.7-5r									386t
\prod		30	<u> </u>	Q]			_		±138	±1,40	±1,90		Q		_			±957 ±13,19			±1,97		Q		_			±057	±1,47	±0,€0	\$9,5±
			~	M					±11,15	±14.50		 ±2.30	<u> Î</u> -18-9.7-10r	M	3063	43,00		8,42				±2,96										
		18	<u>II</u> -18-8,2-10r	N Z	-	57,33	<i>5</i> 5,21	642	±136	±1,89			£ 10 3.7-101	Q					±1,36		1 1	±2,22		1.0			45.5	688	. 1207	2024	+C7E	
$\dagger \dagger$				M	- 46,75 45,02 6,88 ±11,45 ±14,60 ±94	±9,45		[[-24-9.7-10r	M					±13,19	+1750		±3,16	[-24-12.7-10r	N					#1/2/ —	123,40		±4,61					
	10	24	<u>I</u> T-24-8,2-10r	N 2	924	6233	ଊฺଊ	9.17	+126	±1,91		±2,46 ±2,30	11-24-9.7-101	Q			_		±1,36			±2,37		Q	=]					±2,00		±2,48
				M	_	52.75	5080	7,63			±14.80 ±9.45 -		=	M		52,75			±13,19	±17,70		±3,48	<u> </u>	M			50,80 6773		#17,2;7	±23,70	±6,75	±5,06
+		30	<u>I</u> -30-82-10r	Na				10,17		_		±2,72	<u>I</u> -30-9.7-10r	Q	3063	70,33	67,73	4	±136	±1,96	±0,77	1		Q	-	_	~		±1,36	±2,03 ±	±96	±2,72
				Q M	귀	7/ 28	7124			±1,93 ±17,60				M		74.38	71,84				±6,32											
		18	<u>[[-18-8,2-15r</u>	NE			95,79	13,90				±3,76	<u>I</u> I-18-9.7-15r		3261	99.17	95,79	13,90	±236	+232		±4,78 ±358	***************************************									
+				Q	-			-	±2,2€	±230 ±1760	±1,40	#3,51		Q M		79,19	7651				±6,32		-	М		79,19			±29.97	t26,60 t		
	15	21	<u> </u>	M 2	21,08	79,19 105,58	76,51 102,01	14.75		!		±3,97	<u> i</u> ī-24-9.7-15r	N	32,61			14.75	±2,36				<u>II</u> -24-12.7-15r	N O	36,11	105,58	102,01		+23	 ±2,36 ¹		±7.25 ±3,89
3				Q		_	_		±236	±2,30	1			Q		86,50	8351	1212	+2289		±6,32			M		86,50		12,13		±28,10	16,75	
4		30	<i>IĪ-3</i> 0-82-15r	M		8650	83,51	12,13	±19,35	±17,60	±9,45	±4,30	Ē-30-9.7-15r	N	32,61	115,33	111,34	1612			- 1		[-30-12.7-15r	N Q	36,11	115,33	111,34	16,17		- t2,38 t		±7.80 ±4.19
			•	Q	- 1	-	- 1		±2,36	1230	21,40	24,01		-					±2,36	±2,32	±632	±4.03		æ					12,36	22,00	-,	
R			iī 18 80 0-	М	- 1	85,00	82,10	11.87	±25,58	±17,60	±9,45	+122	Ī-18-9.7-2or	M		85,00 113 33	10947	15 RZ				-550										
3		18	<u>I</u> T-18-8,2-20r	N Z	21,80	1533	109,47	15,83	#3.12	±230				Q				-	±3.12	±2,32	±0,77	±4,01		M		0225	ROJO	1288	1962	±28,(0 ±	£675	
ķ				M		9225	89,10	12,88	±2558	±17,60	±9.45		T-24 07 20-	M		92,25	89.10	1717					<u>IĪ</u> -24-12,7-20r	N	36,82	123,00	1/8.Bo	17.17				18,26
	50	24	<u>II</u> -24-8,2-20r	N Z	2130	23,00	118,80	17,17	+312	 t230	±140	±4,25	[-24-9.7-20r	a			-	_	±3,12	±2,32	±0,77	±4,32		Q	-					±236 1		
	ŀ	一		11	100 100 100 100 100 100 100 100 100 100	±945	- 1	1	M		99,50	96,10	13,94	±30,26	±21,10	±632	±6,16	II-30-12.7-20r	N	3682	99,50	188.13	1858		±26 to 1	- 1	£8,83					
		30	<u> </u> [-30-82-20r	Ne	130	32,67	128,13	19 65				14,50	Ĩ-30-9,7-20r	N	<i>32,</i> 36	132,67	128,13	18,58	±3,12	±232	±9,77	±4,62		Q					13,12	±2,38 ±	FO@	±4.73
				Q					±3,12	±230	-1,40	-4,50		4		L																

PRIMEYAMME.

BAPHANTEI SAFPYEENING OTEDETEIC EPANOBEIC SCTARAL EPANAMI B ПОПЕРЕЧНОМ НАПРАВЛЕНИИ, ПРИНИМАЕМЫЕ ПРИ РАСЧЕТЕ ФУНДАМЕНТОВ, ПРИВИЛО ЗПАКОВ И ОБЩИЕ ПРИМЕЧАНИЯ СМ НД ЛИСТЕ 36.

TK	HOPMATHBUGGE HALDARM HA OPANTAMENTA	CEP	ng
	CATURE BY TONOUL BOLLOND STELLER	MC-01-	08/67
968r.	CPEANUS CONONN NON MOCTOBUE SMERTPHYERRE PREMIER COMMON	<i>выпжк</i> 6	34

		He	PMAT	THE	3/16/E	HA	груз	KHT	1A 00	SHA	MET	176/	CPEANIX IC	240	nn r	10.A F	10CT	086/	E a	ECT	PHYE	CCH	E MAFMHTMO	-/F	EÁd	EPH	bie i	CPAI	161.					
18	OTHETRA FOLOBRI PELOCA 8.200 BIRMANUTOM												OTME	TK	1 10	(08K	H. PE	EVQC	4 9.				OTHETRA POADEM PEAGEA 12.700											
MHO	ואצי			M Q			Syrtor					enerthin		X	Вло			-	ВЛЕП	nn	B TPOAO TUATIPAS			1.1 %					BAER	inn i	MATIPAB	SAE/OIM		
POLICE MA CO	r sci	MAP.		4	/юсто-	RAP Nº	MOBAS BAPHI	ARTH2	Tanen	BASI		MITE TOPHS	WHAP GCTAKAA61		U Grover BAP.N		MATAN RABONA 1 BARNANT Nº 2 7 2 BARNANT Nº 3		Toppo	RAG	TEHITE: PATYP		MH&D SCTARALOI				CPAHOBASI HATP: AP.I [†] 1 BAPHANT H2 BATP: BATPSMEHINS PANNINI EPAKAMIN			BETPO-	PATYP	TOPMO- SKETME		
330/	ONE	JC/ A & A	101	POA		SATP. KPAHAH	SATION K.P.A	CEENING	مودوعتك	PYSEA	HOE BOSAEŃ	-1		30	i	BATP. KPATAHH	3ATPX4			PYSEA	MOE BOSAER	H BETEP			MAT- PYBRA	EPATHI	EPAN	AMN	SCFTIME		MOE. BOSAETÍ	1 1		
15	Πρ			8		Almar	Azman		7	W	CIBNE		ļ	8		Alman	A2max	A 070	7	W +13.80	26,32 ±6,32			8		Afmax	Azmes	A one		W	CTBNE			
	40	<u> </u>	-	H	27/1		27,89	_		±11.40	<u>1945</u>	±1,64	Ū-18-9,7-5нг	M		28,75 3833			12,85	- 12,00		±2,13												
	10	<u> </u>	SAI	$\frac{a}{a}$		-	-	-	±0,61	±1,52	±1,40	±1,53		Q	_	_					±0,77	±1,60												
				M		3287	31,94	1,82	25,08	±11.70	±9,45	5 -	T - 4	M		32,87			±6,01	±14.10	±632	-	V-21.127 E	M						±(8,90	±6,75	±348		
5/5	24	Ĩ-24-8,2	-5mr	N	27,41	43,83	42,59	6,42	<u> </u>		-	±1,81	71	Q	29,71	43,83	42,59	642	±062	+/58	±0,77	±176	¥-24-12,7-5нг	Q	31,92	43,83	4259	6,42	±062	±1,65 :	±0,60	±1,87		
1.5				Q			3727	1	1-0,02			±1,69		M	三	3707	37,27	5,31			±6,32			M			37,27	5,31		±19,70	±6,75			
	30	Ĩ-30-8,2	-540	M			4969		_	_		±204	Ĩ-23-9.7-5mr	N	29,71			7.08		_		±263	Ū-30-12.7-5mr		3192	4942	49,69	7,08				±388		
				Q			_	_	±0,59			±1,90		Q							±0,77			Q					±0,59	±1.71	±060	1208		
				M				T	±11,32	±15,40	±9,45		T-18 D7 10	M	-	52,94			±13,39	±1850	#532	±3!3												
ļ	18	<u>I</u> I-18-8,2	10mr	N	29,31	70,58	68,04	10,25	1,38	+203	+140	±245	11 -	Q	51,61	7400		-	±1,38	±2,06	±0.77													
			+	Y U		5794	55,89	844		±15.76	±9,45	5 -		M		57.94	5589				±6,32		Totan to	M		57,94	55,89	8,44	±17,53	±2525	±6,75	±514		
10/10	24	<u> </u>	-10mr	N						_		±2,65	11 ' '	N	31,61	77,25	7452	11,25			±0,77		[[-24-12.7-10mm	N Q	34,11	77,25	74,52	11,25	±138	±2,16		-		
/10				Q					±1,38			±2,61		Q	_	63,00					±6,32			M	_	6300	60,75			±2556				
	2	15-20 P.O	40	M		_	60,75			±15,96	29,40	±286	7)	<u>∏</u> -30-9.7-10mr	[-30-9.7-10mr		3161	84,00						±3,64	<u>II</u> -30-12,7-10mr	N	34,11	8400	81.00	12,25				±5,50
	50	<u> </u>	IOMP	<u>N</u>	2931	84,00	81,00	12,20	±1,38	1209	±1,40	±281				Q	_		_				±0,77	±287		Q					±1,38	±2,19	±0,60	±3,11
				M		49,82	48,01	7,31		±14,7e	_			M	_	49,82			±16,00	±17/50		-												
1	18	<u> </u>	15mr	N	28,55	66,42	64,01	9.75			_	±2,60	7 8 }		30,85	66 4 2	64,01	9,75	 ±1,65	±3; ±1,96 ±0,77 ±2;		±3,34 ±250	71											
				Q			_					±243		Q	-	5/50	5258	8,00		_	±632			М		54 50	5258	8,00	±2090	±ඍුහ :	±6,75			
15/	21	<u> </u>	1540	M			52,58			±14,80	1940	±2,80	Ũ-24-9.7-15m	N	30,85		20.11	1057			-		[[-24-12.7-15mr		3435	7267	70,11	10,67				±5,21		
13	-4	T 'U/E		$\frac{N}{Q}$		_	-	-	±1,65	±1,94	±1,40	15'65	8	Q			-	_	±1,65	±1,98	±0,77	±2,68		Q M			 57/2			±2400				
		_		M		60,06	57,13	8,81	±13,60	±15,00	±9,45	3		M		60,06	57,13	8,81	±16,10	±1600	1632		Ĩ-30-12.7-15m					11,75				±5,62		
	30	<u>#</u> -30-8,2-	15nr	N	28,55	80,08	76,17	11.75				±3,04	‼-30-9.7-15mr	Q	30,85	<i>5</i> 908	/6,17	11,75	±166	t2,00	±0,77		1	Q					±1,66	±2,06	10,60	±3,01		
				Q			50,45	675	±1,66	±1,96	±945	±2,84		M		<i>5</i> 250	5045				±6,32													
	18	<u>!</u> [-18-8,2	20M	N	2955	7000	6727	900	16,9/	1330		±3,14	II-18-9.7-20M	N	31,85	70,00	67,27	900				14.01		-										
				Q				-	±2:07	±2,57	±140	±2,94		Q					±207 ±250 ±0.77 ±3.01	57.75	55,48	7,37	±2630	±31,60										
201		T- 24 22	22.	M		57,75	5548	7,37	±16,97	±19.90	±9,45	±3,42	Ĩ-24-9.7-20m	M	31 RF	57,75 7700	5548 73.97	7,37	±205°		16,32	±4,35	Ĩ-24-12.7-20mr	N	35 ,35	77,00	73,97	9,83			*****	±6,26		
15	24	<u> [</u> [-24-8,2-1	COH	N	29,55	77.00	73,97	9.83		-		13,19		Q			-		±2,07	±2,60	±0.77	±3,26		Q						12,66				
				M	\equiv	6512	62,51	838	±1697	±1990	-0 AE			M	_	65,12	62,51	838	±2050	±ඍූහ	±6,32		<u>I</u> -30-12.7-2041	M	 35,35	65,12 86.83	6251 8335	11.17	2630	±31,90 ±	- 10,/3	±6,93		
	3 0€	<u> </u>	20Hr	N .	29,55	85,83	8335	11.17		-		123.(3	<u>∏</u> -30-9,7-20nr	N	<i>3</i> 1.85	86,83	8335	11.17		+264	±0,77	-4.21		Q				_	t2,07	±2,66 :	10,60	±3,72		
				Q]				±2:07	1257	±140	±354	L	Q					12,0/	-5,00						······································	-			. ,	-			

Примечалие:

BAPMANTЫ ЗАГРУЖЕНИЯ КРАНОВЫК ЭСТАКАД КРАМАМИ В ПОПЕРЕЧНОМ НАПРАВЛЕНИИ, ПРИНИНАЕНЫЕ ПРИ РАСЧЕТЕ ФУПДАМЕНТОВ, ПРАВИЛО ЗПАКОВ И ОБЩИЕ ПРИМЕЧАНИЯ СМ. МА ЛИСТЕ 36.

		CE
TK	HOPMATHBHOLE HAPPYBICH THA COMMENTOL	uc-o
277	MOPMATMENGIE MATPYSKM NA 40/MAAMENTOI CPEAMUS KONOMNIOA MOCTOBGIE BAEKTPMYECKME MATMATMO - PREMOPOMAIE KRANGI.	RUNYC
1968 r	MATHITHO- FREMOPEPHOLE ICPANOL.	6

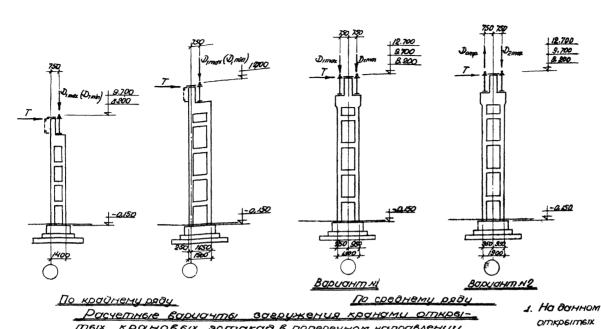
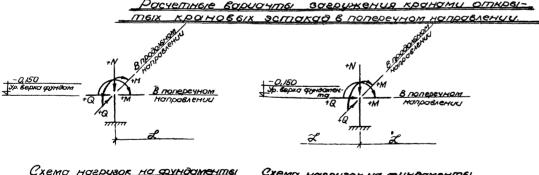


Схема нагризок на финдаментві

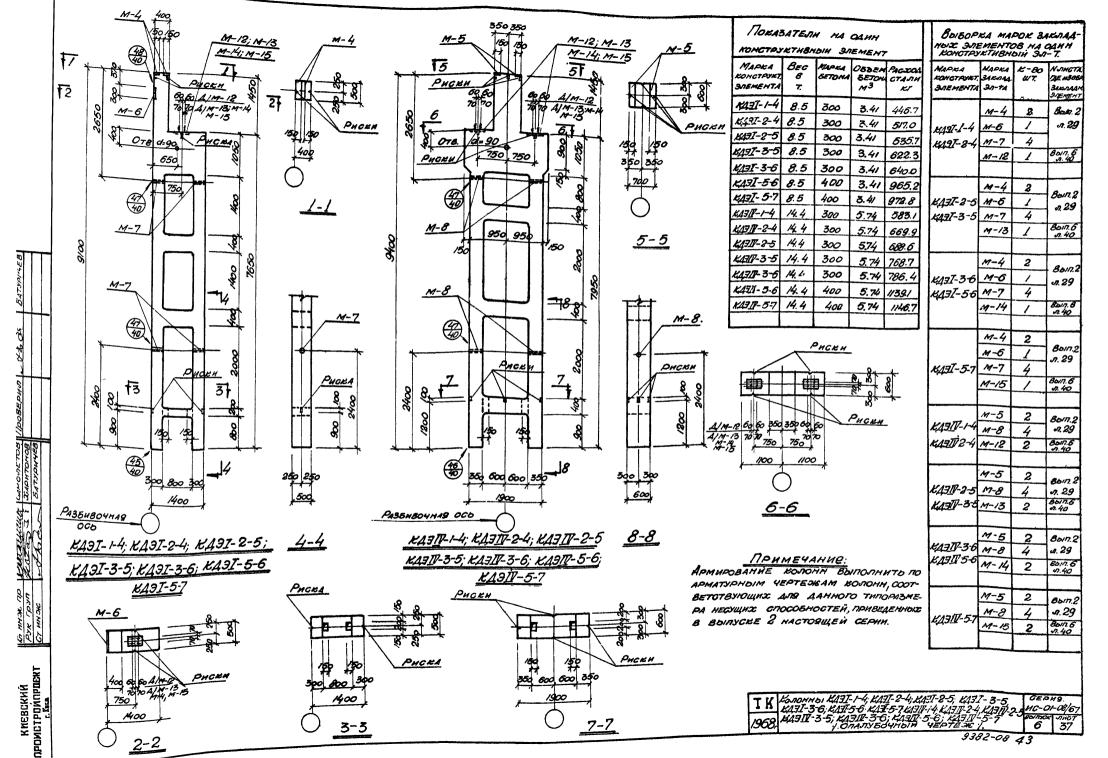
CPERHEED ARROW U NAMBUNO SHOKOB

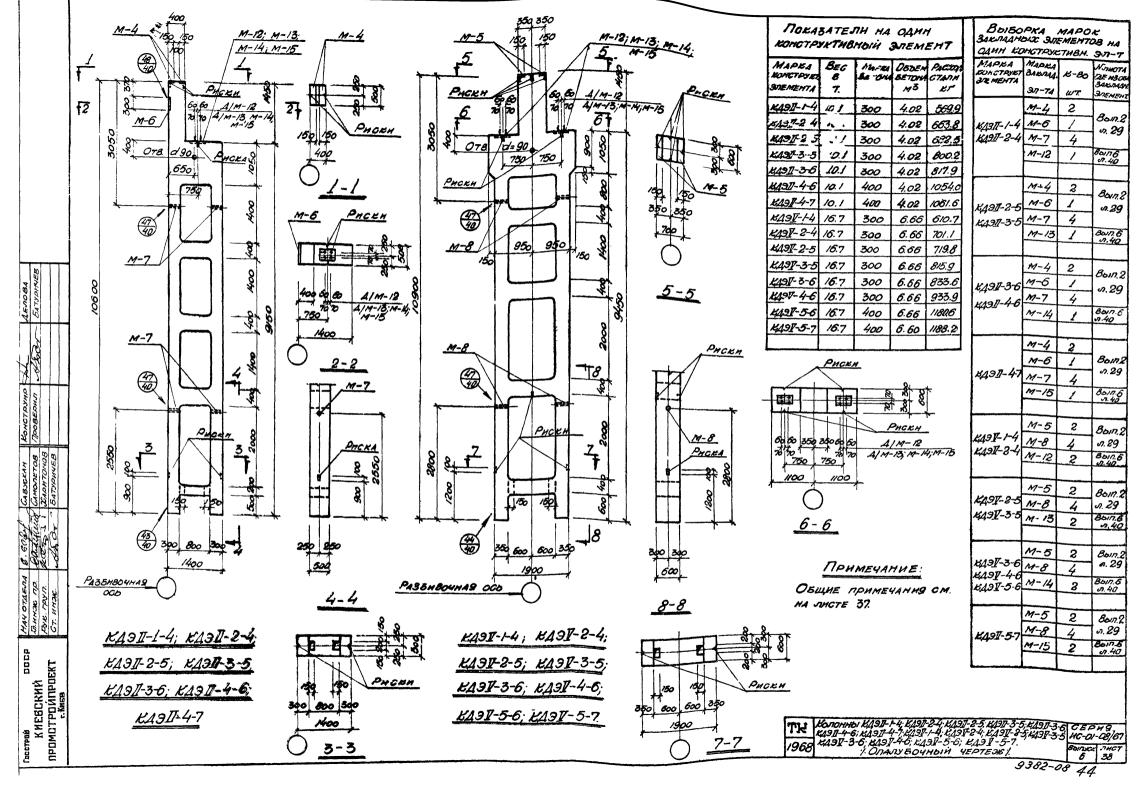
Οδοзμαчения:

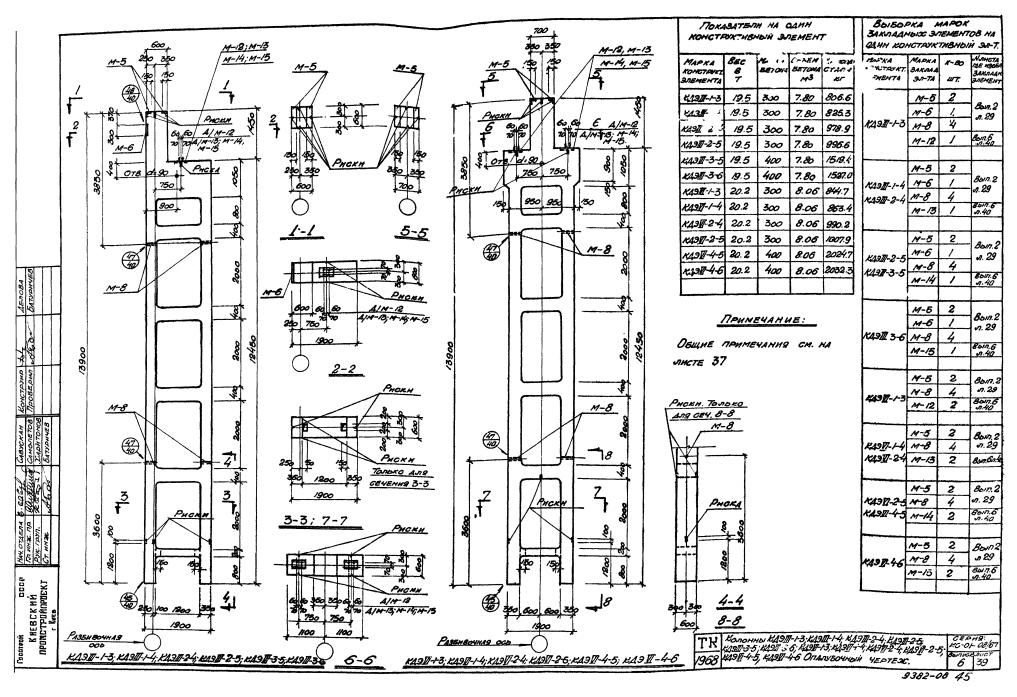
DIMOR, DIMIN - MORCUMONEHOE U MUHUMONEHOE бертикальное довление от кранов на второй от конца температурного блока колонне, направленнае вниз.

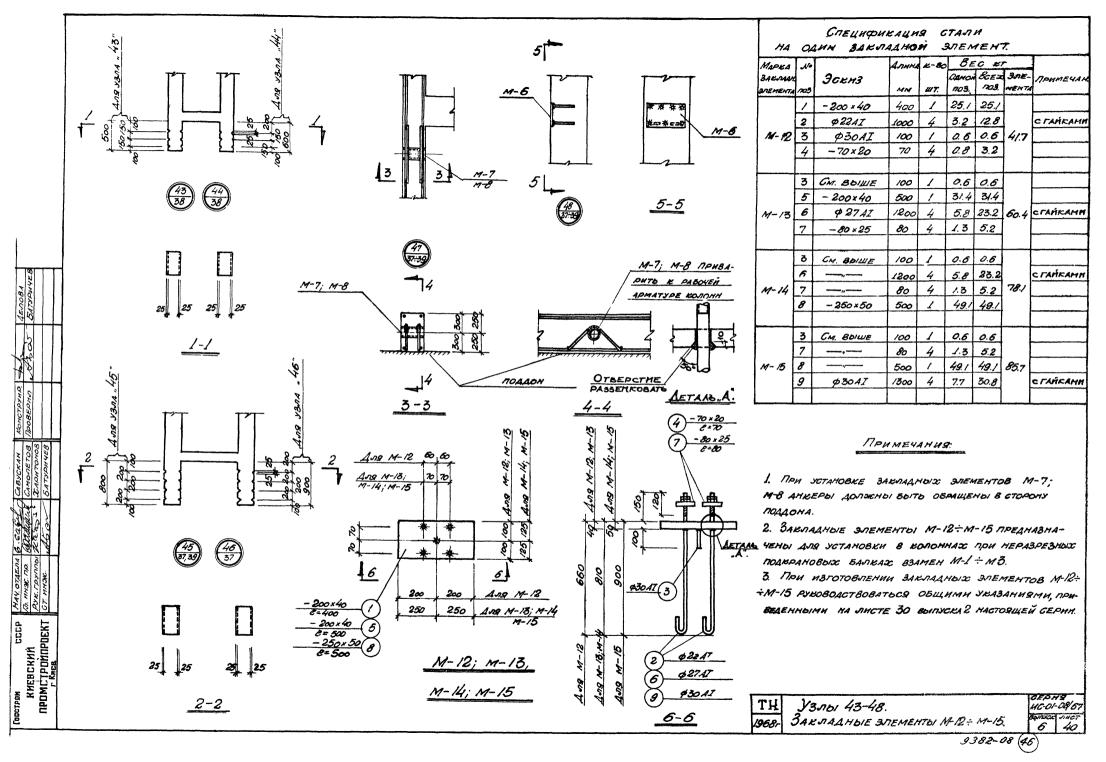

Детак — максимальное вертилальное давление от кронов на третвей отмонца температурного блока коломне, направ-MEHHOE BHUS.

Domo - максимальная отрывающая наерузка на третвей от конца температирново блока колонне.


Т — воризонглальное довление кранов на колонну при поперечном торможении.


Примечания:


- 1. На данном листте приведены варианты заеружения ОГПКРБІГПБІХ КРОГНОВБІХ ЭСПІСКОЙ КРОГНОМИ В ПОПЕРЕЧНОМ направлении, которые должны быть проверены при расчете фундаментов.
- 2. Величины крановых наерузак, принятые в расстыть ренных вариантах, приведены в соответствующих *Μαδλυμαχ κα Λυς/παχ 30 ÷35.*
- з. В таблицах наерузок на фундаменты на листох 30-39 -приведены нормативные наеружи в уровне верунего обреза фундамента Нагрузки в продольном направлении от торможения и ветра (N-верт, Q-гаризонт) даны для фундамен-MOS CERSEBEIX KONOMH TOU DIVINE MEMTEPORTUPHOLO BAOка 72 метра.



крайнего ряда и правило знаков

