ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ ДЕТАЛИ И КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ

Серия ИС-01-04

УНИФИЦИРОВАННЫЕ СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ

выпуск 7

МАТЕРИАЛЫ ДЛЯ ПРОЕНТИРОВАНИЯ И СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ЭЛЕМЕНТЫ ВНУТРИЦЕХОВЫХ НАНАЛОВ РАБОЧИЕ ЧЕРТЕЖИ Центральный институт типовых проектов просит дать Ваши замечания и продложения по улучшению начества направляемого Вам проекта

ТИПОВОЙ ПРОЕКТ . . (іскеў проекті)

Проектная организация—автор проекта Замечания о недостатках в проекте (нерашкональные роземно-планировочные и конструктивные решения, ошибки, опечатки, полиграфические дефекты и т.д.) и предложения по их устранению.

Подпись должностного лица наименование организации и ее адрес

and the second second second second second second

ЦЕНТРАЛЬНИЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ ГОССТРОЯ СССР

Москва, В-66, Спартаковская ул., 2 а, корпус В 2571 . ~

Сдаво в печать Заказ и 2376 197/ roga

Тираж 1000 экз.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ ДЕТАЛИ И КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ

Серия ИС-01-04

УНИФИЦИРОВАННЫЕ СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ

выпуск 7

МАТЕРИАЛЫ ДЛЯ ПРОЕНТИРОВАНИЯ И СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ЭЛЕМЕНТЫ ВНУТРИЦЕХОВЫХ НАНАЛОВ РАБОЧИЕ ЧЕРТЕЖИ

РАЗРАБОТАНЫ:
Проектным и неучно-песледовательским институтом
Харьковский Прометройнинипроект Госстроя СССР
при частии ВИНОКБ

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ с 1 января 1966г Госстроем СССР Приказ №209 от 24 ноября 1965г

ЩЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ
Москва-1965г

CODEPACAHUE

MORCHUTENHAR SAMUCICA DUCT 15. TREJULA DAR RODEDPA CEOPHEIX SKEJESOEFTOHHEIX SNEMEHTOB U PROXOD MRTEPURNOB HR 3.R.M. KAHRNOB SUCT 2. FABAPUTHUE COCEMU BHYTPULEXOBUX KAHANOB....... II MAPKH KIE (NPORONAKEHUE)..... Лист 3. Номенклятуря сборных железобетонных изделий Лист 16. ТАБЛИЦА ДЛЯ ПОДБОРА СБОРНЫХ ЭКЕЛЕ**ЗОВ**ЕТОННЫХ ANA BHYTPHUEXOBUX KAHRNOB U PACXOD MATEPHANOB SNEMEHTOB IN PACKOO MATERIARIOS HA 3 N.M. KAHANIOS MAPKH KNB (NPODONSKEHUE) SMCT 4. HOMEHKARTYPA CEOPHEIX RESIESOBETOHHEIX HIGESUH SMCT 17. TABNULA DISA NODBORA CEORHUIC SICENEBOBETOHHUIC ANA BHYTPULJEZOBЫX KAHANOB U PACXOQ MATEPURNOB STEMENTOS U PACTOL MATERNANOS HA 3 T.M. KAHRIOS NICT 5. HOMEHKNATYPA C60PHbis SCENE305ETDHHbis U30ENUÚ NICT 18. TABNULA QUA NOQ50PA C60PHbis SCENE305ETOHHbis DNA BHYTPULEXOBUX KAHRNOB U PRCXXX MRTEPURNOB SNEMEHTOS U PACTOR MATERUANOS HA 3 N.M. KAHANOS HA 1 NBJENNE (DOSOPHUE BNEMEHTU). 44 MAPKH KCG. Лист 6. Номенклятура сворных экелезобетонных изделий - Лист 19. Таблица для подбора сворных экелезобетонных ANA BHYTPHYEXOBЫX KAHANOB H PACXOQ MATEMANOB SIEMEHTOS U PROXOD MRTEPURIOS HA 30M KAHADOS MRPKU KC6 (OKOHYAHUE). 28 Лист Г. Киюч для подбора каналов марки кла 16 Лист Во. Таблица для подбора доборных плит перекры-TUR KAHRNOB MAPOK KNIS H KCS 29 Suct 8. Knioy Dar nodeopa Kahraob Maxu Kab (npodonacehue). 17 Suct 9. Kinon Dur nodeopa kahriob mapku Kir (npodojacehue)... 18 SHCT 10. KAIKOU DAIR TODESOPA KAHRAOS MAPKU KAIS (OKOHUAHUE)..... 19 SINCTH. KINCY AND POLISOPA KAHANOB MARKY KCB. 20 SMCT28. BHYTPHYEXOBUE KAHAND BYEXARC C SEMINAHUMIN . NOMPMY. PPUMEP PEWEHUR OFFRETYPEHHOU MUTH SUCTIZ. TABSULLA DUR NODSOPA CSOPHUS SKENEGOSETOHIHUKS SNEMEHTOB II PROXOD MATERIARIOB HA BILM. KAHRIOB NEPEKARTUR. 32 MAPRIN KINS. 21 SMOTEN PLANER STEPONICTER BHSTPHUJEXOBOTO KAHRINA C PPODONOHUM YKNOHOM NPU NEPEKPUTUU B YPOBHE Лист 13. Таблица для подбора сборных железоветонных STEMENTOS U PROZOCI MATEPUBLIOS HA 3 T.M. FAHRIOS MOTA YEXA..... MAPKU KINE (PPOGOMEEHUE) 22 SUCTIFY. THESTULIA DURA NODEOPA CEOPHERS RESOLUTION SNEMEHTOB U PACKOO MATEPURNOS HA 3 N.M. KAHANOS COREPORAHUE MAPKH KAIS (APODONOKEHUE)

7031-07

COREPACAME	(OK	OHYAHHA						
OGOPHUE SICTICU SILSG-1; SILSG-2; SILSG-3. ORANYBOMHUE U APMATYPHUE VEPTESICU	27P.	<i>JMCT 83.</i>	DOSOPHINE	אדר אחמת מים מים מים	ПЕРЕКРЫТИ ?0 g-1; [120g-	9 119-1;11	189-1; NI	9g-2; 1229.
	76	•	Commen			2,11219-1,1		
NOSOPHUE NOTKU N25g-1; N25g-2; N25g-3. CRELIU PUICA-	`	•	UELIMIME	HUNN !	APMATYPW	••••••		•
POSSOURIE POTRIL POST LARGE DE SOCIETA DE LA COMPANIONE D	77				•			
QUEOPHBLE NOTKH NEGG-1; NEGG-2; NEGG-3. ONANYBOUHBE								
POSCOPHIE POTEN MC- LAGGE A MC- 2 GODING	7 0					•		
ПОБОРНЫЕ ЛОТКИ ЛИБд-1; ЛИБд-2; ЛИБд-3. СПЕЦИ ФИКА- ЦИЯ ПРМЯТУРЫ								
	<i>13</i>					•		
DEOPHUE NOTKH N27g-1; N27g-2; N27g-3. ONANGONHUE		•			•			
MARMATYPHUE VEPTENCH	OV				•			
QUEOPHBLE NOTRH N27g-1; N27g-2; N27g-3. CNEYH PHRA- VIIA BOMBTUDU				÷				
уия прмптуры Плиты дниця ПДI-3; ПДI-4	8/ ~~			4				
Тииты дница ПД 3-3; ПД 3-4	ØĽ.					•	. 1	
Плиты дница ПД5-1; ПД5-2.	<i>5</i> 5							
NUTTE CTEHOBEE PCI-1; NC19-1.	<i>B</i> /		•					
MINTH CTEHOBHE NC 2-2, NC 24-2	<i>D</i>				,			
NUTH REPERPUTUR ALI; AL-1; AL-1; AL-1; AL-1; AL-1;	.							
116-2; 117; 118-1; 118-2; 119-1; 119-2; 1120-1; 1120-2.		٠.			•			
DARAYEOUTHE U REMATYPHUE VEPTESCH	47	•						
NOUTH REPERPHTUR NHI; NH-2; NH-1; NH-2; NIS;	Of .	. :				•		
NI6-1; NI6-2; NI7; NI8-1. CRELIN-PURALINA APMATYPH		•	,			:		
ПЛИТЫ ПЕРЕСРЫТИЯ N18-2; N19-1; N19-2; N20-1; N20-2.	00	* 1						
СПЕЦИФИКАЦИЯ АРМАТУРЫ	Ba							
ПОИТЫ ПЕРЕКРЫТИЯ П4-1; П4-1а; П4д-1; П4д-1а	en .					1	•	
QOSOPHUE MATH REPERPUTUA NIG-1; NIG-1; NIG-2;								*
1199-1; 1199-2; 1209-1; 1209-2. 1210-1. 1010-0. 1000-								
ORRAYBOUNDE U RAMATYPHUE VEPTERCH								THC-C
1007 / 600/1077 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3 1	TA	_	200				BUNS
1719g-1; 17	19g-2; N20g-1; N20g-2; N21g-1; N21g-2; N22g.	19g-2; N20g-1; N20g-2; N21g-1; N21g-2; N22g.	18g-2; N20g-1; N20g-2; N21g-1; N21g-2; N22g.	159-2; N209-1; N209-2; N219-1; N219-2; N229. 44456 U RAMRTYPHSE YEPTESKY	199-2; N209-1; N209-2; N219-1; N219-2; N229. 44HUE U RPMRTYPHUE YEPTEROU	199-2; N209-1; N209-2; N219-1; N219-2; N229. 44156 U RPMRTYPHSE YEPTEROU	199-2; N209-1; N209-2; N219-1; N219-2; N229. 4HBE U APMATYPHBE YEPTESKY	19g-2; N20g-1; N20g-2; N21g-1; N21g-2; N22g.

Пояснительняя записка

I ОБЩАЯ ЧАСТЕ

1. В НЯСТОЯЩЕМ ВЫПУСКЕ 7 СЕРИМ ИС-01-04 ПОМЕЩЕНЫ МЯТЕРИЯЛЫ ДЛЯ ПРОЕКТИРОВЯНИЯ И РЯБОЧИЕ ЧЕРТЕЖИ СБОРНЫ
ЭКЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ВНУТРИЦЕХОВЫХ КЯНЯЛОВ,
ПРЕДНЯЗНЯЧЕННЫХ ДЛЯ ПРОКЛЯДКИ ТРУБОПРОВОДОВ РЯЗЛИЧНОГО НЯЗНЯЧЕНИЯ И КЯБЕЛЕЙ.

КАНАЛЫ МОГУТ БЫТЬ ИСПОЛОВОВАНЫ В ІСЯЧЕСТВЕ ВОЗДУХО-ВОДОВ. ПРИМЕНЕНИЕ КАНАЛОВ ДЛЯ НЕПОСРЕДСТВЕННОЙ ТРЯНС-ПОРТИРОВКИ ПО НИМ (БЕВ ТРУБОПРОВОДОВ) ЖИДКОСТЕЙ НЕ ПРЕДУСМОТРЕНО.

- 2. В ПЯННОМ ВЫПУСКЕ РЯЗРЯБОТЯНЫ КАНЯЛЫ С ПЕРЕКРЫТИЕМ В УРОВНЕ ПОЛЯ ЦЕХЯ КАНЯЛЫ МОГУТ ПРИМЕНЯТЕСЯ ТЯКЯКЕ В СЛУЧЯЯХ ЗЯГЛУБЛЕННОГО ПЕРЕКРЫТИЯ ПРИ УСЛОВИИ ПРОВЕРКИ КОНСТРУКЦИЙ РЯСЧЕТОМ (СМ. П. 21 НЯСТОЯЩЕЙ ЗЯПИСКИ).
- 3. СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ЭЛЕМЕНТЫ КЯНЯЛОВ, РЯЗРЯВОТЯН-НЫЕ В НЯСТОЯЩЕМ ВЫПИСКЕ, МОГУТ ПРИМЕНЯТЕСЯ В ОБЫЧ-НЫХ УСЛОВЛЯХ, Я ТЯКЖЕ НЯ ПРОСЯДОЧНЫХ ГРУНТЯХ, В СЕЙСМИЧЕСКИХ РЯЙОНЯХ И РЯЙОНЯХ С ВЫСОКИМ УРОВНЕМ
- 4. Мяксимяльное пявление на грунт основания от расчетных нагрузок, пействующих на каналы, может составлять по 1.5 кг/см².
- 5 При проектировании и возведении канналов, помимо настодщего выпуска, надлежит руководствоваться следующими материалами данной серии:

о выпуском 1, в котором соперэжятся общестроител6ные чертежн каналов, я также описание консяруктивных решений и чказания по применению конструкций каналов и их монтажну; в) выпуском 2, сопержящим рябочие чертежи сборных уселез обетонных элементов, часть которых применяется в настоящем выпуске и указания по их изготовлению;

в) выпуском 4, в котором приведены мятериялы для проектирования каналов на просядочных грунтах и

В РЯЙОНЯХ С СЕЙСМИЧНОСТЬЮ В И Э БЯЛЛОВ; В ВЫЛУСЖОМ 5. В ЕОТОРОМ ПРИВЕЛЕНЫ МЕТЕРИЯЛ

2) Выпуском 5, в котором привещены митеринлы для проектировиния кянялов в ряйонях с высоким уровнем грунтовых вод:

0) Выписком 6, 8 котором привещены мятериялы цля ПРОЕКТИРОВЯНИЯ И СБОРНЫЕ ЭКЕЛЕЗОБЕТОННЫЕ ЭЛТЕМЕНТЫ

КАНАЛОВ ПОД ТЯЗКЕЛЫЕ НАГРУЗКИ.

6. МЯРКИ КАНАЛОВ ОБОЗНАЧЕНЫ БУСВАМИ И ЦИФРАМИ, ОПРЕДЕЛЯНОЩИМИ ВИТ КОНСТРУКЦИЙ И ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ.
МАРКИРОВКИ ВНУТРИЦЕХОВЫХ КАНАЛОВ ОТЛИЧАЕТСЯ ОТ ПРИНЯТОЙ

8 ВЫПУСКЕ 1 ДОПОЛНИТЕЛЕНЫМ ИНДЕКСОМ "В" (ВНУТРИЦЕХОВЫЕ)

JOTICOBUX ЭЛЕМЕНТОВ, ПЕРЕКРЫВЯЕМЫХ ПЛИТАМИ; ШИРИНА-90см; ВЫСОТЯ-45см; КС в 150-120-2 - ВНУТРИЦЕХОВОЙ КЯНЯЛ ИЗ СБОРНЫХ ПЛИТ; ШИРИНА-150 См; ВЫСОТЯ-120 См. В ПРИВЕДЕННЫХ ПРИМЕРЯХ ЦИФРЫ ПОСЛЕ ТЕОМЕТРИЧЕСКИХ РЯЗМЕРОВ ОБОЗНЯЧЯЮТ ПОРЯД.

НОМЕР В ПРЕДЕЛЯХ КЛОКДОЙ МЯРКИ КАНАЛА В ЗАВИ-

Примеры мяркировки: КЛВ 90-45-1 - внутрицеховой канал из

СИМОСТИ ОТ ПРИНЯТЫХ МЯРОК СБОРНЫХ ЭЛЕМЕНТОВ, ОПРЕЦЕ-ЛЯЮЩИХСЯ УСЛОВИЯМИ ПРИМЕНЕНИЯ КАНАЛЯ.

7. МЯРКИРОВКА СБОРНЫХ ЭЛЕМЕНТОВ СОСТОИТ ИЗ БУКВ И ЦИФРР.
БУКЗЫ ОБОЗНИЧНИТ ИЯММЕНОВАНИЕ ЭЛЕМЕНТИ, ЦИФРРЫ- ПОРЯДКОВЫЙ НОМЕР ТИПОРЯЗМЕРЯ НУМЕРЯЦИЯ ТИПОРЯЗМЕРОВ

T/ 1963

Пояснителеняя записка

ИС-01-04 Выпуск 7

JINCT

ПРОПОЛЭКЕНИЕМ ПРИНЯТОЙ В ВЫПУСКАХ 246 НАСТОЯ-ЯВЛЯЕТСЯ щей серии. Если элементы, в пределях одного типорязмеря, ОТЛИЧНИТСЯ ПО НЕСУЩЕЙ СПОСОБНОСТИ, ТО В ОБОЗНЯЧЕНИЯ MAPOR MOCILE TUPE BEOTLATOR LINOPPU, SICHSUBAIOLUME MOPAL-COBBU HOMEP TO HECYLLEN CHOCOBHOCTH B TIPETIEJTAX DANG-IOTO TUTOPASMEPA GITEMEHTH. НЯПРИМЕР: ПДІ-3 (ПЛИТЯ ДНИЩЯ), ПС?-2 (ПЛИТЯ СТЕНОВЯЯ), J121-1 (JOTOK) HT. II.

Если Элементы, в прецелях одного типорязмеря, отличнют-CA 3REJIRTHIMM TETRIJAMU, TO B 0503HRYEHING MAPOK BOOTST-СЯ ДОПОЛНИТЕЛЬНЫЕ БУКВЕННЫЕ ИНДЕКСЫ. НЯПРИМЕР: ПУ-10. B MAPICAK TIOSOPHUX STIEMENTOB TIOGRATISETCS SUKBA 9. HANPMMEP: J189-1; П209-2. Для элементов, имеющих опрлубочные размеры изделий

ТОННЕЛЕЙ, СОХРЯНЕНЫ БУКВЕННЫЕ ОБОЗНЯЧЕНИЯ, ПРИНЯТЫЕ B CEPHH HC-01-05.

HAMPHMEP: MITI-I [MINTH THHUH TOHHETIS).

I. KOHCTPYKTHBHЫЕ РЕШЕНИЯ

8. ГЯБЯРИТНЫЕ СХЕМЫ ВНУТРИЦЕХОВЫХ КЯНЯЛОВ (ЛИСТ 2) ПРИНЯТЫ по выпуску / серии ис-он-оч со следующими изменениями: THERPATHUE CKEMU TICTIOTHEHU CEVEHARMA AXH=300×300 A 450×300MM; KAHAJIN WAPAHON 2000 MM, KAK HEXAPAKTEPHNE IJB BHYTPH-ЦЕХОВОЙ ПРОКЛЯДКИ, В ГАБАРИТНЫЕ СХЕМЫ НЕ ВКЛЮЧЕНЫ. ПРИ НЕОБХОДИМОСТИ, В ОТДЕЛЬНЫХ СЛУЧЕЯХ, ПРИМЕНЕНИЯ ЭТИХ KAHAJIOB MX CJIETIVET PROCYNTATO HA HAIPYSKM, TIPUBETIEHHUE В НЯСТОЯЩЕМ ВЫПУСКЕ, И ПОДОБРЯТЬ ИЗДЕЛИЯ ИЗ ЧИСЛЯ РАЗРАБОТАННЫХ В ВЫПУСКАХ 2 и 6 НАСТОЯЩЕЙ СЕРИИ. B IRHHOM BUTINCKE THERENELLEHU TONOTHUTETIGHUE THERPMTHUE CKEMBI JIDTKOBBIX KAHAJIOB MAPKH KJIB BUCOTON 900 N 1200 MM

N3 FOTOBJIEHHE JIOTICOB JIJIS KOTOPHIX MOGGET TIPON 380 TINTECS

HUX NBIEJINÚ CEPHN NC-01-04 (B TOM YNCJIE JIOTKOB BUCO-TOW TO 600 MW). KOTOPOE PRETYCHOTPEHO PO POTOYHO-APPE-PATHOU TEXHOJOPHY. PRIMEHENNE KAHAJIOB MAPKH KJILE BUCOTON 900 N 1200 MM TONSCRAETCS KAK NCKTHOYEHHE TIPH COOTBETCTBYIOUEM OSOCHOBAHMU (HAMPHMEP, B CJIYYAGX CTECHEHHOIX THORPUTOB, KOT IR TIPHMEHEHHE KRHRITOB MAPин КСВ ЗАТРУПНИТЕЛЕНО ИЗ-ЗА ВЫСТУПЯЮЩИХ ЧАСТЕЙ ПНИША) и при Условии, что общее количество типоразмеров КОНСТРУКЦИЙ ПРИ ЭТОМ НЕ УВЕЛИЧИВНЕТСЯ ЭЯ СЧЕТ ОДНО-BPEMEHHOTO TIPHMEHEHUS KAHAJIOB MAPOK KC6 N KJIS BUCOTON 900 H 1200 MM

- 9. Номенилятуря сборных экелезобетонных изпелий внутри-LEXOBELY KAHAJIOS BICJIHOYHET 23 THITOPHSMEPH SJIEMEHTOS. РЯЗРЯБОТЯННЫХ В ВЫПУСКЯХ 2 п 6 НЯСТОЯЩЕЙ СЕРМИ М 9 НО-BUX THROPRIMEPOB, PRIPREOTRIHHUX B IRHHOM BUTTYCKE.
- 10. КЛЮЧИ ДЛЯ ПОДБОРА МАРКИ КАНАЛОВ ПРИВЕДЕНЫ НА ЛИСТЯХ 7÷11, ТЯБЛИЦЫ ДЛЯ ПОДБОРЯ СБОРНЫХ ЖЕЛЕЗОБЕТОН-HUX STEMENTOS - HR THCTRX 12:19.

ПРИ ПРИМЕНЕНИИ ДОБОРНЫХ ЭЛТЕМЕНТОВ МЯРКИ ЛОТКОВ И CTEHOBUX PIJIUT TOTIGEHU COOTBETCTBOBATG MAPPICAM OCHOB-HOLK STEMENTOS (HATTPHIMEP, JIOTICS JIS-1 COOTSETCTBUET TOBOPный люток л9 д-1), я мярки доборных плит перекрытия долж- 1 ны принимяться в соответствии с тяблицей, привещенной HR JINCTE 20

Н. Конструктивные Решения каналов яналогичны разработанным в выпуске і нястоящей серпи. Пля внутрицеховой прок-JIAIICH TIPHMEHSHOTCS KAHAJISI US JIOTKOBSIX STIEMEHTOB (МЯРКИ КЛЕ) И КЯНЯЛЫ ИЗ ПЛИТ (МЯРКИ КСЕ).

Пояснительная записка

HC-04-04 BUTILLE 7

ПЕРЕКРЫТИЕ КАНАЛОВ ВЫПОЛНЯЕТСЯ ИЗ ПЛОСКИХ ЭКЕЛЕЗО-БЕТОННЫХ ПЛИТ. ПРИМЕНЕНИЕ ПЕРЕКРЫТИЙ ИЗ РИФЛЕННОЙ CTRJIN IJONYCKHETCA TIPH COOTBETCTBYIOULEM OBOCHOBAHMM. 12. HR SYRCTICAX, FILE TREGSETCS SACTOM CHEM TATIOT, CALEGUET ПРИМЕНЯТО ДОБОРНЫЕ ПЛИТЫ ПЕРЕСРЫТИЙ ШИРИНОЙ 600 мм. PROPRESTABLE & MACTORILLEM BUTINCHE. 13. Плиты перекрытий с ФАКТУРНЫМ СЛОЕМ ДОЛОКНЫ РАЗРА-BATTO BATTOCA B CONCRET HOM TIPOERTE B COOTBETCT BAM C ПРИМЕРОМ РЕШЕНИЯ, ПРИВЕДЕННЫМ В ДЯННОМ ВЫПУСКЕ (CM. JINCT 23). OSPRMJEHME STIX NJINT PHINGTO NO CTRINGной полосы. Толщиня Фяктурного слоя (керямические ПЛИТКИ, MOBRUSHOE ПОКРЫТИЕ И ПР.), УКЛЯПЫВЯЕМОГО ПО BETOHY, TIPHHATA 30 MM. 14. При проклятись каналов в цехах с земляным полом ПЛИТЫ ПЕРЕЮРЫТИЙ, УКЛИТЫВЯЕМЫЕ В УРОВНЕ ПОЛЯ ЦЕХЯ, PEWEHU C STOPRMM M3 STOTICOB, TPMBRPMBREMUX IC BAICTIFTI-HUM STEMEHTAM B THINTAX. 15.]] ЛЯ ОТВОЛЯ ИЗ КЯНЯЛОВ СЛУЧЯЙНЫХ ВОД ДНИЩУ КЯНЯЛОВ ПРПППЕТСЯ ПРОПОЛЬНЫЙ УКЛЮН U=0.002 + 0.005 (В ЗАВИСИМОСТИ OT TEXHOJIOTHYECKOTO MATCHING KAHAJIOB II TPYHTOBUX YCJIOBIIÚ). BOTTH COSMPHETCH & TIPHAMKH, H3 KOTOPHIX OTBOTTHTCH & KA-**НЯЛИЗАЦИЮ.** ПРИМЕР РЕШЕНИЯ ПРИЯМІСЯ ПРИВЕДЕН НЯ ЛИСТЕ 55. SCTPOUCTBO SICTIONOB B KAHAJIAX C TEPEKPUTUEM HA OTMET-KE = 0.00 PEROMEHINETCS TIPONSBOTUTE 3R CYTET CITOS LIEMENT-HOTO PACTBOPA WITH HABETOHICH TEPEMEHHON BACOTH TO CTEHAM KAHAJIOB (CM. JINCT 24). ПРИ ВЫСОТЕ НЯБЕТОНКИ 150 ИЛИ 300 MM, 4TO COCTRBITAET PAS-HOCTE MEDICITY BUCOTAMIN CMEDICHUX TITTOB KAHAJIOB, CJIE-THET TEPEKOTINTS HA CITETISHOWEE STINGERNWEE CENEHUE KAHAJIA 110 BUKOTE.

B COHLEPETHOM PROEKTE MOTEST PRIMERISTICS IN TIPSTUE PE-

ШЕНИЯ ПО ИСТРОИСТВИ ИСЛОНОВ.

46. В ЦЕХЯХ С ЯГРЕССИВНЫМИ ВОВДЕЙСТВИЯМИ СЛЕДУЕТ ПРЕДУС-МЯТРИВЯТЕ ЗЯЩИТУ КОНСТРУКЦИЙ КАНАЛОВ ОТ КОРРОЗИИ В СООТВЕТСТВИИ С "УКЯЗЯНИЯМИ ПО ПРОЕКТИРОВЯНИЮ АНТИКОРРО-ЗИЙНОЙ ЗЯЩИТЫ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПРОМЫШЛЕННЫХ ЗДЯНИЙ В ПРОИЗВОДСТВЯХ С ЯГРЕССИВНЫМИ СРЕДЯМИ"-СН262-63.

Г. Подготовка под каналы, обмажа битимом сборных элементов и заполнение швов между ними, деформационные швы, а также крепление комминикаций должны осиществляться в соответствии с укразниями, приведенными в выпуске и настоящей серии.

18. ЗЯСЫПКЯ ТРЯНШЕЙ ПОТЖНЯ ПРОИЗВОДИТЕСЯ ПОСЛЕ УКЛЯДКИ ПЛИТ ПЕРЕКРЫТИЯ РЯВНОМЕРНЫМИ СЛОЯМИ ТОЛЩИНОЙ 20-30 СМ С ПЛОТНОЙ ТРЯМВОВІСОЙ, ОДНОВРЕМЕННО С ОБЕИХ СТОРОН КЯНЯЛЯ

При необходимости съемя плит перекрытия каналов в цехах с земляным полом, стенки каналов доложны быте раскреплены временными распорками, за исключением случаев, когда на каналы передается давление толоко от собственного веся грунта без временной нагрузки.

19. Углы поворотов, компенситорные ниши и ответвления канялов решинотся в компенситори проекте с применением рязряботянных в настоящем выпуске сборных эквлезобетонных плит перекрытия прямых участков каналов по яналогии с решениями, принятыми в выпуске і настоящей серии.

T/ 1965

Пояснительняя Зяпискя

ИС-01-04 Выпаск 7

031-07

A MAR MAT KORPO MAN OTHER BANDO In NOWETP OTH CREEKY (TH. MAR IP KORWT

THE HATPYSICH IN PACYET KOHCTRYKTING

20 Конструкции каналов рассчитаны на елетиющие норматив-HUE PROHOMEPHO- PROTOETEJIEHHUE BPEMEHHUE DJINTEJIGHUE HAT-PYBICH, TENCTBYIOLINE B SPOBLE TIOTIFI LIEXTS: 400; 2000; 3000, 2000; 3000, 47/4/2 КЯНЯЛЫ РАССЧИТАНЫ ТАКЖЕ НА НЯГРУЗКУ ОВ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ: ЭЛЕКТРОКАРЫ ГРУЗОПОТВЕМНОСТВЮ 2.0 и 3.0 т. ЯККУМУЛЯТОРНЫЙ ПОГРУЗЧИК ГРУЗОПОДЗЕМНОСТЕЮ 1.5t, ЯВТО -ПОГРУЗЧИКИ ГРУЗОПОТЕЕМНОСТЕЮ 3.0 И 5.0 Т. ЯВТОМЯШИНУ Н-10 [НОРМЯЛЕНУЮ ИЛИ УТЯЭКЕЛЕННУЮ]. HATPYSKA OT BHYTPHUEXOBOTO TPAHOTOPTA A PABLIDMEPHO-PRCTPETEJEHHRA BPEMEHHRA TJINTEJIGHRA HATPYSKA TIPHHH-МЯЮТСЯ ПЕЙСТВУЮЩИМИ РЯЗНОВРЕМЕННО. 24. В КЛЮЧЕ ПЛЯ ПОДБОРА САНАЛОВ (ЛИСТЫ 7÷11) ДЯНЫ МАРКИ KAHAJIOB C NEPERPUTHEM B YPOSHE NOTA LEXA, ПРИМЕНЯЕМЫЕ ПРИ ПЕРЕЧИСЛЕННЫХ ВЫШЕ НАГРУЗКАХ. THE PREHOMEPHO- PROTPETENTENHELL HAFFYSKAX OF 3" TO 6 TH T/M2 A TAKAKE B CJUYARX BALINYENEHHOLO DEPEKRATNA KAHAJIOB КОНСТРУКЦИИ КЯНЯЛОВ НЕОБХОДИМО, В СООТВЕТСТВИИ С РЯСЧЕТОМ. ПОДБИРЯТЕ ПО НЕСУЩЕЙ СПОСОБНОСТИ ИЗ ЧИСЛЯ РЕЗРАБОТАННЫХ B BUTYCKAX 26 N 7 HACTOSILLEN CEPHN. 22. PPM PACHETE KAHAJIOB OBSEMMONN BEC PUHTA PANHAT Y=1.87/m3. YFOJI ECTECTBEHHOFO OTKOCH Y=30". 23. PACTIPETIENEE BPEMEHHOÙ HAIPYSICH OT KUNES ROTBURCHORO ТРЯНСПОРТЯ ПРИНЯТО: В полях с жестким подстиляющим слови - под углом 45° K BEPTHKAJIH; B TPYHTE - NOT YENOM 30° K BEPTHENJIH. * THE HAPPUSKE 400 KT/W2 PROYETHLIE CEVENUR STEMENTOS KAHA-

JIOB HECYWECTBEHHO OTJINYRHOTCA OT TIPHHATHIX TIJA HAFFASE ION 1000 KT/M², B CBASH C YEM STENEHTHI KAHRIJOB MOTH YEA-

ЗЯННЫЕ НЯГРУЗКИ ПРИНЯТЫ ОПИНЯКОВЫМИ.

EVOLUCION

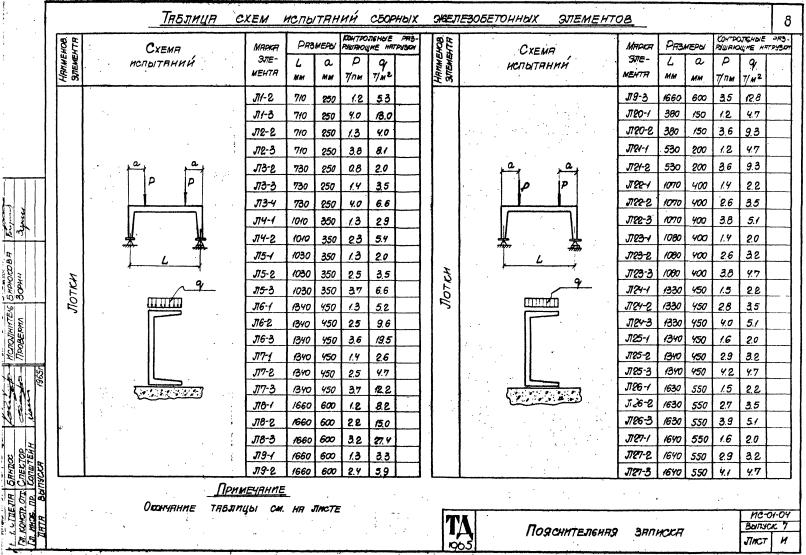
24. НЯГРУЭКА ОТ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ УЧИТЫВЯЛЯСЬ С КОЭФФИЦИЕНТОМ ДИНЯМИЧНОСТИ, РЯВНЫМ 1.1 (В СООТВЕТСТВИИ С УКЛЭННИЯМИ П.З.8 СН И П.Д. Я. 11-62).
25. ПРИ РЯСЧЕТЕ КЯНЯЛОВ ПРИНЯТЫ СЛЕДУЮЩИЕ КОЭФФИЦИЕНТЫ ПЕРЕГРУЭКИ:

ОТ СОБЕТВЕННОГО ВЕСЯ ЮНСТРУКЦИЙ -Л=1.1 ОТ ПЯВЛЕНИЯ ГРУНТЯ -Л=1.2 ОТ ВРЕМЕННОЙ РЯВНОМЕРНО-РЯСПРЕ-ПЕЛЕННОЙ НЯГРУЗКИ -Л=1.2

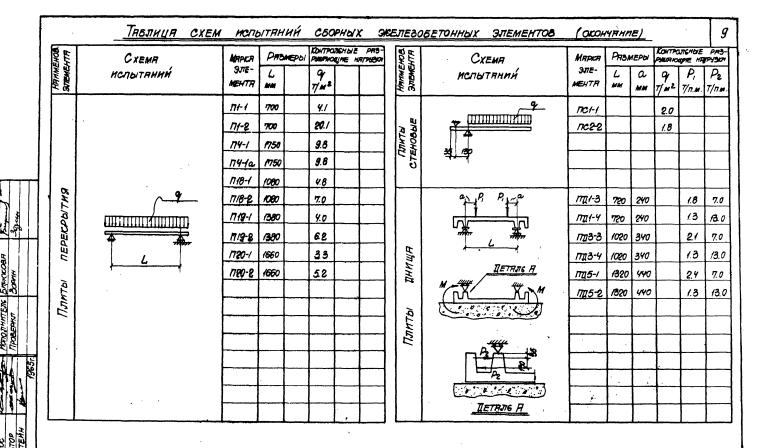
ОТ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ [ЗЯ МСКЛЮЧЕНИЕМ ЯВТОМОБИЛЬНОЙ НЯГРУЗКИ) -П.=1.3 ОТ ЯВТОМОБИЛЬНОЙ НЯГРУЗКИ. -R=1.4

26. РЯСЧЕТ КОНСТРУКЦИЙ КЯНВЛОВ ПРОИЗВЕДЕН В СООТВЕТСТВИИ С
ГЛІЙВОЙ СНИ ГУТ-В. 1-62 "БЕТОННЫЕ И ЭКЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ. НОРМЫ ПРОЕКТИРОВЯНИЯ."
27. РЯСЧЕТНЫЕ СХЕМЫ КЯНВЛОВ С ПЕРЕКРЫТИЕМ В УРОВНЕ ПОЛЯ
ЦЕХЯ ПРИ ПЕЙСТВИИ РЯВНОМЕРНО-РЯСПРЕДЕЛЕННОЙ ВРЕМЕННОЙ
ПЛИТЕЛІВНОЙ НЯГРУЗКИ И ВЕЛИЧИНЫ НЯГРУЗОК ОТ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ ПРИВЕДЕНЫ НЯ ЛИСТЕ 1.

28. Испытяние элементов на прочносте производится в соответствии с ГОСТ 8829-58. Величины контроленых разрь шающих нагрузок, равные эквивалентным расчетным нагрузорам, чвеличенным в 1.4 раза, приведены в "Таблице Схем испытаний сборных экелезобетонных элементов"

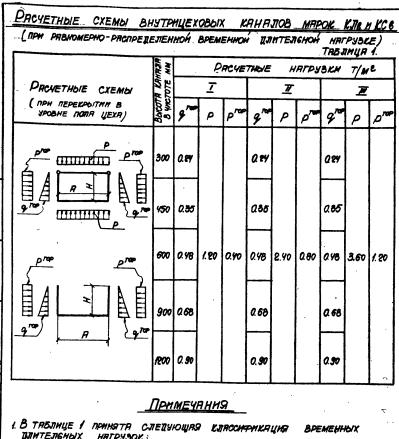

(см. листы И, К. настоящей записка).

T/


Пояснительняя записка

ИС-01-04 Выписк 7 Лист 54

1-07 9


7031-07 10

TA 1805

Поясинтеления зиписки

ИС-01-04 Выпуск 7 Лист К

1. В ТЯБЛИЦЕ 1 ПРИНЯТА СЛЕЦУЮЩЯЯ КЛЯССИРРИКАЦИЯ ВРЕМЕННЫХ ПЛИТЕЛЬНЫХ НЯГРУЭОК:

ТИП I — ПРИ НОРИЯТИВНОЙ НЯГРУВКЕ НЯ ПОЛ ЦЕХЯ, РЯВНОЙ 1000 № 100 №

2 COSCTBEHHUM BEC KOHCTPSKUMM B HRIPUBKM HE BKJIHOVEH.
3. MCXOTHUE PROYETHUE TRAHHUE M KOSPPRIMENTU MEPETPYBKM M
TUHRMMYHOCTH OPPBETENU B MOSCHUTEJRANDA BRINGKE

ПИНЯМИЧНОСТИ ПРИВЕДЕНЫ В ПОЭСНИТЕЛЬНОЙ ЗЯПИСИЕ. Ч.В РЯСЧЕТНЫХ СХЕМЯХ РЯЗМЕРЫ Я И И ПРИИЯТЫ В ОСЯХ КОНСТРУКЦИЙ. PRCYETHUE HAIPYSKA

OT BHSTPHUEXOBORO TPRHCTOPT R

_		ir initially	/ //
	· · · · · · · · · · · · · · · · · · ·		ТАБЛИЦЯ 2
NN NJN	. Вид транспорта	PROVETHOE ILRESTEMME OT MOSTECA T	Плоиятия переднум ппвления о. = 8 см
1	STEKTPOKAP Q=8.07	1.25	8×7
2	Q=3.07	1.90	8×7
3.	PLEYMYJATOPHUM NOFPYSYML Q=1.5T	2.45	8×7
4	. Нагопогрудчик Q=3.0т	5.20	30×20
5	Q=5.07	7.35	40×20
6	ПВТОМЯШИНЯ Н-10	5.40	30×20
7	Н-10 Патомящиня утязка	7.30	40 = 20
			†

Обознячения нягрузок

9 ^{гор} — ГОРНЭОНТЯЛЕНОЕ ДЯВЛЕНИЕ ГРИНТЯ;

) — ВЕРТИКАЛЬНОЕ ДЯВЛЕНИЕ ВРЕМЕННОЙ НЯГРУЭКИ;

р^{гор}— Горизонтя Леное — Дявление от Временной НЯГРУВКИ.

M

Рясчетные схемы и нягрувки

ИС-01-04 Выпуск 7

JUCT

[REAPHTHUE	Марка	TREAL KAHAJIOS	B MM
СХЕМЫ КАНАЛОВ	каналов	P	Н
	КЛ _в 30-30	300	300
	KN8 45-30	450	300
	KTI8 60-30 *	600	300
	КЛ8 60-45 **	600	450
	KJI8 90-45 **	900	450
	KJI8 120-45 **	1200	450
I	KJT8 150-45 **	1500	450
Я	KJ18 60-60 *	600	600
· · · · ·	LITE 90-60 *	900	600
	K.118 120-60 *	1200	600
	KJT8 150-60 *	1500	600
•			

[ABAPUTH NE	MAPKA	Гябяри Кяналов	T51 8 MM	14
СХЕМЫ КАНАЛОВ	КАНАЛОВ	Ŗ	Н	
	KC8 90-90 *	900	900	
	KC 6 120-90 **	1200	900	
7	KC 8 150-90 *	1500	900	
R	. KC 8 90-120 *	900	1200	
} 	KC 8 120-120*	1500	1200	
	KC 8 150-120 *	1500	1200	,
Дополнительные и Каналов	RERPHTHUE MAPKH KJI8.	CŒMЫ		
	KJT6 80-90	900	900	,
	KT18 120-90	1200	900	
#	K.TIB 150-90	/500	900	
4	КЛ8 90-120	900	1200	
A	K.T.& 120-120	1200	/200	
	KJie 150-120	1500	1200	

ПРИМЕЧАНИЯ

1. ГАБЯРИТНЫЕ РЯЗМЕРЫ КАНАЛОВ, ОТМЕЧЕННЫЕ ЗНЯКОМ®, ПРИ-

3 В ПОПОЛНИТЕЛЬНЫХ ГИБИРИТНЫХ СХЕМИХ КИНИЛОВ ФИКТИЧЕСТИИ РИЗМЕРЫ "Я" МЕНЬШЕ НОМИНИЛЬНЫХ, ПРИВЕЦЕННЫХ В ТИБЛИЦЕ, НА 20÷100 мм, что связино с необходимостью сохря-

НЕНИЯ ТЕХНОЛОГИЧЕСКИХ УКЛОНОВ СТЕНОК ЛОТКОВ ВЫСО-ТОЙ 900 М 1800 ММ И ПРИМЕНЕНИЯ ПЛИТ ПЕРЕКРЫТИЙ КЯНЯ-ДОВ ИЗ НОМЕНКЛЯТУРЫ ИВДЕЛИЙ ДЯННОЙ СЕРИИ.

ГАБЯРИТНЫЕ СХЕМЫ ВИЧТРИЦЕХОВЫХ КЯНЯЛОВ ИС-01-04 Выпуск 7 **Лист** 2

НЯТЫ ПО ВЫПУСКУ І НЯСТОЯЩЕЙ СЕРИП.

2. ПРИМЕНЕНИЕ ЛОТКОВЫХ КАНЯЛОВ ВЫСОТОЙ 900 И 1200 ММ
ПО ПОПОЛНИТЕЛЬНЫМ ГВЕЯРИТНЫМ СХЕМЯМ, ПРИВЕДЕННЫМ
НЯ ПЯНЯГОМ. ЛИСТЕ, ПОПУСКЯЕТСЯ КЯК ИСКЛЮЧЕНИЕ ПРИ
СООТВЕТСТВУЮЩЕМ ОВОСНОВЯНИИ (ОМ. ЛУНКТ В ПОДСИМТЕЛОНОЙ ЭЯПИСКИ)

HOME	<i>КЛР</i>	TYPR CEOPHUX 36	EJIE3058	ТОНА	ЫХ	1.5		ZJJ	197	ВНУТРИЦЕ	X086/	Х КАНАЛОВ И РАСХОТ	MATER	MAJIO.	В ня	1 11311	ЕЛИЕ		12
ИМЕНО- ВЯНИЕ ЭТЕЛИЯ	K-BO HOBLIX TUTO- PRIMEPOB	Эскнэ	MAOLA MBIE- JIHA	BEC T		MILHE	XCT PHT 108 TENTE CTANG KT	Bunser	JIMCT	Нянмено- вянне изделия	K-80 H08ЫX THITO- PR 3 MEPO	Эскиз	MADEH H3TE- JING		Мярка БЕГОНЯ		(01 119,7108 17,5,7145 CTH ,71 6		TAGT
			J11-2*	0.73	200	0.29	12.6	7	27				J77	172	300	0.69	67.9	2	7
			J1/-3*	0.73	300	0.29	24.8	7	•		٠,	·	J17-1*	1.72	200	0.69	33.4	 	33
		n n 8	J12-2*	0.88	200	0.35	16.3	7	28			0	37-2	172	200	0.69	45.0	7	1,
		300	J12-3*	0.88	300	0.35	27. 9	7	"			20,00	J17-3	1.72	300	0.69	82.8	7	,
		600, 900 1200	J/3-2	1.07	200	0.43	18.3	7	29			300; 450	J18	2.20	300	0.88	81.7	2	6
		1-1	J13-3	.1.07	200	0.43	23.9	7	•			1-1	J18-1**	2.20	200	0.88	39.0	 	3
			J13-4°	1.07	300	0.43	38.8	7	•				J18-2	2.20	200	0.88	55.1	7	١,
		(F===-1)	J74	1.05	300	0.42	<i>3</i> 7.3	2	4				J18-3	2.20	300	0.88	104.2	-	١,
ПКИ	-		J14-1	1.05	200	0.42	19.4	7	30	JOTKA			ля	2.42	300	0.97	87.1	2	9
			J14-2	1.05	200	0.42	24.9	7	"			0	719-7	2.42	200	0.97	43.5	<u> </u>	3
		1 282	115-1	1.25	200	0.50	23.2	7	3/			1 200	J19-2*	2.42	200	0. 9 7	61.0	7	1,
			J15-2**	1.25	200	0.50	33.0	7	•				J19-3	242	300	0.97	114.4	<u> </u>	1.
			J15-3 [*]	1.25	300	0.50	51.3	7	"					0.40	200	0.16		<u> </u>	3
		Em: am.	Л6	1.55	300	0.62	<i>63.3</i>	2	6.				J120-2	0.40	300	0.16	/5.7	7	Ť,
		, 500; 900; 1200	J16-1	1.55	200	0.62	<i>30</i> .2	7	32		2	300; 450 1200; 1500	J121-1	0.48	500	0.19	11.0	7	3
			J16-2	1.55	200	0.62	41.0	7	•			•	J121-2	0.98	300	019	21.2	7	1,

Примечание

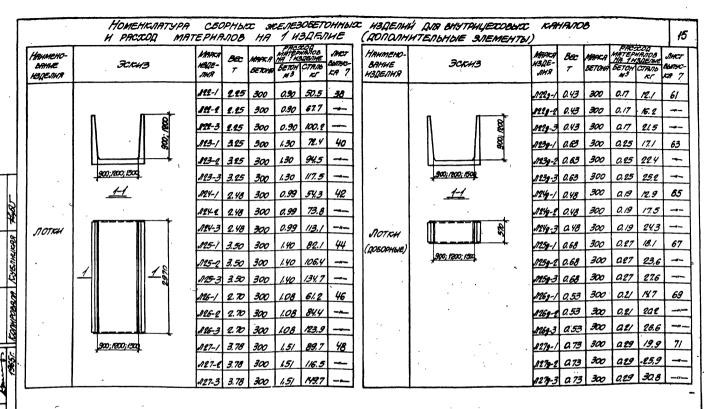
1.55 300

0.62 76.4 7

МЯРКИ ЛОТКОВ, ОТМЕЧЕННЫЕ ЗНЯКОМ *, ОТЛИЧЯНОТСЯ ОТ ПРИВЕЦЕННЫХ В ВЫПУСКЕ 2. ЯРМИРОВЯНИЕМ ИЛИ МЯРКОЙ БЕТОНЯ И В ОБЩЕМ КОЛИЧЕСТВЕ НОВЫХ ТИПОРЯЗМЕРОВ НЕ УЧИТЫВЯЮТСЯ.

PSK. TRYTIDG! LANGUARTENG LANG

HTOTO


Номенилятуря сворных ЭВЕЛЕЭОБЕТОННЫХ ИЗДЕЛИЙ ДЛЯ ВИЗТРИЦЕХОВЫХ ВЯНЯЛОВ И РЯСХОД МИТЕРИЯЛОВ ИЯ 1 ИЗДЕЛИЕ <u>Ис-01-04</u> Выпуск 7 **Лист** 3

HOME		ТУРЯ СБОРНЫХ Ж ЕЛЕ	305E7	ОННО	γX	ИЗДЕХ		II/O	7 B	HYTPHUE)	(0861)	К КЯНПЛОВ И РАСХОД	MATER	19ЛО	HP.	1 natte	пиЕ		13
Няимено- Вание Изделия	K-80 HCBbX TH-110- PIBMEXE	Эскиз	DAPCA NGIE- JING	BEC T	МЯРКЯ БЕТОНЯ	NATE OF MA I NE DETON M3	TATION TRITION TETIME CTATION	BOTTSCK	JIMCT	Няимено- Вяние ИЗДЕЛИЯ	Ľ-8 0 HOB6IX TH10- PR S NEPQ	Corus	MROLA U3TE- JHS	<i>₿€</i> ¢ 7	Мяркя БЕТОНЯ	MATER HA 1 U. BETOH M3		Bernyck	JINGT
			<i>1171-2</i>	170	300	0.68	2/70	6	50			F-1 - P+	71	0.45	200	0.18	11.8	2	32
			11111-3	1.70	500	0.68	40 S	7	73		-	1 2	114-1*	045	200	0.18	8.3	7	78
			MI-4"	1.70	500	0.68	56.5	7				2980	11-2*	0.45	300	0.18	16.2	7	"
		رحــــــــــح	<i>ग</i> ग्नर	170	300	0.68	78 <i>5</i>	2	8			8	772	0.85	200	0.34	18.9	2	3
		1-1	mg3	1.92	300	0.77	103.8	2	22			1-1 8	114-1	1.63	300	0.65	76.2	7	8
		Table Charles	M3-2	1.92	300	277	231.0	6	51			7-7	114-10	1.63	300	0.65	64.6	7	4
Плиты		FTTT	m3-3	1.92	200	0.77	45.6	7	74			/ 88 × 8	179-2	0.75	300	0.30	<i>5</i> 7.3	6	5
Днищр	_		M23-4	1.92	200	0.77	63.6	7			-	7	119-20	0.75	300	0.30	46.1	•	•
		- - / \&	M15	2.15	300	0.86	116.4	2	23		١.	2990	11/0-2	1.05	300	0.41	74.6	6	6
			MZ 5-7	2.15	200	286	56.4	7	75		l	¥ 2330 }	1110-2a	1.05	300	0.41	63.4	•	_
		A	№5-2	2/5	500	0.86	76.0	7		NINTH			114-3	1.72	300	Q 69	75.4	6	•
		200	חבדו-ו	3.20	300	1.26	291.3	6	52	MEPEKPU-			1741-3a	1.72	300	0.69	63.8		
		1500			ļ				Ц	THH			DN-1	204	200	0.015	0.7	7	7
		•			ļ				Ш			\$48	714-2	0.04	300	0.015	1.3	-	-
	-				ļ				Ц		١,,	1-1	115	0.08	300	0.03	2.5	-	•
			nc1	0.53	300	0.21	27.8	2	28		4	1 1 1 1	7/6-/	0.05	500	002	0.8	-	
			TCH!	0.53	200	0.2/	23./	7	76			- 83	7/6-2	0.05	300	0.02	4.7		
		<u> </u>	1C2	0.88	300	0.35	53.0	2	29			595	717	0.10	300	0.04	4.1	"	
PIJIHTEI			1021	0.88	300	0.35	75.2	6	57			810	11/8-1	Q 60	500	0.24	16.2	"	
CTEHOBUE	-	1 88	108-5	0.88	500	0.35	38.3	7	77		ļ	1-1	110-2	0.60	300	0.24	20.2		
		ļ	7c3	0.65	300	0.26	43.8	6	58	ł	3		119-1	Q76	200	0.3/	25.2	-	,
		2980	<u> </u>		-	 		-	Н		9	T \$ 8	719-2	0.76	300	0.31	34.7		,
					├	 	 -	-	Н	,		2990	1720-1	1.08	200	0.43	28.5		4
L		<i>n</i>		L	<u> </u>	<u> </u>	L			<u> </u>		2330	720-2	1.08	300	043	40.5	•	4
ных в	BUTTY	ПРИМЕЧН ПИЙ, ОТИЕЧЕННЫЕ ЗНЯКОМ ССЯХ 2 И 6 ЯРМИРОВЯНИМ	M # , 07	TH M	IFIPKOĤ	δεπ	HA HH	EH- 8		Нтого	7								:
2. MINITE	TEPE	ГЧЕСТВЕ НОВЫХ ТИПОРА ПРЫТИЙ ПЯ-2°4, П10-2°4 И ПЯ-2, П10-2° И П11-3, ПРИВ ЗПЕМЕНТОВ М-24 КЛИ	7//-3a	80	TOTHA	107C9	TO YE	PTE	-	T/1	HON	ПЕНКЛІЯТУРЯ СБОРНЫХ ЖЕЛ В ВНУТРИЦЕХОВЫХ КЯНЯЛ ЛОВ НЯ ПОДЕЛИЕ (108 H	OAC XO	T MAT	лий ЕРИЯ	-	-01-0 119 C k	-

7031-07

16

ПРИМЕЧАНИЕ

ПРИМЕНЕНИЕ ЛОТКОВЫХ ЭЛЕМЕНТОВ ВЫСОТОЙ 900 И 1200 ММ ДОПУСКАЕТСЯ КАК ИСКЛЮЧЕНИЕ ПРИ СООТВЕТСТВУЮЩЕМ ОБОСНОВАНИИ (СМ. П. 8 ПОЯСНИТЕЛЬНОЙ ЗЯПИСКИ).

TA HOMEHINATYPA COUMNIC DESIGNOSETOMHUS HAGISTANIA AM BASTANIZACIONISC MAHANOO N PACISCOL MATERIANOO HA 1 KIGEME (DOTOMHITSIANISE MEMENTA)

HC-01-04

BUNYCK

	Нормятивняя					MA	DKH I	КЯНЯЛО	В				
Сеченпе Вянрля Ях Исм	PREHOMEPHO- PRCTRETIEMEN	При Отсетстви и			Пон н		ВНУТРИЦІ		ТРЯНСЛОР	TA			
200	HETOVAVE	BHUTPH- LIENOBOTO	В ЦЕХЯХ		TRIMH NO	OPECT KO	иу подсти	<i>ППНОЩЕМУ</i>	СЛОЮ	8 4	EXAX C 35	МЛЯНЫМ	ПОЛОМ
	B KT/M2	<i>ТРЯНСПОРТЯ</i>	97EKT	POKRPU Q=3.0 T	ЙССУМУЛЯТОР- НЫЙ ПОПРУЭНМО Q≈1.5т	<i>П</i> втолог <i>Q=3.0</i> т	PNRHKA	RBTOMP			TOUS YMEH		<i>АШИЧЫ</i>
0	. 1000				y -1.51	9 -307	Q=5.0T	H-10	H-10 57954C	Q=3.07	Q= 50T	H-10	H-10 ST931C
30x30	2000	K.Ti _b 30-30-1	K116 30-30-2	LT16 30-30-3	КЛ630- 3 0-3	L.T.6.30-30-4	L.Ha 50-30-4	K.Tu 30-30-4	LTIA 30-30-4	_			
	3000												
0	1000												
45.30	2000	KIT8 45-30-1	KTB 45-30-2	LT18 45-30-3	LT&95-30-3	LT ₆ 45-30-4	KT& 45-30-4	KN645-30-4	KT1845-304				
	3000											Ì	
٥	1000	KJI _B 60-30-/						-					
60 . 30	2000		KJ 60-30-2	17 50-30-8	KJ1660-30-3	KII: 60:30-1	KJb 60-30-4	KJI6 60-30-4	КЛ _В 60-30-4	KJ460-30-5	KII 60-30-5	KЛ6 60-30-5	KT16-60-30-5
	3000	K71860-30-2	i .	•									
	1000	KJI ₆ 60-45-1											
5/1×08	2000	Na 18 00 10 1	KTI& 60-45-2	KJB 60-45-3	CJI60-45-3	K T6 0045-4	LT4 60-45-4	KJk 60-45-4	KJ18 60-45-4	KJ4 60-45-5	L.T. 60-45-5	KJI& 60-45-5	KJG 60-45:
	3000	KJ18 60-45-2	1					*				-	

PHMEYAHHE

МЯРИМ КЯНЯЛОВ ОПРЕДЕЛЕНЫ ИЗ УСЛОВИЯ РЯЗНОВРЕ-МЕННОГО ДЕЙСТВИЯ РЯВНОМЕРНО-РЯСПРЕДЕЛЕННОЙ НЯГРУВИМ И НЯГРУВИМ ОТ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ.

TΔ 196.5

KJIOY TATS NOTISOPA KAHAJIOB MAPEN KJ6

Выпуск ? Пист 7

MC-01-04

10-01-04

BUTYCE 7

MAPKH KJI6 Ключ для подборя KAHAJIOB

-	The same of the sa	-
1	TODIOIOISCEHTE)	

	1				(ILDOTOLIOAU	CEHNE)			-			
前在左	HOWNETHBURG		***************************************			M	APKH	KAHAJ	708				
Сечение кянрля Ях Нсм	PACTIFICATION	Non OTCYTCTBUM			При нял	ичин .	Внутриці	EXOBOTO	TPAHONO	PTA	· · · · · · · · · · · · · · · · · · ·		
250	НЯЭ НЯПРУЗКЯ	BHYTPH- LEXOBOLD			1MH 110 9			ПЯЮЩЕМУ	CJ1010	BUE	XAX C 3EA	иляным	полом
	8 K / M2	TPRHCTOPTR	37726	שפשפפ	PKKYMYT9702 HDH 1017934HC Q=1,5T	#870#01 Q=3.07	PY34NKM 0=5.0 T	ABTOMI H-10		HATONO	FRYBYMER		МАШКЧЬ.
			Q=20+	Q=3.0T	Q=1.5+	φ-3.0 <i>γ</i>	9-3.07	H-10	H-10 YT936	Q=3.07	Q=5.0T	H-10	H-10 ST82
22	1000												
30x45	2000	KJ18 90-45-1	KTI6 90-45-1	КЛ ₈ 90-45-2	KT16 90-45-3	KT18 90-45-4	КЛВ 90 -45-4	KT18 90-45-4	KJT6 90-45-4	KT8 90-45-5	KTG 90-45-5	K.TIB 90-45-5	KT6 90-45-5
	3000												·
G.	1000												
66.40	2000	KJIB 120-45-1	KJIB 120-45+1	KT16/20-45-2	K716 120-45-2	KNg 180-45-5	KTI& 120 45 3	KTI& 120-45-3	K.T.6120-45-3	KJI6 180-45-4	KJIB 120-45-4	KJIB 180-4 5-4	KJB 120-45-4
	3000	<i>KJ₁₆120-45-</i> 2	KJT& 180-45-2										
2	1000	ĽЛ _в 150-45-1	KJ16/50-45-1									·	
2012	5000	LTI ₆ 150 45-2	KJK 150-45-2	LT& 150-45-3	KT4 150-45-9	KT16 150 454	KII6150-45-1	LTG 150-45-4	KTI& 150-45-4	KJ18 150-46-5	L.TI&150-45-5	KJ16 15045-5	KN6 150455
	3000	Į.	K.Tg 150-15-3							-			
	1000	W.T. CD CT :											
09×09	5000	K.Tig 60-60-1	1	1276 ED 80-80-3	LT6 60 60-3	KJ16 60-60-4	LTI6 60-60-4	ETTE 60-60-4	KJ1660-60-4	KI660-60-5	K.T/6 60-60-5	K.116 60-60-5	KT18 60-60-5
	3000	KJT8 60-60-2	1										

PHWEYRHNE

КАНАЛОВ ОПРЕДЕЛЕНЫ ИЗ УСЛОВИЯ РЯЗНО-BPEMEHHOTO DENCTBURG PRBHOMEPHO-PRCTPETEJEHHOM нятрувки и нягрувки от внутрицекового трянспортя.

Ключ для подборя кянялов мярки КЛ6 (продолжение)

18

ДСЛЮЧ ПЛЯ ПОДБОРА КАНАЛОВ MAPKH CITE

ПРОПОЛЭКЕНИЕ

HODMATHBHAG MAPKH KAHAJIOB Сечение кяняля Ях Нсм PRBHOMEPHO-При PROTPETIENIEH TON HATINYHH BHSTPHLIEXOBOTO TPRHCTOPTR MAR HALPYSIDA OTCYTCTBMM BHYTPH-B UEXAX C ПО ЭКЕСТКОМУ ПОДСТИЛЯЮЩЕМУ СЛОЮ В ЦЕХЯХ С ЭЕМЛЯНЫМ B KT/N2 ПОЛЯМН UEXOBOTO ПОЛЮМ **ЭЛЕКТРОКАРЫ** Т**РЯНСЛО**РТЯ HULYMUJIATOP HOLG TOTPUS-YMC Q=1.5T **ЯВТОПОТРУЗУНКИ** *Патомяшины* RATOTOT PYSYMEN **НВТОМЯШИНЫ** Q=2.07 Q=3.07 Q=3.07 Q=5.0T H-10 H-10 4793K Q=30T Q=50T H-10 H-10 yrgas 1000 90×60 |KT|| 90-60-1 |KT|| 90-60-1 |KT|| 90-60-2 |KT|| 90-60-3 |KT|| 90-60-4 |KT|| 90-60-4 |KT|| 90-60-4 |KT|| 90-60-4 |KT|| 90-60-5 |K 2000 3000 1000 09×02 KJ18120-60-1 KJ18120-60-1 | LTIE 120-60-2 | LTIE 120-60-2 | LTIE 120-60-3 | LTIE 120-60-3 | LTIE 120-60-3 | LTIE 120-60-3 | LTIE 120-60-4 | LTIE 120-60-8 | LTIE 120-60-2000 KTE120-60-2 KTE120-60-2 3000 1000 KTI6 150-601 KTI6 150-60-1 150×60 2000 LTIG 150-60-2 | KTIG 150-60-2 | LTIG 150-60-3 | LTIG 150-60-3 | KTIG 150-60-4 | KTIG 150-60-4 | KTIG 150-60-4 | KTIG 150-60-5 | LTIG 150-60-5 | KTIG 150-60-5 3000 KTI6 150-60-3 KTI6 150-60-3 1000 06×06 |KT||6 90-90-1 | KT||6 90-90-2 | KT||6 90-90-3 | KT||6 90-90-4 |KT||6 90-90-4 |KT||6 90-90-4 |KT||6 90-90-5 |KT 2000 3000 *DUMEANHE*

MRPKH KAHAJIOB ORPETENENS MS SCHOBMS PASHOBPE-MEHHOPO ILENCTANS PRBHOMEPHO- PRCOPETEJEHHOH НЯГРУЗИ И НЯГРУЗКИ ОТ ВНУТРИЦЕХОВОГО ТРЯНСПОРТЯ,

КЛЮЧ ДЛЯ ПОДБОРА КАНАЛОВ МАРКИ КЛЕ (PO DOJISHEHME)

HC-01-04

BUTIER

9

20

JINCT

_							(OKOH!	MHHE)		KH KJIB				
L	m & _	НОРИЯТИВ- ИНЯ РАВНО-				-	MAR	PKH K	янялов					
	Сеченте Кянили Як Нем	MEPHO- DAC- TIPETETTEMATA	Tiph otcyt- ctbhh		/	ПРИ НАЛ	нчии	В <i>нутраце</i>	хового	ТРЯНСПО	PTA		,	
1	25年	нягрузкя	ВНУТРМЦЕ- ХОВОТО	84	EXAX C	DOTIRMH)	TO DIEECTIC	MY HOLLCT	иЛЯЮЩЕМ.	у слою	В	YETAT C	SEMJIRHUM	полом
		B 10/M2	<i>ТРЯНСПОРТЯ</i>	9.7EK 0=2.07	TPOKAPЫ Q=3.07	HELY MYTET	#87070 Q=3.07	TPY34nKM	A8TON	иншины	#8TOTIC	TPYSYMKH		И ЯШИНО!
t				₩ 2.07	g=3.07	Q=1.5T	φ-3.07	Q=5.0 ₇	H-10	HYOUTSON.	Q=3.0T	Q=5.0T	H-10	H-10 57934
	06×021	/000	KJI& 120-90-1	KT16-120-90-1								,		
l	É	2000			KT16120-90-2	KT16 120-90-2	K78120-90-3	120-90-3	KT16 120-90-3	KTIB 120-90-3	1276 120- 3 0-4	KATE 120-90-4	KT6 120-90-4	KJ18120-90
L		3000	K716/20-90-2	LTI6 120-90-2										
	06×0¢1	1000	KT16 (50-90-1	KJle 150-90-1										
·	Ġ,	2000	KJ16150-87-2	KIT16150-90-8	KT16 150-903	KJI ₆ 150-90-3	KT18 (50-904	KTIB 150-90-4	K.TI&150-90-4	KT16150-904	1274/50-90-5	KT16/50-90-5	KJ16150-90-51	KT18/50-90
		3000	KITIC 150-90-3		•									•
-	æ	1000	KJ1& 90-120-1	V.Tl. 90-190-1	,									
	90×120	2000	Helig Do Ito /	24,6 00 750 7	K276.90-120-5	KT16 90-100-4	C/k 90120-5	KT16 90-120-5	KTT& 90-120-5	KJ1690-RQ-5	K274 90-120-6	LT1490-120-6	KJ16 90-120-6	KJ16 90+20-
ļ		3000	KT16 90-120-2	K.T16 90+80+2.						4				"
	8	1000	KJI&120-120-1	V 71. /OD-1901								·		
	021×02f	5000	Millione	100 67 60 100 7	1	<i>CTG 180-180-</i> 8	KTIE/RD-RO-S	KJ16.120-120-3	KTIK 180-180-3	KJR:/20-180-3	KII6/201204	KT6 120-120-4	K716 180-180-4	KTI6 /20-120
	-	3000	KJI 6 120-120-2	ETRE /20-120-1	l .									
	80	1000	KJ16 150-120-1	KIR 150-180-1								·		
	150×120	5000	KJ16/50-180-8	LTI6.60160-8	KTI650-180-3	KT4/50-10-5	LTK 50-120-4	KIR 150-180-4	KJIK 100-100-Y	LITE 150-1804	K.TI 6 150-120-5	KJ16 150-120-5	KJI8 150-120-5	15716150 120
Ш		3000	KJK 150180-3	KTIR 150-180	4							1		

PHMEYAHME

МЯРКИ КАНЯЛОВ ОПРЕДЕЛЕНЫ ИЗ УСЛОВИЯ РАВНОВРЕМЕН-НОГО ДЕЙСТВИЯ РАВНОМЕРНО-РАСПРЕДЕЛЕННОЙ НЯГРУЗКИ И НЯГРУЗКИ ОТ ВНУТРИЦЕХОВОГО ТРЯНСЛОРТЯ.

T<u>\</u>

Ключ для подворя каналов мярки КЛв (окончание) ИС-01-09 Выпуск 7

7031-07

l u	1 E E	HOPMATHE-			***		MRP	KH K	AHRJO8					
BUEUM	квиния Вх Иси	HR9 PRBHO- MEPHO-PRC- TPETEJTEHHR9	При спочт- ствии			При н	PINYNH	Внутриц	EXOBOLO	TPAHO	OPTA			
15	324	HALENEHHHA	ВНУТРИЦЕ- ГОВОГО	В	YEXAX C	TOTAMA I			<i>ППРЮЩЕМ</i> У	CJIOHO '	B YE.	KAX C 3E	МЛЯНЫМ	полом
1		8 KT/M2	трян спо рт п	3∏EK 0=207	ТРОКЯРЫ Q=3.0 т	PLLYINGTHE HOTPYSYME Q=1.57	Retona 0=3.01	<i>0=5.0</i> ⊤		<i>АШИНЫ</i>	RETORO!	PYSYMEH -	HATON	ПШИНЫ
Γ		1000		y	¥	U-13/	Q-0.07	Q=3.07	H-10	H-10 5T9316	Q=3.07	Q=5.07	H-10	H-10 9790
	90.30	2000	KC6 90-90-1	ICB 90-90-1	KC6 90-90-2	KC6 90-90-3	EC 6 90-90-4	KC 6 90-90-5	ICO 90-90-4	KC6 90-90-5	IC6 90-90-6	LC6 90-90-6	ECE 90-90-6	KC 6 90-90
L		3000			. 3					1				1
		1000											 	
	120×90	2000	KC6 120-90-1	KC8120-90-1	KC8120-30-3	IC6 120-90-3	KC & 120-90-4	KC 8/20-90-5	KC6/20-90-4	KC&/20-90-5	KC 8 120-90-6	KC6 120-90-6	KC6/R0-90-6	KCB180-90
L		3000	KC8 180-90-2	KC8180-90-2	i .							٠.		
ı	26×	1000	LC & 150-90-1	EC 6 150-90-1									1	
	, 06v	2000			KC8/50-90-3	KC8 150-30-3	DC 150-90-4	IC8 150-90-5	KC6150-90-4	EC6/50-90-5	IC6150-90-6	KC6 150-90-6	EC 8.60-90-6	KCa 150-90
	`	3000	KC8 150-90-2	KC 8 1570-50-E										
	0	1000	KC6 90120-1					· · · · · · · · · · · · · · · · · · ·		· · · · · ·				
l	90×120	2000		KC# 90-180-E	KC4 90-RO-3	EC6 90-120-4	KC4 90-120-5	KC490-100-5	ICA 90-120-5	KC0 90 120-5	KC490-120-6	ECS 90-120-6	KC4 90-80-6	KC4 90-190-
	9	3000	KC690-120-2				·							
	0	1000	KCe 120-180-1			·		 						-
l	021.031	2000	KC4180-180-2	KC4 120-120-2	ECE/20-/20-4	KCA 190-190-4	ICARONO-5	Mr. 190-90-5	ICa 190-190-5	Ec.a. 190-190-5	tra ma-ma-c	Pre IOD-AID-G	Manama c	V0
	Ø.	3000 3000	KC8 120-120-3	rc. ma-m-8									₩ 6/60 /60-6	WB/EUTEU
1	_			<u> </u>	 					<u> </u>				· ·
	150×120	1000	KC6 150-120-1	KC4 150-120-2	4					Man ma week		٠,		
	29	2000	KC& 450-180-3	EC & 80-180-5	ECE/30-170-4	EC 8/50-180-4	ICS 150 120 5	DC6/50-120-5	JC 8150-180-5	EC& 150-120-5	EC-6/50-120-6	KC815Q180-6	KC6/60-120-6	KC6150-180
L		3000		-,9			1							

МЯРЫН КАНЯЛОВ ОПРЕДЕЛЕНЫ ИЗ УСЛОВИЯ РЯЗНОВРЕМЕН-НОГО ДЕЙОТВИЯ РЯВНОМЕРНО-РЯСПРЕДЕЛЕННОЙ НЯГРУВКИ И НЯГРУЗКИ ОТ ВИУТРИЦЕХОВОГО ТРЯНСПОРТЯ.

Ключ плу подворя каналов марки КСВ

BUTINCE 7 JINCT

ТЯБЛИЦЯ ДЛЯ ПОДБОРЯ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РЯСХОД МЯТЕРИЯЛОВ НЯЗ Л.М. КЯНЯЛОВ МЯРКИ КЛЕ

	MF	PKM	ИЗДЕЛИЙ			BETOH !	w ³	1		CTRJ6 I	er	
МАРКА КАНАЛА	Лоты		TIJIMT ÞÍ NEPEKPBI			ЭНЫЙ		CTR/16 LITRCCR R-M	Холоциотяну— ТРЯ ПРОВОЛЮЙ КЛИСИ В-I	CTAJI6 KJIMOA A-I	STOCKAT MAPEN CT. 8	
portrierio.	MRPKA	BOOMY.	MAPKA	KORINI BT.	MAPILM 200	MRPKH 300	Boero	19CT 5781-61	по гостелет-53	roct steller	roct 380-60	BCER
KJI0 30-30-1	J120-1	1	N14-1	5	0.24	:	0.24	7.2	2.7	3.6	-	13.5
KI18 30-30-2	J720-1	1	n/4-2	5	0.16	0.08	0.24	10.2	27	3.6	_	16.5
KJ16 30-30-3	J120-1	1	nt5	5	0.16	0.15	0.31	/3.7	37	5.1	·	22.5
КЛ630-30-4	J180-2	1	∏ <i>15</i>	5		0.31	0.31	18.5	4.6	5.1	_	28.2
	-					•						
KT18 45-30-1	J124-1	1	Π 1 6-1	5	0.29		0.29	8.4	3.0	3.6	-	15.0
KJ16 45-30-2	J121-1	1	П 16- 2	5	0.19	Q10	Q. 29	12.9	30	36	_	19.5
KJT & 45-30-3	3121-1	1	Π <i>ξ</i> 7	5	0.19	0.20	0. 39	22.4	4.0	5.1	-	31.5
K. 71 & 45-30-4	J121-2	1	דייות	5	-	0.39	a 39	34.9	5.2	5.1	_	41.7
					-							
KJT8 60-30-1	31-2	1	Nf-1	1	0.47	_	0.47	56	. IO.5	4.8		20.9
КЛ6 60-3 0-2	J11-Q	1	n/*	,	0.47	<u></u>	0.47	9.3	7.9	7.2		29.4
K.T.6 60-30-3	J1+2	1	N+2	1	029	0.18	0.47	13.5	10.5	4.8	-	.28.8
KJ18 60-30-4	JH-3	1	<i>119-20</i> 3 3 3 3 3 3 3 3 3 3	1		0.58	0.59	52.9	10:8	7.2	_	70.9
KJ16 60-30-5	JI4-3	1	<i>119-</i> €	1	-	0.59	0.59	54.5	128	7.2	14.8	87.3
									·			

<u>Примечанию</u>

1. РЯБОЧИЕ ЧЕРТЕЯСИ ЭЛЕМЕНТОВ, ОТМЕЧЕННЫХ ЗАЯКОМ, ПРИВЕДЕНЫ В ВЫПИССЕ С, Я ЗАЯСОМ В ВЫПИССЕ С СВИМ ИС-ОК-ОК. 2. ПЛИТЯ ПЕРЕСРЫТИЯ П.9-22. ВЫПОЛЬЯЕТСЯ ПО ЧЕРТЕЯСУ ПЛИТЫ П.9-2, ПРИВЕДЕННОМУ В ВЫПИССЕ 6, 623. ЗАСЛИТИНОГО ЭЛЕМЕНТЯ М.29.

7X 1965

Тавлица для подвора сворных явелевобетонных элементов и расход митеривлов на вп.м. каналов мярки Клъ MC-01-04 BUTIVER

7031-07

23

Тяблиця для подборя сборных железоветонных элементов

M PRCXOT MATERNAJOS HA 3 N.M. KAHAJOS MARKA KJIS.

					(110	O TO TOKEHI	ME)					•
			ИЗДЕЛИЙ ПЛИТ	_		BETOH I	N ⁵			Стяле и	r	
Марка К анала	JIOTKI MRPKR	Bosiny art	MEPEKPE MAPRA	ITMSI KOJINY. UT.	C50 MAPEN 200	РНЫЙ МЯРКН 300	Bc≡ró	СТЯЛ6 КЛЯССЯ Я-Й ПО ГОСТ 5701-61	Холюдистянуте ПРОВОЛОКА КЛЯССЯ В-І ПО ПОСТЕТИТ-ЗВ	KIRCON A-T	FROMFTF** WHIPKH CT 3 FOOT 380-60	BCETO
LT18 60-45-1	J12-2	1	n/-4	1	0.53	-	0.53	4.7	8.1	4.6	_	24.6
KJT6 60-45-2	J12-2	1	114 *	1	0.53	-	053	15.4	5.5	7.2	_	28.1
KJ1660-45-3	J12-2	.1	71-2	1	0.35	0.18	0.53	19.6	8.1	48	-	32.5
KJ860-45-4	J12-3	1	119-2a	1		0.65	0.65	55.4	11.4	7.2	_	74.0
K.T/8 60-45-5	л2-3	1	п9-2	1.		0.65	0.65	57.0	41.4	7.2	14.8	90.4
KJ16 80-45-3	874-1	1	1748-1	1	0.66		0.66	20.4	10.4	4.8		35.6
KJIB 90-45-2	J14-2	1	1718-2	1	0.42	0.24	0.66	29.9	124	4.8		45.1
KJT4 90-45-3	114-2	1	172°	1	0.76		0.76	29.9	6.7	7.2	_	43.8
LTIB 90-45-4	<i>π</i> 4*	. 1	1710-2a	1		0.83	0.83	79.4	14.1	7.2	_	100.7
KJ78 90-45-5	<i>714</i>	1	7110-2	1		283	. 0.83	81.0	14.1	7.2	/4.8	117.1
KJ1g 120-45-1	. J6-1	1	Π 19- /	1	0.93		0.93	34.1	14.5	6.8	_	<i>55.4</i>
. KTB 120-45-2	76-2	1	17/9-2	1	0.62	Q34	0.93	54.4	14.5	6.8		75.7
KJ18 120-45-3	3 <i>116</i>	1	11/130	1		7.51	1.3/	94.9	20.2	12.0	_	/27./
KJ18120-45-4	1 116-3	1	ПH-3°	1	<u> </u>	1.3/	./.3/	107.9	22.5	/2.0	14.8	157.0
		1	ŀ	1 1	,	1		·	†			

ПРИМЕЧЯНИЯ

1 РЯБОЧИЕ ЧЕРТЕЭКИ ЭЛЕМЕНТОВ, ОТМЕЧЕННЫХ ЗНЯКОМ, ПРИ-ВЕДЕНЫ В ВЫПИСКЕ 2, Я ЗНЯКОМ**-В ВЫПИССЕ 6 СЕРИИ ИС-ОГ-ОЧ.

2. Плиты перекрытий П9-2а, ПЮ-2а и ПИ-3а Выполняются по черте-ЭКЯМ ПЛИТ П9-2, ПО-2 и ПИ-3, ПРИВЕДЕННЫМ В ВЫПИСКЕ 6, БЕВ ЗАКЛЯДНЫХ ЭЛЕМЕНТОВ М-24 ИЛИ М-25.

Тявлиця пла попворя сворных экелезоветонных элементов и расход интернялов. Выпуск 7 ня 3 п.м. Кянялов мярки кле Лист 13

Тяблиця ДЛЯ NOILEOPH CEOPHOIX SKEJIESOETOHHOIX SJIEMEHTOB

И PACXOI MATEPHAJOS HAЗ Л.М КАНАJOS МАРКИ КЛЕ

•					(TI	РОДОЛ ЭК ЕН						
04	M	ADKH	ИЗДЕЛИЙ			BETOH	M ⁵			CTAJIG Kr		
Марка Канала	ЛОТИ		TIJINTE TEPE KPC			PHOH	0	СТЯЛ6 КЛЯССЯ Я-Щ	XONOTHOTSHY- TRS TROBOLOGE WIRCOM 8-I	CTANE WIRCH R-I	MAPKA CT.3	
	MAPKA	KOJIMY. UT.	MAPKA	KOJIMY. WT.	NADKH 200	MAPKH 300	BCETO	TOCT 5781-61	no roct 6787-53	TOCT 5781-61	FOCT 380-60	BOET
KJIB 150-45-1	J18-1	1	1720-1	1	1.31	- ·	1.31	45.4	. 14.4	7.7	_	<i>6</i> 7 <i>5</i>
KJ18 150-45-2	Л8-1	1	T20-2	1	0.88	0.43	1.31	57.4	14.4	7.7	-	79.5
KJIB 150-45-3	JB-2	1	T120-E	1	0.88	0.43	1.31	73.5	14.4	7.7	_	95.6
KJ18 150-45-4	J78 [#]	1	114-1a	1	-	1.53	1.58	414.0	25.3	10:0	_	146.
KJI & 150-45-5	<i>1</i> 78-3	1	Π4-1	1	·	153	1.53	<i>1</i> 35.5	25.3	10.0	14.8	185.
KJ18 50-60-1	<i>Л</i> Э-2	1	174-1	,	0.61		0.61	13.0	8.8	4.8		: 26.6
КЛВ 60- 6 0-2	J73-2	1	n/*	1	0.61	_	0.61	16.7	6.2	7.2	_	30.1
LTH3 60-60-3	J18-3	1	171-2	1	0.43	0.18	0.61	26.5	8.8	4.8	_	40.1
KJB 60-60-4	#3-4	1	119-2a	1	-	· 0.73	0.73	65.6	12.1	7.2	_	84 9
KIH 60-60-5	J13-4	1	· 119-2**	1	_	0.73	0.73	672	12.1	7.2	14.8	101.
KIIe 90-60-1	J15-/	1	F148-1	1,	0.74	· -	0.74	21.6	11.0	6.8	_	39.4
KT18 90-60-2	J15-2	1	<i>П1</i> 8-2	1	0.50	0.24	0.74	35.4	11.0	6.8		<i>5</i> 3. 2
LTB 90-60-3	J15-2	1	Π2°	1	10,84	_	0.84	35.4	7.3	9.2	_	51.9
KJ16 90-60-4	JI 5-3	1	THO-2a	1	- .	0.94	-0.31	90.8	14.7	9.2	, makes	114.7
KJ16 90-60-5	J15-3	1	∏10-2 ^{€€}	1	_	0.9/	0.91	92.4	14.7	9.2	14.8	131.1
			1	1		1		1				

PHMEYAHHA

- 1 Рябочие ЧЕРТЕЯКИ ЭЛЕМЕНТОВ, ОТМЕЧЕННЫХ ЗНЯКОМ, ПРИВЕ-TEHOL 8 BOLLYCKE 2, A 3HAKOM -- 8 BOLLYCKE 6 CEPHN MC-01-04
- 2. Плиты перекрытий 119-га и пло-га выполняются по чертеомям плит П9-2 и ПЮ-2, приведенным в выпуске 6, без ЗЯКЛЯДНЫХ ЭЛЕМЕНТОВ М-24.

ТЯБЛИЦЯ ПЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОН-НЫХ ЭЛЕМЕНТОВ И РЯСКОП МЯТЕРИЯЛОВ НЯ З П.М. КАНЯЛОВ МЯРКИ КЛЕ (ПРОПОЛЭЖЕНИЕ)

MC-01-04

BUNYCK 7

Тяблиця для подборя сборных железобетонных элементов

и расход материалов на 3 пм каналов марки КЛВ

MAPKA	MAR		หรายภาคห์			СДОЛЭЖЕН) БЕТОН ,		T	· · · · · · · · · · · · · · · · · · ·	CTAJE KT		
КАНАЛА	JIOTKA	1	TIJITO	ug.	C50	РНЫЙ	·	СТАЛ6_	KOTOTHOTOHOTOKA RAOKOBOAN	CTPJI6	- POKAT	
KJI& 120-60-1	MAPKA	KOJIHY U	МЯРКЯ	Колнч. ШТ	Maden 200	MAPUN 300	BCETO	KJIACCA A- <u>M</u> No . POCT 5781-61	17 POCH 8-1 10 POCH 6727-53	MTRCCH A-I TO TOCT 5781-61	MADEH CT.3	BOET
	J17-1	1	П19-1	1	100		100	36.2	/5. 6	- 68		58.6
КЛ8120-60-2	J17-2	1	N19-2	1	069	0.31	1.00	57. 3	15.6	6.8		79.7
/JT&180-50-3	<i>Л</i> 7 [#]	1	ПН-3a	1		738	1.38	98.4	21.3	12.0		131.7
LJ 6 120-50-4	J17-3	1	П41-3 ^{***}	1	-	1.38	1.38	#2.8	23.8	12.0	148	163.4
KJI6150-60-1	J19-1	1	∏ 20-1	1	1.40		1.40	49.7	156	77		70.0
KT18 150-60-2	J19-1	1	Л20-2	1	0.97	0.43	1.40	60.7	15.6	77		72.0 84.0
KJ18150-60-3	J19-2	1	T20-2	1	0 97	0.43	1.40	78.2	15.6	7.7		101.5
KJ18 150-60-4	Л9	,	74-1a	1	_	1.62	162	114.3	27.4	10.0	-	151.7
KJie 150-60-5	J19-3	1	ו-צית	1		1.62	1 62	144.8	26.8	10.0	14.8	195.8
											1	733.0
KJ16 90-90-1	J122-1	1	Π18-1	1	0 24	0.90	1.14	93.7	14.5	9/		
КЛв 90-90-2	1:55-5	1	n18-2	1	_	1.14	1.14	61.9	16.9	9.1	-	66.7
KJ16 90-90-3	J182-2	1	л2 *	1	034	0.90	1.24	61.9	13.2	11.5		87.9
KJ18 90-90-4	J122-3	1	710-2a	1		1.31	1.31	/30.5	21.6	#5		86.6
KT6 90-90-5	J722-3	1	П10-2	1	-	1.3/	1.31	132.1	21.6	115	14.8	163.6 180.0
		\top						+	 	1	1	700.0

ПРИМЕЧЯНИЯ

- 1 PREDYME MEDTERCH STEMENTOB, OTMEMENHOUX SHRICOM, TRU-BETEND B BUTTYCKE 2, A SHRICOM 8 BUTTYCKE 6 CEPHN MC-01-04
- 2. Плиты перекрытий п0-20 и Π 1-30 выполнянотся по чертежени плит Π 0-2, и Π 1-3, приведенным в выпуске 6, бев заклящных элементов M-24 или M-25.

ТАБЛИЦА ПЛО ПОПБОРА СБОРНЫХ ЭКЕЛЕЗОБЕТОН-НЫХ ЭЛЕМЕНТОВ И РАСХОТ МЯТЕРИЯЛОВ ВЫ НА З Л М КАНАЛОВ МАРКИ КЛЕ (ПРОДОЛЭКЕНИЕ)

MC-01-04

BUNYCK 7

Тяблица ДЛЯ ПОДБОРЯ СБОРНЫХ ЭЮЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ

И РАСХОД МАТЕРИАЛОВ НА З Л.М КАНАЛОВ МАРКИ КЛЕ

44	MA	orn n	ЗДЕЛИЙ			ПРОДОЛЭКЕ БЕТОН М				CTAJIG KI		•
МАРКА КАНАЛА	JIOTKH		ПІЛИТЬ ПЕРЕКРЬП		C50	PHUM		СТАЛ6 КЛАССА Д-ІЇЇ	ХОЛЮДНОТЯН У- Т ИО ВОЛОКЯ	CTAJI6 LIMCCA A-T	POKAT MARKH CT. 3	
CHANIN	MAPKA	колич. Шт.	MAPKA	KOJINY UT	MADKA 200	MRDIUI 300	BCETO		LTITICON 8-I NO FOCT 6929-53			BCETO
KJ18120-90-1	J124-1	1	n19-1	1	0.31	0.99	1.30	53.6	16.8	9.1	-	79.5
KNB 120-90-2	7124-2	/	7/9-2	1	-	1.30	1.30	79.8	19.6	9.1	_	108.5
KNo 120-90-3	7724-3	1	1111-3 a	1	_	1.68	1.68	137.3	25.3	14.8	_	176.9
КЛ8 120-90-4	J124-3	1	กห-3	1	_	1.68	1.68	139.3	25.3	14.3	14.8	198.7
K.Tl 8 150-90-1	J126-1	,	П20-1	1,1	0.43	1.08	1.51	63.8	16.7	9.2		89.7
KJ18 150-90-2	J126-1	1	<i>1120-2</i>	1	_	1.51	1.51	75.8	16.7	9.2		101.7
KJ16/50-90-3	J126-2	1	720-2	1		1.51	1.51	94.6	21.1	9.2	_ `	124.9
KT18 150-90-4	Л26-3	1	174-1a	.1	_	1.73	1.73	148.7	28.3	11.5	_	188.5
KJ18150-90-5	J726-3	1	ПЧ-1	1		1.73	1.73	150.7	28.3	#5	14.8	205.3
	<u> </u>	1										
KN 8 90-120-1	J123-/	1	Π <i>1</i> 8-1	1	0.24	1.30	1.54	62.1	17.1	9.4	_	88.6
KJ16 90-120-2	J725-2	1	∏18-1	1	0.24	1.30	1.54	<i>80.9</i>	20.4	9.4	_	110.7
KT16 90-120-3	J123-2	1	<i>118</i> -2	1		1.54	1.54	84.9	20.4	9.4	- X	114.7
KJ18 90-120-4	J125-2	1	<i>π</i> 2*	1	0.34	1.30	1.64	84.9	16.7	11.8	-	113.4
KT & 90-120-5	723-3	1	110-2a	1		1.71	1.71	145.0	24.1	11.8	_	180.9
KT18 90-120-6	J723-3	1	n10-2	1		1.71 .	1.71	146.6	24.1	11.8	14.8	197.3
				1				1				• • •

ПРИМЕЧАНИЯ

1 PREOUNE YEPTERICH STIEMENTOB, OTMEYENHOUX SHRICOM, OPH-BETEHOL 8 BUINDOKE 2, A SHRICOM **- B BUINDOKE 6 CEPHN MC-01-04. 2 Плиты перекрытий ПІО-20 и ПН-30 выполняются по черте-CHRM TITAT TIO-2 " TII-3, TPMBETTEHHUM B BUINCE 6, 5EB SAKJIHIHOX STEMENTOB M-24 NJH M-25.

ТЯБЛИЦЯ ДЛЯ ПОДБОРЯ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РЯСХОД МЯТЕРИЯЛОВ НЯ З П.М. КЯНЯЛОВ МЯРКИ КЛЕ (ПРОДОЛЭКЕНИЕ)

MC-01-04

BUTYCE 7

JUCT 7031-07

ТАБЛИЦА ПЛЯ ПОДБОРА СБОРНЫХ ЭКЕЛЕВОБЕТОННЫХ ЭЛЕМЕНТОВ

H DACKOD MATERNAJOS HAS D.M. KAHAJIOS MARKH KJIS

(OKOHYRHHE)

ll		MA	DEM A	ВДЕЛИЙ .			BETOH M	,			CTRJ15 K	<i>-</i>	, , , , , , , , , , , , , , , , , , , ,
$\ \ $	MARKA	JOTK		PEPEKPBIT	119	C50#	HOIN		CTAJIS KJACCA A-E	ACADE HORSHYTHS NEOBOLINESCO	СТАЛ6 КЛЯССА Я-І	POKAT NAPKA CT. 8	****
	КАНАЛА	MAPILA	BOJWY.	MARKA	EOTHY.	MADEN 200	MRPKH 300	BOETO	19CT 3781-61	NUMBER 8-1 NO FOCT GIE7-53	7007 578/-64	FOCT BRO-SO	BCEro
	KJ18 180-180-1	∏25- /	1	N 19-1	1	0.31	1.4	171	72.8	19.1	15.4	3	107.3
	KII 8 120-120-2	J185-S	1	n19-2	1		1.71	1.71	103.2	22.5	15.4	÷	141.1
$\ \ $	K. 17 6 120-120-3	J125-3	1	n#3a	,		2.09	2.09	149.6	28.3	80.6		198.5
2	K.718 120-120-4	J185-3	1	n#-3**	1		2.09	2.09	151.6	20.3	20 6	148	2(5.3
4						· .							
1	KJT 6 150-120-1	J127-1	1	Л80-1	1	-	1.94	1.94	85.7	19.0	15.5	-	1182
	KJ16 150-120-2	J189-1	1	1120-2	1	-	1.94	1.94	95.7	19.0	<i>15.5</i>	-	/30.2
	LI16 150-120-3	J197-2	1	1120-2	1	_	1.94	1.94	. 1/8.9	22.6	15.5	_ :	157.0
	K.TI& 150-120-4	J197-3	1	174-1a	1		2.16	2.76	165.2	313	17.8		214.3
	K.TIB 150-120-5	J127-3	1	N4-1	1		2.16	2.16	167.2	31.3	17.8	14.8	23/,/
			1					4.70	+		77.0		

ПРИМЕЧЯНИЯ

MENTA M-25.

1 PREOVUE VEPTEDEN STEMENTOS, OTMEVEHHOLX BEREHO & BURYOKE & CEPHH MC-01-04.

2. Плитя перекрытия ПИ-да выполняется по чертелен панты ПІІ-3, ПРИВЕДЕННОМ В ВЫПУСКЕ 6, БЕЗ ЗЯКЛЯДНОГО ЭЛЕ-

ТАБЛИЦА ПЛЯ ПОВБОРА ОБОВНЫХ ЭКЕЛЕЗОБЕ-ТОМНЫХ ЭЛЕМЕНТОВ И РАСХОД МАТЕРИАЛОВ НА Э П.М. КАЧАЛОВ МАРКИ КЛВ. (ОФОНЧАНИЕ) BUNYCK 7 JIMCT!

HC-01-04

ТЯБЛИЦЯ ПЛЯ ПОПБОРЯ СБОРНЫХ ЭКЕЛЕВОБЕТОННЫХ ЭЛЕМЕНТОВ И РЯСХОП МЯТЕРИЯЛОВ НЯЗПМ. КЯНЯЛОВ МЯРКИ КС в

											-							
MAPKA	115/19	Mi		13 J.E.					DE	TOH	м ³					Стнл6	W	
<i>КАНАЛА</i>	Дни	ŲЯ	ПЛИ СТЕНО		M.D.M. DEPEKO		4	C50PHЫ	H		OHOTINT	HЫĤ	~	CTAJI6 MIACORA-E	KONDIJHO- TRHYTHA	CTAA6	MPPOKAT	
	MAPKA	KOTINY.	MRPKA	KOTINY. UT.	Мяркя	KOJIH! TILL	МЯР <u>і</u> СИ 200	MADKI 300	HTOTO	MARKA 200	14RPKU 300	HTOTO	BCETO	TOCT 5781/G/	ATTENDED	TOOT STRING!	TOOT 300-60	BOE
CC 8 90-90-1	MA +- 3	1	nc/-/	2	n18-1	\$ 72	1.34	الأشد	7.34	012	200	0.12	146	65.3	23.7	/3.6	_	102.
KCB 90-90-2	א-זוֱווי	1	net*	2	718-2	1	0.68	0.66	1.34	_	0.12	0.12	1.46	98.2	20.5	13.6		192
KC 8 90-90-3	<i>Π</i> <u></u> <u> 7</u>	1	nc1*	2	/į2*	1	1.02	242	1.44	-	0.12	0/2	/.56	98.2	/6.8	16.0	_	131
KC 6 90-90-4	MA1-4	1	пс3	2	710-20	1	0.68	093	1.61	-	0.09	0.09	1.70	/58./	27.2	22.2	_	207
KC8 90-90-5	772	1	nc3"	2	110-20	1	-	1.61	1.61	_	0.09	0.09	1.70	170.5	28.8	28.2	_	283
KC\$ 90-90-6	∏#f-2°	1	7C3**	2	710-2	1	·	1.61	1.61	-	0.03	0.09	1.70	3/5.6	31.8	22.2	14.8	369
							•					0.00						
KC 8 120-90-1	пπ3-3	1	TC 1-1	2	7/9-/	1	1.5		1.5	0.12		0.12	1.62	77.7	25.7	/3.6		1/7
KC 8 120-90-2	<i>Π</i> 113-3	1	NC 1-1	2	∏19-2	1	1.19	0.3/	1.5	0.12	_	0.12	1.62	87.2	25.7	18.6	_	126
KC8120-90-3	<i>17113-4</i>	,	пс 1**	2	ņ1 9 -2	1	0.77	0.73	1.5	-	0.12	are	1.62	117.8	22.5	/3.6		153
KC 6 120-90-4	7723-4	1	703**	2	NH-3ª	1	0.77	1.21	1.98	-	0.09	0.09	2.07	159.9	30.1	25.0	_	2/5
KC 8 120-90-5	m23*	1	ne3**	9	RH-3a	1	-	1.98	1.98	-	0.09	0.09	2.07	195.3	34.9	25.0	-	255
KC 8 120-90-6	773-2	1	nc3**	2	NH-3"	1	_	1.98	1.98	-	0.09	0.09	2.07	324.5	34.9	25.0	/4.8	399
															,			
KC 8 150-90-1	NII5-/	1	RC1-1	2	n20-1	1	1.71	_	1.7/	ar		0.12	1.83	89.0	26.0	16.1		13
KCB 150-90-2	กฎ5-4	1	ne1-1.	2	1120-2	1	1.28	0.43	1.7/	0.12		0.12	1.83	101.0	26.0	16.1	-	14.
KC8 150-90-3	MI 5-2	1	nc1	2	P20-2	/	0.86	0.85	1.71	-	0.12	0.12	/83	133.2	828	16.1	_	17
KC 8 150-90-4	NU 5-2	1	71C3**	2	114-10	1	0.86	1.17	2,03	-	0.09	0.09	2/2	170.6	33.0	24.6		22
KC8 150-90-5	/7 25 *	1	псэ**	2	MY-la	1		2.03	2.03	-	0.09	0.09	2.12	206.2	37.8	24.6		26
KC6 150-90-6	וותדו-ז	1	лс3 ^{**}	. 2	n4-1	1	_	2.43	2.43		0.16	0.16	2.59	380.0	38.9	26.6	14.8	46
	1			١. ١														

Примечания

- 1. Рабочие чертежи Элементов, отмеченных знаком, приведены в выписке 2, и знаком **- в выписсе 6 серии ис-ок-ок.
- 2. ПЛИТЫ ПЕРЕКРЫТИЙ ППО 20 И ПН 30 ВЫПОЛНЯЮТСЯ ПО ЧЕРТЕЖЕМИ ПЛИТ ППО-2 И ПП-3, ПРИВЕДЕННЫМ В ВЫПИССЕ 6, БЕЗ ЭЛЕЛИДНЫХ ЭЛЕМЕНТОВ М-24 ИЛИ М-25.

ТЯБЛИЦЯ 1115 ПОДБОРЯ СВОРНЫХ ЭКЕЛЕВО-БЕТОННЫХ ЭЛЕМЕНТОВ И РЯСХОД МЯТЕ-РИЯЛОВ ИЯ В Т.М. КАИЯЛОВ МЯРКИ КСВ WC-01-04

BUTTYCK

ТАБЛИЦА ПЛЯ ПОДБОРА СБОРИЫХ ЭКЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РАСХОП МАТЕРИАЛОВ НА З П.М. КАНАЛОВ МАРКИ КСВ

————							[0	Kohyai								•		
MAPKA	กภหา			13 A E J					58	TOH .	M3					CTAIN6	W	
	ДНИЦ	P	TIJIH CTEHO	OD/E	PEPEKP	SITHS		Сборнь	гÚ	Moi	HOJIMTHE	VH		CTAVAS WIRCCA R-W	NOTO I NOTO - NOTO IN TOBO NOTO IN TOBO	CTATE KINGCA PI	POMAT	
КАНАЛА	MAPKA	MOJIMY LLT	MAPKA	KOJIHY. UT.	MAPKA	Kojimi. UT.	MADICH 200	MAPKH 300	סוסדא	MRPKII 200	MADEN 300	HTOTO:	8cero	700 1007 5981-61	1000 KTING 8-I NO 1001 6727-53	-,-	NAPICACES NO FOCT 380-60	BCETO
KC890-120-1	Π <u></u> 21-3	1	nc22	2	N18-1	1	1.62	-	1.62	0.09	_	0.09	1.7/	917	27.3	14.0	_	133 0
KCB 90-120-2	121-4	1	nc2-2	2	π <i>18-1</i>	1	1.62		1.62	0.09	_	0.09	1.7/	108.0	27.8	14.0		149.3
KC 8 90-120-3	UIS.	1	∏c2*	2	718-2	1	-	1.62	162		0.09	0.09	1.71	163.8	26.9	14.0	_	204.7
KC & 90-120-4	กฎ2*	/	nc2*	2	Π2 [#]	1	0.34	1.38	1.72	-	0.09	0.09	1.81	/65.8	25.2	/6.4	_	203.4
KC 6 90-120-5	กฎ1-2	1	nc2.7	2	710-2a	1	- .	1.79	1.79	-	0.09	0.09	1.88	374.8	33.8	22.2	_	430.8
KC8 90-120-6	ПД1-2	1	nce-i*	2	710-2	1		1.79	1.79	_	0.09	0.09	<i>1.88</i>	376. Y	33.8	22.2	14.8	447.2
KC 8 180-180-1	ாரத்-த	1	NC2-2	2	TI 19-1	1	1.78		1.78	0.09		0.09	1.87	104.1	29.3	14.0		147.4
KC & 120-120-2	пдз-ч	1	UCS-5	2	n19-1	1.	1.78	_	1.75	0.09		0.09	1.87	100.1	25.5	14.0		165.4
KC 6 120-120-3	п <u>п</u> 3-4	1	TC2-2	2	П19-2	1	1.47	0.3/	178	0.09	_	0.03	1.87	/3/.6	29.3	14.0	_	174.9
KCB 120-120-4	лд3 ^{**}	1	nce*	2	1119-2	1	_	/78	178	-	0.09	0.09	1.87	198.4	321	14.0		244.5
KCB120-120-5	m3-2	1	nc2+	2	ΠΗ-3a	1		2.16	2.16	-	0.09	0.09	2.25	383.3	36.9	250	-	445.2
KC 8 180-180-6	று5-2	1	UCS.1.	2	П4-3	1	_	2.76	2.16	_	0.09	0.09	2.25	385.3	36.9	25.0	14.8	462.0
KC8/50-120-1	m5-/	-	nc 2-2	2	1120-1	_	1.99	<u> </u>		0.00		0.09	2.08	115.4	29.6	16.5	_	161.5
KC& 150-180-2	лд5-2	1	1102-2	2	1720-1	-	1.99	 	1.99	0.09		0.09	2.08	/35.0	29.6	16.5		181.1
KCe/50-720-3	7725-2	1	702-2	2	1720-2	,	156	0.43	1.99	0.09		0.09	2.08	147.0	29.6	16.5		193./
KC8/50-190-4	Π <u>π</u> 5*	1	псг*	2	1720-2	,		1.99	1.99	-	0.09	0.09	2.08	2/4.0	32.4	16.5	-	262.5
KC 6/50-120-5	77117-1	1	ncei	8	114-1a	1		2.6/	2.61	_	0.16	0.16	277	438.8	40.9	26.6		506.3
KC 8 /50-180-6	गद्धार-र	1	ncer	2	114-4	1	_	2.6/	2.61	_	0.16	0.16	2.77	440.8	40.9	26.6	14.8	523./

ПРИМЕЧЯНИЯ

I PREOUVE ЧЕРТЕЗКИ ЭЛЕМЕНТОВ, ОТМЕЧЕННЫХ ЗНЯКОМ[®], ПРИВЕ-ПЕНЫ В ВЫПЧСКЕ В, Я ЭНЯКОМ^{®®}- В ВЫПЛОКЕ 6 СЕРИИ МС-ОУ-ОУ.

2. Плиты перекрытий ПЮ-2 а. и ПИ-34. Выполняются по чертежни Плит ПЮ-2 и ПИ-3, ПРИВЕДЕННЫМ В. Выпуске 6, 553 ЗЯКЛЯЗ-НЫХ ЭЛЕМЕНТОВ М-24 ИЛИ М-25

ТАБЛИЦЯ 1319 ПОПБОРЯ ОБОРНЫХ ЭМЕЛЕВОВЕТОН-НЫХ ЭЛЕМЕНТОВ И РЯСХОД МИТЕРИЯЛОВ НЯ З П.М. КЯНЯЛОВ МЯРИИ КСВ (ОМОНЧЯНИЕ) <u>ИС-01-04</u> Выпуск 7 **Лист** 19

MAPOK KJIB H KCB КАНАЛОВ

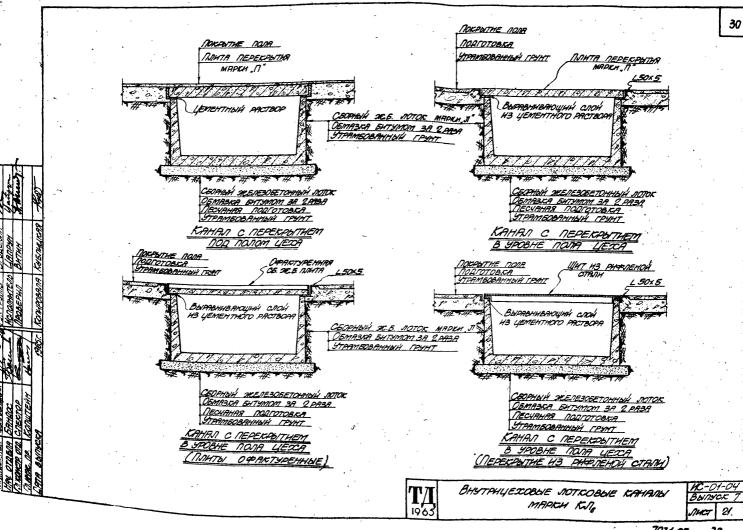
CEYEHNE	RX HCM	НОРМЯ— ТИВНДЯ РЯВНОМЕРНО	MAN OTCYT-		M F		050РНЫХ ПЛИЧИИ	ПЛИТ ВИЗТРИЦЕ		ДЫТИЯ ТРАНСЛІ	OPT A			
EVE	Z X	PACTIPETE-	CTBMH BHYTPMUE-	В цехн	IX C TOTI		ECTKOMY	ПОДОТИЛЬ		слою		TAX C 3EA	IJIQHUM T	OTOM
es .		JIEHHAG HATPY3KA	TPRHCTOP-	Элькт		FICKY MXII9- TOPHOIN	Р ВТОПО.	TPUSHNKH	PATOM	RWMHЫ		<i>ТРУЗЧИКА</i>		И РШННЫ
		B KT/ME	TR	Q=2T	Q=3T	NOTPYÐYMK (P4.	r Q=37	Q=5T	H-10	H-10 4793K.	Q=37	Q=57	H-10	H-10 975
0 ir		1000	П21g-1		•			,\ :						
60×30	60×60	2000	,,,,,	П21g-2	П1g-1	litg-1	119g-2a	П9 д-га	П9g-2a	119g-La	119g-2	П9д-г	П9g-2°	П9д-1
		3000	Пе1g-2		.~		·				٠.		•	
s s	200	1000	17 2 2 g											
9×06	90×90 90×180	2000	neeg	Π18g-1	П18g-2	172°g*	1110g-3 a	П10д-3а	1710g-3a	П10д-3а	Π10g-3	/NOg-3	П109-3	П10д
		3000	П189-1							. ,				
68	20.00	1000	0.0 - 1	T/0 - /								÷		
120×45	180×90	2000	П193-1	∏19g-1	N19g-2	ПЗд*	17/1g-3a	ПНд-30	M119-30	ПИд-30	NHg-3	M119-3	114g-3	111/9-
		3000	1119g-2	П19д-2			·							
10. C	30	1000	N20g-1	17209-1										
150×45	130 x 30 130 x 30 130 x 430	2000	П209-2	1700 o n	пчд	П4д*	114g-1a	174g-1a	1749-10	114g-1a	1149-1	1149-1	1749-1	1749-
	,	3000	11209-2	П20g-2.								, · · .		

1. PRECYNE YEPTENEN STEMENTOB, OTMEYENHWX DHAKOM, RPHBETEHW B BURYCKE 2, R BHAROM - B BURNCKE 6 CEPHN HCG-CH.

2.Плиты ПЕРЕСРЫТИЙ П99-20, П109-30 И П119-30 ВЫПОЛНЯЮТСЯ ПО ЧЕРТЕЖЯМ ПЛИТ П99-2, П109-3 И П119-3, ПРИВЕЩЕННЫМ В ВЫПУСКЕ 6, БЕЗ ЗЯКЛЯЩНЫХ ЭЛЕМЕНТОВ М-24 МЛИ М-25.

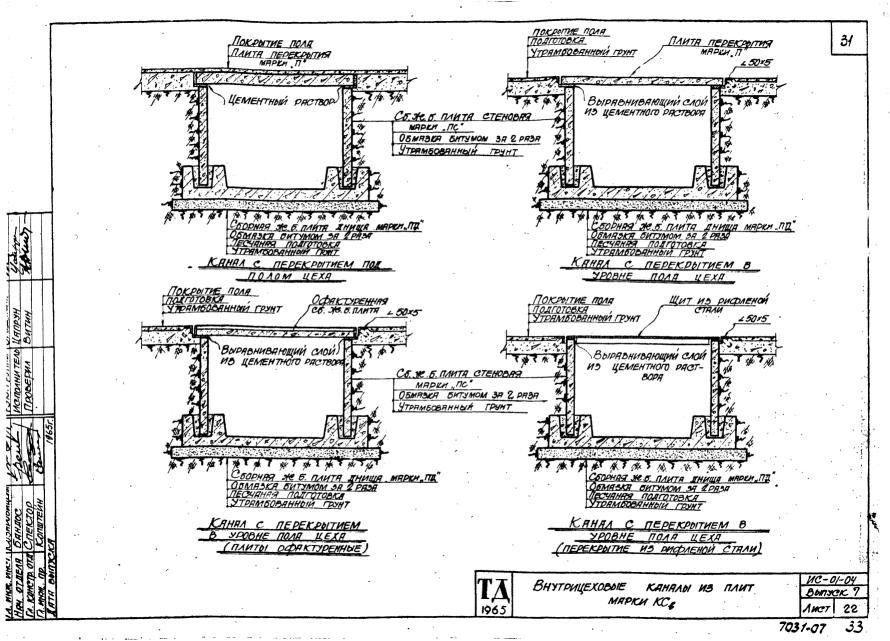
РЯВНОМЕРНО-РЯСПРЕДЕЛЕННОЙ НЯГРУЗКИ и нагрузки от вичтрицеховаго транспорта Тявлиця

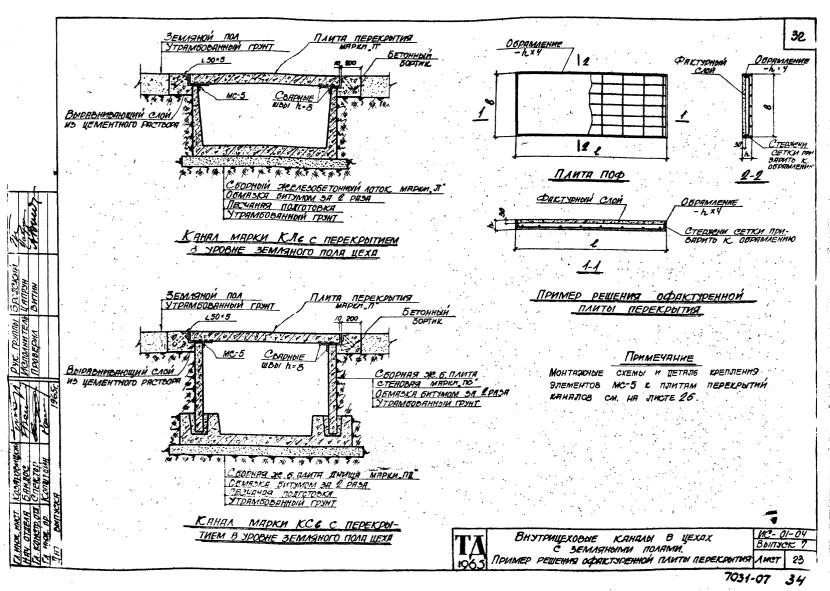
i table they were i

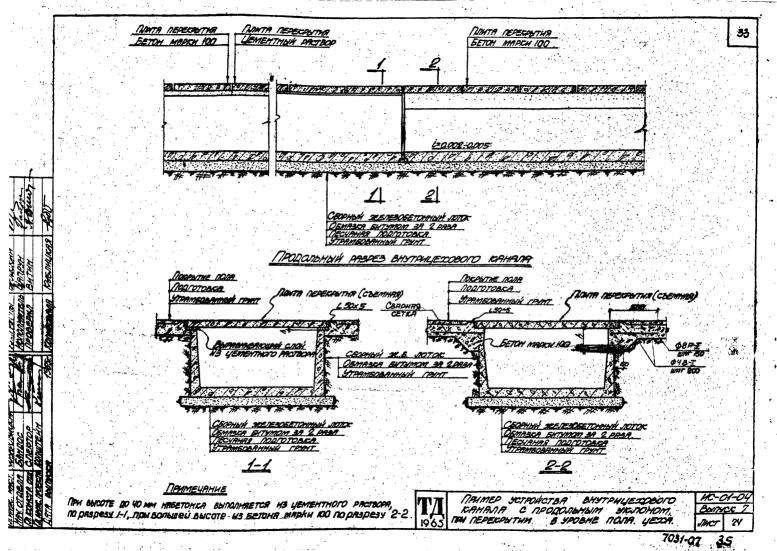

KAHAJOS MADOK KJIS H KCB

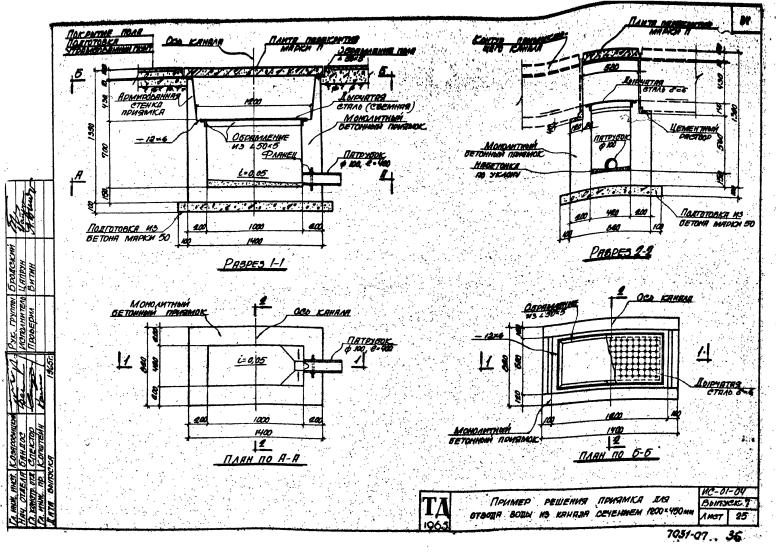
для польоря доборных плит перекрытия

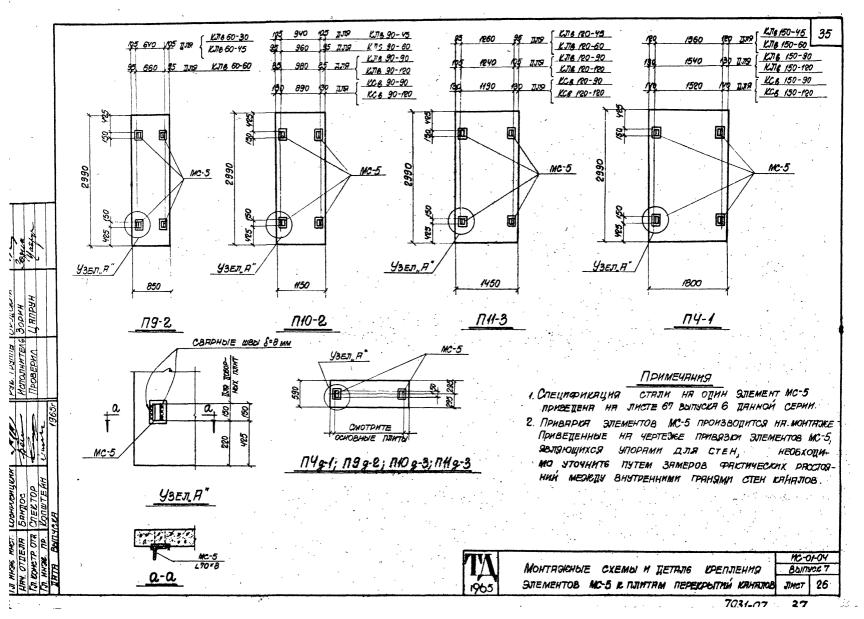
MC-01-04

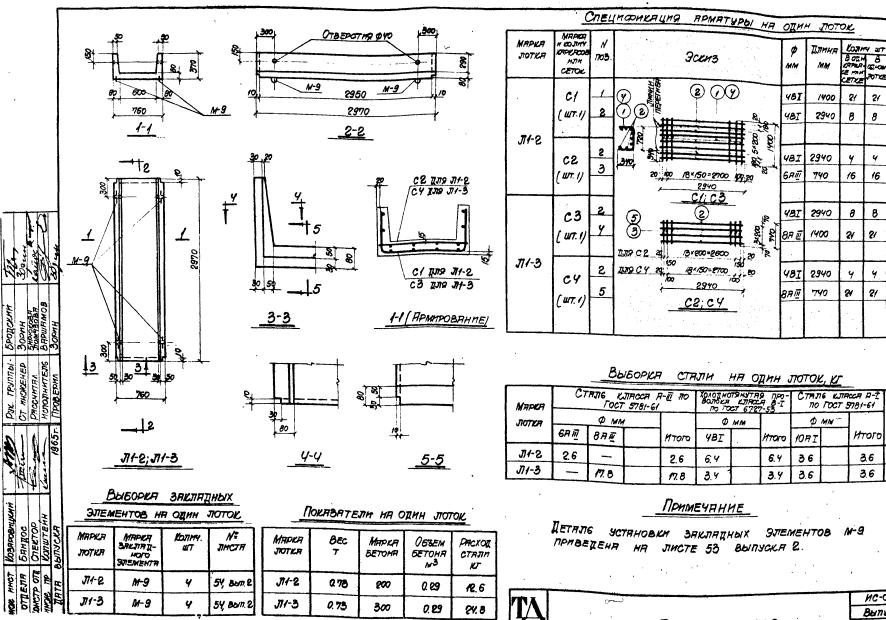

20


BUTIYCK 7




7031-07


32



1965

JOTPU

36

08419

DAME M

29.4

23.5

11.3

118

23.5

29.4

11.8

15.6

21

8

16

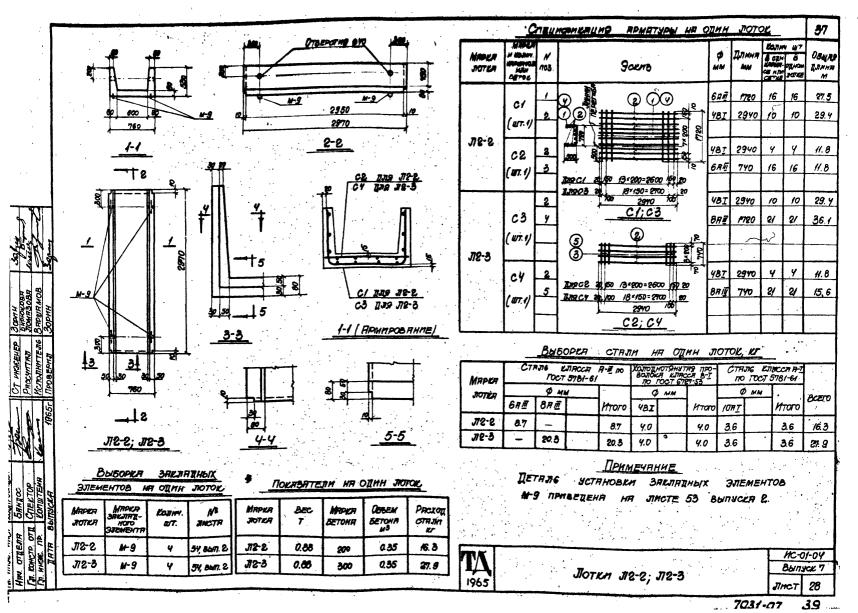
21

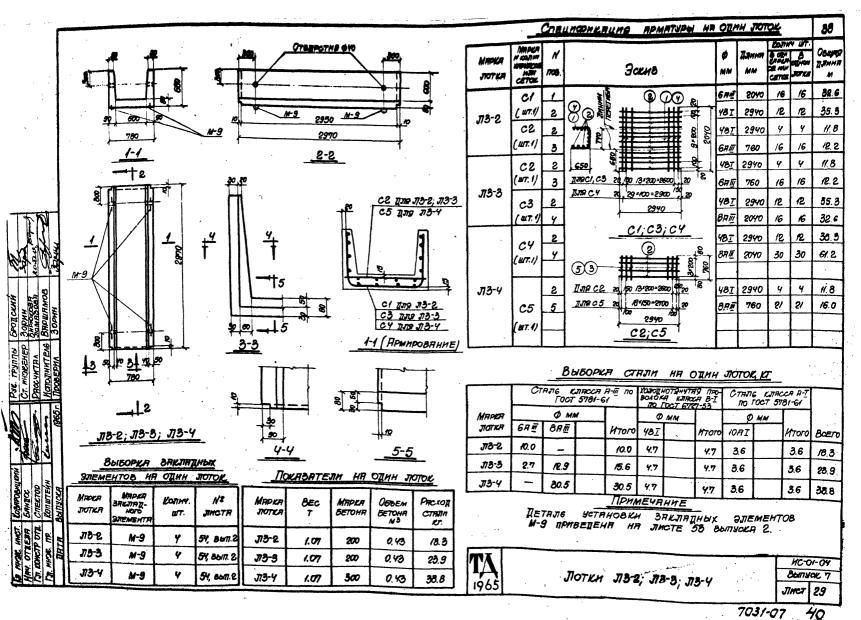
21

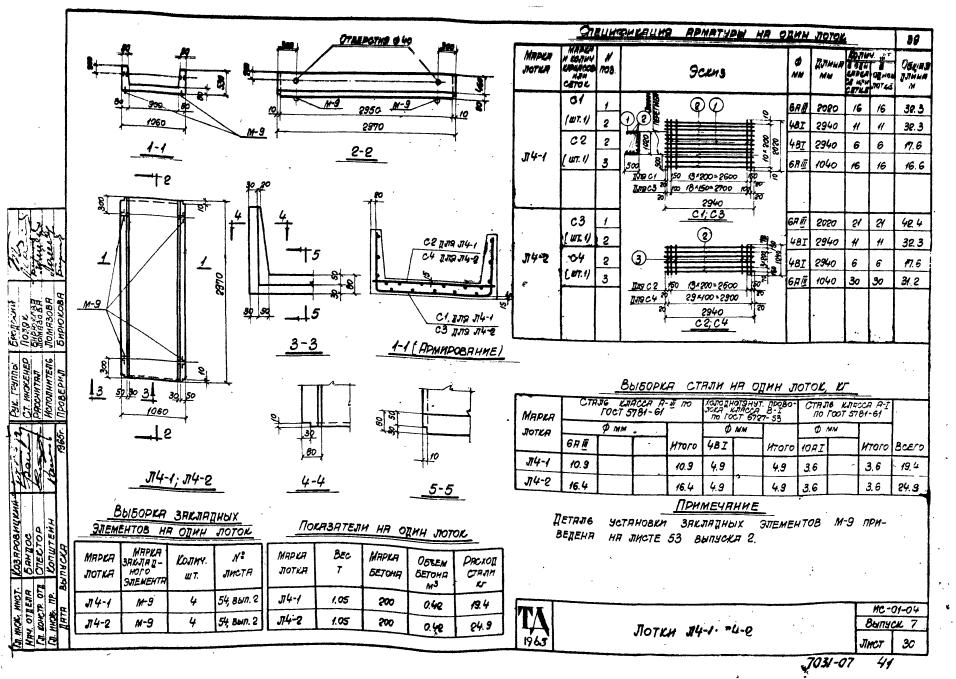
HTOTO BOETO

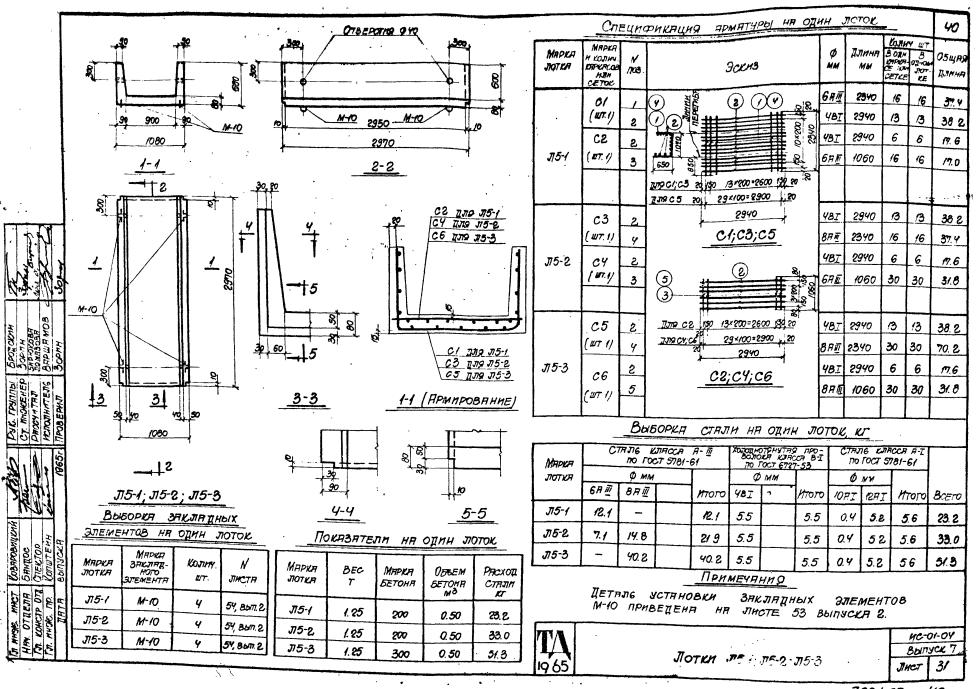
MC-01-04

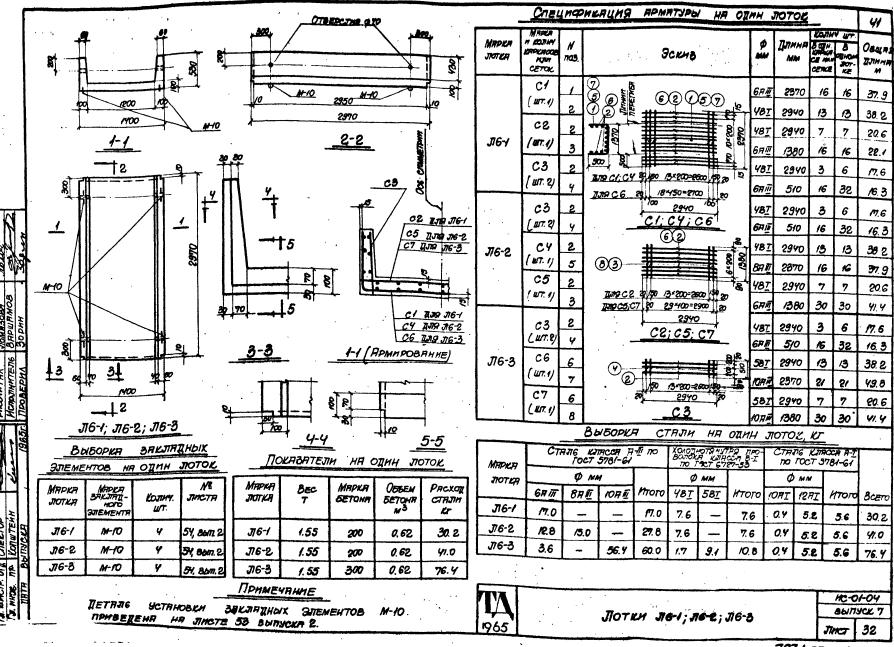
BUTINCK 7

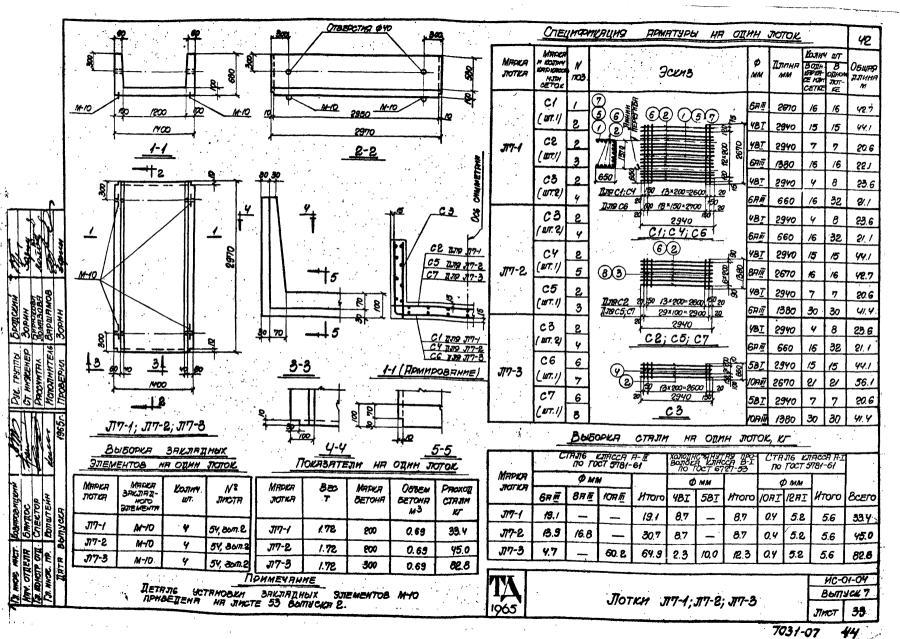

3.6

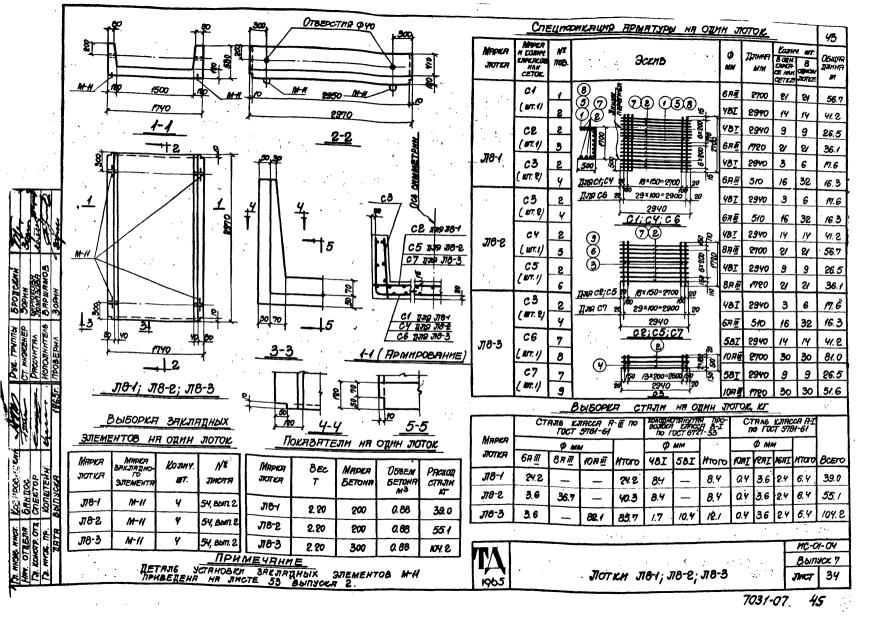

3.6

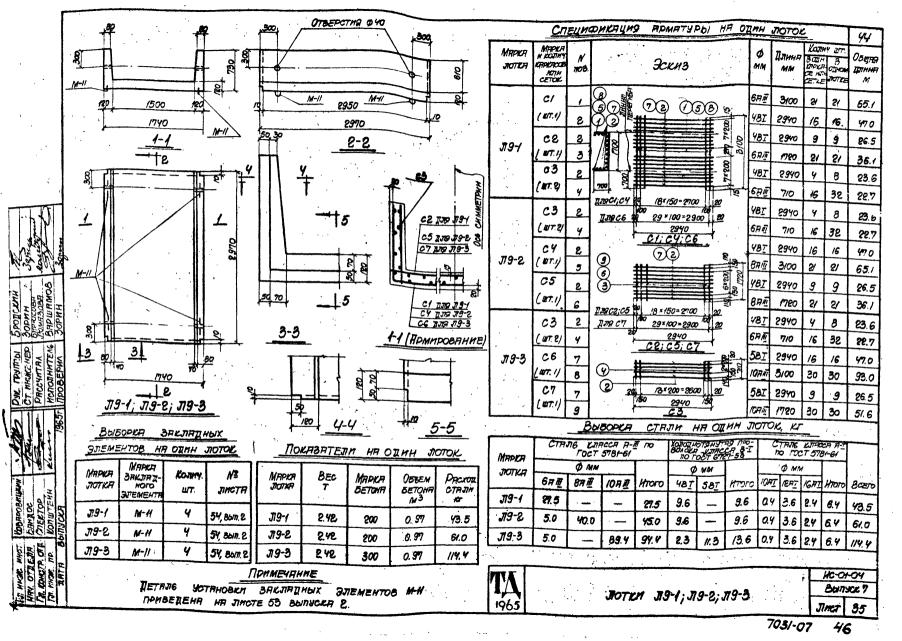

126

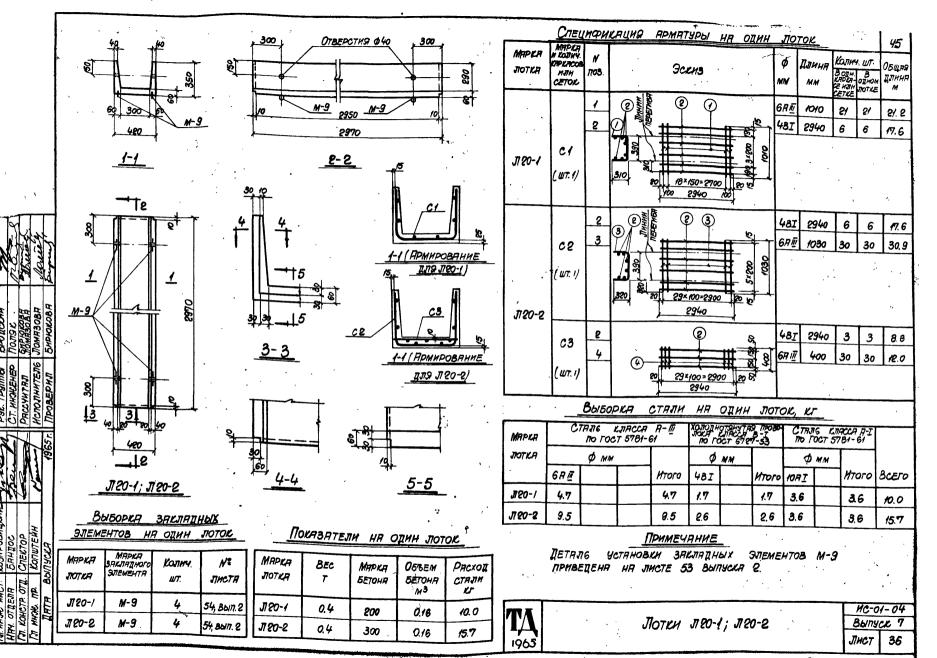

248

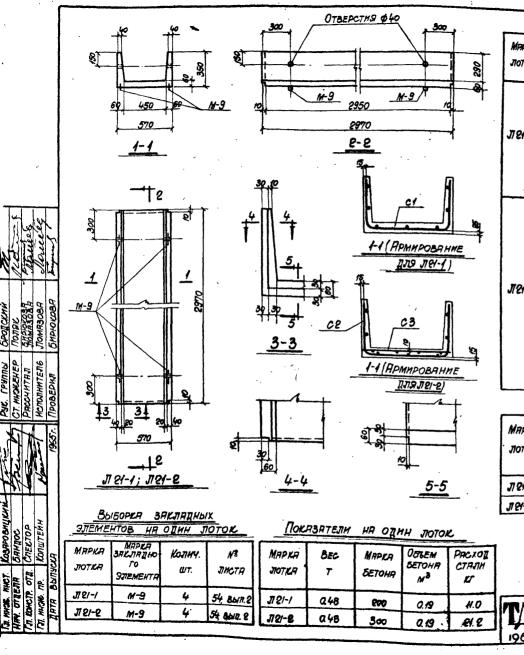

θ В



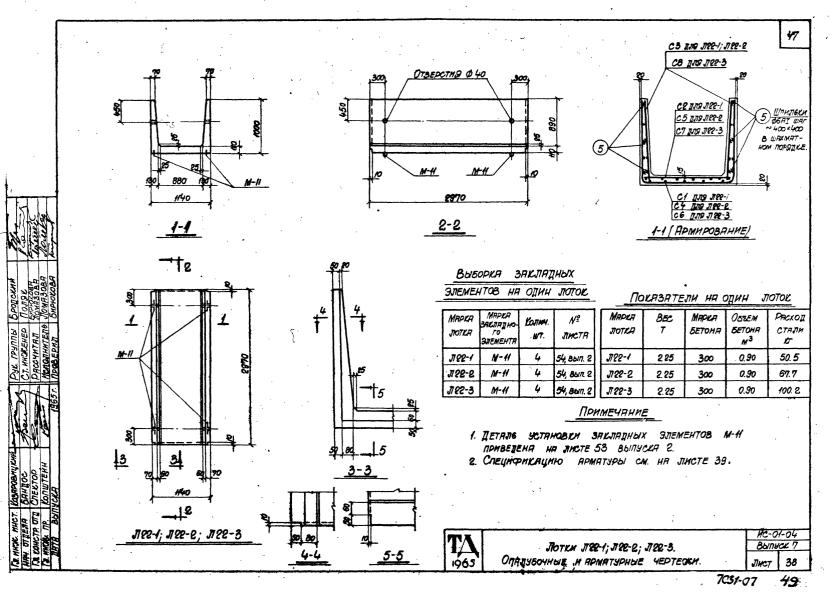




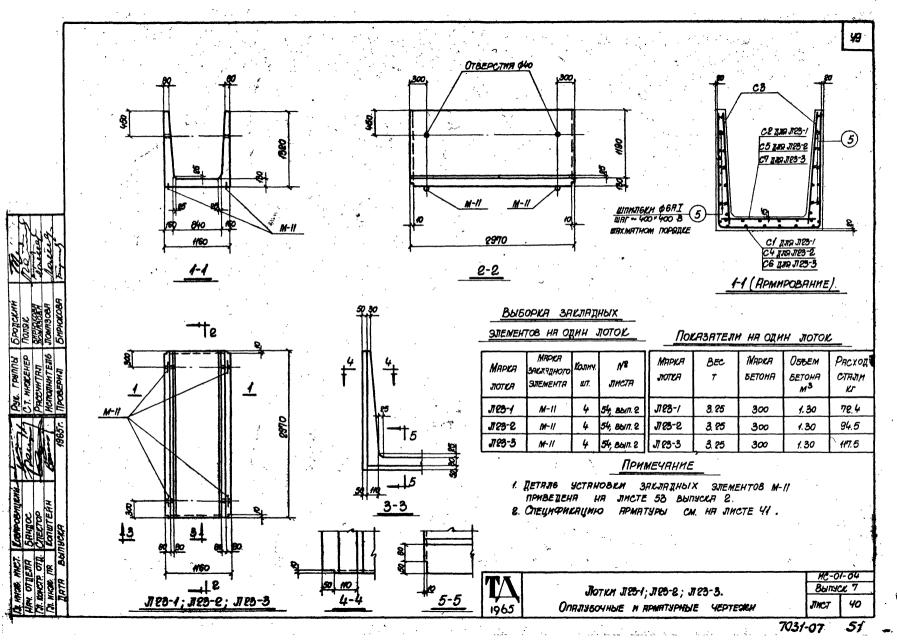


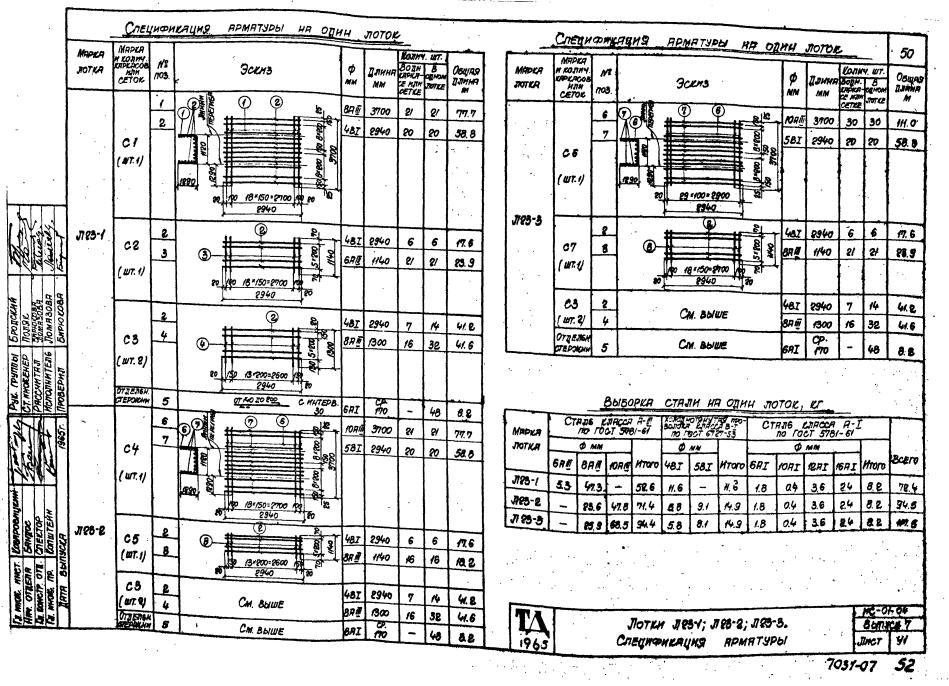


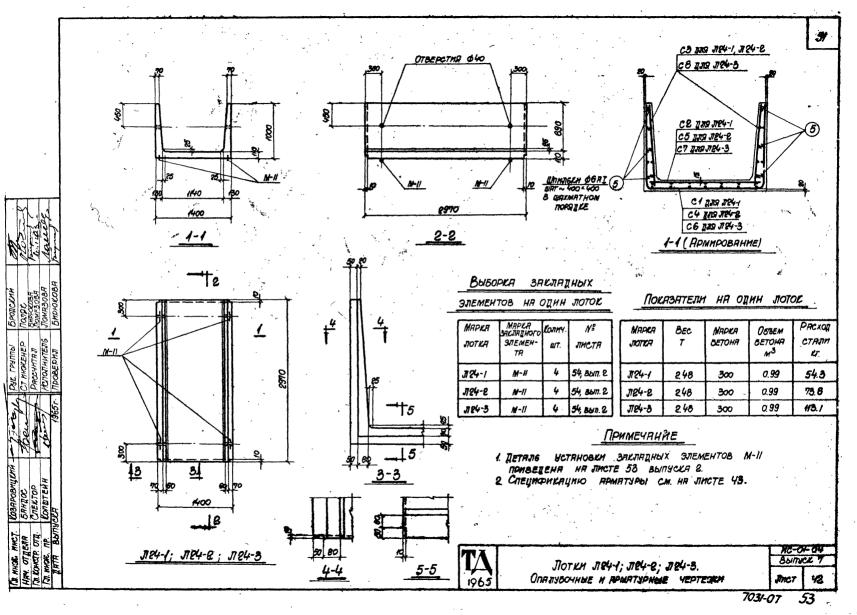
	Cne	циф	ИКАЦИЯ АРМАТУРЫ НА ОД	нн	JOTOK		_	
MAPKA JIOT KA	MAPKA N KOJIM KAPKACOB KJIM CETOK		Эскпз	Ø		Коли	4. UT B OTHOM MOTICE	У6 05ЦЯЯ ПЛИЦЯ М
J1 21-1	C1 (un:1)	1 2	300 100 100 100 100 100 100 100 100 100	6 <i>Ай</i> 48I		24 7	21 7	24.4 20.6
			2940 FOR 2940 FOR					,
		2	(2) (3) (8) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	48I	2940	7	7	20.6
J121-2	C2 (<i>ut.1)</i>	3	30 29×100=2900 20 20 20 20 20 20 20 20 20 20 20 20 2	6 <i>A T</i> T	1/80	3 0	30	35.4
		2	(e)	4BI	2940	4	4	4.8
	с3	4	(4) I I I I I I I I I I I I I I I I I I I	8A ji	550	30	30	16.5
	(WT. 1)		80 29×100=2900 80 8, 2940					

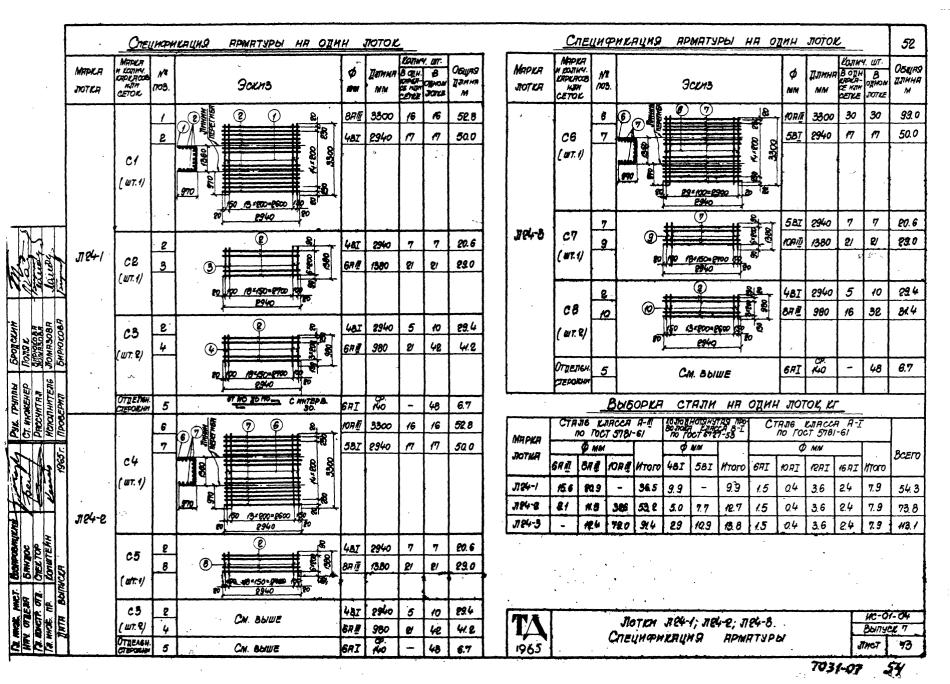

BUBOPKA CTRITH HA OJUH JOTOK, KI CTAJIG KATACEA A-M TO TOCT 5784-61 CTANG KNACCA R-I NO FOCT 5781-61 MAPKA Ø MM JOTKA Ø MM O MM HTOFO 8 R MT BCETO GA IÑ MTOTO Итого 10AI 1121-1 54 5.4 2.0 2.0 36 11.0 3.6 J124-2 7.9 6.5 3.2 3.2 36 21.2

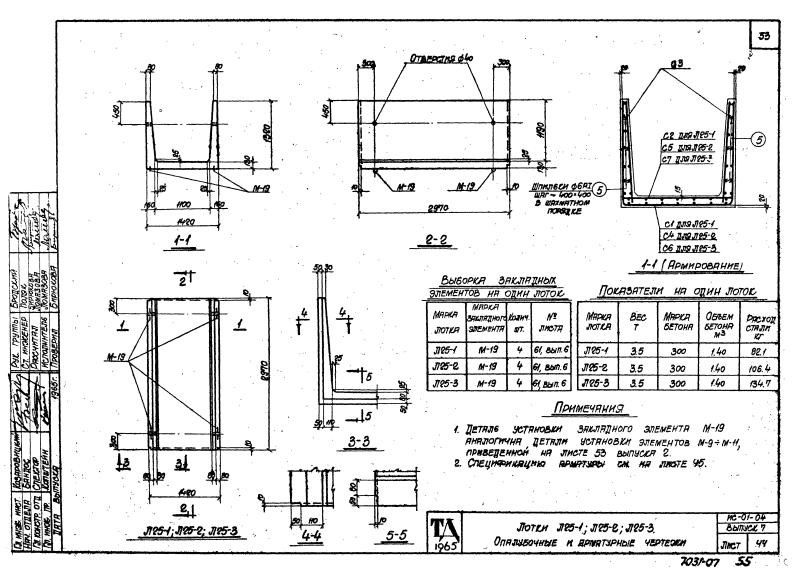
RPUMEYRHHE

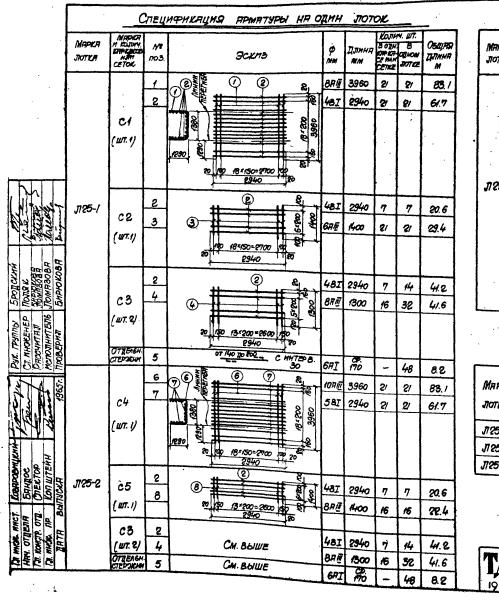

YCTRHOBKH BAKARAHINIX SAEMEHTOB NPUBETEHA HA JUCTE 53 BUNYCKA 2.

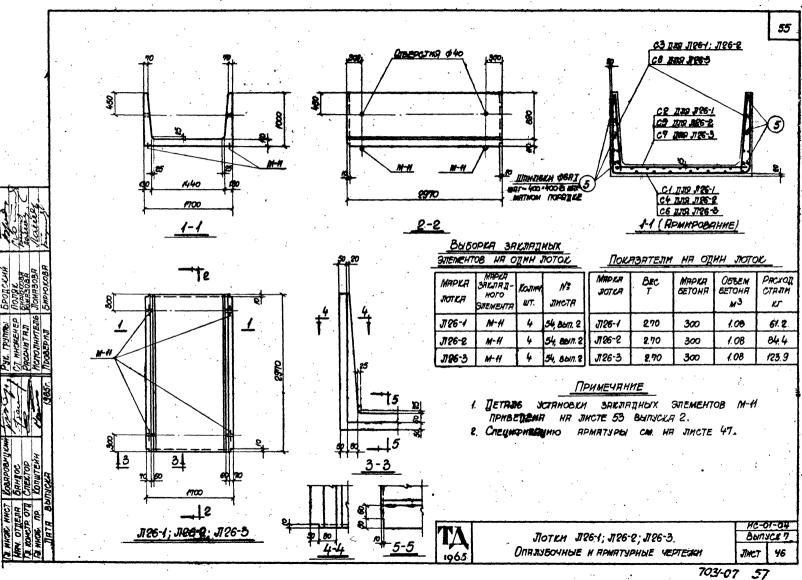

JOTKH J181-4; J181-8

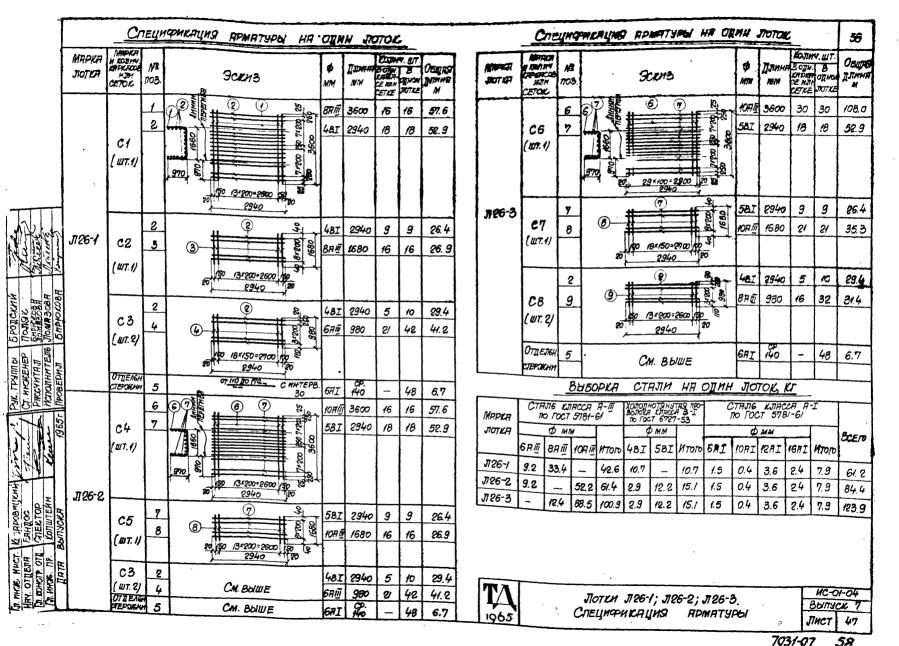

HC-01-04 BUTHER 7 Jinėt

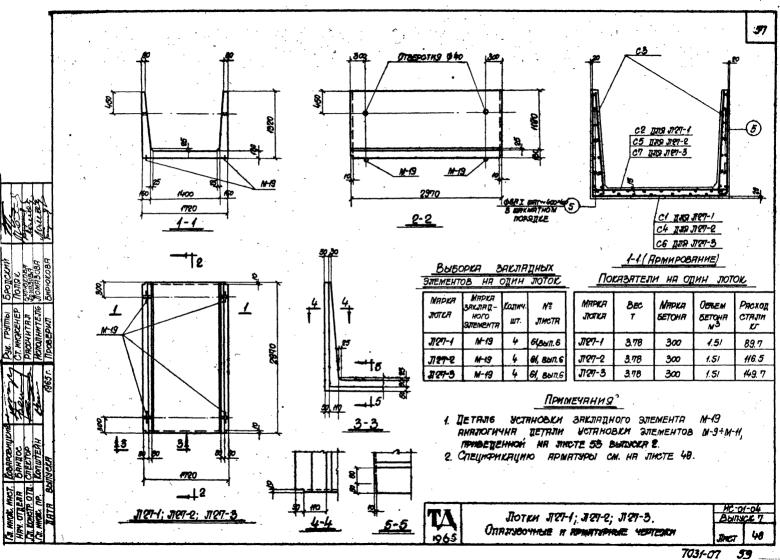


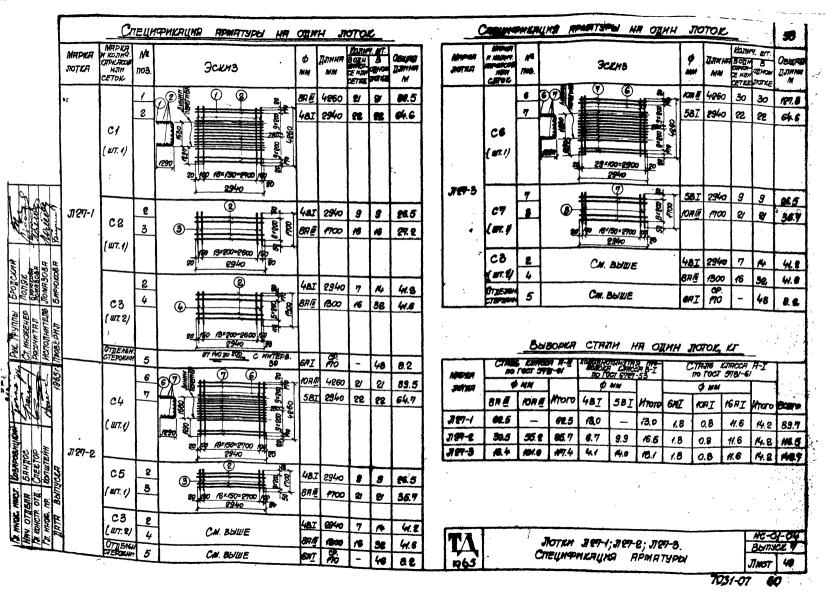

ŀ	MAPKA	МАРКА и колич.	7	<u>ИКАЦИЯ АРМЯТУРЫ НЯ ОТ</u>		-	Колн	y. WT.			MELLUPUK Medre	нция	APMATS	PH H	אונס פ	н Л	OTOK	.		48
-	JIOTKA	EMPHACOS MIN CETOR	№3 1103.	9скиз (%) (2) (1)	Φ MM	Д <i>янн</i> я мм	BOTH KRPKA- CETKE	B OTHOM NOTICE	ОБЩРЯ Даиня М	MAPKÀ JIOTKA	MADICA MEDINA KRPKACOB MIM TO CETOK		Эск	из		Ø MM	Длина	KOTH BOTH	18	054 11.514
		C1	2	(100 (100 (100 (100 (100 (100 (100 (100	8Aญั 4BI	3040 2940	· 16 15	16 15	48.6		C 6 7	7	INLUM EDEFYER	9 6	80 850 800 300 300 300 800 800 800 800 800 80	10A1II 5BI	3040 2940	30 15	310 15	м 91.1 44.
	700 /	(шт. 1)		970 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$. c7 -7		29 (1	20 · 8900 940 7)	20 20 20 ES	581	2940	6	6	17.
Junal Comment	J122-1	C2	2	3	48I 6A @	2940 1180	6	6 2/	17.6 23.5	J122-3	2		# a	200=2600 p 2940 2)	00 00 00 00 00 00 00 00 00 00 00 00 00	KORKĪ	1120	<i>1</i> 6	16	17.5
Supporest Signalisable JOMRSOSA BNPVOKOSA	5 JOMR308A 5 MONOCOSA	c3	2	20 100 184/50 = 2700 100 20 2940 20	48I	2940	5	10	29,4		C 8 10		50 B	200=2600 (s 2940	28	<i>88₫</i>	980	16	32	29.4 31.4
РАССНИТЯЛ ИСПОЛНИТЕЛЬ ПРОВЕРИЛ		(ШТ. 2) ОТВ СТЕРОЖИ	5	80 NO 18-150-2700 NO 80 80 80 80 80 80 80 80 80 80 80 80 80	6AII	980 CP:	21	42	41.2			360PK	A CTAJ	выше ПИ НП С			CD. 140		48	6.7
19657.		C4	6 7	© The TO SO	6AI 10A1II 58I	3040 2940	16 15	48 16 15	6.7 48.6 44.1	Мярка лотка	D MA		popularia po ro			710	16 KJT. FOCT 5	ЯССЯ 781-6	, <u> </u>	BCI
19		(117.1)		90 B1200-2600 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				ľ	-	#22-1 #22-2	6A [8A [8A [19.2	_ 3	7070 48I 3.6 9.0	_ 9.		10AI 0.4	3,6	2.4	7.9	50.
TEAH	J122-2	C5	2	2940	48I	2940	6	6		J122-3	9.1 9.3	1	8.4 4.6 9.9 ·2.9	6.8 11. 9.5 12.		0.4	3.6 3.6	2.4	7.9	67. 100
та. Спектор 1. Копштейн ыписка	0,100	(MT.1)	В	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ВАЩ	1150	81	81	17.6 23.5	•										
. ижет отц. г. икаж. пр. цятя выпъ		C3 (WT. S) OTAESIGH	8	См. выше	48I 68#	2940 980	5	10	294	MX					-			- T 7	4C-01-	-04
22		CTEPORNI	5	См. выше	ĜAI	A PO		48	6.7	1965	. *	JIOT Cheyr	ГКИ Л22 1ФИКАЦ	-1; J122-2 [H9 A	2; J122-4 PMATS	ð. IPbl		6	WCT	

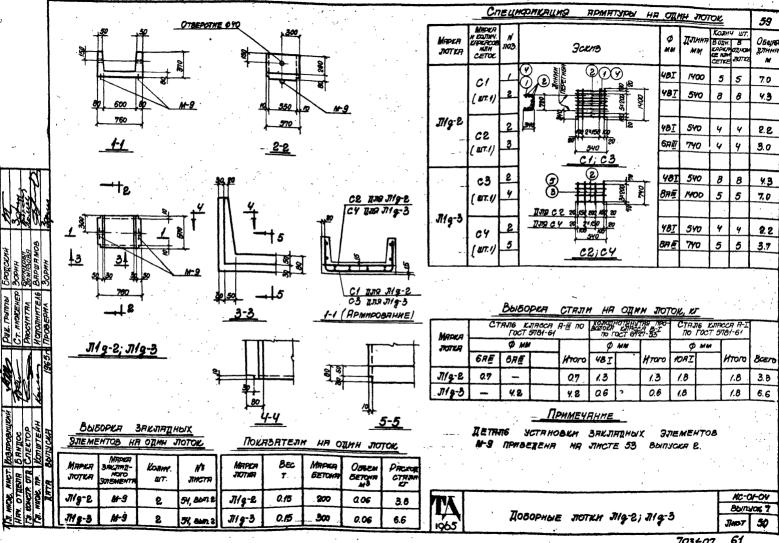


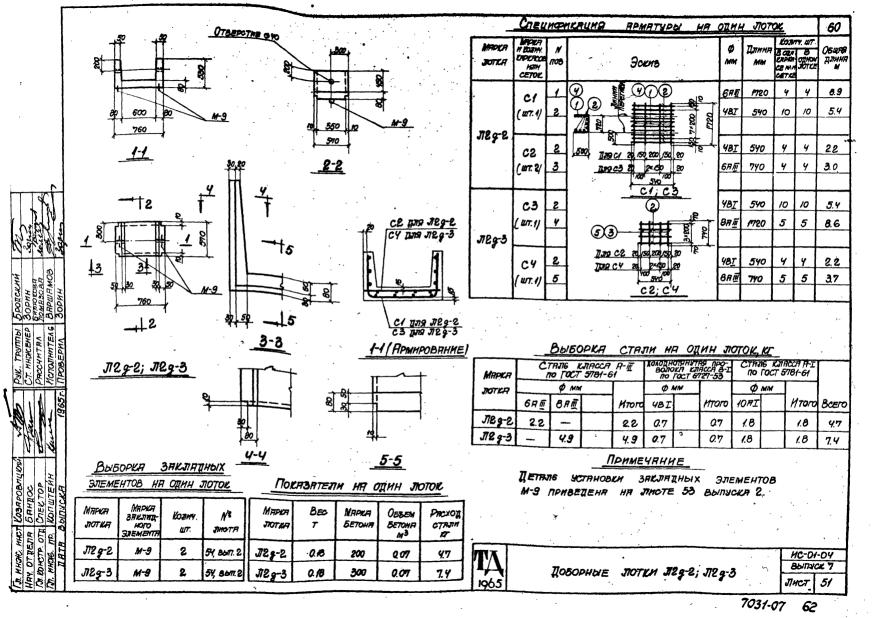

*****	MAPKA M BOJINY.		ИКЯЦИЯ ПРМЯТУРЫ ИЯ ОД	T				5	
MAPKA JOTKA	CAPUACOS MATIN CETOL	703.	9ckns =	MN	Д ли на - мм	COTTANY WITH BE		054	
•		6		(ORM	3960	30	30	H	
		7	OF THE STATE OF TH	58I	2940	2/	21	61.	
	C6			l		· ·	7		
nos-2	(WT.1)		29 29 100 29 20 E		~				
J125-3	_	7.	# 7 8	58I	2940	7	7	20	
	C7	9	(P) (S) (S)	10A <u>li</u> i	1400	16	16	25	
			20 13 200 = 2500 St						
	C3	2	CM BUWE	48I	2940	p	14	4.	
	(WT. 2)	4	Om: 0022	8R NĪ	/300	16	32	41	
	ОТПЕЛЬН. СТЕРОННИ	5	См. ВышЕ	6AI	80		48	8	

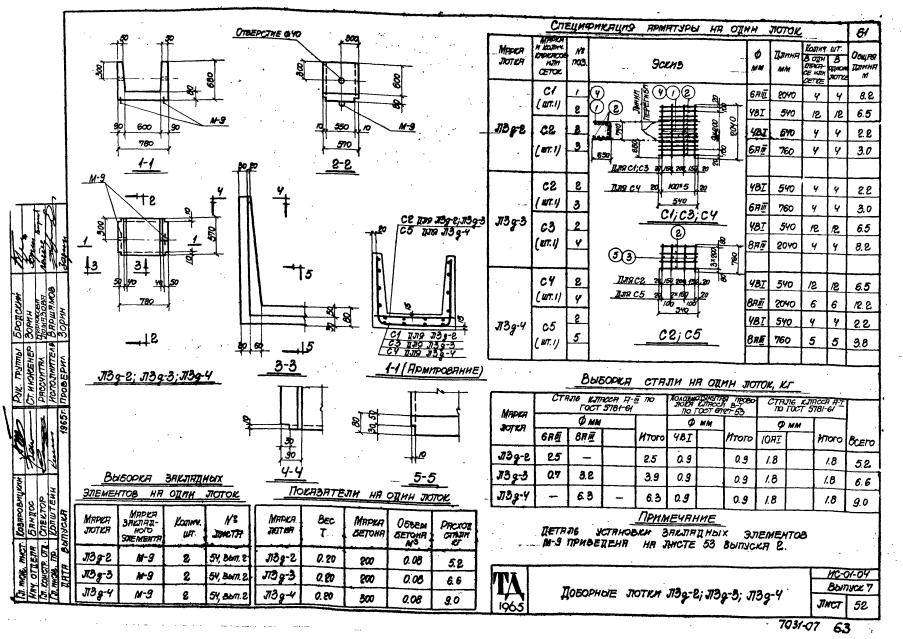

BUBOPKA CTAJIN HA OJINH JIOTOK, KI

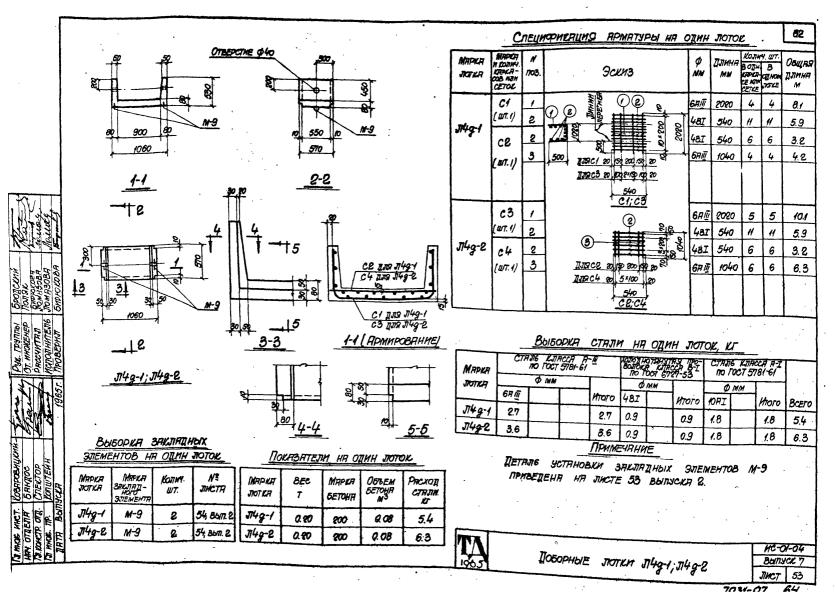

MAPKA		79.00 KJT 100 TOCT	ACCA A 5781-61	- <i>1</i> I	TOTICITHOTSHYTHS THOSO- JOKA KITHICH B-I TO FOCT 6727-53			CTA	,			
JOTKA		Ø MM		Ø	MM			Ø MA	1		1	
WOLLD!	6₽ı <u>ıī</u>	8R Mi	10 A III	Moro	4BI	5BI	Итого	6AI	MI	IGAI	סוסדא	BOER
J125-1	6.5	49 2	_	55.7	12.2	\ <u></u>	12.2	1.8	0.8	11.6	14.2	82./
J125-2		25.3	5/.3	76.6	6.1	9.5	15.6	1.8	0.8	11.6	14.2	106.
J125-3	-	16.4	87.3	103.7	4.1	12.7	16.8	1.8	08	11.6	14.2	134.1

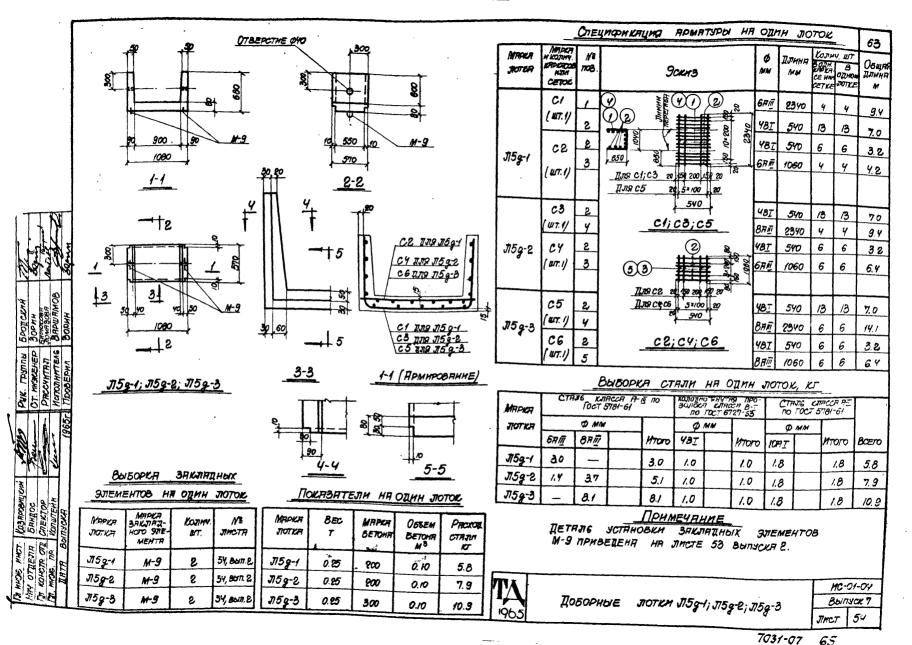

Лотки Л25-1; Л25-2; Л25-3. Спецификация RPMRTYPH

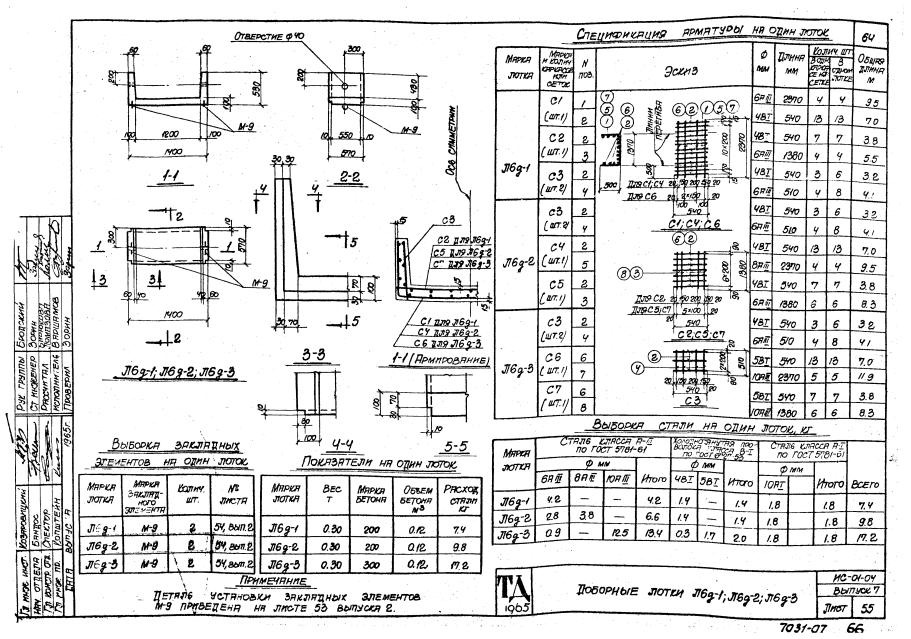

HC-01-04 BUNYCK T JIHCT

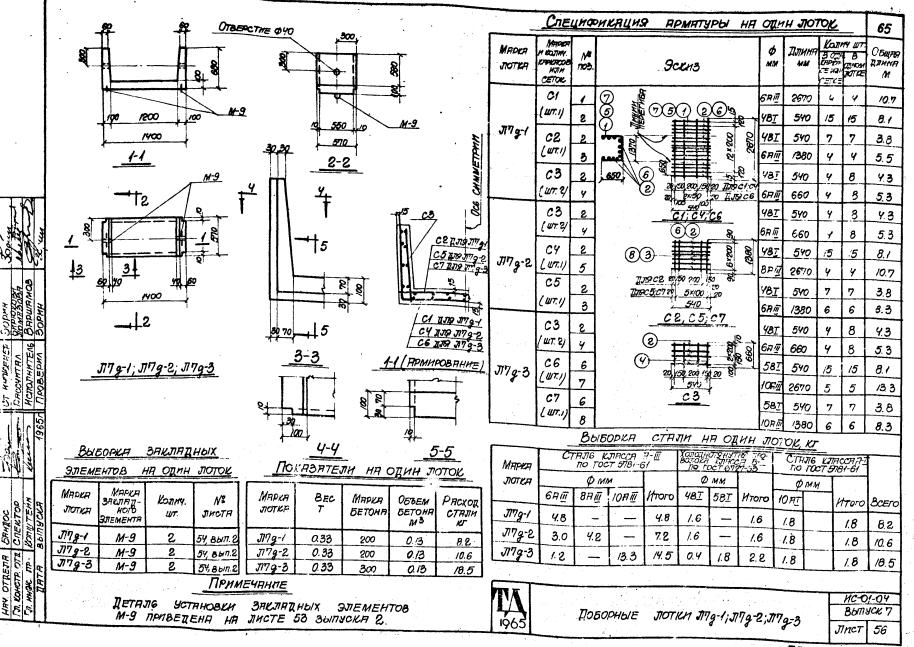


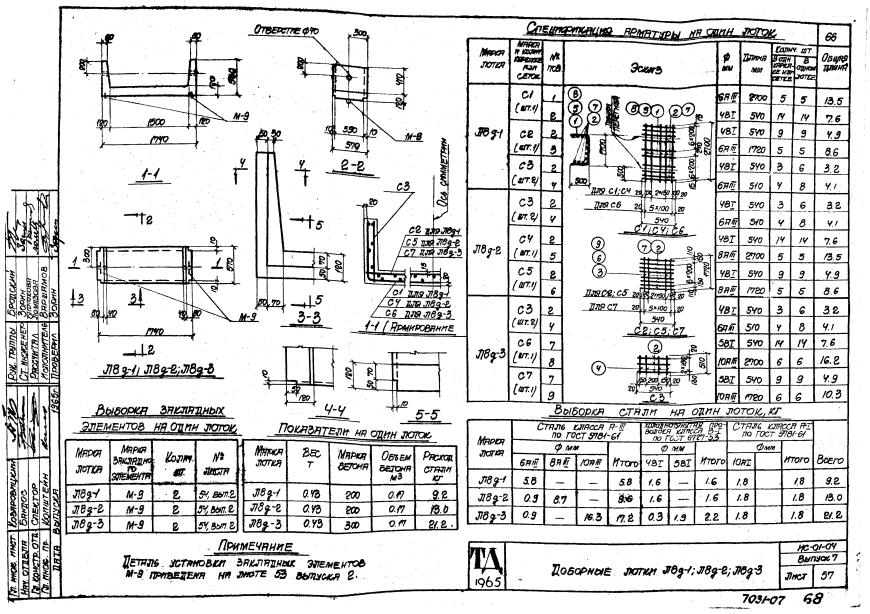


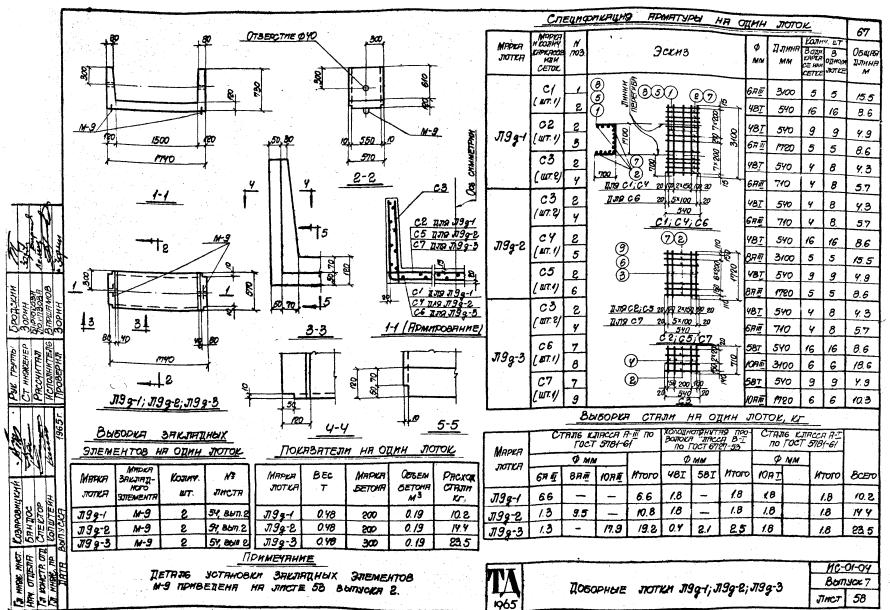


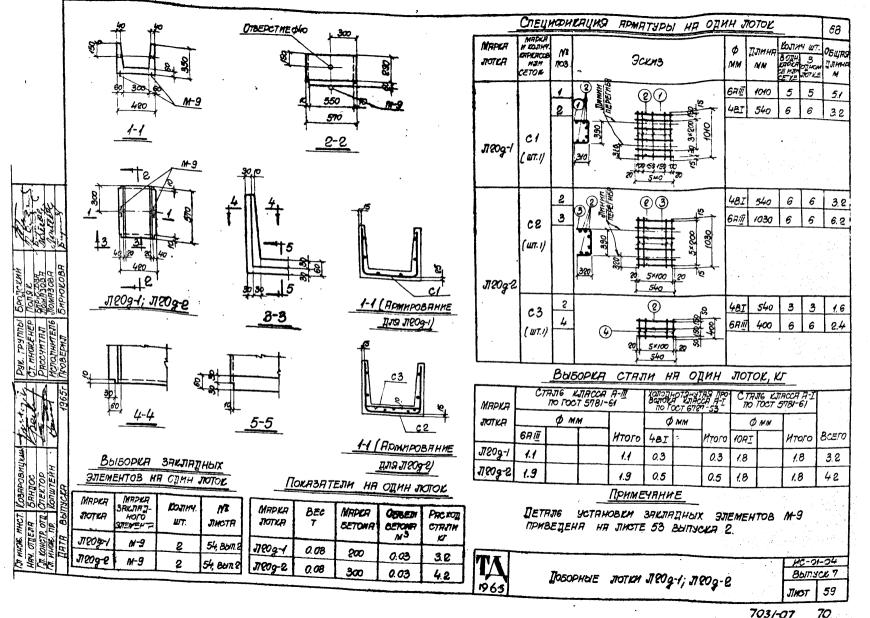


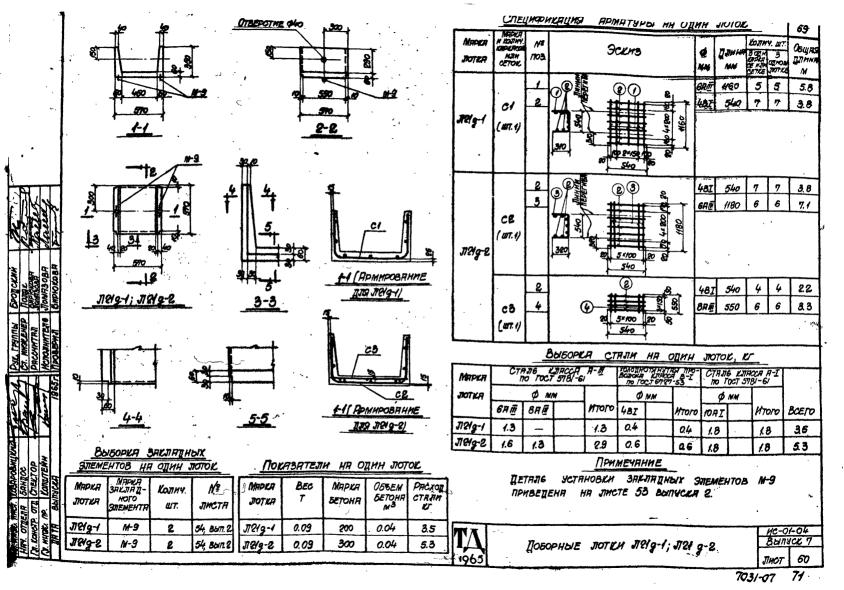

703+07

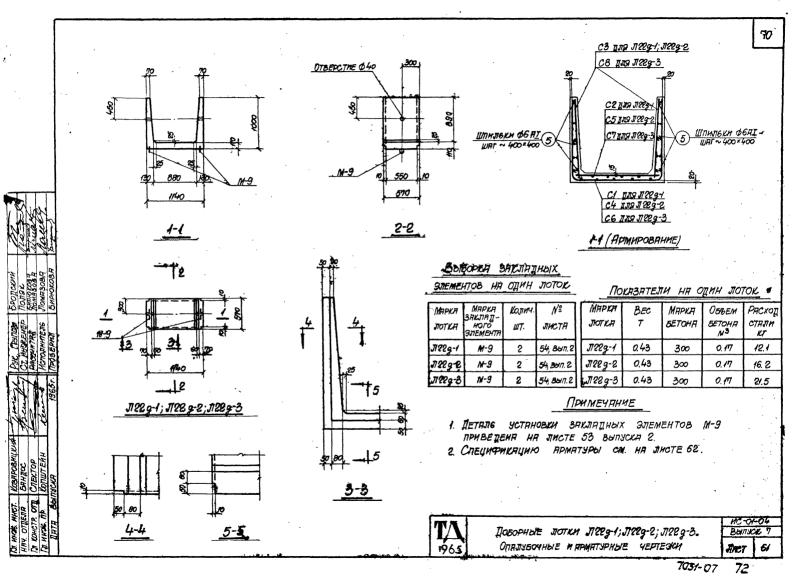




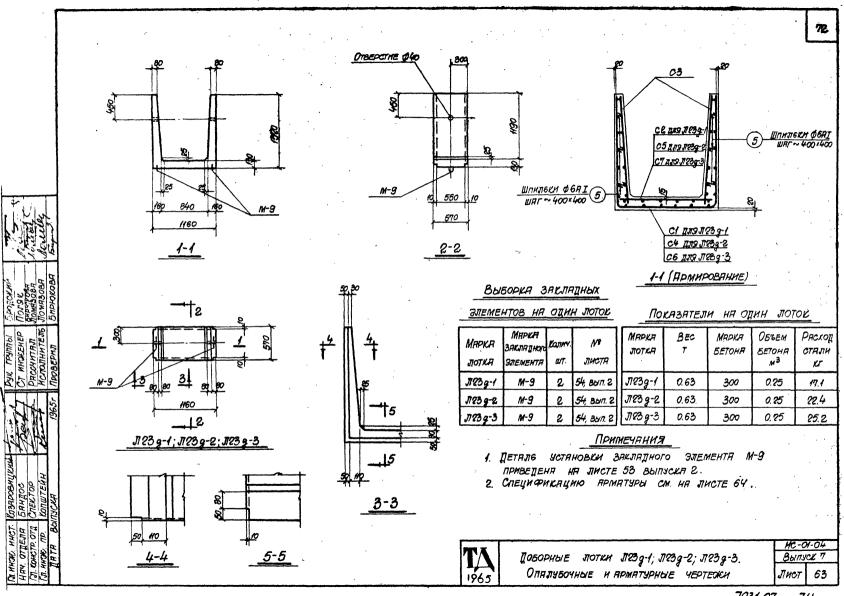


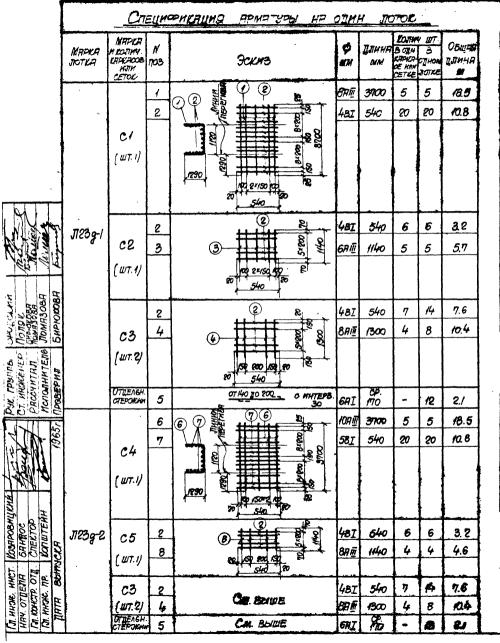

7031-07 67



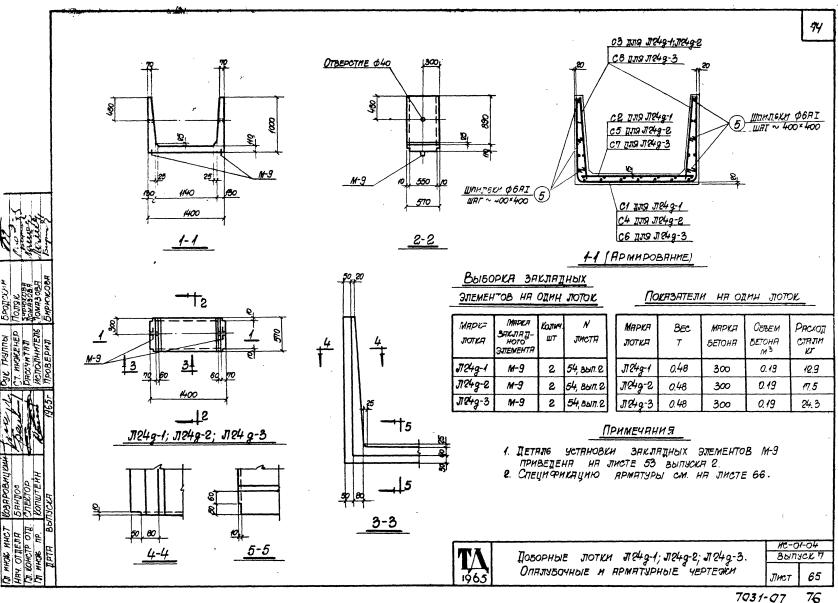


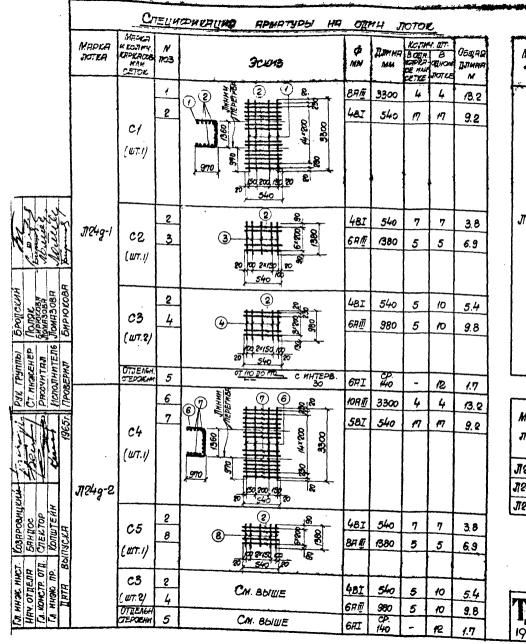
7031-07


69



MADKA	MAPKA M KOTHY.		ИКЯЦИЯ ПРИПТУРЫ НЯ	T			ч. <i>шт.</i>			MAPK	A	<i>1</i> 2и <i>9</i>	APMA	V POI	н н	ОДИ	H J	totok		
JUTKA	CETOR.	<i>№</i> 703.	Gans	MAN	Длинд м м	S CETAL	S COLLE	06 <i>ш</i> дя Д ЯМНЯ М	MAPKA	M DOTH DIPCAGE MITH CETOL	28) //°		, a	CK43			Ø MM	Длиня мм	KOJIM BOZH CAPKA- CE MM	BORHOM
		1		BAI	3040		4	16.6			6	© 7			5 8	8 T	10A[[CETRE	BOTKE 6
	C1	_6	18	4az	540	15	15	8.1		C6	7	8			8	300	5ai	540	15	15
	(417.4)								1	(שד.1)		970		5100	20	8			1	Ì
_			970 G 800 G 800 G							<u> </u>	4_			540 [†]	.0					
J1229-1			\$40		1					c7	9	②		誰	Bus	024	587 100 iii	540 1120	6	6
Willey 1		2	@ &	48.	540	6	6	3.2	J122g-3	(17.1/			20 (5	200 S	20 8		-		7	7
7	c2	8		6P. 1	1120	5	5	5.6	ł	-	2			②	8		481	540	5	10
5	(47.1)									CB	10	@			read.	88	BA iji	980	4	8
2400			30 cq 21/30 00 540							(1117.2)	'		20 00	200 50 540	80					
	C3	8		4aI	540	5	10	5.4		OTHE JIE	# 5		CM.	ВЫШЕ	 !		6AI	CP. 140	-	12
130	(417.2)	4	700 8×100 No. 2	6R®	980	5	Ю	9.8		PERCE			070	ЛИ Н	10 OT	1411	7070	, ,,,	Ш	
1904	O HEAGH		8011 5/10 20		-					CTR		HEOPKA HCCA BILL					СТАЛ	L, K.T 16 KJTH	PCCF 1	7-I
Ž	-	5	or the to the common 3		No	 -	15	1.7	MAPKA	#	D 1007	ROCA BA		DT9HYT LTPX XTETE MM	3.33	_	no r	OCT 578	3/-61	Γ
	C4	7	W HE TO	10ºM	3040 540	15	15	18.2	TIOTILA	6A∰			481	58 <u>I</u>	Итого	6AI	IORI	T		Ито
•	(11.71)						1		17229-1	3.4	4.8	- 0.2	1.77		1.7	0.4	1.8			2.
1			970 S 102 PM A	1.		l	1		J122g-2	2.2	2.2	7.5 11.9	0.8	1.3	2.1	0.4	1.8	ļ	<u> </u>	2.1
700		-	80 860		<u> </u>				J1229-3	1-1	3./	4.0 17.1	0.5	1.7	2.2	0.4	1.8		<u> </u>	2.3
1268-6	C5	8	© \$ E	48I	540	6	6	3.2	•										:	
100	(07.1)		10 m/s no 8	<i>8₽®</i>	W80	5	5	5.6		•										
THE STATE OF THE S	C3	8		481	540	5	10	5.4		······	7	PHOE JE	7	100 0-1		0-2	1100a	-3		uc-(
1	(WT. 2)	4	CM. BSWE	GRE	980	5	10	9.8			Добо	оные ла Специфі	HERUK HERUK	9 F	PMAI	TYPЫ		J .		BUT.

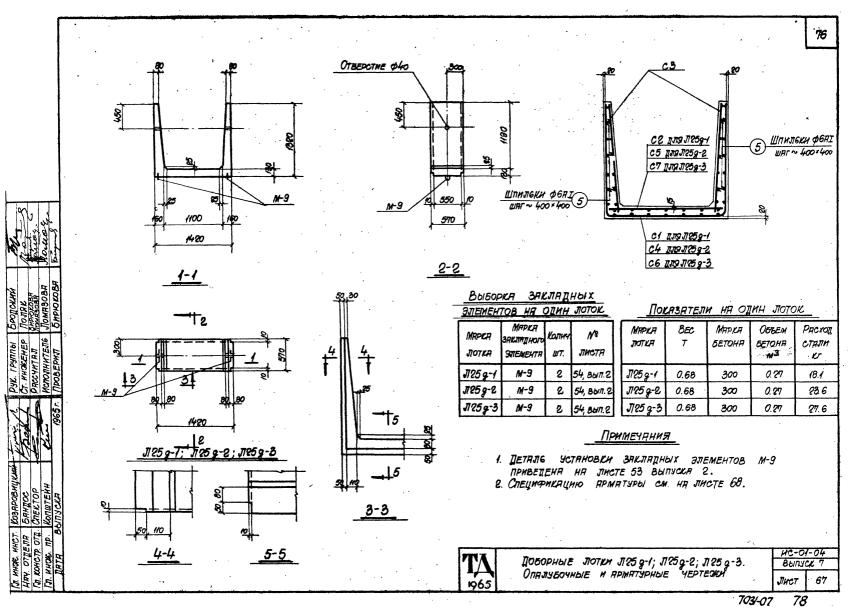

	Cheu	HCDW	САЦИЗ АРМЯТУРЫ НА ОЦИ	1H .	HOTOK.			19
MAPICA BUTCA	MIRPLA ST KORMA EMPLACOS HITH CETOL	N 1103.	ЭСИВ	Ø MAH	ДЛИНА ММ	8 OZH	DIHON	05Щ я9 ДЛИНЯ М
		6		10A 🗓	3700	6	6	22.2
		7		58I	540	20	20	10.8
TIC2 - 2	C6 {#7.1/		1290 20 5±100 20 52 540					
J123g-3		2	2 2	48I	540	6	6	3.2
	C7	8	(14co	8AII	1140	5	5	5.7
	(шт. і/		20 10 2150 NO P					
	C3	2	0	4 <i>8</i> I	540	7	14	7.6
	(шт. 2/	4	См. Выше	8 <i>₽ ፴</i>	1300	4	8	10.4
	OTTLENGH CTEPORH	5	См. ВышЕ	6RI	СР. MO	_	12	2.1

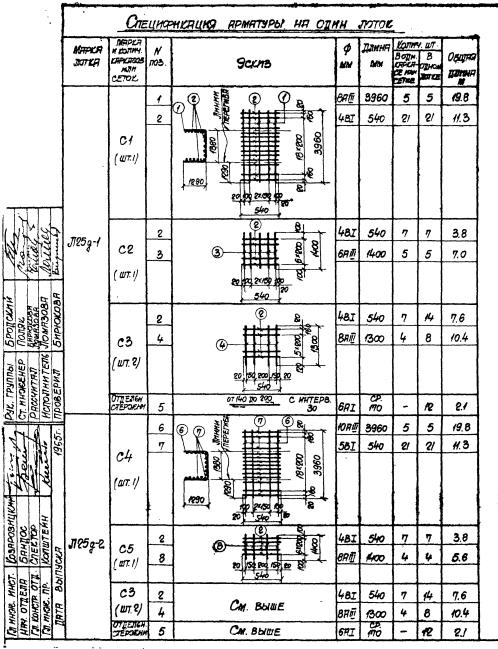

Выборка стали на один лоток, кг

MAPKA	CTA	JIG LA TO FOCT	ACCA 5781-	#-# 6/	BONDER BONDER NO FO	TOHYTH WIRCO CT 6727	A 8-1	0	TAJI6 NO 100	ЦПАФА Й- <u>Т</u> 5781-61		•
DOTED		Ø MA	,		Φ	MM			Ø i	W M		
JOTKA	6AI₫	8 <i>P I</i> I	HOR IĪĪ	Итого	48I	58I	Итого	6AI	(ORI		Итого	BCETO
#23g-1	1.3	44	-	2.7	8.1	-	2.1	0.5	1.8		2.3	17.1
12892		5.9	4.4	17.3	1.1	47	28	05	#8		2.3	22.4
JE39 3	-	64	27	20.1	1.1	1.7	2.8	05	1.8		2.3	25.2

TA 1963

Доборныё жотот Л23g-1; ЖЭд-2; ЖЭд-5. Специонкация прыятуры **ИС-01-04** Выписе **Т** Лист 69

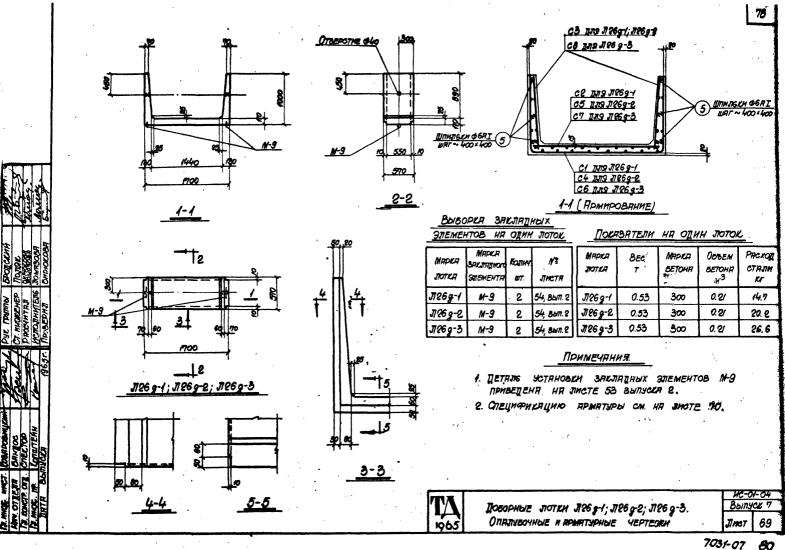


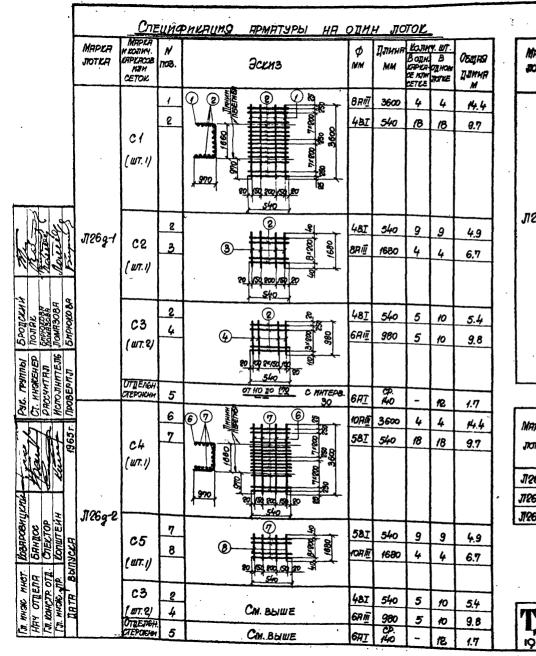

		ифи	TO AH MAETAMAR CULLAN	ИН	11070	<u>e</u>		75
MAPER ROTER	MAPILA H KOJIMY KAPILACIE MATH CETOK	N 1703.	Эскнз	Ф мм]]JIUHR MM	Водн	PAHON	OSUPE UNIVER
,		6		ЮЯЩ	3300	6	6	19.8
	С6 (шт.1/	7	900 A 1360 A 136	58I	540	/7	177	9.2
Л24g-3		7_	970 5-100 20 8 20 540 540 8	58I	540	7	7	3.8
uneng o	C7 (шт.1/	9	20 540 80 8,	IORIŢ	1380	5	5	6.9
		2	® 8 8 1	48I	5 40	5	10	5,4
	C8	10	(10) - 1 8 8	<i>8</i> ₽₫	980	4	8	7.9
	(107.2/		540 20 Sep					
	Оту ель н Стерожни	5	См. ВЫШЕ	6AI	CP. 140	-	12	1.7
***************************************		R.	м <i>борка стали на</i> один	لــــــا 77. اد	070K,	<i>V</i>	<u></u>	

MAPKA	CTR	176 K	TIRCCA CT 578	A-M 1-61	KONO II IIPO BO IIO FO	HOTOLA K	17 Я.О ЛРССЯ В . 1-53	(TAJ16 110 TO	КЛЯССЯ (5781-61	9- <u>T</u>	
JOTKA		Ø MO				MM			Φ	мм		
	6AÆ	8A 🗓	10 R III	Utraro	48I	58I	Итаго	6AI	10RI		Итого	BCETO
J124g-1	3.7	5.2	-	8.9	1.8	-	1.8	0.4	1.8		2.2	12.9
J124g-2	2.2	2.7	8./	13.0	0.9	1.4	23	0.4	1.8		2.2	17.5
J124g-3	-	3.1	16.5	19.6	0.5	2.0	2.5	0.4	1.8		2.2	24.3

Поборные лотки Л24д-1; Л24д-2; Л24д-3. Спецификация **APMATUPO**

HC-01-04 BUTILLY 66


	Cheun	ФИК	HUNG PRINTIPH HA ORH	н л	070K			77
MAPKA JOTUR	MAPICA II IOSTIMU LAPICACOB MITH CETOIL	N 1703.	9cun3	Ø MM	Длина ММ	ВОДН. КЯРКЯ	0	Овщя <i>я</i> Плиня М
		6		10 R I <u>I</u>	3960	6	6	23.8
		7		5BI	540	2/	21	11.3
	C6		3360			'		
	(1117.1/		1290 20 5400 20 8		7			
J125g-3		7	\$ B	5BI	540	7	7	3.8
	C7	9	9 89 89	10A <u>I</u> ∏	1400	4	4	<i>5</i> .6
	[WT.1]		80 150 250 250 85 540					
	c3	2	Qu. 21.1	48I	540	7	14	7.6
.	(шт.2/	4	См. Выше	B₽I <u>I</u>	1300	4	8	10.4
	Отделен Стероюни	5	См. ВЫШЕ	67I	CP 1710	-	12	2.1

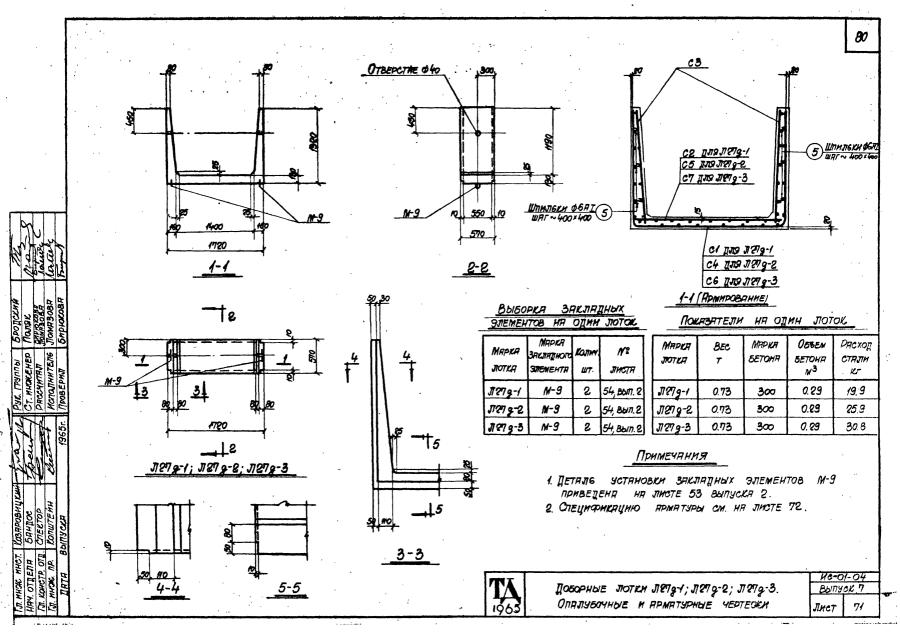

Выборка стали на один лоток, кг

MAPKA	CT	9J16 KJ1 10 (10 CT	ЯССА Я 5781-61	- <u>i</u> Ti	ХОЛОТІН ВОЛОКА ПО ГО	019H31 CJ 672	CA B-T	CTA No I	IIG KIII OCT 57	900Я Я-I 81-61	
JIOTKA		Ø MM			Ø	MM		φ	MM		BCETO
UIOT KAT	6R 🗓	8 <i>₽ №</i>	<i>1</i> 0 <i>R <u>II</u> </i>	MTOTO	48I	58I	Итого	6AI	10AI	סזסדא	٠ ات
J125g-1	1.6	4.9	-	13.5	2.3		2.3	0.5	1.8	2.3	18.1
J125g-2	-	6.3	12.2	.18.5	1.1	1.7	2.8	0.5	1.8	2.3	23.6
11259-3		41	18.1	22.2	0.8	2.3	3.1	0.5	1.8	2.3	27.6

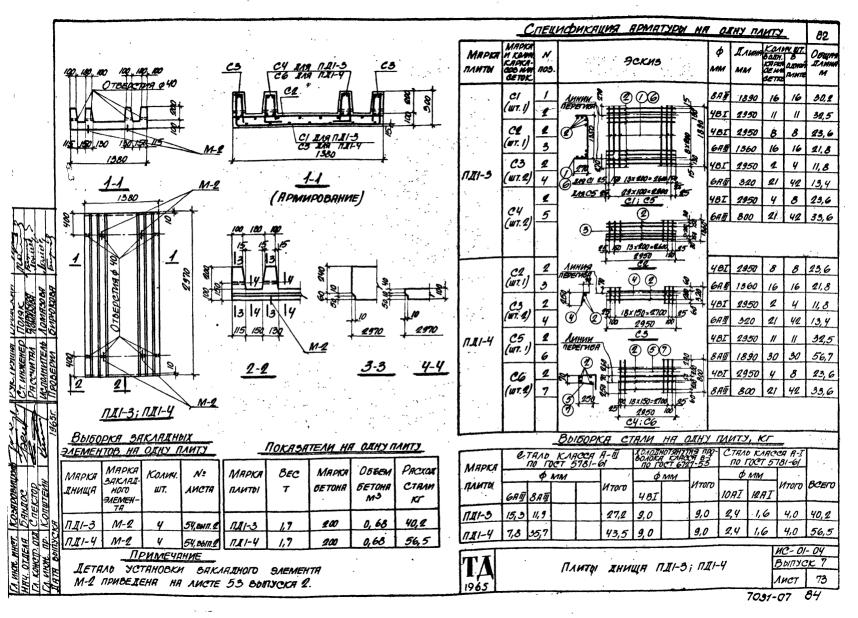
TA 1965

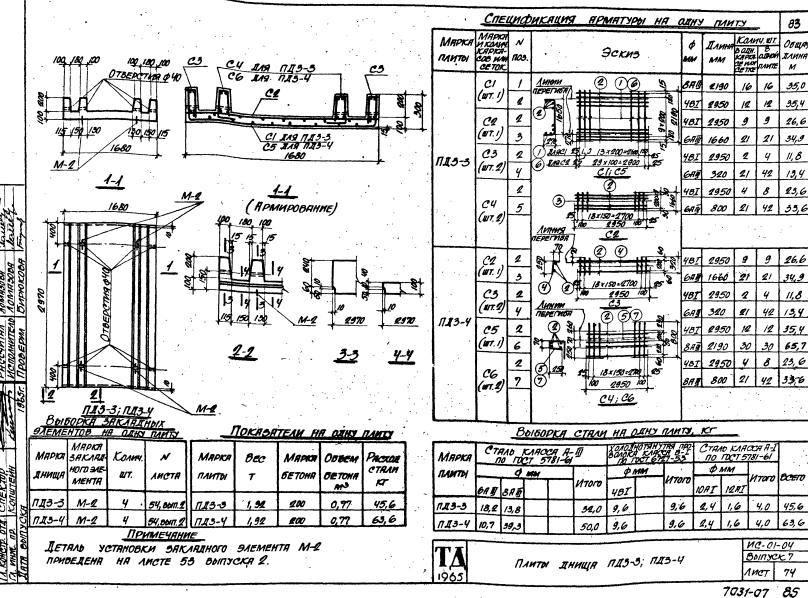
Доборные лютки Лебд-1; Лебд-2; Лебд-3. Спецификация принтуры ИС-01-04 ВЫПУСК 7 ЛИСТ 68

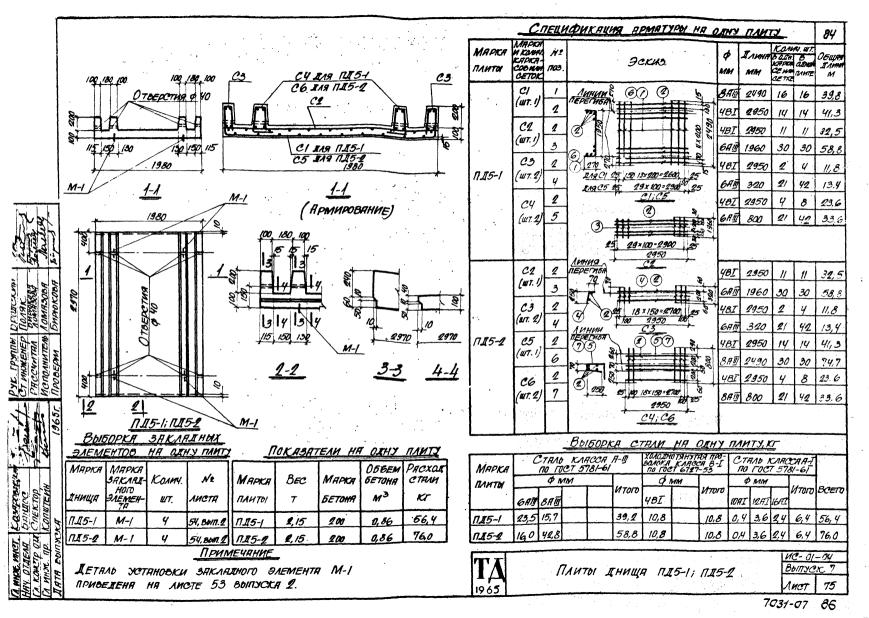
MAPKA BOTKA	MAPEA IN COUNTY. IMPRIADO MATA CETON-	N 103.	Эсилэ	Ø MM	Длина Мм	КОЛИ В ОДН. КИРКЯ-	BOTHOM	79 0su
	-	6		JO PIÑ	3600	CETILE 6	TOTKE	M St.
·	C6 (wr.i)	7	200 B R R R R R R R R R R R R R R R R R R	5BI	549	18	18	9.7
	(=.,)		970 80 5100 20 80 5400 E		,			
J126g-3	077	7	(B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	5BI	540	9	9	4.9
•	С7 (<i>шт.і)</i>	8	82 02 21.53 80 Start Res	IOR III	/680	5	5	8.4
		2		48I	540	5	10	5.4
	C8	9	9	ВЯ≀Щ	980	4	8	7.8
	(27.24)		540 S				·	
. 5	OTTLETICH CTEPTICHU	5	См. Выше	GRI	CP. 140	-	12	1.7

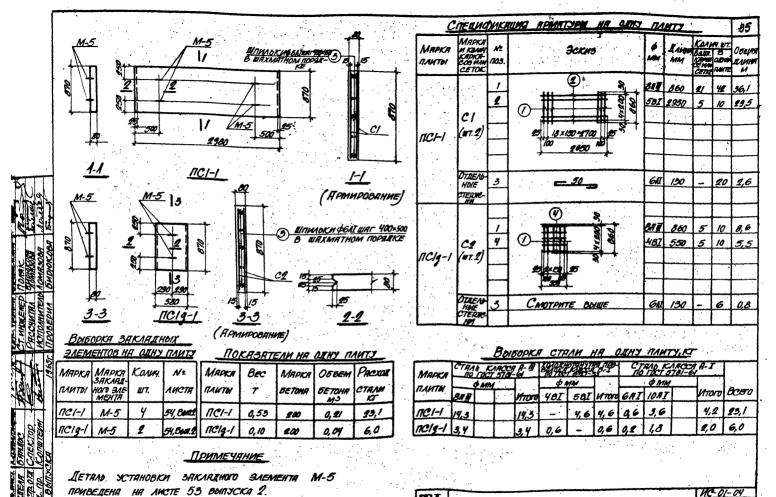

Выборка стали на один лоток ка

МАРКА	CTA	116 KITI 100 ON	900A 578/	7-/ <u>îî</u> -6]	XONOXIA BOJIOKA TO OT		CA B-I		TAJIG K NO FOCT	JIACCA A 5781-61.	- <u>T</u>	
лапка		Ø MI	4		Ø	MM			Ø M	М		
MOINA	6₽∰	8 <i>RII</i> I	10Pm	סוסדא	48I	5 8 <u>T</u>	Итого	6AI	10R <u>T</u>		סוסדא	BCETO
11269-1	2.2	8.3	-	10.5	2.0	-	2.0	0.4	1.8		2.2	14.7
J126g-2	2.2	-	13.0	15.2	0.5	2.3	2.8	0.4	1.8		2.2	20.2
J1269-3	-	3./	18.5	21.6	0.5	2.3	2.8	0.4	1.8		2.2	26.6

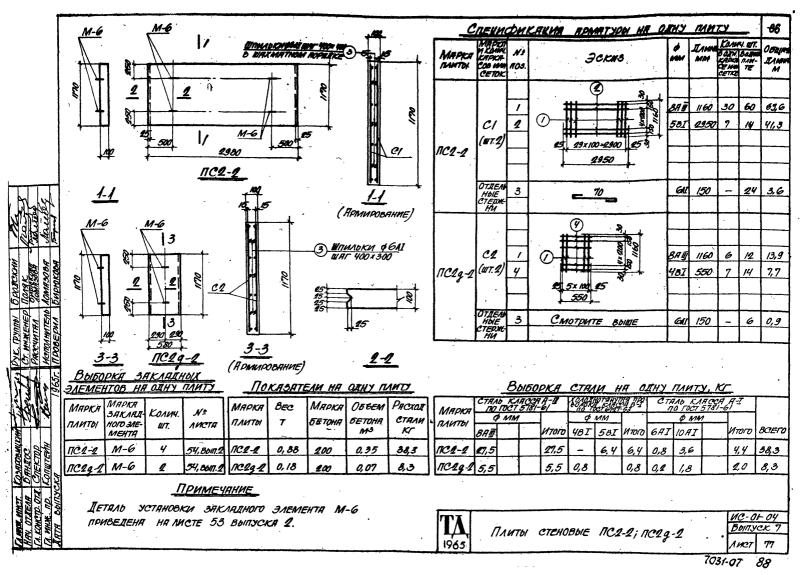

1965

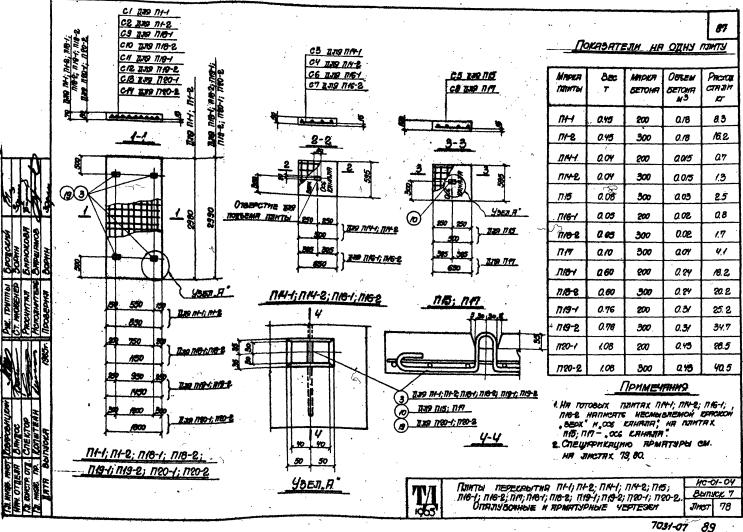

Доборные лотки Л26 д-1; Л26 д-2; Л26 д-3. CHELLIAPHICALINA RPMATYPH

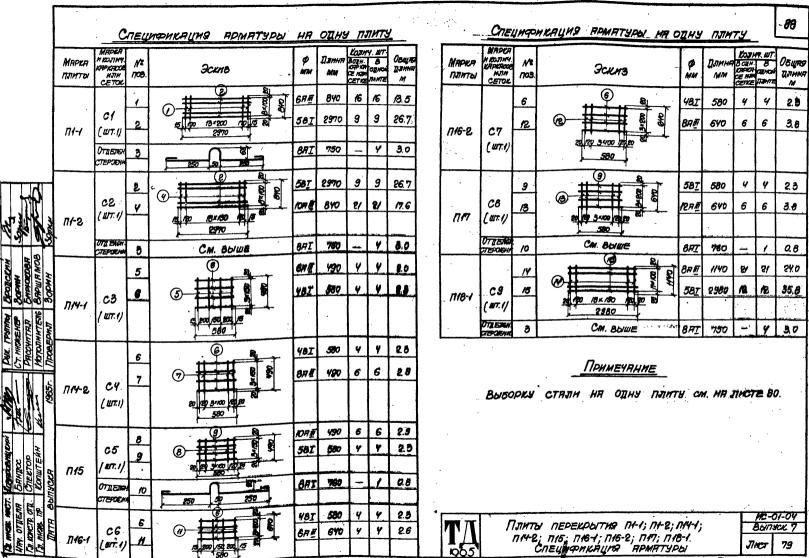

MC-01-04 Выписк 7 JINCT 70



		אונסו א	N	ФИКЛЦИЯ ЯРМЯТУРЫ НЯ ОГ		ЛОТО Дзиня			, .	·	CTEUV MRPICA		яцп9	RPMR'	ТЧРЫ	HR O	ДИН	JOTO	 -		81
	TOTICA	KAPKACOB MILH CETOK	1708.	GCKN3	Ø MM	ММ	BOTH KAPKA CE MA CETILE	OHOM JOTKE	Обиря Плини М	MAPKA	H KOTHY. OPPLACOB MIN CETOL	N 708.	٠	Эс	413		MAN	IJIM MM	BOTT	HY. WT. B OILHON TIOTICE	ОБЩА S
,		С1 {шт.])	e	© 000 000 000 000 000 000 000 000 000 0	<u>вяё</u> 4ві	4260 540	5	5	21.3 41.9		.С6 (шт. 1)	6 7	© 7 HHI 089	188	7	8.6	58.	T -	6	6 22	M 25.6 11.9
The state of the s	1 <i>0</i> 7g-/	С2 {шт.i)	2 3	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	481 87 ii	540 1700	9	9	4.9 6.8	J127g-3	С7 { шт. I)	7 ⁻²	(8)	21/29 8 540 50	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	583 10Rij		_	9	4.9 8.5
TITIS DOGLAND EHEP TOUGH THI TOUGHSOBB TITES JOHNBOBB		СЗ (шт.2)	2 4	(2) (3) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	48I 88 <u>ii</u>	540 1300	7 4	#4 B	7.6 10.4		СЗ (ШТ. 2) ОТПЕЛБН: СТЕРОЖНИ	2 4 5			SHWE		481 881 681	1300 CP.	4	14 8 12	7.6 10.4 2.1
PACHIEN PROGNITATI PROGNITATI PROGENITATI PROGENITATI		ОТЦЕЛЬН: СТЕРЭКНИ	5 6	07 HO 10 200 C MATERS.	681 108 m	CP. 170	-	æ	2.1		СТЯЛ6 По			CTFIJIP KONOTIHO BONOTER TIO TO		9 <u>лю</u> - 1 <u>В</u> -Т		OK, K 196 KI 1901 S		A-I	·
1982		c4	7	083) 0836 003.6	58I	540	5	5	21.3 11.9	МЯРКЯ ЛОТКЯ	Ф 8 <i>н <u>ії</u></i>	10R (i	ј Итого	φ 481	58I	H toro	6 <u>ЯТ</u>	D MM DPI	7 07 97	Итого	Всего
J. S. J.	1219-2	(шт.1)		250 2021:50 pag 20 82 540						J127g-1 J127g-2 J127g-3	15.2 7.5 4.1	13.1 21.0		2.4 1.2 0.8	1.8 2.6		0.5 0.5 0.5	1.8 1.8 1.8		2.3 2.3 2.3	19.9 25.9 30.8
ENHIO CHEETO CONEUTA SCER		С5 { шт. 1)	3	3 80 00 20 150 100 100 100 100 100 100 100 100 10	4ВІ 8Я <u>й</u>	540 1700	9	9	4.9 8.5			,									
HRY OTDENA TR CONCTP OTD. TA HYSE. TP.	1	СЗ (шт. 2) Отцельн. Спераюни	2 4 5	См. Выше	48I 8RM 6RI	540 1300 CP.	7 4	14 8 12	7.6 10.4	TA	ДC	050PH	ые ло пецифи	אאר אאר	71g-1;	J1279-2;	J127g	- -3.	F	ИС-0 Выпы	

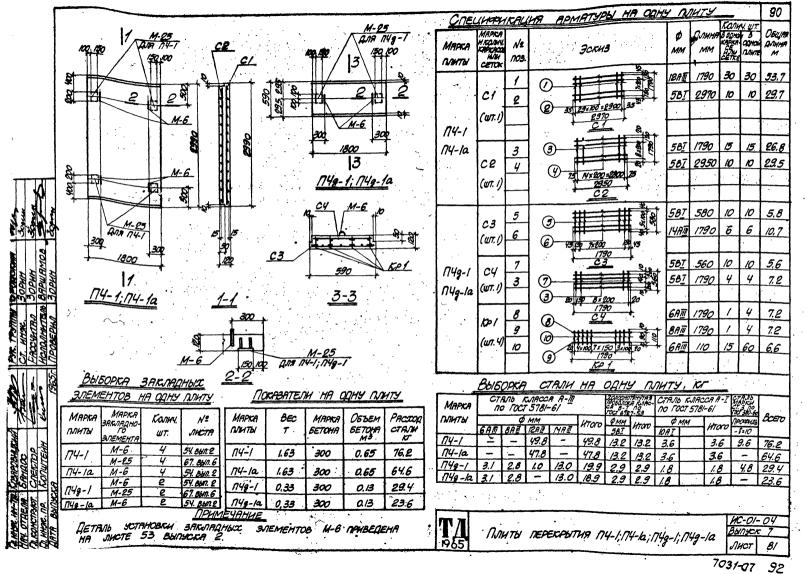


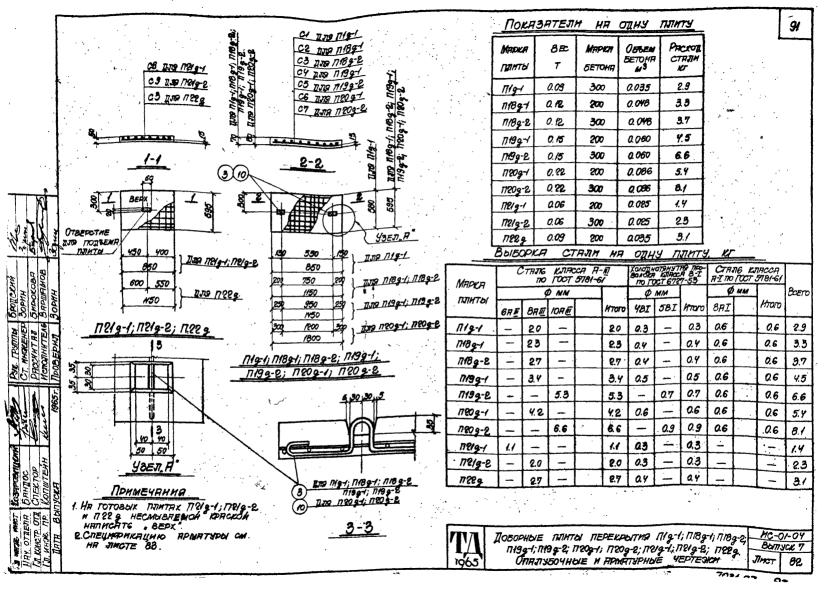



7016-07 87

BOMYCK ?

MANTO CTENDONE MCI-1; MCIQ-1





7031-07 90

		CTE.	Ma	ЙСПЦИЯ БАРМЯТУРЫ НА	οĮ						Вы	50P)	CR.	СТЯ	ЛН	HA	ОДН	, ,	דאתו			· L	89
	MAPKA	H BOJINY KAPYACOB HBH DETOK	. N2 1008.	Эохнз	, Ø MM	IJMHR	BODY WHOCK MAN CETTE	8	051479 2,314471 11		Марка	Ç.	ז פת	KJIRO 007 50	18/-6/	·Ñ	BOROCA	OTENSTI PARCE OCT 678	CA 8-7 1		OCT 57		
		C10	N		888	#40	30	30	34.2		ואדמוניו	6A §		MA	RAÑ	Hraro		58 I	/ho/o	· · · · · ·	WM	Maro	Bozra
	P18-2	[417 1]	15	20/22 774/00 00 20	587	2580	2	R	35.8		N1-1	3.0	<u>"</u>		_	3.0		41	4.1	12		12	83
·		TETON C SCHOOL		2980							71-2	-	1	10.9	-	10.9	-	4.4	4.1	1.2	·	1.2	16.2
·		C-3075W	3	Car. TINCT 79	BMI	750	7	*	3.0	1	N 14-1	0.5	شكم	-	1	0.5	0.2	-	0.2			_	0.7
M		211	15	(a) (a) (b) (c) (c)	587	2980	/5	/5	W.7		7/4-5	1	1.1.	1	+	1.1	0.2		2.0				1.3
1711/1	<i>1119-1</i>	(47.1)	16	20.40 F1100 F BE	884	mo	30	30	48.2		715	+	-	1.8	_	18		04	0.4	0.3	ļ	03	2.5
和以	.7	O TENGH		2980							MIGY	0.6	_	_	-	0.6	22	-	3.0	_		_	0.8
5.0		CTEPORNI	. 5	См. ЛИСТ 79 (В) R ₁	BAT	750	-	4	30		716-2		15	-		15	ae	-	22	-	<u> </u>	_	1.7
Бирсин Зорин Впринямов Зорин	5/0 a	CR	15	@ # # # # 8	587	2980	15	15	44.7		717			-	34	3.4	-	04	ay	0.3	_	0.3	4.1
0000 0000 0000000000000000000000000000	Π19-2. ·	T 111.11	17	N 40 271/00 40 10 10	10A S	1440	30	30	¥3.2		7/8-1	-	9.5	_	_	9.5	_	5.5	5.5	1.2	_	1.2	16.2
TAN TAN	,	UT 11 5.76		2980			_				7/8-2	-	13.5	_	_	13.5	<u> </u>	5.5	5.5	1.2		12	20 2
23250		TEPORTH	3	CM JIMCT 79	BAT	750		4	30		TISW	_	17.1	_	_	17.1	_	6.9	6.9	1.2		1.2	25.2
Pye 7 Opec Trano		(UT 1)	15		58I BAII	2960 77 9 0	30	30	38.7 53.7		1749-2	_	<u> </u>	26.6	_	26.6		6.9	6.9	1.2		1.2	347
711	T20-1			20 kg 77 1/00 /b 30 R			-	-			450-4	-	21.2	-	-	21.2	_	6.0	6.0	1.8		1.3	28 5
		OTTLEAGH CTEPCHENE	/9	250 30 230	BRI	800	=	y	32		1120-2	_		552	_	33.2	<u> </u>	6.0	6.0	1.3	<u></u>	13	10.5
				. 8	50-			-	-														•
South South		C14	15		5ai Iorii		B	13	38.7														
CONTRACTOR	Л20-2	(1171)	20	20 /10 27=100 100 20 20	1	7790	30	30	597														
1 0 15 10		OTTO		2380	·		1			•													
1 1 2	لبحد	OTHERS.	19	CM. BOILLE	8AI	800	-	4	3.8														
HRV OT TO WORD					•					,	TA			/ //B						9-2 ; 974P6		MO- BUIT JIMGT	90.04 90.7 80
					,, 	******	-	-	· · · · · ·		1965	·	1204;	1180-8	ā. U	· EUN	-prika				-	77 5	

Мяркя плиты	MAPKA M KOJIMY. KAPKA - OOB MAH CETOK	/E /100.	Эскиз	Ø MM	ДЛИНЯ ММ	KOJIII BOH GRAN GRAN CETTO	B CELHON		МЯРКЯ	MADKA M KOSIM KIPKA - COB MAN CETOK	N2 1103.	Эскиъ	Ø MM	ДПИНЯ ММ	KOTHY BODIES DIDICE CEMM CETCE	8
TH g-1	C/ (WT.1)	./ 2	2 4-200 50 E	8Я <u>й</u> 48 І	840 5710	6 5	5	5.0 2.9	П20g-1	C6 (ET.1)	5 9 §	9 15 190 71200 PA 5 1790	48 <u>I</u> 87 <u>4</u>	580 1790	10 6	10
	OTREACH CTEPONOM		250 Sp 250	8HI	750	-	2	1.5		OT TERMEN	10 =	250 \$9 250	877	800		2
N18g-1	С2 [ШТ.1]	5	© 71/40 1/40	<i>8₽₫</i> <i>48</i> <u>T</u>	580	7	5 7	5.7	1720g-2	C7 (MT.1)	8 11 18	(20 7×20 20 55	58 <u>T</u> 107Ē	580 1790	10	10
	CTEPOIGHE CTEPOIGHE C3	3 4 5	CM. BUWE (9)	8HI 8HM 4BI	1140	- 6 7	2 6 7	1.5 6.8 9.1		OTELEMEN.	10	71.90 CAI. BOUME	BAI 48I	<i>800</i> 580	5	2
П18g-2	OTREASH CEPTION		28 ds 4 200 fx 20 8 1/40 CM. Bb/WE	<i>вя</i> І	750	-	2	1.5	П2 /g -f	08 (ur.1)	re 3	2 4*800 20 88 940	6₽Æ	840	6	6
T119g-1	C4 (<i>ur.i)</i>	5 6	20 7×200 ge 8	89¶	580	6	6	%6 8.6	mou.	c9	5 3	© 88 88 88 88 88 88 88 88 88 88 88 88 88	87 <u>#</u> 48I	840 580	6 5	6 5
	OTHERS A	7	CM. BUWE	871 /094		- 6	8	1.5	T21g-2			9 4×200 20 80	8# <u>#</u>	1/90	6	
∏19g-2	(MT. I)	В	9 7"000 22" MO	581	580	8	8	4.6	17229	(107.1)	5	CM. 86WE	48 <u>T</u>	//YO 580	7	7
	CTEPONE.		См. Выше	8R <u>T</u>	750	_	2	1.5	1965	Д050 п.е	DHUE 1141 99-1; 1149	иты перекрытия Піді; -2; п20 д-1; п20д-2; П21д-1 Фикация приятурі	П18g-1; П21g-	;ПВд-2 2;П22 д	; H B	C-(