Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение меламина в молоке и молочных продуктах

Методические указания МУК 4.1.2420—08

Издание официальное

Москва 2008

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1.МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение меламина в молоке и молочных продуктах

Методические указания МУК 4.1.2420—08 ББК 51.23 Об0

Обо Определение меламина в молоке и молочных продуктах: Методические указания. — М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008.—16 с.

ISBN 5-7508-0780-0

1. Разработаны ГУ НИИ питания РАМН (В. А. Тутельян, К. И. Эллер, В. В. Пименова, О. И. Передеряев, С. В. Волкович, Ю. В. Медведев).

- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 30 сентября 2008 г.
 - 3. Введены в действие с момента утверждения.
 - 4. Ввведены впервые.

ББК 51.23

Редакторы Н Е Акопова, Н В Кожока Технический редактор А. А. Григорьев

Подписано в печать 24.12.08

Формат 60х88/16

Печ. л. 1,0 Заказ 83

Тираж 500 экз

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер. д. 18/20

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш, 19а

- © Роспотребнадзор, 2008
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008

Содержание

1.	Краткая характеристика меламина	4
2.	Методика определения меламина в молоке и молокосодержащих продуктах методом высокоэффективной жидкостной хроматографии	5
3.	Оперативный контроль результатов измерений	15
4.	Требования техники безопасности	16
5.	Требования к квалификации операторов	16
6.	Условия измерений	16

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации,

Г. Г. Онищенко

30 сентября 2008 г.

Дата введения: с момента утверждения

4.1.МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение меламина в молоке и молочных продуктах

Методические указания МУК 4.1.2420—08

Настоящие методические указания устанавливают метод жидкостной хроматографии высокого разрешения для определения в пищевых продуктах массовых концентраций меламина в диапазоне 1,0—100,0 мг/кг и предназначены для органов и организаций Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, а также других испытательных лабораторий, аккредитованных в порядке, установленном Правительством Российской Федерации, осуществляющих контроль качества и безопасности продовольственного сырья и продуктов питания.

1. Краткая характеристика меламина

Общепринятое название: меламин.

Название по номенклатуре ИЮПАК: 1,3,5-триазин-2,4,6-триамин.

Синонимы: 2,4,6-триамино-1,3,5-триазин, цианурамид, циануротриамид, циануротриамин, цимел.

Структурная формула показана на рис. 1.

Эмпирическая формула: С, Н, N,

М. м.: 126,15.

CAS номер: 108-78-1.

Физические свойства: бесцветное кристаллическое вещество, температура плавления 364 °С (с разл.), плотность D 1,571 г/см³.

Растворим в воде (0,5% по массе при 20 °C, 4 % при 90 °C), нерастворим в органических растворителях.

Рис 1. Меламин

В водных и щелочных растворах по мере увеличения температуры меламин гидролизуется последовательно до аммелина, аммелида и циануровой кислоты.

В промышленности меламин используют для получения меламино-формальдегидных и ионообменных смол, ингибиторов коррозии и др.

Меламин относится ко 2-й группе токсичности. В Российской Федерации не допускается наличие меламина в пищевых продуктах (менее 1 мг/кг).

2. Методика определения меламина в молоке и молокосодержащих продуктах методом высокоэффективной жидкостной хроматографии

2.1. Основные положения

2.1.1. Принцип метода

Методика основана на определении меламина в молоке и молочных продуктах методом обращеннофазной высокоэффективной жидкостной хроматографии (ВЭЖХ) с использованием диодно-матричного детектора или УФ-спектрофотометрического детектора с переменной длиной волны (длина волны 236 нм) после экстракции водным раствором трифторуксусной кислоты или смесью ацетонитрил—вода 50:50.

В качестве арбитражного метода используют метод ВЭЖХ с масс-спектрометрическим детектированием.

2.1.2. Метрологические характеристики метода, установленные для разных концентраций меламина в пробе

Таблица 1

Метрологические	Концентрация меламина в пробе, мг/кг		
характеристики	2,0	20,0	
Границы относительной погрешности (показатель точности) ($\pm \delta$), %, $P = 0.95$	13,10	7,65	
Стандартное отклонение повторяемости (σ _c), мг/кг	0,37	2,15	
Предел повторяемости (г), мг/кг	0,99	5,8	
Предел обнаружения, мг/кг	1,0		
Предел количественного определения, мг/кг	5,0		
Полнота извлечения веществ, %	78,5	92,0	

Примечание: метрологические характеристики рассчитаны для образцов с содержанием меламина 2,0 и 20,0 мг/кг.

2.2. Реактивы

Ацетонитрил для жидкостной хроматографии с коэффициентом пропускания на 220 нм не менее 95 % или выше.

Вода дистиллированная, ГОСТ 6709.

Гексансульфокислота, осч.

Гидроксид натрия, осч.

Кислота трифторуксусная > 99,8 %, хч, ГОСТ 18270—72, водный раствор с концентрацией 50,0 %.

Лимонная кислота, осч.

Меламин, > 99,8 %.

Метанол, осч.

Натрий уксусно-кислый, 3-водный, ГОСТ 199-68, хч.

Тест-система Abraxis melamine plate kit производства ООО «Стайлаб» или аналогичная.

2.3. Приборы, аппаратура, посуда

Жидкостный хроматограф с насосом высокого давления с подачей растворителя от 0,1 до 5,0 см³/мин.

Хроматографическая колонка с силикагелем, химически связанным с октадецилсиланом (ODS или C18), размер частиц 5 мкм, длина колонки 250 мм, внутренний диаметр колонки 4,6 мм, или аналогичная.

Система ВЭЖХ-МС: масс-спектрометр Agilent MSD Trap SL «ионная ловушка» или аналогичная.

Спектрофотометрический детектор с переменной длиной волны и системой для сбора и обработки хроматографических данных Мультихром, версия 1,5х (Амперсенд, Россия) или аналогичной.

Микрошприц МШ-25 для жидкостной хроматографии или

аналогичный.

Ультразвуковая установка, например, Ultrasonic Cleaner, CTBRAND, с частотой ультразвука 43—45 KHz или аналогичная.

Аппарат для встряхивания проб типа АВУ-6С, ТУ 64-1-2451—78 или аналогичный.

Центрифуга с числом оборотов не менее 10 000 об./мин или аналогичная.

Весы лабораторные общего назначения по ГОСТ 24104 с наибольшим пределом взвешивания 200 г и погрешностью \pm 0,0001 г. Блендер.

Колбы мерные наливные 2-50-2, 2-100-2, 2-250-2, 1-1 000-2 по ГОСТ 1770.

Колбы плоскодонные по ГОСТ 25336 с конусом $^{14}/_{23}$ вместимостью 100 см³.

Цилиндры по ГОСТ 1770 вместимостью 100 см³.

Пипетки 4-1-2 или 5-1-2, 4-2-10 или 5-2-10, 4-2-25 или 5-2-25 по ГОСТ 29227.

Вайл (емкость 4-6 см 3 с герметично завинчивающейся крышкой).

Фильтры беззольные ФО-ФС-15 «Синяя лента», ТУ 2642-001-42624157—98.

Фильтры капроновые марки 0,45 мкм RC или аналогичные.

Допускается использование приборов и посуды с метрологическими характеристиками и реактивов квалификацией не ниже указанных в МУК.

2.4. Отбор проб

Для учета специфики отбора проб отдельных видов продуктов следует руководствоваться действующей нормативно-технической документацией на конкретную продукцию.

2.5. Подготовка к определению

2.5.1. Приготовление стандартных растворов меламина

Навеску (0.02 ± 0.0001) г кристаллического меламина количественно переносят в мерную колбу вместимостью 100 см³, растворяют примерно в 50 см³ дистиллированной воды, при необходимости озвучивают на ультразвуковой бане до полного растворения вещества, доводят дистиллированной водой до метки и тщательно

перемешивают. Получают основной стандартный раствор в дистиллированной воде с массовой долей меламина 200 мкг/см³. Для получения рабочих стандартных растворов последовательно разбавляют основной стандартный раствор.

Раствор № 1: в мерную колбу вместимостью 100 см³ помещают 10 см³ основного раствора и доводят объем до метки дистиллированной водой. Получают раствор с концентрацией 20 мкг/см³.

Раствор № 2: в мерную колбу вместимостью 100 см³ помещают 1 см³ основного раствора и доводят объем до метки дистиллированной водой. Получают раствор с концентрацией 2 мкг/см³.

Основной и рабочие стандартные растворы меламина хранят в стеклянной посуде (мерной колбе) с притертой пробкой в прохладном месте (при температуре около 0 °C). Сроки годности основного раствора — 3 месяца, рабочих растворов — 1 неделя.

2.5.2. Подготовка пробы пищевого продукта для анализа

2.5.2.1. Подготовка образца молока и жидких молокосодержащих продуктов

Навеску $(1,0\pm0,01)$ г молока или восстановленного молока (полученного добавлением к 5 г сухого молока 50 см³ воды), или гомогенизированного жидкого молокосодержащего продукта, помещают в пробирку для центрифугирования типа «эппендорф» и добавляют 0,2 см³ 50,0 %-й трифторуксусной кислоты. Пробирку плотно закрывают, встряхивают и помещают на 5 мин в ультразвуковую баню при комнатной температуре. Пробирку центрифугируют 15 мин в интервале оборотов от 4000 до 1000 об./мин. Аликвота супернатанта (10-20 мкл, $V_{\text{вколь}})$ вносится в инжектор жидкостного хроматографа.

В случае высоких концентраций меламина аликвоту супернатанта разбавляют.

2.5.2.2. Подготовка образца твердых молокосодержащих продуктов

Навеску $(10,0\pm0,01)$ г измельченного и гомогенизированного в блендере молокосодержащего продукта помещают в коническую колбу вместимостью $250\,\mathrm{cm}^3$, добавляют $50\,\mathrm{cm}^3$ смеси ацетонитрилдистиллированная вода (1:1 по объему). Смесь встряхивают на аппарате для встряхивания в течение $30\,\mathrm{muh}$, переносят в центрифужные стаканы, центрифугируют $15\,\mathrm{muh}$ при $2\,000$ об./мин, отделяют и замеряют объем полученного супернатанта.

Аликвоту экстракта (1 мл) помещают в пробирку для центрифугирования типа «эппендорф» и добавляют 0,2 см³ 50,0 %-й трифторуксусной кислоты. Пробирку плотно закрывают, встряхивают и центрифугируют 15 мин в интервале оборотов от 4 000 до 10 000 об./мин. Аликвота супернатанта (10—20 кл, V_{вхола}) вносится в инжектор жидкостного хроматографа.

2.6. Обнаружение и количественное определение меламина методом высокоэффективной жидкостной хроматографии (ВЭЖХ)

Образцы анализируют методом ВЭЖХ на жидкостном хроматографе с насосом высокого давления с подачей растворителя от 0,1 до 5,0 см³/мин, оборудованном спектрофотометрическим детектором с переменной длиной волны и системой для сбора и обработки хроматографических данных.

2.6.1. Калибровка хроматографа

Для градуировки в хроматограф вводят пробы рабочих стандартных растворов меламина концентрациями 2 и 20 мкг/см³ объемами 5, 10 и 20 мкл (мм³) (от 10 до 400 нг), регистрируют их площади и времена удерживания на хроматограммах.

2.6.2. Условия обращеннофазной ВЭЖХ (1-й способ)

Хроматографическая колонка с силикагелем, химически связанным с октадецилсиланом (ODS или C18), размер частиц 5 мкм, длина колонки 250 мм, внутренний диаметр колонки 4,6 мм, или аналогичная.

Подвижная фаза: ацетатный буфер, pH = 5,5.

Скорость подачи подвижной фазы: 1,0 см3/мин.

Объем вводимой пробы 5-20 мкл.

Коэффициент емкости меламина в этих условиях составляет величину порядка 2,5 (время удерживания от 6,5 до 7,0 мин, при времени выхода растворителя от 1,8 до 2,2 мин).

Приготовление подвижной фазы: $(3,0\pm0,01)$ г уксусно-кислого натрия, 3-водного помещают в мерную колбу вместимостью 1 дм³, добавляют дистиллированной воды до половины объема колбы, перемешивают до полного растворения соли, уксусной кислотой доводят рН до значения 5,5 и доводят дистиллированной водой до метки. Раствор фильтруют через фильтровальную бумагу с диаметром пор 0,5 мкм.

Детектирование осуществляют при аналитической длине волны 236 нм (при использовании фотодиодноматричного детектора дополнительным подтверждением наличия меламина является совпадение УФ-спектра анализируемого вещества в диапазоне от 200 до 400 нм с УФ-спектром меламина).

При масс-спектрометрическом детектировании: сканирование в диапазоне от 70 до 150 m/z, с разложением ионов, соответствующим молекулярной массе меламина (127 m/z) и определение дочерних ионов, характерных для меламина (85 m/z).

2.6.3. Условия ион-парной ВЭЖХ (2-й способ)

Хроматографическая колонка с силикагелем, химически связанным с октадецилсиланом (ODS или C18), размер частиц 5 мкм.

длина колонки 250 мм, внутренний диаметр колонки 4,6 мм, или аналогичная.

Приготовление подвижной фазы: 10 ммоль (1,92 г) лимонной кислоты и 10 ммоль (1,66 г) гексансульфокислоты растворяют в 1 л дистиллированной воды и доводят 1 М раствором гидроксида натрия до рH=4,7.

Состав подвижной фазы: ацетонитрил—буферный раствор (1:9).

Скорость подачи подвижной фазы: 1,0 см3/мин.

Объем вводимой пробы: 5-20 мкл.

Коэффициент емкости меламина в этих условиях составляет величину порядка 2,0 (время удерживания 6,0 мин, при времени выхода растворителя от 2,0).

2.6.4. Проведение испытаний с помощью метода ВЭЖХ

Идентификацию компонентов на хроматограмме осуществляют путем сравнения со временем удерживания стандарта меламина и совпадения спектральных данных.

Если пик меламина в исследуемом растворе выходит за пределы линейности, хроматографическое разделение проводят повторно после разбавления исследуемого раствора.

2.6.5. Экспресс-методика определения меламина иммуно-ферментным методом (тест-системы Abraxis melamine plate kit, OOO «Стайлаб» или аналогичные)

Сущность метода

В основе процедуры анализа лежит взаимодействие антигенов с антителами.

Поставляемый в комплекте набора планшет сенсибилизирован антителами к меламину. Анализ выполняется следующим образом. Исследуемые (стандартные) образцы и конъюгат меламина с ферментом дозируются в лунки активированного планшета. При инкубации планшета в течение определенного времени молекулы меламина, конкурируя с ферментным конъюгатом меламина, связываются антителами к меламину на поверхности планшета. На последующей стадии отмывки из лунок планшета удаляются неадсорбированные молекулы конъюгата и меламина.

После промывки планшета в его лунки дозируется раствор, содержащий субстрат и хромоген. В процессе инкубации, при химическом взаимодействии субстрата с хромогеном, в котором ферментный фрагмент молекулы конъюгата, связанной на поверхности лунки, выступает в качестве катализатора, образуются окрашенные продукты реакции. После определенного времени развития данной цветной реакции, в результате которой хромоген окрашивается в голубой цвет, в лунки добавляется стоп-реагент, при этом голубой цвет раствора меняется на желтый.

Оптическая плотность в лунках, измеренная на ИФА-анализаторе при 450 нм, обратно пропорциональна концентрации меламина в исследуемых образцах.

Анализ проводится в соответствии с инструкцией к тест-системе. Основные положения приведены ниже.

Предел обнаружения и диапазон определяемых концентраций

Предел обнаружения меламина составляет:

- 0,1 мг/л для молока;
- 0,1 мг/кг для сухого молока и продуктов детского питания;
- 0,16 мг/кг для йогуртов.

Диапазон определяемых концентраций меламина составляет:

- 0,2-5,0 мг/л для молока;
- 0,1-2,5 мк/кг для сухого молока и продуктов детского питания:
 - 0,16-4 мг/кг для йогуртов.

Средства измерения, вспомогательные устройства, реактивы и материалы

Основные (входят в комплект):

- ИФА-анализатор, снабженный фильтром на 450 нм;
- одноканальный дозатор на 50 и 100 мкл с наконечниками;
- одноканальный дозатор переменного объема на 200— 1 000 мкл с наконечниками;
 - градуированные пипетки;
- 8-канальный дозатор на 50 и 100 мкл (дополнительно) с наконечниками;
 - промывалка.

Вспомогательные устройства:

- центрифуга эффективностью 3 500 g с центрифужными пробирками;
 - колба коническая, градуированная на 100 мл;
- стеклянные виалы на 8 мл с винтовыми пробками и тефлоновыми септами;
 - пробирки флакона на 15 мл;
 - листовая фильтровальная бумага.

Необходимые реактивы и материалы

Тест-система для иммуноферментного анализа ABRAXIS Melamine ELISA в стандартной комплектации (или аналогичные системы), включая:

- микротитровальный планшет на 96 лунок (12 стрипов по 8 лунок), сенсибилизированный антителами к меламину;
- комплект стандартных растворов меламина со следующими концентрациями: 0 (нулевой стандарт), 20, 100, 500 мкг/л, по 2 мл;
 - конъюгат меламина с пероксидазой, концентрация 7 мл;
 - · субстрат, 14 мл;
 - стоп-реагент, 14 мл;
- 20 мМ фосфатный буфер (PBS) или таблетированный фосфатный буфер кат № RP202 (2 таблетки на 100 мл).

Пробоподготовка

Молоко

Пробы молока должны быть разбавлены в 10 раз 20 мМ фосфатным буфером с добавкой 10 % метанола (например, смешайте 100 мкл молока и 900 мкл буфера).

Для анализа используют 100 мкл разбавленного молока.

• Сухое молоко и сухие молочные смеси

Восстанавливают сухое молоко и продукт детского питания согласно приложенной инструкции с помощью 20 мМ фосфатного буфера с добавкой 10% метанола.

Восстановленные пробы молока должны быть разбавлены в 5 раз 20 мМ фосфатным буфером с добавкой 10 % метанола (например, смешайте 50 мкл молока и 200 мкл буфера).

Для анализа используют 100 мкл разбавленного молока.

• Йогурт

Взвешивают 5 г йогурта в центрифужной пробирке на 15 мл. Добавляют 5 мл 20 мМ фосфатного буфера с добавкой 10 % метанола и встряхивают пробирку в течение 1 мин.

Центрифугируют в течение 10 мин при ускорении 3 500 g.

Разбавляют супернатант в 4 раза 20 мМ фосфатным буфером с добавкой 10 % метанола.

Для анализа используют 100 мкл разбавленного супернатанта.

Процедура проведения измерений

Вставляют в рамку планшета лунки в количестве, необходимом для выполнения всех запланированных определений в двух повторностях. Записывают координаты лунок, предназначенных для стандартных растворов и подготовленных исследуемых растворов.

Добавляют по 100 мкл стандартных и разбавленных исследуемых растворов в соответствующие пары лунок. При каждом дозировании используют новый наконечник дозатора. Добавляют в каждую лунку по 50 мкл конъюгата и тщательно перемешивают, осто-

рожно вращая планшет в течение 60 с. Оставляют на инкубацию при комнатной температуре (20—25 °C) в течение 30 мин в темноте.

Выливают жидкость из лунок, переворачивая рамку планшета. С помощью дозатора наполняют каждую лунку 250 мкл моющего буферного раствора и снова выливают жидкость. Повторяют процедуру промывки лунок еще два раза.

Добавляют по 100 мкл субстрата в каждую лунку. Перемешивают и инкубируют при комнатной температуре в течение 20 мин в темноте.

Добавляют в каждую лунку по 100 мкл стоп-реагента и хорошо перемешивают. В течение 10 мин после добавления стоп-реагента измеряют оптическую плотность в каждой лунке при 450 нм относительно воздуха.

Обработка результатов исследования

Средние значения оптической плотности, измеренные в лунках со стандартными и исследуемыми растворами, делятся на среднее значение оптической плотности, измеренной в лунках с первым (нулевым) стандартом, результат умножается на 100. Таким образом, результат измерения оптической плотности выражается в процентах от оптической плотности лунки с нулевым стандартом. По величинам относительного поглощения, вычисленным для стандартных растворов и соответствующим значениям концентрации меламина (мкг/л или мкг/кг), строится калибровочная кривая в полулогарифмической системе координат.

Концентрация меламина в исследуемых растворах (мкг/л или мкг/кг) считывается по калибровочной кривой соответственно относительному поглощению, измеренному и вычисленному для этих растворов.

2.7. Обработка результатов измерения

2.7.1. В молоке и жидких молокосодержащих продуктах

Содержание меламина в образцах молока и жидких молокосодержащих продуктах рассчитывают методом абсолютной калибровки по формуле:

$$C = \frac{m \times S_{\text{обр}} \times V_{\text{общ}}}{S_{\text{ст}} \times V_{\text{вкола}} \times M}$$
, где

С - массовая концентрация меламина, мг/кг;

m — масса внешнего стандарта меламина, введенного для калибровки хроматографа, мкг;

 S_{obp} — площадь пика исследуемого компонента;

S_{ст} – средняя площадь пика внешнего стандарта меламина, введенного для калибровки хроматографа;

 $V_{\text{вкола}}$ — общий объем анализируемой пробы, мкл (1 200 мкл); $V_{\text{вкола}}$ — объем аликвоты, введенной в хроматограф, мкл (10 мкл);

М – навеска пробы, г (1,0 г).

При указанных в методике параметрах и массе внешнего стандарта 0,1 мкг формула выглядит следующим образом:

$$C = \frac{12 \times S_{\text{obp}}}{S}.$$

2.7.2. В твердых молокосодержащих продуктах

Содержание меламина в образцах твердых молокосодержащих продуктах рассчитывают методом абсолютной калибровки по формуле:

$$C = \frac{m \times S_{\text{обр.}} \times V_{\text{общ}} \times V_{\text{экстр}}}{S_{\text{ст.}} \times V_{\text{вкорв.}} \times m_{\text{обр.}}}$$
, где

С - массовая концентрация меламина, мг/кг;

 m — масса внешнего стандарта меламина, введенного для калибровки хроматографа, мкг;

S_{об} – площадь пика исследуемого компонента;

S_{ст} — средняя площадь пика внешнего стандарта меламина, введенного для калибровки хроматографа;

 $V_{\text{жет}}$ — общий объем экстракта, мл (50 мл);

 $V_{\text{обш}}^{\text{экстр}}$ — общий объем анализируемой пробы, мкл (1 200 мкл);

V_{ал} – аликвота экстракта, используемого для дальнейшего анализа пробы, мл (1 мл);

V_{вкола} — объем аликвоты, введенной в хроматограф, мкл (10 мкл);

 m_{obs} — навеска пробы, г (10,0 г).

При указанных в методике параметрах и массе внешнего стандарта 0,1 мкг формула выглядит следующим образом:

$$C = \frac{60 \times S_{\text{obp}}}{S_{\text{cm}}}.$$

Вычисления проводят до второй значащей цифры. За результат принимают среднее арифметическое результатов двух параллельных измерений.

3. Оперативный контроль результатов измерений

3.1. Проверка приемлемости результатов параллельных определений

Хроматографирование проб проводят не менее двух раз, сравнивают отношение площади пика исследуемого вещества к площади пика внешнего стандарта меламина (М) и результат считают удовлетворительным, если эта величина не превышает 5 %.

Допустимое расхождение между параллельными измерениями (R) определяют на основании предела повторяемости (r) (табл. 1):

$$R = 0.01(r,\%) \times \overline{X}$$
, Mr/Kr.

Если расхождение между параллельными определениями не превышает допустимого:

$$\left|C_{(M)l}-C_{(M)2}\right|\leq R,$$

то среднее арифметическое принимают за результат анализа.

При превышении норматива R следует повторить измерения, используя новую пробу.

3.2. Контроль качества результатов измерений

Периодичность контроля погрешности измерений зависит от количества рабочих измерений за контролируемый период и определяется планами контроля.

Образцами контроля являются рабочие пробы пищевых продуктов. Отбирают пробу и разделяют ее на 2 равные части. Одну из них оставляют без изменений, а к другой добавляют раствор стандарта меламина, такое количество, чтобы его массовая доля в пробе по сравнению с исходным значением увеличилась на 50—100 %. Добавка должна вводиться в пробу перед началом пробоподготовки.

Обе пробы анализируют в точном соответствии с прописью методики и получают результаты анализа исходной пробы $(C_{(M)})$ и пробы с добавкой $(C'_{(M)})$. Определение проводят в одинаковых условиях, а именно: анализ проводит один аналитик, с использованием одного набора мерной посуды, реактивов, растворов и т. д.

Алгоритм проведения оперативного контроля погрешности с использованием метода добавок состоит в сравнении результата контрольного определения, равного разности между результатом контрольного измерения пробы с добавкой $(C'_{(M)})$, пробы без добавки $(C_{(M)})$ и величиной добавки $(C_{\text{доб}(M)})$ с нормативом оперативного контроля (К). Решение об удовлетворительной погрешности принимается при выполнении следующего условия (при P=0,95):

$$\left|C'_{(M)}-C_{(M)}-C_{1006\,(M)}\right|\leq K.$$

Норматив оперативного контроля погрешности рассчитывают по формуле (P = 0.90):

$$K = 0.84 \times \left(\Delta^2 C'_{(M)} + \Delta^2 C_{(M)}\right)^{1/2}$$
.

При превышении норматива оперативного контроля погрешности эксперимент повторяют с использованием другой пробы.

4. Требования техники безопасности

При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.

5. Требования к квалификации операторов

Работу по указанной методике могут исполнять высококвалифицированные специалисты в области газожидкостной хроматографии и санитарной химии. Исполнители должны быть проинструктированы об основных мерах техники безопасности при работе с веществами 1—2 класса опасности, органическими растворителями, а также с основными правилами безопасности при работе в химической лаборатории (п. 3).

6. Условия измерений

Помещение лаборатории должно соответствовать санитарным правилам проектирования, оборудования, эксплуатации и содержания производственных и лабораторных помещений, предназначенных для проведения работ с веществами 1—2 класса опасности, органическими растворителями. Аналитическая лаборатория должна быть оснащена вентиляционной системой согласно ГОСТ 12.4.021.

Температура окружающего воздуха должна быть от 15 до 25 °C. Относительная влажность воздуха не более 80% при 25 °C. Атмосферное давление 730—760 мм рт. ст. Напряжение электропитания 210—220 В. Частота переменного тока 45—50 Гц.