THROBLE MATERIALH JUH IPOEKTUPOBAHUR 901 - 09 - 9.87

ПЕРЕЗОВЫ ТРУБОЕРОВОДАМИ ВОДОПРОВОДА И КАНАЛИЗАЦИИ ПОД ЖЕЛЕЗНОДОРОЖНЫМИ ПУТНИМ НА СТАНЦИЯХ И ПЕРЕГОНАХ И ПОЛ АВТОМОБИЛЬНЫМИ ДОРОГАМИ

AJESSOM I

пояснительная записка

THIOBE MATERIARI JER IPPERTUPORARIA 90. - 09 - 9.87

ПЕРЕХОНЬ ТРУБОПРОВОДАМИ ВОДОПРОВОДА И КАНАТИЗАЦИИ ПОД ЖЕЛЕЗЧОДОРОЖНЫМИ ПУТЯМИ НА СТАНЦИЯХ И ПЕРЕТОНАХ И ПОД АВТОМОБИЛЬНЫМИ ДОРОГАМИ

COCTAB HOKYMEHTALINI

Альбом I - Поиснительная записка

Альбом II — Проектные решения переходов Альбом III — Схеми по производству работ

AJILHOM I

Разработаны проектным институтом "Мосгипротранс" Утреричени в средени в дайстрие Министерстрем слутей сообщения приказ № 4-1782 у от "27" марта. 1987г.

Гимений инженер института

Гасный выхонор просита

H.M. Hermende

A.M. Ibreen

2.23. Прокавлка футинров открытым способом в районах распространения вечномерзанх грунтов с сейсмичностью до 9 балюв

2.24. Прокладка футляров по эстакадам

66

67

EMBTVII

	•	Cap.
	2.23. Провладка футляров методом щитовой проходки в районах с сейсмичностью до 9 баллов	67
3.	Таблица выбора способа прокладки футляров для трубо- проводов канализации	68
4.	Таблица вноора минимальных диаметров футляров для трубопроводов канализации при различных способах прокладки футляров в районах с сейсмичностью до 9 балдов (приложения 4.1 - 4.12)	69
	4.1. Прокладка футляров с помощью пневмопробойников	70
	4.2. Прокладка футлярог способом продавливания с ручной разработкой грунта	70
	4.3. Произапка футляров с помощью комплекта проход- ческого КП-1021	71
	4.4. Прокладка футляров с номощью комплекта проход- ческого КП-1720	71
	4.5. Прокладка футляров с помощью установки ГБ-I42I	, 7 3
	4.6. Провладка футлиров с номощью установки У 12/60	73
	4.7. Прокладка футляров с помощью установки ПУ-3 (ПУ-2)	74
	4.8. Прокладка футлярог с помощью установки ПМ 800-1600	75
	4.9. Прокладка футляров под железнодорожными путями открытым способом в районах, не имеющих раскространения речномералых грунтов	76
	4.10. Прокланка футляров под автопорогами откритны способом в районах, не имеющих распространения вечномерэлых грунтов	77
	4.11. Прокладка футляров открытым способом в районах распространения вечномералых грунтов	77
	4.12. Провладва футляров методом щитовой проходки	-78
5.	Таблица высора количества протекторных установок или электрозащети стальных футляров диаметром 350-1600 мм	79
6.	Грайнки усилей, необходимых для продавливания футмаров в продавных и глинистых грунтах	. 82
7.	от диаметров и толщин стенок футляров	83
8. :	Пример объектной сметы на сооружение перехода водо- проводом в онну линию Ø 200 мм пол автопорогой методом	64
	8.1. Пример докальной смети на прокладку футинра и трубопроводов	86

9	0I-09-9.87(AI) -7-	-Инв. #1307/I Стр.
	8.2. Пример лекальной сметн на устройство в зации футияра	
9.	Пример локальной смети на сооружение перехо в две линии 20 200 мм под автодорогой метол ного бурения с оборудованием футияра устрой можного протаскивания 4 кабелей связи	ода водопроводом дом горизонталь— истеом для воз—
to.	Пример объектной сметы на сооружение перехо Ø 400 мм под железнодорожными путями методония	ода канализацией ом продавлива— 115
	19.1. Пример локальной сметы на прокладку ф	бутияра и тру- 117
	 Пример локальной смети на устройство ризации футляра 	катодной поля-
Œ.	Пример ведомости потребности в материалах в перехода водопровода в одну линию \emptyset 200 мм гой методом прокола	
(2.	Пример ведомости потребности в материалах в перехода волопровода в две линии 20 200 мм рогой методом горизонтального бурения	на сооружение под автодо-
З.	Пример ведомости потребности в материалах в перехода канализации Ø 400 мм под железнодо тями методом продавливания	на сооружение орожници пу-

-

T. OFFINE HOTOEEMER

Тепочне материали для проектирования "Параходи трубопроводами водопровода и канализации под железнодорожными путими на станциих и перегонах и под автомобильными дорогами" разработани на сеновании навна телового проектирование досотрок ("GCP за 1986 г. по разлезу 8. "Санитарно-технические системы и сооружения (тема 78.1.7)" и валания, выражного 21.05.1985 г. Савным управлением тути МЖК и Главтранспроектом Минтрансстром с изменением от II.II.1986 г.

Основние проектиме реденая настоящих материалов рассмотрены главним управлением пути МБС и Министерством строительства и эксплуатации автомобидьных дорог РССОР. В типсвих материалах для проектирования учтены все замечания организаций, рассмотренних проектине решения.

Материали для проектирования разработани лля применения во всех районах Севетского Союза за ислаючением: районов с сейсмичностью снийе 9 баллов, участков земляного полотна в сложных инженерно-гео-погических условиях, косогорых (круче Infinite в севрепованных участков, участков с селеные зонами в болотистими прунтами. На этих участках перехолы разработников, от по инидиализациямы проектам.

Положение о обы Пета-76 и пробенении Тиветого деренения пути оббате пересечения колопромонными, каперными и безнаперными канализатысьными и грубопромодами менемих дорог I, Па Ш категории на перето се должен осуществляться в футиарах. При пересечении железных дорог I,П и Ш натегоры не станция футиар устраивается тел рееми путами, находящимися не одном земляном положе.

Устройство ващитами бутляров обязательно также при пересечении автомобильных дорог I и И категодия.

Под делезнолорожении дутак, и актодорогами других категорий трубопроводы допускается укладавать эез ўутлярок, причем, как правино, вонопроводные и напорыче какализационные грузопроводы следует укладывать из стальных труб, а самотечные канализационные — 23 уугунных,

В районах распроэтранести нечномераних трунгов согласис и. 14.17

СНиП П-39-76 бесканальная прокладка трубопроводов под железнодорожными путями запрещается.

В соответствии СНиП 2.04.02-84 прокладка трубопроводов водопровода и канализации по железнодорожным мостам и путепроводам, нешеходным мостам над путями, в железнодорожных, автодорожных, пешеходных тоннелях и в водопропускных трубах не разрешается.

В отдельных случаях при соответствующем обосновании и соблюдении мероприятий гарантирующих сохранность земляного полотна и искусственного сооружения при прорыве трубопровода, по согласованию с
управлениями железных дорог допускается прокладка коммуникаций в пределах мостового перехода.

Настоящие материалы могут быть использовани в проектах прокладки футляров для других инженерных коммуникаций и в других случаях укладки трубопроводов с соблюдением соответствующих глав СНиП.

Места переходое под железнодорожными путями выбираются комиссионо с участием представителей дистанции пути, сигнализации и связи, энергоснаожения, других заинтересованных предприятий и представителей отделения дороги.

Выбор места перехода оформляется актом, к которому прикладывается схема перехода с указанием всех расстояний между элементами пути, подземных коммуникаций и элементами перехода.

Проекти переходое через железние дороги должни согласовиваться с управлениями дорог МПС, а через автомобильные дороги — с территориальными производствениеми управлениями строительства и эксплуатации автомобильных дорог или с руководством автомобильных дорог.

При согласовании проекта перехода представляются следующие материали:

- I) план участка перехода на геоподоснове М I:500 г пределах не менее 30 м в обе стороне от оси перехода и от границ земполотна с точной привязкой места перехода к железнодорожному километражу и пикетажу (км, пикет, плюс);
- 2) профиль по оси перехода М I:200 или I:100 (по горизонтали и вертикали) с существующими устройствами железнодорожных путей (зем-полотно, оси путей, водостводные кинары, дренажные сооружения и др.),

водимистний с инженерно-геологическим разрезом и инженерно-геологическим разрезом и

- 3) заключение о инженерно-геологических условиях строительства перехода;
- 4) проектные соображения по срганизации строительства перехода, разработанные с учетом инженерно-геодогических условий и указанием веех намечаемых мероприятий по обеспечению безопасности движения при произродстве работ (крепления котлованов, установка рельсовых паке-тов, волопонижение или водоотлив и др.);
- 5) проект водопонижения при необходимости его устройства.
 При разработке проекта перехода следует учитывать перспективу укладки дополнительных путей.

2. РАСПОЛОЖЕНИЕ ПЕРЕХОЛОВ В ПЛАНЕ И ПРОФИЛЕ

Устройство переходов наиболее целесообразно в пределах невисоких насывей и нумерих мест земляного полотна. Пересечение трубопроводами тела мелезнодорским насывей не допускается, за исключением насывей, возводимых в северной строительно- климатической зоне, где переходы выполняются в водопропускных трубах, служащих только для чеопуска трубопроводов.

Расположение переходов в внемках нежелательно в связи с большим загнублением трубопроводов на подходах и внемкам и сложностью производства ремонтных расот. Устройство подземных переходов в внемках глубиной связе 4 м должно быть обосновано путем сравнения с вариантами надземной прокладки.

Переходы несоходимо располагать в местах с минимальным количеством путей, как правило, вне мест расположения стрелочных перенодов съездов и перекрестных сечений, не ближе 30 м от искусственных сооружений.

Пересечение железнодорожных путей пои стредками и крестовинами, а также в местах присоединения к рельсам электрифицированных дерок отсасиватилх меселей не допусмается. Пересечение должно нахо диться от указанных мест не ближе 10 м, а от опор контактной сети не ближе 3 м. Расстояние в плане от концов футляра, а в случае устройства в конце футляра колодца — от наружной стенки колодца, должно бить при пересечении железных дорог не менее:

8 м от оси крайнего пути, а для магистральных напорных трубопрогодов диаметром более 500 мм - 25 м;

5 м от попошвы насыпи:

3 м от бровки внемки, наружной бровки нагорной канаен или другого волоотволного сооружения.

При пересечении автомобильных дорог — 3 м от бровки земяного полотна или подошен насипи, бровки внемки, наружной бровки нагорной канавы или другого водобтводного сооружения.

При сооружении переходов в стесненных условиях, при укладие новых путей и реконструкции путевого развития указанные расстояния допускается уменьшать по согласованию с управлениями железных дерог.

При параллельном продавливании или проколе двух футляров минимальное расстояние в свету между их стенками рекомендуется принимать на I м больше допускаемого в плане отклонения футляра (см. равдел III. 1.3). но не менее I.5 м.

Тлубина заложения от подошен рельса железнодорожного пути или нокрытия автомобильной дероги до верха футляра должна бить не меже:

І,0 м - при открытом способе производства работ;

І,5 м - при производстве работ методами продавливания, геркзонтального бурения или щитовой проходки;

2,5 м - при проколе.

Глубина заложения от дна водоотводного сооружения или основания насыпи до верха футляра при всех способах производства работ принимается не менее I,0 м.

При устройстве переходов в пучинистих грунтах при глужине се зонного промерзания более I м и температурой транспортируемой ких-кости более + 5°С минимальная глубина от подошен рельса до верха футияра должна проверяться теплотехническим расчетом на устойчивесть земляного полотна в соответствии с требованием п.8.14 СНиП -F.10-78° (П-36-73°).

При невозможности обеспечить заданный температурный режим за счет заглубления футляра должна предусматриваться его вентилиция или замена пучинистого грунта. Теплотехнические расчены и расчет решенении футмур степлоте производить в соответствии с "Метопическим уческимими по предупректрене возникающей путми в местем пересечения заминого полочих трубопроводами", разрабочанными Главным управлением пути МЕС, НЕМИ МПС (ВИМАТ) и утверживанными Главным управлением нучи МЕС в 1978 г.

При сооружении перехода в замное времи сапричим способом саложение футикра, согласию рекоменциямиям Замине-Спотрекого футика. АПТ тремсотрем, примимеется на 3-5 дискотров михе тлубкая премериажен.

Мансимальная глубина от подошен рельса или покрытия адчеденти до верма футияра не долина прегышать величин, определенных расчетии в винимости от дламетра и толины стении футияра или конструкция шитового тоннеми.

3. CXMAI EMPERCION

Дин трубовидовенов водопровода разработани две схоми перезвисе:

111.

- I) с ощимивищей арматурой, располагаемой в колонцах с обеях стором перехода:
 - 2) боз отвинающей арматуры.

Необходимость установки отключавней арматури должна решаться в наждом мениретном случае в зависимости от местных условий и распопожения очиличающей арматури на рабочем трубопроводе.

Мереходы разресотани под днухнутными железными дорогами на мерегенах в состаетстви с типовыми поперечными профинами земляного подотна вторых нутей железных дорог колем 1520 мм общей сети Сор ва ССР (Серяя 4.801—122) и под главными и приемо-отправочными вутеми на станцияму.

Пережим под списнутники железинии дорогами решаются каз ком

Решении переходов разработани для следущих типожих понересних профилей железнодорожного бемпяного полотна на перегонах при ужжоне местрооги не круче I:5:

- I) железноторожный путь на насыпи зноотой до 6 м.
- 2) желеснодорожный путь в внемие глубиной до 4 м.

Переходи под автомобильными дорогами I категории разрабетани в соответствии с типовыми поперечными профилями земляного нолотиа автомобильных дорог (серия 3.503—32). Переходи под автомобильными дорогами П категории решаются аналогично с уменьшением длини перехода.

Переходы разработаны для следующих поперечных профилей автодорог при уклоне местности не круче 1:5:

- I) автодорога на насыпи высотой по I м необтекаемого пробиля:
- 2) автодорога на насыпи внестой до 2 м обтекаемого профиля:
- 3) автодорога на насили висотой до 6 м:
- 4) автолорога в внемке глубиной до 4 м.

Проекти переходов для других поперечних профилей должни **решать**ся аналогично приведенным в настоящем проекте с изменением длини переходов.

Типовным материалами предусматривается устройство подземных переходов по типу "Труба в футляре" и надземных переходов по сста-

Футляр рекомендуется укладнеать с уклоном, обеспечивающим сток воды. Верховой конец футляра после пропуска рабочих труб задельнается бетоном или законапачивается смоляной прядые с битумом. Низевой конец выводится в наблюдательный колодец и остается открытым.
Между футляром и рабочей трубой остается зазор, по которому в случае прорыва рабочей трубы вода стечет в колодец. Наличие воды в ководце определяет врарийное состояние рабочего трубопровода.

На переходах трубопроводами водопровода с разницей диаметров футияра и рабочей трубы более 400 мм предусматривается устройство дополнительных футияров с забивной цементным раствором пространства между футиярами. Дополнительные футияры устраиваются в цемях обеспечения безопасности движения в случае коррозии стальных футияров диаметром более 700 м — при одном рабочем трубопроводе и 900 мм — ври двух. Диаметры дополнительных футияров принимаются на 200 мм белее диаметров рабочих труб.

При устройстве переходов для водопровода предусмотрен аварийный отвод воды из наблюдательного колодца по дотку или канаде в водосток или пониженное место, исключающий возможность затопления или режиме нерожного нелотна при прорыве трубопровода.

тномер катематимуцыери вдоеоорого тимоветь жи и понем на понем по

Мереходи нанерными канализационными трубопроводами приняти по тиму переходов трубопроводами водопровода. Отвод стоков в этом слутам следует предусматривать по трубопроводу в ближайшие канализационвые сети, а при их отсутствии или недостаточности их дваметра рекомеждуется автоматическое отключение насосов при аварии на трубопроводе.

Для самотечных канализационных трубопроводов переходы выполнявися не одной схеме - пространство между рабочей трубой и футляром ванолимется цементным раствором, что исключает необходимость устройвыва рементного участка и наблюдательного колодца.

Ком переходах по эстакадам над железнодорожными путями трубо- **Краведи укладиваются в футля**рах с устройством отводящих труб для **Кекличения возможности** размыва или затопления дорожного полотна при прориве трубопровода.

В исключительных случаях при прокладке по эстакаде нескольких коммуникаций по согласованию с управлениями железных дорог защитные футивры могут не устрапваться.

При надземных переходах через электрифицированные железнодорожные пути предусматривается заземление всех элементов перехода в соотретствии с п.8.29 СНиП П-Г. $10-73^*$ (П-36- 73^*).

4. КОНСТРУКТИВНЫЕ РЕПЕНИЯ ПЕРЕХОЛОВ

Пламетр труби, укладиваемой в футияре, принимается, как правиво, ранным диаметру основного трубопровода.

Трубопроводы водопровода и напорной канадизации, укладываемие в футивре, проентируются из стальных труб диаметром от 159 до 1420мм, семотечной канадизации — из пластизссовых, ассестоцементных, веремических, келезобетонных, бетенных и тугунных труб диаметром от 200 км.

броживана в футиаре рафочих труб всдопровода и надорной канализации из полнотилена допускается при контроле 100% сварына соединений физическими метолами.

Тутлярн при закрытых способах прокладки принимаются из стальных труб диаметром от 377 до 1620 мм и железобетонных блоков щитсеюй проходки диаметром щита 2100, 2560, 3600 и 4000 мм с соответструкцим внутренним диаметром футляра. — 1860, 2200, 3200 и 3600 мм. Стальные трубн и футлярн рекомендуются по ГОСТ 10704—76 и ГОСТ 8696—74.

При откритом способе производства работ для прокладки водопроведа в качестве футляров диаметром до 600 мм включительно могут использоваться стальные трубы, а при больших диаметрах — железобетоные унифицированные водопропускные трубы для железымх и автомобильных дорог диаметром I,0; I,25; I,5 и 2,0 м (по ОСТам 35-27.0-85, 35-27.1-85 и типовым проектам IOI/2-4 — для железных дорог и 777/I — для автомобильных порог).

При прокладке футляров откритим способом для самотечних канализационных трубопроводов в качестве футляров могут использоваться железобетонные центрифугированные труби диаметром 600-1200 мм по ГОСТ 16953-78 при условии укладки канадизации из чугунных труб и забивки пространства между трубой и футляром цементным раствором. В остальных случаях чугунные труби на переходах канадизации, как правило, не применяются.

При устройстве переходов открытым способом в труднодоступных районах, указанных в приложении І ТП ІОІ—81 , возможна укладка в качестве футляров водопропускных труб диаметром I,5; 2,0 в 3,0 м из стального гофрированного листа по серии 3.50I.3—I33 или стальных труб Ø620—I620 мм по ГОСТ 10704—76 и ГОСТ 8696—74.

Минимальный внутренний диаметр футлира принимается на 200 мм больке диаметра рассчих труб.

Миниальние диаметри футнаров в зависимости от диаметров расочих трус, грунтових условий, длини проходии в спосеба производства работ пригодятся в приложениях 2.1-2.25 в 4.1-4.12 данного альсома.

Диаметр выпуска для опорожнения грусопровола определяется в соответствии с пунктом 8.14 СНиП 2.04.02-84.

Необходимость установки в коноднах перехода устройсти для впуска в выпуска роздуха решается в каждом конкретном случае в зависимости от профиля напорного трубопровода и настоящими виповими материалами не рассматривается.

Колодин, устраиваемие на трубопроволах, приняти не типовим проектным решениям 901-09-II.84 для водопровода и 902-09 -22.84 для канализации.

Тип арматуры, материал, конструкция и размеры колоддев уточ-, няются в зависимости от местных условий.

5. РАЗМЕЩЕНИЕ ТРУБ В ФУТІЯРАХ (ТИПЫ СЕЧЕНИЙ)

Размещение в футляре трубопроводов водопровода или канализации принято с учетом возможности прокладки труб малого диаметра дли пропуска электрокабелей или кабелей связи.

В типовых материалах разработаны 14 типов размещения труб в футлярах для водопровода и напорной канализации и 15 типов — для самотечной канализации.

При возможности использования различных материалов труб и футляров типы сеченей определялись в сравнении показателей стоимости, расхода металиа и затрат труда.

5.1. Размещение в футлирам трубопроводов водопровода

Тип I (НВ-I8, альбом II) — размещение одного напорного трубопровода, протаскиваемого в футляр на полозкових диэлектрических окорах. В качестве футляров принять стальные трубы, железобетонные водопропускные трубы и келезобетонные блоки щитовых тоннелей.

Тип II (НВ-19, альбом II) -размещение одного напорного трубопровода во внутреннем футияре из полиэтиленовых труб, уложенном в наружном стальном футияре с заполнением пространства между футиярами цементным раствором.

Тип II (НВ-21, альбом II) — размещение в стальном футляре двух напорных трубопроводов, протаскиваемых на положовых диэлектреческих опорах. К футляру приваривается направляющая из круглой арматур- ной стали для фиксирования положения трубопроводов.

Тип IУ (НВ-24 ; альбом II) — размещение двух напорных трубопроводов в одном стальном сутляре. Каждый трубопровод располагается в своем внутреннем сутляре из подгатиленовых труб.

Для протаскивания внутренних футляров в наружном футляре устраивается набетонка, в которую замоноличиваются направляющие уголки. Пространство между футлярами заполняется цементным раствором.

Типи E-A и E-B (НВ-22,23, альбом П) - являются подвариантами типа E с размещением двух трубопроводов в футлярах из железобетонних водопропускных труб и в футлярах из щитовых блоков.

Типы Е-А и IV-А (НВ-20,25, альбом П) — аналогичны типам П и IV с использованием верхней зоны стального футияра для размещения асбестоцементных (или полиэтиленовых) труб Ø IOO мм с уложенными в них силовыми электрокабелями (или кабелями связи).

Труби для протаскивания кабелей укладиваются на поперечние уголки, прихвативаются комутами и вся конструкция протаскивается в футляр по направляющим продольным уголкам, привариваемым к внутренней стенке футляра.

Между поперечными уголками устанавливаются продольные связи из круглой стали, воспринимающие усилия при протаскивании конструкции. При монтаже асбестоцементных труб следует предусмотреть укладку в них монтажного троса для последующего протаскивания кабежя.

Типн У и УІ (НВ-26,27, альбом II) разработани для надземных переходов по эстакадам и предусматривают размещение в стальном футляре напорного трубопровода в теплеизоляционной оболочке. В типе У протаскивается один трубопровод на положових опорах, а в типе УІ чрубопровод протаскивается совместно с трубой теплового сопровожденная.

Типи УП, УШ, IX и X разработани для районов распространения вечномералых грунтов. В качестве футляров в них используются намеугольные водопропускные труби.

Тип УП (HB-28, альбом П) - размещение в футвире одной труби в теплоизоляции, протаскиваемой на половкових дивлектрических опорах.

Тип УШ (HB-29, адьбом П) - размещение в футмере двук труб в теплоизоляции, протаскиваемых на полозковых двалектрических опорах.

Тип IX (НВ-30, альбом П) — размещение в футляре одной водопроводной трубы и двух труб — тепловых спутников в общей теплоизоля— ции, совместно протаскиваемых на полозковых диэлектрических опорах.

Тип X (НВ-ЗІ, альбом II) — размещение двух водопроводных труб. Каждая труба протаскивается в футляр в совместной теплоизоляции с тепловым спутником на половковых диэлектрических опорах.

5.2. Размещение в футлярах трубопроводов канализации

Тип XI (НК-I7, альбом П) — размещение в стальном футляре самотечного трубопровода из асбестоцементных, керамических, железобетонных или бетонных труб диаметром до 700 мм, протаскиваемых в футляр на стальном сплошном корыте с полозковным опорами.

Трубн диаметром 800-1000 мм протаскиваются в футияр на подставках - опорах, которие между собой соединени уголками, воспринимажщими усилия при протаскивания конструкции.

Для сохранения проектного уклона внутри футляра устраивается набетснка, в которую заделываются направляющие из круглой арматурной стали.

Для фиксации положения туро в футляре и левосторонним опорам привариваются реборды из круглой стали так, чтобы направляющая находилась между ними.

В типе XI в качестве рабочих груб могут использоваться чугунные трубы, если последние приняты при соответствующем обосновании для всего поллектора.

Тип XII (НК-20, альбом II) явинется подрарчантом тина XI при укладке футляров открытым способом с соблюдением проектных уклонов.

В этом случае набетонка и направляющие не устранваются. В качестве футляров используются железобетонные пентрифугированные трубы диаметром 600-I200 мм, в которые затаскиваются на стальном корыте чугунные трубы.

Тип XII (НК-2I, альбом П) — размещение в стальном футляре самотечного трубопровода из пластмассовых труб Ø 200-900 мм, протаскиваемых в футляр на полозковых опорах, приваренных к хомутам. Между собой хомуты соединяются, тяхами из круглой арматурной стали, воспринимающим усилия от протаскивания труб.

Для сохранения проектного уклона внутри футияра устранвается васетонка. в которой закрепляются направляющие уголии.

Тип XIУ (НК-23, альбом П) — устройство транецеддального дотка, еслиеценного с железобетонной рубашкой в футлире из щитових блоков.

THE XY (HX-23, ARLGOM II) - YCTPOECTEO TPRHEHERMARLHOTO ROTER E GYTHEDE ES MERESOGETOHERK EOGORPOHYCKHYK TDYG.

Сечение лотка в типах XIV и XV уточняется при принявке и конкретной площадке.

Тип XУІ (НК-24, альбом II) разработан для прокладки откритим скособом иод автодорогой футляров из водопропускных труб е нееле-душим протаскиванием в них рабочих трубопроводов из пластимисерных труб на положових опорах.

Тини XI-А и XII-А (НК-19, 22 альбом II) - аналогични соотнететвению тина XI и XII, но предусматривают использование верхней зоим стального футляра для размещения электрокабелей или кабелей свяси.

Конструкция размещения кабелей аналогична принятой в типах II-A в IJ-A.

Типи XI, XII, XII, XII, XII-A, XII-A оборудования футляров самотечными трубопроводами предусматривает после протасливания труб вапеднение пространотва между трубами и футляром цементным раствором.

Тип XУП (НК-25, альбом П) — разработан для районов распространения вечномерзинх грунтов и предусматривает размещение в футивре из водопромуским железобетонных прямоугольных труб одной полизтизеновой труби в теплоизоляции, протаскиваемой на подозковых опорах. В качестве направляющих для протаскивания труб предусмотрени угозки, закрешление в набетонке футияра.

Половиовые недивлентрические опоры приваривантся и хомутам, соедивенным межну собой продольными тяками из пруглой арматурной етали.

6. ОСОБЕННОСТИ УСТРОЙСТВА ПЕРРЕХОДОВ В РАЙОНАХ С СЕЙСИИЧНОСТЬЮ 7-9 БАЛЛОВ

Дая районов с сейсмичностью 7-9 балаов на переходах напорнами трубопреженных обнастельно устрейство колодиев с установкой в иих сальников-компенсаторов и запорной арматурн.

Джи пережовое самотечной канализацией предусматривается за-IN MAR CHARGE HE DESMEDBER YNDOTHETORET.

Минимальный внутренный праметр бутькра полкон бить на 400 мм больне диаметра рабочей трубы.

Пои сооружении недеремних нереходов по эстанацам посновине дожими устранваться с соблюдением требований раздела 4 СНиП П-7-81.

При собимении указанных условий в районах с сейсмичностью 7-9 CARROT MOTOT CHTE HOUNETH BOR HOUSEHHIND THEN OCCUPANTES CEPTIFICE.

Не рекоменнуется устройство переходов в насищениих водой грунтак (кроме скальных, полускальных и крупнообломочных) в насыпных PROPERTIES RESERVED OF MX PREMEDOTH, A TREE HE VERTHER CO CREMENU тектонических нарушений.

7. УСТРОЙСТВО ПЕРЕХОДОВ В ВЕЧНОМЕРЗЛЫХ ГРУНТАХ

7.I. Cxemm nepexonor

Пля районог распространения вечномералых грунтов разработаны три схеми переходов трубопроводами водопровода и канализации жедезнодорожних путей и автомобильных дорог:

- I) стема наиземной прокланки по эстакане трубопроводов волопророда или напорной канализации;
 - 2) схема прокладки родопророда и канадизации в теле насыни.
 - 3) схема подземной прокладки трубопроводов.

Во воех схемах переходог рабочке трубовновоги униванием в фукцире в теплоизопированных оболочках.

Провизива футиврот должна, как пратило, неполняться отвритим способом.

Бес превыжения провления бутляров возможна в отдельных случаях при наличие под подошней насини слоя оттаженего грунта I-Ш группи толинеся не менее ан сез тверинх виличений.

HOR YERRING B CYTHEDAX TOYO TORIJOPOPO CONDODORIGHME MEHUмасыно расовожные от нолошен реароз желевнодорожного пути или от поярытия автомобильной дороги до верха футляра должны бить не менее 2.5 м при проколе и 2.0 м при всех остальных способах производства работ. Остальные расстояния между элементами подземных и наземных переходов и элементами земляного полотна принимаются как для общимых условий.

Футляры при подвемной прокладке и в теле насыпи, как правило, выполняются в виде вроходных каналов с естественной везтилицией, а внутренние трубопроводы прокладываются в теплоизоляции.

Для обеспечения вентиляции футияра при наземной прокладке конжн его остаются открытным. При подземной прокладке вентиляция футпара осуществляется через вентиляционные трубы, устанавливаемне в наблюдательных коловиах.

Расчет вентивании футляра должен производиться в каждом конкретном случае в зависимости от температурн гручка, наружного воздука, транспортируемой жидкости, теплоносителя, а также конструкция тенлонаеляции в материала труб.

Схемы подземных переходов в речномерзлых грунтах принята аналогчиным схемам переходов в обычных условиях. Однаке, с целью предотвращения замерзания воды в футлире при аварии трубопровода с нижнем набликательном колодце необходима установка датчика уротин воды с выводем ситиала аварии при появлении воды в колодце на диспеттерский или дежурный пункт системи водопровода. В связи с этим устройство колодцев делино бить виполнено с особо тщательной гидроизовицией, предотвращающей попадание грунтовой води в колодин и их колодпер в грунт.

7.2. Конструктивные решения перехолов

Водопроводине и напорине канадизационные трубопроводы, прокиадажаемие в футляре, принимаются из стальных труб по ГОСТ 10704 — -76 из стали 10 группы В по ГОСТ 10705-80, а самотечние канадизационние — из подиэтиленовых по ТУ 6-19-231-83.

В качестве футыяров, укладневаемых открытым способом, должин молольноеваться железобетонные примоугольные водопропускные труби по оприж 3.501—126 сечением 1,5x2,0; 2,0x2,0; 2,5x2,0; 3,0x2,5;4,0x2,5.

В отдельных районах (см. раздел 4) в качестве футиндов могут укладиваться родопропускные труби из стального гофрированного листа по серии 3.501.3-I33 диаметром I,5; 2,0 и 3,0 м или стажьные труон Ø620-I620 мм по ГОСТ I0704-76 и ГОСТ 8696-74.

Арматура для выпуска воды и воздуха принимается незамервающей (Норильского типа).

Канализационные колодцы устраиваются по типу водопроводных с ревизиями для возможности прочистки труб.

Конструкция и материал теплоизоляции определяются в каждом конкретном случае по условиям работы трубопроводов. Рекомендуется применение полносборных и сборных теплоизоляционных конструкций согласно приложениям 4,5 и 7 СНиП П-Г.10-73 (П-36-73*).

8. РАСЧЕТ СТАЛЬНЫХ ФУТЛЯРОВ

8.1. Общие положения

Расчет производится для определения достаточности принятой тоящини стенки футляра и максимального заглубления его, а для футляров, укладываемых способом прокола или продавливания — необходимого усилия, развиваемого домкратами.

Постоянную расчетную нагрузку от вертикального давления грунта Р и временные расчетные нагрузки от подвижного состава $q_{\text{т}}$ следует определять в соответствии с требованиями пунктов 2,6; 2.10; 2.17; 2.23 и приложения 4 СНиН 2.05.03-84.

При производстве расчетов приняты следующие обозначения:

- N усилие, необходимое для продавливания (прокола) футляра в H;
- R расчетное сопротивление материала футляра при изгибе в МПа, принимается в соответствии с СНиП П-23-81;
- расчетное сопротивление на местное смятие при плотном касании в МПа, принимается в соответствии с СНиП П-23-81;
- у нормативное сопротивление грунта на осковой новерхности футляра в МПа, принимается по СНиП П-17-77 в зависимости от грунта и глубини прокладки футляра;
- 6- предел текучести в МПа, принимается в соответствии с СНиП П-23-81;
- **Чн- угол внутренн**его трения грунта;
- 6 длина расчетного участка футияра в м. В расчетах принята равной I,0;

б - толивна стенки футляра в м;

среднай радиус футляра в м;

D₁ - наружный дваметр футляра в м;

2 - длина проходии в м;

5 - расчетное сопротивление грунта, принимаемое по СНиП 2.02.0I--83:

 $E_{n} = 2.1 \text{x} 10^{6}$ - модуль упругости материала футляра.

Нагрузки, действующие на стальной футияр, определяются в зависимости от глубины заложения футияра, геологических и гидрогеологических условий, а также способов укладки футияров.

8.2. Расчет футляров, прокладываемых способами прокола и продавливания

Расчет произволится по первому предельному состоянию на прочность (по изгибающему моменту) и на устойчивость (по критическому давлению) при условии продавливания (прокола) футляра в песчиных или глинистих грунтах с применением ножа большего дваметра, чем дваметр продавливаемого футляра.

Футияр следует рассчитывать при основном сочетании нагрузок, состоящих из вертикального давления грунта и временной нагрузки от транспорта.

8.2.1. Расчет на прочность (по изгибающему моменту)

M ≤ Mn . rge

Ы=Мо (I- (ч) - расчетный изгибающий момент

ма= W R - предельный изгибающий момент

Эпось Мо=0,25 (q_+ + P \to 2 — нагибниций момент оз вертимальных сил des учета отнора групта $q_ = \frac{1}{2} \left(45^{\circ} - \frac{q_-}{2} \right)$

 $W = \frac{6 \cdot 5^2}{6}$ — мемент сопротведения продольного сечения

. 8.2.2. Расчет на устойчивость (по критическому давленик)

$$\mathbf{q}_{\mathbf{r}} + \mathbf{P} \leqslant \frac{\mathbf{P}_{\mathbf{k}\mathbf{p}}}{\mathbf{K}_{\mathbf{M}\mathbf{n}\mathbf{r}}}$$

. PHO

и уст. - козфринент запаса на устойчивость, Куст.=2

$$Pxp = \frac{(n^2-1) \cdot p \cdot y}{6 \cdot x^3} + \frac{g}{n^2-1}$$

- критическое внешнее парление в т/м2

Знесь п - челое положительное число, определяемое подбором, при котором Рир. судет иметь минимальное значение.

Э - момент инерими стенки футляра в см⁴.

$$y=\frac{8\cdot 8^3}{12}$$

8.2.3. Определение усилий, необходимых для продавдивания футляра

Усилия, необходимне для продавливания (прокола) футляров, определяются по графикам на стр. или по формуле:

Пожучение значения усилий должни бить меньше допускаемых при заданной томине стенки футапра - и пр.

Последние определяются по графику на стр. или по формуле:

п - вовроициент условий работы, т =0,6. где

> 8.2.4. Проверка устойчивости стенок футляра при совместном PORTECTENT PHOMHOFO MARMONE M OCCEDIO CEMMANMETO RNHOKROHEE

- осевое расчетное напряжение

Graph = or
$$\frac{E_{c} \cdot \delta}{\delta}$$

- критическое напряжение.

где
$$\mathcal{L} = \frac{0,607 - 10^{-7} \cdot (\frac{2}{8})^2}{1+0,004 \cdot \frac{E_c}{G_T}}$$

8.2.5. Таблицы рекомендуемых толщин стенок футляров

Приведенная в разделах 8.2.1-8.2.4 методика расчета, основанная на действующих нормативах, соответствует расоте "жестких" труб по схеме "свободно деформируемое кольцо". В настоящем разделе приволятся таблицы рекомендуемых толщин стенок сутляров, прокладываемых методами прокола и продавливания в песчаных (кроме пылеватых) и глинистых грунтах трердой, подутвердой и тугопластичной консистенции.

Таблицы составлены на основании метолики, разработанной Сионником (тема НФ-15-82) для "гионих" труб, расчитываемых по скеме "кольцо в упругой среде".

К "гиским" трубам следует относить трубы с параметром их гис $n^2 = 1 + \frac{K \cdot z^4}{F_0 \cdot \Im c} \geqslant 40$ ROCTU

В этом выражении К - коэффициент упругого отпора, определяе-MARY HO GODMANG $K = \frac{5(1 + (W^{2b}))}{E^{2b}}$, где: E_{2P} -модуль деформации

грунта; (м_{гр} - коэффициент Пуассона; г - радиус футляра.

£.С. - пилиндрическая жесткость стенки футляра толщиной б стали с коэффициентом Пуассона (4, и модулем упругости Ес.

Расчеты выполнены для труб по ГОСТ 10704-76 из сталей В СТЭПС4. ВСТЗСП4. Характеристики грунтов, принятых в расчетах, привелены в табляне І.

Табиша І

Характ еристики	Наименование	грунтов	7	
грунтов	Глина ·	Суглинок	Супесь	Ilecor
L	2	3	4	5
I. Модуль деформации, . Mila	ZI	19	16	38

			· •	
901-09-9.87	(AT)	-26-		Web. # 1807/I
			Продолжение	

	The	CONTRACTOR TON	ATTUMENT TO	
ı. I	2	3	4	5
2. Коэффициент сцеплений,	0,057	0,028	0,014	0,002
3. Кажущийся угол внут- реннего трения, град.	18	22	26	38
3. Осъещий вес грунта, яв/иЗ	20,0	19, 0	18,0	16,0
5. Козбрициент порис- тости	0,65	0,65	0,63	0,55
6. Козфециент Пуассона	0,42	0,35	0,3	0,3

Расстояние между осями крайних путей принято в расчетах равным - 5 м для труб диаметром 377-426 мм и 10 м - для труб диаметром 1220 - 1420 мм.

В случае отклонения исходних данных от принятых в расчетах толщину стенки футляра необходимо уточнить.

Рекомендуемие на основании виполненних расчетов толжини стен футимров, прокладиваемих мезодами прокола и продавливания в глинах, сугвинках, супесях и песках, приведены соответственно в таблицах 2-5.

Таблица 2

I, and the	Pa	CCTO.	enne	OT	подог	пви 1	рельса	до 1	ержа фу	твяра,	M .
epo-	2	3	4	5	6	7	8	9	IO	II	I2
re, m	To	Толцина		ehrn	фут	ляра	P FAM	HOX,	204		***************************************
I	2	3	4	5	6	7	8	9	10	II	12
		Φ,	yter	рø	377 1	æ					
12-14	7	7	7	7	7	7	7	7	7	7	7
16-1 8	8	8	8	8	8	8	. 8	8	8	8 .	8
20	9	9	9	9	9	9	9	9	9	9	9
22	IO	IO	IO	IO	IO	IO	IO	IO	IO	IO	IO
		Φ.	y Tag	p Ø	426	MM	٧				
20	9	9	9	9	9	9	9	9	9	9.	9

	HUPROST	

								13				
I	2	3	4	5	6	7	8	9	IO	II	I2	
25 30	II I2	II I2	II I2	II I2	II I2	II I2	II I2	II I2	IS II	II I2	II I2	
		Футля	pø I	220 M	vī							
20 – 25 30	9 I0	9 IO	9 I0	9 I0	9 I0	IO IO	12 12	I4 I4	I6 I6	16 16	20 20	
35 40 -4 5	II I2	II I2	II I2	II I2	II I2	II I2	I2 I2	I4 I4	16 16	16 16	20 20	
50 –55 60	I4 I6	I4 I6	I <u>4</u> I6	I4 I6	I4 I6	I4 I6	I4 I6	I4 I6	I6 I6	I6 I6	20 20	
60 I6												
20	IO	IO	IO	IO	IO	IO	14	16	18	20	20	
25	IO	IO	IO	IO	IO	12	I4	I 6	18	20	20	
30-35	II	II	II	II	II	I2	14	16	18	20	20	
40	I2	12	12	I2	12	12	14	16	18	20	20	
45	14	14	I4	14	14	14	14	16	18	20	20	
50–55	I6	16	I6	16	16	I 6	16	16	. I8	20	20	

Таблипа 3

Длина	Pa	сстояни	OT	подошн	я р	ельс	а до ве	pxa	фугляра,	M	
проход- ки, м	2	3	4	5	6	7	8	9	IO	II	12
		Толщина	сте	нки фут	ляр	a P	суглин	ax,	ММ		
I	2	3	4	5	6	7	8	9	- 10	II	I2
		Футляр	Ø	377 MM					•		•
20	6	6	6	6	6	6	· 6	6	6	6	7
25	7	7	7	7	7	7	7	7	7	7	7
30-35	8	8	8	8	8	8	8	8	8	8 \	8
40	9	9	9	9	9	9	9	9	9	9	9
		Футляр	Ø 4	26 mm							
20–25	7	7	7	7	7	7	7	7	7	7	8

-28-

Инв. № 1307/I Продолжение таблицы З

I	2	3	4	5	6	7	8	9	ΙO	İĪ	13
30	8	8	8	8	8	8	8	8	8	8	8
35-40	9	9	9	9	9	9	9	9	9	9	9
	0	Футля	pø I2	220 ма	vī						
20-35	9	9	9	9	9	12	12	I4	I4	16	20
40	IO	IO	IO	IO	10	12	12	14	14	16	20
45	II	II	II	II	II	12	12	14	14	16	20
50	I2	I2	I2	I2	12	12	12	14	14	16	20
55-6 0	14	14	14	I 4	14	14	I 4	14	14	16	20
	,	Футля	pø I4	120 ма	ง			*			
20	IO	IO	IO	IO	IO	IO	14	16	17	19	20
2 5–3 0	IC	IO	IO	IO	10	I2	14	I 6	17	19	20
35	II	II	II	II	II	I2	14	16	17	19	20
40-45	12	12	I2	I2	I2	12	14	16	17	19	20
50–60	14	14	14	14	I4	14	14	16	17	`I9	20

Таблица 4

Дляна	Pac	стояние	OT	подош	вн Бе	льса	а до вер	xa	футляра,	М	
проход- ки,н м	2	3	4	5	6	7	8	9	10	II	12
.ii	T	олщина	CTO	ии фу	гляра	P	супесях,	ММ			
I	2	3	4	5	6	7	8	9	IO	II	I2
		Дутл яр	Ø 42	26 mm							
IO-18	12	13	12	12	12	12	12	12	12	12	12
		Футляј	ø	I220 1	MM						
20-30	9	9	9	9	IO	II	12	I 4	14	20	20
35-40	IO	IO	IO	10	IO	II	I2	I 4	14	20	20
45- 50	II	II	II	II	II	II	I2	14	14	20	20
55	IS	12	12	I2	12	12	12	I 4	14	20	20
60	14	14	14	14	14	14	14	I 4	14	20	20

Инв. № 1307/ I Продолжение таблица 4

I	2.	3	4	5	6	7	8	9	10	II	12
	Ġ	рутляр	Ø 142	NIM OS							
20	IO	IO	IO	IO	IO	12	14	16	18	20	20
25-30	IO	IO	IO	IO	II	I2	14	16	I 8	20	20
35-40	II	II	II	II	II	I 2	14	16	18	20	20
45-50	12	I 2	12	12	12	12	14	16	18	20	20
55	14	I 4	I 4	14	14	I4	14	16	18	20	20
60	16	16	16	16	16	16	16	I 6	18	20	20
								Габлиц	pa 5		
Длина проходки,	Pac	пнкото	е от 1	подош	ы ре	льса	до веј	oxa Çy	тляра,	М	
M	2	3	4	5	6	7	8	/ 9	IO	II	12
	T	олщина	стен	ки фу	гляра	в пе	crax,	ММ			
Ĺ	2	3	4	5	6	7	8	9	IO	II	12
	Φ	утляр	Ø 1220	Омм							•
20-45	9	9	9	9	9	9	9	9	9	9	9
50-55	IO	IO	IO	IO	IO	IO	IO.	IO	IO	IO	IO
60	II	II	II	II	II	II	II	II	II	II	II
351	- 1	Футляр	Ø 14:	20 mm							
				22.75	IO	IO	IO	IO	TO	TO	II
20–50	IO	IO	IO	10	TO	TO	10	TO	IO	IO	7.4

Согласно расчетам (по условиям проверки на смятие торцевой поверхности под действием сил внедрения футляра в грунт) продавливание футляров диаметром I620x20 мм возможно только с конструктивным усилением их стенок.

8.3. Расчет футляров, укладываемых открытым способом

Звенья труб (футляров) рассчитываются на изгибающие моменты (без учета нормальных и поперечных сил) по формуле:

Мр ≼ Мп, где $\mathtt{Mp} = \cancel{j} \cdot \mathtt{g}^2 \cdot \ (\mathtt{P} + \ 0_{\mathtt{p}}) \ (\mathtt{I} - \ (\mathtt{M} \) \ - \ \mathtt{pactethm} \ \mathtt{mstroamman} \ \mathtt{moment}$

 $M\pi = \frac{\beta \cdot \delta}{6}$ R - предельный изгибающий момент Здесь 🤾 =0,22-0,25, коэффициент, определяемый в зависимости от условий опирания футляра (согласно табл. приложения 12 СНиП 2.05.03-84).

9. ЭСТАКАЛН ДЛЯ ТРУБОПРОВОДОВ

9.1. Общие положения

В качестве надземных переходов для пропуска водопропускных и напорных канализационных трубопроводов над железнодорожными путями и артодорогами предложены индустриальные конструкции по действую-WWW TUNOPHM HOOCKTAM.

В типовых материалах для проектирования разработаны эстакады диной до 60 м без неподрижной опоры под трубопроводы и плиной свыше 60 м с устройством неполнижной опоры (без устройства компенсаторов в пределах эстакады). Неподвижные опоры трубопроводов устанавлираются в середине длины эстакады.

Схемы эстакад, типы конструкций и размещение трубопроводов TORKUMADICA IDM IDOCKTUDOFAHUM P COOTFETCTBUM C IDMBERCHHEMM DEMCниями и учетом местных условий.

Конструкции эстакал рассчитаны на массу труб с заполнением и теплоизоляцией, а также на ветровне нагрузки для Ш ветрового района.

Трубопроводи на эстакаде устанавливаются в один ряд на подвижных (скользящих) или неподвижных опорах.

Материалы для проектирования разработаны для 7 сочетаний нагрузок, отличающихся размерами сечений трубопроводов, их количеством и размещением. На листе ИС-2 в таблице I даны расстояния между полемеными и неподелеными опорами трубопроводов в зависимости от их CATCHES.

Согласно заданию продетные строения эстакад под ирубопроводы

ний эстакал.

разработаны длиной до 33 м из железобетонных балок по типовым проектам пешеходных мостов инв. № 728 и автодорожных пролетных строений инв. № 384. Кроме того, рассмотрена возможность применения автодорожных балок по тип.проекту инв. № 710/5.

Пролетные строения в поперечном сечении состоят из двух балок. На листе ИС-3 представлены условия применения пролетных строе-

Расстояние от конца пролетных строений до места опирания опорных частей трубопроводов (X $_{\rm MAX}$) и максимально возможное расстояние между опорами трубопроводов рассчитано, исходя из несущей способности балок. Для железобетонных балок, принятых по типовому проекту инв. № 728/2, величина X $_{\rm MAX}$ ограничена четвертых пролета (L/4)

Для пролетных строений, принятых по типовым проектам инв. 384/46 и % 710/5, $X_{\rm MAX}$ не ограничено, т.е. $X_{\rm MAX}$ равно L/2.

9.2. Конструктирные решения

Эстакады разработаны с применением железобетонных пролетных строений длиной 12,15, 18, 21, 24 и 27 м по типовому проекту пеше-ходных мостов инв. № 728/2.

При необходимости применения длины пролета 33 м используются железобетонные балки по типорому проекту инв. # 384. В случае отсутствия балок пролетных строений по типовому проекту пешеходных мостов допускается применение автодорожных балок по типовым проектам инв. # 710/5 и инв. # 384/46.

При использовании конструкций по типовому проекту мостов через железные дороги серки 501-166 инг. 1728/1-к пролетные строения, перильное ограждение прохожей части и сборные стоечные железобетонные опоры эстакад изготавливаются и применяются в полном соотретствии с чертежами типового проекта.

Конструкция опор для эстакая с использованием железобетонных балок по типовым проектам инв. № 384/46 и 710/5 принята применительно к типовому проекту инв. № 863.

Приведены два варианта основания опор: естественное при $R_{o} > 2$ кг/см2 и свайного при $R_{o} < 2$ кг/см2.($R_{o} -$ условное сопротививние грунта по прил.24 СНиП 2.05.03—84).

При использовании типовых материалов в каждом конкретном случае при привязке к местным условиям необходимо выполнять проверочные

расчети опор эстакал согласно требованиям СНиП.

Пролетные строения устанавливаются на типовне резиновне или стальные опорные части. Конструкция панели перил для продетных строений эстакад по типовым проектам инв. № 384/46 и инв. № 710/5 приведена на листах ИС-13 . Вертикальные лестницы для служебного подъема приведены на листе ИС-II.

10. ЗАШИТА ФУТЛЯРОВ ОТ КОРРОЗИИ

10.1. Противокоррозионная изоляция футляров и протекторная защита от электрохимической коррозии

Требования по защите стальных футляров от коррозии регламентированн ГОСТ 9.015-74 . ГОСТ 25812-83, соответствующими параграфами СНиП 2.05.06-85, СНиП П-33-76 и СНиП 3.04.03-85. "Инструкцией по защите городских подземных трубопроводов от электрохимической коррозии", утвержденной приказом по Министерству жилищно-коммунального хозяйства РСФСР № 822 21 декабря 1979 г., "Инструкцией по проектирований и расчету электрохимической защити магистрадьных трубопроводов и промысловых объектов" (РСН-2-106-78 Миннефтегазстроя), ГОСТ 16149-70 и ТУ-48-10-23-74 "Протекторы с активатором типа ПМ-5У. ПМ-IOУ. ПМ-2ОУ". а также соответствующей отраслевой нормативно-технической документа-. Nevn

Для защиты от поченной коррозии стальных футляров, уклапнваемых в грунт с высокой коррозионной активностью, а также при наличии катодной или знакопеременной зоны на рельсовых путях электрифицированного транспорта, предусматриваются защитные покрытия и катодная REPRESENCATION

Устройство изоляционных покрытий и католной поляризации стальных футияров для магистральных трубопроводов и отводов от них предусматривается вне зависимости от коррозионной активности грунта.

В остальных случаях защита футляров осуществляется только изоляционными покрытиями.

При бестраншейной прокладке футлярог рекомендуется разработанное Ленгипроинжпроектом покрытие эпоксидно-перхиореннилогой изоляцией, армированной стеклотканью (см. таблицу 6) , а при прокладке футинров открытым способом - эмаль этиноль, битумно-резиновне и полимерные изоляционные покрытия по ГОСТ 9.015-74

Таблица 6

наченование слоя изранием изр	Составляющий слой изоляции	Марка	Количество на I м2 поверх- ности футляра
Грунтовка .	Эпоксидная смола, г	ЭД-6	9
	Ацетон, г	· -	90
	Полиэтилен, г	-	I
Мастика (первый слой)	Эпоксидная смола, г	ЭД - 6	100
	Ацетон, г		5 0
	Перхлорвиниловая смола, г	<u> </u>	20
	Полиэтиленполиамин, г	- ,	IO
	Степлоткань, м2	-	I,I
Мастика (второй слой)	Эпоксидная смола, г/	ЭД-6	200
	Кварцевый песок, г	-	400
	Ацетон, г	_	40
	Полиэтиленполиамин, г	_	20

Катодная поляризация футлярое осуществляется протекторными установками.

Измерения разности потенциалов "Сооружение — земля" производятся до начала строительства футляра с определением опасности электрокоррозии его блуждающими токами, а по окончании прокладки футляра и монтажа протекторных установок — с целыю определения эффективности электрозащиты.

Размеры и технические данные упаковочных протекторов типа ПМ-5у, ПМ-ІОу и ПМ-2Оу, выпускаемых Березняковским титаново-магниевым комбинатом приведены на установочных чертежах (листы АК-2, АК-3, АК-5 альбом П).

Контрольно-измерительный пункт для подключения и контроля за работой протекторных установок и для измерения электрических параметров трубопровода и футляра с поверхности земли принят по серии 4.900-5/74.

10.2. Расчет протекторной защиты фугляров

Расчет протекторной загиты футляров производится в соответствии с требованиями нормативных документов, перечисленных в разделе 10.1.

Расчетом определяется количество и срок службы протекторов. До производства расчетов по трассе проектируемого перехода следует определить удельное электрическое сопротивление грунта.

Количество протекторов типа ПМ-5у, ПМ-10у и ПМ-20у для защиты футляров диаметром 350-1600 мм и длиной до 60 м может бить определено по приложению 5 в зависимости от удельного электрического сопротивления грунта, диаметра футляра и типа протекторов.

II. РЕКОМЕНЛАЦИИ ПО ПРОИЗВОДСТВУ РАБОТ

II.I. Способы производства работ

Устройство переходов под железнодорожными путями и автодорогами принято выполнять бестраншейными и открытым способами работ.

В качестве основних рекомендуются бестраншейные способы производства работ.

Открытый способ производства работ может быть принят при про-кладке трубопроводов глубиной до 4 метров при пересечении:

- I) железнодорожных путей на станциях и разъездах при интенсивности движения поездов до 18 пар в сутки и при возможности ограничения скорости до 25 км/час;
- 2) автомобильных дорог II и IV категории и в исключительных случаях дорог II категории при возможности устройства объездов.

Бестраншейная прокладка трубопроволов возможна следуещими способами: проколом, продавлеванием, горивонтальным бурением и шитовой проходкой.

Возможны и другие способи бестраниейной прокланки, которые настоящими проектными решениями не рассматриваются.

Работи по прокладке футияров бестраниейными способами должна выполняться, как правило, специализированными организациями, оснащенными средствами механизации трудоемких процессов по произацие футивров, разработке и звакуации грунта. При всех способах бестраншейной прогладки трубопроводов под железнодорожными путями, за исключением прокола, требуется установ-ка страхорочных рельсовых пакетов из 12 рельсов плиной 25 м.

Конструкция страховочных пакетов при деревянных шпалах в пути принимается аналогичной рельсовым пакетам, предусматриваемым при производстве работ откритым способом. При келезобетонных шпалах разрабатывается индавидуальный проект страховочных пакетов.

В течение всего периода производства работ по устройству перехода должен осуществляться технический надвор за состоянием автодороги со стороны линейно-дорожных участков и за состоянием железной дороги в пределах полосы отвода со стороны дистанции пути.

II.I.I. Прокол и продавливание

Способами прокола и продавливания производится внедрение футляров в грунт с помощью домкратной установки или забивки футляров в грунт с помощью пневмо или гидроударных установок или других механизмов.

Способом прокола осуществляется прокладка стальных футляров (труб) диаметром до 400 мм в грунтах І-Ш группи, а также в глинистих грунтах ІУ группи, не имеющих твердых включений. Выполнить прокол в грунтах, имеющих значительные включения гравия практически невозможно. При проколе грунт из прокладиваемого футляра (труби) не извлекается.

При продавливании производится разработка грунта в прокладиваемом футляре и транспортировка его по футляру в рабочий котлован. Разработка и транспортировка грунта выполняется вручную или межанизированным способом, исключающим нахождение работакцих в прокладыеваемом футляре. В первом случае возможна прокладка футляров из стальных труб диаметром 1200-1600 мм в сухих или осущенных грунтах I-IV группы на длину до 40 м. Во втором случае диаметр, длина прокладки футляра бестраншейным способом и возможные инженерно-гео-когические условия его прокладки принимаются в зависимости от нежего руктивных параметров принятых механизмов, количества и диаметры рабочих труб.

В отдельных ведомствах разработаны и используются различные

установки для провавличания и провола футанров. Кай привико, установки изготаниваются в ограниченном количестве на ведомотренных предприятиях.

Перечень таких установок приведен в таблице 9.

Таблица 9

Назначение установки	Наимено- рание устанор- ки	Metor nposman- ka dytre- poe	NSTOTOFFTSES, REMOMETE EO, PASPAGOTYER
Ī	2	3	4
Прокол труби диамет- ром 219 мм на длину 40-50 м	Пневмопро- бойники: СО-134 (ПР400)		Одесский завод строк— тельно-отделочных мещин
То же,219-426 мм на длину 40-50 м; продавливание труб	>	Лиевмо- ударжий	Минстройдормен СССР,
жиметром 630 мм на плину 40-50 м	CO-166 (M-130)	<i>.</i>	Институт горного дела СО АН СССР
Продавливание труб диаметром 630-1020мм на длину 45-30 м	M-200	,	
Прокол труб диамет- ром 219-426 мм на длину 40 м. продав-	Комплектн проход- ческие:	Гидроудар- ный-	Ухтинский завод Газстройман,
литание диаметром 530 мм на длину 40м	KII-53I		Министерство строи- тельства предприя- тий нефтиной и га-
Продавливание труб финметром 530—1020мм на длину 40 м	KU-102I		веной промышлен- ности, МИП им.И.М.:Губкина
То же, дламетром 1020-1720 мм на длину 60 м	KII-1721		
Продеритение труб диаметром 1220, 1420, 1620 мм на дигну 60 м	Horogrec- ree yora- hores: HY-2 HY-3	CTATUSE- CROS YOU- RES ROMEDEZOS	Орунвенский завод пе ремонту дорожим и странтельну ма- пин, мистрой СССР, цинистрой
Продевливание труби диаметром 1220 мм на плину 60 м	Yerawonsa Y-12/60	400 17 400	incumperative Pas. Linguage Control of Passing Passin

Установки M-200, KII-I02I, KII-I72I, ПУ-3 намечаются к внедренир в 12 патилетке.

Пневмопробойники М-200 и М-400 (последний для продавливания футавров дваметром I220 мм), изготовлени в небольном количестве по разработкам ИГД СО АН СССР на г/о Стройман Миниромстроя БССР и успавко колользуются в его строительных подравделениях.

Схеми по производству работ указанними в таблице 9 установками 'и их основние характеристики приведени на стр. 9-15 альбом III.

Работы по прокладке футляров и разработке грунта в футляре с помощью иневмопробойников должны выполняться в соответствии с техно-логической картой, разработанной ВПТИтрансстроем (УДК 625:625.78 (083.96).

Прокладка футляров под железнодорожными путями с помощью иневмопробойнаков должны выполняться без устройства лидирующей скважины.

Работи по прокладке футляров способами прокола и продавливания включают следующие основные элементы:

- І) устройство временных вспомогательных сооружений;
- 2) монтаж оборудования, приспособлений и подготовка футляров;
- 3) прокладка футляров.

В состав вспомогательных сооружений входят расочий и приемный котловани, а в случае использования домкратной установки — упорная стенка.

ІІ.І.І.Котлованн

Размеры рабочего котлована определяются в зависимости от длины и диаметров прокладываемых футляров и принятых механизмов. Расстение от стенки приемного и рабочего котлованов до бровки внемки или наружной бровки водоотводного сооружения должно быть не менее 2,0 и , а от подошен насыпи — не менее 3,0 м.

Отметка дна котлована определяется в загисимости от и проектной глубины заложения трубопровода и принимается на 0,4 м ниже низа прокладиваемого футляра.

Размеры котдованов дани на чертежах альбома Ш.

Рабочие котловани рекомендуется располагать с низовой сторони перехода.

Крепления котлоганов набираются в зависимости от размерся и физико-механических характеристик грунтов по "Анабомии технологи-ческих карт на разработку транней в креплениях для подземних кому-никаций", разработанным трестом Мосоргинистрой в 1976 г.

Процент оборачиваемости предлений устанавливается в нашком конкретном случае проектом производства работ.

II.I.I.2. Упорные стенки

Упорные стенки разработани для разних групп груптов в нескольких вариантах, отличающихся по материалу и конструкции. При выборе типа стенки следует руководствоваться характеристикой груптов, приведенной в таблице 7.

Типн упорных стенок при заглублении оси перехода от полетиности земли не менее 2,4 м дани на стр.26-28 альбома II.

Таблица 7

Карактеристика и наименование грунтов	Орментиро- сочная вели- чина угла внутрениего трения	Percuenty- MHO THIE, YIM DHAY CYS- HOR
Сласне грунти: водонасыщенные грунти, глуны, суглинки и супеси в иластичном состоянии, олизком к границе текучести	До 18 ⁰	I,I
Грунты средней прочности: менкие и среднезернистие пески (незарисимо от влажности), глины, сугинии и супеси р пластичном состоянии	18 ⁹ -30°	II, IY
Грунти прочине: прупнозернистие песка, гравий, щебень, галька, такин, суглинки и супеси плотине, тугопластичные или твердие	Boase 30°	у,уі,уп

Наружная поверхность упорной стенки должна онть строго пермендикулярна осям домкратов.

II.I.З. Прокладка футляров

Футляри, предназначенные для прокладки в грунт, подвергаются тщательному осмотру. Особое внимание обращается на прямолинейность труб и перпендикулярность торцог их осям.

На наружную поверхность труб до их укладки наносится эпоксилно-перхлореиниловая изоляция, армированная стеклотканью.

Перед опусканием труб в котлован рекомендуется произволять предварительную сборку звеньев на заранее спланированной площадке.

При продавливании производится извлечение грунтового керна из футляра. В зависимости от грунтовых условий грунт в футляре может разрабативаться до переднего торца футляра (в устойчивых грунтах) или с сохранением грунтовой пробки на длине I-2 м от переднего торца футляра (в неустойчивых грунтах).

Разработка грунта выполняется вручную или с применением следующих специальных механизмов:

- I) капсулн при применении пнермопробойников,
- 2) виброударной желонки при применении установок типа КП,
- 3) стакана кернообразователя или скрепера при применении установок типа ПУ,
 - 4) челнока при применении установки У-12/60.

Для снижения сопротивления грунта и улучшения условий его разработки и транспортировки при продавливании передний торен футияра оборудуется ножом.

После вдавливания в грунт очередного звена футляра, последний нарашивается с помощью сварки новим звеном.

После сварки необходимо проверить правильность соединений и убедиться в отсутствии перемоса.

Сваренные концы труб и шов должны онть зачищени и прикрызи той же изоляцией, что и труба футляра.

Прокладка футляров с помощью комплектов проходческого типа КП виполняется сразу на всю длину закрытого перехода.

При применении других установок (см. раздел II.2) прокладка фузляров осуществляется звеньями.

При проколе или продавливании футляров для прокладки в них ведопроводов, отклонения в плане и профиле футляров не должни превышать 1% по гертикали и 1,5% по горизонтали от двини проходие.

Отклонення футляров в случае прокладии в них канализационных трубопроводов не должни превышать в профиле 0,6 % и в плане I,С% от дажим прокожки.

П.1.2. Геризонтальное бурение

, Метедим горизонтального бурения прокладиваются футаври дваметром до 1800 мм в устойчивых грунтах I-IV группы.

Применение горизонтального бурения под железнодорожными путями ограничивается глинистими грунтами тверной, полутверной и тугопластичной вешинстенции с прокладкой футляра мине уровня грунтовых вод и общежениями заполнением пространства межну футляром и стенкой силими пементием раствором.

При горновитальном бурении производится опережания разработка грунта с помощью ўрезерной головки с образованием склажим большего диаметра (на IO-50 мм), чем проиладываений футляр. Пожача футняра осуществляется лебедками через систему нежискаютов, закрепленнах за якорь.

Перемещение грунта внутри прокладиваемого футияра производится шнековым транспортером, состоящим из отдельных звеньев, или друтим механизмом (соеком, как предусмотрено в установке ПМ 800-1600).

Установка горизонтального бурения ГБ-1421 изготвелирается Ленинградским машиностроительным заводом, а установка ПМ 800 -1600 -Карькорским ремонтко-механическим заводом Миниромствоя УССР.

Технические характеристики указанных установок приведены на стр. 16-19 альбома II.

- В комплекс работ при горизонтальном бурении еходит:
- I) устройство рабочего и приемного котлованов.
- 2) мантак установки и оборудования (включая устройство яворя).
- 3) опрефенние установки и включение ее в рассту

При применении установом ГБ-1421, ГБ-1422, УГБ-4 рабочий котиовыи стравжется на 8-10 м больше длини прояжениваемого футмара и терожной на 0,7-0,8 м ниже ина футмара.

Бурение производится на есю диину пережода с выходем фрезерной головки и переднего конца труби в приемений котлован. Для установки ПМ-800-I600 рабочий котлован отрывается на длину I3-I8 м.

Ширина котлована по низу принимается 2,8 м.

Рабочий котлоран рекомендуется устранвать с откосами или с креплениями, принятыми для котлоранов при продавливании, с заменой распорок растяжками.

Размеры приемного котлована определяются в зависимости от диаметра футляра и длины секции шнекового транспортера.

Расстояния от стенок приемного и рабочего котлованов и траншеи для устройства якоря до элементов земляного полотна должны быть не менее указанных в разделе II.2.I.

Установка горизонтального бурения ГБ-I42I, а также ранее выпускаемиеся установки УГБ-4, ГБ-I02I, ГБ-I422 работают совместно с трубоукладчиком, который удерживает машину и трубу от поворота в сторону под действием реактивного момента. Трубоукладчик перемещается по спланированной бровке траншей со скоростью, равной скорости продвижения труби футляра.

При работе установки Пм 800-1600 трубоукладчик не требуется.

Имеется опыт использования установки горизонтального бурения типа ТБ путем наращивания отдельных звеньев труби и шнекового транспортера. Работи ведутся по следующей схеме. Рабочий котлован отрывается длиной 12 м. Из котлована производят бурение первой секции, восле чего работи прекращают, машину снимают и ставят рядом с приемным котлованом. На освободившиеся опорные тележки укладивают вторую секцию труби с собранным в ней шнековым транспортером, выпвинутым вперед на 0,5 м, который крепят к концу шнека первой секции. Подвинув вторую секцию труби к первой, центрируют их концы и сваривают электросваркой.

По окончании этих работ машину, растигивая полиспаст, устанавливают на конен второй секции трубн и крепит ее. Смонтировае привод к шнеку, продолжают бурение. Аналогично произволят нарашивание последующих секций трубн.

II. I.3. Шитовая проходка

Шитовой способ проходки рекомендуется при длине перехода более 60 м и при необходимости устройства футляра диаметром более 1600 мм запритим способом.

Произволетво работ способом щитовой проходии возможно в сухих или осущениих грунтах I-IV категории.

При устройстве переходов рекомендуется применять механизированиие шити.

В настоящее время специализированные строительные организации оснащани механизированными щитами диаметром 2,56; 3,6; 4,0 м и немеханизированными щитами диаметром 2,1; 2,56 и 3,6 м.

До начала работ по щитовой проходке устраиваются входная (начальная) и виходная (конечная) шахти.

Промежуточные шахты устраиваются в процессе проходкы.

Конструкции шахт принимаются по Альбому № 60 "Крепление кругжих и квалратных шахт на шитовых проходках Д=2,0; 2,56 и 3,6 м", разработанному институтом Мосинжироект в 1963 г.

Для подъема грунта и опускания материалов во входной шахте устраивается бадьевое отделение, а для пропуска людей — лестницы. Бадьевое отделение и лестничные марши устраиваются после того, как цит ввелен в забой.

Вертикальный транспорт грунта и материалов осуществляется с помощью электрифицированного крана СПК-1000 или СПК-2000 грузополъемностью соответственно 1,0 и 2,0 т.

Ситемание цита в забой производится автокраном или краном на пнениатическом ходу грузоподъемностью от 16 до 40 т.

Разработанный в забое грунт транспортируется по тоннелю к бадьевому отделению на тележках, имеющих приспособления для подъема их краном.

Блоки для обделки тоннеля и другие материалы транспорматичеся этим же тележками.

Сборка кольца щитогого тоннели из блоког производится в хвостерей часте щита, начиная с лоткогого блока.

Для заполнения свободного простроанства между грунтом и общелим растворонасосами нагнетается пементно-песчаний раствор состава 1:3.

Нагнетание раствора производят за каждое олонное кольцо до момента полного заполнения объема раствором и повышении давления выше рабочего на 0,1-0,2 Па. Контрольное нагнетание производится чистым цементным раствором при давлении 0,5-0,6 Па через каждые 3-5 м цитового тоннеля в оставленные для этого или специально устраиваемые в облелке тоннеля отверстия.

В щитовых проходных тоннелях после окончания проходки устраивается монолитная железобетонныя рубащка толщиной 0,15-0,2 м.

II.I.4. Открытый способ

Провладка футляров открытым способом производится сбычным порядком: отривается траншея и укладывается футляр.

Дополнительными сопутствующими работами при этом являются:

- при пересечении железнодорожных путей устройство подресных пакетов, разборка и восстановление балластной призмы;
- 2) при пересечении автодорог разборка и восстановление дорожних покрытий и устройства временных объездов.

Типи подвесных пакетов приводятся на стр. 32-35 альбома Ш.

Величины расчетного пролета подресного пакета Lp в м определяется по формуле:

$$L_{P} = 8 + 2h \cdot m + 1$$

. rne

в - ширина траншей в м с учетом креплений по СНиП Ш-8-76;

продением в м.

m - ведичина крутизны откоса согласно табл. 4 СНиП III-4-80.

При устройстве креплений траншей, воспринимающих сумму нагрузок от давления грунта и подвижного состава, величина Lp может определяться по формуле:

1 p = B+ 1

На время производства работ под ж.-д.путями вводится отраженоние скорости движения поездов до 25 км/ч.

В отдельных случаях по согласованию с управлениями желисти дорог работи по прокладке футляров открытым способом могуе выполняться без установки подвесных пакетов с временным прекращением движения
поездов (с представлением "окон").

Траншей под железнодорожными путями и автодорожным должны засыпаться песком с тщательным послойным уплотнением, с восстановаением тела земляного полотна прежним грунтом.

II.2. Мероприятия по водоотлиту и водопонижению

Стиритна водостане рекомендуется при хорошей водостане грунтов и сравнительно небольшом притоке грунтовых вод. В этом случае по периметру котлованов или шахт предусматривается устройство дренажных траншей с зумифом для откачки воды. Откачку воды следует прокородить насосами тика "ТНОМ" производительностью IO-IOO мЗ/ч или центробежным насосом марки C-245 произведительностью IOO мЗ/ч.

При производстве работ г водонасыщения и водоносних грунтах рекомендуется устройство водопонижения.

Водопонижение следует производить с помощию иглофильтровых установок (типа лиу или эжекторных) при коэффициентах фильтрации трунтов-до 50 м/сутки.

При негозможности водопонижения иглофильтрами, а также при коэффилиенте фильтрации грунтов свыше 50 м/сутки рекоменцуется водопонижение с помощью трубчатых колодцев (скважин), оборудованных глупоноволивыми насосами.

При коэффициенте фильтрации грунтов менее I м/сутки целесообразно применять вактумирование с помощью вакуум-эжекторных игдомильтор (установками типа УБВ-ІМ и УВВ-2).

Выбор способа водопонижения, места сбора откачиваемых грунтовых всл, расчет необходимого количества иглофильтров или скважин и их расположения, глубины установки фильтров решаются в каждом конкретном случае.

ожеми водоотлива и водопонижения приведени на стр. 23-25 ильсома II.

ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ БЕСТРАНИЕЙНОЙ ПРОКЛАДКИ ЭУТЛЯРОВ РАЗЛИЧНЫМ МЕХАНИЗМАМИ

Показатели приведены по материалам исследований, выполненных в 1986 г. Западно-Сибирским филмалом ВПТИтрансстроя по теме "Иссленование методов бестраниейной прокладки инженерных коммуникаций с ценых их использования для транспортного строительства."

Показатели, приведенные на I м прокладки футляра, включают: приведенные затраты, себестоимость, удельные капитальные вложения, затраты труда и стоимость материалов и служат для анализа при выборе механизма прокладки.

Затрати на разработку приемного котлована, подготовку, укладку и сварку звеньев футляра, а также стоимость футляра, как независящие от механизмов прокладки, в показателях не учитываются.

Результати расчетов основных экономических показателей для различных механизмов приведены в таблицах 8-I3.

Таблица 8 Экономические показатели прокладки I м футичра диаметром 325 мм пневмопробойником СО-166 (M-130).

Длина проходки, м				
10	/ / '30	40		
8,9	4,3	3,7		
8,0	3,8	3,3		
6,0	3,3	2,9		
2,6	I, I 4	0,95		
0,56	0,19	0,14		
	8,9 8,0 6,0 2,6	10 //30 8,9 4,3 8,0 3,8 6,0 3,3 2,6 1,14		

Таблица 9

Экономические показатели прокладки **Im футляра диаметром** 630 мм пнермопросойником CO-I66 (M-I30).

	Показатели	Ілина	проходии. м	
		IO	20	30
ī.	Приведенные затраты. руб.	20,8	I4,2	12,0
2.	Себестоимость, руб.	18,6	12,6	10,6
	Удельные капитальные вло- жения, руб.	14,8	10,7	9,3
4.	Затраты труда, челч.	6,3	4,3	3,6
5.	Стоимость материалов, руб.	0,56	0,28	0,19

Tacama 10 Экономические показатели прокладки І м футляра диаметром 1220 мм установкой ПУ-2.

	Показатели	Длина п		
		10	30	60
I.	Приведенные затраты, руб.	84,3	I25,4	I38,9
2.	Себестоимость, руб.	63,0	100,0	IIO,I
3.	Удельные капитальные вло- жений, руб.	I42, I	169,9	192,0
4.	Затрати труда, челч.	I5,I	12,5	12,7
5.	Стоимость материалов, руб.	_	- "	• 🕳

Taomma II Экономические показатели прокладки І м футляра диаметром 1220 и 1420 мм установкой ГБ-1421.

Пока	затели	Плина	проходки, м	
		10	30	50
I. Hpur	еденные затраты, рус.	46,9	36,I	34.I
2. Cede	стоимость, руб.	4 I,9	32,0	30,2
3. Удел жени:	бине капитальные ело- а, руб.	33,2	27,0	25,9
3. Затр	аты труда, челч.	8,9	5,3	4,6
5. Crow	мость материалов, руб.	2,4	3,0	0,5

Таблина 12 Экономические показатели прокладки I м футляра двеметром 1220 и 1420 мм установкой ПМ 300-1600 .

	Показатели	Длина	проходки, м	
		IO	50	120
ī.	Пригеденние затрати, руб.	40,2	24,3	22, I
2.	Себестоимость, руб.	35,6	20,9	18,9
3. 3. 5.	Упельные капитальные вло- жения, руб. Затраты труда, челч. Стоймость материалов,руб.	36,6 9,2 4,0	22,7 3,I 0,8	21.5 2.3 0.8

Экономические показатели прокладки І м футляра диаметром 1220 мм бульдозером

Показатели	Длина	.	
	5	IO .	I 5
I. Приведенные затрати, руб.	84,9	58,7	50,0
2. Себестоимость, руб.	76,7	53,2	45,4
3. Удельные капитальные вло- жения, руб.	54,7	36,5	30,4
4. Затраты труда, челч	28,5	19,0	I5,8
5. Стоимость материалов, руб.	_	-	-

ІЗ. ОХРАНА ТРУЛА

В течение всего периода производства расот по устройству переходор должен осуществляться надзор со стороны дистанции пути и линейно-эксплуатационных участкое автодорог.

Установка пакетов проверяется ответственным представителем дистаниии пути, который выдает письменное разрешение на их эксипуатацию и устанавливает допустимую скорость движения по ним.

Работы по устройству переходов должны производиться в соответствии с СНиП Ш-4-80 "Техника безопасности в строительстве" с соблидением правел безопасности согласно инструкции по эксплуатации принятых механизмов для прокладки футляров.

При производстве работ открытым способом под железнодорожными путями и в междупутье, при установке страховочных подвесных накетов, при устройстве шахт и котлованов в междупутье соблюдание. Правила эксплуатации железных дорог (ПТЭ) и Инструкция по обесначанию деижения поездое при производстве путевых работ 15 ШП-3075.

Работа механизмое вблизи электрифицированных ж .- д . путей внполняется согласно требованиям ГОСТ 12.1.013-78 и "Правил безопасности для работников ж.-д. транспорта на электрифицированных линиях ЦЭ/3288, утвержденных 11.09.75 зам.министра путей сообщения.

При бестраншейных способах производства работ соблюдаются "Единые правила безопасности при разработке рудных, нерудных и россынных месторождений подземным способом" и "Временные правила техники безопесности при строительстве городских подземных сооружений закрытыми способами в г. Москве".

При открытом способе производства работ разработка траншей должна вестись на глубину не более одной доски крепления. При этом должна соблюдаться следукщая последовательность работ и технология крепления траншей:

- I) до начала производства земляных работ устанавливаются подвесные пакеты:
- 2) крепление траншей должно осуществляться досками толщиной 70 мм:
- 3) доски закладираются за вертикальные стойги, по мере углубления траншеи, вплотную к грунту и укрепляются распорками;
- 4) стойки крепления траншем устанавливаются не реже чем через 1,25 м;
- 5) распорки креплений располагаются на расстоянии одна от другой по вертикали не более Т м, под концами распорок свержу и снизу прибиваются бобышки:
- 6) верхние доски креплений должны выступать на IO см выше отметки бровки траншей;
- 7) винутая земля из траншей должна отвозиться в специально отведенное место:
- 8) разборку креплений траншей следует производить в направлении снизу вверх по мере обратной засники траншей;
- 9) количество одновременно удаляемых досок по висоте не должно превышать трех для плотных грунтов, а для сыпучих или неустойчи- вых -- одной доски;
- 10) при удалении досок соотретственно переставляются распорка, причем существующие распорки внижмаются после установки новых;
- II) разборна подвесных пакетов производится после засники траншел и восстановления балластной призмы.

14. РЕКОМЕНЛАЦИИ ПО ПРИМЕНЕНИЮ

Разработка проекта перехода осуществляется в последовательности:

I) по приложениям I и 3 настоящего альбома в зависимости от инженерно-геологических условий, количества рабочих труб, их диа-

метра в длини проходки с учетом именщегося оборудования у подряд-

- 2) в зависимости от вибранного способа по приложениям 2.1 2.22 и 4.1 4.11 вибирается минимальный диаметр футляра и тип сечения:
- 3) составляется план М I:500 и профиль М I:100 или I:200 перехода с нанесением геологического разреза по всей его длине;
- 4) разрабативаются чертежи опор трубопроводов в соотретствии с принятим типом оборудования футляра и проставляется высота шва и шаг расположения опор, указанные значком на листах НЕКИ альбома П;
- 5) в необходимых случаях разрабатываются чертежи протекторной защиты:
- 6) разрабативаются соображения по организации строительства перехода и в необходимых случаях разрабативается проект водопонижения;
 - 7) для надземных переходов разрабативаются чертежи эстакал.

Расстояния между элементами земляного полотна в перехода должчы быть приняты в пределах величин, указанных в разделах 2,7.1 в ЦЦП пояснительной записки.

Порядок согласования проекта перехода и состав представляемых на согласование материалов приведен в разделе I пояснительной записки.

В лачестве примеров на листах НВ-32-35, НК-26,27 альбома П привелены рабочие чертежи планов и профилей переходов, по которым составлены сметы, гедомости потребности в материалах и спецификации оборудования пля слепующих карактерных случаев:

- годопровод в одну линий Ø 200 мм в стальном футляре
 № 420 мм длиной 30 м, уложенном методом прокола под автодорогой в сухих грунтах П прушин;
- 2) самотечная канажизация Ø 400 мм в стальном футляре Ø 1220 мм длиной 40 м, уложенном методом продавливания под железнодорожными путлями в сухих грунтах П группы;
- 3) водопровод в две линие Ø 200 мм в стальном футляре Ø 1420 мм длиной 50 м, оборудованном устройством для протаскивания 4 каселей

- 50-

связи. Футляр прокладывается методом горизонтального бурения под автодорогой в сухих грунтах П группы.

Примеры смет и редомостей потребности в материалах для указанных переходов пригедены в приложениях 8-13 пояснительной записки. а спецификаций - на листах HB-36,37 и HK-28 альбома П.

Приложение І

ТАБЛИЦА

вибора способа прокладки футляров для трубопроводов водопровода

јаксималь— Гая длина	Геологические условия	Marce B MM	мальный в разли	мвид Хинк	этр ра района	X CCCP	трубн	Способ прокладки и механизм для прокладки футляра
, иидоходи м	4 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	одна	рабочая	труба	а две	рабочи	е трубы	_
		I	П	Ш	I	П	III	•••
I	2	3	4	5	6	7	8	9
<u>.</u>	Любые грунты І-4гр.	200	-		-	_	. -	Прокол с помощью домкратных установок
	Сухие или осушен- ные грунты I-4гр.	800	600	_	250	250	-	Прокол и продавливание с помощью пневмопробойников
	Сухие или осушен- ные грунты I-4гр.	I4 00	1200		400	400	a.s	Продавливание с ручной раз- работкой грунта
	Сухие или осушен- ные грунты I-4 гр.	300	_	-	-	_	-	Прокол и продавливание с помощью комплекта проход- ческого КП-531
	Сухие или осушен- ные грунты I-4гр.	800	600	-	250	250	•••	Продавливание с помощью комплекта проходческого КП-1021
	Сухие или осушен- ные грунты I-4гр.	I400	1200		400	400		Продавливание с помощью комплекта проходческого КП-1720
	Сухие или осушенные грунты I-4гр.	1200	1000	_	300	300	-	Горизонтальное бурение установкой ГБ-1421

	1 кинежокисп винежкороси!					I кинежокисп винежко		
I	2	3	4	5	6	7	8	9
	Любие грунты 1-3гр.	1000	800	-	250	250	_	Продавливание с помощью установки У12/60
60	Любые грунты 1-4гр.	I400	1200		400	400	_	Продавливание с помощью установки ПУ-3
120	Сухие устойчивые грунты I-4гр.	1400	1200		400	400		Горизонтальное бурение уста- новкой ПМ 800-1600
НЕ Э РРАН ИЧЕНА	Любые грунты с	1400	1200	I4 00	800	800	I 4 00	Открытый способ прокладки
	Сухие или осущен- ные грунты I-4гр.	1400	I400	_	1400	1400		Шиторая проходка

Таблица составлена для следующих районов:

- I все райони СССР за исключением районов с сейсмичностью более 6 баллов и районов распространения вечномерэлых грунтов,
- П райони с сейсмичностью 7-9 баллов,
- Ш районы распространения вечномерванх грунтов.

Приложение 2

ТАБЛИЦЫ ВЫБОРА МИНИМАЛЬНЫХ ДИАМЕТРОВ ФУТЛЯРОВ ДЛЯ ТРУБОПРОВОДОВ ВОДОПРОВОДА ПРИ РАЗЛИЧНЫХ СПОСОБАХ ПРОКЛАДКИ ФУТЛЯРОВ (приложения 2.1 – 2,25)

Плилежение 2 Т

Прокладка футляров способом прокола

Kon-Bo padovax rpyd P dyrnspe	. Диаметр рас чей трубы, мм	бо— Тиді сечения	Размер Футдяра, мм
I	2 ′	3⋅	4
Опна	Ø 159	I	Ø 377
V/Marie	Ø 219	I	Ø 426

Приложение 2.2

Провладка футлиров с помощью пневмопробойников в районах с сейсмичностью до 6 балдов

Кол-во расочих трус в футаяре	Диаметр рабо- чей трубы, мм	Тип сечения	Pasmep dyrnapa, mm
I	2	3	4
	Ø 159	I	Ø 377
	Ø 219	Ī	Ø 426
	Ø 273 – Ø 325	I	Ø 530
Одна	Ø 377 - Ø 426	I	ø 630
	ø 530	I	Ø 720
	Ø 630	I	ø 820
	Ø 820	I	Ø 1020
	ø 159 🗕 يا 219	Ш	ø 820
I.Be	Ø 273	Ш	ø 9 8 0

Проклапка футляров с помощью пневмопробойников в районах с сейсмичностью 7-9 баллов

Кол-во расочих трус в футляре	Дваметр расс- чей трусы, мм	Тип сечения	Размер футияра, мм
I	2	3	4
	Ø. 159 - Ø 219	I	Ø630
	Ø273 – Ø325	I	Ø720
Одна	Ø426	I	Ø820
	Ø530	I	Ø920
	Ø630	I	ØI020
Лте	ØI59 - Ø2I9	Ш	Ø820
дее	Ø273	Ш	Ø1020

Приложение 2.4 Прокладка футляров способом продавливания с ручной разработкой грунта в районах с сейсмичностью до 6 баллов

Кол-во рабочих труб в футляре	Лиаметр рабо- чей трубы, мм	Тип сечения	Размер футияра, мм
<u> </u>	2	3	4
	ØI59 -Ø426	П,Па	
	Ø530 - Ø630	П	Ø1220
•	Ø820 - Ø1020	I	
Одна	Ø530 - Ø630	IIa	
	Ø 1220	I	ØI420
	Ø 1220-Ø1420	I	- Ø1620
	Ø8 20	Па	- DIOSO
<u>Il de</u>	ØI59 – Ø273	Ľ	Ø1220

Продолжение приложения 2.4

I	2	3	4
	Ø325	Iй	
Две	ØI59 - Ø325	ГУа	ØI420
	Ø377 - Ø426	IУ, IУ а	ØI620

Приложение 2.5 Прокладка футляров способом продавливания с ручной разработкой грунта в районах с сейсмичностью 7-9 баллов

Кол-во рабочих труб в футляре	Диаметр рабо- чей трубы, мм	Тип сечения	Размер футияра, мм
I	2	. 3	4
	ØI59 - Ø426	II,IIa	Ø1220
	Ø530 - Ø630	П	02220
Одна	Ø820	I	
	Ø530 -Ø63 0	Па	d= 400
	Ø1020	Ī	Ø1420
	ØI220	I	d=000
	Ø820	Па	Ø1620
	∌I59 - <u>@</u> 273	IV.	Ø12 2 0
Две	Ø325	Đ	ØI420
	Ø159 - Ø325	ІУа	
	Ø377 - Ø426	Iy, Iy a	Ø1620

Приложение 2.6 Прокладка футыров с помощью комплектов проходческих КП-531

Кол-во рабочах труб в футияре	Диаметр рабочей груби,им	Тип сечения	Размер футляра, мм
. Одна	Ø159	I	Ø377
	Ø219	I	Ø426
	Ø273 ±: Ø325	I	Ø53 C

ИЦВ. № 1307/I Приложение 2.7

Прокладка футляров с помощью комплектов проходческих КП-IO2I в районах с сейсмечностью до 6 баллов.

Кол-во расочих труб в футляре	Диаметр рабочей трубн, мм	Tuu 	Размер футияра, мм
	ØI59 - Ø325	1	Ø530
	Ø377 – Ø426	I	Ø630
Одна	ø530	I	Ø720
	Ø630	I	Ø820
	Ø820	I	Ø1020
I re	Ø159 – Ø219		Ø820
	Ø273	Ш	Ø920

Приложение 2.8

Прокладка футляров с помощью комплектов проходческих КП-1021 в районах с сейсмичностью 7-9 баллов.

Кол-во рабочих груб в футляре	Диаметр рабочей трубн, мм	Тип 	Размер футляра, мм
	Ø159 - Ø2 1 9	I	Ø630
	Ø273 – Ø 377	I	Ø720
Сдна	Ø426	I	Ø820
	Ø530	Ī	Ø920
, k	Ø630	I	Ø1020
<u>Int</u>	Ø159 – Ø219	П	Ø820
	Ø273	Ш	Ø920

Прокладка футляров с помощью комплектов проходческих КП-I720 в районах с сейсмичностью до 6 баллов.

Кол-во рабочих труб в футляре	Диаметр рабочей трубы, мм	Tun ceye- nus	Размер футляра, мм
AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	<u>Ø159 – Ø377</u> Ø63 0 – Ø820	<u>П</u> І	ØI020
	Ø159 - Ø426	IIa	
Олна	Ø426	П	ØI220
	ØI020	I	
	Ø530 - Ø630	II, IIa	dzioo
	Ø1220	I	ØI420
	Ø820	līa	
	Ø1420	I	Ø1620
	Ø159 - Ø273	IJ	ØI220
Две	Ø325	Iў	
	ØI59 - Ø325	Iya	Ø 142 0
	Ø377 - Ø426	IY, IYa	Ø1620

Приложение 2.10

Провладка футляров с помощью о комплектов проходческих КП-1720 в районах с сейсмичностью 7-9 баллов.

Кой-во расочих трус в сутляре	Диаметр рабочей трубы, мм	Тип сече- ния	Размер футияра, мм
I	2	3	4_
	ØI59 - Ø377	П	drana
	Ø630	T	- Ø1020
Одна	ØI59 - Ø426	Па	
	Ø426	I	ØI220
	Ø820	I	•

Инв. № 1307/1

Прополжение приложения 2.10 .

I	2	3	4
	Ø530 – Ø630	II, Ila,	d7.400
Опна	Ø1050	I	ØI420
	Ø820	Па	
	Ø1220	Ī	Ø1620
	ØI59 - Ø277	İy	Ø1220
I. 2 e	Ø325	ĬУ	4
	ØI59 - Ø325	IУа	ØI420
	Ø 377 -Ø426	IY, IYa	Ø1620

Приложение 2.11

Прокладка футляров с помощью установки ГБ-1421 в районах с сейсмичностью до 6 саллов.

Кол-во рабочих труб в футамре	Диаметр рабочей трубы, мм	Tun ceye- Hus	Размер футияра, ми
Опна	Ø159 - Ø630 Ø 820 - Ø1220	II, IIa	ØI420
Пре	Ø159 – Ø325	ІУ, ІУа	pi4cu

Приложение 2.12

Провладка футанров с помощью установки ГБ-1421 в районах с сейсинчностью 7-9 баллов.

Кол-го расочих трус в рутляре	Ди а метр рабочей трубы, им	Тип сече— н ия	Pasmep Pyraspa,
	Ø159 - Ø630	II, IIa,	
ORMA	Ø 820 -Ø1020	ī	Ø1420 ·
Дэө	Ø159 Ø325	IУ, IУа	

NHB. №1307/I Приможение 2.13

Провладва футляров с помощью установие У-12/60 в районах с сейсинчесство до 6 балдов.

Koz-	но рабочих з р футалре	Дваметр рабоче й трусн, мм	Ten Covo- Hes	Pannep dyraspa,
		Ø159 - Ø630	П	
	OEHA.	Ø820 - Ø1020	I	ØI220
	Дре	Ø159 - Ø277	17	

Прикожение 2.14

Провлания футимров с помощью установии У-12/60 в районах с сайсмичностью 7-9 балков.

оя-во рабочих Сруб в футаяре	Циаметр рабочей трубн, ми	Тил сеч е- ния	Passey) by Tangen, san
	Ø159 - Ø630		
Одна	Ø820	I	Ø1220
Две	Ø 159 – Ø 27 7	ΙŸ	

Прикожение 2. I5

Прокладка футляров с помощью установов ПУ-3/ПУ-2/ в районах с сейсмичностью по 6 баллов.

Ко л-в о рабочих т руб в футляре	Дваметр рабочей трубы, мы	Tui Ceye- Hus	Pasmen Dyrmapa, MM
I	· 2	3	4
seele.	dI59 - d37 7	Ī	
	Ø630 - Ø 820	I	- \$1020
Ожна	ØI59 - Ø426	∏a.	
	Ø425	I	#122 0
	ØI020	Ī	_

Инв. № 1307/1 Продолжение приложения 2.15

I	2	3	4
	Ø530 - Ø630	П, Па	ØI420
	Ø1220	1	W1420
Одна	ø 8 20	Па	dr.coo
	Ø1420	I	ØI620
	Ø159 - Ø273	. IJ	ØI220
Две	Ø325	Iy	d= 150
	ØI59 - Ø325	IУа	Ø142Q
	\$377 - £426	IY, IYa	Ø1620

Приложение 2.16
Прокладка футляров с помощью установом ПУ-3 /ПУ-2/ в районах с сейсмичностью 7-9 баллов.

Roseso padovin Ipyd e Rythapo	Лиаметр рабочей труби, мм	Тип - еге - ни я	Размер футляра, мм
	ØI59 - Ø4 2 6	П, Па	
	Ø530 - Ø6 3 0	П	Ø1220
	2 820	Ī	
улна	⊅530 - 1630	Па	ØI 420
	ØI020	Ī	
•	21200	Ī	
*	¥820 °	ila	Ø 16 20
	Ø159 - Ø273	IJ	ØI220
	Ø32 5	IY	
Дге	Ø159 - Ø325	ІУа	ØI420
e Marie	Ø377 - Ø426	IУ, IУа	Ø1620

Прокладия футмиров с помощью усленовии ПМ 800-1600 в райомах с сабамичностью до 6 самися.

dia s diambe	Алжетр расочей труби, мм	Tan Ceye- Hur	Pasmep Tranpa,
3° † .	Ø159 – Ø325	п	dono
	Ø426 - Ø630	I	Ø820
	Ø820	I	Ø1020
	Ø1020	Ī	
Cage	Ø159 - Ø426	Па	Ø 12 20
	Ø530 - Ø6 30	∏a.	
	Ø1220	I	Ø1420
	Ø 62 0	IIa	
	Ø1420	I	Ø1620
	Ø159 - Ø219	III	Ø 8 20
<u>Ree</u>	Ø273	111	Ø920
	Ø325	ΙΥ	
	Ø159 – Ø325	IУа	Ø1420
	Ø377 - Ø 4 26	ІУ, ІУа	Ø1620

Приложение 2.18

Провланка футияров с помощью установки ПМ 800-1600 в районе с сейсмичностью 7-9 балков.

NO P TOTALE PER PER PER PER PER PER PER PER PER PE	Циаметр рабочей трубы, мы	Тип сече- н ия	Размер футанра,
	2	3	4
Carries.	ØI59 - Ø325	П	Ø820
	Ø426	I	

Продолжение приложения 2.18

I	2	3	4
	Ø530	I	ø920
	Ø630	Ī	Ø1020
	Ø820	I	ØI220
	Ø159 - Ø426	ila	Ø1220
Одна	ØI020	I	
4	Ø530 - Ø630	Ila	Ø 1420
	Ø1220	I	
•	Ø820	IIa	- ØI620
	Ø 159 – Ø219	Ш	Ø820
	Ø273	Ш	ø920
Are	Ø325	IУ	dTino
*	Ø159 – Ø325	IУа	— ØI420
	ø377 – ø426	IY, TYa	a ØI620

Приложение 2.19

Провладка футлярое откритны способом под автодорогой во всех районах СССР за исключением районое с сейсмичностью свыше 6 баллов и районов распространения вечномерзлых грунтов.

Кол-во рабочих труб в футляре	Пиаметр рабочей трубы, мм	Тип сече- ния	Материал, , диаметр футляра,мм
1	2	3	4
	ØI59	I. *	сталь Ø350
•	Ø219	Ī	сталь Ø400
Одна	Ø273 - Ø377	I,	сталь Ø500
	Ø325 - Ø426	I	сталь Ø600
	Ø 5 30	Ι	годопропуск- ная труба Ø750
	Ø630 Ø820	Ī	водопроп уск- ная труба Ø1000

2	3	4
ØI020	I	водопропуск- ная труба Ø1250
Ø1220	I	-"- ØI500
Ø1420	I	-"- Ø2000
ØI59 - Ø325	IIa	-"- ØI000
Ø377 - Ø426	Ша	-"- 1250
Ø530	Ila	-"- 1500
Ø620 - Ø820	Шa	-"- 2000
	2 Ø1020 Ø1220 Ø1420 Ø159 - Ø325 Ø377 - Ø426 Ø530	2 3 Ø1020 I Ø1220 I Ø1420 I Ø159 - Ø325 Ha Ø377 - Ø426 Ha Ø530 Ha

Приложение 2.20

Проиладка футляров откритим способом под железнодорожними путтями во всех районах СССР за исключением районов с сейсмичностью свише 6 баллов и районов распространения вечномерэлых грунтов.

Кол-во рабочих труб в футляре	Диаметр рабочей трубы, мм	Тип сече- ния	Материал, диаметр фут- ляра, мм
	ØI59	. I	сталь Ø350
	Ø219	I	-"- Ø400
	Ø273 - Ø377	I	-"- 500
Одна	Ø325 - Ø426	I	-"- 600
•	Ø530 - Ø820	I	водопропуск- ная труба Ø1000
	Ø1020	ī	-"- Ø1250
	Ø1220	I	-"- Ø1500
· ·	ØI420	I	-"- Ø2000
•	ØI59 - Ø325	Wa	-"- Ø1000
	Ø377 - Ø426	Wa	-"- ØI250
Дво	Ø 530	IIIa	-"- I500
\$	Ø620 - Ø820	IIa	-"- 2000

Приложение 2.21

Прокладка футляров открытым способом в районах с сейсмичностью 7-9 баллов под автодорогой.

Кол-во рабочих труб в футвире	Диаметр рабочей труби, мм	Тип сече- ния	Материал, диаметр фут- дяра, мм
, . I	2	3	4
	Ø159 - Ø219	I	сталь Ø600
•	Ø273 – Ø325	I	водопропуск- ная труба Ø750
Одина	Ø426 - Ø630	Í	-"- ØI000
	Ø820	ī	-"- Ø1250
	Ø1020 ,	· I	-"- ØI500
•	ØI220 - ØI420	/ F/ I	-"- Ø2000
•	Ø159 – Ø273	/ IIa	водопропуск- ная труба Ø1000
Ів е	Ø377- Ø426	Ша	-"- ØI250
	Ø530	IIa	-"- ØI500
	Ø620 -Ø820	IIa	-"- Ø2000

Приложение 2.22

Проклапка футлярое открытым способом в районах с сейсмичностью 7-9 баллов под железнодорожными путями.

Кол-во рабочих труб в футмире	Диаметр рабочей трубы, мм	TNII Ceye— Ruh	Материал, пламетр фут- пяра, им
	2	3	4
	Ø159 – Ø219	I	сталь Ø600
Одна	Ø273 – Ø630	I	родопропуск- ная труба Ø1000
	Ø820	I	-"- ØI250
•	ØI020	I	-"- ØI500
	Ø1220 -Ø1420	Í	-"- Ø2000

Продолжение приложения 2.22

I	?	3	4
	Ø159 – Ø273	. Ilia	водопро- нусквая труба Ø1000
Две	Ø377 - Ø 426	Wa.	-"- ØI250
	Ø5 30	lla	-"- ØI5CO
	Ø620 – Ø820	Ша	водопро- пускная труба Ø2000

Приложение 2.23

Прокладка футияров открытым способом в районах распространения вечномералых грунтов с сейсмичностью до 9 баллов.

Кол-во расочих труб в футьяре	Диаметр рабочей трубы, мм	Тип сече- ния	Матер пал, размер фут- ляра, мм
I	2	3,	4
	Ø27 3 - Ø426	MI	водоп ро- пускная труба
-	Ø 159 – Ø219	IX	I500x2000
Одна	Ø273 – Ø426	IX	водопро- пускная труба
	Ø53 0 - Ø820	УП	2000x2000
,	Ø 1020 - Ø1420	УП "	еодопро- пускеая труба 2500х2000
	Ø159	Х .	труба пускная труба
Дее	Ø159 - Ø325	ЛП	2000x2000
	Ø219 – Ø325	X	водопро- пусквая труба
	Ø377 - Ø530	УШ	2500 ×2000

Приложение 2:24

Прокладка футавров по эстакадам.

Kon-so pacovax	ma , Hord de mente mar de la maria del maria della del	Тип сече- ния	Размер- футляра, мм	
I	2	3	4	
	ØI59	УI	Ø720	
	Ø21 9	УI	Ø820	
Одна	Ø325	УI	ØI020	
	Ø42 6	УI	Ø1220	
	Ø530	y .	Ø1020	
	Ø630	У	Ø1220	
	Ø720	y	Ø1420	

Приложение 2.25

Прокладка футляров методом щитовой проходки в районах с сейсмичностью до 9 баллов.

Диаметр рабочей труби, мм	Тип сече- ния	Диаметр щита, мм
ØI59 - ØI420	I	OTOD (
Ø377 - Ø630 ·	ш-Б	2100 '
Ø820	Ш-Б	2560
	Ш-Б	3600
Ø1220 - 1420	Ш-Б	4000
	трубы, мм Ø159 - Ø1420 Ø377 - Ø630 • Ø820 Ø1020	трубн, мм сече- ния Ø159 - Ø1420 I Ø377 - Ø630 · II-Б Ø820 II-Б Ø1020 II-Б

Приложение 3 таелица впеора способа прокладки футляров для трубопроводов капализации

Мансималь- ная дляйа	Геологические условия	Макси при р	маль авли	чни Инн	диаметр х матери	рабочей алах, мм	rpyo	SI	Способ прокладки и меха-
проходя и ,	,	асбес- бетон тоце- мент		железо-керми- бетон ка	гун э	поли- эти- лен	ўутляра		
40	Сухие или осущенные грунты I-4гр.	200	; ; 2	00	-	200	200	400	Продавливание с помощью пневмопробойников
40	Сухие или осущенные грунты 1-4гр.	500	* 8	00	800	600	700	1000	продавливание с ручной разработкой грунта
	Сухие или осушенные грунты 1-4гр.	3 00	2	00	-	200	200	400	лекта проходческого Kil-1021
50	Сухие или осушенные грунты 1-4гр.	500	8	00	800	600 °	1000	1000	Продавливание с помощью комплекта проходческого КП-I720
	Сухие или осущенные грунты I-4 гр.	500	6	00	600	600	700	800	Горизонтальное бурение уста- новкой 15-1421
	Любые грунты І-Згр.	400	4	00	400	400	400	560	Продавливание с помощью установии У 12/60
6 0	Любие грунти І-4гр.	500	8	00	800	600	700	1000	Продавливание с помощью ус- таповки ПУ-3
120	Сухие устойчивые грун- ти 1-4 гр.	500	8	00	800	600	700	1000	Горизонтальное бурение установкой ПМ 800-1600
HE OLDAHMAGHA	Дюбие грунты	500	8	00	1400	600	1000	1200	Открытый способ прокладки
	Сухие или осущенные грунты 1-4 гр.	500	8	00	1400	600	1000	1200	Щитовая проходка
			w.						

Поиложение 4

ТАБЛИЦЫ ВЫБОРА МИНИМАЛЬНЫХ ЛИАМЕТРОВ ФУГЛЯРОВ ДЛЯ ТРУБОПРОВОЛОВ КАНАЛИЗАЦИИ ПРИ РАЗЛИЧНЫХ СПОСОБАХ ПРОКЛАДКИ ФУГЛЯРСВ В РАЙОНАХ С СЕЙСИМЧНОСТЬЮ ДО 9 БАЛЛОВ (приложения 4.1 – 4.11)

- 70-

Прикладиа футляров с помощью пневмопробойников

рабсчей трубн, мм	Тип сече- ния	Материал труб	Parmet Cytheda, MM
Ī	2	3	4
Ø200 – Ø225	XIII	HORNTENKON	Ø820
0250 - Ø280		полиэтилен	Ø920
<i>0</i> 200	ΔI	асоестоцемент, оетон, керамика, чугун	dTODO
Ø3I5 -Ø400	XIII	подиэтилен	— Ø1020

Приложение 4.2

Прокладка футляров способом продавливания с ручной разработкой грунта

Imametp padowed tpydu,	Tzu ce ч e- ния	Материал труб	Paswed Mytuspa, MM
I	2	3	4
Ø200 ×	XIA	асбестоцемент, керамика, чугун	· ·
Ø200 – Ø400	XI	асбестоцемент, бетон, керамика, чугун	ø12 2 0
Ø20 0 - Ø550	XIII	полиэтилен	ं
Ø200 - Ø400	XIIIA	по лиз ти лен	
Ø4 00	XI	железобетон 2	
Ø2 00	ZIA	deron	
Ø250 - Ø 350	AIX	асбестоцемент, керамика, чугун	
Ø300	XIA	бетон	
Ø450 - Ø6 00	XI	керамика	Ø I42 0
Ø500	XI	асбестопемент, бетон, железобетон	
Ø500 -Ø600	XI "	чугун	

901-09-9.87 (AI)	-71- I	правожение прикоже	Инв. № 1307/1 Энвя 4.2
I	2	3	4
0450 - Ø600	AIIIX	HORNTGUKON	4
800 - Ø800 ·	XIII	HORNSTHREH	Ø1420
8400 – Ø 500	XIA	accectouement, detoh, menesoce- toh, repamera, yvryh	
9600	XI	бетон, же левобето	<u>)</u>
1700	XI	чугун	ØI620
1710 - Ø800	XIII A	HORNTERKON	-
800	XI XI	deton, me me sode to	H
1800 - Ø900	XI	чугун	-
900 - Ø100	XIII	HORNTERKON	r
	ров с помощью к КП - 1021	омплекта проходчес	·
Inametp	KII - 1021		
Пиаметр рабочей трубы, мм I	KII - IO2I Twn cere-	омплекта проходчес	Размер футаяра, мм
Пиаметр рабочей трубы, мм I 1 2200 - Ø225	KH - IO2I Twn ceye- HES,	омплекта проходчес Материал труб	Размер футигра, мм
Пламетр рабочей трубы, мм 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KII - IO2I Twn ceye- HEA, 2 XIII	Материал труб Материал труб ПОЛИЗТИЛЕН ПОЛИЗТИЛЕН асбестоцемент, бетон, лерамика.	Размер футигра, ми 4 Ø820 Ø920
Пламетр рабочей трубн, мм 1 2200 - Ø225 2250 - Ø280	Twn ce qe - HE 所。 2 XIII - XIII	Материал труб З ПОЛИЗТИЛЕН ПОЛИЗТИЛЕН АСФЕСТОПЕМЕНТ	Размер футияра, мм 4 Ø820
Пиаметр рабочей трубы, мм 1 Ø200 - Ø225 Ø250 - Ø280 Ø200	Twn ce ye - HE # # # # # # # # # # # # # # # # # #	Материал труб З полиэтилен полиэтилен асбестоцемент, бетон, керамика, чугун полиэтилен	Pasmep футипра, мм 4 Ø820 Ø920 — Ø1020
Пиаметр рабочей трубы, мм 1 Ø200 - Ø225 Ø250 - Ø280 Ø200	Twn ce ye - HE # # # # # # # # # # # # # # # # # #	Материал труб З полиэтилен полиэтилен асбестоцемент, бетон, керамика, чугун полиэтилен	Pasmep футипра, мм 4 Ø820 Ø920 — Ø1020
Пламетр рабочей трубн, мм 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	КП - IO2I Тип сече- ния, 2 XIII XIII XIII ДОТИВНИЕ В В В В В В В В В В В В В В В В В В В	Материал труб ПОЛИЭТИЛЕН ПОЛИЭТИЛЕН ПОЛИЭТИЛЕН ОСТОПЕМЕНТ, ОСТОПЕМЕНТ, ОСТОПЕМЕНТ, ОСТОПЕМЕНТ, ПОЛИЭТИЛЕН Приложе ОМПЛЕКТА проходчес	Pasmep футигра, мм 4 Ø820 Ø920 — Ø1020
Пиаметр рабочей трубы, мм 1 Ø200 - Ø225 Ø250 - Ø280 Ø200	КП - IO2I Тип сече- ния, 2 XIII XIII XIII ДОТИ С ПОМОЩЫЛ К КП -I720 Тип сече-	Материал труб З полиэтилен полиэтилен асбестоцемент, бетон, керамика, чугун полиэтилен Приложе	Passep футигра, мм

XII

HORNTGHKON

Ø200 - Ø400

Продолжение приложения 4.4

I	2	4	4
Ø200	XIA	асбестоцемент, · керамика, чугун	
Ø200 - Ø400	XIII	полиэтилен	
Ø300 – Ø400	XI	асбестсцемент, бетон, керамика, чугун	Ø1220
Ø400	XI	железобетон	
Ø45 0 – Ø 560	XIII	полиэтилен	
Ø200	XIA	бетон	
Ø250 - Ø350	XIA	асбестопемент, керамика, чугун	
Ø300	XIA	бетон	
ø450 – ø6 00	XI,	кералика	ØI420
Ø500	XI	асбестоцемент, бетон, железобетон	
Ø500 − Ø600	XI	чугун	
Ø450 - Ø600	AIIIA	подизтилен	
Ø600 –Ø80 0	XIII	полиэтилен	
Ø400 – Ø500	XIA	асбестоцемент, бетон, железобетон, керамика, чугун	
Ø600	XI	бетон, железобетон	
Ø760	XI	чугун	
Ø710 - Ø800	XIII A	нецитеикоп	Ø1620
Ø800	XI	бетон, железобетон.	
Ø800 - Ø900	XI	чугун	
Ø900 - Ø1000	XIII A	полизтил е н	
Ø600	A IX	керамика, чугун	47700
Ø900	AIIIX	некитсикоп	ØI720
ØI000	XI	Фугун	

Прокладка футляров с помощью установки ГБ-1421

Диаметр рабочей трубы, мм	Ten Ceye- Hes	Материал труб	Размер футияра, м		
I	2	3	4		
Ø200 – Ø500	XI	асбестоцемент			
Ø200 - Ø600	XI	detor	•		
Ø200 – Ø600	XI	керамика			
Ø200 - Ø700	XI	чугун	Ø1420		
Ø400 – Ø60 0	XI	железобетон			
Ø200 – Ø40 0	XI A	асбестоцемент, бетон, керамика, чугун			
Ø200 – Ø800	XII	HOLVTEBLOII			
Ø200 - Ø600	A IIIX	HORNTGULOI	,		

Приложение 4.6

Прокладка футляров с помощью установки У 12/60

рабочей трубы, мм	Tun ce чe- hus	Материал труб	Размер футляра мм	
I.	2	3	4	
ø200	XIA	асбестоцемент, кера- мика, чугун		
Ø200 – Ø400	XI	асбестоцемент, бетон, керамика, чугун	.	
Ø200 - Ø550	XIII .	Helelenoi	ØI220	
Ø200 - Ø400	XII A	HOLUTCHLOIL		
Ø400	XI	железобетов		

Приложение 4.7 Прокладка футляров с помощью установки ПУ-3 /ПУ-2,

Diametr pacover tryck, MM	Тип сече- н и н	Материал труб	Размер футияра, ми		
I	2	3	4		
Ø200 	XI	асбестоцемент, керамика, чугун			
Ø2 0 0 – Ø400	XI	асбестоцемент, бетон, керамика, чугун			
ø200 – ø56 0	XIII	подизтилен	Ø1220		
Ø200 - Ø400	XIII A	нолизтилен			
Ø400	XI	железсоетон	· ·		
Ø200	XI A	бетон			
Ø250 – Ø 350	XI A	асбестоцемент, керамика, чугуч			
Ø300	XI A	бетон			
ø45 0 – ø6 00	IX	керамика			
Ø500	XI	асбестоцемент, бетон , керамика, желевобетон	Ø1420		
Ø500 – Ø600	XI	чугун			
ø45 0 – ø600	XIII A	недитсилоп	-		
Ø600 – Ø800	XIII	полиэтилен			
Ø4 00 - Ø500	XI A	асбестоцемент, бетон , железобетон, керамика, чугун			
Ø600	XI	бетон, железобетон			
Ø700	XI	पुरापुस ,	Ø1620		
Ø7IO – Ø800	XIII	HOLETEROI			
Ø8 00	XI	бетон, железобетон .			
Ø800 - Ø900	XI	чугун			
Ø900 - ØI000	XIII	HORNTGNKON	•		

Прокладка футляров с помощью установки ПМ 800 - I600

Диаметр рабочей трубн, мм	Thi Code- Han	Материал труб	Размер футыяра, мм			
I	2	3	4			
Ø200 - Ø225	XIII	HORNTENKON	Ø820			
Ø250 – Ø280	XIII	некитеикоп	Ø920			
Ø2 0 0	XI	асбестоцемент, бетон, железобетон, чугун				
Ø315 - Ø400	XIII	недитевдоп	ØI020			
Ø200	XI A	асбестспемент, керамика, чугун				
Ø300 – Ø400	XI	асбестоцемент, бетон, керамика, чугун				
Ø400	XI	железобетон	Ø1220			
Ø200 – Ø400	XIII A	полиэтилен	•			
Ø450 – Ø 560	XIII	нолиэтилон .				
Ø200	XI	бетон				
Ø250 – Ø35 0	XI A	асбестоцемент, керамика, чугун				
Ø300	XI A	бетон				
Ø45 0 – Ø600	XI	керамика	ØI420			
Ø500	XI	асбестопемент, бетон, железобетон				
ø500 – ø600	XI	чугун				
Ø450 - Ø600	XIII A	полиэтилен				
Ø600 - Ø800	XI	Henntencol				
Ø400 – Ø500	XI A	асбестоцемент, бетон, желе зобетон, керамика, чугун				
Ø600	XI	бетон, железобетон	-			

Продолжение приложения 4.8

I	2	3	4	
Ø700	XI	чугун	Ø1620	
Ø710 - Ø800	XII A	нецитеппоп		
Ø800	XI	бетон, железобетон		
Ø800 - Ø900	· XI	чугун		
Ø900 - Ø1000	XIII	HORNTENROIL	Ø1620	

Приложение 4.9

Прокладка футляров под зелезнодорожными путями открытым способом в районах, не имеющих распространения вечномерздых грунтов

Іламето рабочей трубы, мм	Тип сече- ния	Материал труб	Материал, размер фут- ляра, мм
Ī	2	3	4
Ø200	XII	чугун	m.ø.ø600
Ø300 - Ø400	XII	чугун	m.d. Ø800
Ø 45 0	ХII	керамика	водопропуск- ная труба Ø 1000
Ø500 - Ø600	XII	чугун	m.d. Ø 1000
Ø560	XYI	невитеисоп	водопропуск- ная труба Ø 1000
Ø700	XII	чугун	x.6. Ø 1209
Ø800 - Ø1000	ХУ	бетонный лоток	водопропуск- ная труба Ø 1500

Проклапка футияров под автодорогой откритим способом в районах, не имеющих распространения вечномерэлых грунтов

Zuamerp padovež rpydu, mm	Тип сече- ния	Материал труб	Материал, размер фут- ляра, мм
ī	2	3	4
Ø200 – Ø350	XII	асбестоцемент, керамика	водопропуск-
Ø450	XII	керамика	ная тр уба
Ø200 - Ø450	XYI	недитендоп	
Ø400	XII	чугун	ж.б.Ø800
Ø500	XII	чугун	ж.б. Ø1000
Ø560	XYI	-полиэтилен	водопропуск- ная труба Ø 1000
⊉600	XII	чугун	ж.б.труба Ø 1000
Ø700	XII	чугун	ж.б.труба Ø1200
Ø800	XA	бетонний лоток	водопропуск- ная труба Ø 1500

Приложение 4.II

Прокладка футляров открытым способом в районах распространения вечномерзиых грунтов

Диаметр рабочей трубы, мм	Тин сече- ния	Материал труб	Материал, размер фут- ляра, мм
I	2	3	4
Ø200 - Ø400	хуп	нецитенкоп	водопропуск- ная труба 1500x2000
Ø450 - Ø900	хуп	полиэтилен	волопропуск- ная труба 2000х2000
Ø1000-Ø1200	X.YII .	Herricaton	еонопропуск- ная труба 2500x2000

- 78 -

Инв. Л⁹1307/I

Приложение 4.12

Прокладка футляров методом щитовой проходки

Inamero pado en rpyon,	Тип сече- ния	Материал	Материал, размер футляра, мм	
Ī	2	3	4	
Ø200 - Ø1400	XIA	железобетонный лоток	₩ T Ø 2100	

Инв. № 1307/I Приложение 5

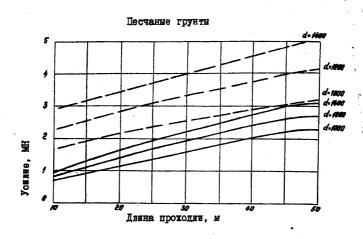
ТАБЛИЦА БИБОРА КОЛИЧЕСТЗА ПРОТЕКТОРНЫХ УСТАНОВСК ДЛЯ ЭЛЕКТРОЗАПИТЫ СТАЛЬНЫХ ФУТЛЯРОВ ДИАМЕТРОМ 350 - I600 MM

Удельное	Д	ина	футля	a, M								
COUDOLAB— Vehre		30			40			50			60	_
грунта, Ом м	a	ď	P	a	đ	Ð	à	Ø.	P	a	đ	B
I	2	3	4	5	6	7	8	9	IO	II	12	I3
				Фут	nap Ø	350	MOM.					
IO	6	6	6	7	6	6	7	7	6	7	7	7
20	5	5	5	6	5	5	6	6	5	7	6	6
30	5	4	4	5	5	4	6	5	5	6	6	, 5
40	4	4	4	5	4	4	5	5	4	6	5	5
50	4	4	4	5	4	4	5	5	4	6	5	5
60	4	4	3	5	4	4	5	5	4	6	5	4
				Фут	asp Ø	400	AM.					
IO	6	6	6	7	6	6	7	7	6	8	7	7
20	5	5	5	6	6	5	7	6	6	7	7	6
30	5	4	4	5	5	5	6	5	5 -	7 ,	6	5
40	4	4	4	5	5	4	. 6	5	5	6	6	5
50	4	4	4	5	5	4	. 6	5	5	6	6	5
60	4	4	4	5	4	4	5	5.	4	6	5 ·	5
				Фуr.	nap Ø	450 1	O.F		•			
IO	6	6	6	7	7	6	8	7	7	8	8	7
20	6	- 5	5	6	6	6	7	7	6	8 .	7	6
30	5	5	4	6	5	5	6	6	5	7 .	6	6
40	5	4	4	5	5	4	6	5	5	7	6	5
50	5	4	4	5, ,	5	4	6	5	5	7	6	5
60	4	4	4	5	5	4	6	5	5	6	6	5

Инв. № 1307/I

Продожжение приложения 5

I	2	3	4	5	6	7	8	9	ΙЭ	п	12	13
				Фут	Футляр Ø 500 мм							
10	7	6	5	7	7	6	8	7	7	9	8	7
, 20	6	6	5	7	6	6	7	7	6	8	7	7
30	5	5	4	6	5	5	7	6	5	7	7	6
40	5	4	4	6	5	5	6	z 6	5	7	6	6
50	5	4	4	6	5	5	6	6	5	7	6	6
60	, 5	4	4	5	5	4	6	5	5	7	6	5
				Фут	ияр Ø	600 M	DK .	1				
IO	7	7	6	8	,7	7	9	8	7	9	9	8
20	6	6	6	7	7	6	8	17	7	9	8	7
30	6	5	5	7	6	5	8 /	7	6	9	7	7
40	5	5	4	6	6	5	7	6	6	8	7	6
50	5	5	4	6	6	5	7	6	6	8	7.	6
60	5	5	4	6	. 5	5	7	6	5	8	7	6
				Фут	Футаяр Ø 700 мм							
IO	7	7	7	8	8	7	9	8	8	IO	9	8.
20	7	6	6	8	7	7	9	8	7	IO	9	8
30	6	6	5	7	6	6	8	7	6	9	8	7
40	6	5	5	7	6	5	8	7	6	9	8	7
50	6	5	5	7	6	5	8	7	6	9	8	7
60	5	5	4	7	6	5	8	7	6	9	8	7
				Фут	ияр Ø	800 M						
10	8	7	7	9	8	7	IO	9	8	п	10	9
20	7	7	6	9	8	7	IO	9	8	II	IO	. 9
30	7	6	5	8	7	6	. 9	8	7	IO	9	8

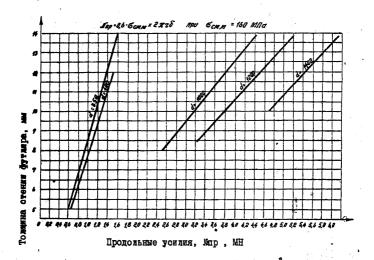

Продолжение приложения 5


	I	2	3	4	5	6	7	8	9	10	II	12	I3
	40	6	6	5	7	7	6	8	7	7	IO	9	7
	50	6	5	5	7	7	6	9	8	7	IO	9	· 7
	60	6	5	5	7	6	6	8	7	6	9	8	7
	•				Футл	nd der	[200m	М					
	IO	9	9	8	II	IO	9	12	II	IO	14	12	II
	20	9	8	7	II	IO	9	I3	II	IO	15	13	II
	30	8	7	7	IO	9	8	12	IO	9	Ì4	12	IO
	40	8	7	6	IO	8	7	II	IO	9	13	II	IO
	50	8	7	6	IO	9	7	12	IO.	9	13	12	IO
	60	8	7	6	9	•8	7	II	IO	8	13	II	10
•					Футл	usp Ø I	[400 i	мм	111.				
	IO	IO	9	8	12	II	9	13	12	II,	15	13	12
	20	IO	9	8	12	II	9	14	I2	п	16	14	12
	30	9	8	7	II	IO	9	13	12	IO	14	13	II
	40	9	8	7	II	9	8	13	II	9	I5	13	II
	50	9 .	8	7	II	IO	8	13	II	IO	15	13	ΙÌ
	60	9	8	7	II	9	8	IЗ	II	9	15	13	II
					Фути	ıspø 1	I600m	M					
	IO	II	IO	9	13	II	IO	15	13	II	17	15	13
	20	II	IO	9	13	12	IO	16	14	12	18	16	I3
	30	IO	9	8	13	II	9	, 15	13	II	17	15	13
	40	IO	8	7	12	IO	9	14	12	IO	16	14	12
	50	IO	9	7	12	II.	9	15	13	II	17	I 5	12
	60 Приложени "a" — дл	9 e coc: я про:	8 rabjei rektoj	7 во дл ров т	I2 s tpex ma M	IО типон 1 — 5У	9 npo:	I4 Tertoj	I2 cor:	10	17	14	12

[&]quot;б" — для протекторов типа ПМ — ІОУ

[&]quot;в" - для протекторов типа ПМ - 20У

ГРАФИК УСИЛИЙ, НЕОБХОДИМЫХ ДЛЯ ПРОДАВЛИВАНИЯ ФУТВЯРОВ В ПЕСЧАНЫХ И ГЛИНИСТЫХ ГРУНТАХ



Графиям составлены для двух случает: при непосредственном удажения грунта (сплошная линия) и при удалении грунта через каждне два метра проходям (пунктирная линия).

ТРАФИК ДОПУСКАЕМЫХ ПРОДОЛЬНЫХ УСИЛИЙ В ЗАВИСИМОСТИ

ОТ ДИАМЕТРОВ И ТОЛЛИН СТЕНОК ФУТЛЯРОВ

на состужение перехода водопроводом в одну линию Д=200 мм нод натодорогой методом прокола

пример объектной сметы

8,87 THC. DYG. Сметная стоимость Нормативная условно-чистая продукция THE. DYG. Показатели по смете 50 M Стоимость на - 177,4 py6. расчетную единицу

B	Series a Series a Series a	ва ватрат	i E	TPOZ- MX MX	-HOH	HUR, HURC- HOCOG- BOH., MCC- HU H HURCH-	-npc yay sas pas	PCO-	- В ТОА ЛО	- Skch- Aya- Tau.	норма- терной услов- но- чес- той про- дукц.	еди-	истерия изме- поди- ниц изме- поди- ниц изме- поди- под	CTOM-
ī		3	4		5	PADR 6	7	8	9	10	II	12	13	14
I		Произадна футира подобрана при при при при при при при при при при	8,2	4 .	_	_	_	8,24	0,93	1,03	- .	М	50	164,76
2		Устранские мат од-	\$1											

Продолжение приложения 8

				-								
I 2	3	4	5 6	6 7	8	9	10	II	12	13	I4	108
	no ari da satia a	0,63	-		0,63	0,01	0,08	-	-	-	_	ė
	Всего по смете	8,87			8,87	0,94	I,II	-	M	50	177,4	9.87
***************************************	Главный инженер п	роента				A.M.				· · · · · · · · · · · · · · · · · · ·	!	(A)
•	Hatarluuk otnera i n manalusai	вод оснабже н ции	TUR 2	loc	<u>en</u>	B.B.	Москале	ц				
	Составил отприий	инженер	•	au	. ,	N.M.	Ромещен	KOB8 -		•		-69
	Проверии руковода	нень групп	IN .	Am	haf.	A.A.	Дуброво	ROS				•

ПРИМЕР ЛОКАЛЬНОЙ СМЕТЫ

на произвану футмура и трубопроводов для сооружения перехода водопроводом в одну линию Д=200 мм под автодорогой методом прокода

		: Евенн НВ-32 , 33, альбом П а в примя 1984 г.		Норматі Сметна	н стоимост ивная труд н заработн эвьный объ циници	ая пла:		8,238 m 2146 qe 1,415 m 50,00 m 164,76	л.—ч. ыс.руб.	7(AI)
101	lludip u 15 namaon	Наименование работ и затрат.	Коли- чество	Стоимо ци, руб	сть одини-	Odu	ая стои руб.	MOCTL,	Затратн рабочих,	ЧӨЛЧ.
	норматива			BCGTO	экспл. машин	BCOTO	основ	экспл. машин	ие занят обслужив	
		ů		основ-	P T.Y.	•	зар- платы	B T.Y.	обслужив машины	
		•		зар- платы	платы			платы	на един. измерни.	BC+TO
I	2	3	4	5	6	7	8	9	IO	II
I	FX-56 T.Y. n.I.II	Равработка котлованов для прокола в сухих грун- тах 2 группы глубиной	0,13	150,82 6,53	144,29 59,80	19	1	19	13.20 86,11	<u>11</u>
	726.3 n.3 R=1,15	болов Зм экскаватором с краплением, ТОООМЗ	3							Кив.
2	HI-984	то же, вручную с крепле- нием,	0,15	229.00 133,00	96.00 61,20	34	20	<u>14</u> _	239.00 88,13	36 5 13 3

Продолжение приложения 8.1

ī	2	3	4	5	6	7	8	9	10	II .	'n
3	E5-4I	Крепление рабочего кот- лована двутаврами НР45 с шагом Ім глубиной забивки 6,9 м, т	. I2,80	46.70 10,00	28,80 6,76	598	128	3 <u>69</u> 87	15,20 8,72	•	,
4	CIII- -459	Двутаври НР45, т	5,12	<u>139,00</u>		712	-	=-	=		87 (AT)
5	E29-I280	Забирка из досок тол- щиной 40мм, м2	28,80	4.33 0,89	0.02 10,0	125	26	=-	1.26 0.01	<u>36</u>	3
6	E5-66	Извлечение двутав- ров НР45, т	12,80	<u>14.80</u> 2,87	$\frac{11.93}{3,50}$	189	37	153 45	4,84 4,51	<u>62</u> 58	-87-
7	E29-I280 YEPEP Tex. 4. n.2.IO K=0,8	Разборка забирки из досок толщиной 40мм, м2	28,80	0,7 <u>1</u> 0,02	<u>0.01</u>	20	I .	-	<u>1.01</u>	<u>29</u>	
8	EI-1006	Крепление приемного потлована и траншей шириной более 2 м глубиной более 3м, грунти устойчивие, 100м	0,40	74.50 32,40	4,58 1,38	30	13	2 1	56.90 1,99	23 1	
9	EI-56 T.4. n.I.II rac,3 n.3 K=I,15	вместимостью 0.5м3	0,02	150,82 6,53	<u>144,29</u> 59,80	3		3 1	13,20 86,11	ړ . ن	Инв. № 130
	1,2,3	с вреплением, глуби- ной более Зм, 1000	В		***						7/1

Продолжение приложения 8.1

		e e e e e e e e e e e e e e e e e e e			•		родомасти	. mpano		-		÷
Ī	2	3		4	5	Ġ	7	8	9	10	II	106
10	EI-984	Добор грунта вручну после экскаватора,		0,05	229.00 133,00	96.00 61,20	IO	6	5 3	239,00 88,13	<u>II</u> _	-09-9.87
II	EI-984	Разработка траншей вручную с крепление глубиной более Эм,		0,17	229,00 133,00	96,00 61,20	39	23	16 10	239,00 88,13	4 <u>I</u> 15	87 (AI)
12	EI -999	Крепление стенок три шей и котлованов ин- вентарными шитами ши риной до 1,5м грунти устойчивые,	- 1	0,40	23,00 16,80	0,93 0,28	9	.7	-	30,20 0,40	<u>1</u> 2_	-88-
13	CI22-403	Щити деревянные,	м2	9,48	<u>5.14</u>		49	-	ons malbankour	-	=_	
I4	E14-57	Устройство настила из досок,	100m2	0,34	320,0 65,0	6,62 1,99	109	22	<u>3</u> I	119,0 2,57	40,0	
15	ET4-57 YEPEP Tex. 4. n.2.10	Разборка настила из досок,	I00m2	0,34	57,30 52,00	5,29 1,59	19	18	2 I	119,00 2,05	40 I	Ku
16	EI-984	Рытье придиков для заделки сайк ов труб,	I00m3	0,04	229,00 133,00	96,00 61,20	8	5	3	239,00 88,13	8 -	Keb. J [*] 1307/I
I7	EI-984	Уширение траншей для колодцев в сухих грунтах 2 группн с креплением,	и 100мЗ	0,15	5 <u>229,00</u> 133,00	96.00 61,20	34	20	<u>14</u>	239,0 <u>0</u> 88,13	3 <u>6</u> 13	307/I

		,				продолжа				
ľ	2	3	4	5	6	7	8	9	10	ĬI
18	EI-1006	Крепление котлована для колодца глубиной бо- лее Зм досками, 100м2	0,30	74.50 32,40	4.58 1,38	22	IO	<u>-</u>	56,90 1,99	17
19	EI-968	Обратная засыпка грун- том над трубами, 100м3	0,30	46,00 46,00	=-	14	14	=-	99.30 -	<u>30 ·</u>
20	EI-257 T.Y. H.I.II Tao.3 H.5 K=I,I	Засыпка траншей и кот- лованов бульдозером мощностью до 59 кВт с перемещением грунта до Том грунт 2 группы, 1000м3	0,17	<u>20.79</u>	20,79 7,25	4	-	3 1	NO.44	-
21	EI-1184	Уплотнение грунта пневматическим трам- бовками грунти 2 груп- пы,	I,70	9,69 6,20	3.49 2,29	16 6	II	64	II.20 3,30	<u>19</u>
22	RI-960	Рытье водоотводной ка- навы, 100м3	0,40	74,50 74,50	=	3 0	30	=-	<u>154:00</u>	<u>62</u>
23	EI-1132	Планировка дна и откосов канави вручную, IOOM2	2,80	7.15 7,15	<u>-</u> -	20	20	=-	12,90	<u>36</u> _
24	EI-23I T.Y. H.I.II TAO.3 H.5 K=I.I	Разравнявание излишнего грунта бульдозером, IOOOM3	0,04	44.88	44.88 15,73	2	era era era era era era era era era era	<u>2</u>	22,65	ī

Продолжение приложения 8.1

										TO.	~~~	
1	2	3		_4	5	6	7	8	9	<u> 10</u>	II	- ω
25	EI-238 T.Y. n.I.II Tad.3 II.5 K=I,I	Добавляются на р стояние ЗОм,	ac- IOOOM	°0,04 3	71.06	7 <u>1,06</u> 24,86	3	-	<u>3</u>	35,80	ī-	90I-09-9.87 (AI)
26	E23-I Kar.	Устройство основ под трубопроводы чаного,	ани я пес- мЗ	1,00	9,46 0,89	nami Mandingsidengad Mandingsidengad	9	I	and and landsoft say	<u>I.80</u>	2_	I) - 90
27	E22-493	Продавливание ст труб без разрабо грунта на длину 20м, диаметром 4	тки более	30,00	10,70 2,65	7,57 1,84	321	79	2 <u>27</u> 55	4,25 2,37	127 71	0-
28	E22-73	Уклацка стальног ляра Д=426х8мм в рытую траншею,		II,00	<u>I.03</u> 0,46	0,38 0,11	II	5	1-	0,75 0,14	8	
29	CII3- -219	Труби стальные в росварные прямон спиральношовные ших диаметров софаской группы Б ГОСТ 10704-76 Д=426х8мм,	овные и обль- снятой	41,25	<u>14.70</u>	managan managa	606	ener	may mandanings men	enia opiniantauri aka		Инв. № 1307/1
30	E22-496	Протаскивание ст ных труб днаметр 200мм в футляр Д=426 мм,		41,00	1,52 0,63	may continued was	62	Ż6	talija vara talahandi dara	<u>I.03</u>	42	07/1

Продолжение приложения 8.1

ī	2	3	4	5	6	7	8	9	10	II	108
31	E22-69	Подготовка в протаскива- нию стальных труб Д=219х5мм, м	41,00	0,59 0,26	0.22	24	II	9 3	0.43 0.09	<u>18</u>	-09-9. <i>8</i> 7
32	CII3-I89	Трубн стальные элект- росварные примошеные диаметром от 20 до 377мм со синтой фаской из стали марок БСТ2КПБСТ4КП и БСТ2ПСБСТ4ПС Д=219х5м, м	40,96	4.57		187	-	=-	=-	=-	(AI) -91-
33	E22-68	Укладка трубопрово- дов из стальных труб с гидравлическим ис- питанием диаметром 150мм от колодіа до водоотводной канави, м	6,00	0,46 0,25	0.11 0,03	3	2	- =-	0.40	2	
34	CII3-I75	Трубн стальные элект- росварные прямошовные днаметром от 20мм до 377мм со снятой фаской Д=159х4мм,	5,99	<u>2.69</u>		16	. -	=	<u> </u>	:- -	Инъ.
35	E22-122	Укладка труб ПЕХ РК Д=225мм Т питьевая, м	10,00	0.27 0,15	0.II 0.03	3	I	Ī-	0,25	3_	Ji 1307/1

		Marine Control				Прод	олжени	е прило	вения 8.	I	
I	2	3	4	5	6	7	8	9	10	II	- 4
36	503 8-0II0	Трубн ПВХ РК Д=225мм Т,	10,10	<u>II.19</u>	=-	113	-	=-	=	=) 201–03–8-87
37	EI6-226	Заделка концов футляра Д=426 мм, фут.	1,00	18,30 2,38	0,02 0,01	18	2	=	4.04 0,01	₫	_
38	E25-474	Контроль сварных швов футляра Д=426мм, шт.	3,00	$\frac{5.20}{1,40}$	2.00 0,60	16	4 .	<u>6</u>	2.00 0,77	6	AL)
3 9	E25-473	То же, труб Д=219мм,	3,00	4.50 1,30	2.00 0,60	14	4	<u>6</u>	1.70 0,77	5	72-
40	E22-172	Устройство весьма усиленной антикоррози- онной битумно-полимер- ной изовящие стельного футыра Д=426мм, м	11,00	3.12 0,24	0.51 0.15	34	3	6 2	0.40	4	
4 I	E22-168	Устройство весьма уси- ленной антикоррозион- ной битумно-полимер- ной изоалции стальных	41,00	I.66 0,18	0.27	68	7	∏ _	0.3I 0.10	13 4	
		трубопроводов двамет- ром 200мм,		Here See			- 4				
42	E22-I29	Устройство нормаль— ной антикоррозионной битумно—резиновой изо—	6,00	1.0I 0,09	0.12 0.04	6	I	<u>=</u>	0.15 0,05	Ī-	nes. J
		алине отальных трубо- проводов днаметром 150мм, м	•			Lile Tee Tee Tee Tee Tee Tee Tee Tee Tee T		: - -			1307/1

I	2	3	4	5	6	7	8	9	10	II
43	E22-339	Промывка трубопроводов без дезинфекции диамет- ром 150мм, км	0,01	29.80 17,10	=	ĭ		=-	32.50	
44	E22-317	Промывка трубопроводов с дезинфекцией диамет- ром 200мм, км	0,05	79,90 34,10	<u>=</u> -	4	2	=-	<u>64.90</u>	3_
4 5	E22-359	Установка чугунных фасонных частей диамет- ром 125-200мм, т	0,26	455,00 18,70	11,50 3,45	II8	5	3 I	34.00 4,45	9 1
46	E22-373	Установка задвижек ЭОЧ6БР Д=200мм, шт.	2,00	5,03 2,06	1.53 0,46	IO	4	3 1	3.54 0,59	7
47	CI30-650	Задвижки параллельные фланцевне с выдвижным шинделем, для вопы и пара давлением I мПАЗОЧБЕР диаметром в мм: 200. шт.	2,00	60.20	-	120		-	= -	=-
48	E22-434	Приварка фланцев к отальным трубопроводам дваметром 200мм, фланец	I,00	1.80 0.80	0.85 0,26	2	I	Ī-	1.25 0.34	Ī.
49	C130-1782	Фланцы стальные плоские прирармые из стали встэсиг, встэсиз давлением ими, диаметром в мм: 200, шт.	1,00	3.42		3	-	**	=-	=

mp .64207/4

Прододжение придожения 8.1

Ī	2	3	4	5	6	7	8	9	10	II	ഴ
50	E22-446 Каталог	Устройство колодцев водопроводных сборных желевобетонных круглых в сухих грунтах Д=1,5 м м3	8,40	106,44 5,86	7.14 2,14	894	49	60	10.60 2,76	89 23	901-09-9.87 (
51	CII3-823	Люк тяжелый для колод- цев ГОСТ 3634-79, шт.	3,00	<u>25,00</u>	= '	75	gia	=-	= ,	=-	(IA
52	ЕІ-1217 Каталог	Устройство щебеночной отмостки вокруг люков колодиев, 100м2	0,16	420,45 140,00	1.00 0,30	69	23	=	258,00 0,43	<u>43</u>	- 94
				2	отройств	ирекови о	и футл	яра			
53	EI3-I27	Грунтовка поверхности эпоксидной смолой ЭД-6.	0,38	71.70 3,82	0.04 0.01	27	I	=-	6.00 0,01	<u>2</u>	
54	E13-234	Оклейка стеклотканью на эпокрадной шпатлевке (первый слой), м2	37,50	6.07 0,61	0,13 0,04	228	23	<u>5</u>	0.90 0.05	34 2	
55	E13-291	Затирка песком поверх- ности шпатлевки (Послоев), м2	37,50	I.30 I.20	=-	49	4 5	=	<u>2.00</u>	<u>75</u>	Инв.
56	EI3-I27	Второй слой изоляции поверхности мастикой ЭД-6, IOOm2	0,38	71,70 3,82	0.04 0.01	27	I	-	6.00 0,01	2	№ 1307/

Продолжение приложения 8.1

I	2	3		4	5	6	7	8	9	10	II	
				•	Устр	ойство у	порной сте	HRN (1	ero II)			903
57	E5-77	Забивка перевянных свай, Д=22 см,	МЗ	3,00	67.30 4,18	$\frac{14.00}{3.14}$	202	13	42	7.00 4.05	$\frac{2I}{I2}$	-60-T06
58	EIO-28	Установка керевянных брусков 175х175мм,	мЗ	8,30	110.00 12.90	<u>I.30</u> 0,39	913	107	<u>II</u>	24.00 0,50	<u>199</u> 4	-y.87 (
59	E29-1277	Установка опорного пакета (I шт.),	T	0,59	124.00 12,40	3.78 1,54	73	7	2 —	15.40 1,99	9 I	(A)
60	F29-1277 TEX. 9. TEO. 2 K=0,7	Демонтаж опорного пакета (I шт.),	T	0,59	<u>II.33</u> 8,68	2,65 1,08	7	5	<u>2</u>	10.78 1,39	6 I	-95-
6 I	FIQ=28	Разборка брусков,	В	8,30	11.36 10,32	$\frac{1.04}{0.31}$	94	86	9 -	24.00 0,40	<u>199</u>	
	Tex. 4. n.2.10 K=0,8				,					.,		
62	E22-517	Подвешивание подзем- ных коммуникаций при пересечении их		0,01	85.10 35,10	1.40 0,42	I	-	=-	63.10 0,54	<u>I</u>	
		при пересечение провода населенных пунктах и на промышленных пл щадках при диаметре трубопровода до 500м	0-		•				•		•	MHB. of 12
		Итого прямне затраты по смете	pyd. °	-	-	-	6546	930	1026 291	-	1670 380	1307/1

٠.

Продолжение приложения 8.1

	,		•							
2	3		4	5	- 6	7	8	9	10	阿
	B TOM THORS:						•	* France	•	
	Стоимость общестрон- тельных работ	pyd.	_		↔	6546		-	-	-
	Материали	pyd.	-	-	<u>.</u>	1861	-	-	-	-
	Экондуатеция мешин	pyd.	-	-	-	-	-	735		
•	Заработная плата ма- шинистов	pyd.	_		-		<u>.</u>	2 9 I	_	•
	Основная ваработная плата	pyd.	Ţ	-		1881	- "	•	, -	_
	Местине материали	руб.	-	-	-	667	-	-	-	-
	Напладные расходы	pyd.	_	-	-	1080	-	-	-	
·	Нормативная трудоем- кость в Н.Р.	челч			-	-	-	_	-	96
	Сметная заработная плата	pyd.	-				194	-	•••	
	Плановне напопления	pyd.	-	-	-	6I2	de 🚣 🗡	_	-	
	Всего, стоимость общестрой тельных ра- dor	pyd.	_	-		8238	er Tik	•		. •
	нормативная трудови-	PKOP		-				_	-	200

2	3		4	5	6	7,	8	9	10	II
	Сметная заработная плата	pyd.	_	_	-	-	1415		-	
	Итого по смете	pyd.	-	-	- .	8238	-	-	-	-
•	Нормативная трудоем- кость	P119P	, -	-	. 	_	_	-		214
	Сметная заработная плата	pyd.	-	_	_	_	1415		_	_

и канализации Исходные данные:

составия старший инженер

_

И.И. Ромащенкова

проверыя руководитель группы

splet A.A. IV

Перфорещия:

подготовка техник проверка старший техник Manow

И.Е. Милотина Т.Г. Каменева MHB. 1 1507/1

HPMMEP MOKANLHON CMETH

на устройство катодной подяривании

Сметная стоимость

0,63 тыс.руб.

Нормативная условно-чистая продукция —

THO. DYO.

Основание: чертежи № АЗ-З

Составлена в ценах 1984 г.

5	и прейску- рантов, ук		Едини- ца из-	Коли- чество		ость ед	иницы,	Общая	стоимо	ote, py	٥. _غ
:.	рупненных сметных норм, расп нов и др.	16-	мере- ния		Boero	В ТОМ ОСНОВ- ная зар- плата	ЧИОЛӨ: ЭКСП- ЛУА- ТАЦИЯ МАШИН		Ma- Tubh.	зар-	KCL- YATA- UNA MA-
Ī	2	3	4	5	6	7	8	9	10	II	18
		I. Строительные работы							٠.		
I į	ПЭЗ-84 р.1 п.76	Протектор типа ПМ-10Ус активатором на трубопро- воде	Іпр-р	6	44, I.	23,8	11.7	264	-	143	70 28 ¥
8	To me p.ly T.386	Контрольно-измерительный пункт на трубопроводе в	Іпункт	2	35,3	23	2,55 0,87	71		46	2

Продолжение приложения 8.2

I	.2	3	4	5	6	7	8	9	10	11	12	
		Ntoro	pyd.	_		-	_	335		189	75 30	-106
		Накладние расходи	%	I6,5x33	5=	-		55	-		-	န် န
		Итого	pyd.	-	- . '	-	-	390	.=	189	75 30	09-9.87
		Плановие накопления	%	8 x 390≈		-	_	31	-			Æ
•	ė	Итого по разделу I	pyd.	•••	-	_	-	42I	-	189	75 30	-99
		П. Монтажние работи										1
3	ПЭЗ-84 р.І т.7о	Протектор типа ПМ- -IOУ с активатором на трубопроводе	Іпр-р	6	I,68	-	_	10		_		
4	То же, р.І т.7-д	Добавляется проклад- ка кабеля при группо- вой установке протек- торов	IO _M	5	7.3	0,6	0,2 0,1	36	-	3	<u> </u>	
5	To me, p.Iy r.38d	Контрольно-измери- тельный пункт на тру- бопроводе в колонке	Іпункт	2	29,3	5,2	0.2	59		10	-	Mr
		Итого	pyo.	_	_		-	105	-	13	ı	9
		Накладные расходы на электрементажные рассты	X	87x105=		<u>-</u>	-	91	· <u>.</u>		• · · · · · · · · · · · · · · · · · · ·	HHB: Nº 1307/1

Ī	2	3	4	5	6	7	8	9	10	II	13
		Итого	pyd.	-	-	_	'	196	-	13	L
		Плановые накопления	%	8x196=		-,	-,	16	-	-	
		Итого по разделу П	pyd.	-	-	-	- ·	212	-	13	I
		Всего по смете	p y ♂.	-	-		-	633	-	202	76 30

Начальник архитектурно-строительной мастерской

Руководитель группы

Составил старший инженер

Mean H.A. Camcohopa

Ю.Я. Камкин

Б.И. Завалищин

Приложение 9

		III.	umep jo	КАЛЬНОЙ	CMETH					ဗွ
		на прокладку футняра водопроводом в 2 лин тального бурения с о протаскивания 4 кабе	ии Д=20 борудов	О ми под анием фу	автодоро	гой мет	одом г	оризон-	0	901-09-9.87
-, -	ювание: Лист ставлена в це	н НВ-34,35, альбом 2 нах 1984 г.			стоимость ная трудо	эмкость		7,073 тыс 855 чел	ч. .руб.	(AI)
	•		Сметная заработная плата 3,467 тмс.руб. Строительный объем 64,90 м Цена единици 423,00 руб.							-101-
is no	новидии повиции Шифр и В	Наименование работ и затрат. Единица измерения	Коли- чество	Стоимос руб воего основ- ной зар- платы	ть единиці экспл. машин в т.ч. зарплатн		pyo.	-ercua. Memuh B-t.y.	Затратн да рабочелч. занятых лукиван обслужи мения на один	MARINH BARUL
I	2	3	4	5	6	7	8	9	10	II
I	EI-56 T.V.H.I.II TAG.3 H.3 R=I,IS	Разработка котнованов экскаватором с откосами в сухих груптах 2 группин глубиной солее 5м. 1000м3	1,51	150,82 6,53	144.29 59,80	228	10	<u>218</u> 90	I3.20 86,II	20 HB. J 1307

Продолжение приложения 9

		•				•		-			
Ī	2	3	4	5	6	7	8 .	9	10	II	•
2	EI-56 T.Y.II TAO.3 I.3 K=I,I5	То же, с креплением, 1000м3	0,10	150,82 6,53	144,29 59,80	I 5	I	<u>15</u> 6	13.20 86,11	<u>I</u>	901-09-3.87 (
3	EI-984	Добор грунта вручную в сухих груптах 2 груптин после вкскаватора, 100мЗ	0,47	229,00 133,00	96,00 61,20	108	63	45 29	239,00 88,13	112 41	,
4	EI-1006	Крепление стенок котло- ванов и траншей шириной более 2м глубиной более 3м грунти устойчивие, 100м2	0,70	74,50 32,40	4,58 1,38	52	23	3	56,90 1,99	40 1	102
5	E5-37	Забивка металлического шпунта Ларсен (З-х крат- ная оборачиваемость), т	7,00	55,00 12,00	33,00 7,80	385	84	23 <u>1</u> 55	17,60 10,06	123 70	•
6	CIII-528	Шпунт металлический, т	2,80	<u>157,00</u>	-	440			**	=	
7	E9-12I	Установка якоря металлического (5-ти крат- ная оборачиваемость) т	2,80	45,80 16,90	0,60 0,18	128	47	Ž Ĭ.	26,50 0,23	74 ³	MHB. W 1307/

		3	<u></u>	5	6	7	8	9	Ĭ0	II	
<u>+</u>	2	3	-4								
8	CI2I-2096	Якорь металлический,	0,70	<u>347.00</u>	=-	243	-	-	-	=-	901
9	E5-6I	Извлечение металличес- кого шпунта, т	7,00	<u>18,60</u> 3,60	15,00 4,38	130	25	<u>105</u> 31	6,06 5,65	42 40	90I-¢9-9.
10	E9-12I Tex.4. T.2 I.6 K=0,7	Демонтаж металлического якоря, т	2,80	12.25 11,83	0,42 0,13	34	33	<u>I</u>	26,50 0,17	74_	.87 (AI)
II	EI-56 T.Y. n.I.II Tad.3 n.3 K=I,15	Разработка грунта экскаваторами на гусе- ничном и колесном хо- ду в отвал с коешом вместимостью 0,5 м3 грунт 2 группи с откоса- ми, 1000м3	0,06	150,82 6,53	144,29 59,80	10		9	13,20 86,11	<u>I</u>	107-
13	EI-954	Уширение траншей для устройства колодцев, 100м3	0,10	156,00 156,00	***	16	16		<u>296.00</u>	<u>30</u>	
13	EI-1003	Крепление котлована для колодцев досками 100м2	0,28	61,90 14,30	5,16 1,55	17	4	<u>I</u>	27,20 2,23	8	255
14	EI-984	Рытье приямков для заделки стнков труб в сухих грун- тах 2 группы, 100мЗ	0,33	229,00 133,00	96,00 61,20	76	44	3 <u>1</u> 20	239,00 88,13	79: 29	MHB. J: 1507

MHB. JF 1507/1

Продолжение приложения 9

ī	2	3	4	5	6	7	8	9	10	II	· ·
15	EI-56 1.4. n.1.11 26.3 n.3 K=1,15	Ритье водоотводной ка- нави в сухих грунтах 2 группы с откосами акскаватором, глубиной до 2 м, 1000м3	0,28	150,82 6,53	144,29 59,80	42	2	4T 17	13.20 86; III	4	501-08-8.87 (
I6	EI-1132	Планировка дна и отко- сов канави вручную, 100м2	6,44	7.15 7,15	-	46	46	=-	<u>12.90</u>	<u>88</u> _	
17	EI-968	Обратная засыпка котло- ванов вручнув, IOOм3	I,89	46,00 46,00	=	87	87	- -	<u>99.30</u>	<u> 188</u>	\$
16	EI-257 T.Y. H.I.II rad.3 H.5 K=I,I	Засынка треншен и котпо- ванов бульдозером мощностью до 59 кВт с неремещением грунта до 10 м грунт 2 группы, 1000мЗ	I,64	20.79	20.79 7,25	34	-	34 12	10744	ÎV.	
19	EI-I184	Уплотнение грунта пневматическими трамбов- ками: грунты 2 группы, 100м3	16,40	9,69 6,20	3,49 2,29	159	102	<u>58</u> 38	11,20 3,30	184 54	Mas.
20	EI-23I P.V. H.I.II PAG.3 H.5 K=I,I	Разравнивание излишнего грунта бульдозе- зером, 1000м3	0,29	44.88	44.88 15,73	18	-	18	<u> 22,65</u>	-	B. #1307/I

Продолжение приложения 9

	•								-			
I	2	3		4	5	6	7	8	9	IO	II	
21	EI-238 Tex.q. n.I.II T.3 K=I,I	Добавляется на рас стояние 30 м,	- I000m3	0,29	<u>71.06</u>	71,06 24,86	20	-	20 7	35,80	<u>īo</u> (901-09-9.87
22	E23-I Каталог	Устройство основан под трубопроводи и чаного.	ия өс- мЗ	4,00	9,46 0,89	-	38	4	<u>=</u>	<u>I.80</u>	<u>7</u> _	37 (AI)
23	E25-II3	Прокладка футняра Д=1420х12мм методо горизонтального бу ний установкой ГБ-	M De-	50,00	155,00 8,40	44,60 9,50	7750	420	2230 475	15,00 12,25	750 613	-105-
24	E22-83	Уклацка футигра Л=1420х12 мм в открытую траншею,	М	1,00	4,84 1,79	2,22 0,67	5	2	3 I	2,87 0,86	3 1	
25	CII3-294	Труби стальные эле росварные прямощом спиральношовные бол ших диаметров со среской группы Б и ЛОСТ 10704-76, Д=1420х12 мм,	ные и пь- нятой Ц,	r,00	82,20	<u>=</u>	82	- 1	-	-	<u>-</u>	Инв.
86	E22-500	Протаскивание в фуг внутреннего футляра груб НЕП Д=400мм,	מותת	102,00	2.8I 0,72		287	73	-	<u>I.24</u>	<u>126</u>	Ns 1307/ I

Продолжение привожения 9

Ī	2	3	4	5	6	7	8	9	Ī0	fi	
27	E22-124	Подготовка к протаски- ванию труб ПВП Д=400мм, м	102,00	0.4I 0,23	0.16 0,05	42	23	<u>16</u> 5	0.40 0,06	<u>#</u>	20-12s
28	CI59-499	Трубы полиэтиленовые среднего типа наружным дваметром 400, 10м	10,30	303,00		3122	-	500 400-44-45 500	<u>-</u>	=-	9.87 (AI)
29	E22-496	Протаскивание в футляр стальных труб диаметром 200мм в футляр д=400мм,	102,00	1,52 0,63		155	64	444 475-244 149	<u>I.03</u>	<u>105</u>	-106-
30	E22-69	Подготовка к протаски- ванню стальных труб Д=219х5мм, м	102,00	0.59 0.26	0,22 0,07	60	27	2 2_	0,43 0,09	41 .	·
31	CII3-I89	Трубы стальные элект- росварные прямошовные циаметром от 20 до 377мм со снятой фаской Ц=219х5мм,	101,90	4.57	<u>=</u>	466	-	-		=-	И-
32	E22-68	Укладка трубопроводов из стальных труб с гид- равлическим испитанием диаметром 150мм (от ко- лодца до канави),	3,00	0.46 0,25	0.11 0,03	I	I	- 1	0.40	<u>I</u> _	Инв. 41-1307/1

Продолжение придожения 9

I	2	3	4	5	6	7	8	9	10	II g
33	CII3-I 7 6	Труон стальные элект- росварные примошовные диаметром от 20мм до 377мм со снятой фаской Д=159х4мм,	3,00	<u>2.69</u>	<u>-</u>	8	-	=-		90I-09-9.87 (AI)
34	E22-122	Укладка труб поливи- нилхлоридных Д=225мм, м	26,00	0,27 0,15	0.II 0,03	7	4	3 I	0.25 0,04	<u>6</u>
35	503 [°] 8-0110	Трубн ПВХ Д=225мм Т, м	26,26	<u> </u>	-	294	-	=-	=-	= 9
3 6	E22-I	Монтаж асбестоцементных безнапорных труб Д=100мм,	204,00	1,67 0,19	<u>0.01</u>	341	39	2	0.32	<u>65</u>
37	E16-226	Заделка концов футляра Д=400мм, футляр	2,00	18,30 2,38	0.02 0.01	37	5	=-	4.04 0,01	<u>B</u>
38	E29-122I	Забивка футияра пемент- ним раствором м-25, мЗ	65,80	1.19 0,76	0,43 0,02	78	5 0	<u>28</u> I	0.93	61 E
39	2-I	Цемент марки 25, мЗ	67,12	19.80	=	T329	-	=-	=_	
40	E59-1551	Заделка концов футияра Д=1420мм бетоном,	0,64	1.19 0,76	0.43	I	. -	=	0.93 0,03	T H

Ī	. 2	3	4	5	6	7	8	9	10.	п	
42	octi	Бетон M-150, мЗ	0,65	<u>29.17</u>	-	, 19	-	<u>-</u>	-	_=_	50-198
42	№5-48 I	Контродь отыков труб Д-1420мм, шт.	5,00	9.90 2,50	3.00 0,90	50	13	<u>15</u>	3.60 1,16	<u>18</u>	d9-9.87 (A
43	E25-473	То же, Д=219мм,	10,00	4.50 1,30	2.00 0,60	45	13	<u>20</u>	I.70 0,77	177	(A)
44	B22-168	Устройство весьма уси- пенной антикорровкон- ной овтумно-поймерной нэолитик отвальных трубо- проводов диаметром 260мм, м	102,00	1.66 0.18	0.27 0,08	169	18	8	0.3I 0.10	38	80
45	E22 –129	Устройство нормельной антикорроженной битум- но-резимовой изолими стельных трубопроводов диаметром Посым, м	3,00	1.01 0.09	0.12 0,01	3	-	-	0. E5	=-	
46	EZZ-339	Промирка трубопроводов без цезинфекции диамет— ром 150мм, км	0,003	29.80 17,10	<u>-</u>	-	-	=	32.50	=-	
47	B22-317	Промывиа трубопроводо в с дезинфекцией диаметром 200мм,	0,13	79.90 34,10	<u>-</u>	10	4	=-	64.90 -	<u>8</u>	97

Продолжение приложения 9

					•		-				•
Ī	2	3	4	5	6	7.	8	9	10	И	
48	E29-1 221	Устройство набетонки в футаяре из бетона M-150, м3	10,80	1.19 0,76	0.43 0.02	13	8	<u>4</u>	0.93 0.03	10	901-09-9.87
49	CCTT	Бетон M-I5O, мЗ	11,02	29.17	=	321	-	-	=-	<u>-</u> -	9.87
50	186–82	Установка закладных деталей в насетонку, Т	0,48	347,00 24,80	14.80 4,44	167	12	72-	39,20 5,73	3	Ê
51	E9-I53	ларе, г Приварка уголков в фут-	0,48	27.10 14,80	4.98 1,52	13	7	3 I	<u> 25,20</u> 1,96	12	- 109 -
. 52	CIII-49I	Yrorre, T	0,48	138.00	=	66	-	=	=	=-	
53	E9-153	Уотройство опоры, т	0,32	27.10 14.80	4.98 1,52	9	5	Ī.	25,20 1,96	8 T	
54	CIII-48I	Сталь угловея, т	0,13	141.00		18	-		=	=-	
55	CIII-532	Стакь арматурная,	0,19	151.00	=-	29	-	=-			Инв
56	E9-153	Устройство опор для протаскивания внутрен- них футляров, т	1,43	27.10 14,80	4.98 1,52	39	2I	72-	25, 20 1,96	36 3	. Nº 1307/

Продолжение приложения 9

								•			
Ī	8	3	4	5	6	7	8	9	IO	FI	
67	CIII-605	Стань полосовая,	1,29	143,00	-	184	-	<u>-</u>	=	=-	901-
58	C111-531	Сталь арматурная,	0,14	<u>165.00</u>	=-	23	-	<u>-</u> -	=-	=-	09-9.87
59	E22-363	Установка стальных сваримх фасонинх час- тей II до 300мм,	0,09	634,00 83,90	129,00 38,70	57	8	<u>II</u>	134,00 49,92	12.	87 (AI) -
60	E22-360	Установка чугунных фа- сонних частей Д125-250мм, т	0,78	377,00 16,90	10,10 3,03	294	13	8 2	30,90 3,91	24	- 110-
6I	E22-373	Установка задвижек ЗОЧЕБР Д=200мм, . шт.	6,00	5,03 2,06	I,53 0,46	30 ~	12	9	3, <u>54</u> 0,59	2 <u>I</u>	
62	CI30-650	Задвижки параллельные фланцевые с выдвижным шинцелем, для воды и пара давлением IMIA3046EP диаметром в мм:200, шт.	6,00	60,20 -	and and and and and and and and and and and	361	-	-	=-		Йив. л
63	E22-446 Каталог	Устройство колодиев водопроводных соорных калезобетонных круглых в сухих грунтах Д=2,0 м, мЗ	2,97	106,44 5,86	$\frac{7.14}{2,14}$	316	17	2 <u>I</u>	10,60 2,76	3 <u>I</u> 8	1/ 40¢1 if

Прополжение приложения 9

							_				
I	2	3	4	5	6	7	8	9	10	II	
64	E22-458 Karanor	Устройство колоднев . водопроводных бетонных с монолитными стенами и перекрытием из сфорного железобетона пряморгольных в сухих грунтах размером 2,0x2,5м, м3	12,56	56.0I 5,36	<u>I.13</u> 0,34	703	67	14	9.54 0,44	120 6	90I-09-9.87 (AI)
65	CII3-823	Люк тяжелый для колод- цев ГОСТ 3634-79, шт.	3,00	<u>25,00</u>	= -	75	-	-	<u>-</u>	<u>-</u>	
66	EI-1217 Каталог	Устройство щебеночной отмостки вокруг люков колодцев, 100м2	0,16	420,45 140,00	<u>I.00</u> 0,30	69	23	en entretue en	258,00 0,43	43	-111-
		•		У	стройство	изодя	ции фут	ияра			
67	EI3-I27	Грунтовка поверхности епоксидной смолой ЭД-6, ТООм2	2,30	7 <u>1,70</u> 3,82	0.04 0.01	165	9	-	6,00 0,01	<u>14</u>	,
68	EI3-234	Оклейка стеклотканью на эпоксидной шпатлевке (первый слой), м2	230,00	6,07 0,61	0.13 0,04	1396	140	<u>30</u>	0,90 0,05	207 12	Инв. л
69	EI3-29I	Затирка поском поверхности шпатлевки (10 слоев) м2	230,00	I.30 I,20	=	299	276	=-	2.00	460	f 1307/1

Продолжение приложения 9

I	2	3		4	5	6	7	8	9	10	II	,5
70	EI3-I27	Второй слой изоляці поверхности мастика ЭЦ-6,		2,30	71.70 3,82	0,04 0,01	. 16 5	9	=-	6.00 0,01	<u>I4</u>	901-09-9.87
7 I	E29-I555	Вентиляция при прог стве работ в футля	извод- ре, м-смен	18,00	2,76	<u>I.64</u> 0,2I	50	-	30 4	0,2 7	- - - -	-
7 2	E29-1566	Элентроосвещение п производстве работ футияре	nq B	18,00	0.34	0.17	6	-	3	-		(AI) -
		Итого прямые затран по смете	TH DVO. DVO.	-	- ,	- *	21550	1974	334I 86I	-	3387 1146	112-
	,	в том числе:										
		Стоимость общестрои тельных работ	и- руб.	-	-	_	21084	-		-		
		Материалы	pyd.	-	-	<u></u>	8297	- "	_	-	_	
		Всего ваработная плата	p y ♂.		-	_	-	2718	_	_	_	IM M
		Стоимость материа- лов и конструкций	р у б.	_		_	6837	-		***	_	Инв. л ^е 1307 /
		Местипе материали	pyo.	-	-	_	734	_	•••	_	-	307
		Накладние расходи	pyo.	_	_		3477	_		_		H

Продолжение	RUHOMORUGII	9
-------------	-------------	---

'u a america	patentin to					про	одолжение	прило	жения Э) 	
r	0	3 ,		4	5 .	6	7	8	9 :	10	ΪΙ
		Нормативная трудо- емкость в Н.Р.	чөлч.	-	-	**	. =	-	••	-	319
		Сметная ваработная плата в Н.Р.	pyd.		_	_ '	-	624	-		<i>.</i> -
		Плановые накоп-	pyd.	-	-	•	1963	_	. ·	-	-
		Всего, стоимость общестроительных работ	pyo.	_	-	-	26524	_	-	-	-
		Нормативная тру- доемкость	чөлч.	_		-	-	_	-	_	4642
		Сметная заработ- ная плата	pyd.	-	_	**	_	3342		-	-
		Стоимость металло- монтажных работ	pyd.				466	-		-	
		Материалы	pyd.	-	-	-	95	-		-	_
		Всего заработная плата	pyd.	_	-	_	_	117	_	_	
		Стоимость материа- лов и конструкций	pyo.	-	-	<u>.</u> .	243	_	-	_	-
		Накладные расходы	pyd.	-	***	-	40	_	-	-	_
		Нормативная трудо- емкость в Н.Р.	челч.		-	-	_	-	_		2

			продолжение приложения о										
I	2	3		4	5	6	7	8	9	10	II		
		Сметная заработная плата в Н.Р.	pyó.	_	_	_	-	8	-	-	-	901-09-9.87	
		Плановые накоплени:	я руб.		-	 -	40	-	-			9	
		Всего, стоимость металломонтажных работ	pyó.	_	- -	. - '	546	_		-		9.87 (AI)	
		Нормативная трудо- емкость	чөлч.	-			_	-	-		213	H)	
		Сметная заработная плата	руб.	_	_	See .	· ,	125			-	114-	
		Итого по смете	pyd.			-	27073	l		-	-		
		Нормативная тру- доемкость	челч.		***	ton-	***		•••		4855		
		Сметная заработная плата	pyo.	-	_	•••		3467		-			
Прим	ечание:	пример локальной смети Наклапние расходи -16, единичных расценок для	составле 5%. Единц	н для чные Москот	террите	ориадъног и с мести	о р-на I. ными матер	I оиалами	приня	гн по сб	орникам		

Главный инженер проекта А.М. Литвак Начальник отдела водоснаожения и канализации **3.В.** Москалец Ишходные данные: составил старший инженер

проверия руководитель группы

Перфорация: подготовил инженер

проверил старший техник

И.И. Ромащенкова А.А. Дубровская Т.В. Родинкова

Т.Г.Каменева

ПРИМЕР ОБЪЕКТНОЙ СМЕТЫ

на сооружение церехода канализацией Д=400 мм р под железнодорожными путями методом продавливания

					Cı	мөтн	ая сто	имосте)		23,	95 тыс.	pyo.
					Н	орма		одукци одукци		стая	-	тыс.	pyo.
		•			П	оказ	атоли	по сме	TO		50	М	
							ость н тн ую е	іа Эдиниц у	1		479	9,0	pyd.
)\$ 1111	№ смет и рас-		Сметна	ая сто	MOCTE,	THC.	p yo.					ко-эконс токазате	омические Эли
	четов	•	строи- тельных работ	мон- таж- ных работ	обору- дован., приспо- соблен. мебели и ин- вентаря	чйх зат , рат	ro -	ле основ- ной зар-		ной	рения	коли- чество единиц изме- рения	стои- мость единицы измере- ния, руб.
Ī	2	. 3	4	5	6,	7	8	9	IO	ΙΙ	12	13	I4
Ī		Прокладка футляра и трубопроводов	22,96	-	604 	-	22,96	2,57	2,18	-	Ŋ	50	459,12

Устройство ка-

								Π	родоля	ение	ноп иоп	І пинэ	0
	2	3	4	5	6	7	8	9	10	II	12	13	14
	tol 1	ной поляриза-	0,99	-	_	_	0,99	0,32	0,14	_	_	_	
	Boe	го по смете	23,95	-	_	_	23,95	2,89	2;32	_	M	50	479,0
1		тдела водоснаб пли зации		B.B. 1	Москал	ert							
	Соотавила отармий инженер						и.и.	Ромаще	нкова				
(

пример локальной сметн

		цаклоп винежую вреходен кинежуп цоп модотем иматуп	и канализа	цией Д=4	водоводов доп им 001	ик Коне оп ож	торожн	НМИ			106
		исты НК-27,28, альбом П ценах 1984 г.		Нормал Сметна Строиз	я стоимост гивная труд я заработн сольный объ	тоомкості Ісп праті	5 a	5298 3,702	тыс.руб. челч. тыс.руб. м руб.		981-69-9.87 (AI)
Jiš IIII	порматин позиции Пифр и М	и затрат.	Коли- чоство	Стоимо всего основ- ной зар- платы	ость единиц руб. экспл. мащин в т.ч. зарплаты	всего	pyd.	-экспл. <u>машин</u> в т.ч.	машт	TenT The ode- IEM BANDE.	-\? -
Ī	2	3	4	5	6	7	8	9	IO	II	_
I	EI-58 T.Y. H.I.HI TAG.3 H.3 K=I,I5	Разработка котлованов для продавливания в сухих грунтах 2 группы глубиюй более Эм с креплением,	0,20 M 3	150,82 6,53	144,29 59,80	30	I	29 12	<u>13,20</u> 86,11		HEB. 1991
2	EI- 9 84	Добор грунта вручную после экскаватора в сухих	:		•						1507/1

Продолжение приложения 10.1

I	2	3	4		5	6	7	8	9	10	II	
		грунтах 2 груши,	00м3 0	,06	229.00 133,00	96.00 61,20	14	8	<u>6</u>	239,00 88,13	<u>14</u> 5	7188
3	EI-56 T. I. II TAG. 3 H. 3 K=I, I5	Разработка грунта экскаватороме на гусе- ниченом и колесном ко- ду в ствал с ковеном со- ду в ствал с ковеном со- еместимостью 0,5м3 грунт 2 грунин с отко- сами,		,II	150,82 6,53	144,29 59,80	I6	I .	<u>15</u> 6	13.20 86,11	I	3-9.87 (AI)
4	KI-984	Разработка котлованов вручную при глубине более Зм. I	0 00 м 3	,23	229,00 133,00	96,00 61,20	53	31	22 14	239.00 88,13	55 20	-118-
5	E5-47	Забивка двутавров Ж55 на глубину 8,1 м для крепления рабочего кот пована (3-х кратная оборачиваемость),		2,50	31,40 6,10	17,30 4,02	706	137	<u>389</u> 90	9.50 5.19	214 117	
6	CIII-459	ж Пвутаври й M65, т	9	,00	139.00	=-	1251			=-	= -	М
7	E29-1280	Установка посок-забиро толщион 40 мм,	or I	26,00	0,89	0.02	546	115	<u>'-</u>	1,26 0,01	159 T	HHE SPISOTI
8	E5-7I	Извисчение двугавров ; т	16 5, 2	2,50	10.40 2,04	8.36 2,48	234	36	<u>188</u> 56	3,43 3,20	77 72	1507/1

Продолжение приложения 10.1

				продолжение придомении 10.1							
Ī	2	3	4	5	6	7	8 -	9	10	II	
9	E29-I280 YEPEP Tex. 4. H.2.IO K=0.8	Разборка забирки из досок, м2	126,0	o <u>0.71</u> 0.02	<u>0.0I</u>	89	3	<u>I</u>	<u>0.03</u>	4	ф 90I09-9.87
10	EI4-57	Устройство настила из досок, 100м2	0,59	320,00 65,00	6,62 1,99	187	38	4 I	119.00 2,57	<u>70</u> 2	
II	EI4-57 YEPEP TOX. 4. II.2. IO K=0.8	Разборка настила из до- сок, 100м2	0,59	57,30 52,00	5,29 1,59	34	30	3 1	119.00 2.05	70 I	(AI) -119-
12	EI-1006	Крепление приемного кот- лована досками глубиной более 3m 100м2	0,43	74.50 32.40	4,58 1,38	32	14	2 1	56,90 1,99,	24 T	
13	EI-984	Ритье приямков вручную в сухих грунтах 2 груп- пи, 100м3	0,10	229,00 133,00	96,00 61,20	23	13	9	239.00 88,13	24 9	á
14	EI-984	Уширение траншей для устройства полодцев глубиной более 3м. 100м3	0,03	229.00 133,00	96,00 61,20	7	4	3	239.00 88,13	73-	E GHUE
16	EI-1006	Крепление котлованов для колодцев досками глу- синой солее 3м, 100м2	0,09	74.50 32,40	4.58 1,38	7	3	-	56.00 1,99	₫	11 2051

Прополжение приложения 10.1

	4	5			•	IITOMON	marcra o tif	MATOWOUM	W TO.1			
I	2	3	4	1	5	6	7.	8	9	10	II	
16	EI-968	Засыпка вручную тран- шей,пазух ,котлованов и ям грунт 2 группы,	E M 00I	1,22	46,00 46,00	ANNE publication de la constitución man	56	56	em professional page	99,30 -	<u> 121</u>	901-09-9.87
17	EI-257 T.Y. H.I.II TAC.3 H.5 K=I,I	Засника транцей и кот- лованов бульдовером мощностью до 59 кВт с перемещением грунта до 10м грунт 2 группы		,22	20.79	20,79 7,25	5	-	<u>5</u>	10,44	2	.87 (AI)
18	EI-1184	Уплотнение групта пневматическим трам- бовками: групты 2 груп пы	и 100м3	2,19	9,69 6,20	3,49 2,29	21	I4	8 5	<u>II.20</u> 3,30	25 7	-120-
19	EI-23I T.q. H.I.II Tag.3 n.5 K=I,I	Разравнивание издиш- него групта 2 группы бульдозером,	(EMOOOI	0,01	44.88	44.88 15,73	I	~	pas que gerianismo ess	22,65	and controlled and	
20	KI-238 Tex. v. n.I.II T.3 K=I,I	До ба вляется на рас- стояние до ЗОм,	(EM000I	0,01	71.06	71.06 24,86	I v	***	=-	2 35,80	=-	MHB. A 1307

A 1302 I

Продолжение приложения 10.1

				·				·			
I	2	3	4	5	6	7	8	9	10	II	
21	E30-373	Изготовление и установ- ка подвесних пакетов из рельсов Р65,	6,00	428,00 159,00	=-	2568 .	954	<u>-</u>	<u>259.00</u>	<u>1554</u>	90I-09-8
			•								9.87
22	E22-469	Продавливание сталь- ного футияра Д=1220x12мм, м-	40,00	39,20 7,82	27.50 6,90	1568	313	1100 276	12.50 8,90	500 356	(AI)
23	E22-8I	Укладка стального фут- ляра Д=1220х12мм в отк- рытую траншею,	10,00	3.99 1,50	1.83 0,55	40	15	<u>19</u>	2.38 0,71	24	-121-
24	CII3- -282	Трубы стальные электро- сварные прямомовные и спиральномовные больших диаметров со снятой	50,43	<u>70.70</u>	<u></u>	3565	-	=-	=	•=-	•
		фаской группы Б и Д, 10СТ 10704-76, Д-1220 - 12мм,								•	٠.
25	E22-500	Протаскивание в футляр керамических труб Д=400мм,	50,00	2.8I 0,72	=-	I4I	36	<u>-</u>	<u>I.24</u>	<u>62</u>	Инь
26	E23-20	Подготовка к протаскива- нир керамических труб Д=400мм,	50,00	11.60 0,84	0.59 0,18	580	42	30 9	I.42 0,23	71 .	Инв. № 1307/I

I	2	3	4	5	6	7	8	9	IO .	<u>II</u>	. 9
27	E29-1221	Забивка футляра це- ментным раствором M-25, м	38,I0 3	1.19 0,76	0.43 0,02	45	29	17 1	0.93 0,03	35 I	90I-09-9.87
28	2-I	Цемент марки 25,	38,86	<u>19.80</u>	=-	769	-	=-	=		7 (AI)
29	E29-1221	Заделка концов футляра Л=1200мм бетоном М-150,	0,50 3	<u>I, I9</u> 0,76	0,43 0,02	I		<u>-</u>	<u>0,93</u> 0,03	=-) -122-
30	CCT	Бетон М-I50,	3 0,51	<u>29,17</u>	=	I5	-	<u>-</u>	=-	=	•
31	E25-480	Контроль сварных швов футляра Д=1200мм, . ш	6,00 T	7.50 1,90	2,00 0,60	45	II	<u>12</u>	$\frac{2.70}{0.77}$	<u>16</u> 5	
32	E29-I22I	Устройство набетонки в футляре из бетона M-150,	11,20	<u>I.19</u> 0,76	0,43 0,02	13	9	5_	0,93 0,03	<u>10</u>	
33	CCIT	T ir TCO 4	3 13 II,42	<u>29, 17</u>	=-	333	-	=-		=-	Инв. Л
34	E6-82	Установка закладних деталей в набетонку,	0,47	347,00 24,80	14,80 4,44	I63	12	$\frac{7}{2}$	39,20 5,73	<u>18</u>	Vª 1307/I

							•	.			
Ī	2	3		4	5	6	7	8	9	IO	II
35	E9-153	Приварка стали арма- турной А-I Д=20мм к за ладным деталям,	К Т	0,25	27,10 14,80	4.98 1,52	7	4	<u>I</u>	25,20 I,96	<u>6</u>
36	CIII- -533	Стань арматурная А-I Д=20мм,	T	0,25	<u>143.00</u>		36	-	=		<u>-</u>
37	E28-1019	Установка направляю- щих рельс,	KM	0,01	16500,00 670,00	9,00 3,00	. I65	7		1310,00 3,87	<u>13</u>
38	E28-1098		KM	0,01	310,00 310,00		3	3 .		610,00 -	<u>6</u> _
39	E29-I555	Вентиляция при произ- водстве работ в фут- ляре,	ny Tø	40,00	2,76 -	<u>I.64</u> 0,2I	IIO	-	<u>65</u> 8	 0,27	Īī
			M-Cl	ă.							
40	E29-I566	Электроосвещение при производстве расст в футляре,	смена	40,00	0.34	<u>0.17</u>	14	-	<u>z</u> _	<u>-</u>	=-
4 I	E23-III Karanor	Устройство колодцев канализационных круг- лых ссорных железо-	,								

祖田B. J 1307/1

I	2	3		4	5	6	7	8	9	IO	II	
		бетонных диаметром I,5 м в сухих грунтах,	мЗ	5,59	66,26 5,14	2,53 0,77	370	29	14	9 <u>-20</u> 0,99	<u>51</u>	901-0
42	CII3- -823	лы тявелий для колод- цев ГОСТ 3634-79,	W T	2,00	<u>25,00</u>	=	50	-	=-		=	9-9.87
43	EI-1217 Ratesor	Устройство щебеночной етместин вокруг жиков колодиев,	700	0,11	420,45 140,00	1.00 0,30	46 ,	15	<u>=</u> -	258.00 6,43	28	(# <u>1</u>
44	B13-127	Грунтовка ногорхности аконсидной сможой Эй-6,	IOOm:	I,92	71.70 3.82	0.04 0,01	138	7	-	6×60 0;01	<u> </u>	75 4
45	e13–234	Оплейна степлотивныю на эпоксидной инстлерне (первый слой),	м 2	192,00	6.07 0,61	0.13 0,04	1165	117	25 8	0,90 8,65	108	
46	EI3-29I	Затирка песком поверх- ности впатлевки (IO слоев),	M2	192,00	<u>I.30</u> I.20		250	230		2.00	384	MIND A
47	E13-127	Второй слой изоляции	M.C.									JA 1307/I

Продолжение приложения 10.1

I 2 3 4 5 6	5 7	8		······································		
			9	IO	II	8
поверхности масти— 1,92 <u>71,70 0.</u> кой ЭД-6, 100м2	0,04 I38 0,0I	7	=-	6.00 0,0I	<u>I2-</u>	901-09-9.87
Устр	ройство опор					7 (AI)
48 СПЗ- Трубы стальные элект- 17,05 <u>35,60</u> — 246 росварные прямошовные и спиральношовные боль- ших дваметров со снятой фаской группы Б и Д,ГОСТ 10704-76 ДН-720х10 мм для коры- та, м	607	-	<u>-</u>	-	=	[] -125-
49 Е4-269 Резка стальной трубн 0,51 6,97 0,	0,17 4 0,05	I		3,00 0,06	2_	
50 E4-260 Сварка стальной трубн 0,03 <u>56,20 18</u> д=720мм, 100м	[8,40 2 ,52	Ī	-	40,40 7,12	<u></u>	153
	,98 I3 ,52	7	3 Ī	25,20 1,96	<u>I2</u>	HHB. N
52 CIII— Сталь полосовая, т 0,10 <u>143,00</u> —	<u> </u>	-	-	=,	=-	Nº 1307/

.

Продолжение приложения 10.1

Ī	2	3		4	5	6	7	8	9	10	m
59	CIM- -499	Сталь листовая толщ. 10мм,	ī	0,37	134.00	=-	50	-	=-	-	=
64	-W-	Стань арматурная Д=10мм,	2	0,01	<u>165.00</u>	=-	2	- 1	=-	<u>-</u>	=
			_		Ус	тройств	упорн	юй стенк	и (тип	IY)	
5 5	E7-3	Установка бетонных бло- ков ФЕС24.6.6 весом I,967,	et.	26,00	2.99 0,76	2.23 0.79	78	20	58 21	1,39 1,02	34
56	E7-2	To me, ØECI2.6.6 me- com 0,96 m,	MT.	16,00	2,09 0,50	1.59 0,57	33	8	<u>25</u> 9	0.86 0,74	14 12
57	9-97	Блови ФВС24.6:6 весом 1,96т (оборачиваемостью -2 пратная),	_	10,60	<u>52.40</u>	=-	555	-	<u>-</u>	<u>-</u>	=
			мЗ								
58	9-97	To me, ФЕСІ2.6.6 ве- com 0,96 т (с оборачи- ваемостью -2 пратная),	м 3	3,20	<u>52,40</u>	-	168	-	=-	=-	=-
5 9	E10-2 8	Установка деревянных брусьев 175х175мм,	мs	4,70	110.00 12,90	1,30 0,39	517	61	6	24,00 0.50	113

Продолжение приложения 10.1

Ī	2	3	4	5	6	7	8	9	10	II	8
60	E29-1277	Установка опорного пакета под 4 домкрата т	2,58	<u>I24,00</u> I2,40	<u>3,78</u> I,54	320	32	<u>IO</u> 4	<u>15,40</u> I,99	<u>40</u> 5	901-09-9.87
61	E7-3 y EPEP Tex.4. n.2.10 K=0,8	Разборка бетонных бло- ков ФЕС24.6.6, шт.	26,00	2,39 0,61	1,78 0,63	62	16	46 16	1,29 0,81	34 21	97 (AI)
62	E7-2 YEPEP Tex. 4. n.2. IO K=0.8	То же, блоков ФБС12.6.6, шт.	16,00	<u>I,67</u> 0,40	1,28 0,46	27	6	20 7	0.86 0.59	<u>14</u> 9	-127-
63	EIO-28 YEPEP Tex. 4. n.2. IO K=0,80	Разборка деревянных брусьев, °м3	4,70	<u>II.36</u> I0,32	<u>I,04</u> 0,3I	53	49	<u>4</u> I	24,00 0,40	<u>113</u>	
64	E29-I277 E9 Tex.q. Tad.2 K=0,7	Демонтаж опорного пакета, т	2,58	<u>II,33</u> 8,68	2,65 2,65	29	22	7	10,78 3,42	28 9	Инв. л
65	CUIII pas. I crp. 5	Погрузка строительного мусора от разборки блоков,	33,20	0.80	=-	27	-	<u></u>	=	=-	Je 1397 I

Продолжение приложения 10.1

	2	3		4	5	6	7	8	9 .	10	II	•
	~~~~~											-106
66	ECUIII	Отвозка мусора на З	KM, T	33,20	0.43	0,43 0,09	14	-	<u>14</u>	0,13	- - - -	[- ₀₉
67	CHIIT pas.I crp.5	Разгрузка строитель го мусора,	но - Т	33,20	0.75	=-	25	-	=-	=-	=-	09-9.87 (1
		Итого примые затрат по смате	ы <u>руб.</u> руб.	-	- ,	-	18251	2574	2 <u>181</u> 590	?⊷ '	4253 769	(AI)
	**	B TOM THORE:				v						-128
	•	Стоимость общестрон тельных работ	pyd.	-	-	-	18231		-	_	-	•
		Материали	pyd.	-	-		4868	-	-	-		
		Эксплуателия менин	pyd.	-	-	-	-	-	1588	-	-	
		Заработная плата машинотов	pyd.	-	_	_			589	_	-	M
		Основная ваработная плата	pyd.	_	-	_	-	2563	-		-	HHB. M 1307/I
		Всего заработная пвата	pyo.	· -	-	_	_	3152	-	-		1/105
		Стоимость материа— лов и конструкций	pyo.	_	· 	_	7415	_		_	_	

Продолжение приложения 10.1

					•		-					
I	2			4	5	6.	7.	8	9	10	II	
		Местные материалы	pyd.	_	-	-	3I2	_	-	-		98
		Накладные расходы	pyd.	_	-	-	3005		_	-		Ê
		Нормативная трудо- емкость в Н.Р.	челч		_		_	_	-	-	276	901-09-9.87
	ø	Сметная заработная плата в Н.Р.	pyd.	-		_		538	-	_	- ,,	(AI)
		Плановие накопления	pyo.		_		1696	-	_		-	
		Всего, стоимость общестроительных расот	pyo.	_		-	22932	_			_	-129-
		Нормативная трудоем кость	- чөлч			-	-	_	-	_	5279	
		Сметная заработная плата	pyd.	-	.	∸ • <u>.</u>	_	3690	-	-	-	
		Стоимость металло- монтажных работ	pyo.	-	-	- · · · · · · · · · · · · · · · · · · ·	20	•	-	_	-	
		Материали	pyd.	-	-	_	6	-	-	-		M
		Экспруатация машин	pyd.	- '	-	_	_	-	3	_	_	HEB.
		Заработная плата машинистов	pyd.	-	-		- ·	- :	I	-	- ·	J\$ 1307 /

Продолжение придожения 10.1

I	2	3		4	5	6	7	8	9	10	II	
		Основная заработная плата	pyd.	-		_	-	II	-	-	-	301-03-9-87
		Всего заработная язага	pyd.		-	-		12	-	•	-	-9.0/
		Накладные расходы	pyd.	_	-	-	2	-		-	_	E
		пановнован онвонаваП	pyd.	-	-	-	2 .	-	-	-	_	_
	ķ	Всего, стоимость металасмонтажных работ	pyd.	-	-	-	24	-	_	-	_	-170
		Нормативная трудо- выкость	7 KBF	ı. -	_	_	_	_	-		19	
		Сметная ваработная плата	pyd.		_	-	-	12	-	_	-	1-
		HTOPO NO CMS-	pyd.	_	-	-	22956	_	-	-	-	N. M.
		Нормативная трудовикость	KOF	I. -	•	-		_		-	529	9.9 19.8

1
P
Ģ
*
200
H

					rification	wound iffe	PHACE C	ENA IO. E	
2	3	4	5	6	7	8	9	BO:	
	бураныя вараболная плата	руб	• •	- -	-	3702	-	-	-
Д Бямеі	нания: пример локаденой Накладные расходь по сборникам един	ı – 16,5%	. Единичные	расценки	C MOCTH	ими матери	аламі	и принати	i.
Главн	ин инженер проекта	ef.		A.M. J	Литрак				
Начал	инежданоодое аведто пина Винавиканая в	IR	ace	€ B.B. !	Москалец				
Исхода	ние данные:		_						
	составила старший и	нженер	Gar	и.и.	Ромащенк	ова			
	проверила руководич	нель группы	Doche	L A.A. 1	Цубровск	BA			
Перфој	рация:		0/		-	e .			
	подготовила техник		Kaus-	И.Е.	Милютина				

Приложение 10.2

пример локальной сметы

		на устройс	тво катоді	ной пол	яризаці	7 0 .					90]
	Сметная с	TOUMOCTE 0,99 T	ыс.руб.		Основа	эние: че	ртежи Ж	A3-3		•	<u>-</u>
		ая условно-чистая родукция -	тыс.руб.		Соста	влена в	ценах І	984 г.			901-09-9.87 (
)\$ IIII	# прейск., укрупнен.	Наименование работ и затрат	Едини- ца из-	Коли- чест-		иость ел	ини-	Общая	т стоим	ость, ру	76. E
	сметных норм, расценск и		мере- ния	BO	BCGTO		числе: Эксп- луата- ция машин	Bcero	Норма- тивная услов- но- чистая продук- ция	ле основ- ная	HUC- 1 -DKCII- 1 NYA- TOURS MOMBH
Ī	2	. 3	4	5	6	7	8	9	10	II	12
I	ПЭЭ-84 р.І т.76	I. Строительные работы Протектор типа ПМ-ІОУ с антиватором на трубо- проводе	Іпр-р	II .	44,I	23,8	11.7 4,7	485		262	129 52
2	To me p. D'r. 386	Контрольно-измеритель- ный пункт на трубопрово- де в кололке	Іпункт	2	35,3	23	2,55 0,87	71	-	46	Mas. J
	•	Изого	pyd.	-	-	-	· -	556	-	236	134 8

Продолжение приложения 10.2

I	3	3	4	5	6	9.	8	8	I0	LI	13
		Накладине расходи	Я	16,5	x4 24=	•		92	-	-	- 9 9 19 9
		Nroro	pyo.	-	-	-	-	643	•	308	184 G
		Плановые накопления	%	8x64	8≃			52	-	-	- 3
		Итого по разделу I	pyd.	_	-	, -	-	700	-	308	184 E
	•	П. Монтажные работн									04
3	ПЭЗ-84 р. I т. 75	Протектор типа ПМ-IOУ с активатором на трубо- приволе	Lup-p	II	I, 6 3	•	-	13	***	-	- \$
4	То же р. I т. 7-д	Астановке пролек лебов к изелу при пр лиг ски Побавляется прокладка	10m	9,0	7,3	0,6	0-8 6,1	66	-	ġ	<u>a</u>
8	T0 180 T.380	войе в колонке нии плика на трасопро- контролено-камеритель-	Іщункт	2	29,3	5,2	0.2	50		EO	***
		Aroro	pyø.	-		_	· .	143		155	3_ 😅
		Веницика ресходи на электромоничкие работи	8	87xI	43=			124	- .	-	
•		Nropo	ay6.	-		_	-	267	***	15	2 8

Продолжение приложения 10.2

_	2	3	4	5	6	7	8	9	10	II	12
		Плановие вакопления	* %	8x26	67=			21	_	-	-
	٠	Итого по разделу П	pyd.	-	-	-	-	288	-	15	2
		Всего по смете	pyd.	-	- '	-	-	988	-	323	<u>136</u> 55
	Начальни	к архитектурно-строительной мастерской		suc	af	ж.a.	Самсоно	Pa		• • • • • • • • • • • • • • • • • • •	
	Рувоводи	темь группы	ì	2004-		Ю.Я.	Камкин				
	Составил	старший инженер	Ent		÷	Б.И.	Завалиш	ha			

90I-09-9.87 (AI) / -175- Ириложение II

Пример ведомости потреоности в материалах на сооружение перекста водопроводом в одну линию Ø 200 мм под автодорогой методом проясла

						
		Код		Кс	личест	
		материала	9Д. ИЗМ.	THI	THE.	Boero
Битумы нефтяные и сланцевые,	Ţ	025600	I68	_	0,38	0,38
Рельси железнодорожние узкой						
колеи.	T	092300	I68	-	0,77	C,77
Сортовой прокат обыкновенног	0					
качества		093000				
Сталь арматурная класса А-І						
Д=IОмм,	T	093000	168	0,01	-	0,01
Итого по плассу А-І,	T	093000	168	0,01	- '	0,01
Сталь арматурная класса А-П						
Д=16 мм,	T	093000	I68	0,02	0,01	0,03
Д=18 мм,	T	093000	168	. 0,02	-	0,02
Итого по плассу А-П,	T	093000	168	0,04	0,01	0,05
Сталь арматурная класса А-Ш						
Д=8 им,	Ť	093000	168	0,01	-	0,01
Д=IO мм,	T	093000	I68	0,12	-	0,12
Итого по классу А-Ш,	T	093000	168	0,13	-	0,13
Итого сортового проката		o ·				
обикновенного качества,	T		168	0,18	0,01	0, 19
Сталь сортовая		095000			,	
Сталь угловая,	T	095200	168	·_	0.01	0,01
Сталь полосовая,	T	095200	I68	_ ,	0,01	0,01
Прокат листовой, рядовой,	T	097000	168	_	0,02	0,02
Итого стали в натуральной						-
Macce.	T		I68	0,18	0,05	0,23
	Битумы нефтяные и сланцевые, Рельсы железнодорожные узкой колей, Сортовой прокат обыкновенног качества Сталь арматурная класса А-П Д=10мм, Итого по классу А-П, Сталь арматурная класса А-П Д=18 мм, Д=18 мм, Д=10 мм, Д=1	Витумы нефтяные и сланцевые, т Рельсы железнодорожные узкой колей, т Сортовой прокат обыкновенного качества Сталь арматурная класса А-П Д=ІОмм, т Д=ІСмм, т	Вятумы нефтяные и сланцевие, т 025600 Рельси железнодорожние узкой колеи, т 092300 Сортовой прокат обыкновенного качества 093000 Сталь арматурная класса А-I Д=IОмм, т 093000 Итого по классу А-I, т 093000 Д=I8 мм, т 093000 Итого по классу А-П, т 093000 Д=I8 мм, т 093000 Сталь арматурная класса А-Ш Д=8 мм, т 093000 Сталь арматурная класса А-Ш Д=8 мм, т 093000 Итого по классу А-П, т 093000 Итого по классу А-Ш, т 093000 Итого по классу А-Ш, т 093000 Итого по классу А-Ш, т 093000 Сталь арматурная класса А-Ш Д=8 мм, т 093000 Отого по классу А-Ш, т 093000 Итого сортового проката Обыкновенного качества, т Сталь сортовая 095000 Сталь полосовая, т 095200 Прокат листовой, рядовой, т 097000	Ватумы нефтяные и сланцевие, т 025600 168 Рельсы железнодорожные узкой колеи, т 092300 168 Сортовой прокат обыкновенного качества 093000 Сталь арматурная класса А-П Д=10мм, т 093000 168 Итого по классу А-І, т 093000 168 Д=18 мм, т 093000 168 Итого по классу А-П, т 093000 168 Итого по классу А-П, т 093000 168 Сталь арматурная класса А-П Г=18 мм, т 093000 168 Итого по классу А-П, т 093000 168 Итого сортового проката обыкновенного качества, т 093000 Сталь угловая, т 095000 Сталь угловая, т 095200 168 Прокат листовой, рядовой, т 097000 168	ВЕТУМИ НЕФТЯНЫЕ В СЛАНЦЕВИЕ, Т 025600 168 — Редьси железнодорожние узкой колея, т 092300 168 — Сортовой прокат обикновенного качества 093000 Сталь арматурная класса А—I Д=10мм, т 093000 168 0,01 Отого по классу А—I, т 093000 168 0,02 Д=18 мм, т 093000 168 0,02 Д=18 мм, т 093000 168 0,02 Отого по классу А—I, т 093000 168 0,02 Отого по классу А—I, т 093000 168 0,02 Отого по классу А—II, т 093000 168 0,02 Отого по классу А—II, т 093000 168 0,02 Отого по классу А—II, т 093000 168 0,01 Отого по классу А—II, т 093000 168 0,12 Отого по классу А—II, т 093000 168 0,12 Отого по классу А—II, т 093000 168 0,13 Отого сортового проката Обекновенного качества, т 093000 168 0,18 Сталь сортовая 095000 Сталь угловая, т 095200 168 — Отокат инстовой, рядовой, т 097000 168 — Отого стали в натуральной	материала ед. тип вид. Витумы нефтяные и сланцевие, т 025600 168 - 0,38 Редьси железнодорожнее узкой колея, г 092300 168 - 0,77 Сортовой прокат обыкновенного качества 093000 Сталь арматурная класса А-I Д=ІОмм, г 093000 168 0,01 - Итого по классу А-I, г 093000 168 0,02 - Итого по классу А-П, г 093000 168 0,02 - Итого по классу А-П, г 093000 168 0,02 - Итого по классу А-П, г 093000 168 0,02 - Итого по классу А-П, г 093000 168 0,02 - Итого по классу А-П, г 093000 168 0,01 - Д=8 мм, г 093000 168 0,01 - Д=8 мм, г 093000 168 0,01 - Д=10 мм, г 093000 168 0,12 - Итого по классу А-П, г 093000 168 0,13 - Итого по классу А-П, г 093000 168 0,13 - Итого сортового проката обыкновенного качества, г 168 0,18 0,61 Сталь сортовая 095000 Сталь угловая, г 095200 168 - 0,01 Прокат листовой, рядовой, г 097000 168 - 0,02 Итого стали в натуральной

₩ CT-	Наименование материала		Код		Ко	личест	BO
PO-	и единица измерения		материала	ед. ИЗМ.	TUII	инд.	Beero
I	В том чесле по укрупненному						
2	сортаменту						
3	Сталь среднесортная,	Ŧ		I6 8	-	0,02	0,02
`4	Сталь мелкосортная,	T		168	0,09	-	0,09
5	Катанка,	T		168	0,09	0,01	0,10
6	Сталь толстолистовая						
7	рядових марок,	T		168	-	0,015	0,015
8	Сталь тонколистовая,	T		168	-	0,005	0,005
9	Метадлоизделия промишленного						
IO	назначения			i			
II	Проволока В-І,	T	121300	168	0,01	-	10,0
12	Сетка стальная сварная						
I3	арматурная,	T	127600	168	0,12	-	0,12
14	Болты с гайками,	T	128100	I68	-	0,13	0,13
15	Итого металлоизделий про-						
16	мышленного назначения,	T		I68	0,14	0,13	0,27
17	Итого стали приведенной						
18	к стали класса А-І,	T		168	0,44	0,14	0,58
Ĭ9	То же к стали класса Ст. 3	T		168	-	0,15	0,02
20	Всего стали приведенной к						
21	классам A-I и Ст. 3 ,	P		168	0,44	0,29	0,73
22	Всего сортового проката обык						
23	новенного качества, стали		*				
24	сортовой конструкционной,						
25	листового проката, металло-						
26	изделий промышленного назна-						•
27	чения в натуральной массе,	P		168	0,18	0,16	0,34

路 CT-	Наименование материала		Код]	товиной	BO
PO-	и пинецемки вілинира	N	arepuana	ед. Mam.	TVII	инд.	Beero
I	В том числе по укрупненному						
2	сортаменту					:	
3	Сталь мелкосортная,	T		168	0,09	-	0,09
4	Сталь среднесортная,	T		I6 8	-	0,01	0,01
5	Катанка,	T		168	0,09	0,01	0,10
6	Сталь толстолистовая рядовы	X					
7	марок,	T		168	-	0,015	0,016
8	Сталь тонколистовая,	T		168	-	0,005	0,005
9	Всего приведенной стали к		* .				
0	KRACCAM A-I M CT.3 , >	Ŧ		168	0,44	0,29	0,73
II .	В т.ч. на изготовление сбор	-		i			
[2·	ных жб. и бетонных констр	yku	aŭ, T	168	0,44	-	0,44
[ti	В т.ч.на производство работ	, T		168	-	0,13	0,13
[4	Электрода,	RT	127000	166	-	2,II	2,II
I 5	Трубы стальные (всего),	М	130000	006	-	105,72	105,72
I 6		T		168	_	4,60	4,60
17	Труби нефтепроводние элект-						
81	ростарные (диам.от II4 до						
Í9	480 mm),	M	138300	006	-	105,72	105,72
20		•		168	-,	4,60	4,60
2I	Труби и детали трубопроводо	Ð			•		
22	из термопластов (всего)	M	224800	006		IO, IO	10,10
23		T		168		0,13	0,13
24	Трубн и детали трубопрово-						·
25	дов из поливинилхлорида,	M	224820	006	-	10,10	10,10
26		T	`	I68	-	0,13	0,13

16							سبيب
CT- DO-			Код материала			POPPE	
RE			материала	HSM.	THI	en.	Beero
I.	Материалы дакокрасочные						
2	Шпаклевки эпоксидные,	RT	231254	I66	-	67,50	67,50
3	Растворители,	RT	281910	I66	-	6,90	6,90
4	Пластификаторы						
5	Дисутилфталат,	RP	249313	166	-	2,48	2,48
6	Материалы и изделия						
7	электроизоляционные						
8	Текстолят электроизоля-						
9	цвонный,	КĽ	349112	I66	-	II,34	II,34
IO	Продукция лесозаготовитель-						
Ï	ной и лесопильно-деревообра-						
12	батывающей промышленности		e e				
IЗ	Лесоматериалы круглые,			•			
I4	используемые без переработки	, мЗ	531490	II3	-	3,47	3,47
I 5	Пиломатериалы качественные,	мЗ	533100	IIЗ	0,57	25,88	26,45
16	Шпалы деревянные,	мЗ	534100	ПЗ	-	I,80	1,80
17	Итого лесоматериалов в						•
18	условном круглом лесе,	мЗ		II3	0,80	45,32	46,I8
19	Щебень,	мЗ	571110	IB8 :	4,78	3,10	7,88
20	Песок строительный, природный,	. жЗ	571140	IIЗ	3,59	2,08	5,67
2I	Кемень буторый,	мЗ	57I I 5I	IB3.	-	2,62	2,62
22	Цемент						
23	Портландцемент 400,	Ŧ	573112	168	I.70	0,02	I,72
24	Портижнемент 300,	Ŧ	5 7315 I	168	-	0,24	0,24
25	Цемент всего, приведенный						
26	в марке 400,	T		168	I,70	0,24	I,94

Æ-	Наименование материала	Код		K	eppenc	mo
ra Po-	и единица измерения	материала	өд. ИЗМ.	THE	MHSI.	Beero
I ·	В т.ч. на изготовление моно-				·	
2	литных жб.и бетонных конст-					
3	рукций, т	•	168	-	0,22	0,22
4	В т.ч. на изготовление сбор-					
5	ных жб.и бетенных конст-					
6	рукций		I68	I,70	-	I,70
7	MZ	577405	55	-	3,72	3,72
8	Стеклоголокно и изцелия из него			٠.		
9	Ткани и сетки стеклянные, 1000м2	595201	56	-	0,15	0,15

Пример ведомости потребности в материалах на сооружение перехода водопроводом в две линии 2 Ø200мм под автодорогой методом горивонтального бурения

CT			Код		Кол	Myecte	0
KA Do-			материала	eg. Men	Tui	инд.	Beero
I	Битумы нефтяные и сланцевые,	Ŧ	025600	168		0,62	0,62
2	Сортовой прокат обыкновенного						
'3	качества		093000				
4	Сталь арматурная класса А-І						
5	Д=6мм,	T	093000	I68	_	0,15	0,15
6	Д=8мм,	T	093000	I68	0,04	_	0,04
7	Д=IO мм,	T	093000	I68	-	0,01	0,01
8	Д=І2 мм,	T	093000	I68	0,01	0,09	0,10
Ģ	Д=16 мм,	T	093000	I68	0,02	0,08	0,10
IO	Итого по классу А-І,	T	093000	I68	0,07	0,33	0,40
II	Сталь арматурная класса А-П						
12	Д=16 мм.	T	093000	168	0,01	_	0,01
13	Итого по классу А-П,	T	093000	I68	0,01	-	0,01
I 4	Сталь арматурная класса А-Ш						
15 ′	Д=8 мм;	T	093000	I6 8	0,05	-	0,05
16	Д=12 мм,	T	093000	I68	0,09	-	0,09
17	Д=14 мм.	P	093000	I68	0,03	-	0,03
18	Д=16 мм,	T	093000	168	0,12	-	0,12
19	Итого по классу А-Ш,	T	093000	I68	0,29	-	0,29
20	Итого сортового проката						
21	обивновенного качества,	T	093000	168	0,38	0,33	0,71
22	Сталь сортовая		095000				
23	Сталь угловая,	T	095200	168	-	0,99	0,99
24	Сталь полосовая,	T	095200	I68	-	0,70	0,70

B				***********			
PO-	наименование материала и епиница измерения		Код материала	en.	Koa Twiti	ичест:	Bcero
RE				nem.	*****		
I,	Итого стани сортовой,	T	095000	16 8	-	Í,69	I,6 9
2	Прокат дистовой рядовой,	T	097000	I68		0,11	0,II
3	Итого стали в натуральной						
4	Macce,	T		168	0,38	2,13	2,51
5	В том числе по укрупненному						
6	сортаменту						
7	Сталь крупносортная,	T		I 6 8	-	I,69	1,69
8	Сталь мелкосортная,	T		168	0,30	0,18	0,48
9	Катанка,	T		I68	0,08	0,15	0,23
IO	Сталь толстолистовая рядовых						
II	· mapor,	T		I68	-	0,11	0,11
12	Металловзделия промышленного						
I3	назначения						
14	Проволока В-1,	T	121300	I68	0,01		0,01
15	Сетка стальная арматурная,	T	127600	I68	0,06	-	0,06
16	Итого металлогаделий промыш-				₹ %		
17	ленного назначения		129999	16 8	0,06	_	0,06
18	И тог о стали приведенной к						
I9	отали класса А-І			168	0,59	0,33	0,92
30	То же к стади класса Ст. 3 ,	Ť		168	-	2,05	2,05
21	Всего стали приведенной к						
22	классам A-I и Ст.3		i	I68	0,59	2,38	2,97
23	Всего сортового проката						
24	обивновенного вачества, стали						
25	сортовой конструкционной,						
26	листового проката, металлоиздел	ий					

MHB. J 1307 / I 90I-09-9.87 (AI) Кол Количество ст- Наименование материала и единица измерения материала ед. TUU THU. Bcero Ι промишленного назначения 2 168 0,44 2,13 2,57 в натуральной массе, 3 В том числе по укрушненному 4 сортаменрту 5 Сталь крупносортная, **I68** I.69 I.69 6 Сталь мелкосортная. **I68** 0.30 0.18 0.48 7 Катанка. **I68** 0,08 0,15 0,23 - 8 Сталь толстолистовая рядо-9 BHX Mapor, **I68** 0,II 0,II IO Всего приведенной стади к II 168 0,59 2,38 2,97 KRACCAM A-I M CT. 3 12 В т.ч. изготовление соор-13 HNX E.-O. M GOTOHHUX ROHCT-14 **I68** 0.59 0.59 рукций, 15 I27000 **I66** Электроды, KF 80,60 80,60 16 I30000 006 I55.90 I55.90 Трубы стальные (всего), М 17 168 23,99 23,99 Ť 18 Трубы сварные больших диа-I38I00 19 Metror (CELINE 480MM). 006 51.00 51.00 M 20 **I68** T 21,25 21,25 21 Труби нефтепроводные элект-22 росварние (диам.от II4 до по 480 мм). I38300 23 006 104.90 104.90 24 **I68** T 2,74 2,74 25 Трубы и детали трубопрово-26 дов из термопластов (всего), м 224800 006 I22.00 I22,00

I68

4,42

27

THE THEOLOGY T

# CT-	Наименование материала		Koz	τ .	Ke	TEOPPEE.	9
re po-	и единица измерения		материала	ед. Езм.	140	инд.	Poero
1	Трубы и детали трубопрово-					4	
2	дов из полиэтилена,	M	22 48II	006	-	102,00	102,00
3		T	A	168	_	4,26	4,26
4	Трубн и детали трубопро-						
5	водов из поливинилхлориде,	M	224820	006	-	20,00	20,00
6		T		168	-	0,163	0,163
7	Материали лакокрасочные						
8	Шпаклевке эпоксидные,	RT	231254	166	-	414,00	414,00
9	Растворорители,	RT	231910	166	-	124,20	I24,20
IO	Отвердители,	Kľ	233291	166	-	42,32	42,32
п	Пластификаторы						
12	Дибутилфталат		249313	I66	-	15,18	I5, I 8
IЗ	изделия формовные резино-				•		
I4	TEXHUYECKUE						
I5	Кольца уплотнительные,	Kr	253112	166		15,30	I5,3 0
16	Материалы и изделия						
17	электроизоляционные						O.
18	Текстраит электроизолящион-	-					
19	Huã,	RT	349112	166	- °	27,54	27,54
20	Предукция песозаготовитель-	-	•			•	
21	ной и лесопильно-				٠		
22	деревосорабатывающей про-					•	
23	Menagerocte						
24	Лесоматериалы круглые, ис-					-	
25	пользуемие без переработки,	en,	531490	II3	-	170,44	170,44
26	Пиломатериали качествению	.шЗ	533100	II3	-	I4,78	14,78

CT−			Кол		Ко	личеств	5
PO- Ru			материала	ед. ИЗМ.	TNII	инд.	Beero
I	Итого десоматериалов в						
2	условном круглом лесе,	МЗ		ПЗ	•	192,61	192,6
3	Бумага						
4	Бумага мешочная,	m 2	543443	55	-	I46,85	I46, 8
5	Щебень,	мЗ	571110	II3	3,65	20,71	36,53
6	Песок строительный при-						
7	родный,	Вм	571140	II3	2,74	20,06	22,80
8	Камень бутовый,	Вм	571151	II3	-	2,62	2,62
9	Цемет	>		, ,			
0	Портианишемент 400,	Ŧ	573112	168	I,45	2,66	4, II
I.	Портландцемент 300,	T	573151	I68	-	30,72	30,72
12	Цемент всего приведенный						
[3	и марке 400,	Ŧ		168	I,45	30,31	31,76
[4	В т.ч. на изготорление						
[5	монолитных жб. и бетонин	K					
[6	нонотрукций,	T		I68	I,45	-	I,45
[7	Бризол,	м 2	577405	55	-	I,86	I,86
18 ^	Трубы и муфты асбестоцемен	r-					
19	ние напориме,						
20		. усл.	5 786I 0	•		87,II	87,II
SI	Стеклородокно и изделия						
22	ES Hero	•					
23	Ткани и сетки стеклянные,		*				
24	10	00m2	59520I	56		0,43	0,43

Примор ведемести мотребности в материалах на сооружение мережада лепеливенией Ø 400 мм под железнодорогными примым мотодым предавливания

3						****	
PO-	Наменование масеонала и сплание изморения		Кол материала ед. изм.				Bcero
I	Витуми нефтяние и сланце-						
2	ENG,	T	025600	168	-	0,77	0,77
3	Рельен железнодорожные						
4	уакой колек,	T	092300	168	_	0,77	0,77
5	Сортовой прекат обыкновен-						
6	ного качества		093000				
7	Сталь арматурнан класса А-І			•			
8.	Д=IOмм,	T	093000	168	0,03	0,01	0,04
9	A=12m,	T	093000	16 8	0,06	_	0,06
IO	Д=20 101.	Ť	093000	168	_	0,25	0,25
II	Итого по классу А-І,	T	093000	I68	0,09	0.26	0,35
12	Сталь арматурная класса А-П						
I3	Д=16мм,	T	093000	168	0,02	_	0,02
I4	Д=18мм,	T	093000	I68	0,01	_	0,01
I 5	Итого по классу А-П,	T	093000	16 8	0,03	_	0,03
16	Сталь арматурная класса А-Ш						
17	Д=IOmm,	T	093000	168	0,08	_	0,08
18	Итого по классу А-Ш,	T	093000	I68	0,08	-	0,08
I 9	Итого сортового проката		,				
20	обыкновенного качества,	T	093000	168	0,20	0,26	0,46
21	Сталь сортовая	095	000				
22	Сталь угловая,	•	095200	168	-	0,12	0,12
23	Сталь полосовая,	•	095200	168	-	0,01	0,01
24	Итого сталь сортовая,	T	095000	168	-	0,13	0,13

⊮ CT−	Наименование материала		Кол		Коли	TOCTEC	
Do-	и единица измерения		материал	а од. И ЗМ .	TUU		Beero
I	Прокат листовой рядовой,	Ŧ	097000	168	-	0,39	0,39
2	Итого стали в натуральной						
3	Macce,			I68	0,20	0,78	0,98
4	В том числе по укрупненному						
5	сортаменту						
6	Сталь среднесортная,	Ť		168	-	0,12	0,12
7	Сталь мелкосортная,	T		I68	0,20	0,26	0,46
8	Катанка,	T		I68	-	0,01	0,01
9	Сталь толстолисторая						
IO	рядових марок,	T		168	-	0,385	0,385
II	Сталь тонколистовая,	T		168	_	0,005	0,005
12	Металлоизделия промышлен-						•
13	ного назначения			•			
I 4	Проволока B-I,	T	121300	I68	0,02	_	0,02
15	Сетка стальная сварная						•
16	арматурная,	T	127600	168	0,10	-	0,10
<u> 1</u> 7	Болты с гайками,	T	128100	I68	***	0,08	್0,08
18	Итого металлоизделий		٠				·
19	промышленного назначе-				,		•
20	ния, ————————————————————————————————————	T	·	I68	0,12	0,08	0,20
21	Итого стали приведенной	•			• •	•	
22	к стали класса A-I,	T		168	0,43	0,26	0,69
23	Итого стали приведенной				٠		
24	к стали класса Ст.З ,	T		I68	-	0,71	0,71
25	Всего стали приведенной к						
26	классу A-I и Ст.3 ,	or The last		I68	0,43	0,97	I,40

Ç.

<u> </u>	Nomeononesso, sensero	Кол		Количество		
DO- RE	Наименование материала в единица измерения	материала	ei. Nem.	THE	ини.	
I	Всего сортового проката				4	
2	обикновенного качества,					
3	ствли сортовой конструкционной,					
4	листового проката,	•			•	٠.
5	металлоизделий промышленного					
6	назначения в натуральной мас-					
7	CO, T		168	0,32	0,86	1,18
8	В том числе по укрупненному					
9 -	сортаменту	,				
CO	Сталь межносортная, т		I6 8	-	0,12	0,12
ΙΙ	Сталь среднесортная, г		168	0,20	0,26	0,46
2	Катанка, т		I 6 8	-	0,01	0,01
ß	Сталь толстолистовая рядовых		•			
[4]	mapor, T		168	-	0,385	0,385
[5	Сталь тонколестовая, т		168	-	0,005	0,005
[6	Всего приведенной стали к			÷		
7	REACCY A-I E CT.3		I68	0,43	0,97.	I,40
8	В том числе на изготовление	•				,
[9	оборяни жб.я бетоннях		9		-	
20	ROECTPYRIEN, T	•	168	0,43	0,20	0,63
?I	В том числе на производство					
22	pador,	ug≨ a a n oo an a	168	_	0,08	0,08
23	Эментроды, кг	127000	I66	-	2,92	2,92
24	Труби стальные (всего), м	130000	006	_	85,00	85,00
25	, T	r .	168	_	21,06	21,06
					-	. •

# CT-	Наименование материала и		Код		Количество			
PO-	вдиница измерения		материала	өд. Изм.	TUI	38.	Bcere	
I	Трубы сварные больших							
2	диаметров (св.480мм),	M	138100	006	-	67,48	67,48	
,3,	,	T		168	-	21,03	21,03	
4	Трубы нефтепроводные							
5 ,	электросварные (диам. от II4							
. 6	до 480 мм),	M	138300	006	-	17,52	17,52	
7	1	Ŧ		168	-	0,03	0,03	
8	Материалы лакокрасочные							
9	Ппаклении эпоксидные,	Kľ	231254	I66	-	345,60	345,60	
IO	Растворители,	Kľ	231910	16 6	-	103,68	103,68	
II .	Отвердители,	KT	233291	166	-	35,32	35,32	
12	Пластификаторы							
I3	Дибути коталат,	RT	249313	I66	-	12,68	I2,68	
I4	Продукция лесоваготовитель-							
I 5	ной и лесопильно-деревообра-							
16	батывающей промышленности						•	
17	Лесоматериалы кругине,							
I8 ^	используемые без переработ-							
19	RE,	МЗ	531490	ПЗ	-	0,24	0,24	
20	Пиломатериалы качестренные,	Вм	533100	II3	·	19,63	19,63	
21	Шпалы деревянные,	Вм	534100	II3	-	1,8	1,80	
22	Итого десоматериалов в							
23	условном круглом лесе,	Вм	,	II3	-	32,39	32,39	
24	Пебень,	мЗ	57IIIO	II3	26,6	13,26	39,92	
25	Песок строительный природний	,мЗ	571140	II3	19,99	9,76	29,75	
26	Камень бутовый,	m3	57I I 5I	II3	-	I,75	I,75	

B CT-	Наименование материала	~	Кол	1	Содичес	PO	
DO-	и ениница измерения		материала	ед. ИЗМ .		вид.	Beero
I	Cencer		100				
2	Портавищемент 400,	Ŧ	573II2	I68	I,52	0,67	2,19
3	Портивищемент 300,	Ŷ	573I5I	168	5,79	2,72	8 ,5 I
4	Цемент всего, приведенный		-				•
5	r mapre 400,	Ŧ		168	6,73	3, 12	9,85
6	В том числе на изготовление						
7	моголитных жб. и бетонных						
8	конструкций,	T		I68	-	0,65	0,65
9	В том числе на изготовление		•	· .	• .	•	
IO	сборных жб. и бетонных			111	٠		1
II	.конструкций,	T		831	6,73	•,	6,73
12	Трубы керамические						
13	канализационные, м.ус	CA.	575510		-	199,00	199,00
14	Стекловолокно и изделия из						
I5	него						
16	Ткани и сетки стеклянные, 1000	SMC	59520I	56	-	0,21	0,21
17	изделия кручение						
18	Кабалка пропитанная,	T	812294	168	-	0,06	0,06

йнв. № /307/Вак. № 55 Тыр. /0000 блем /9.0

(ОРТП ностипротранса