Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС) Госстандаюта России

РЕКОМЕНДАЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ПЕРЕКИСНОЕ, КИСЛОТНОЕ И ЙОДНОЕ ЧИСЛО ЖИРА В КОНДИТЕРСКИХ ИЗДЕЛИЯХ. МЕТОДИКИ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

MH 2586 - 2000

РАЗРАБОТАНА Всероссийским научно-исследовательским или или удом метрологической службы (ВНИИМС) и Научно-исследовательским или или удом кондитерской промышленности (НИИКП)

ИСПОЛНИТЕЛИ Т.В.Данилина, Н.А.Дегтярева, Т.А.Иванова, Н.П.Миф, к.т.н. (руководитель темы), Ф.И.Парашина, к.х.н., Т.В.Савенкова, к.т.н., Л.Е.Скокан, к.т.н., Ю.И.Яжборовская.

АТТЕСТОВАНА ВНИИМС, Свидетельство N 105-07-00 **УТВЕРЖДЕНА** ВНИИМС, НИИКП

СОГЛАСОВАНА Федеральным центром Госсанэпиднадзора России (письмо Первого заместителя главного врача В.И.Чибураева от 30.10.2000 г. № 17ФЦ/3693)

ЗАРЕГИСТРИРОВАНА ВНИИМС

Обозначение документа	Пункт рекомендации
ΓΟCT 12.1.007-76	2
ΓOCT 12.1.018-79	2
ГОСТ 61-75	7.3
ΓΟCT 1770-74	7.3, 8.3, 9.3
ΓΟCT 3118-77	9.3
ΓΟCT 4202-75	9.3
ГОСТ 4232-74	7.3, 9.3
ГОСТ 4328-77	8.3
ГОСТ 5072-79	8.3
ГОСТ 5850-72	8.3
ГОСТ 5904-82	5.1, 6.1
ГОСТ 6709-72	4.3, 7.3, 8.3, 9.3
ГОСТ 10163-76	7.3, 9.3
ΓOCT 10576-74	7.3
ГОСТ 12026-76	8.3
ГОСТ 17299-78	8.3
ΓOCT 18300-87	8.3
ГОСТ 20015-88	7.3, 8.3, 9.3
ГОСТ 24104-80	7.3, 8.3, 9.3
LOCT 24363-80	8.3
I'OCT 25336-82	7.3, 8.3, 9.3
1 CX T 27068-86	7.3, 9.3
I (X T 28498-90	8.3
I ()('I' 29227-91	7.3, 9.3
1 ()C'1' 29251-91	7.3, 8.3, 9.3
IV 74 06804 97-90	8.3, 9.3
1 осфарманонея, % и принис, сталыс 14	8.3, 9.3

Рекомендация ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ МИ 2586-2000 МИ 2586-2000 жира в кондитерских изделиях. Методики выполнения измерений

Настоящая рекомендация распространяется на перекисное, кислотное и йодное числа жира в кондитерских изделиях и полуфабрикатах кондитерского производства и устанавливает методики их измерений. Рекомендация предназначена для применения на предприятиях и в организациях при контроле качества кондитерской продукции.

1. Диапазоны и нормы погрешности измерений

Методика обеспечивает выполнение измерений в диапазонах и с пределами погрешности, приведенными в таблице 1.

Таблица 1

№ п/ п	Наименование показателя	Диапазон измерения	Пределы погрешности измерений, ±
1	перекисное число жи- ра	до 3,0 ммоль/кг вкл. свыше 3,0 ммоль/кг	8 % 4 %
2	кислотное число жира	до 6,0 мг КОН/ 1г вкл. свыше 6,0 мг КОН/ 1г	6 % 4 %
3	йодное число жира	(10 - 150) г I₂/100 г жира	10 г I₂/100 г жира

2. Требования безопасности

При выполнении измерений соблюдают требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 и правил личной гигиены, требования пожарной безопасности по ГОСТ 12.1.018, а также требования, изложенные в технической документации на весы аналитические и баню водяную.

3. Требования к квалификации операторов

Выполнение измерений перекисного, кислотного и йодного числа может проводить специалист, изучивший методику и проподний инструктаж по технике безопасности при работе с вредными всществами и пожарной безопасности.

4. Условня выполнения измерений

4.1 При выполнении измерений в лаборатории соблюдают следующие условия:

температура окружающего воздуха (20 \pm 5)° С; атмосферное давление (630-800) мм рт. ст.; относительная влажность воздуха (80 \pm 5) %; напряжение в сети (220 \pm 10 15) В

- 4.2 Все используемые реактивы не должны содержать растворенного кислорода.
 - 4.3 Вода дистиллированная должна соответствовать ГОСТ 6709.
- 4.4 При определении перекисного числа допускается использовать свежепрокипеченную дистиллированную воду.
 - 4.5 Притертые стеклянные поверхности не смазывают.
- 4.6 Измерения проводят при рассеянном дневном свете или при искусственном освещении.

5. Отбор проб

5.1 Отбор проб по ГОСТ 5904.

6. Подготовка пробы

6.1 Подготовка проб для проведения измерений по ГОСТ 5904

6.2 Выделение липидов

Навеску тщательно измельченного изделия (10 - 50) г (в зависимости от вида изделия) помещают в колбу емкостью ~ 500 см³ с притертой пробкой или в другую плотно закрывающуюся тару.

Экстрагирование липидов исследуемых изделий осуществляют смесью хлороформа и этилового спирта в соотношении 2:1 или хлороформом. Объем экстрагируемой смеси составляет 50-100 см³ в зависимости от вида исследуемого изделия. Экстрагирование липидов проводят при комнатной температуре в течение 4-6 часов при периодическом встряхивании содержимого колбы. Затем полученный экстракт при необходимости фильтруют, и отгоняют растворитель. Отгонка растворителя проводится при атмосферном давлении и температуре (60-78) °С на кипящей водяной бане или колбонагревателе.

7. Методика выполнения измерений перекисного числа

7.1 Определение

В настоящей методике применяют следующий термин с соответствующим определением:

Перекисное число, ммоль/кг - концентрация активного кислорода в жире.

7.2 Метод измерений

Метод основан на взаимодействии перекисей, содержащихся в жире, с йодистым калием в присутствии ледяной уксусной кислоты с выделением йода и последующим титрованием раствором тиосульфата натрия с молярной концентрацией 0, 002 моль/дм³ (если перекисное число не превышает 3,0 ммоль/кг) или 0,01 моль/дм³ (если перекиеное число превышает 3,0 ммоль/кг).

7.3 Средства измерений, вспомогательные устрийским и римктивы

Весы аналитические 2 класса точности с наибольшим предслом взвешивания 200 г по ГОСТ 24104-80

Баня водяная

Часы песочные на 2 мин по ГОСТ 10576

Колбы типа Кн исполнения 1 вместимостью 250 см³ по ГОСТ 25336

Бюретки вместимостью 5 и 10 см³ по ГОСТ 29251

Цилиндры мерные вместимостью 50 и 100 см³ исполнения 2, 1 класса точности по ГОСТ 1770

Пипетки вместимостью 2 см³ по ГОСТ 29227

Хлороформ по ГОСТ 20015

Кислота уксусная х.ч., ледяная по ГОСТ 61

Калий йодистый по ГОСТ 4232, х.ч. 50-55% водный раствор

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068 водный раствор С ($Na_2S_2O_3 \bullet 5H_2O$)=0,01 моль/дм³ (0,01 н) или 0,002 моль/лм³ (0,002 н)

Крахмал растворимый по ГОСТ 10163 водный раствор 1%

Вода дистиллированная по ГОСТ 6709

Допускается применять другие средства измерений с метрологическими характеристиками и оборудование с техническими характеристиками не хуже, а также реактивы по качеству не ниже вышеуказанных.

7.4 Выполнение измерений

В коническую колбу с притертой пробкой вносят навеску липидов, выделенных из исследуемого изделия в соответствии с п. 6.2 массой (1,00 - 1,50) г в зависимости от предполагаемого содержания перекисей. Навеску в колбе растворяют в 20 см³ смеси, состоящей из 8 см³ хлороформа и 12 см³ ледяной уксусной кислоты. К раствору приливают 1 см³ раствора йодистого калия и смесь равномерно перемешивают в течение двух минут. Затем в колбу добавляют 60 см³ дистиллированной воды и 1 см³ раствора крахмала.

Выделившийся йод титруют раствором тиосульфата натрия концентрации 0,002 моль/дм³, если перекисное число не превышает 3,0 ммоль/кг, или 0,01 моль/дм³, если перекисное число более 3,0 ммоль/кг.

Одновременно проводят контрольное измерение без навески липилов.

7.5 Обработка результатов измерений

Перекисное число (X) в миллимолях активного кислорода (1/2 О) на килограмм пробы (ммоль/кг) вычисляют по формуле:

$$X = \frac{(V_1 - V_o) \cdot C \cdot 1000}{m},$$

где V_0 - объем раствора тиосульфата натрия, использованный при контрольном измерении, см³:

 V_1 - объем раствора тиосульфата натрия, использованный при определении перекисного числа жира в навеске с липидами, см³;

C - концентрация использованного раствора тиосульфата натрия, моль/ ${\rm дm}^3$:

т - масса навески исследуемого жира, г;

1000 - коэффициент для пересчета результата измерения в миллимоли на килограмм.

Вычисления проводят до второго десятичного знака с последующим округлением до первого десятичного знака.

Примечание: Для перевода результата в проценты йода (г йода на 100 г жира), следует полученный по формуле результат разделить на 78.

7.6 Оформление результатов измерений

За результат измерений принимают среднее арифметическое значение из двух параплельных измерений, расхождение между которыми не должно превышать нормативов сходимости, приведенных в таблице 2.

Диапазон измерения, ммоль/кг	Норматив оперативного контроля сходимости, d, %	Норматив оперативно- го контроля воспроизводимости, D, %
до 3, 0 вкл.	10	12
свыше 3,0	5	7

Результат измерения представляют в виде \tilde{X} , ммоль/кг Результаты измерений оформляют записью в журнале и удостоверяются лицом, проводившим измерения.

8. Методика выполнения измерений кислотного числа

8.1 Определение

В настоящей методике применяют следующий термин с соответствующим определением:

Кислотное число, мг КОН/ 1 г жира - массовая доля свободных жирных кислот в жире.

8.2 Метод измерений

Метод заключается в растворении определенной массы жира в смеси растворителей с последующим титрованием свободных жирных кислот водным или спиртовым раствором гидроокиси калия или натрия.

8.3 Средства измерений, вспомогательные устройства и реактивы

Весы аналитические 3-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104

Баня водяная

Секундомер механический по ГОСТ 5072

Термометр жидкостной с диапазоном измерения (0-100) $^{\rm O}$ С и ценой деления $^{\rm IO}$ С по ГОСТ 28498

Колбы конические вместимостью 250 см 3 по ГОСТ 25336

Бюретки вместимостью $10~{\rm cm}^3$ и $25~{\rm cm}^3$ с делением $0,1~{\rm cm}^3$ по ГОСТ 29251

Цилиндр мерный вместимостью 50 см 3 исполнения 2, 1 класса точности по ГОСТ 1770

Бумага фильтровальная лабораторная по ГОСТ 12026

Калия гидроокись по ГОСТ 24363, х.ч. или ч.д.а. 0,1 моль/дм 3 (0,1 н) или натрия гидроокись по ГОСТ 4328, х.ч. или ч.д.а. 0,1 моль/дм 3 (0,1 н), водный или спиртовый раствор

Эфир этиловый очищенный по ТУ 75-06804-97-90 или эфир медицинский по Госфармакопея, X изд. ст. 34

Спирт этиловый технический (гидролизный) по ГОСТ 17299 или спирт этиловый ректификованный технический по ГОСТ 18300

Хлороформ по ГОСТ 20015

Тимолфталеин спиртовый раствор с массовой долей 1 %

Фенолфталеин по ГОСТ 5850 спиртовый раствор с массовой долей 1%

Вода дистиллированная по ГОСТ 6709

Смесь растворителей: спирто-хлороформная или спирто-эфирная, приготовленная в соответствии с п.8.4.1

Допускается применять другие средства измерений с метрологическими характеристиками и оборудование с техническими характеристиками не хуже, а также реактивы по качеству не ниже вышеуказанных.

8.4 Подготовка к выполнению измерений

8.4.1 Приготовление нейтрализованной смеси растворителей

Спирто-хлороформную смесь готовят из равных частей хлороформа и этилового спирта с добавлением 5 капель раствора фенолфталеина на $50~{\rm cm}^3$ смеси. Смесь нейтрализуют $0.1~{\rm monb/дm}^3$ $(0.1~{\rm m})$ раствором гидроокиси калия или натрия до едва заметной розовой окраски.

Спирто-эфирную смесь готовят из двух частей эфира и одной части этилового спирта с добавлением 5 капель раствора фенолфталеина на

50 см 3 смеси. Смесь нейтрализуют 0,1 моль/дм 3 (0,1 н) раствором гидроокиси калия или натрия до едва заметной розовой окраски.

При использовании спирто-эфирной смеси титрование проводят водным или спиртовым раствором гидроокиси, при использовании спирто-хлороформной смеси - спиртовым раствором гидроокиси.

8.5 Выполнение измерений

В коническую колбу вместимостью 250 см³ вносят навеску липидов, выделенных из исследуемого изделия в соответствии с п. 6.2 массой (2,00 - 5,00) г. Затем приливают 30 - 50 см³ нейтрализованной смеси растворителей и перемешивают. Если жир плохо растворяется, содержимое колбы слегка нагревают на водяной бане, а затем охлаждают до (15 - 20)⁰ С. Полученный раствор жира при постоянном взбалтывании быстро титруют 0,1 моль/дм³ (0,1 н) раствором гидроокиси калия или натрия до появления слаборозовой окраски, устойчивой в течение 30 сек.

При титровании 0,1 моль/дм³ (0,1 н) водным раствором гидроокиси калия или натрия во избежание гидролиза раствора мыла количество спирта в нейтрализованной смеси должно \sim в 5 раз превышать количество израсходованного раствора гидроокиси.

При исследовании темноокращенных жиров титрование проводят в конической колбе с боковой отводной трубкой с добавлением спиртового раствора тимолфталеина в качестве индикатора. За изменением окраски смеси во время титрования наблюдают в тонком слое, находящемся в отводной трубке колбы.

Тимолфталеин в кислой среде бесцветен, а в щелочной дает голубое окрашивание, при титровании темноокрашенных жиров он принимает грязно-зеленый цвет.

8.6 Обработка результатов измерений

Кислотное число исследуемого жира (X) в мг КОН на 1 г жира вычисляют по формуле:

$$X = \frac{5,611 \cdot K \cdot V}{m}$$

где V - объем раствора гидроокиси калия или гидроокиси натрия 0,1 моль/дм 3 , израсходованного на титрование, см 3 ;

К - поправка к титру 0,1 моль/дм3 (0,1 н) раствора щелочи;

5,611 - количество гидроокиси калия, соответствующее 1 см³ точного раствора 0,1 моль/дм³, мг/см³;

т - масса навески исследуемого жира, г.

Вычисления проводят до второго десятичного знака с последующим округлением до первого десятичного знака.

8.7 Оформление результатов измерений

За результат измерений принимают среднее арифметическое значение из двух параллельных измерений, расхождение между которыми не должно превышать нормативов сходимости, значений, приведенных в таблице 3.

Таблица 3

Результат измерения представляют в виде \overline{X} , мг КОН/ 1г Результаты измерений оформляются записью в журнале и удостоверяются лицом, проводившим измерения.

9. Методика выполнения измерений йодного числа

9.1 Определение

Диапазон измере- ния, мг КОН/ 1г	Норматив оперативного контроля сходимости, d, %	Норматив оператив- ного контроля воспроизводимости, D, %
до 6, 0 вкл.	7	10
свыше 6,0	5	7

В настоящей методике применяют следующий термин с соответствующим определением:

Йодное число, г I₂/ 100 г жира - условная величина, характеризующая массовую долю непредельных соединений в жире.

9.2 Метод измерений

Метод основан на взаимодействии йода с непредельными жирными кислотами жира.

9.3 Средства измерений, вспомогательные устройства и реактивы

Весы аналитические 2-го класса с наибольшим пределом взвешивания 200 г по ГОСТ 24104

Колбы с притертой пробкой, вместимостью 350 - 500 см 3 по ГОСТ 25336

Колбы мерные вместимостью 500, 1000 см 3 по ГОСТ 1770

Воронка делительная вместимостью 500 см³ по ГОСТ 25336

Цилиндр мерный вместимостью $50~{\rm cm}^3$ исполнения 2, 1 класса точности по ГОСТ 1770

Бюретка вместимостью 25 см 3 с делением на 0,1 см 3 по ГОСТ 29251

Пипетка вместимостью 10 см³ по ГОСТ 29227

Эфир этиловый очищенный по ТУ 75-06804-97-90 или эфир медицинский по Госфармакопея, Х изд., ст. 34

Хлороформ по ГОСТ 20015

Кислота соляная по ГОСТ 3118

Вода дистиллированная по ГОСТ 6709

Калий йодистый по ГОСТ 4232 водный раствор 100 г/дм^3

Натрий серноватистокислый (тиосульфат) водный раствор С (1/2 $Na_2S_2O_3$) = 0,1 моль/дм³ (0,1 н) по ГОСТ 27068

Калий йодноватокислый по ГОСТ 4202

Крахмал растворимый по ГОСТ 10163, раствор 10 г/дм 3 (1%-ный) свежеприготовленный

Допускается применять другие средства измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивы по качеству не ниже вышеуказанных.

9.4 Подготовка к выполнению измерений

9.4.1. Приготовление солянокислого раствора хлористого йода

В склянку с притертой пробкой вносят 11,1 г йодистого калия, 7 г йодноватокислого калия, 50 см³ дистиллированной воды, 50 см³ концентрированной соляной кислоты и взбалтывают до полного растворения йода. Реакционную смесь переносят в делительную воронку, приливают 20 см³ хлороформа и добиваются фиолетовой окраски слоя хлороформа добавлением по каплям водного раствора йодноватистого калия с массовой концентрацией 10 г/дм³ при энергичном взбалтывании. После отстаивания водный слой сливают в мерную колбу и доводят объем водой до 1 дм³. Реактив хранят в склянке из темного стекла в течение 3-х месяцев.

9.5 Выполнение измерений

В колбу с притертой пробкой вносят навеску липидов, выделенных из исследуемого изделия в соответствии с п. 6.2 массой (0,100 - 0,120) г. Для растворения жира в колбу приливают 3 см 3 этилового эфира, и добавляют из бюретки 25 см 3 0,2 моль/дм 3 солянокислого раствора хлористого йода.

Колбу плотно закрывают пробкой, перемешивают и оставляют стоять 10-15 мин., в темном месте, затем вносят $10~{\rm cm}^3$ раствора йодистого калия $100~{\rm г/дm}^3$, $50~{\rm cm}^3$ дистиллированной воды.

Выделившийся йод титруют раствором тиосульфата натрия 0,1 моль/дм³ до светло-желтой окраски. После этого в колбу прибавляют $1~{\rm cm}^3$ свежеприготовленного раствора крахмала $10~{\rm г/дm}^3$, и продолжают титрование до полного исчезновения синего окращивания.

Одновременно проводят контрольное измерение без навески липидов.

9.6 Обработка результатов измерений

Йодное число (X) в г йода на 100 г жира вычисляют по формуле:

$$X = \frac{0.01269 \cdot (V - V_1) \cdot 100}{m}$$

где 0.01269 - количество йода, соответствующее $1~{\rm cm}^3$ раствора тиосульфата натрия $0.1~{\rm monb/gm}^3$, г;

V - объем раствора тиосульфата натрия 0,1 моль/дм³, израсходованный в контрольном измерении, см³;

 V_1 - объем раствора тиосульфата натрия 0,1 моль/дм³, израсходованный в рабочем измерении, см³;

т - масса навески жира, г

Вычисления проводят до первого десятичного знака с последующим округлением до целых чисел.

9.7 Оформление результатов измерений

За результат измерений принимают среднее арифметическое значение из двух параллельных измерений, расхождение между которыми не должно превышать норматива сходимости, приведенного в таблице 4.

Таблица 4

Диапазон измерения, г I ₂ / 100 г жира	Норматив оперативного контроля сходимости, d, г $I_2/100$ г жира	Норматив оперативного контроля воспроизводимости, D, г I,/100 г жира
10 - 150	10	15

Результат измерения представляют в виде \overline{X} , г $I_2/100$ г жира. Результаты измерений оформляются записью в журнале и удостоверяются лицом, проводившим измерения.

10. Контроль точности результатов измерений

Контроль точности результатов измерений осуществляют путем проведения оперативного контроля сходимости и воспроизводимости.

10.1 Алгоритм проведения оперативного контроля сходимости Оперативный контроль сходимости проводят при получении каждого результата, представляющего собой среднее арифметическое

значение результатов измерений. Контроль сходимости проводят путем сравнения расхождения двух результатов параллельных определений (\overline{X}_1 и \overline{X}_2) с нормативом контроля сходимости d_{κ} .

Сходимость результатов признают удовлетворительной, если $d_k = |X_1 - \overline{X}_2| \le d$. Значения d приведены в таблицах 2, 3, 4.

При превышении норматива оперативного контроля сходимости измерения повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к получению неудовлетворительного результата, и устраняют их.

10.2 Алгоритм проведения оперативного контроля воспроизводимости

Оперативный контроль воспроизводимости проводят с использованием рабочих проб и применением разных экземпляров средств измерений, разными операторами и в разное время. Оперативный контроль воспроизводимости проводят путем сравнения результатов измерений, полученных в разных условиях с нормативом контроля воспроизводимости D_k . Периодичность контроля не реже одного раза в две недели.

Воспроизводимость результатов признают удовлетворительной, если $D=|X_1-X_2| \le D_k$. Значения D приведены в таблицах 2, 3, 4.

При превышении норматива оперативного контроля воспроизводимости измерения повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к получению неудовлетворительного результата, и устраняют их.