

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИИ ПАЙКИ ИЗДЕЛИЙ

P 50-54-48-88

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ (ГОССТАНДАРТ СССР)

Всесоюзный научно-исследовательский институт по нормализации в машиностроении (Вниинмаш)

Утверждены Приказом ВНИИНМАШ № 73 от 22.03.88 г.

САПР. Автоматизация проектирования технологии падки изпелий

Рекомендации Р 50-54-48-88

Группа Т58

РЕКОМЕНЛАЦИИ

САПР. Автоматизация проектирования технологии пайки изделий P 50-54-48-88

OKCTY OOT4

I. ОБШИЕ ПОЛОЖЕНИЯ

- І.І. Технология пайки изделий резрабативается одновременно с проектированием конструкции на стадии подготовки производства.
- I.2. Графическая модель формирования технологии пайки при изготовлении групп изделий основана на том, что качество паяного изделия определяется единством (взаимосвязью) и совместимостью важнейших элементов производственной системы между собой и с эксплуатационными характеристиками паяного изделия 3 (рис.I).
- 1.3. Паяное изделие харектеризуется конструкционными факторами его соединений $K_{\overline{Q}}^{L.C.}$ и собственно изделия $K_{\overline{Q}}^{R.M.}$. К первым относятся тип соединения, паяльный зазор, нахлестка, угол скоса, шероховатость материала. Ко вторым конструкци онный класс изделия, масштабный фактор (габаритные размеры, толщина стенок), общая протяженность паяных швов и наклон зазора при пайке, масса изделия.
- I 4 Конструкционный материал M_K кроме механических, физических и химических свойств характеризуется температурой солидуса и критическими областями нагрева, в которых обратимо или необратимо ухудшаются его эксплуатационные свойства.
- 1.5. Способы пайки: по формированию пеяного шве (СПІ); условиям образования припоя, кристаллизации шве и заполнения завора припоем; уделению окисной пленки (СП2); источнику нагрева (СП3); осуществлению давления на соединяемие детали

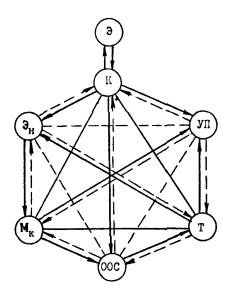


Рис. I. Взеимосвязь эксплуатационных жарактеристик паяного изделия 3 с важнейшими элементами производственной системы

(СП4); одновременности выполнения соединений изделия (ГОСТ 17349-79).

- I.6. Операции пайки: нагрев, температурный режим (ТРП), термический цикл (тип), введение припоя $\mathbf{M}_{\mathbf{\Pi}}$ и вопомогательного материала $\mathbf{M}_{\mathbf{BCH}}$, а при нефиксированном зазоре приложение давления на соединяемие детали. На качество пайки существенно влияют предварительные операции: подготовка поверхности $\mathbf{M}_{\mathbf{K}}$, соорка. На качество готового изделия последующие: промывка, термообработка и др.
- 1.7. Оснащение: оборудование, оснастка, инструмент, средстве механизации и автоматизации.

Технология пайки Т определяется ее способами.

I.8. Эффективность производства в комплексном технологическом процессе изготовления изделия обеспечивается его экономичностью \mathfrak{I}_{H} , организацией и управлением производства ОУ, охраной окружающей среды ОСС (см.рис.І). Критерием эффективности \mathfrak{K}_{3} служит совместимость \mathfrak{K}_{4} , \mathfrak{M}_{K} , \mathfrak{T}_{5} 3 с этими элементами производственной системы.

2. РЕКОМЕНДАЦИИ ПО РАЗРАБОТКЕ ТИПОВЫХ ПРОЕКТНЫХ РЕШЕНИЙ ТЕХНОЛОГИИ ПАЙКИ

- 2.1. Основные этапы разработки ППР технологии паяных изделяй и перечень данных, служащих входной информацией, устанавливаются на основе графической информационной модели проектирования ПП изделий из заданного конструкционного материала М_и.
- 2.2. Разработке ПІР должны предшествоветь следующие мероприятия:

Классификации: способов пайки (см.п.1.5), флюсов (ГССТ 19250-73), припоев (ГССТ 19248-73), оборудования, инструментов, оснастки, средств механизации, автоматизации и роботивации, паяных изделий и соединений по общности конструкционно-технических характеристик, для которых возможна разработка общих групповых и типовых технологий (ГССТ 19249-73).

Определение состава входной и выходной информации для изготовления паяного изделия заданных класса, групп и партий.

Выбор групповой и единичной технологий с учетом свойств конструкционного материала, имеющегося оборудования и применяемых средств технологического оснащения.

Разработка алгоритмов преобразования входной и выходной информации для определения количественных параметров, жарактеризующих способы и режимы, технологические и вспомогательные материалы, оборудование и инструмент, оснастку, средстве механизации и автоматизации, роботизации по всей совокупности групповых процессов для изделий каждого выделенного класса.

Подготовка математического, программного, технического и информационного обеспечении для реализации этих алгоритмов в рамках CAIP TH IIV.

Анализ технико-экономической эффективности проектных решений.

Оформление документов ППР, в том числе с использованием ЭВМ.

- 2.3. Классификация паяных изделий для условий производстве конкретной отрасли выполняется путем выделения из общей номен-клатуры классов, подклассов, групп, объециненных согласно конструкторской документации общностыю гесметрических каректеристик массы, конструкционного материала, серийности изготовления и др. в рамках типовой технологии. При этом возможно использовение, например, отраслевых материалов с учетом комплекса признаков, характеризующих условия последующей механо; термообработки, и особых технологических требований к изделию.
- 2.4. Количественную оценку принадлежности изделия к одному из классов и формирование типовой технологии осуществляют с помощью статистических методов или детерминированно.
- 2.5. В соответствии с классификацией изделий создается каталог типовых проектных решений и типовых технологий, а также выделяются типовые паяные изделия.
- 2.6. При оформлении рабочей технологии на основе типовой уточняют (при автоматизировенном проектировении
- с помощью специальных алгоритмов) количественные параметры и последовательность выполнения отдельных этапов, а также выбирают (на базе типовых) средства технологического оснащения.

На каждом этапе определяют рациональные (оптимальные) режимы изготовления изделий как производственно-технического наэначения (ПТН), так и в целом выделенного класса.

- 2.7. При проектировании технологии изготовления изделий ПТН следует учитыветь сложные функциональные взаимосвязи между исходными факторами элементов производственной системы.
- 2.8. Образование паяного соединения происходит в результате теплового воздействия на паяемый материал, припои, вспомогательные материалы (флюсы, газовые среды, стоп-пасты и др.); их физического и физико-химического взаимодействия, а также с окружеющей средой и материалом оснастки и др. Выбирая опти-

мальную технологию пайки, надо учитыеть влияние всех этих процессов, а также конструкционных факторов на качество паяного изделия. Проектирование технологии пайки должно состоять из нескольких этапов, отвечающих следующим требованиям:

механические, физические и физико-химические свойства паявмого материала необходимо сохранять в требуемых интервалах,

применяемые припои и способы пайки должны обеспечивать требуемые свойстве паяного соединения и изделия в целом,

выбранную технологию необходимо оснастить соответствующим оборудованием, инструментом, средствами механизации, автоматизации и роботизации.

Только при поэтапном проектировении технологии возможна ее оптимизация. Каждый следующий этап базируется на данных, полученных на предыдущих. Так, оборудование выбирают только после обоснования термических режима и цикла пайки; последние — после того, как выбран припой (способ пайки по форми—рованию паяного шва и получению припоя), способы пайки по удалению окисной пленки — после получения информации о допустимых температурах плавления припоя и пайки, т.е. интервалах нагрева паяемого материала, в которых он не теряет своих эксплуатационных свойств.

- 2.9. На этапах проектирования технологии пайки, когда существенное влияние оказывают конструкция, масса и габаритные размеры изделия, следует учитывать возможность ее осуществления при заданных конструкционных факторах соединений и изделия.
- 2.10. Выбор оптимальной технологии изделия требует учета всех влияющих на технологию фекторов и должен базироветься на теории процессов пайки, производственном опыте и опыте эксплуатации паяных изделий.

3. IPAGNUECKAS MOJEJIS TIPOEKIMPORAHAS TEXHOJOTUM HANKM

3.1. Информационная модель проектирования технологии пайки приведена на рис.2. В основу поиска оптилальной технологии положен декомпозиционный алгоритм, реализуемый в 15 этапов

(Z_1 , Z_2 ,... Z_{15}). На каждом следующем этапе происходит целенаправленное сужение области допустимых решений с помощью соответствующих ограничений (частных критериев K_1 , ..., K_{15}).

Модель базируется на условиях обеспечения качества паяных изделий, задаваемых критерием качества $K_{\mathbf{r}^{\bullet}}$

- 3.2. Входной информацией для данной модели служат эксплуатационные жарактеристики изделия (условия и ресурс работы) и соответствующие им свойства соединений. К последним относятся прочностные свойства (кратковременная, длительная, вибрационная прочность, жаро— и хладостойкость, ударная вязкость и др.); физические (герметичность, вакуумплотность, электропроводность и др.) и химические (коррозионная стойкость в различных климатических условиях и средах); температура распайки и др.
- 3.3. Учитывая требование сохранения эксплувтационных свойств $M_{\rm w.s.}$ пайку производят:
- а) при температуре ниже температуры солидуса M_K ($t_2 < t_{N_A}^{con}$) и выше ликвидуса (солидуса) припоя $t_{c,n}$: $t_{c,n} < t_{n_{AM}}$;
 - б) в интервалах вне критических температур M_{κ} : $t_{\alpha} \gtrsim \Delta t_{\kappa \rho}$;
- в) при температуре ниже температуры распайки выполненных ранее паяных швов $t_{n} < t_{
 m pcn}$.
- 3.4. В связи с этим на первом этапе проектирования \mathcal{Z}_1 по входной информации о марке конструкционного материала и данным о температуре его солидуса и критических температурах пайки (критерий $K_{\mathbf{I}}$) принимают температурные области допустимого нагрева $M_{\mathbf{K}}$ $\Delta t_{\mathbf{R}}^{\prime}$.
- 3.5. На следующем этапе \mathcal{Z}_2 по входной информации $\Delta t_{\mathcal{L}}'$ и данным о температурах плавления групп припоев (критерий K_2) выбирают основы M_1 , у которых температура пайки $\begin{bmatrix} t_n = t_{\mathcal{M}} + (15-50^{\circ}\text{C}) \end{bmatrix}$ находится в интервале допустимого для M_K нагрева Δt_R и (или) $t_R < t_{\mathcal{PCR}}$.
- 3.6. На этеле $\mathcal{Z}_{\mathcal{Z}}$ из припоев $\mathbf{M}_{\Pi}^{\mathbf{I}}$ выбиреют $\mathbf{M}_{\Pi}^{\mathbf{II}}$, которые физико-жимически совместимы с $\mathbf{M}_{\mathbf{K}}$ (критерий $\mathbf{K}_{\mathbf{3}}$). Входной информацией служат основы припоев $\mathbf{M}_{\Pi}^{\mathbf{II}}$, а также таблица физико-жимической совместимости известных $\mathbf{M}_{\mathbf{K}}$ с резличными основами припоев и примерные температурные области пайки. Для принятых

 $\mathbf{M_{h}}^{\mathrm{II}}$ должны удовлетворять следующие неревенстве:

$$t_n \neq t_{x, \neq} u \quad T_n < T_{x, \neq},$$
 $t_n \neq t_{g,n} u \quad T_n \neq \Delta t_{g,n}$
 $t_n \neq \Delta t_x u \quad T_n < T_{x, e},$

где t_n — температура пайки; $\Delta t_{x,t}$, $\Delta t_{g,n}$ $\Delta t_{g,n}$ температурные интерваль недопустимого развития жимической эрозии, прослоек, жимических соединений, диффузионной пористости или охрупчивания $M_{\mathbf{K}}$ в контекте с жидким припоем соответственно; \mathcal{T}_n — выдержка при температуре пайки; $\mathcal{T}_{x,t}$, $\mathcal{T}_{x,c}$, $\mathcal{T}_{g,n}$ — минимальное время до начала развития жимической эрозии, жимических прослоек и диффузионной пористости при температуре пайки t_n .

Условная совместимость M_{K} с основой M_{Π} может быть корректирована легированием выбранной основы припоя M_{Π}^{II} (или заменой M_{K}).

- 3.7. Основу припоя M_{Π}^{II} получают способом пайки СПІ (этеп \sharp_4) по входной информации о классификации этих способов и областей применения (рис.2, тебл.4). По критерию K_4 , температура пайки должна быть выше температуры контактно-реактивного (к-р) плавления M_K с контактным материалом M_{KOHT} или температуры контактно-твердогазового (К-Т-Г) плавления M_K или M_{KOHT} с парами депрессанта $M_{\Pi\Pi}$, температуры начала высаживания основы припоя M_{Π}^{II} из компонентов флюса в контакте с M_K , температуры твердожидкого спекания при композиционной пайке, температуры заметной диффузии депрессанта припоя в твердый раствор на основе M_K при диффузионной пайке.
- 3.8. Некоторые способы СПІ требуют прижима паяных деталей. Поэтому на этапе \mathcal{Z}_5 производят дополнительный отфор СПІ с учетом особенностей K_0^{HC} . и K_0^{HM} по критерию K_5 : при контактно-реактивной композиционной и диффузионной способах пайки, а также пайке готовым припоем, уложенным в зазор, необходим прижим деталей (P > 0); при контактно-твердогазовой пайке и пайке готовым припоем с введением последнего в зазор (изотермический контакт) или в процессе респлавления припоя,

уложенного предверительно у зазора при сборке (неизотермический контакт), - лишь фиксация зазора (Р=0).

3.9. На этапе \mathcal{F}_6 по входной информации о классификации способов пейки СП2, а также данным их пригодности для принятых ренее СП \mathcal{F}_1 , $\mathcal{F}_{\mathcal{L}}$, $\mathcal{M}_{\Pi}^{\text{LI}}$, $\mathcal{M}_{\mathbb{K}}$ и заданных $\mathcal{H}_{\Omega}^{\text{LC}}$ и $\mathcal{H}_{\Omega}^{\text{LC}}$ по критерию \mathcal{H}_{G} выбирают СП \mathcal{L}^{LI} (активирования), который обеспечит требуемую коррозионную стойкость соединений и температуру смачивания $\mathcal{M}_{\mathbb{K}}$ жидким припоем $\mathcal{M}_{\Pi}^{\text{LI}}$ в интервале $\Delta \mathcal{L}_{\mathcal{L}}^{\text{L}}$ допустимого нагрева $\mathcal{M}_{\mathbb{K}}$. При этом:

при абразивно-кристаллической пайке температурная область лужения должна находиться в области твердо-жидкого состояния припоя $\Delta t_{\tau-\lambda} \, M_{h}$, а при ультразвуковой - выше ликвидуса припоя $\Delta t_{\Lambda+\lambda} \subset \Delta t_{\tau-\lambda} \, M_{h}$, $\Delta t_{\Lambda n \kappa h} \, M_{h}$.

при абразивно-кристаллической, ультразвуковой и абразивно-ка витационной пайке (лужении) удаление окисной пленки от мест нарушения ее сплошности возможно при условии достаточной растворимости $M_{\rm K}$ в жидком $M_{\rm H}$;

слой полуды при пайке и хранении не должен окисляться и препятствовать последующей бесфлюсовой пайке.

3.10. Для выбранного $CII2^I$ на этапе \mathscr{Z}_F по входной информации о классификации M_{BCR} и данным о марках, составе, температурных интервалах активности термической стойкости и M^I реп по критерию K_7 пригодности вспомогательных материалов:

температурно-временная область пайки $S(t,\mathcal{T})_n$ находится в температурно-временной области активности флюса в контакте с жидким припоем $S(t,\mathcal{T})_{\text{OKT}, \phi}$ а последняя — в области достаточной термической стойкости флюса $S(t,\mathcal{T})_{\phi}: S(t,\mathcal{T})_n \subset S(t,\mathcal{T})_{\phi m_n}$; $S(t,\mathcal{T})_n \subset S(t,\mathcal{T})_{\text{OKT}, \phi}$;

для активных газовых сред температура пайки находится в температурной области их активности, а продукты взаимодействия при пайке — в жидком или газообразном состояниях; активная газовая среда не должна при пайке ухудшать свойств M_{K} и M_{H} ; $\frac{1}{2}$ $\frac{1}{$

при пайке в векууме не должно происходить испарения компонентов припоя, приводящего к заметному изменению их свойств или уменьшению толщины контактных прослоек, а в поверхностном слое $M_{\rm K}$ — изменение его свойств, определяющих физико-химическую совместимость с $M_{\rm R}$ и $M_{\rm BCR}$; $t_{\rm A} < t_{\rm uca}^{\it M_{\rm R}}$.

- 3.II. На этапе \mathcal{F}_g по входной информации \mathbf{M}_Π^{II} и данным о характере влияния легирующих элементов на свойстве паяных соединени? по критерию \mathbf{K}_g выбирают дополнительное легировение припоев на основе \mathbf{M}_Π^{II} , обеспечивающее требуемые эксплуатационные свойства этих соединений; $\mathbf{J}_{n,\mathcal{C}} \gg \mathbf{J}$.
- 3.12. На этапе $\mathcal{J}_{\mathfrak{p}}$ по входной информации о $K_{\mathfrak{p}}^{\mathfrak{g},\mathfrak{e}}$, $M_{\mathfrak{p}}^{\mathfrak{l}}$. $M_{\mathfrak{p}}^{\mathfrak{l}}$, $\mathfrak{C}\Pi_{\mathfrak{p}}^{\mathfrak{l}}$, $\mathfrak{C}\Pi_{\mathfrak{p}}^{\mathfrak{l}}$, $\mathfrak{C}\Pi_{\mathfrak{p}}^{\mathfrak{l}}$, расходе припоев на изделие и данным о различных планах экспериментов по критерию $K_{\mathfrak{g}}$ принимают тот план, который подходит для рассматриваемого случая:

при 3-4 фекторах - полный факторный эксперимент; при очень большом числе факторов и минимальном - опытов - симплексный метод;

при смешанных количественных и качественных факторах - метод сложных совмещенных планов.

- 3.13. На этапе \mathcal{Z}_{10} по входной информации о классификации способов давления при пайке СП4 и данным об областях их применения по критерию K_{10} выбранный на этапе \mathcal{Z}_{q} .
- 3.14. На этапе $\#_{II}$ принимают способ пайки СПС по входной информации о классификации способов СПЗ и данным о пригодности их для принятых ранее \mathbb{M}^{III} , $\mathbb{M}^{\text{I}}_{\text{BCII}}$, СП $^{\text{II}}$ и $\mathbb{M}^{\text{II}}_{\tilde{\mathbb{Q}}}$ (критерий \mathbb{M}_{II} для изделий с разовым $\mathbb{M}^{\text{III}}_{\tilde{\mathbb{Q}}}$).
- 3.15. На этепе \mathcal{F}_{H} для способа пайки СПЗ $^{\mathrm{I}}$ определяют ТЩ по тепловым характеристикам M_{K} , массе, конструкционному классу, габаритным размерач изделия и др., представляющий развитие термических формаций изделий и трещин.
- 3.16. Материал оснастки М_{осн} выбирают на этапе **д** 13 по входной информации о его классификации по теплостойкости, жаропрочности и жаростойкости, данным о составе и марках.

По критерию K_{I3} при темперетуре пайки сохраняется предел упругости материала оснастки. Механические свойства $M_{\rm OGH}$ не должни ухудшаться под воздействием $M_{\rm BCH}$. $M_{\rm II}$. ТПІ после $M_{\rm CH}$ не должен вступать в контактно-реактивное или контактно-твердожидкое плавление с $M_{\rm K}$ и $M_{\rm II}$ и контактно-твердогазовое плавление с парами газовой среды.

- 3.17. Оборудовение для пайки изделия выбирают на этапе \mathcal{Z}_{14} для M_{K} , Γ , а также M_{Π}^{II} , $M_{BC\Pi}^{II}$, M_{OCH}^{II} , $CIII^{II}$, $CII2^{I}$, $CII4^{II}$ по входной информации о его классификации и денным о нагреветельном инструменте, объему рабочей камеры или мощности, TIII. По критерию K_{I4} для CII3 с общим нагревом оборудовение выбиреется с учетом габаритных размеров рабочей камеры, температурно-временных режимов, а для локального нагреве мощности нагревательного инструмента.
- 3.18. При выборе припоев и вспомогательных материалов (флосов, активных газовых сред) следует учитывать их стоимость и дефицитность, а также токсичность, особенно в условиях массового и крупносерийного производств, используя ваменители и пайку в вакууме.
- З.19. Заданная информация в таблицах данных и частных критериях должна быть достаточно полной и достоверной.
 - 4. CHUCAHME BXOLIHON NHOOPMALMIN X_N IN TABJINIL T_m
- 4.1. Входная информация графической модели проектирования технологии пайки.

Этап 🚁 (прил. I):

 X_{I} - марка M_{K} изделия;

табл. І. Конструкционные материали $M_{\mathbf{K}}$ и их критические температуры нагрева.

Этап Жа (прил. I):

 X_2 — допустимие температурные интервалы N нагреве $M_{K^{\dagger}}$ табл.2а. Основы припоев и их температурные интервалы плавления:

табл.26. Межанические свойстве припоев в литом состоянии.

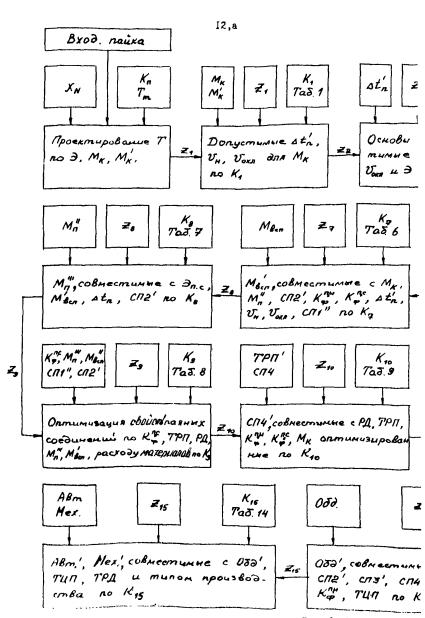
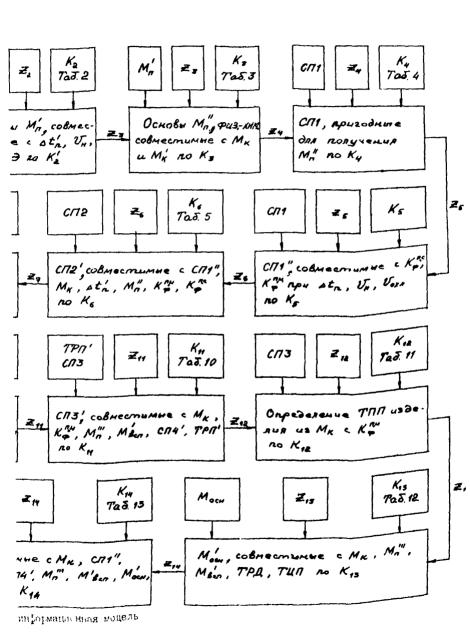



Рис. 2. Графическая из

Этап 23 (прил.2): X_3 - основы припоев M_H^I , пригодные для пайки M_K с допустимыми температурами плавления; табл. З. Физико-химическая совместимость М., с основами припоев М... Этап Жи: Хи - классификация СПІ: табл.4. СПІ и получаемые по ним основы припоев M_n^1 . Этап #5: X5 - CHI. Этап £6 : X6 - классификация CП2; табл. 5. Пригодность СП2 для выбранных СПІ 11 Δt_{a} , M_{Π}^{11} и заданных M_{κ} , $K_{m}^{\Pi \bullet N_{\epsilon}}$, $K_{m}^{\Pi \bullet O_{\epsilon}}$ (СП 1). Этап 卷 🚜 : Х₇ - классификация М_{воп}: табл.6. Группы Месп. их состав, температурные интервалы активности и термическая стойкость флосов Marr, Murr, Mar Этап **Д**.; X₈ - M_П^{II}; табл.7. Группы припоев на основе MII и их легировение для обеспечения Э., тебл. 9. Планы экспериментов и их области применения: Gran of no: X_{ГО} - классификация СП4; табл. 10. Области применения способов давления при пайке. Этап ₹и: X_{II} - классификация СПЗ: табл. II. СПЗ и их пригодность для МIII, Масп. СП4, КШ. Этап Жи: $X_{T2} - CII3^{\perp};$ табл. 12. Формулы расчета ТІП изделия по тепловим харак-

теристикам M_{K} , M_{G} , M_{II} , K_{II}^{II} , M_{II}^{II}

Этап £13:

 ${
m X_{I3}}$ - классификация ${
m M_{och}}$ по температурам, средам нагрева, прочности, назначению;

табл. ІЗ. Состав и свойства материала для оснастки при пайке.

Этап *д 14* :

 ${\rm X}_{14}$ - классификация нагревательного оборудования и инструмента для пайки;

табл. 1.4. Оборудование и инструмент для нагрева при пайке и его жарактеристики по рабочей температуре, объему рабочего пространства или мощности. ТЩ и др.

Этап *₹15* :

 ${
m X}_{15}$ - классификация средств межанизации, автоматизации, роботизации процессов при пайке;

табл.15. Установки средств механизации, автоматизации, роботизации процессов пайки и их области применения (СПЗ, СП4).

- 4.2. При составлении программи проектирования технологии пайки в память машини вводят все данние критерии, приведенние выше, учитываются в таблицах оценки совместимости. Алгоритм проектирования на первых трех этапах приведен в прил.3.
- 4.3. Графическая модель проектирования технологии пайки изделий из разнородних материалов отличается тем, что поэтанние критерии и содержание таблиц дополняются с учетом особенностей формирования соединений. Например, критерий КІ требованием ориентировки на температуру солидуся наиболее легкоплавких из паяемых материалов: температурой пайки могут быть все области $\Delta t_{\rm R}$ ниже температуры их плавления, расположенные вне критических областей ${\rm M}_{\rm K}$ и ${\rm M}_{\rm K}^{\rm L}$

По критерию K_3 учитывающему степень жимического сродства $M_{\rm K}$ с $M_{\rm KL}$ и интенсивность их массопереноса через жидкую фезу, температура пайки должна находиться вне температурных интервалов недопустимой жимической эрозии, роста жимических прослоек, развития диффузионной пористости и охрупчивания $M_{\rm K}$ и $M_{\rm KL}$ в контакте жидкого $M_{\rm R}$ с обоими материалами. При большой разнице коэффициентов теплового расширения или полиморфного превращения паяемых материалов следует избегать образования

несогласованных спаев, применяя композиционные или высокопластичные припои, широкие зазори. Критерий K_5 дополняется требованием целесообразного расположения детальй при пайке с замкнутыми спаями: снаружи помещают деталь с большим КТР. Критерий K_6 — требовением применимости СП2 для обоих паяемых материалов $M_{\rm K}$ и $M_{\rm K}^{\rm I}$, а K_7 — условием, чтобы температура пайки для них одновременно находилась в температурно-временном интервале активности $M_{\rm BCR}$.

На всех этапах проектирования, кроме \mathcal{J}_g , данные получают из сложных функциональных зависимостей между исходными фекторами (способы пайки, режимы, материалы и конструкционные особенности паяных соединений и изделий, оснащение)и входными параметреми готового изделия, свойствеми паяных соединений и изделий, представляемых в виде табличных, графических и других математических зависимостей. Математическая модель технологии аппроксимируется эмпирически установленными правилами (критериями), формулеми, табличными зависимостями, обобщющими теоретико-экспериментальный и производственный опыт. При этом на отдельных этапах проектировения (например \mathcal{J}_g , \mathcal{J}_{HO}) используются вероятностно-статистические математические модели, получаемые путем регрессионного анализа результатов экспериментов.

Наиболее высокий уровень автоматизации проектирования достигается при описании ТШ при расчете температурных полей изделий в условиях выбранного способа нагрева (£₁₂). Числовое решение системы дифференциальных уравнений, адекватно описывающих процесс нагрева или охлаждения и термический решем пайки позволяет применить режим диалога технолога с ЭВМ с тем, чтобы наиболее эффективно решать технологические зарачи с учетом организационно-технических ограничений, возникающих в условиях производства. Универсальный характер численных моделей обеспечивает возможность их широкого использования для оптимизации технологических решений и анализа устойчивости разрабативаемой технологии в производственных условиях в случаях отклонений реальных параметров процесса от оптимальных значений.

4.4. Разработка завершается оформлением следующей технологической документации:

допустимые температурные интервалы и скорости нагрева \mathcal{U}_{\varkappa} и ожлаждения V_{OXA} М.;

основы припоев Мп/, физико-жимически совместимых с палемым материалом М.:

способы пайки по формированию паяных, соединений (СП). пригодные для пайки и получения припоя Ми;

способы пайки по удалению окисной пленки, совместимые с паявмым материалом $M_{\rm R}$, припоем $M_{\rm I}$, способами СПІ $^{\prime}$, Δt , Φ .

составы и марки вспомогательных материалов, совместимые о $M_{\rm K}$, $M_{\rm H}$, ${\rm CH2}$, $\Delta t_{\rm A}$, $V_{\rm H}$, $V_{\rm OXA}$;

состав и марки припоев М, на основе М,, дополнительно легированных совместимыми добавками в соответствии с требуемыми условиями эксплуатации паяных соединений и изделий:

оптимизированные термические режимы пайки ($\mathcal{L}_{\mathcal{A}}$, $\mathcal{T}_{\mathcal{A}}$) и режимы дарления на паяные детали (РД), значения конструктивных фекторов паяных соединений и изделий и допустимые интервалы нагрева M_{Π} и M_{BCH} , по расходу материалов;

способы девления при пайке СП4/, совместимые с оптимизированными ТНІ. ТРД, конструкционными факторами паяных соединений и изделий, а также свойствами при пайке Мк;

оптимальные способы нагрева при патке СПЗ, совместимые с $M_{\rm K}$, $K_{\rm T}^{\rm T-C}$, $M_{\rm H}$, $M_{\rm BCH}$, СП4, ТРП изделия;

термический цикл пайки изделия с заданными M_K и $K_D^{\Pi \cdot N}$; материал оснастки M_{OCH} , совместимый с M_K , $M_{BC\Pi}$, $T_{U\Pi}$ и

нагревательное оборудование Обд', совместимое с M_{R} , M_{II}'' , СПІ'', СП2', СП3', СП4', M_{BCH} , M_{OCH} , $\text{K}_{\Phi}^{\text{II}}$, $\text{ТІЛ}_{\$}$ средстве механизации и автоматизации, совместимые с Обд', $\text{ТІД}_{\$}$, ТРП', ТРП' для заданного типа производства.

4.5. Полученные при проектировании данные служат основой пля оформления документации на техпроцесс изготовления контактных опытных изпелий. Исследование качества последних в сочетании с технико-экономическим анализом позволяет оценить уровень разработки ПР.

- 4.6. При неудовлетворительных результатах опитного опробования технологии следует оценить принятие классификационные признаки и систему количественных классификаций изделий, а также процедури расчета, экспериментальные данные и внести соответствующие коррективы.
- 4.7. Непреривное расширение номенклятури паяных изделий и повышение требований к их качеству, обновлению оборудования оснастки влечет за собой постоянное расширение каталога технологий пайки и ПІР, совершенствование алгоритмов расчета режимов и циклов пайки, критериев отбора данных.

При учете фекторов, влияющих на качество паяных изделий в производстве и при ремонте, учитывают соответственно качество исходных материалов, условия хранения готовых изделий, соблюдение технологической дисциплины и степень износа изделий при эксплуатации (перед ремонтом).

При отсутствии данных по совместимости M_K с M_Π при оптимизации (\mathcal{L}_g) используют стандартные методики испытаний на смачиваемость (ГОСТ 23204-78), затемание припоя в завор (ГОСТ 20485-75), определения глубины химической эрозии (ГОСТ 21549-76), толщины прослоек химических соединений (ГОСТ 21548-76), температуры распайки (ГОСТ 21547-76), механических свойств паяных соединений при растяжении (ГОСТ 23047-78, ГОСТ 25200-82) и ударе (ГОСТ 23046-78).

При определении влияния на качество паяних соединений состава M_{Π} , $M_{BC\Pi}$ и норм их расхода, особенностей конструкции соединений и изделий используют технологические образцыминимальных размеров, воспроизводящих $K_{\Pi}^{H \circ C}$ и $K_{\Pi}^{H \circ M}$.

ПРИЛОЖЕНИЕ I (рекомендуемое)
Таблица $m{1}$

Критические температурные интервалы для некоторых цветных сплавов

M _K	st _{kp, oc}	Условия проявления $^{ m B}$ $_{\Delta}t$ $_{ m K}$	Причина
Медь	700-750	~	Рост зерна (собират. рекристаллизация) Снижение бо,2
Бескислоро д- ная ме дь	1025	0,8-I,2 MWH	Ухудшение малоцикло- вой усталости
Брон за	775	-	Хрупкость, трещины
Броф 6-5	710	-	Резкое снижение межа- нических свойств
Броф 6,5-0,15	750	-	Вторичная рекристал- лизация
Латунь	720-730	0,8-I,2 MMH	Сильный рост зерна Резкое снижение ${\mathscr O}'_{0,2}$
Мельхиор	800	-	_"-
Нейзильбер	1100	-	_"_
AI(99,99)	HeT	нет	нет
AJII	_"_	"	_"_
AMU [¥]	-"-	_" _	_"_
AMr2: AMr3: AMr4: AMr6	-"	_#_	-"-
Никелевне деформир. сплавы (термообра-ботка)	I350-I380 I150-I150 I220-I250	=	Температура плавления Собираторекристаллизация Пережог

Примечение: **x** – резисе снижение $G_{0,2} > 150^{\circ}$ С; **хх** – $G_{0,2} > 200$ –

Таблица 2 Температурный интервал плавления магниевых литейных сплавов

арка сплава	Температ	ypa, ^o C	
арка сплава	солидуса	ликвиду са	
MJI5	430	600	
MJ18	525	636	
MIIS	550	644	
MJI 15	539	530	

Таблица З Темперетурные интервелы преврещения $\mathcal{L}-7i - \mathcal{B}-7i'$ и снижения $\mathcal{G}'_{0,2}$ титановых сплавов (по данным Вульфа Б.К.)

Марка сплава	Температурный оинтервал превращения, С	Температура резкого снижения $\mathcal{O}_{0,2}$.
OT4.	920-1000	400-450
OT4-I	800-990	_#_
BT3-I	930-980	400-450
BT5	940-980	~"
BI6	950~1000	~"-
BT8	970~1000	_"_
BT9	970-1000	_"_
BTI4	920-960	450
BTI5	750-800	400

Критические интервалы температур никелевых сплавов (деформируемых)

Таблица 4

Mapra	t пл.°С	tpexp.,°C	рекр.,°C t собират.,°C		Темпера- тура	0,2 KT:KT/MM ²			
	U BAS O	v penpe, v	рекр.			\$0 <mark>₀</mark> ¢	При темпе- ратуре резкого снижения		
BF:ex	1352-1375	1050	1039-1150	1250-1300	800-900	30–55	10–14		
31136 3333	1320-1379 солидус	1000–1379	1100	1220	900	65–7 0	40-45		
	1320	1000	1100	1220	900	65–72	40-45 20		

Примечание. Термообработка соответственно при 1200^{30} , 1180^{300} , 1200^{0} С на воздухе.

Таблица 5 Критические температурные области $\Delta t_{
m KP}^{
m O}$ С нержавеющих сталей (по данным Химушина $\Phi_{
m o}\Phi_{
m o}$)

Марка, класс стали	Δt κρ		Условия прояв- ления 4 +
CTEIM	стойкости коррозионной снижение	снижение пластичности	ления л t кр.
I	2	3	4
Ферритные			
12X17 15X28; 08X17T	> 950 Несклонны	>950 >850	Длительный нагрев (часы)
Аустенитные			
08X18HIO; 0X18HII; X18H9; 12X18H9; 2X13HAT9; X14F14H; X17T9AH4; X17AF14	450–7 50	Несклонны	_"-
OOXI8HIO; OOXI7T9AHA;			
OXI7H5T9EA	450-750	-"-	>5-30 мин.
XI8H9; 3XI8H9	-"-	¹¹	Нагрев 5 мин. При сверке плавлением
XISH9T; XISHIOT;	500-800	_"-	Ti/C < 5.5
OXI8HIOT; OXI8HI2T; OXI8HI2E	- " -		C/Ti < 7
0XI7H5T9B	500–750	_"-	Только при очень длительном нагре- ве (часы)
ХІ4ГНЗГ	Несклонны	_"_	
XI7HI3M9T	500-700	-"	С/Т1>0,7 и замед- ленное охлаждение при сверке
Аустенитные (стабили- вированные)			
OXISHIOT: XISHIZT: OXISHIZT: IXISHIZT:			Therema are south and the
OXISHI25: XI4FI4H3F	≻ I000	_"-	Длительный нагрев
OX23H28M2T	650	_"_	на воздухе
OX23H28M3II3T	500-700	_"_	Если Tl /C > 7.
TOROMORICANO	500-700	gara ^{(*} 1889)	нагрев медленнее, чем при сверке плавлением

Продолжение табл.5

I	2	3	4
Аустенитно-ферритная			
OX21H5T; IX21H5T	475	475	При замедленных режимах дуговой сверки
0X20HI4C2 X20HI4C2	_"_ _"_	_"- -"-	-
IXI8H9T X23HI8	I 000 Несклонны	700-800	
X25H25TP X25H20C2	_"_ _"_	-"-	
Х25Н1677АР	600-850	Несклонны	
Мартенситная			
класса 23ХІЗНІЗМФА	Несклонны	-"-	-
OXI3; IXI3	450-550	450-550	При низкотемпера- турном отпуске
2XI3; 3XI3; 4XI3 XI8: IXI7H2	Несклонны	Несклонны	-
I3XI2HBMФA	-"-	-"-	_
IOXIZHBMQA	-"-	_"_	-
I3XI4HBФPA	-"-	-"-	-
С карбидным упрочнени	rem		
4XI4HI4B2M	_"-	-"-	-
4 XI 5H7I7	_"_	_"-	
4XI2HBT8MTB	_"-	-"-	-
XI2H2OT3P	_11	-"-	-
XI2H22T3MP	-"-	_"-	•••
С интерметаллидным упрочнением			
XH35BT0	-"-	-"-	-
XH35BNTP XH35BT; XH35BØ	-"-	_"-	_
Нержавеющая сталь переходного класса			
XI5H90 (CH2) XI7H5M3 (CH3)	-"-	_"_ _"_	-
XI7H7I0	~" <i>-</i> -	-"-	_
Мартенситоферритная			
I4XI7H2	_"_	¹⁹	

Фактическая и прогновируемая конструкционных материалов $M_{\mathbf{x}}$

Основа паяемого сплава или марка М _К	Ga	Ві-пр	\$n-np	Sn-Pb	Sn-In	Pb .np	OP W	
	(C _{6,4})	(C _{6,3})		(C ₆)	(C ₆)	c ₆	C	H ₇
М-сплевы	(C _{5,3})	(C _{5,3})	(H _{5,3})	H _{5,3}	н _{5,3}	H _{5,3}	c ₁₀	c ₅
AJI ₁	C _{6,4}	c _e	H _{8,6}	C _{8,6}	c ₈	c ₈	(C _{1,2,4}) C
AM _{LL}	C _{6,4}	c ⁸	c _{8,6}	C _{8,6}	c ⁸	c ₈	(C _{1,2,4}	
AMI'2	(C _{6,4})	(c ₈)	ce	C _E	c _e	c_8	(C _{1,2,4}) C
AM I'G	$(C_{4,6})$	(c ^e)	(c ⁸)	(c ₈)	(c ₈)	(c ₈)	(C _{2,4})	С
AB	$(C_{4.6})$	(c ⁶)	(C _{8.5})	(C _{8.6})	(C _S)	(c ₈)	(C _{2,4})	C
Д20 A	(C ₄ ,6)	(c ₈) (c ₃)	((6.5)	(C _S 5)) (C _S) (C _S , 3)	(C8)	(C ₂ _A)	{c;
A	(C ₅)	(C _{5 3})	(C _{5,3}) C _{5,3}	(C ₃₅) C ₅ ,3	(C ₅ , q)	(C ₅)	(C ₅)	(C
M 1	^C 5	(c ₆)	c_5	c ₅ '	c _{5,3}	c ₂ ,	s c ₅	C5
Летунь Л63	(C ₅)	(C ₅)	c ₅	C	(C)	c_2	C _{= 3}	(C _s
Брон ва БТ1	(C ₅) (C ₅)	(C ₅) (C ₅)	C ₅	C (C ₅)	(C) (C ₅)	c ₂ (c ₅)	٧ ٦ .٩	(C;
OT4	(C ₅)	(C _E)	С ₅	(C ₅)	(c ₅)	(C ₅)	(C ₅)	(C,
BT14	(C ₅)	(C ₅)	c ₅	(C ₅)	(C ₅)	(C ₅)) (C _{5.3})	(C
08КП Ст.10	(C) (C) ((C ₅)	C ₅	(C ₅₆)	(C ₅₎	(C ₁	(کی) (م	(H
Cr.45		$C_{1,2,6}$ $C_{1,2,6}$	$(C_{2,6})$	(C ₅ ,6) (C _{5,6})	(c ₅) (c ₅)	(0)	(a) (C ₂)	() (H
1X18H10T		$C_{1,2,6}^{1,2,6}$	(C _{2,6})	(C= A)	(C ₅)	(C ₁	(C_2)	(H
X13	(0) ((1.2 g)	(VS A)	C ₅ ,6 (C ₅)	(C ₅)	(C ₁	.6 ^{) C} 1.2	Н
жсекп	(c ₅)	C ₅ ,3	(c ₅ i	(C ₅)	(C ₅)	(C ₁)	(c_5)	(C

Примечание: С- совместимы; С - условно совместимы с учетом: 1- адл 3 - общая химическая эровия; 4- межверенная химическа те с жидким припоем; 7 - температура плавления и пак требует проверки; 9 - пониженная корровионная стойкос

Таблица

я (в скобках) физико-химическая совместимость М_ж с основой готовых припоев при капиллярной пайже

<u>o_n</u>		PE 37-2	,				A				M	-40.	7/10	Fe -M1-4
! -RP	Мд-пр	د	18-51		P HU-NL		24 - P		145	2 64-1	Vi-Ma	Nin	np T	
H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	Н7	Н7	H_{7}	H ₇
c ₅	C	H _{7,5}	H ₇	H ₇	H ₇	H ₇	H_{7}	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H7
С	^H 5	c ₉	Ç	H ₇	H ₇	H_{7}	H_{7}	H_{7}	H_{7}	H ₇	H_7	H ₇	H_7	H ₇
C	H ₅	C ₉	C	H ₇	H_{2}	H_{7}	H_{7}	H ₇	H_{7}	H ₇	H ₇	H ₇	H ₇	H_{7}
C	H ₅	Cg	C	H7	H7	H_{7}	H ₇	H_{7}	H_{7}	H_{7}	H ₇	H ₇	H_{7}	H7
C	Н ₅	C ₉	H_{7}	H ₇	H ₇	H_{7}	H_{7}	H ₇	H_7	H ₇	H ₇	H7	H_{7}	H ₇
C	H ₅	(H ₇)	H ₇	H_7	H_{7}	H_{7}	H_{7}	H_7	H_{7}	Н7	H_{7}	H_7	H7	H ₇
(C)	H ₅)	(C4)	H7 H ₅	Н ₇ Н ₅	H ₃	H7 H7	H7 H7	H7 H7	H7 H7	H7 H7	趴	H.7 H.7	H7 H7	뿞
(C ₃₅) (C ₅)	(H ₅)	Н ₅ (С ₅)	(c ₅)		Ċ	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H ₇	H_{γ}
2=	H ₅₃	$^{\mathrm{H}_{5}}$	H_{5}	С	C	H ₇	C	C		(C ₃)	H ₇	H.7	H ₇	H_{γ}
$\{C_{\mathbf{S}}\}$	H ₅	H ₅	Н ₅	C C	(C) (C)	H ₇	C C	H ₇ H ₇	Н ₇ Н ₇	H_7	H_{γ}	H_{γ} H_{γ}	Н ₇ Н ₇	$^{ m H_7}$
(c ₃) (c ₃)	H ₅ (C)	Н _Б С	Н _Э	C	C ₅	(C ₅)	C ₅	(c ₅)	(C ₅)		H ₇	(C ₅)	c	(Ĥ ₇)
(C_3)	(C)	С	С	C ₅	(C ₅)	c ₅	(C ₅)	(C ₅)	(C ₅)	-	H ₇	(C ₅)	C	Hy
(c ₅)	(C)	(C)	(C)	(C ₅)	(C ₅₃)	С ₅ С	(C ₅)	(C ₅)	(C ₅) (C ₆)	ċ	(C)	(C)	C H _{7,5} H ₇ ,5	H ₇
(H ₅)	(C ₂)	С _Б	c _ნ c _ნ	CS.	(C)	С	H ₅	C4,	6°(c ₆	, C	(C)	(C)	,,,,	
(H ₅)	(C ₂)	С ₅ С ₅	c ₅	$C_{4,2}$		C	H ₅	C4,	Ğ (CĞ) C	(C)	(C)	^H 7.5	Ü
(H ₅)	(C ₂)	c ₅	c _s	C _{9.6}	3(C)	(C)	H 5	C4,3	c_{6}	С	C3,9	С	ⁿ 5	(0)
H ₅	H ₅	c ₅	C ₂	C ₈ .	(C) (C)	c _(C)	H ₅	C4.5	CA	C	C3,9	C	Н ₅	(C)
(C ₅)	H ₅	-	^{(C} 1,	$z^{j}(c)$	C) (C)	(0)	(0)	(0)	(č ₆) (C)	(C)	(C)	H ₅	(C)

эдгевионная смечиваемость; 2 - плохое смечизание, ватекание в вавор; кая эровия; 5- прослойки химических соединений; 6 - охрупчивание в контакяки выше солидуса M_k; 8 - щелевая коррозия п.с. () - предположительно, ость, охрупчивание при хранении в результате упорядочения твердого раствора. Пример проектирования температурных интервалов нагрева и основ припоев, совместимых с M_{κ}

Пример решения задачи на этапах \mathcal{Z}_{T} $-\mathcal{Z}_{\mathrm{3}}$.

Представлен алгоритм (рис.3), по которому просматривается два массива данных: температурные интервалы допустимого нагрева основ паяемого материала $M_{\rm K}$ с заданными верхним и нижним пределами нагрева и данные по физико-химической совместимости выбранных основ припоев с основой паяемого материала.

Исходные данные:

- ТМ(8) температура плавления материала (табл. І);
- ТР(I2) верхняя температурная граница плавления припоев (табл.2);
 - (8, 12) матрица соответствий СНАР.

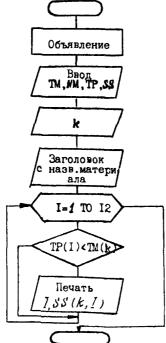


Рис. 3 Алгоритм проектигования на этапах Z, - Z 3

Таблица I Допустимый верхний предел нагрева $\mathbf{M}_{\mathbf{X}}$

	TM	TM
I.	660	5. 540
2.	659	6. 580
3•.	100	7. 550
4.	6 20	8. 1025

	TP		TP		TP	
I.	29	6.	350	II.	680	
2.	140	7.	500	I2.	850	
3.	181	8.	620			
4.	270	9.	380			
5.	380	10.	625			

Основа палемого материала (по вертикали) - к табл. 3 п.2

- I ấn
- 2 Ma
- 3 Al
- 4 AQ
- 5 Au
- 6 Бронаа
- 7 Cu
- 8 Латунь
- 9 Ti
- IO Fe с (сталь)
- II Fe c Сt (легированная сталь)
- 12 Fe c Ct Ni (хромоникелевая сталь)

Основы припоя

13.	Ag-Ma Au
I4 •	AU
I5 •	Cu
16.	C4-P
17.	Cu-In-Si
	Cu- ₹n
19.	Cu - Ni - Ma
20.	MR - Ni
21.	Ni
22.	Ti
23.	FE-MIZ
24.	Cu-Sn
	15. 16. 17. 18. 19. 20. 21. 22.

Таблица З

	I	2	3	4	5	6	7	8	9	10	II	12
I	C _{4,6}	c _{3,6}	c ₆	c ₆	c ₆	c ₆	C	Н7	Н7	Н7	Ну	Н7
2	c _{3,5}	C3,5	$H_{3,5}$	H _{3,5}	$H_{3,5}$	B _{3,5}	c_{10}	c_5	c ₅	H _{5,7}	H _{5,7}	H_7
3	C4,6	c ₈	c _{6,8}	c _{6,8}	c_8	c ₈	C _{1,2}	c_3	c^3	C4,9	C	H ₇
4	c_5	c ₈	c _{3,5}	c _{3,5}	c _{3,5}	C 3,5	c _{3,5}	c _{3,5}	C3,5	H ₅	Н5	C
5	c_5	$c_{3,5}$	c _{3,5}	$c_{3,5}$	$c_{3,5}$	C3,5	c ₅	c_5	c_5	c ₅	c ₅	C
6	C _{3,5}	c ₆	C3,5,6	$c_{5,6}$	C3,5,6	C2,6	C _{2,3,5}	C2.6	$c_{2,6}$	^H 5	Н5	c _{3,6}
7	c _{3,5}	c_6	°3,5,6	°5,6	c _{3,5,6}	C _{2,6}	C _{2,3,5,6}	C2,6	c2.6	H 5	H ₅	°3,6
8	c _{3,5}	c_6	$c_{3,5,6}$	c _{5,6}	$c_{3,5,6}$	c _{2,6}	C _{2,3,5}	C _{2,6}	C _{2,6}	H 5	H ₅	°3,6

В табл. 3 приняты следующие сокращения: С — совместимы; H — несовместимы; CN — условно совместимы, где N :

- І. Адгезионная смачиваемость.
- 2. Плохое растекание и затекание в зазор.
- З. Общая химическая эрозия.
- 4. Межзеренная жимическая эрозия.
- 5. Прослойки жимических соединений.

- 6. Охрупчивание в контакте с жидким припоем.
- 7. Температура плавления или пайки выше солидуса основного материала.
 - 8. Щелевая корровия.
 - 9. Пониженная коррозионная стойкость паяного соединения.
- Охрупчивение пве при хранении вследотвие упрочнения твердого раствора.

УСЛОВНЫЕ СОКРАШЕНИЯ

- конструкция изделия; - конструкционные факторы паяного изделия; - геберитные размеры изделия; - маситабный фактор изделия: - конструкционные факторы паяного соединения; - паяное соединение; 3N - завор паллыный: **⊈**3 - фиксированный завор: $\mathbf{H}_{\mathbf{x}}$ - нажлестка: M_K - шероховатость паяемого металла: конструкционный (паяемый) материал; M, - технологический материал; м всп - вспомогательный материал; - npunon; Moo — фл**ю**с: - активная газовая среда; Mr - инертная газовая среда; MB - векуум: - технология, оснащенная техникой; TIII - технологический процесс пайки; IΜ - грефическая модель; TIIIP - типовое технологическое проектное решение; ITII - групповая технология пайки; CHI - способы пайки по формированию паяного шва; CII2 - способы пайки по удалению окисной пленки: спз - способы пайки по источнику нагрева; CII4 - способы пайки по давлению на соединяемые детали; TPII - температурный режим пайки; PI - режим давления при пайке: tn - температура пайки; - выдержка при температуре пайки; \mathcal{T} n - время нагрева до температуры пайки; T H $\mathcal{C}_{\mathsf{DXJ}}$ - время охлаждения после температуры пайки; - температурный интервал кристаллизации; At KD - эксплуатационные жарактеристики изделия;

Э_н ДО - экономика производства; - управление в производстве; 000 - охрана окружающей среды: TLII - термический цикл пайки;

Mun - масштабный фактор;

- масса изделий;

Mgoл Mgoл Mgoл At мк - солидус конструкционного материала: - интервал критических температур для M_{κ} ;

OCH - оснастка:

Мосн - материал оснастки: Авт - автоматизация; Mex - межанизация: Pod - роботизация.

информационные данные

РАЗРАБОТАНЫ Государственным комитетом по народному образованию СССР

ИСПОЛНИТЕЛИ: д.т.н.С.В.Лашко (руководитель теми); к.т.н.О.И.Куманин; И.Г.Нагапетян; Т.В.Воронина; к.т.н.П.А.

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Приказом ВНИИНМАШ # 73 от 22 марта 1988 г.

ССЫЛОЧНЫЕ ЛОКУМЕНТЫ

Обозначение документа, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения
TOCT 17349-79	2.9. 3.2
roct 19250-73	3.2
roct 19248-73	3.2
TOCT 19249-73	3,2
ГОСТ 23204-78	5.7
TOCT 20485-75	5.7
TOCT 21549-76	5• ⁷
TOCT 21548-76	5.7
FOCT 21547-76	5.7
TOCT 23047-78	5.7
IOCT 25200-82	5•7
TOCT 23046-78	5.7

Литература

- І. Проектирование технологии пайки металлических изделий: Справочник/Сост.С.В.Лашко, Н.Ф.Лашко, Нагепетян И.Г. и др. — М.: Металлургия, 1983. — С.279.
- 2. Лашко Н.Ф., Лашко С.В. Пайка металлов. М.: Машиноотроение, 1977. - С.326.
- 3. Лашко С.В. Разработка графической модели для автоматизированного проектирования технологии пайки изделий. Справочное производство, 1984, № 3. С.II-I3.
- 4. Лашко С.В., Лашко Н.Ф., Пайка металлов М.: Машиностроение, 1988. — С.380.
- 5. Налимов В.В., Чернов Н.А. Статистические методи планирования экстремальных экспериментов. — М.: Наука, 1965. — C.184.
- 6. Аулер 0.1., Маркове E.B., Грановский 0.B. Планирование эксперимента при поиске оптимальных условий. — M.: Наука, 1976. — C.278.
- 7. Новик Ф.С. Планирование экспериментов в металловедении. М.; Машиностроение. 1974. С.262.

Содержение

	Стр
I. Общие положения	3
2. Рекомендации по разработке типовых проектных решений технологии пайки	5
3. Графическая модель проектирования технологии пайки	7
4. Описание входной информации X_{N} и теблиц $oldsymbol{T}_{m}$	12
Приложения	18
Уоловные сокращения	27
Информационные данные	29
Литература	3 0

САПР. Автоматизация проектирования технологии пайки изпелий

Рекоменлации

P 50-54-48-88

Редактор Волкова А.И. Мл. редактор Еремеева Т.В.

ВНИИНМАШ Госстандарта СССР

Ротепринт НЛИНМАШ 123007 Москве Д-7, Шеногина, 4 Тираж 300 экз. Объем I,6 уч.-изд.л. Закез № 3513-88-1 Цена 50 к.