ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

РЕКОМЕНДАЦИИ
ПО МЕТРОЛОГИИ
РОССИЙСКОЙ
ФЕДЕРАЦИИ

P 50.2.044— 2005

Государственная система обеспечения единства измерений

ХАРАКТЕРИСТИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ СОЛНЕЧНЫХ ИМИТАТОРОВ

Методика выполнения измерений

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о рекомендациях

- 1 РАЗРАБОТАНЫ Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП ВНИИОФИ) Федерального агентства по техническому регулированию и метрологии, Техническим комитетом по стандартизации ТК 386 «Основные нормы и правила по обеспечению единства измерений в области ультрафиолетовой спектрорадиометрии»
- 2 ВНЕСЕНЫ Управлением метрологии Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 октября 2005 г. № 237-ст

4 ВВЕДЕНЫ ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящих рекомендаций, изменениях и поправках к ним, а также тексты изменений и поправок публикуются в информационном указателе «Национальные стандарты»

РЕКОМЕНДАЦИИ ПО МЕТРОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ХАРАКТЕРИСТИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ СОЛНЕЧНЫХ ИМИТАТОРОВ

Методика выполнения измерений

State system for ensuring the uniformity of measurements. Characteristics of optical radiation of solar simulators.

Methods for measurements

Дата введения — 2006—03—01

1 Область применения

Настоящие рекомендации распространяются на методы определения энергетических характеристик (энергетической освещенности, энергетической экспозиции) оптического излучения солнечных имитаторов непрерывного и импульсного излучения (далее — солнечные имитаторы), основанные на использовании радиометров (спектрорадиометров, дозиметров) в диапазоне длин волн от 0,2 до 3,0 мкм.

В состав солнечных имитаторов входят мощные ксеноновые, галогенные и другие лампы, корригирующие светофильтры, а также радиометры. Солнечные имитаторы создают поток импульсного или непрерывного оптического излучения, спектральные характеристики которого близки к спектральным характеристикам солнечного излучения в соответствии с требованиями ГОСТ 20.57.406.

Измерения энергетических характеристик — энергетической освещенности, энергетической экспозиции — оптического излучения солнечных имитаторов проводят в диапазоне длин волн 0,2—3,0 мкм с использованием рабочих средств измерений в соответствии с требованиями ГОСТ 8.195, ГОСТ 8.197 и ГОСТ 8.552.

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие нормативные документы:

ГОСТ 8.195—89 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости, спектральной плотности силы излучения и спектральной плотности энергетической освещенности в диапазоне длин волн $0.25 \div 25,00$ мкм; силы излучения и энергетической освещенности в диапазоне длин волн $0.2 \div 25.0$ мкм

ГОСТ 8.197—2005 Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений спектральной плотности энергетической яркости оптического излучения в диапазоне длин волн $0.04 \div 0.25$ мкм

ГОСТ 8.207—76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.552—2001 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений потока излучения и энергетической освещенности в диапазоне длин волн от 0,03 до 0,40 мкм

ГОСТ 20.57.406—81 Комплексная система контроля качества. Изделия электронной техники, квантовой электроники и электротехнические. Методы испытаний

ГОСТ 427—75 Линейки измерительные металлические. Технические условия

ГОСТ 9411—91 Стекло оптическое цветное. Технические условия

СанПиН 4557—88 Санитарные нормы ультрафиолетового излучения в производственных помещениях

П р и м е ч а н и е — При пользовании настоящими рекомендациями целесообразно проверить действие ссылочных нормативных документов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящими рекомендациями следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Требования к погрешности измерений

Границы относительной погрешности результатов измерений энергетической освещенности (далее — ЭО) и энергетической экспозиции (далее — ЭЭ) непрерывного и импульсного оптического излучения солнечных имитаторов по данной методике выполнения измерений не должны превышать в диапазонах длин волн:

от 0,20 до 0,28 мкм	св. 0,52 — 0,64 мкм	ό,
св. 0,28 до 0,32 мкм	св. 0,64 — 0,78 мкм	ό,
св. 0,32 до 0,40 мкм 25 %,	св. 0,78 — 3,00 мкм 20 %	ό,
св. 0.40 до 0.52 мкм 10 %.	св. 0.20 — 3.00 мкм	, 0-

4 Средства измерений и вспомогательные устройства

При выполнении измерений применяют следующие средства измерений и вспомогательные устройства:

- а) многоканальный радиометр «Аргус», включающий в себя радиометры «Аргус-03», УФ-А «Аргус-04», УФ-В «Аргус-05», УФ-С «Аргус-06» или другой радиометр (спектрорадиометр, дозиметр), со следующими характеристиками:

 - в) нейтральный ослабитель:

 - г) измерительную линейку по ГОСТ 427:

Применяемые средства измерений должны быть поверены органом Государственной метрологической службы.

5 Метод измерений

Метод измерений ЭО и ЭЭ оптического излучения солнечных имитаторов, основанный на прямых измерениях с использованием радиометра (спектрорадиометра, дозиметра), заключается в преобразовании потока оптического излучения в электрический сигнал радиометра (спектрорадиометра, дозиметра) при условии спектральной и угловой коррекции чувствительности фотопреобразователя радиометра (спектрорадиометра, дозиметра).

6 Требования безопасности

Измерения ЭО и ЭЭ оптического излучения солнечных имитаторов могут проводить операторы, прошедшие инструктаж по безопасности труда при работе с источниками УФ-излучения в соответствии с СанПиН 4557.

7 Требования к квалификации операторов

К выполнению измерений допускают лиц, изучивших инструкции по эксплуатации основных и вспомогательных средств измерений, настоящие рекомендации, а также прошедших инструктаж по безопасности труда при эксплуатации источников оптического излучения.

8 Условия измерений

При выполнении измерений соблюдают следующие условия:

9 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы:

- 9.1 Включают и подготавливают к работе радиометр (спетрорадиометр, дозиметр) и солнечный имитатор в соответствии с их инструкциями по эксплуатации.
- 9.2 Проверяют состояние оптики радиометра (спектрорадиометра, дозиметра). На поверхности оптических деталей не допускаются царапины, помутнения и пятна.

10 Порядок проведения измерений

- 10.1 Для измерения ЭО оптического излучения солнечного имитатора выполняют следующие операции:
- 10.1.1 Устанавливают измерительный блок радиометра или спектрорадиометра, или дозиметра (далее измерительный прибор) в рабочую точку облучаемой поверхности и ориентируют его параллельно облучаемой поверхности.
- 10.1.2 Определяют угловые размеры излучающей области облучателя солнечного имитатора в градусах горизонтальный угол φ и вертикальный угол ψ по формулам:

$$\varphi = \arctan(L/R); \tag{1}$$

$$\psi = \arctan(H/R), \tag{2}$$

где L — длина излучающей области, мм;

H — ширина излучающей области, мм;

R — расстояние от измерительного блока измерительного прибора до центра излучающей области, мм.

- 10.1.3 Включают и прогревают в течение 10 мин солнечный имитатор.
- 10.1.4 Юстируют измерительный блок измерительного прибора по углу в горизонтальной и вертикальной плоскостях для достижения максимального отсчета.
- 10.1.5 Регистрируют показания каналов измерительного прибора, соответствующие интегральной ЭО $E_{i(A)}$, $E_{i(B)}$, $E_{i(C)}$ и E_p в ваттах на квадратный метр (Вт/м²) в диапазонах соответственно УФ-А, УФ-В, УФ-С и 0,4—3,0 мкм. Если регистрируемые сигналы превышают верхнее значение диапазона измерений ЭО измерительного прибора, необходимо установить на измерительный блок измерительного прибора нейтральный ослабитель.
- 10.1.6 Для оценки погрешности измерений ЭО в диапазонах УФ-А, УФ-В и УФ-С, обусловленной влиянием потока инфракрасного излучения, устанавливают на измерительный блок измерительного

прибора светофильтр типа ЖС-16. Показания измерительного прибора не должны превышать 5 % значений ЭО, полученных по 10.1.5.

- 10.1.7 Устанавливают поочередно на измерительный блок измерительного прибора светофильто типа БС-8 для диапазона УФ-А, светофильтр ЖС-11 для диапазона УФ-В, светофильтр ЖС-12 для диапазона УФ-С и регистрируют сигналы $j_{\mathrm{A}},\ j_{\mathrm{B}},\ j_{\mathrm{C}}$ каналов измерительного прибора, соответствующие ЭО $E_{j(A)},\ E_{j(B)},\ E_{j(C)},\$ Вт/м 2 , в диапазонах соответственно УФ-А, УФ-В и УФ-С.
- 10.1.8 По результатам измерений угловых размеров излучателя солнечного имитатора выбирают относительный коэффициент угловой коррекции $K(\varphi, \psi)$, приведенный в паспорте измерительного при-
- считывают по формулам:

$$E_{\mathbf{A}} = (E_{i(\mathbf{A})} - E_{i(\mathbf{A})}) \quad K(\varphi, \ \psi) / K \tau_{\mathbf{A}}, \tag{3}$$

$$E_{\rm B} = (E_{i(\rm B)} - E_{i(\rm B)}) \quad K(\varphi, \ \psi) / K \tau_{\rm B}, \tag{4}$$

$$E_{\rm C} = (E_{i(\rm C)} - E_{i(\rm C)}) \ K(\varphi, \psi) / K \tau_{\rm C}, \tag{5}$$

где K_{T_A} , K_{T_B} и K_{T_C} — интегральные коэффициенты пропускания нейтрального ослабителя в диапазонах соответственно УФ-А, УФ-В и УФ-С, указанные в паспорте на нейтральный

- 10.1.10 Для оценки среднеквадратичного отклонения (СКО) результатов измерений повторяют операции 10.1.4—10.1.9 пять раз.
- 10.2 ЭЭ оптического излучения солнечного имитатора Q_{C} в джоулях на квадратный метр (Дж/м 2) определяют интегрированием спектральной плотности энергетической освещенности $E\left(t\right)$ по времени tв пределах длительности экспонирования T по формуле

$$Q_C = \int_0^T E(t) dt.$$
(6)

10.3 Импульсные солнечные имитаторы характеризуются средней ЭО, которую определяют на основании измерений по 10.1.5—10.1.9. Среднюю ЭО импульсного периодического излучения $E_{\rm cp}$, Вт/м², за период T определяют интегрированием E(t) по формуле

$$E_{\rm cp} = T^{-1} \int_{0}^{T} E(t) dt. \tag{7}$$

11 Контроль погрешности результатов измерений

Контроль погрешности результатов измерений проводят по ГОСТ 8.207 в следующем порядке:

11.1 Оценивают в соответствии с 10.1.10 СКО результатов измерений ЭО и ЭЭ — S_{ct} %, по формуле

$$S_{o} = \frac{\left[\sum_{i=1}^{n} (\overline{E} - E_{i})^{2}\right]^{\frac{1}{2}}}{\overline{E}[n(n-1)]^{\frac{1}{2}}},$$
(8)

где E_i — результат независимого измерения; \overline{E} — среднеарифметическое значение результатов пяти измерений (n = 5).

11.2 Границы относительной неисключенной систематической погрешности результатов измерений Θ_{o} , %, определяют при доверительной вероятности P = 0,95 по формуле

$$\Theta_{0} = 1.1(\Theta_{1}^{2} + \Theta_{2}^{2} + \Theta_{3}^{2} + \Theta_{4}^{2})^{\frac{1}{2}}, \tag{9}$$

где Θ_1 — относительная погрешность рабочего средства измерений (из свидетельства о поверке); значение Θ_1 не должно превышать 8 %;

- Θ_2 относительная погрешность определения ЭО УФ-излучения в диапазоне соответственно УФ-А, УФ-В и УФ-С; значение Θ_2 не должно превышать 3 %;
- Θ_3 погрешность определения коэффициента угловой коррекции; значение Θ_3 не должно превышать 2 %:
- Θ_4 погрешность определения пропускания нейтрального ослабителя; значение $\ \Theta_4$ не должно превышать 2 %.
- 11.3 Границы основной относительной погрешности $\,\Delta_{_{0}}\,$ результатов измерений рассчитывают по формуле

$$\Delta_{o} = K(\Theta_{o}^{2}/3 + S_{o}^{2})^{\frac{1}{2}}, \tag{10}$$

где K — коэффициент, определяемый соотношением случайной и неисключенной систематической погрешностей.

Границы основной относительной погрешности результатов измерений ЭО оптического излучения солнечных имитаторов не должны превышать значений, указанных в разделе 3.

12 Оформление результатов измерений

- 12.1 Форма представления результатов измерений в соответствии с формой, принятой на предприятии, проводившем измерения.
 - 12.2 Форма представления результатов измерений должна содержать:
 - дату проведения измерений;
 - тип и номер средства измерений измерительного прибора;
 - цель проведения измерений;
 - геометрические размеры излучателя солнечного имитатора:
 - расстояние от центра излучателя солнечного имитатора до измерительного прибора;
 - угловые размеры излучателя солнечного имитатора;
 - значения ЭО и ЭЭ;
 - границы относительной неисключенной систематической погрешности результатов измерений;
 - границы относительной погрешности результатов измерений;
 - фамилию и подпись оператора.

УДК 543.52:535.214.535.241:535.8:006.354

OKC 17.020

T84.10

ОКСТУ 0008

Ключевые слова: солнечный имитатор, энергетическая освещенность, средство измерений, радиометр, спектрорадиометр, дозиметр

Рекомендации по метрологии Российской Федерации

Государственная система обеспечения единства измерений

ХАРАКТЕРИСТИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ СОЛНЕЧНЫХ ИМИТАТОРОВ

Методика выполнения измерений

P 50.2.044-2005

БЗ 2-2005/16

Редактор Л.В. Афанасенко Технический редактор В.Н. Прусакова Корректор Е.М. Капустина Компьютерная верстка В.И. Грищенко

Сдано в набор 17.11.2005. Подписано в печать 01.12.2005. Формат 60x84¹/₈. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,60. Тираж 182 экз. Зак. 884. Изд. № 3411/4. С 2169.

Гарнитура Ариал.