ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

БЕЗОПАСНОСТЬ РАДИАЦИОННАЯ ЭКИПАЖА КОСМИЧЕСКОГО АППАРАТА В КОСМИЧЕСКОМ ПОЛЕТЕ

МЕТОДИКИ РАСЧЕТА МИКРОДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК КОСМИЧЕСКИХ ИЗЛУЧЕНИЙ

РД 50-25645.217-90

Москва ИЗДАТЕЛЬСТВО СТАНДАРТОВ 1990 РУКОВОДЯЩИЙ НОРМАТИВНЫЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Безопасность радиационная экипажа космического РД аппарата в космическом полете

гд 50—25645.217—90

МЕТОДИКИ РАСЧЕТА МИКРОДОЗИМЕТРИЧЕСКИХ Характеристик космических излучений

ОКСТУ 6968

Дата введения 01.07.91

Настоящие методические указания устанавливают методики расчета спектров линейной энергии для тяжелых заряженных частиц (далее — ТЗЧ) с зарядом от 1 до 32 единиц абсолютной величины заряда электрона и энергией на нуклон от 0,1 до 10⁴ МэВ в тканеэквивалентном веществе при размерах шарового микрообъема от 0,1 до 20 мкм.

Методические указания предназначены для расчетов микродозиметрических характеристик полей ионизирующих излучений (далее — микродозиметрических характеристик), воздействующих на биологические объекты в космических полетах.

Пояснения терминов, применяемых в методических указаниях, приведены в приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Под линейной энергией y, кэВ/мкм, понимают относящуюся к событию поглощения стохастическую величину, равную частному от деления фактически поглощенной в микрообъеме энергии ε на среднюю длину его хорды \overline{l}

$$y = \varepsilon / \overline{l} . \tag{1}$$

Для шарового микрообъема диаметром $l_0: \bar{l}=2l_0/3.$

Различают частотный и дозовый спектры линейной энергии (далее — СЛЭ). Под частотным СЛЭ f(y), мкм/кэВ, понимают относительное число событий поглощения в микрообъеме, приходящихся на элементарный интервал значений линейной энергии в окрестности y. Под дозовым СЛЭ d(y), мкм/кэВ, понимают относительную долю поглощенной дозы, приходящейся на элементарный

(С) Издательство стандартов, 1990

интервал значений линейной энергии в окрестности *у*. Частотный и дозовый СЛЭ нормированы на единицу.

1.2. В качестве основных микродозиметрических характеристик выбирают частотный f(y) и дозовый d(y) СЛЭ, а также определяемые по ним частотное y_F и дозовое y_D средние значения линейной эпергии:

$$\overline{y}_F = \int_0^\infty y \cdot f(y) \cdot dy; \qquad (2)$$

$$\overline{y}_{D} = \int_{0}^{\infty} y \cdot d(y) \cdot dy.$$
(3)

Другие микродозиметрические характеристики вычисляют по $\dot{f}(y)$, d(y), y_F и y_D с помощью соотношений, приведенных в приложении 2.

1.3. Методики, представленные в разд. 2 и 3, основаны на предположениях, что при расчете СЛЭ пренебрегают:

— кривизной траекторий ТЗЧ вблизи и внутри микрообъема;

— дополнительными событиями поглощения в микрообъеме и изменением энергий заряженных частиц, обусловленными ядерными взаимодействиями и радиационными потерями вблизи и внутри микрообъема.

1.4. СЛЭ для ТЗЧ, рассчитываемые по методикам разд. 2 и 3, относятся к шаровому микрообъему, выделенному в однородном тканеэквивалентном веществе.

1.5. Методика расчета СЛЭ по методу Монте-Карло (разд. 2) установлена для случая, когда относительная погрешность вычисления \overline{y}_D или \overline{y}_F , обусловленная пренебрежением разбросом энергетических потерь заряженных частиц вблизи и внутри микрообъема и переносом энергии дельта-электронами, превышает 5 и 10 % соответственно. В случае непревышения этих пределов используют аналитическую методику, установленную в разд. 3.

2. МЕТОДИКА РАСЧЕТА СЛЭ МЕТОДОМ МОНТЕ-КАРЛО

2.1. Настоящая методика основана на моделировании методом Монте-Карло прохождения ТЗЧ, а также возникающих под их действием дельта-электронов вблизи и внутри микрообъема и вычислении поглощенных энергий в нем, соответствующих прохождениям отдельных ТЗЧ. Считают, что центр микрообъема помещен в начало декартовой системы координат $\{0x_1, 0x_2, 0x_3\}$, а ТЗЧ движутся в направлении оси $0x_3$. Изменением энергии ТЗЧ в слое вещества толщиной, достаточной для установления электронного равновесия, пренебрегают.

2.2. В качестве исходных данных для расчета частотного f(y) и дозового d(y) СЛЭ выбирают:

-- энергию E, МэB, атомный номер Z и массовое число A T3Ч;

— диаметр l₀, мкм, шарового микрообъема;

— значения линейной энергии y_j , кэВ/мкм, определяющие интервалы $\Delta y_0 = 0$, $\Delta y_j = y_j - y_{j-1}$ (j = 1, 2, ..., J) для усреднения значений СЛЭ. Полагают $y_0 = 0$.

Примечание. Следует применять логарифмическую сетку, удовлетворяющую требованию, чтобы дополнительная погрешность вычисления дозового среднего значения линейной энергии по формуле

$$\overline{y}_{D} = \sum_{j=1}^{J} \frac{y_{j} + y_{j-1}}{2} d\left(\frac{y_{j} + y_{j-1}}{2}\right) (y_{j} - y_{j-1}), \qquad (4)$$

связанная с выбором значений линейной энергии у.;, не превышала 2 %.

2.3. Вычисляют параметры, используемые в дальнейших расчетах при выбранных значениях E, Z, A, l_0 :

— максимальную энергию T_{max}, кэВ, дельта-электрона по формулам:

$$T_{\rm max} = 1022\beta^2 / (1 - \beta^2); \tag{5}$$

$$\beta^{2} = (2E_{A} + E_{A}^{2})/(1 + E_{A})^{2};$$
(6)

$$E_A = 1,066 \cdot 10^{-3} E/A; \tag{7}$$

— линейную передачу энергии L_{T₀}, кэВ/мкм, ТЗЧ в тканеэквивалентном веществе, относящуюся к немоделируемым столкновениям, по формуле

$$L_{T_0} = -\frac{dE}{dx} - \xi \left(\ln \frac{T_{\max}}{T_0 + I} - \beta^2 \right), \qquad (8)$$

где dE/dx — ионизационные потери ТЗЧ в тканеэквивалентном веществе, кэВ/мкм;

- T_0 минимальная энергия моделируемых дельта-электронов, определяемая из соотношения: $T_0 = \max\{0,1; 0,007l_0\}$, кэВ;
 - I средний эффективный потенциал ионизации вещества по РД 50—25645.206, кэВ;

$$\xi = 8,46 \cdot 10^{-3} \cdot Z_{9\phi\phi}^2 / \beta^2;$$
(9)

$$Z_{a\phi\phi} = Z(1 - e^{-125\beta / Z^2 / a}); \qquad (10)$$

— граничную энергию T_m, кэВ, дельта-электронов, до которой учитывается пространственная корреляция траекторий дельтаэлектронов с траекторией ТЗЧ, по формуле

$$T_{m} = \begin{cases} T_{\max}, \text{ при } R_{p}(T_{\max}) < 10l_{0}; \\ T(10l_{0}), \text{ при } R_{p}(T_{\max}) \ge 10l_{0}, \end{cases}$$
(11)

где $R_{\rho}(T_{\max})$ — практический пробег, мкм, электрона с энергией T_{\max} ;

T (10 l_0) — кинетическая энергия электрона, практический пробег которого равен 10 l_0 , кэВ;

— долю ионизационных потерь ТЗЧ, $\mu^{(e)}$, приходящуюся на дельта-электроны с энергией свыше *T*, по формуле

$$\mu^{(e)} = \xi \left[\ln \frac{T_{\max}}{T_m} - \beta^2 \left(-\frac{T_m}{T_{\max}} \right) \right] / \left| \frac{dE}{dx} \right|; \tag{12}$$

— радиус *a_m*, мкм, сечения области моделирования плоскостью, перпендикулярной траектории ТЗЧ, по формуле

$$a_m = R_p(T_m) \sqrt{1 - T_m/T_{\max}} + \ell_0/2, \qquad (13)$$

где R_p (T_m) — практический пробег электрона с энергией T_m.

Примечания:

1. Значення dE/dx вычисляют при $E/A \ge 2$ МэВ/нуклон по РД 50—25645.206, а при E/A < 2 МэВ/нуклон — по данным табл. 1 и формуле (124) приложения 3. Практические пробеги электронов определяют по данным табл. 2 приложения 4.

2. Область моделирования — микрообъем и прилегающие к нему слои вещества, в пределах которых производится моделирование прохождения ТЗЧ и возникающих дельта-электронов с учетом пространственной корреляции их траекторий.

2.4. Область моделирования определяют неравенствами

$$|x_1| \leqslant a_m; \tag{14}$$

$$|x_2| \leq a_m; \tag{15}$$

$$\sqrt{[R_{\rho}(T_m) + l_0/2]^2 - x_1^2} \ll x_3 \ll \sqrt{l_0^2 - x_1^2}.$$
 (16)

2.5. Алгоритм расчета СЛЭ для ТЗЧ, пересекающих область моделирования, состоит в следующем.

2.5.1. По очередному случайному числу у, равномерно распределенному в интервале (0,1) (далее — очередному у), вычисляют декартовы координаты {x_{1.0}, x_{2.0}, x_{3.0}} точки входа ТЗЧ в область моделирования для очередной *n*-й истории по формулам:

$$x_{1,0} = \gamma a_m; \tag{17}$$

$$x_{2,0} = 0;$$
 (18)

$$x_{3,0} = -\sqrt{[R_p^2(T_m) + l_0/2]^2 - x_{1,0}^2}.$$
(19)

2.5.2. Вычисляют параметры *п*-й истории:

— статистический вес координаты x_{1,0} по формуле

$$W_R = x_{1,0}$$
; (20)

— координату x_{3,вых}, соответствующую точке выхода ТЗЧ из области моделирования, по формуле

$$x_{3,\text{BMX}} = \sqrt{l_0^2 - x_{1,0}^2} ; \qquad (21)$$

— угол φ_0 между плоскостями, касательными к шару $x_1^2 + x_2^2 + x_3^2 = l^2/4$ и пересекающимися по линии, совпадающей с траекторией ТЗЧ, по формуле

$$\varphi_0 = \begin{cases} \pi, \text{ при } x_{1,0} \leq l/2; \\ \arcsin(l/2 \cdot x_{1,0}), \text{ при } x_{1,0} > l/2, \end{cases}$$
(22)

где l — свободный параметр ($l_0 < l < 10 l_0$), мкм, выбираемый из условия, чтобы вероятностью попадания в микрообъем дельта-

электронов с энергией менее T_m , вылетающих из точки возникновения с $x_{,0} > l$ в противоположном по отношению к нему направлении, можно было бы пренебречь.

2.5.3. Среднюю энергию $\bar{\epsilon}_{p}$, кэВ, переданную ТЗЧ микрообъему в результате немоделируемых взаимодействий внутри него, рассчитывают следующим образом

$$\overline{\epsilon_p} = \begin{cases} 0, \text{ npm } x_{1,0} > l_0/2, \\ 2L_{T_0} \sqrt{-l_0^2/4 - x_{1,0}^2}, \text{ npm } x_{1,0} \leqslant l_0/2. \end{cases}$$
(23)

Истинное значение энергии ε_p , кэВ, переданной в таких взаимодействиях, рассчитывают согласно п. 2.5.4 в зависимости от значения

$$\varkappa = 2\sigma_{T_0} \sqrt{l_0^2 (4 - x_{1,0}^2)}, \qquad (24)$$

где σ_{T_0} — макроскопическое сечение неупругих взаимодействий в ткапеэквивалентном веществе с потерей энергии менее T_0 для ТЗЧ, мкм⁻¹, определяемое по макроскопическому сечению соответствующих неупругих взаимодействий σ_{in} для электрона одинаковой с ТЗЧ скорости по формуле

$$\sigma_{T_0} = \sigma_{in} Z_{a\phi\phi}^2. \tag{25}$$

Значения σ_{in} рассчитывают по данным табл. 4 приложения 4. 2.5.4. При $\kappa = 0$ полагают $\varepsilon_{2} = 0$.

При 0<к≪20 полагают

$$\varepsilon_{p} = m L_{T_{0}} / \sigma_{T_{0}}, \qquad (26)$$

где *т*— целое число, удовлетворяющее, при очередном у, условиям:

При 20<к≤400 полагают

$$\varepsilon_p = \overline{\varepsilon}_p + \alpha L_{T_0} V \mathbf{x} / \sigma_{T_0},$$

где α — случайное число, распределенное по нормальному закону. При $\kappa > 400$ полагают $\varepsilon_{p} = \overline{\epsilon_{p}}$.

2.5.5. По очередному у рассчитывают координату $x_{3,i}$ точки *i*-го взаимодействия ТЗЧ с веществом, сопровождающегося испусканием дельта-электрона с энергией между T_{Λ} и T_m :

$$x_{3,i} = x_{3,i-1} - \ln \gamma / (\sigma_i \varphi_0 / \pi), \qquad (27)$$

где σ_i — макроскопическое сечение ионизации с потерей энергии между T_{Δ} + *I* и T_m + *I* для ТЗЧ, проходящей на расстоянии $x_{1,0}$ от центра микрообъема, мкм⁻¹.

Значения о; рассчитывают по формуле

$$\sigma_i = \xi \left(\frac{1}{T_{\Delta} + I} - \frac{1}{T_{m+I}} - \frac{\beta^2}{T_{\max}} \ln \left(\frac{T_m + I}{T_{\Delta} + I} \right),$$
(28)

где
$$T_{\Delta} = \begin{cases} T_0, & \text{при } x_{1,0} + x_{2,0} < t_0/4; \\ T_r, & \text{при } x_{1,0}^2 + x_{2,0}^2 > t_0^2/4, \end{cases}$$
 (29)

а Т. - энергия дельта-электрона, имеющего практический пробег

$$R_{p}(T_{r}) = \sqrt{x_{1,0}^{2} + x_{2,0}^{2} - \frac{l_{0}}{2}}$$
, Kais

2.5.6. При $x_{3,i} \ge x_{3,\text{тых}}$ полагают $\varepsilon_n = \varepsilon_i + \varepsilon_p$ и переходят к вычислениям п. 2.5.11.

При $x_{3,i} < x_{3,\max}$ по очередным γ' и γ'' рассчитывают энергию T_i , кэВ,

$$T_{I} = (T_{\Delta} + I) / \left[1 - \tilde{\gamma}' \cdot \left(1 - \frac{T_{\Delta} + I}{T_{m}} \right) \right], \qquad (30)$$

значения величин μ_1 и μ_2 , характеризующих направление вылета дельта-электрона из точки $\{x_{1,0}, x_{2,0}, x_{3,'}\}$ относительно направления движения ТЗЧ

$$\mu_1 = \sqrt{(T_i + I)/T_{\text{max}}};$$
(31)

$$\mu_2 = \cos(\gamma'' \phi_0) \tag{32}$$

и статистический вес W r,i энергии T i дельта-электрона

$$\mathcal{W}_{T,i} = 1 - \beta^2 \cdot T_i / T_{\text{max}}.$$
(33)

2.5.7. При $x_{1,0}^2 + x_{2,\bullet}^2$, $\ll l_0^2$ /4 к текущему значению ε_p прибавляют *I*.

При $x_{1,0}^2 + x_{3,i}^2 \ll l^2/4$ переходят к вычислениям п. 2.6.

2.5.8. Вычисляют значения *D* по формуле

$$D = t^2/4 - x_{1,0}^2 / 1 - \mu_2^2 - (x_{1,0} \ \mu_1 - x_{3,i}) / 1 - \mu_1^2)^2.$$
(34)

При *D* ≪0 повторяют вычисления с п. 2.5.5.

2.5.9. Расстояние S_0 от точки испускания•*i*-го дельта-электрона до ближайшей точки пересечения луча в направлении движения дельта-электрона с поверхностью $x_1^2 + x_2^2 + x_3^2 = \frac{l^2}{4}$ вычисляют по формуле

$$S_0 = x_{1,0} \sqrt{1 - \mu_1^2} + x_{3,i} \mu_1 - \sqrt{D}.$$
(35)

Далее переходят к п. 2.6.

2.5.10. К текущему значению ε_i поглощенной энергии в микрообъеме добавляют вклад от *i*-го дельта-электрона ε_i^* и повторяют расчет, начиная с п. 2.5.5.

2.5.11. При є_n = 0 переходят к п. 2.5.1.

Значение линейной энергии y_n и статистический вес W_n для *n*-й истории вычисляют по формулам:

$$y_n = \varepsilon_n / \frac{2}{3} l_0; \qquad (36)$$

$$W_n = W_R \quad \coprod_{i=1}^{t_0} W_{T,i} , \qquad (37)$$

где *i*₀ — номер дельта-электрона последнего перед выходом ТЗЧ из области моделирования.

Находят наименьшее значение индекса j_m , при котором $y_n \le \le y_j$, где y_j — выбранные узлы разбиения шкалы линейной энергии (j=1, 2, ..., J). (Далее $j = j_m$).

2.5.12. В сумматоры y_{i}^{*} , y_{i}^{*} , $f^{*}(y_{j})$ и $d^{*}(y_{j})$ заносят вклады от *n*-й истории, равные, соответственно, $y_{n}W_{n}$, $y_{n}^{2}W_{n}$, W_{n} и $y_{n}W_{n}$:

$$y_F^* = \sum_{K=1}^n y_K W_K; \tag{38}$$

$$y_D^* = \sum_{K=1}^{n} y_K^2 W_K;$$
(39)

$$f^{*}(y_j) = \sum_{K=1}^{n} W_K^{\gamma K};$$
(40)

$$d^{*}(y_{j}) = \sum_{K=1}^{n} W_{K} y_{K} \delta_{j}^{K}, \qquad (41)$$

где **б**^{*K*} — символ Кронекера, определяемый как

$$\hat{e}_{j}^{K} = \begin{cases} 0, \text{ upu } j \neq K, \\ 1, \text{ upu } j = K \end{cases}$$
(42)

2.5.13. В сумматор числа событий поглощения N заносят единицу. При N не кратном 20 повторяют вычисления по п. 2.5.1.

2.5.14. Вычисляют и запоминают оценки частотного и дозового средних значений линейной энергии для очередной серии из 20 событий поглощения:

$$\overline{y}_{F,m} = \sum_{K=1}^{20} y_{K,m} W_{K,m} / \sum_{K=1}^{20} W_{K,m};$$
(43)

$$\overline{y}_{D,m} = \sum_{K=1}^{20} y_{K,m}^2 W_{K,m} / \sum_{K=1}^{20} y_{K,m} W_{K,m}, \qquad (44)$$

где m — индекс, означающий, что помеченная им величина относится к m-й серии, а также текущие значения y_F и y_D , полученные по всем N событиям поглощения:

$$\overline{y}_{F} = \sum_{K=1}^{N} y_{K} W_{K} / \sum_{K=1}^{N} W_{K}; \qquad (45)$$

7

$$\widehat{\boldsymbol{y}}_{\boldsymbol{D}} = \sum_{K=1}^{N} y_{K}^{2} W_{K} / \sum_{K=1}^{N} y_{K} W_{K} .$$
 (46)

2.5.15. При выполнении условия (для m>10)

$$\sum_{K=1}^{m} \left(1 - \frac{\overline{y}_{D,K}}{\overline{y}_{D}}\right)^{2} \leqslant 10^{-4} \cdot m^{2} \text{ M} \sum_{K=1}^{m} \left(1 - \frac{\overline{y}_{F,K}}{\overline{y}_{F}}\right)^{2} \leqslant 4 \cdot 10^{-4} \cdot m^{2} \quad (47)$$

моделирование траекторий ТЗЧ прекращают, переходя к п. 2.5.16, если иначе, то продолжают расчет, начиная с п. 2.5.1.

2.5.16. Рассчитывают окончательные оценки частотного $\overline{y}_{F}^{(i)}$ и дозового $\overline{y}_{D}^{(i)}$ средних значений линейной энергии, частотный $f^{(i)}(y)$ и дозовый $d^{(i)}(y)$ СЛЭ для событий поглощения, обусловленных прохождением ТЗЧ через область моделирования, по формулам:

$$\overline{y}_{F}^{(l)} = y_{F}^{*} / W;$$
 (48)

$$\overline{y}_D^{(i)} = y_D^* / y_F^*;$$
 (49)

$$f^{(i)}(y_j) = f^{*}(y_j) / W / \Delta y_j, \ j = 1, 2, ..., J;$$
 (50)

$$d^{(i)}(y_j) = d^*(y_j) / W / \Delta y_j, \ j = 1, 2, ..., J,$$
(51)

где
$$W = \sum_{j=1}^{n} f^*(y_j).$$
 (52)

Далее переходят к вычислениям п. 2.7.

2.6. Траектории дельта-электронов (далее — электронов) моделируют с учетом их кривизны и возможности рождения вторичных, третичных и т. д. поколений электронов. Процедура вычисления энергии є *i*, переданной электроном микрообъему, состоит в следующем.

2.6.1. Присваивают исходные значения сумматору поглощенных энергий $\varepsilon_i^* = 0$, а также:

— направляющим косинусам единичного вектора $\vec{\omega}_0 = \{\omega_{1,0}, \omega_{2,0}, \omega_{3,0}\}$, задающего начальное направление движения электрона в системе координат $\{0x_1, 0x_2, 0x_3\}$,

$$\omega_{1,0} = \mu_2 \sqrt{1 - \mu_1^2}, \qquad (53)$$

$$\omega_{2,0} = \mu_1 \sqrt{1 - \mu_2^2}, \qquad (54)$$

$$\omega_{3,0} = \mu_1; \tag{55}$$

— координатам радиуса-вектора $\rho_0 = \{\xi_{1,0}, \xi_{2,0}, \xi_{3,0}\}$, задающего точку начала моделируемой траектории (j=1, 2, 3):

$$\xi_{j,0} = \begin{cases} x_{j,i}, & \text{при } x_{1,0}^2 + x_{3,i}^2 < l^2/4, \\ x_{j,i} + S_0 \omega_{j,0} & \text{при } x_{1,0}^2 + x_{3,i}^2 > l^2/4; \end{cases}$$
(56)

— энергии электрона т в точке ро:

$$\tau = \begin{cases} T_i, \text{ при } x_{1,0}^2 + x_{3,i}^2 \le l^2/4, \\ T_i \psi(S_0/R_\rho), \text{ при } x_{1,0}^2 + x_{3,i}^2 > l^2/4, \end{cases}$$
(57)

где R_p — практический пробег электрона с энергией T_i;

 $\psi(x)$ — энергия электропа, выраженная в единицах начальной его энергии, на глубине x, выраженной в единицах R_p .

Значения R_p и $\psi(x)$ для интересующих энергий следует рассчитывать по данным табл. 2 и 3 приложения 4.

2.6.2. Ограниченные линейные передачи энергии $L_{c,\Delta}$, кэВ/мкм, суммарное макросконическое сечение σ_{loc}^{Λ} , мкм⁻¹, неупругих с передачей более $\Lambda = 0,1$ кэВ и упругих взаимодействий, полное σ_{cl} , мкм⁻¹, и перциальные $\sigma_{cl,k}$, мкм⁻¹, макроскопические сечения упругого рассеящия на элементах тканеэквивалентного вещества для электрона с эпергней τ вычисляют по данным табл. 4 и 5 приложения 4,

2.6.3. Длипу пути λ, мкм, электропа до очередного моделируемого взаимодействия рассчитывают по формуле

$$\lambda = -\ln\gamma/\sigma_{t_0 t}^{\Lambda} , \qquad (58)$$

где *ү* — случайное число.

Координаты раднуса-вектора $\rho = \{\xi_1, \xi_2, \xi_3\}$ точки взаимодействия вычисляют по формуле (j = 1, 2, 3):

$$\xi_j = \zeta_{I,0} + i \omega_{I,0}$$
 (59)

2.6.4. При $|\vec{\rho}| > \frac{l}{2}$ расчет траектории электрона данного поколения прекращают. Проверяют, имеются ли электроны старшего поколения. Если имеются, то координатам вектора ρ и направляющим косинусам ω_0 присванвают ранее определенные значения, соответствующие самому младшему из перассмотренных поколений электронов, и переходят к п. 2.6.13, в противном случае возвращаются в п. 2.5.10.

2.6.5. Длине S части отрезка | $\rho_0 - \rho$ |, припадлежащей микрообъему, присванвают в зависимости от знака параметра

$$D = (\vec{\omega} \cdot \vec{\rho}_0)^2 - (\vec{\rho}_0 \cdot \vec{\rho}_0) + l_0^2/4$$
(60)

следующие значения: при $D \ll 0$ полагают S = 0; при D > 0 полагают

$$S = \begin{cases} \lambda, \ ecnu \ |\vec{\rho}_0| \leq l_0/2 \ u \ |\vec{\rho}| \leq l_0/2, \\ -(\vec{\omega}_0 \ \vec{\rho}_0) + \sqrt{D}, \ ecnu \ |\vec{\rho}| \leq l_0/2 \ u \ |\vec{\rho}| > l_0/2, \\ \lambda + (\vec{\omega}_0 \ \vec{\rho}_0) + \sqrt{D}, \ ecnu \ |\vec{\rho}_0| > l_0/2 \ u \ |\vec{\rho}| \leq l_0/2 \end{cases}$$
(61)

$$S = \begin{cases} 0, \text{ если } (\vec{\omega_0} \ \vec{\rho}_0) (\vec{\omega_0} \ \vec{\rho}) \ge 0, \\ 2\sqrt{D}, \text{ если } (\vec{\omega_0} \ \vec{\rho}_0) (\vec{\omega_0} \ \vec{\rho}) < 0. \end{cases}$$
(62)

2.6.6. Тип взаимодействия в точке ρ определяют по очередному γ :

если $\gamma > \sigma_{sl} / \sigma_{tot}^{\Delta}$, то взаимодействие неупругое. Для его моделирования переходят к п. 2.6.10.

2.6.7. Энергию электрона в точке ρ вычисляют, вычитая из т непрерывные потери $\lambda L_{e,\Delta}$. К текущему значению ε_i^* прибавляют порцию энергии, равную $S L_{e,\Delta}$.

2.6.8. Элемент, на котором произошло упругое рассеяние, определяют по очередному γ путем выбора номера k, удовлетворяющего условиям

$$\sum_{i=1}^{k-1} \sigma_{el,i} < \gamma \sigma_{el} < \sum_{i=1}^{k} \sigma_{el,i}.$$
(63)

2.6.9. Величины $\mu_1 = \cos\theta$ и $\mu_2 = \cos\varphi$, определяющие направление вылета электропа из точки упругого взаимодействия, вычисляют по формулам

$$\mu_1 = 1 - 2\gamma' F(\tau, Z_k) / [1 - \gamma' + F(\tau, Z_k];$$
(64)

$$\mu_2 = \cos(2\pi\gamma''), \tag{65}$$

где ү' и ү" — очередные случайные числа;

Г(т, Z_k) — параметр экрапирования ядра электронами при энергии налетающего электрона т для ядра с атомным номером Z_k, определяемый согласно приложению 4.

Далее выполняют вычисления, начиная с п. 2.6.14.

2.6.10. Потерю энергии $\Delta \tau$ электрона с энергией $\tau' = \tau - \lambda L_{c,\Delta}$ в точке неупругого взаимодействия вычисляют по очередному γ согласно загоритму, изложениюму в иридожении 5.

Энергин электрочов, покидающих точку ρ , и кесшиусы углов θ_1 , θ_2 и φ_4 , φ_2 , определяющих панразление выяета электронов из этой точки, рассчитывают по формулам:

$$\tau_1 = \tau_{--} L_{e,\Lambda}$$
(66)

$$\boldsymbol{\tau}_2 \quad \boldsymbol{\tau} \quad \boldsymbol{I}; \tag{67}$$

$$\cos\Theta_{1} = \sqrt{\frac{(1-\Lambda)^{2} i \left(1-\frac{1}{2}\right)^{2}}{\frac{1}{2} \left(1-\frac{1}{2}\right)^{2} i^{2}}}; \qquad (68)$$

$$\cos \varphi_1 = \cos(2\pi \varphi);$$
 (69)

$$\cos\Theta_{2} = \sqrt{\frac{\Delta\tau}{mc^{2}} \frac{1+1+c^{2}/\tau}{1+\Delta\tau/mc^{2}}}; \qquad (70)$$

$$\cos\varphi_2 = -\cos\varphi_1, \tag{71}$$

где ү — очередное случайное число.

2.6.11. При $|\vec{\rho}| < l_0/2$ к текущему значению є прибавляют порцию энергии $\Delta \varepsilon$, вычисляемую по формуле

$$\Delta \varepsilon = \begin{cases} SL_{e,\Delta} + I, \text{ для } \tau_2 > 0, 1 \text{ кэB}, \\ SL_{e,\Delta} + \Delta \tau, \text{ для } \tau_2 \leqslant 0, 1 \text{ кэB}. \end{cases}$$
(72)

2.6.12. При $\tau_2 > 0,1$ кэВ запоминают радиус-вектор $\vec{\rho}$, вектор $\vec{\omega}_0$ и значения τ_1 , $\cos\theta_1$ и $\cos\varphi_1$, а переменным τ , μ_1 , μ_2 присваивают значения, соответствующие наиболее медленному из электронов, покидающих точку $\vec{\rho}$:

$$\tau = \tau_2; \tag{73}$$

$$\mu_1 = \cos \Theta_2; \tag{74}$$

$$\mu_2 = \cos \varphi_2 \tag{75}$$

и переходят к п. 2.6.14.

2.6.13. Переменным т, µ1 и µ2 присваивают значения:

$$\tau = \tau_1;$$
 (76)

$$\mu_1 = \cos \Theta_1; \tag{77}$$

$$\mu_2 = \cos \varphi_1. \tag{78}$$

2.6.14. В случае выполнения хотя бы одного из следующих условий:

$$R_e(\tau) < |l_0/2 - \vec{\nu}||, \tag{79}$$

где R₂(т) — длина ионизационного пробега электрона с энергией т

илн т≼0,1 кэВ, **(80)**

моделирование траектории электрона данного поколения прекращают. При $|\rho| < l_0/2$ к текущему значению ε^* прибавляют т. Если имеются электропы старшего поколения, то координатам вектора ρ и направляющим косинусам ω_0 присваивают ранее определенные значения, соответствующие самому младшему из нерассмотренных поколений электропов, и переходят к п. 2.6.13, в противном случае возвращаются в п. 2.5.10.

В случае невыполнения условий (79) и (80) переходят к следующему пункту.

2.6.15. Направляющие косипусы вектора $\vec{\omega} = \{\omega_1, \omega_2, \omega_3\}$, задающего направление движения рассматриваемого электрона из точки $\vec{\rho}$, вычисляют по следующим формулам:

$$\omega_{1} = \omega_{1,0} \,\mu_{1} - \frac{(\omega_{1,0} \,\omega_{3,0} \mu_{2} + \omega_{2,0}) \sqrt{1 - \mu_{2}^{2}}}{\sqrt{1 - \omega_{3,0}^{2}}}; \qquad (81)$$

11

$$\omega_{2} = \omega_{2,0}\mu_{1} - \frac{(\omega_{2,0}\omega_{3,0}\mu_{2} - \omega_{1,0}\sqrt{1 - \mu_{2}^{2}})\sqrt{1 - \mu_{1}^{2}}}{\sqrt{1 - \omega_{3,0}^{2}}}; \qquad (82)$$

$$\omega_{3} = \omega_{3,0} \mu_{1} + \mu_{2} \sqrt{1 - \omega_{3,0}^{2}} \sqrt{1 - \mu_{1}^{2}}$$
(83)

2.6.16. Координатам вектора $\vec{\rho}_0$ и направляющим косинусам вектора $\vec{\omega}$ присваивают новые значения (*j*=1, 2, 3):

$$\xi_{i,0} = \xi_i; \tag{84}$$

$$\omega_{i,0} = \omega_i \tag{85}$$

и повторяют расчеты начиная с п. 2.6.2.

2.7. При $\mu^{(c)} = 0$ расчет завершают, полагая искомые y_F , y_D , $f(y_j)$ и $d(y_j)$ равными $\overline{y}_F^{(l)}$, $\overline{y}_D^{(l)}$, $f^{(l)}(y_j)$ и $d^{(l)}(y_j)$ соответственно, а при $\mu^{(c)} > 0$ вычисляют их по формулам:

$$\bar{y}_{F} = \frac{1}{(1-\mu^{(c)})/\bar{y}_{F}^{(i)} + \frac{1}{2}(c)/\bar{y}_{F}^{(c)}} ; \qquad (86)$$

$$\overline{y}_D = (1 - \mu^{(e)}) \overline{y}_D^{(i)} + \mu^{(e)} \overline{y}_D^{(e)};$$
(87)

$$f(y_j) = (1 - \mu^{(e)}) \frac{y_F^{(i)}}{y_F} f^{(i)}(y_j) + \mu^{(e)} \frac{y_F^{(e)}}{y_F} f^{(e)}(y_j);$$
(88)

$$d(y_j) = (1 - \mu^{(e)}) d^{(e)}(y_j) + \mu^{(e)} d^{(e)}(y_j),$$
(89)

где помеченные индексом (e) величины относятся к событиям поглощения, формируемым дельта-электронами с энергиями свыше T_m . Эти величины, одинаковые для всех ТЗЧ одной скорости, но разных зарядов, рассчитывают согласно п. 2.8.

2.8. Методика расчета $\overline{y}_{F}^{(e)}$, $\overline{y}_{D}^{(e)}$, $f^{(r)}(y_{j})$ и $d^{(e)}(y_{j})$, основанная на использовании приближения непрерывного замедления для вычисления дифференциального энергетического распределения электронов на поверхности сферы $x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = l^{2}/4$, концентричной рассматриваемому шаровому микрообъему диаметром l_{0} , и моделировании прохождения электронов внутри этой сферы методом Монте-Карло состоит в следующем.

2.8.1. Нормированный на единицу интегральный спектр флюенса $\Phi(T)$ у поверхности сферы диаметром l вычисляют по формулам:

$$\Phi(T) = \int_{2T_0+I}^{T} \varphi(T') dT' / \int_{2T_0+I}^{T_{\max}} \varphi(T') dT', \qquad (90)$$

$$\varphi(T) = \begin{cases} \frac{\xi}{L_e(T)} \left[\frac{1}{T_m} - \frac{1}{T_{\max}} - \beta^2 \left(1 - \frac{T_m}{T_{\max}} \right) \right], & \text{при } 2T_0 + l < T < T_m, \\ \frac{\xi}{L_e(T)} \left[\frac{1}{T} - \frac{1}{T_{\max}} - \beta^2 \left(1 - \frac{T}{T_{\max}} \right) \right], & \text{при } T_m \leq T < T_{\max}, \end{cases}$$
(91)

где Le (T) — линейная передача энергии, кэВ/мкм, для электрона с энергией Т в тканеэквивалентном веществе, определяемая по данным табл. 4 приложения 4.

2.8.2. Для точки вылета электрона в n-й истории принимают $x_{1,0} = 0, x_{2,0} = 0, x_{3,i} = -l/2, \mu_2 = 1$ и рассчитывают энергию T_i , кэВ, и значение величины µ1, характеризующей направление вылета электрона относительно оси 0x₃, по формулам:

$$T_i = \Phi^{-1}(\gamma');$$
 (92)

$$\mu_1 = \sqrt{\gamma''},\tag{93}$$

где $\Phi^{-1}(\gamma')$ — функция, обратная $\Phi(T)$; γ', γ'' — последовательные случайные числа.

2.8.3. Выполняют вычисления согласно п. 2.6 с той лишь разницей, что вместо предусмотренного в пп. 2.6.4, 2.6.6 и 2.6.14 перехода в п. 2.5.10, переходят в п. 2.8.4.

2.8.4. В случае $\varepsilon_{i}^{*} = 0$ повторяют вычисления с п. 2.8.2, иначе полагают $\varepsilon_n = \varepsilon_i^*$, $W_n = 1$ и переходят к вычислениям пп. 2.5.11— 2.5.14, минуя формулу (37). При выполнении условия (47) дальнейшее моделирование траекторий не производят, а переходят в п. 2.8.5. При невыполнении условия (47) повторяют вычисления сп. 2.8.2.

2.8.5. Окончательные оценки искомых величин для событий поглощения, формируемых дельта-электронами с энергией более T ", рассчитывают по формулам:

$$\bar{y}_{F}^{(e)} = y_{F}^{*} / W; \qquad (94)$$

$$\overline{y}_D^{(e)} = y_D^* / y_F^*;$$
 (95)

$$f^{(a)}(y_j) = f^*(y_j) / W / \Delta y_j; \ j = 1, 2, \dots J;$$
(96)

$$d^{(e)}(y_j) = d^{*}(y_j) / W / \Delta y_j; \ j = 1, 2, ..., J,$$
(97)

где

$$W = \sum_{j=1}^{s} f^*(y_j). \tag{98}$$

3. АНАЛИТИЧЕСКАЯ МЕТОДИКА РАСЧЕТА СЛЭ

3.1. Методика основана на предположении, что разбросом энергетических потерь ТЗЧ на отрезках траекторий внутри микрообъема можно пренебречь и что вся потерянная ТЗЧ энергия поглощается в точках их взаимодействий с веществом.

3.2. В качестве исходных данных для расчетов частотного f(y)и дозового d(y) СЛЭ выбирают:

- энергию E, МэВ, атомный номер Z и атомную массу A ТЗЧ; — диаметр l₀, мкм, микрообъема.

3.3. Линейные передачи энергии L=-dE/dx, кэВ/мкм, и ионизационные пробеги R, мкм, ТЗЧ в тканеэквивалентном веществе, используемые в расчетах, вычисляют при Е/А>2 МэВ/нуклон по РД 50—25645.206, а при меньших энергиях — по формулам и данным приложения 3.

3.4. В случае, когда соблюдается условие

$$E - 10^{-3} l_0 L \leqslant 0,02E, \tag{99}$$

применяют следующие формулы для СЛЭ, частотного \overline{y}_F и дозового \overline{y}_D средних значений линейной энергии:

$$f(y) = \frac{8}{9} \frac{y}{L^2} \left(0 \leqslant y \leqslant \frac{3}{2} L \right);$$
 (100)

$$d(y) = \frac{8}{9} \frac{y^2}{L^3} \left(0 \leqslant y \leqslant \frac{3}{2} L \right);$$
(101)

$$\overline{y}_F = L; \tag{102}$$

$$\overline{y}_{D} = \frac{9}{8}L.$$
 (103)

3.5. В случае, когда условие (99) не соблюдается, частотный f(y) и дозовый d(y) СЛЭ представляют в виде:

$$f(y) = c \sum_{i=1}^{\infty} N_i(y); \qquad (104)$$

$$d(y) = c \sum_{i=1}^{4} N_i(y) y / \overline{y}_F , \qquad (105)$$

где с — постоянная величина, определяемая из условия нормировки на единицу

$$c = 1 / \sum_{i=1}^{4} \int_{0}^{\infty} N_{i}(y) dy.$$
 (106)

Физический смысл и формулы для расчета каждого слагаемого при равномерно распределенных в среде источниках ТЗЧ приведены в пп. 3.5.1—3.5.4.

3.5.1. Слагаемое $N_1(y)$ определяет вклад в СЛЭ от ТЗЧ, треки которых полностью принадлежат микрообъему. Значения $N_1(y)$ рассчитывают по формуле

$$N_{1}(y) = \begin{cases} \frac{\pi l_{0}^{3}}{6} F_{l}(R) \delta(E - E), & \text{ipn } R(E) < l_{0}, \\ 0, & \text{ipn } R(E) > l_{0}, \end{cases}$$
(107)

где $\delta(E - E_v)$ дельта-функция, а

$$F_{i}(R) = 1 - \frac{3}{2} \frac{R}{l_{0}} + \frac{1}{2} \frac{R^{3}}{l_{0}^{3}} .$$
 (108)

Здесь и далее $E_y = 2 \cdot 10^{-3} l_0 y/3$.

3.5.2. Слагаемое $N_2(y)$ определяет вклад в СЛЭ от ТЗЧ, треки которых начинаются внутри микрообъема, но заканчиваются вне его. Значения $N_2(y)$ рассчитывают по формуле

$$N_{2}(y) = \begin{cases} \frac{\pi l_{0}^{3}}{6} \frac{f_{i}(x)}{L(E-E_{y})}, & \text{при } x < l_{0}, \\ 0, & \text{при } x \ge l_{0}, \end{cases}$$

$$\Gamma \text{де } x = R(E) - R(E-E_{y}),$$

$$f_{i}(x) = 3(1-x^{2}/l_{0}^{2})/2l_{0}.$$
(109)
(109)
(110)

3.5.3. Слагаемое $N_3(y)$ определяет вклад в СЛЭ от ТЗЧ, треки которых начинаются вне микрообъема, но заканчиваются внутри него. Значения $N_3(y)$ рассчитывают по формуле

$$N_{3}(y) = \begin{cases} \frac{\pi l_{0}^{2}}{4} \frac{F_{\mu}(R)}{L(2l_{0}|y/3)}, \text{ при } R(E) < l_{0}; \\ 0, \text{ при } R(E) > l_{0}, \end{cases}$$
(111)

где
$$F_{\mu}(R) = 1 - \frac{R^2}{l_0^2}$$
.

3.5.4. Слагаемое $N_4(y)$ определяет вклад в СЛЭ от ТЗЧ, пронизывающих микрообъем. Значения $N_4(y)$ рассчитывают по формуле

$$N_4(y) = \begin{cases} \frac{\pi l_0^2}{4} \int_{E_y}^{E} \frac{f_{\mu}(x)}{L(E) \cdot L(E-E_y)} dE, \text{ при } y < 1.5 \cdot 10^3 \frac{E}{l_0} \\ 0, \text{ при } y \ge 1.5 \cdot 10^3 E/l_0, \end{cases}$$
(112)
где $x = R(E) - R(E-E_y),$

$$f_{\mu}(x) = \frac{2x}{l_0^2}.$$
 (113)

3.5.5. Частотное \overline{y}_F и дозовое \overline{y}_D средние значения линейной энергии рассчитывают по полученным f(y) и d(y) согласно формулам (2) и (3) соответственно.

ПОЯСНЕНИЯ К ТЕРМИНАМ, ПРИМЕНЯЕМЫМ В МЕТОДИЧЕСКИХ УКАЗАНИЯХ

Термин	Пояснение
Микрообъем	Объем, заключающий в себе достаточно малое количество вещества, чтобы при за- данных поглощенной дозе или числе собы- тий поглощения статистическим разбросом поглощенной энергии в нем нельзя было бы пренебречь
Событие поглощения	Событие прохождения одной первичной ионизирующей частицы в рассматриваемой области вещества, приводящее к поглоще- нию в микрообъеме отличной от нуля пор- ции энергии
Поглощенная энергия	По ГОСТ 15484
Ионизирующая частица	По ГОСТ 15484
Микродозиметрические харак- теристики поля ионизирующего излучения Микродозиметрические харак- теристики	Функции и величины, характеризующие статистический разброс поглощенной энер- гии и других пропорциональных ей вели- чин в микрообъемах вещества при задан- ных поглощенной дозе или числе событий поглощения
Поглощенная доза	По ГОСТ 15484
Дельта-электрон	Электрон, выбиваемый из электронных оболочек атомов быстрыми заряженными частицами, движущимися через вещество
Линейная передача энергии	По ГОСТ 15484
Практический пробег электрона Практический пробег	Точка пересечения казательной к кривой зависимости поглощенной дозы от глубины в поглотителе, построенной в точке наибо- лее быстрого спада поглощенной дозы, с осью глубин при нормальном падении ши- рокого пучка электронов на поглотитель
Ионизационные потери тяжелых заряженных частиц	Средние потери тяжелых заряженных частиц на единицу пути, обусловленные их взаимодействием с электронными оболочка- ми атомов тормозящей среды

СВЯЗЬ ДРУГИХ МИКРОДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК Со спектрами линейной энергии (слэ)

В микродозиметрии и ее приложениях, помимо линейной энергии y, частотного f(y) и дозового d(y) СЛЭ, частотного \overline{y}_F и дозового \overline{y}_D средних значений линейной энергии, широко используют удельную энергию z, частотную $f_1(z)$ и дозовую $d_1(z)$ плотности распределения удельной энергии в одиночном событии поглошения, частотное \overline{z}_F и дозовое \overline{z}_D средние значения удельной энергии, а также плотность распределения $f_D(z)$ удельной энергии при заданной поглощению дозе D.

Под удельной энергией *z*, Гр, понимают стохастическую величину, равную частному от деления фактически поглощенной в микрообъеме энергии *e*, Дж, на массу *m*, кг, содержащегося в нем вещества

$$z = \varepsilon/m. \tag{114}$$

При *у*, кэВ/мкм, z, Гр, и диаметре шарового микрообъема *l*₀, мкм, справедливы следующие соотношения:

$$z=0,204y/l_0^2;$$
 (115)

$$\overline{z}_F = 0,204 \overline{y}_F / l_0^2;$$
 (116)

$$\overline{z}_D = 0,20\overline{4y}_D / l_0^2;$$
 (117)

$$f_1(z) = \frac{l_0^2}{U,204} f(y); \qquad (118)$$

$$d_1(z) = \frac{l_0^2}{0,204} \ d(y). \tag{119}$$

Для вычисления плотности распределения удельной энергии при заданной поглощенной дозе следует использовать формулу

$$f_D(z) = \sum_{k=0}^{\infty} \frac{(D/\bar{z}_F)^k}{k!} e^{-D/\bar{z}_F} f^{(k)}(z), \qquad (120)$$

где $f^{(k)}(z)$ —k-кратная свертка от $f_1(z)$, определяемая с помощью рекуррентного соотношения

$$f^{(k)}(z) = \int_{0}^{z} f(z-\xi)f_{1}(\xi)d\xi.$$
 (121)

При достаточно больших ($D/\overline{z}_F \gtrsim 20$) и достаточно малых ($D/\overline{z}_F \lesssim 0.01$) поглощенных дозах f_O (2) вычисляют по формулам:

$$f_D(z) = \frac{1}{\sqrt{2\pi z_D D}} \exp\left[-\frac{(z-D)^2}{2 \overline{z_D} \cdot D}\right]$$
(122)

и

 $f_D(z) = (1 - D/\overline{z}_F)\delta(z) + D/\overline{z}_F f_1(z)$ (123)

соответственно, где $\delta(z)$ — дельта-функция.

17

ИОНИЗАЦИОННЫЕ ПОТЕРИ И ПРОБЕГИ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ (ТЗЧ) С ЭНЕРГИЯМИ НА НУКЛОН МЕНЕЕ 2 МЭВ

Ионизационные потери dE/dx, кэВ/мкм, в тканеэквивалентном веществе для ТЗЧ при энергиях на нуклон менее 2 МэВ следует рассчитывать по ионизационным потерям $(dE/dx)_p$ для протонов, представленным в таблице, согласно формуле:

$$\frac{dE}{dx} = \frac{(dE}{dx})_{\rho} \cdot Z_{\mathfrak{s}\mathfrak{b}\mathfrak{b}}(Z)^2 / Z_{\mathfrak{s}\mathfrak{b}\mathfrak{b}}(1)^2, \qquad (124)$$

где $Z_{\mathfrak{B}^{+}, \mathfrak{h}}(Z)$ — эффективный заряд ТЗЧ с зарядом ядра Z, определяемый формулой (10) разд. 2.

Ионизационные пробеги R(E), мкм, ТЗЧ, включая протоны, следует определять по ее ионизационным потерям согласно формуле

$$R(E) = 1000 \int_{0}^{E} \frac{1}{dE/dx} dE, \qquad (125)$$

где Е — энергия ТЗЧ, МэВ.

Таблица 1

Е, МэВ	<i>dE/dx</i> , кэВ/мкм	Е, МэВ	dE/dx, кэВ/мкм	Е, МэВ	<i>dE/dx,</i> кэВ/мкм
0,0010 0,0015 0,0020 0,0030 0,0040 0,0050 0,0060 0,0070 0,0080 0,0090 0,010 0,015	26 27 29 33 38 41 44 47 50 52 55 64	0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,15 0,20 0,30	73 84 90 95 97 99 97 97 97 96 83 72 59	0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,4 1,6 1,8 2,0	50 44 39 35 32 29 27 24 21 19 18 16

Примечание. Для получения dE/dx при промежуточных значениях E следует применять линейную интерполяцию в двойном логарифмическом масштабе, а при E < 0,001 МэВ/нуклон — линейную экстраполяцию в обычном масштабе.

ПРИЛОЖЕНИЕ 4 Справочное

ИСХОДНЫЕ ДАННЫЕ ДЛЯ МОДЕЛИРОВАНИЯ ТРАЕКТОРИЙ ЭЛЕКТРОНОВ В ТКАНЕЭКВИВАЛЕНТНОМ ВЕЩЕСТВЕ

В табл. 2 представлены значения практического пробега R_p электрона в тканеэквивалентном веществе при энергиях T в диапазоне от 0,1 до 200 кэВ. Значения R_p для энергий этого диапазона, не представленных в табл. 2, следует вычислять методом линейной интерполяции в двойном логарифмическом масштабе.

В табл. З представлены значения функции $\psi(S/R_p)$, определяющей зависимость энергии электрона от глубины его проникновения S, мкм, в тканеэквивалентное вещество

$$T(S) = T(0) \psi(S/R_p), \qquad (123)$$

где T (0) — начальная энергия электрона, кэB;

R_p — практический пробег, мкм, электрона с энергией T(0).

Значения *R*_р при промежуточных *T* следует вычислять методом линейной интерполяции в обычном масштабе.

В табл. 4 и 5 представлены значения ионизационных пробегов R_e , полных L_e и ограниченных $L_{e,\Delta}$ линейных передач энергии, а также макроскопических сечений взаимодействия электронов в тканеэквивалентном веществе: полного макроскопического сечения неупругих взаимодействий σ_{in} , суммы неупругих взаимодействий σ_{in} , суммы неупругих взаимодействий с передачей энергии свыше $\Delta = 0,1$ кэВ и полного упругих взаимодействий σ_{cl} и макроскопических сечений упругих взаимодействий для отдельных элементов σ_{elb} .

Значения представленных в табл. 4 и 5 величин при промежуточных *T* следует получать методом линейной интерполяции в двойном логарифмическом масштабе.

Т	а	б	Л	И	ц	а	2

Энергия Т, кэВ	Практический пробег <i>R_p,</i> мкм	Энергия <i>Т</i> , кэВ	Практический пробег <i>R_p,</i> мкм
0,1 0,2 0,5 1,0 2,0 5,0	0,008 0,011 0,020 0,043 0,115 0,515	10,0 ¹ 20,0 50,0 100,0 200,0	1,74 6,06 32,4 116,0 350,0

Значения практического пробега электрона в тканеэквивалентном веществе

Таблица З

Значения функции $\psi_{(x)}$ для тканеэквивалентного вещества

х	ψ(x)	x	ψ(x)
0,0	$ \begin{array}{c} 1,000\\ 0,924\\ 0,818\\ 0,692\\ 0,554\\ 0,415\\ 0,955 \end{array} $	0,7	0,176
0,1		0,8	0,0944
0,2		0,9	0,0456
0,3		1,0	0,0185
0,4		1,1	0,0055
0,5		1,2	0,0011

Значения R_e , L_e , $L_{e,\Delta}$, σ_{in} н σ_{tot}^{Δ} для электронов в тканеэквивалентном веществе

<i>Т</i> , кэВ	<i>R_e</i> , мкм	L _e , кэВ/мкм	$L_{e,\Delta}$, кэВ/мкм	<i>σ_{і п}, мкм⁻¹</i>	σ_{tot}^{Δ} , MKM ⁻¹
0.10E + 00	0.111 <i>E</i> 01	0.297E + 02	$0.297E \pm 0.0297E$	$0.159F \pm 04$	$0.103E \pm 0.04$
0.15E + 00	0.128E - 01	0.307E + 02	0.207E + 02	$0.137E \pm 04$	$0.799F \pm 03$
0.20E + 00	0.145E - 01	0.282E + 02	$0.282E \pm 02$	$0.101E \pm 04$	0.7552 + 05 0.669 E ± 03
0.30E + 00	0.183E - 01	0.248E + 02	0.202E + 02	0.1212 + 01 0.956F + 03	$0.502E \pm 03$
0.40E + 00	0.226E - 01	0.220E + 02	0.190E + 02	$0.793E \pm 03$	$0.430F \pm 03$
0.50E + 00	0.275E - 01	0.186E + 0.02	0.154E + 02	$0.675E \pm 03$	$0.366F \pm 03$
0.60E + 00	0.332E - 01	0.166E + 02	0.134E + 02	0.607E + 03	0.320E + 03
0.80E + 00	0.465 <i>E</i> 01	0.139E + 02	0.109E + 02	$0.466E \pm 03$	0.256E + 03
0.10E + 01	0.620 <i>E</i> 01	0.120E + 02	0.913E + 01	0.390E + 03	0.217E + 03
0.15E + 01	0.110E + 00	0.915E + 01	0.669E + 01	0.283E + 03	0.152E + 03
0.20E + 01	0.171E + 00	0.758E + 01	0.544E + 01	0.224E + 03	0.121E + 03
0.30E + 01	0.324E + 00	0.577E + 01	0.405E + 01	0.161E + 03	0.828E + 02
0.40E + 01	0.521E + 00	0.452E + 01	0.308E + 01	0.126E + 03	0.645E + 02
0.50E + 01	0.759E + 00	0.393E + 01	0.268E + 01	0.106E + 03	0.521E + 02
0.60E + 01	0.103E + 01	0.343E + 01	0.232E + 01	0.905E + 02	0.439E + 02
0.80E + 01	0.169E + 01	0.2752 + 01	0.183E + 01	0.707E + 02	0.335E + 02
0.10E + 02	0.249E + 01	0.231E + 01	0.152E + 01	0.584E + 02	0.266E + 02
0.152 ± 02	0.507E + 01	0.167E + 01	0.108E + 01	0.413E + 02	0.181E + 02
0.20E + 02 0.30E + 00	0.842E + 01	0.135E + 01	0.865E + 00	0.322E + 02	0.137E + 02
0.30E + 02	0.172E + 02	0.983E + 00	0.619E + 00	0.229E + 02	0.941E + 01
0.402 ± 02	0.287E + 02	0.7882 + 00	0.490E + 00	0.182E + 02	0.724E + 01
0.502 ± 0.02 0.60F ± 0.02	0.420E + 02	0.000L + 00	$0.410E \pm 00$	0.152E + 02	0.595E + 01
$0.80E \pm 0.2$	0.0001 ± 02	0.380L + 00	0.359E + 00	0.133E + 02	0.5092 ± 01
$0.10E \pm 0.02$	0.304L + 02 0.141E + 03	$0.418F \pm 00$	0.2952 ± 00	0.107E + 02	0.403E + 01
0.15E + 0.03	0.277E + 0.03	0.328E + 00	$0.196E \pm 00$	0.9192 + 01	0.0502 ± 01
0.20E + 03	0.442E + 03	0.284E + 00	0.169E + 00	0.7052 ± 01	0.2002 + 01 0.211E + 01
0.30E + 03	0.828E + 03	0.239E + 00	0.140E + 00	0.501E + 01	0.169E + 01
0.40E + 03	0.127E + 04	0.217E + 00	0.126E + 00	0.453E + 01	0.148E + 01
0.50E + 03	0.175E + 04	0.203E + 00	0.116E + 00	0.423E + 01	0.136E + 01
0.60E + 03	0.225E + 04	0.197E + 00	0.112E + 00	0.404E + 01	0.129E + 01
0.80E + 03	0.329E + 04	0.188E + 00	0.106E + 00	0.385E + 01	0.120E + 01
0.10E + 04	0.437E + 04	0.183E + 00	0.102E + 00	0.375E + 01	0.115E + 01
0.15E + 04	0.711E + 04	0.182E + 00	0.101E + 00	0.365E + 01	0.109E + 01
0.20E + 04	0.985E + 04	0.182E + 00	0.994E - 01	0.364E + 01	0.106E + 01
0.002 + 04	0.155E + 05	0.1042 ± 00	0.9092-01	0.366E + 01	0.1042 + 01
0.402 + 04 $0.50E \pm 04$	0.2072 ± 0.05	0.100L + 00	0.1012 ± 00	0.370E + 01	$0.103E \pm 01$
0.60E + 04	$0.209E \pm 05$	$0.206E \pm 00$	0.1002 ± 00 $0.116E \pm 00$	0.3742 ± 01	$0.103E \pm 01$
0.80E + 04	0.000E + 05 0.405E + 05	0.210E + 00	0.117E + 00	0.3772 ± 01	0.102E + 01
0.10E + 05	0.499E + 05	0.214E + 00	0.119E + 00	0.387E + 01	0.102E + 01
$0.15E + 05^{\circ}$	0.724E + 05	0.231E + 00	0.133E + 00	0.0012 01	
0.20E + 05	0.934E + 05	0.245E + 00	0.144E + 00		
0.30E + 05	0.132E + 06	0.274E + 00	0.169E + 00		- 1
0.40E + 05	0.167E + 06	0.301E + 00	0.194E+00		
0.50E + 05	0.198E + 06	0.329E + 00	0.220E + 00		
0.60E + 05	0.228E + 06	0.356E + 00	0.246E + 00		
0.002 + 05	0.280E + 06	0.410E + 00	0.297E + 00		1 -
0.102 ± 0.00	0.326E + 06	0.404E + 00	0.349E + 00		
0.102 +00	$0.420C \pm 00$	0.9995 +00	0.4012 +00		-
	1	}			ł

Значения σ_{el} , $\sigma_{el,1}$, $\sigma_{el,2}$, $\sigma_{el,3}$ и $\sigma_{el,4}$ для электронов

	,	,0	Cr, T
B	тканеэкви	валентном	веществе

<i>Т</i> , кэВ	σ _{el} , мкм ⁻¹	σ _{el,1} , _{мкм} —1	σ _{e1,2} , мкм ⁻¹	σ _{e1,3} , мкм ^{−1}	σ _{e1,4} , ыкм ⁻¹
0.10 - 00	01020.04	0.000 5			1
0.102 + 00	0.1032 + 04	0.620E + 03	0.163E + 03	0.212E + 03	0.314E+02
0.102 + 00	0.1992 +03	0.498E + 03	0.109E + 03	0.167E + 03	0.251E+02
0.202 +00	0.002E + 03	0.420E + 03	0.815E + 02	0.140E + 03	0.210E+02
0.302 + 00	0.503E + 03	0.326E + 03	0.544E + 02	0.106E + 03	0.163E+02
0.402 + 00	0.409E + 03	0.267E + 03	0.408E + 02	0.875E + 02	0.133E+02
0.50E + 00	0.345E + 03	0.227E + 03	0.326E + 02	0.748E + 02	0.113E+02
0.60E + 00	0.301E + 03	0.200E + 03	0.272E + 02	0.644E + 02	0.984E+01
0.80E + 00	0.239E + 03	0.159E + 03	0.204E + 02	0.519E + 02	0.788E+01
0.10E + 01	0.202E + 03	0.135E + 03	0.164E + 02	0.440E + 02	0.667E+01
0.15E + 01	0.141E + 03	0.952E + 02	0.109E + 02	0.306E + 0.2	0 469E+01
0.20E + 01	0.112E + 03	0.752E + 02	0.821E + 01	0.245E + 02	0.372E+01
0.30E + 01	0.766E + 02	0.519E + 02	0.551E + 01	0.167E + 02	0.256E+0B
0.40E + 01	0.597E + 02	0.404E + 02	0.413E + 01	0.131E + 02	0.201E + 01
0.50E + 01	0.481E + 02	0.328E + 02	0.331E + 01	0.104E + 02	0 163E+01
0.60E + 01	0.405E + 02	0.276E + 02	0.277E + 01	0.875E + 01	0.135E + 01
0.80E + 01	0.309E + 02	0.211E + 02	0.208E + 01	0.677E + 01	0 104E + 01
0.10E + 02	0.245E+02	0.166E + 02	0.168E + 01	0.537E + 01	0.821E+00
0.15E + 02	0.166E + 02	0.112E + 02	0.114E + 01	$0.363E \pm 01$	0.555E+00
0.20 <i>E</i> + 02	0.126E + 02	0.855E + 01	0.865E + 00	0.277E + 01	0.421E+00
0.30E + 02	0.864E + 01	0.586E + 01	0.590E + 00	$0.190E \pm 01$	0.288F_00
0.40 <i>E</i> + 02	0.665E + 01	0.451E + 01	0.456E + 00	0.146E + 01	0.22002 +00
0.50E + 02	0.546E + 01	0.370E + 01	0.375E + 00	$0.120E \pm 01$	0183F_00
0.60E + 02	0.467E + 01	0.317E + 01	0.321E + 00	$0.102E \pm 01$	0.156F_00
0.80E + 02	0.370E + 01	0.251E + 01	0.253E + 00	$0.810F \pm 00$	0.1002 +00
0.10E + 03	0.310E + 01	0.210E + 01	0.212E + 00	$0.680E \pm 00$	01045-00
0.15 <i>E</i> + 03	0.232E + 01	0.157E + 01	0.159E + 00	0.508E + 00	0.1042.404
0.20E + 03	0.193E + 01	0.131E + 01	0.132E + 00	0.0002 + 00	0.645F_01
0.30E + 03	0.155E + 01	0.105E + 01	0.106E + 00	$0.339E \pm 00$	0.517 F0
0.40E + 03	0.136E + 01	0.923E + 00	0.931E - 01	0.298E + 00	0.455F_01
0.50E + 03	0.125E + 01	0.849E + 00	0.854E - 01	0.275E + 00	0.410F_01
0.60E + 03	0.118E + 01	0.802E + 00	0.810E - 01	0.259E + 00	0.3956_01
0.80E + 03	0.110E + 01	0.745E + 00	0.749E - 01	$0.241E \pm 00$	0.367 F_0
0.10E + 04	0.105E + 01	0.714E + 00	0.722E-01	$0.231E \pm 00$	0.359F_01
0.15E + 04	0.996E + 00	0.676E + 00	0.683E - 01	0.219E + 00	0.333F_0E
0.20E + 04	0.972E + 00	0.660E + 00	0.667E-01	0.213E + 00	0.3255.01
0.30E + 04	0.952E + 00	0.647E + 00	0.650E - 01	$0.209E \pm 00$	0.3185_01
0.40E + 04	0.943E + 00	0.640E + 00	0.645E - 01	$0.207E \pm 00$	0.315F_01
0.50E + 04	0.940E + 00	0.638E + 0.0	0.645E - 01	$0.206E \pm 0.0$	0314F_01
0.60E + 04	0.936E + 00	0.635E + 0.0	0.639E - 01	$0.206E \pm 0.0$	0.313E_01
0.80E + 04	0.935E + 00	0.635E + 00	0.639E01	$0.205E \pm 00$	0.313F_01
0.10 <i>E</i> +05	0.935E + 00	0.635E + 00	0.639E-01	0.205E + 00	0.313E-01.

Параметр экранирования ядра атомными электронами F(т, Z_k) рассчитывают по формуле

$$F(\tau, Z_k) = 1,70 \cdot 10^{-5} \eta_k \frac{Z_k^{2/3}}{\tau(\tau+2)} , \qquad (127)_k$$

где т --- кинетическая энергия рассеиваемого электрона, выраженная в единацах энергии покоя электрона;

Z_k — атомный номер k-го элемента;

η_k — множитель, характеризующий k-й элемент.

Нумерация и значения параметров Z_k , η_k для элементов тканеэквивалентного вещества по ГОСТ 18622 представлены в табл. 6.

Таблица 6

Элемент	о	н	с	N
Номер Z _k Ŋ _k	1 8 1,29	2 1 1,13	3 6 1,23	4 7 1,26

Нумерация и значения параметров Z k, у k для элементов тканеэквивалентного вещества

ПРИЛОЖЕНИЕ 5 Справочное

АЛГОРИТМ МОДЕЛИРОВАНИЯ ПОТЕРЬ ЭНЕРГИИ ЭЛЕКТРОНОВ В НЕУПРУГИХ ВЗАИМОДЕЙСТВИЯХ

Потери энергии электронов в неупругих взаимодействиях с атомными электронами в тканеэквивалентном веществе, превышающие заданный порог $\Delta \tau_0$, моделируют в приближении свободных электронов методом композиции. В качестве исходных данных выбирают энергию электрона τ и $\Delta \tau$, выраженные в единицах массы покоя электрона (511 кэВ). Алгоритм моделирования потери энергии $\Delta \tau$, кэВ, в неупругом взаимодействии установлен в пп. 1—8.

1. Вычисляют параметры неупругого взаимодействия при энергии электрона **т** по формулам:

$$c_0 = \Delta \tau / \tau; \tag{128}$$

$$c_1 = 1 - 2c_0$$
: (129)

$$c_2 = (1+2\tau)/(1+\tau)^2;$$
 (130)

$$a_1 = c_1 / c_2 + c_2 \ln(2c_0); \tag{131}$$

$$a_2 - c_1 / (1 - c_0) - c_2 \ln[2(1 - c_0)]; \qquad (132)$$

$$c_3 = c_1 [\tau/(1+\tau)]^2/2;$$
 (133)

$$a_{\Sigma} = a_1 + a_2 + a_3. \tag{134}$$

2. Для очередного случайного числа у, равномерно распределенного в интервале (0,1) (далее — очередного у), проверяют соблюдение условия

$$\gamma < a_1/a_{\Sigma} . \tag{135}$$

Если оно выполнено, то переходят в п. 3, в противном случае — в п. 5. 3. Вычисляют потерю энергии $\Delta \tau^*$ (в единицах τ), соответствующую очередному γ , по формуле

$$\Delta \tau^* = c_0 / (1 - \gamma c_1). \tag{136}$$

4. Для очередного у проверяют соблюдение условия

$$\gamma > (1 - c_2 \cdot \Delta \tau^*) / (1 - c_0 c_2). \tag{137}$$

Если оно выполнено, то возвращаются в п. 3, в противном случае переходят в п. 8.

5. Для очередного у проверяют соблюдение условия

$$\gamma < (a_1 + a_2)/a_{\Sigma}$$
 (138)

Если оно выполнено, то переходят в п. 6, в противном случае вычисляют Δt^* , соответствующую очередному γ , по формуле

$$\Delta \tau^* = c_0 + \gamma c_1/2 \tag{139}$$

и переходят в п. 8.

6. Вычисляют $\Delta \tau^*$, соответствующую очередному у, по формуле

$$\Delta \tau^* = (c_0 + \gamma c_1) / (1 + \gamma c_1).$$
(140)

7. Для очередного у проверяют соблюдение условия

$$\gamma > [1 - c_2(1 - \Delta \tau^*)] / (1 - c_1/2).$$
 (141)

Если оно выполнено, то возвращаются в п. 6, в противном случае переходят к следующему пункту.

8. Расчет заканчивают, определяя Дт, кэВ, по формуле

$$\Delta \tau = 511 \tau \cdot \Delta \tau^*. \tag{142}$$

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Минздравом СССР

РАЗРАБОТЧИКИ

А. С. Александров, д -р физ.-мат. наук; С. Г. Андреев, канд. физ.-мат. наук; П. Н. Белоногий, канд. физ.-мат. наук; В. Г. Виденский, д -р биол. наук; А. А. Волобуев; А. И. Григорьев, д -р мед. наук; А. Т. Губин, канд. физ.-мат. наук; А. Н. Деденков, д-р мед. наук; [В. И. Иванов], д-р физ.-мат. наук; Е. Е. Ковалев, д -р техн. наук; Е. Н. Лесновский, канд. техн. наук; Ю. Л. Минаев; В. А. Панин; Е. В. Пашков, канд. техн. наук; С. М. Перфильева; В. А. Питкевич, канд. физ.-мат. наук; В. А. Сакович, д -р физ.-мат. наук

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 № 624
- З. ВВЕДЕН ВПЕРВЫЕ
- 4. Срок первой проверки III кв. 1996 г.; периодичность проверки — 5 лет
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
РД 50—25645.206—84	2.3, 3.2
ГОСТ 15484—81	Приложение 1
ГОСТ 18622—79	Приложение 4

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Безопасность радиационная экипажа космического аппарата космическом полете МЕТОДИКИ РАСЧЕТА МИКРОДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК КОСМИЧЕСКИХ ИЗЛУЧЕНИЙ

РД 50-25645.217-90

Редактор В. П. Огурцов Технический редактор М. И. Максимова Корректор В. И. Кануркина

Сдано в наб. 10.05.90 Подп. в неч. 28.08.90 Формат 60×90¹/ю Бумага типографская № В Гарнитура литературная. Печать высокая 1.75 усл. п. л. 1.75 усл. кр.-отт. 1.50 уч.-изд. и. Тир. 3000 Цена 35 к. Изд. № 624/4

> Ордена «Знак Почета» Издательство стандартов, 123557, Москва, ГСП, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256. Зак. 756