Нормативные документы в сфере деятельности Федеральной службы по экологическому, технологическому и атомному надзору

Серия 08

Документы по безопасности, надзорной и разрешительной деятельности в нефтяной и газовой промышленности

Выпуск 1

ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ НА ГАЗОПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВАХ

Сборник документов

Нормативные документы в сфере деятельности Федеральной службы по экологическому, технологическому и атомному надзору

Серия 08

Документы по безопасности, надзорной и разрешительной деятельности в нефтяной и газовой промышленности

Выпуск 1

ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ НА ГАЗОПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВАХ

Сборник документов

3-е издание, исправленное и дополненное

Москва 3AO НТЦ ПБ 2010 ББК 30н П78

 $\Pi78$

Ответственные составители-разработчики:

Е.А. Иванов, Ю.А. Дадонов, А.А. Шестаков, М.С. Глухов, В.И. Сидоров

Промышленная безопасность на газоперерабатывающих производствах: Сборник документов. Серия 08. Выпуск 1 / Колл. авт. — 3-е изд., испр. и доп. — М.: Закрытое акционерное общество «Научно-технический центр исследований проблем промышленной безопасности», 2010. — 304 с.

ISBN 978-5-9687-0346-0.

В настоящий Сборник включены следующие нормативно-технические документы Госгортехнадзора России: Правила безопасности для газоперерабатывающих заводов и производств, Инструкция по техническому диагностированию состояния передвижных установок для ремонта скважин, Положение о системе технического диагностирования сварных вертикальных цилиндрических резервуаров для нефти и нефтепродуктов, а также документы Минтопэнерго России: Методические указания по определению технологических потерь нефти на предприятиях нефтяных компаний Российской Федерации, Требования к химпродуктам, обеспечивающие безопасное применение их в нефтяной отрасли, регламентирующие деятельность в области промышленной безопасности предприятий и объектов нефтяной и газовой промышленности.

Требования нормативно-технических документов, включенных в этот Сборник, обязательны при проектировании, строительстве, изготовлении, монтаже, эксплуатации, техническом перевооружении, консервации и ликвидации производств и объектов нефтяной и газовой промышленности. В связи с изменениями в законодательстве документы применяются в части, не противоречащей действующим законодательным и

иным нормативным правовым актам. В разработке включенных в Сборник документов принимали участие специалисты российских нефтяных и газовых компаний «Газпром», «Лукойл», «ЮКОС», институты ВолгоуралНИТИгаз, ВНИПИгазопереработка, Ассоциация Буровых Подрядчиков, Госгортехнадзор России, Минтопэнерго России, ИПТЭР, Нефтепромхим, Нефтеотдача и др.

ББК 30н

© Оформление. Закрытое акционерное общество «Научно-технический центр исследований проблем промышленной безопасности», 2010

СОДЕРЖАНИЕ

правила оезопасности для газоперерабатывающих за-	
водов и производств (ПБ 08-622-03)	4
Инструкция по техническому диагностированию со-	
стояния передвижных установок для ремонта скважин	
(РД 08-195-98)	90
Положение о системе технического диагностирования	
сварных вертикальных цилиндрических резервуаров для	
нефти и нефтепродуктов (РД 08-95-95)	191
Методические указания по определению технологичес-	
ких потерь нефти на предприятиях нефтяных компаний	
Российской Федерации (РД 153-39-019-97)	225
Требования к химпродуктам, обеспечивающие безопас-	
ное применение их в нефтяной отрасли (РД 153-39-026-97)	286

Утверждена постановлением Госгортехнадзора России от 24.03.98 № 16 Введена в действие с 01.07.98

ИНСТРУКЦИЯ ПО ТЕХНИЧЕСКОМУ ДИАГНОСТИРОВАНИЮ СОСТОЯНИЯ ПЕРЕДВИЖНЫХ УСТАНОВОК ДЛЯ РЕМОНТА СКВАЖИН

РД 08-195-98

На территории России в настоящее время находится в эксплуатации значительное количество отечественных и зарубежных передвижных установок для капитального и текущего ремонта нефтяных и газовых скважин. По условиям эксплуатации данные установки являются объектами повышенного риска, а соответствующий им вид деятельности связан с повышенной опасностью промышленного производства и работ.

В целях повышения промышленной безопасности и обеспечения охраны труда при проведении работ по ремонту оборудования и восстановлению нефтяных и газовых скважин была разработана настоящая Инструкция.

Данная Инструкция разработана Госгортехнадзором России, АОЗТ «СЖС-Энергодиагностика», Ассоциацией буровых подрядчиков с привлечением Научно-внедренческого предприятия по диагностике металлоконструкций «ДИАМЕТ» и НПО ВНИИСтройдормаш.

При разработке Инструкции были также учтены мнения организаций и предприятий как в сфере проектирования и изготовления передвижных установок для ремонта скважин (Завод экспериментальных машин НПАК «РАНКО» — Москва, ОАО «Спецмаш» Кировского завода — С.-Петербург, ОАО «Машзавод» — С.-Петербург), так и в сфере эксплуатации (ДП «Надымгазпром», Аминекс продакшин компа-

ни лимитед — Ухта) и технической диагностики (НТЦ «ВиКонт» — Москва и др.).

Кроме того, при разработке данной Инструкции использовались результаты технического диагностирования, проведенного АОЗТ «СЖС-Энергодиагностика», состояния ряда передвижных установок различного типа и учитывались требования соответствующей нормативно-технической документации как отечественной, так и зарубежной, например Американских Национальных Стандартов АРІ RP 8В (RP 8В) и АРІ 4G (RP 4G).

На основании и в развитие данной Инструкции отдельные организации и предприятия могут разрабатывать и утверждать в установленном порядке свои инструкции по техническому диагностированию состояния передвижных установок для ремонта скважин с учетом местных условий и специфических особенностей работы. Требования таких инструкций должны быть не ниже требований, приведенных в настоящей Инструкции.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая Инструкция распространяется на предприятия и организации нефтяной и газовой промышленности, а также на геологоразведочные организации, ведущие работы на нефть и газ. Инструкция устанавливает единый порядок, объем и методы оценки технического состояния передвижных установок (далее — подъемников) отечественного и зарубежного производства, предназначенных для проведения капитального и текущего ремонта нефтяных и газовых скважин.

Эксплуатация подъемников характеризуется, как правило, двух-, трехсменным режимом работы. Узлы и агрегаты подъемников подвергаются воздействию высоких знакопеременных динамических нагрузок и низких температур.

Инструкция разработана в целях определения возможности безопасного использования подъемников как в пределах нормативного срока службы, так и сверх этого срока.

Работы по диагностированию проводятся специально подготовленным и аттестованным персоналом как в организациях, имеющих

соответствующие лицензии Госгортехнадзора России¹, так и этими организациями у самих владельцев подъемников (при наличии у них условий, удовлетворяющих требованиям данной Инструкции).

Проверка технического состояния осуществляется комиссией, которая назначается приказом руководителя организации (предприятия), являющейся владельцем подъемников. Комиссию возглавляет главный инженер или его заместитель, а в ее состав должны входить представители ремонтно-механических служб, службы главного энергетика, техники безопасности и охраны труда, диагностики (неразрушающего контроля), при необходимости представитель завода-изготовителя и территориального органа Госгортехнадзора России. Если акустико-эмиссионный контроль и контроль другими неразрушающими методами проводится приглашенными специалистами, то они также включаются в состав комиссии. По результатам диагностирования комиссия составляет Протокол технического состояния подъемника (приложение 1), в котором дает заключение о возможности и условиях дальнейшей эксплуатации или о необходимости проведения ремонтных работ с повторным обследованием. Протокол утверждается руководителем предприятия (организации).

Комплексное обследование технического состояния независимо от года выпуска подъемников должно проводиться в обязательном порядке после:

окончания установленного заводом-изготовителем гарантийного срока эксплуатации;

восстановления в результате аварии;

капитального ремонта;

устранения обнаруженных дефектов вышки (мачты).

Для выполнения работ по обследованию предъявляется подъемник в технически исправном состоянии, прошедший техническое обслуживание, очищенный от грязи, продуктов коррозии, отслоений краски. Окраска подъемника перед обследованием не допускается (подъемник красится после обследования, если рекомендуется к даль-

¹ Указами Президента Российской Федерации от 09.03.04 № 314 и от 20.05.04 № 649 функции Федерального горного и промышленного надзора России (Госгортехнадзора России) переданы Федеральной службе по экологическому, технологическому и атомному надзору (Ростехнадзору). Ростехнадзор не выдает лицензии на подготовку и аттестацию персонала. (Примеч. изд.)

нейшей эксплуатации). Подъемник, подлежащий обследованию, должен иметь Паспорт и Инструкцию по эксплуатации. При отсутствии данных документов необходимо обратиться в специализированную организацию в целях разработки их дубликатов.

Для проведения обследования подъемников необходимо иметь: настоящую Инструкцию;

технические условия на капитальный ремонт обследуемой модели подъемника, в которых содержатся значения предельных отклонений размеров деталей и узлов подъемника (см. приложение 4 настоящей Инструкции);

оборудование и инструмент, необходимый для выполнения работ (см. приложение 2).

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТ

При проведении обследования подъемника работы должны выполняться в такой последовательности (рис. 2.1):

экспертиза документации на подъемник и условий его эксплуатации; визуальный осмотр состояния металлоконструкций подъемника; диагностика технического состояния металлических конструкций средствами неразрушающего контроля;

осмотр и диагностика состояния механизмов, приводов, электро-, гидро- и пневмооборудования, вертлюгов, элеваторов, штропов, крю-коблоков, талевых блоков, кронблоков, канатов, приборов и устройств безопасности, кабины машиниста и других узлов подъемника;

проверка работы подъемника на холостом ходу;

проведение статических испытаний;

проверка работы приборов безопасности;

составление протокола, содержащего заключение по дальнейшему использованию подъемника (рекомендуемая форма протокола представлена в приложении 1).

Работы могут быть прекращены на любой стадии обследования. В этом случае составляется протокол, в котором указываются причины, исключающие возможность дальнейшей эксплуатации подъемника (отсутствие Паспорта, невосстанавливаемость металлических конструкций и пр.).

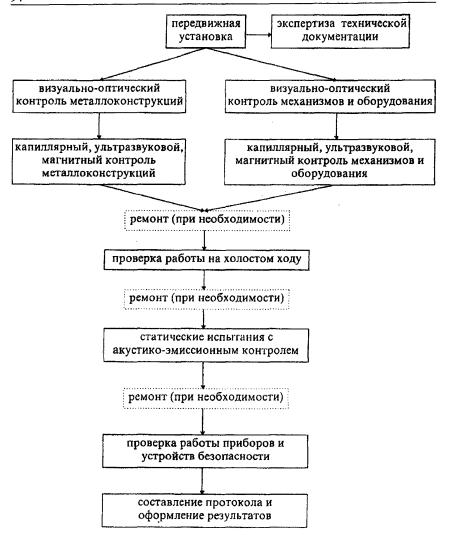


Рис. 2.1. Порядок технического диагностирования передвижных установок

После проведения необходимых работ по устранению дефектов, обнаруженных на стадии диагностики технического состояния металлоконструкций, навесного и другого оборудования, проводится оценка качества устранения дефектов с составлением протокола.

2.1. Экспертиза технической документации на подъемник и условий его эксплуатации

При экспертизе технической документации (см. п. 1 приложения 1) рассматривается Паспорт подъемника, содержащий сведения о технических характеристиках, проведенных технических освидетельствованиях, ремонтах подъемника, реконструкции и замене отдельных его элементов и узлов, условий безопасной эксплуатации подъемника.

Кроме того, подлежат экспертизе:

паспорта на комплектующие изделия;

инструкция по эксплуатации (если она не является частью паспорта);

все имеющиеся акты и протоколы по ремонтам и изменениям в конструкции (если они не включены в паспорт);

технические условия на поставку.

В случае если на подъемнике в течение эксплуатационного периода проводились ремонты металлоконструкций с применением сварки либо замена узлов металлоконструкций, в Паспорте должны содержаться сертификаты на металл, из которого изготовлены вновь установленные элементы, данные о сварочных электродах и сварщике, выполнявшем эти работы, методах и результатах проверки качества сварочных работ.

Результаты экспертизы технической документации отражаются в Протоколе технического состояния подъемника (см. приложение 1).

Ответственность за достоверность представляемых данных несет владелец подъемника.

Замечания, выявленные при экспертизе документации и требующие устранения, отражаются в Ведомости дефектов (приложение 3).

2.2. Визуальный осмотр подъемника

Визуальный осмотр должен выполняться при установке подъемника в рабочее положение. Осмотр мачты следует проводить на

специальном стенде (см. приложение 8). При этом основное внимание уделяется металлоконструкциям, тормозной системе лебедки, канатам талевой системы и оттяжкам. Определяется состояние (с использованием необходимых замеров) опорной рамы, мачты, мест крепления растяжек к мачте, транспортной базы, балконов для работы со штангами и трубами и пр. Выявленные дефекты и отклонения фиксируются в Ведомости дефектов (см. приложение 3). Обращается внимание на изгиб балок и ферм, скручивание балок, изгиб осевых линий мачты и др.

Замеры выполняются с использованием металлической струны, поверенной металлической линейки, штангенциркуля, теодолита и т.п. (см. приложение 2).

Фактические значения отклонений конструкции от прямолинейности, изгиба стержней, изгиба и скручивания балок и пр. сравниваются с предельно допустимыми величинами, приведенными в приложении 4. Осмотр металлических конструкций выполняется в соответствии с типовыми Картами осмотра подъемника (см. приложение 5).

Последовательному визуальному осмотру подлежат все нагруженные узлы и их соединения.

К возможным характерным дефектам металлоконструкций подъемников, возникающим в процессе эксплуатации, относятся следующие:

изгибы, смятия и другие виды деформации, отклонения положения узлов от проектных;

разрушение элементов вследствие коррозии;

разрушение (вздутие) элементов замкнутого сечения вследствие скапливания и замерзания в них воды;

видимое разрушение сварных швов и ослабление болтовых соединений;

образование трещин в элементах и их соединениях;

выработка (износ) отверстий шарнирных соединений.

Устанавливаются отклонения размеров и форм от проектных. Полученные результаты сравнивают с допустимыми (предельными) значениями и в случае их превышения вносят соответствующие данные в Ведомость дефектов (см. приложение 3).

Допустимые отклонения принимаются в соответствии с данными, приведенными в приложении 4.

Трещины возникают чаще всего в местах концентрации напряжений, вызываемых резким изменением сечения элементов. К типичным концентраторам напряжений относятся:

элементы с резким перепадом сечений и отверстия;

места окончания накладок, ребер, проушин, раскосов;

места пересечения сварных швов, прерывистые швы;

перепады в толщинах свариваемых «встык» листов;

технологические дефекты сварных швов (подрезы, наплывы, незаваренные кратеры, резкие переходы от наплавленного металла к основному, неметаллические включения и др.).

При осмотре сварных швов и мест концентрации напряжений целесообразно применять оптические средства, например лупу с 6—10-кратным усилением (см. приложение 2), а также другие средства и методы обнаружения и измерения трещин, например капиллярный метод, и т.д. (см. приложение 7). Сведения о всех обнаруженных трещинах фиксируются в Ведомости дефектов (см. приложение 3).

Места возможного образования трещин должны быть очищены от грязи, ржавчины, смазочных материалов, отслоений краски, а при необходимости — зачищены до блеска.

В замкнутых коробчатых конструкциях (балки аутригеров, узлы опорной рамы, мачты и пр.) при выявлении коррозионного поражения металла определяется остаточная толщина металла с использованием ультразвукового толщиномера (см. приложение 2).

Болтовые соединения осматриваются, болты обстукиваются молотком массой не менее 500 г (проверяется плотность посадки), затяжка проверяется ключом. Все болты и гайки необходимо стопорить (шплинтами, пружинными шайбами и пр.).

Все выявленные дефекты регистрируются в Ведомости дефектов, а результаты обследования отмечаются в Протоколе (см. приложение 1).

Если выявленные дефекты устранимы и не препятствуют проведению статических испытаний подъемника, то следует приступить к следующему этапу обследования.

При выявлении дефектов металлоконструкции, при которых нагружение подъемника испытательными грузами опасно, обследование прекращается. Оно возобновляется только после замены узла или проведения ремонта.

2.3. Диагностика технического состояния металлических конструкций средствами неразрушающего контроля

Целью проведения диагностики металлоконструкций средствами неразрушающего контроля (НК) является оценка технического состояния и установление возможности безопасной эксплуатации подъемника. Для выявления поверхностных и подповерхностных трещин и уточнения их размеров рекомендуется применять капиллярные, магнитные и другие методы дефектоскопии (приложение 7).

В качестве одного из основных методов неразрушающего контроля используется акустико-эмиссионная диагностика (АЭ), позволяющая выявить в металлоконструкциях подъемника зарождающиеся и развивающиеся дефекты типа усталостных трещин (в том числе и скрытые) и не допускать разрушения металлоконструкции. Акустико-эмиссионная диагностика применяется совместно со статическими испытаниями подъемника и практически обеспечивает безопасность их проведения.

Выполняется акустико-эмиссионная диагностика технического состояния металлоконструкций подъемника по методике, изложенной в приложении 6.

Акустико-эмиссионная диагностика металлических конструкций подъемников должна обязательно выполняться в следующих случаях: выработан нормативный срок службы;

металлические конструкции содержат узлы и элементы, отремонтированные с применением сварочных работ;

элементы металлоконструкции имеют усталостные трещины, подвержены коррозии (испытания проводятся до и после ремонта узла); металлоконструкции имеют узлы и элементы, подверженные в

процессе эксплуатации правке, имеющие остаточные деформации; по решению эксперта, проводящего работы по обследованию

по решению эксперта, проводящего работы по обследованию подъемника;

при комплексном плановом техническом обследовании подъемника.

По результатам акустико-эмиссионной диагностики металлоконструкций подъемника составляется отдельный Акт (приложение 6.1. АЭ), а основные результаты испытаний отражаются в Протоколе (приложение 1).

- 2.4. Оценка технического состояния механизмов, приводов, лебедок, трансмиссии, электро-, гидро-, пневмооборудования, навесного оборудования, приборов и устройств безопасности, кабины машиниста, балкона верхового рабочего и других узлов
- 2.4.1. Оценка технического состояния всех механизмов, оборудования, приборов и устройств безопасности подъемника осуществляется путем их внешнего осмотра, проведения проверки работы на холостом ходу и диагностирования средствами неразрушающего контроля.
- 2.4.2. Наиболее характерными повреждениями механизмов, возникающими в процессе эксплуатации, являются следующие:

видимые следы физического износа, изменение геометрических размеров и трещины в крюках, корпусах редукторов и тормозных шкивах, элеваторах и штропах, повреждения рабочей поверхности зубчатых колес, звездочек;

износ рабочих поверхностей подшипников качения, приводящий к увеличенному зазору, разрушение сепаратора и элементов качения;

ослабление посадки полумуфт на валах и пальцах в гнездах, износ элементов муфт, механизмов передач, цепей;

остаточные деформации и излом пружин;

износ рабочих поверхностей барабанов лебедок, канатных и тормозных шкивов, износ тормозных колодок, рабочих поверхностей элеваторов, шарнирных соединений и узлов, механических ключей и клиновых захватов труб;

трещины, сколы блоков, деформация тормозных лент и валов.

Осмотр и замеры выполняются в соответствии с Картой осмотра (приложение 5). Оценка состояния механизмов выполняется в соответствии с техническими условиями на капитальный ремонт обследуемой модели подъемника, а при их отсутствии используются данные, приведенные в приложении 4.

Если для оценки технического состояния механизма недостаточно проверки его работы на холостом ходу и осмотра с использованием снятия смотровых крышек, то этот узел подъемника необходимо разобрать, промыть и провести диагностику технического состояния его деталей. К таким узлам, например, относятся сложные коробки передач, пневмо- и гидроаппаратура.

2.4.3. Гидро-, пневмооборудование подъемника должно быть проверено на соответствие его технической документации, а оценка его технического состояния должна проводиться при работе на холостом ходу и под нагрузкой.

При необходимости согласно требованиям соответствующих инструкций выполняется опрессовка отдельных узлов (трубопроводов, гидроцилиндров и т.п.), проверка настройки предохранительных клапанов.

При осмотре обращается внимание на:

состояние шлангов, трубопроводов, муфт, креплений, уплотнительных колец и прокладок;

отсутствие утечки рабочей жидкости (воздуха);

состояние мест крепления гидроцилиндров (деформация, износ, люфт, коррозия).

- 2.4.4. Полная разборка редукторов, коробок и т. д., а также гидро- и пневмооборудования является обязательной, если поводом для диагностирования является выработка машиной своего ресурса.
- 2.4.5. Электрооборудование подъемника должно быть подвергнуто осмотру в соответствии с инструкцией или руководством по его эксплуатации в следующем порядке:

проверить состояние реле, магнитных пускателей, рубильников; при этом оценить качество контактов, наличие пригаров, легкость хода подвижных частей, степень нажима контактов, надежность крепления выводов, затяжку крепежных элементов клемм;

проверить состояние выпрямителей, пускорегулирующих сопротивлений, электронагревателей, звуковых и осветительных приборов;

проверить техническое состояние электродвигателей, в частности износ контактных колец, щеток и щеткодержателей, надежность крепления электродвигателя и токоотводных проводов, состояние изоляции, величины перемещений пальцев щеткодержателей, при необходимости замерить сопротивление изоляции обмоток;

проверить состояние изоляции всех кабелей, проводов, электрических цепей и надежность их крепления к клеммным наборам;

проверить сохранность элементов взрывозащиты электрооборудования, в том числе светильников.

2.4.6. Канаты, блоки, грузозахватные органы, приборы безопасности, кабина машиниста и другие узлы подъемника обследуются в соответствии с Картой осмотра (см. приложение 5).

При этом учитываются требования Инструкции по эксплуатации подъемника.

Для обследования крюкоблоков, крюков, кронблоков, талевых блоков, элеваторов, штропов и вертлюгов применяются неразрушающие методы контроля.

Предпочтительными являются ультразвуковой, капиллярный и магнитопорошковый методы. Для выявления дефектов в данных узлах с использованием методов неразрушающего контроля рекомендуется руководствоваться утвержденными Миннефтепромом СССР документами РД 39-12-1150—84 (20.08.84 г.), РД 39-12-960—83 (14.12.83 г.), РД 39-12-1224—84 (14. 01. 85 г.) и РД 39-0147014-527—86 (14.03.86 г.) [17—20].

Все выявленные недостатки заносятся в Ведомость дефектов.

2.5. Проверка работы подъемника на холостом ходу

Проверка работы подъемника на холостом ходу производится при поднятой и раздвинутой мачте. Причем сам процесс подъема также является объектом проверки, в частности, проверяется плавность подъема, отсутствие резких перемещений со скоростью, большей скорости подъема при прекращении подачи жидкости в домкраты, одновременность работы домкратов (если их 2). Проверяется работа гидроаутригеров на плавность и отсутствие утечек.

Проверка работы подъемника на холостом ходу выполняется без груза на крюке или с грузами не более 0,3 от номинальной нагрузки $(Q_{_{\rm H}})$. При проверке работы подъемника (в зависимости от модели) на холостом ходу определяют пусковые качества двигателя (время, затраченное на пуск холодного и прогретого двигателя при пробных запусках), проверяется качество работы трансмиссии, гидронасосов, гидромоторов, гидро-, пневмо- и электросистем, распределителей, клапанов и электроаппаратуры, проверяется качество намотки талевого каната, работа тормозов, работа узлов и механизмов (прослушивание шумов, стуков, обнаружение искрений, течи и др.).

Качество работы узлов и механизмов проверяют поочередным включением их при работающем двигателе. При этом устанавливают исправность механизмов, правильность и надежность включения и выключения узлов и механизмов, обеспечение монтажной жесткости

[©] Оформление. ЗАО НТЦ ПБ, 2010

соединения узлов (секций мачты, редукторов и лебедок подъемника и т.п.), отсутствие ослабления болтовых и прочих соединений, проверяется правильность регулировки узлов и механизмов, исправность действия смазочных устройств, отсутствие или наличие течи рабочей жидкости гидросистемы, наличие масла в редукторах, герметичность пневмосистемы.

Выявленные дефекты, относящиеся к неисправности подъемника, отмечаются в Ведомости дефектов (приложение 3) и подлежат устранению.

Если выявленные дефекты затрудняют проведение статических испытаний подъемника, то обследование должно быть приостановлено для устранения дефектов.

2.6. Проведение статических испытаний

Статические испытания подъемника проводятся при отсутствии выявленных дефектов, снижающих безопасность эксплуатации подъемника, а при их обнаружении только после устранения этих дефектов.

Перед проведением испытаний мачта подъемника согласно Инструкции по его эксплуатации должна быть отцентрирована и закреплена силовыми и ветровыми оттяжками. Максимальное смещение оси талевого блока относительно оси приложения нагрузки не должно превышать 50 мм.

Статические испытания подъемника проводятся нагрузкой, на 25 % превышающей его грузоподъемность. Работа должна проводиться на специально созданной испытательной площадке, оборудование которой (см. приложение 8) позволяет плавно воспроизводить и фиксировать требуемые нагрузки на подъемник с расстояния, превышающего высоту мачты на 10 м.

Указанное расстояние ограничивает зону вокруг подъемника, в которой запрещено находиться в процессе его нагружения. Запрещается проводить статические испытания подъемника над устьем ремонтируемой скважины. При проведении статических испытаний запрещено также крепление неподвижной ветви талевого каната на устье скважины.

Контроль нагрузки ведется по индикатору веса, оттарированному с учетом диаметра каната, испытательной нагрузки и КПД талевой системы.

В процессе испытаний производится измерение отклонений мачты от вертикали (отвесом или теодолитом) и измерение величины прогиба элементов мачты (нивелиром). Остаточная деформация элементов мачты не допускается, а ее осадка должна удовлетворять предъявляемым требованиям.

По статическим испытаниям составляется отдельный Акт (приложение 6.1. АЭ), а результаты испытаний отмечаются в Протоколе (см. приложение 1). При проведении статических испытаний необходимо совместить нагружение подъемника с акустико-эмиссионным контролем состояния металлоконструкции. Это обеспечит безопасность проведения испытаний.

2.7. Проверка работы приборов и устройств безопасности

На этом этапе сначала проверяется работоспособность всех ограничительных и предохранительных механизмов (ограничитель высоты подъема крюкоблока, подъема и опускания мачты и пр.), указателей грузоподъемности, работоспособность блокировочных и других устройств безопасности согласно Инструкции по эксплуатации подъемника.

Необходимо особо акцентировать внимание на проверке ограничителя высоты подъема, для чего крюкоблок поднимается на максимальной скорости, а затем, после срабатывания ограничителя высоты, крюкоблок должен остановиться на расстоянии не менее 1,5-1,2 м от нижней плоскости кронблока.

Выявленные дефекты отражаются в Ведомости дефектов.

По проверке работы приборов и устройств безопасности составляется отдельный Акт, а основные результаты испытаний отражаются в Протоколе (см. приложение 1).

2.8. Периодичность, объемы технического обслуживания и обследований, порядок их оформления

Результаты обследования отражаются в Протоколе (см. приложение 1), содержащем заключение об условиях дальнейшей эксплуатации подъемника с обязательным указанием срока повторного обследования, но не позднее чем через 3 года. Протокол должен содержать перечень мероприятий по обеспечению безопасности

дальнейшей эксплуатации подъемника, рекомендации по устранению выявленных дефектов. При необходимости проводится повторное обследование подъемника после устранения выявленных дефектов. В этом случае допускается составлять Протокол после заключительного обследования.

Для подъемников с истекшим сроком службы, как правило, рекомендуется ежегодное проведение полного технического обследования, а также сокращение вдвое сроков между очередными техническими обслуживаниями, предусмотренными технической документацией на полъемник.

Протокол обследования подъемника с Актами и Ведомостью дефектов должен храниться с Паспортом подъемника.

Учитывая отечественный и зарубежный опыт, следует кроме рассматриваемого комплексного обследования проводить и другие обследования с меньшими объемами работ и с большей частотой. Такой подход позволяет своевременно выявлять и ликвидировать различные технические неполадки и дефекты, что значительно снижает вероятность аварий и травматизма. Поэтому рекомендуется в инструкции по эксплуатации подъемника иметь раздел с соответствующими указаниями. Объем и периодичность осмотров и обследований в этом случае обусловливаются собственным опытом предприятия-потребителя, рекомендациями фирмы-изготовителя и учетом одного или совокупности нескольких из следующих факторов: окружающая среда, количество нагрузочных циклов, требования регулировок, неэффективность работы оборудования, история оборудования (время эксплуатации, испытания, ремонты) и т.д.

В качестве одного из вариантов приведен следующий пример, в котором в зависимости от объема работ приняты четыре категории обследования полъемника.

I категория — проверка оборудования в процессе его эксплуатации в целях выявления сбоев в работе посредством методов органолептики (прослушивание на наличие шумов и стуков, обнаружение течи, искрения, запахов гари и т. д.).

II категория — проверка согласно I категории плюс выявление коррозионных поражений, деформаций, повреждений, отсутствующих или незакрепленных (разболтавшихся) деталей, видимых трещин, наличия смазки, степени наладки оборудования и др.

III категория — проверка согласно II категории плюс частичное обследование методами неразрушающего контроля доступных наиболее нагруженных элементов подъемника, частичный демонтаж оборудования в целях получения доступа и выявления степени износа отдельных деталей, узлов и т. д.

IV категория — проверка и частичное обследование согласно III категории плюс дальнейшее обследование согласно требованиям и в последовательности настоящей Инструкции, т. е. полное комплексное обследование.

Примерная периодичность и объем обследования для отдельных узлов подъемника приведены в табл. 1.

Критерии приемки для отдельных узлов и самого подъемника в целом рекомендуется устанавливать исходя из собственного опыта и рекомендаций изготовителя.

Изношенное в разной степени оборудование, не удовлетворяющее установленным приемочным критериям, не следует допускать к эксплуатации даже с уменьшением максимально допустимых нагрузок. Это можно делать только тогда, когда был проведен анализ согласно тре-

Таблица 1 Периодичность и объем обследования технического состояния передвижных установок для ремонта скважин (примерный вариант)

№ п/п	Наименование оборудования, узла, элемента конструкции подъемника	Ежеднев- но	Ежене- дельно	Один раз в полу- годие	Не реже одного раза в 3 года
1	Соединительные муфты	I категория	II категория	III категория	IV категория
2	Штропы эксплу- атационные	I категория		III категория	IV категория (или чаще)
3	Элеваторы	II категория		III категория	IV категория (или чаще)

бованиям соответствующей технической документации. Отчеты и протоколы по принятым формам для разных категорий проверок (обычно III и IV) следует включать в техническую документацию на оборудование.

3. МЕРЫ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ

При проведении работ по техническому диагностированию подъемника должны соблюдаться требования безопасности, изложенные в соответствующих инструкциях по эксплуатации и техническому обслуживанию конкретного оборудования и инструмента, а также в Правилах безопасности в нефтяной и газовой промышленности, утвержденных Госгортехнадзором России 14.12.92 г.1

Для осмотра подъемника на высоте более 0,75 м следует пользоваться площадками, которые оборудуются лестницами с перилами.

При осмотрах и обследовании металлоконструкций могут иметь место работы на высоте, измерительные и слесарные работы, работы с применением переносного освещения, электроинструмента и специальных дефектоскопов, толщиномеров и пр. В связи с этим возможны случаи травматизма по причинам:

падение человека с высоты;

ушиб инструментом, упавшим с высоты;

поражение электрическим током.

Запрещается вести работы без предохранительного пояса при обследовании на высоте, при отсутствии перекрытия или рабочего настила и вне лестниц, имеющих ограждение.

Предохранительный пояс во время осмотра металлоконструкций необходимо закрепить за основание элемента ферм (пояса, раскосы, стойки). Приборы и инструмент должны находиться в специальной сумке с ремнем, перекидываемым через плечо, чтобы при перемещении по конструкции руки были свободны.

Во избежание случайного падения инструмент и приборы при работе должны быть привязаны.

¹ Действуют Правила безопасности в нефтяной и газовой промышленности (ПБ 08-624—03), утвержденные постановлением Госгортехнадзора России от 05.06.03 № 56, зарегистрированным Минюстом России 20.06.03 г., рег. № 4812. (Примеч. изд.)

Запрещается одновременно находиться на разной высоте подъемника рабочим, не занятым выполнением общей работы. При проведении общей работы следует четко координировать действия каждого рабочего.

Напряжение питания переносного освещения и электроинструмента не должно превышать 12 В.

Запрещается осмотр металлоконструкций в грозу, сильный снегопад, при тумане с видимостью на расстоянии менее 50 м, гололедицу, ливень, в темное время суток, при ветре со скоростью более 15 м/с и при температуре воздуха ниже минимума, установленного для данного района.

	(форма рекомендуемая)
	рждаю изации (предприятия)
(подпись)	(Ф.И.О.)
«»	199_ r.
	ίΠ
ПРОТОКОЛ технического состояния подъемника для бурс текущего ремонта скважи	•
модели зав. № инв	. №
r «	» 199_ г.
Комиссия в составе:	
Председателя	полномочия)
ЧЛЕНОВ(должность, Ф.И.О., с	пециальность)
провели обследование технического состо	яния подъемника (его
узла), модели, регистр. №,	
TDIMARITEMATIES, periorip. No.	
принадлежащего(владелец подъе	мника)
изготовленного	
(изготовитель под в 19_ году, введенного в эксплуатацию в 1	
1. Данные о подъемнике (из паспорта и дру	той документации)
(группа режима работы)	
(проводимые ремонты и замена основнь	іх узлов)

(основные технические данные)
(замечания эксплуатирующего персонала)
(данные о металле)
2. Результаты диагностирования и обследования технического
состояния металлоконструкций
Метод неразрушающего контроля
(акустико-эмиссионный, ультразвуковой, капиллярный и т. д.)
Элементы и узлы, диагностируемые неразрушающим методом
контроля
Рама шасси
(трещины, деформации, прогибы и т. д.)
Опорные узлы (в том числе гидродомкратные опоры)
(трещины, деформации, прогибы и т. д.)
Опорная рама мачты
(трещины, деформации, прогибы и т. д.)
Мачта
(трещины, деформации, прогибы и т. д.)
Балкон верхового рабочего
(трещины, деформации, прогибы и т. д.)
Оборудование для установки труб и штанг
(трещины, деформации, прогибы и т. д.)
Кронолок
Кронблок
Опорная стойка мачты (трещины, деформации, прогибы и т. д.)
Шарнирные соединения
Болтовые соединения
(трещины, ослабление затяжки)
(ipatama) outdonoille damaid)
3. Работа подъемника на холостом ходу
Механизмы передвижения
Основная лебедка
Тартальная лебедка

[©] Оформление. ЗАО НТЦ ПБ, 2010

О СВОТИТК ДОКУМЕНТОВ
Вспомогательная лебедка
Механизм подъема мачты
Механизм выдвижения мачты
Аутригеры
Рычаги и пелали управления
Болтовые соединения (крепления)
Места течи рабочей жидкости (воздуха, масла)
Прочие замечания
4. Результаты обследования механизмов, агрегатов и навесного оборудования
4.1. Механизмы подъемника
Основная лебедка
Тартальная лебедка
Вспомогательная лебедка
Канат основной лебедки
Канат тартальной лебедки
Канат вспомогательной лебедки
Прочие канаты и оттяжки
Талевая система (кронблок, талевый блок, крюкоблок) Крюки
Механизмы подъема мачты
Механизмы выдвижения мачты
Аутригеры
Прочие механизмы
4.2. Гидрооборудование
Бак гидросистемы
Гидронасосы
Гидромоторы
Гидроцилиндры
Гидрораспределители
Гидроклапаны
Гидролинии
Гидромуфты

Прочее гидрооборудование			
Места течи			
4.3. Пневмосистемы			
Компрессор			
Ресивер			
Пневмоклапаны			
Пневмораспределители			
Пневмокамеры			
Пневмомуфты			
Пневмолинии			
Прочее пневмооборудование			
Места утечек			
4.4. Электрооборудование			
Генератор			
Электродвигатели			
Магнитные пускатели			
Токосъемники			
Клемники			
Электропровода			
Прочее электрооборудование			
4.5. Кабина машиниста			
Жесткость крепления			
Остекление и утепление			
Оснащенность защитными устройствами			
4.6. Приборы безопасности			
Пульт контроля			
Датчик усилия			
Ограничитель высоты подъема крюка			
Ограничитель рабочих движений			
Блокировка			
Настройка предохранительных клапанов			
4.7. Прочие узлы подъемника			

·
иника
их
ЭВ

ПЕРЕЧЕНЬ НЕОБХОДИМЫХ ПРИБОРОВ, КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНОГО ИНСТРУМЕНТА, АППАРАТУРЫ И ОБОРУДОВАНИЯ

1. Набор грузов для нагружения подъемника при статических испытаниях массой 1,25*Q*н; 1,2*Q*н, 0,8*Q*н, 0,5*Q*н, где *Q*н — номинальная грузоподъемность или испытательный стенд.

Погрешность определения массы груза не должна превышать 2 % (при испытании на площадке эксплуатации подъемника количество грузов может быть сокращено).

- 2. Набор ключей и другого инструмента для разборки и сборки узлов крана (принадлежность крана).
 - 3. Лупа 6—10-кратная 1 шт.
 - 4. Рулетка металлическая длиной 10 м 1 шт.
 - 5. Линейка измерительная металлическая по ГОСТ 427-75.
 - 6. Линейка поверочная ШП-1-1600 по ГОСТ 8026-75¹.
- 7. Штангенциркуль ШЦ-II (0-160) и ШЦ-III (0-400) по ГОСТ 166-80².
 - 8. Угломер УП по ГОСТ 8026-75.
 - 9. Индикатор часового типа ИЧ 0-10 мм ГОСТ 577-68.
 - 10. Молоток (с массой головки 0,5 кг и 1 кг).
 - 11. Струна диаметром 1 мм, длиной 30 м.
 - 12. Толщиномер любой марки, например УТ-80, УТ-93П.
 - 13. Оборудование для АЭ-диагностики (см. приложение 6).
 - 14. Ультразвуковой дефектоскоп УД 2-12, УЗД-МВТУ и др.
- 15. Магнитопорошковый дефектоскоп ПМФ-70, МД-50П, МД-600 и др.
 - 16. Специальный комплект аэрозолей типа СИМ.
 - 17. Феррозондовый дефектоскоп МД-42К и др.
 - 18. Обтирочный материал.
 - 19. Фонарь.
 - 20. Тестер и т.п.
 - 21. Мел и керосин.

¹ Действует ГОСТ 8026—92 «Линейки поверочные. Технические условия». (*Примеч. изд.*)

² Действует ГОСТ 166-89 «Штангенциркули. Технические условия». (Примеч. изд.)

[©] Оформление. ЗАО НТЦ ПБ, 2010

ВЕДОМОСТЬ ДЕФЕКТОВ

подъемн	ика	
№	, выпуска 19	г.,
принадле	жащего	

Наименование сборочной единицы, элемента (детали), обозначение	Способ проверки и замера дефекта	Описание дефекта	Заключение (ремонтное решение)	
1	2	3	4	
Мачта, выдви- жная секция, верхний пояс	Визуально, цветная дефекто- скопия	Усталостная трещина длиной 50 мм, справа на верхнем поясе от сварного шва к центру	Разделать кромки под сварной шов, усилить наложением дополнительной накладки с двух	
	АЭ-диаг- ностика	АЭ-диагностика показала интенсивное развитие трещины	сторон. После ремонта дополни- тельно продиаг- ностировать АЭ-методом	

Ответственный:	(Ф.И.О.)
Члены:	(Ф.И.О.)
	(Ф.И.О.)

ДОПУСКИ НА МЕХАНИЧЕСКИЕ ПОВРЕЖДЕНИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ И УЗЛОВ ПОДЪЕМНИКА

1. Общие положения

Узел (элемент) металлоконструкции подъемника подлежит ремонту (выбраковке) при наличии:

резкого изгиба в месте деформации элемента, состоящего из отдельных профилей (уголков, швеллеров и пр.);

трещин в полках или надрывов в результате аварии;

усталостных трещин в элементах несущих узлов;

технологических трещин после ремонта;

мест металлоконструкций, потерявших в результате коррозии более $10\,\%$ площади первоначального сечения.

Узел (элемент) металлоконструкций подлежит выбраковке, если: несущая способность после ремонта восстанавливается частично; выполнен из кипящей и (или) плохо свариваемой стали при наличии в нем дефектов, устранимых только с помощью сварки.

2. Допуски на механические повреждения

Допуски на механические повреждения основных металлоконструкций подъемника даны в табл. 4.1.

Допустимые отклонения формы основных элементов металлоконструкций подъемника даны в табл. 4.2.

Характерные дефекты деталей механизмов и узлов подъемника приведены в табл. 4.3.

Методы замера величин износа деталей и их предельные значения даны в табл. 4.4.

3. Нормы отбраковки канатов подъемников

Отбраковка канатов подъемников, находящихся в эксплуатации, должна проводиться согласно инструкции по эксплуатации подъем-

ника, составленной с учетом требований к стальным канатам, изложенных в Правилах безопасности в нефтяной и газовой промышленности, утвержденных Госгортехнадзором России 14.12.92 г. При отсутствии в инструкции по эксплуатации соответствующего раздела браковку канатов подъемника проводят согласно настоящему приложению. Для оценки безопасности использования канатов применяют следующие критерии:

характер и число обрывов проволок, в том числе наличие обрывов проволок у концевых заделок, наличие мест сосредоточения обрывов проволок, интенсивность возрастания числа обрывов проволок;

разрыв прядей; поверхностный и внутренний износ;

поверхностная и внутренняя коррозия;

местное уменьшение диаметра каната, включая разрыв сердечника; уменьшение площади поперечного сечения проволок каната (потери внутреннего сечения);

деформация в виде волнистости, выпуклости, выдавливания проволок и прядей, раздавливания прядей, заломов, перегибов и т.п.;

повреждения в результате температурного воздействия или электрического дугового разряда.

Отбраковку канатов, работающих со стальными и чугунными блоками, следует проводить, если:

одна из прядей каната оборвана или вдавлена;

канат деформирован (вытянут или сплющен) и его первоначальный диаметр уменьшился на 25 % и более;

число оборванных проволок на шаге свивки каната диаметром до $20\,$ мм составляет более $5\,$ %, а на канате диаметром свыше $20\,$ мм — более $10\,$ % от числа проволок в наружных прядях;

на канате имеется скрутка «жучок»;

в результате износа диаметр проволоки уменьшился на 40 % и более; на канате имеются следы пребывания в условиях высокой температуры (цвета побежалости, окалина) или короткого электрического замыкания (оплавление от электрической дуги);

коэффициент запаса прочности не соответствует указанному значению в п. 1.7.2 Правил безопасности в нефтяной и газовой промышленности.

Таблица 4.1

Определение износа или коррозии проволок по диаметру производится с помощью микрометра или иного инструмента, обеспечивающего аналогичную точность.

Канаты не должны допускаться к дальнейшей работе при обнаружении: коррозионной деформации, выдавливания сердечника, выдавливания или расслоения прядей, местного увеличения диаметра каната, местного уменьшения диаметра каната, раздавленных участков, повреждений в результате температурных воздействий или электрического дугового разряда.

Допуски на механические повреждения основных металлоконструкций подъемника

№ п/п	Повреждения	Предельные	Метод измерения
1	2	3	4
1	Кривизна δ_H мачты высотой H , мм	<i>H</i> - 700	Измерение в двух перпендикулярных плоскостях с помощью теодолита и реек
2	Кривизна δ_L мачты высотой L , мм	L - 700	Измерение (в двух перпендикулярных плоскостях) проводится с помощью струны, закрепленной в основании и оголовке мачты и линейки
3	Неперпендикуляр- ность δ _с оси мачты к оси шарнира, рад	<i>C</i> 400	Неперпендикулярность определяется как разность (сумма) углов наклона максимально поднятой мачты (из плоскости). Измерения проводятся с помощью теодолита

Окончание табл. 4.1

1	2	3	4
4	Разность диагона- лей поперечного сечения мачты (d_1-d_2) , мм		Непосредственное измерение, <i>В</i> — размер ширины поперечного сечения мачты
	1) в месте шарнир- ного соедине- ния, рис. 1	## ## ## ## ## ## ## ## ## ## ## ## ##	
	2) в других сечениях	B ± — 200	
5	Изменение размеров высоты и ширины поперечного сечения мачты, мм	<i>B</i> 350	Непосредственное измерение
6	Смещение осевых линий элементов решетки от проектной теометрической схемы, мм, рис. 2	±5	Непосредственное измерение
7	Кривизна элемента δ решетки длиной L между узлами, мм, рис. 3	L 600	Непосредственное измерение
8	Вмятины в тонкостенных элементах металлоконструкций, толщиной δ , мм, рис. 3		Непосредственное измерение
	глубина	0,58	
	длина	3δ	

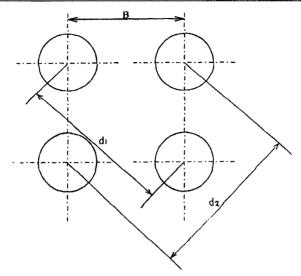
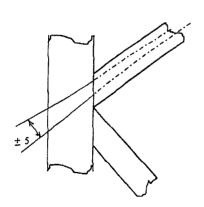
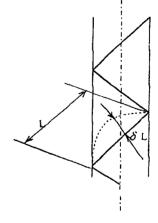




Рис. 1. Поперечное сечение мачты

Рис. 2. Смещение осевой линии решетчатой конструкции

Рис. 3. Деформация элемента решетчатой конструкции

Таблица 4.2 Допустимые отклонения формы основных элементов металлоконструкций подъемника

Отклонения	Эскиз	Значения отклонения, мм
1	2	3
Изогнутость балок и ферм		(f/L) < (2,5/1000) при $L < 2000$ (f/L) < (2,0/1000) при $L > 2000$
Скручивание коробчатых и двутавровых балок	E L A E	(f/H) > (5,0/1000)(L/1000) при $L < 2000$ (f/H) = (3,0/1000)(L/1000) при $2000 < L < 1000$
Скручивание стержней	B A C C	(f/B) < 0.01 (f/B) < 0.005 в местах примыкания
Перпендикулярность стенок и поясов коробчатых и двугавровых балок в любом сечении	H	(f/B) < (4/1000) (f/H) < (4/1000)
Неплоскостность стенок и поясов коробчатых и двутавровых балок	L de la constant de l	(f/L) < (1,0/1000) в местах стыкового сварного соединения стенок и поясов допускается $(f/L) < (5,0/1000)$

Продолжение табл. 4.2

1	2	3
Вогнутость (выпук- лость) стенок короб- чатых и двутавровых балок в сжатой зоне при отсутствии других швов, кроме поясных. Примечание. Количество вогнутостей (выпуклостей) на участке между сосед- ними диафрагмами не должно быть более одной	δ	(f/δ) < 1 при δ < 12 (f/δ) < 0,8 при δ < 12
Выпуклость поясов балок		у коробчатых $(f/a) < (10/1000)$ у двутавровых $(f/a) < (15/1000)$
Неперпендикуляр- ность диафрагм и ребер к стенкам и поясам коробчатых и двутавровых балок	f В нли Н	(f/B) < (4/1000) (f/H) = (4/1000)
Непараллельность торцов диафрагм и ребер	H2 B	(H1 – H2/B) < < (1,5/1000)
Неперпендикулярно- сть торцов диафрагм и ребер	B ↓ f	(f/B) < (1,5/1000)

[©] Оформление. ЗАО НТЦ ПБ, 2010

Окончание табл. 4.2

1	2	3
Вогнутость (выпук- лость) настилов по- воротных рам, оголо- вок порталов, рам лебедок в местах под оборудованием и др.	f S L	$(f/L) < (5/1000)$ $f < \delta$
Спиральная изогну- тость платформ, ого- ловок порталов, рам лебедок и др.	r D	(f/D) < (2/1000)
Непараллельность фланцев коробчатых балок. Примечание. После механической обработки неплоскостность поверхностей фланцев с размерами сторон до 1000 мм не должна быть более 0,4 мм (после сварки 1 мм), с размерами сторон свыше 1000 мм — 0,8 мм (после сварки 2 мм)	L 1 L 2	(L1 — L2/B) < < (1/1000) при B < 1000 (L1 — L2/B) < < (2,5/1000) при B > 1000
Изогнутость стержней между узлами ферм	r r	(f/L) < (1,5/1000)
Отклонение осевых линий решетчатых ферм от проектной геометрической схемы	f	f < 15

 ${\it Таблица}~4.3$ Характерные дефекты деталей механизмов и узлов подъемника

Наименование	Наименование дефектов, при наличии которых детали выбраковываются	Примечание
1	2	3
Подшипники	1. Ощутимые радиальные и осевые люфты 2. Выкрашивание, шелушение усталостного характера на беговых дорожках, шариках или роликах 3. Раковины, чешуйчатые отслоения коррозионного характера 4. Трещины, изломы 5. Цвета побежалости на беговых дорожках колец, шариках или роликах 6. Отрывы головок заклепок сепараторов, вмятины на сепараторах, затруднительное вращение шариков или роликов, поломка сепараторов 7. Выступы рабочих поверхностей роликов за торцы наружных колец подшипников	
Шестерни, зубчатые колеса и муфты	 Облом зубьев Трещины любых размеров и расположений Износы зубьев по толшине, заметные при осмотре Выкрашивание более чем на 30 % рабочей поверхности при глубине более 10 % толщины зуба 	Норму износа зубьев см. табл. 4.4
Червячное колесо	Износ зуба у вершины до толщины менее 1 мм	

1		
1	2	3
Детали со шли- цами	1. Сдвиг, смятие и обломы шлицев 2. Скручивание шлицев	
Детали со шпо- ночными паза- ми и шпонки	Смятие и сдвиги боковых поверхностей, заметные при осмотрах	
Валы и оси	1. Трещины любых размеров и расположений 2. Износ посадочных поверхностей под подшипники 3. Изгибы, заметные при осмотре 4. Вышеуказанные дефекты зубъев (вал шестерни), шлицев, шпоночных пазов и резъб	Посадочная поверхность признается изношенной в случае возможности прокручивания рукой внутреннего кольца подшипника относительно поверхности вала или ощутимого люфта при покачивании подшипника на валу
Детали с резьбой	1. Срывы более 2 ниток; сдвиги ниток 2. Значительные износы ниток, заметные при осмотрах 3. Износ граней под ключ	

1	2	3
Тормозные шкивы	1. Трещины и обломы, выходящие на рабочие и посадочные поверхности 2. Износы рабочих поверхностей глубиной более 2 мм и риски длиной более 5 мм 3. Радиальное биение шкива более 0,1 мм	·
Тормозные накладки (колодки)	1. Трещины и обломы, выходящие к отверстиям под заклепки 2. Износы по толщине до головок заклепок	Минималь- ная толщина накладки в средней час- ти не менее половины номинальной, трещины по краям не менее 2,5 мм
Корпуса редук- торов	1. Трещины любых размеров и расположений, выходящие на поверхности разъемов, посадочные поверхности отверстий и масляной ванны 2. Износ отверстий под подшипник	Отверстие признается изношенным в случае возможности прокручивания рукой наружного кольца подшипника в отверстии
Кабина, кожухи	Сквозная коррозия стенок	

1	2	3
Пружинные шайбы, стопорная проволока, шплинты	Выбраковываются независимо от технического состояния в случаях снятия при разборке	
Неметалличес- кие прокладки и уплотнения	Выбраковываются независимо от технического состояния	При удовлетворительном техническом состоянии допускается повторное использование манжетных уплотнений
Пружины	1. Изломы, трещины и расслоения 2. Остаточные деформации, нарушающие работоспособность сборочной единицы	
Барабаны ос- новной, тарталь- ной и вспомога- тельной лебедок	 Трещины любого характера и расположения Срез или износ гребня канавки по высоте не более ¹/₃ витка Износ ручья по профилю и глубине более 2 мм 	
Блоки (талевые, крюкоблоки, кронблоки)	1. Износ ручья по глубине более чем на 40 % радиуса ручья 2. Частичные обломы реборд 3. Трещины	
Канаты	 Обрывы одной и более прядей Обрывы проволок Износ каната 	

Окончание табл. 4.3

1	2	3
Грузоподъемные крюки	1. Трещины, надрывы и волосовины на поверхности у хвостовика (в месте перехода к нерезьбовой части) 2. Увеличение ширины зева более чем на 12 % проектной ширины 3. Уменьшение высот изнашиваемых частей более чем на 10 % проектных высот	
Штропы экс- плуатационные	1. Трещины, надрывы 2. Уменьшение высоты изнашиваемой части более чем на 10 % проектной высоты 3. Увеличение длины штропа более чем на 3 %	
Элеваторы	1. Трещины, задиры, остаточная деформация 2. Износ торцевой поверхности под замок более 2 мм 3. Уменьшение высоты проушины в месте соприкосновения со штропом более чем на 10 % проектной высоты	
Вертлюг	1. Трещины, надрывы, раковины 2. Толщина стенки отвода изношена более чем на 10 %	
Механизм для крепления не-подвижной ветви талевого каната	1. Трещины 2. Износ 3. Ослабление крепления 4. Вмятины, прогибы, искривления	

Остальные детали отбраковываются по признакам, влияющим на работоспособность.

[©] Оформление. ЗАО НТЦ ПБ, 2010

Таблица 4.4 Методы замера и допуски на износ деталей механизмов

Наименование узлов		Способ и место
и деталей	Допустимый износ	измерения износа
1	2	3
Зубчатые передачи редукторов	Допустимый износ зуба по делительной окружности (в % от первоначальной толщины): лебедки: передача в редукторе — 10 %; механизмы поворота и передвижения: передача в редукторе— 20 %, открытые передачи— 30 %. Ширина головки зуба не должна быть меньше 0,2 модуля. Появление трещин не допускается. Глубина ямок выкрашивания не должна быть больше 5 % толщины зуба	Замеры производятся штангензубомером или специальным шаблоном и щупом Остальное — непосредственный осмотр и измерения
Тормоза:	При уменьшении толщины стенок шкива на 25 % его первоначальной толщины шкив подлежит замене. Радиальное биение тормозного шкива не должно превышать 0,15 мм	Непосредственный осмотр и измерение

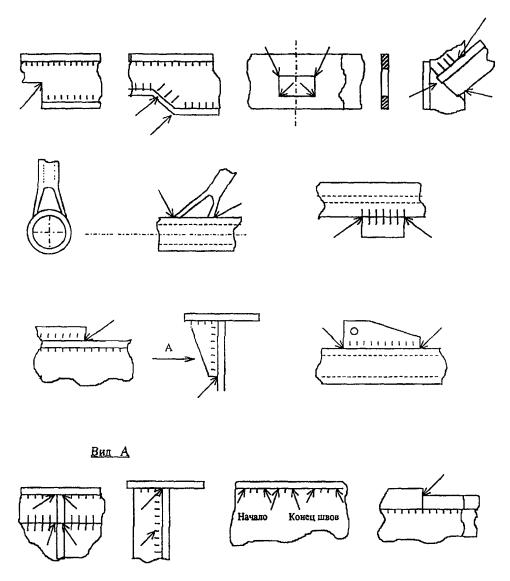
1	2	3
тормозные колодки	Износ тормозной колодки не должен превышать $\frac{1}{3}$ первоначальной толщины. Болты или закладные детали, крепящие тормозные колодки на ленте, не должны выступать за поверхность колодок	Непосредственный осмотр и измерение
	Износ не должен превышать 3 % первоначального диаметра	
Канатные блоки	Предельный износ поверхности ручья на глубину 40 % радиуса канавки	Непосредственный осмотр и измерение
Износ крюка в зеве не должен превышат 10 % первоначальной высоты и сечения		
Стяжные винты, болты и гайки	Не допускается экс- плуатация стяжных винтов, болтов и гаек с забитой или сор- ванной резьбой	

Окончание табл. 4.4

1	2	3
Цепные передачи A A A A A A A	При износе цепи в период ее заданного срока работы в приводе допускается увеличение шага звеньев не более 2 % для передач привода, имеющего скорость V > 10 м/с, и не более 3 % для остальных передач. До достижения этой величины допускается сокращение количества звеньев в замкнутом контуре в целях уменьшения провиса цепи f	Замеры производятся штангенциркулем (с базой более 300 мм) при натянутой ветви цепи. Выбирается мерный участок цепи с количеством звеньев 5—10 (в зависимости от величины шага цепи)

Приложение 5

КАРТА ОСМОТРА ПОДЪЕМНИКА


Типовые места металлоконструкций, механизмов и узлов отечественных и импортных подъемников, где возможно образование трещин, даны на рис. 5.1—5.9. Принятые условные обозначения, используемые в Карте осмотра подъемника, приведены в табл. 5.1. Осмотр подъемника выполняется в последовательности, изложенной на рис. 5.2 и в табл. 5.2 в соответствии с моделью подъемника.

Фрагменты диагностики состояния отдельных узлов подъемника приведены в табл. 5.3.

Таблица 5.1 Условные обозначения, принятые в картах осмотра подъемника

∞	Вмятины, прогибы, искривления
	Трещины в сварных швах
	Трещины в металле
I	Ослабление крепления
	Коррозия
	Износ
7	Характерные места образования трещин

[©] Оформление. ЗАО НТЦ ПБ, 2010

Рис. 5.1. Типовые места МК подъемника, где возможно образование трещин:

Вид А — пересечение швов, нет выреза в ребре

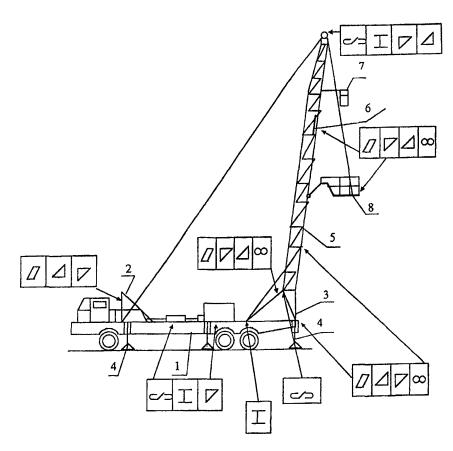


Рис. 5.2. Подъемник для капитального и текущего ремонта скважин: 1 — рама шасси; 2 — транспортная опора мачты; 3 — опора мачты; 4 — аутригеры гидравлические; 5 — опорная секция мачты; 6 — выдвижная секция мачты; 7 — балкон верхового рабочего; 8 — балкон для работы с трубами

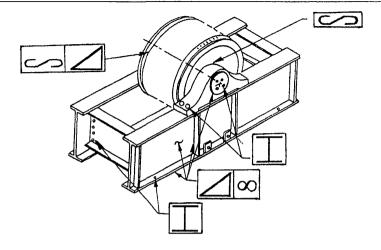


Рис. 5.3. Кронблок

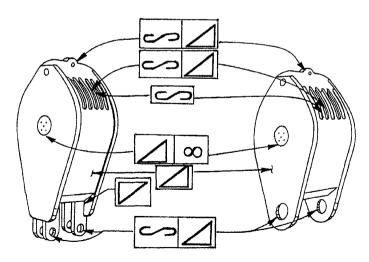


Рис. 5.4. Талевый блок

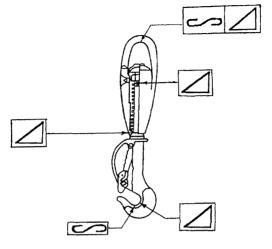


Рис. 5.5. Крюк

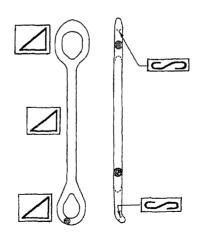


Рис. 5.6. Штроп эксплуатационный

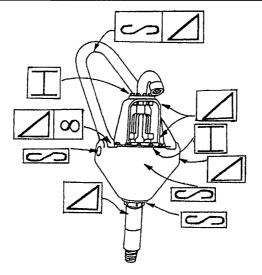


Рис. 5.7. Вертлюг

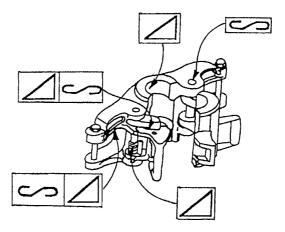


Рис. 5.8. Элеватор

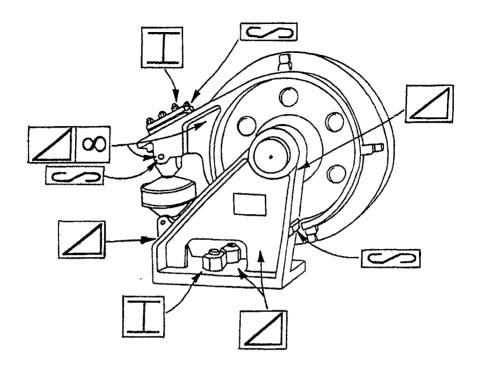


Рис. 5.9. Механизм для крепления неподвижной ветви талевого каната

Таблица 5.2 Карта осмотра подъемника

	карта осмотра подъемника			
- № поз.	Наимено- вание сборочной единицы	Зона осмотра	Метод контроля	Предпологаемый дефект
1	2	3	4	5
1	Шасси	Ходовая рама подъемника	Осмотр, лу- па, линейка, толщиномер, штангенцир- куль, АЭ-диагнос- тика	Разрыв балок, трещины в металле и сварных швах, остаточные пластические деформации, коррозия, ослабление крепления, износ
2	Опора мачты, аутригеры	Металл опоры, сварные швы балок аугригеров, зоны соединения аугригера с опорой, башмаки опор, вывешиванощее устройство опор (винты, гидродомкраты)	Осмотр, лу- па, линейка, струна, штан- генциркуль, толщиномер, простукива- ние болтов, АЭ-диагнос- тика	Отклонение от формы, остаточные пластические деформации, разрывы, трещины, коробление, коррозия, износ
3	Мачта телескопич- еская	Мачта (в целом), ее элементы, места соединения с рамой и гидроцилиндром. Места соединения опорной и выдвижной секции. Места крепления механизма выдвижения секций	Осмотр, лу- па, струна, линейка, рулетка, угломер, толщиномер, штангенцир- куль, АЭ- диагнос- тика	Изогнутость и скручивание коробчатых балок, неперпендикулярность и неплоскостность, выпуклость (вогнутость) стенок, отклонение осевых линий, трещины, деформации, износ, коррозия

1	2	3	4	5
4	Балкон для работы с трубами и штангами и другие глошадки обслужива-ния	Плошадки в целом и их элементы, пояса, раскосы, стойки решетки, места соединения с секцией мачты	Осмотр, лупа, струна, рулет- ка, линейка, угломер, тол- щиномер, штангенцир- куль, прос- тукивание болтов	Кривизна поясов и элементов, пластические деформации, трещины, скручивание, износ отверстий посадочных мест, ослабление крепления, коррозия
5	Транспорт- ная опора мачты	Элементы стойки, места соединения, места крегления	Осмотр, лупа, линейка, штангенцир-куль, АЭ-ди-агностика	Изогнугость, пластические деформации, трещины, коррозионный износ
6	Механизмы	Редукторы (корпу- са, валы, зубчатые колеса, цепи, звез- дочки, подшипни- ки), тормоза, муф- ты, места крепле- ния, барабаны	Осмотр, линейка, шупы, штангенцир- куль, шаб- лоны, зубо- мер и др.	Излом корпуса, зубьев, трещины, износ, увеличенный зазор, выкрашивание зуба
7	Грузоподъем- ные устрой- ства: основ- ная лебедка; тартальная лебедка; вспо- могательная лебедка	Канаты, блоки, крюк, крюк, крюковая обойма, ковш каната, места соединения, штропы, вертлюг	Осмотр, линейка, штангенцир- куль, шаб- лон	Износ, обрыв ниток каната, коррозия, трещины, износ и излом блоков, износ крюка, трещины
8	Кабина машиниста (рабочее место)	Крегление кабины, каркас, дверь, замок, стекла, педали и рычаги управления, пульт и приборы, обшивка, отопитель	Осмотр, линейка	Ослабление крепления, деформация, трещины, пробоины, вырывы, вмятины, коррозия

Окончание табл. 5.2

1	2	3	4	5
9	Гидрообо- рудование	Гидронасос, гидроцилиндры, гидролинии, гидроклапаны, распределители, гидромуфты, реле давления, гидрозамки, обратные клапаны, манометры и т. д.	Осмотр, выполнение замеров	Течь, поломки, де- формация и трещи- ны в гидролиниях, неисправность, износ мест крепле- ния, трещины
10	Пневмо- система	Компрессор, ресивер, пневмолинии, пневмомуфты, распределители, клапаны, цилиндры, манометры и т. д.	Осмотр, выполнение замеров	Течь, поломки, деформация трубопровода, неисправность механизмов, трещины, износ манжет и сальников
11	Электро- система	Генератор, двигатель, электропроводка, реле, магнитные пускатели, токосъемник, сопротивления, пульт, взрывобезопасные оболочки	Осмотр, замеры сопротив- ления	Поломка, разру- шение изоляции, износ и пригорание контактов, неисправность
12	Приборы безопас - ности	Узлы ограничи- телей рабочих движений, узлы указателей, узлы блокировок	Осмотр, выполнение замеров	Поломка узлов, из- нос соединений, ослабление соеди- нений, неисправ- ность
13	Прочие узлы		Осмотр	Неисправность, износ, ослабление крепления и т. д.

Таблица 5.3

Фрагменты диагностики узлов металлоконструкций подъемника

Узел	Контро- лиру - емая зона	Возможный дефект	Эскиз	Метод диаг- ностики	Пре- дел	Возмож- ность дальней- шего исполь- зования	Реко- мен- дации
1	2	3	4	5	6	7	8
1. Ходо- вая рама (рама шасси)	Задняя балка опоры	Трещины в сварных швах: соединения нижнего пояса со стенкой; в местах окончания накладки; в вертикальной стенке; соединение ребра с нижним поясом	y _{3en 1} → 5 Buộ A	Визу - альный осмотр, АЭ-диаг- ностика		Не допус- кается	Ре- монт
		Трещины втулки под ось крепления к раме		Визу- альный осмотр при снятом флюгере	_	Не допус- кается	Заме- на втулки

-(1
¢	2
č	
- 2	
	τ
	Ì
	÷
VITTI	•
-	*
7	
4	
ς	_
þ	×
ઃ	<
L.	5
Trusta	Ś
r	٠
ì	
•	1
•	•
C	
F	÷

1	2	3	4	5	6	7	8
2. Ходо- вая рама (рама шасси)	Задняя (конце- вая) балка	Трещины в сварных швах: соединение вертикальных листов проушины с нижним листом и стенкой концевой балки; соединение вертикальных листов проушины с верхним листом; соединение горизонтальной накладки с нижним листом проушины у основания; стыковые соединения нижних листов рамы (см. вид А). Трещины в основном металле у основания нижнижних листов рамы (троушины нижних листов рамы (троушины нижних листов рамы (троушины нижних нижних нижних нижних нижних нижних нижних нижних ней проушины	Вид Б (повёрнуто)	Визу- альный осмотр, АЭ-диаг- ностика		Не допус- кается	Ремо-

1	2	3	4	5	6	7	8
		Выработка отверстий проушин под		Изме- рение диамет- ра от-	$\delta_{\rm d} \leq 2$	Допуска- ется	_
3. Ходо	I KOHIIC-	ось крепления вы- носных опор, от- кидных платформ	$\frac{\delta_{d}}{2}$	верстия шпан- генцир- кулем при сня- той оси	$\delta_{\rm d} \ge 2$	Не допус- кается	Ре- монт
вая рам (рама шасси)	вая балка	Трещины в пальце		Визуальный осмотр без разборки	_	Не допус- кается	Заме- на оси
		крепления выносных опор, мачты, откидных платформ, блоков		Ультра- звуковая дефекто- скопия или АЭ-диаг- ностика	_	То же	То же

_	
CEO_1	
5	
\sim	
9	
РНИК	
7	
=	
7	
➣	
Ħ	
=	
\sim	
\approx	
ž	
\tilde{z}	
\sum_{X}	
$\mathcal{K}\mathcal{V}MF$	
OKYMEI	
$\mathcal{D}K\mathcal{Y}MEH$	
$\mathcal{I}K\mathcal{I}MEHT$	
$\mathcal{K}\mathcal{Y}MEHTC$	
ОКУМЕНТОЬ	

1	2	3	4	5	6	7	8
	Элемен- ты мачты	Местная вмятина		Измер- ение с	n≤1,25δ	Допуска- ется	_
4. Мачта	из тонко- стенных оболочек (гнугого профиля)	глубиной с разме-		помощью линейки и штан- генцир- куля	n>1,258	Не допус- кается	Ре- монт
5. Мачта	Сварные неразъ- емные соедине- ния ре- шетки мачты	Трещины в сварных швах соединения раскосов с поясами		Визуаль- ный ос- мотр, АЭ-диаг- ностика	_	Не допус- кается	Ре- монт
6. Мачта	Крепле- ния мачты с проу- шиной	Трещины в сварных швах соединения проушины с элементами мачты		Визуальный осмотр, АЭ-диагностика	_	Не допус- кается	Ре-
7. Мачта		Отклонение δ от прямолинейности	5		$\delta \le \frac{H}{700}$	Допуска- ется	_
7. 1 4144 14	. —	оси мачты высотой H	11 h		$\delta > \frac{H}{700}$	Не допус- кается	Ре- монт

1	2	3	4	5	6	7	8
		Трещины в свар- ных швах		Визуальный осмотр, АЭ-диагностика	_		Ре- монт
				Провер- ка		Ослабление запяжки не допускается	Под- тяжка
8. Мачта	Стыко- вые сое- динения	Ослабление затяжки болтов		Проверка гасчным или динамо- метри- ческим ключом	Момент затяжки указан в эксплуа- тацион- ной доку- ментации	Ослабление загяжки не допускается	Под- тяжка
-		Обрыв болга		Визуаль- ный ос- могр	_	Не допуска- ется при об- рыве хотя бы одного болга	болга
	ные сое- динения	Трещины в сварных швах соединения раскосов, стоек с поясами		Визуаль- ный сс- мотр, АЭ-диаг- ностика	_	Не допус- кастся	Ре- монт

	١.
١.	7
С	CECPRINE
ė	٠.
`	
٠,	-
_'	_
	ь.
	=
	7
	_
•	7
Ŀ	-
2	~
C	`
c	_
_	777
Ų	-
_	>
S	-
	_
ŀ	5
ŗ	7
ב	5
בממ	200
	507
	2070
מעומש	MEUTOD

					Продол	эжение та	бл. 5.3
1	2	3	4	5	6	7	8
		Трещины в сварном шве соединения проушины с поясом		Визуаль- ный ос- мотр, АЭ-диаг- ностика		Не допус- кается	Ре- монт
9. Мачта	Проуши- ны креп- ления			Проверка по люфту с по- мощью ли-	$\delta_d \leq 3$	Допуска- ется	_
	мачты	Выработка отверстия под палец соединения с подкосом		нейки во время работы подъемника или штангенциркулем при разборке	$\delta_d > 3$	Не допус- кается	Ре- монт
	В целом	Отклонение от перпендикуляр-	повернуто L		0 >	Допуска- ется	_
	р пелем	ности оси к оси шарнира	8		$\delta > \frac{L}{400}$	Не допус- кается	Ре- монт
10. Мачта	Секция	Отклонение от прямолинейнос- ти оси пояса или	m s //	Измерение с помощью струны и	0 >	Допуска- ется	-
	СКЦИЯ	поперечены мач- ты из тонкостен- ных оболочек		линейки, АЭ-диагно- стика	$\delta > \frac{m}{400}$	Не допус- кается	Ре- монт

1	2	3	4	5	6	7	8
		Трещины в свар-		С помощью	0 >	Допуска- ется	
		ных соединениях		струны и линейки	$\delta > \frac{L}{400}$	Не допус- кается	Ре- монт
11. Опора		Отклонение от перпендикулярности оси элементов	$\frac{\delta_d}{2}$	Проверка по люфту с по-	$\delta_d \leq 3$	Допуска- ется	
мачты	проуши-	Выработка отверстия проушин под палец соединения с мачтой		мощью ли- нейки во время рабо- ты подъем- ника или штангенцир- кулем при разборке	$\delta_d > 3$	Не допус- кается	Ре- монт

\Box
C_{E}
0
7
7
\overline{x}
NK
Ĭ
Ö
⋝
ゔ
ぐ
KY _M
KYME
КУМЕН
KYME
КУМЕН

1	2	3	4	5	6	7	8
крепле- ния мачты	Сварные соединения элементов рамы	Трещины в сварных швах соединения элементов рамы	(Повернуто)	Визуаль- ный сс- мотр, АЭ-диаг- ностика	_	Не допус- кается	-Ре- монт
мачты, балкон верхово- го рабо-	неразъ- емные соедине- ния ре-	Трещины в сварных швах крепления расчалок		Визуаль- ный сс- мотр, АЭ-диаг- ностика	_	Не допус- кается	- Ре- монт

1	2	3	4	5	6	7	8
14. Шар- нирные соедине- ния	Шкво- рень любой	Трешина в месте галтели		После раз- борки визу- ально, шветная дефекто- скопия, УЗК-кон- троль	_	Не допус- кается	Замена шквор- ня
	Проу- шина	Увеличение диаметра от- верстия под ось (выработка)	$\frac{\delta_{d}}{2}$	Измерение диаметра отверстия под ось при разборке штанген-циркулем	$\delta_d \le 2$	Допуска- ется	
					$\delta_d > 2$	Не допус- кается	Замена шквор- ня
	Проу- шина	Выработка отверстия под ось шкворня	$\frac{\delta_d}{2}$	Измерение диаметра отверстия под ось при разборке штанген- циркулем	$\delta_d \le 2$	Допуска- ется	_
					$\delta_d > 2$	Не допус- кается	Ре- монт

МЕТОДИКА АКУСТИКО-ЭМИССИОННОЙ ДИАГНОСТИКИ МЕТАЛЛОКОНСТРУКЦИЙ ПОДЪЕМНИКОВ ДЛЯ КАПИТАЛЬНОГО И ТЕКУШЕГО РЕМОНТА СКВАЖИН

1. Общие положения

- 1.1. Настоящая методика устанавливает порядок и объем работ при акустико-эмиссионных исследованиях по оценке технического состояния металлических конструкций подъемников согласно требованиям ГОСТ и нормативных материалов.
- 1.2. Целью АЭ-диагностики металлоконструкций подъемников является повышение достоверности оценки технического состояния металлоконструкций подъемников при их обследовании и в конечном счете повышение безопасности эксплуатации подъемников, рекомендуемых к эксплуатации.

Кроме того, дополнительный экономический эффект возможен в результате оценки дефектов как «неопасных» для безопасной эксплуатации подъемника, которые при визуальном обследовании были признаны опасными, и требовался ремонт узла (элемента) металлоконструкций.

1.3. Настоящий методический материал предполагает уровень квалификации дефектоскописта не ниже II в области АЭ-диагностики и предназначен для специалистов, имеющих опыт выполнения работ и сертификат дефектоскописта. Ни одна часть данного документа не может быть размножена, перепечатана или переведена на другой язык без письменного разрешения авторов.

По результатам АЭ-диагностики составляется Акт, рекомендуемая форма которого представлена в приложении 6.1. АЭ.

- 1.4. Методика составлена применительно к использованию АЭ-комплекса на базе приборов АФ-15 и ПЭВМ типа IBM РС или ему полобного.
- 1.5. Термины, используемые в методике, определены ГОСТ 27655—88 «Акустическая эмиссия. Термины, определения, обозначения».

Дополнительно приняты следующие термины:

величина относительной энергии АЭ — определяется как квадрат амплитуды АЭ, умноженный на число осцилляций;

активная зона АЭ — зона металлоконструкций, имеющая повышенную активность АЭ от дефекта в этой зоне, выявленного по принятым критериям;

контролируемая зона металлоконструкций — область элемента (узла) металлоконструкций, ограничиваемая АЭ датчиками при локализации источника.

2. Порядок выполнения работ

Порядок и объем работ зависят от требований к характеру диагностики металлоконструкций подъемника.

Условно принимаются два типа диагностики:

в первом случае производится комплексная оценка технического состояния металлоконструкций подъемника; этой оценке подвергаются металлоконструкции, например, подъемников, отработавших нормативный срок службы, а также подъемников, у которых необходима оценка технического состояния всех узлов металлоконструкций;

во втором случае выполняется диагностика определенной зоны конкретного узла (элемента) металлоконструкций подъемника; в данном случае выполняется дополнительная оценка технического состояния и несущей способности узла (элемента) подъемника, например, подъемника, у которого узел (элемент) металлоконструкций подвергался ремонту либо элемент содержит трещины (остаточные деформации).

2.1. Комплексная оценка технического состояния металлоконструкций подъемника

При комплексной оценке подъемника АЭ-диагностикой выполняются следующие этапы:

предварительный;

подготовительные работы;

оценка общего фона АЭ металлоконструкций подъемника,

АЭ-диагностика контролируемых зон;

анализ результатов, принятие решения.

2.2. Оценка технического состояния узла (элемента) металлоконструкций

В этом случае исключается этап оценки общего фона АЭ металлоконструкций и остаются этапы:

предварительный;

подготовительные работы;

АЭ-диагностика контролируемой зоны;

анализ результатов, принятие решения.

Следует отметить, что объем работ и трудозатраты во втором случае значительно меньше, однако в связи с отсутствием общей оценки всех узлов металлоконструкций подъемника достоверность оценки технического состояния металлоконструкций и дальнейшая безопасность эксплуатации подъемника зависят от надежности оценки, выполненной при визуальном обследовании.

3. Акустико-эмиссионная измерительная аппаратура

Конфигурация АЭ измерительной системы (АЭ-диагностический комплекс) и требования к ее узлам представлены в приложении 6.2. АЭ.

4. Предварительный этап экустико-эмиссионной диагностики

4.1. При комплексной оценке состояния металлоконструкций подъемника на стадии предварительного этапа выполняется анализ технической документации и конструкций подъемника. При этом определяются наиболее нагруженные зоны металлоконструкций (потенциально активные), где возможно образование дефектов (трещин, пластических деформаций). При наличии данных о поломках узлов металлоконструкций подъемника, аналогичных обследуемой модели, их следует учесть при выборе контролируемых зон.

При отсутствии данных в качестве контролируемых зон металло-конструкций, где следует установить датчики, для оценки общего фона АЭ принимаются: 2 датчика на двух опорах (аутригерах); 2 датчика на раме шасси (на продольных балках); 2 датчика на опоре мачты; 1 датчик на опорной секции мачты (у пяты мачты) и 1 датчик на выдвижной секции (в зоне фиксатора).

Предлагаемые для контроля участки металлоконструкций подъемника показаны в приложении 6.3. АЭ.

Если требуется продиагностировать на подъемнике одновременно более четырех зон при наличии аппаратуры из четырех приборов АФ-15 либо при наличии аппаратуры с меньшим количеством каналов, то выполняется группировка датчиков.

Датчики группируются таким образом, чтобы их контролируемые зоны металлоконструкции наибольшим образом нагружались при принятой схеме нагружения подъемника.

При назначении схемы нагружения узла (элемента) металлоконструкций подъемника следует отдать предпочтение схеме, при которой имеют место наибольшие растягивающие напряжения в элементе при анализе трещин и (или) наибольшие сжимающие напряжения в элементе при анализе остаточных деформаций (проверка местной устойчивости). Уровень и характер нагружения подъемника (продолжительность нагрузки, выдержка под грузом, разгрузка, паузы, последовательность и количество подъемов) принимаются по рекомендациям, изложенным в приложении 6.4. АЭ.

4.2. При оценке технического состояния узла (элемента) металло-конструкции на стадии предварительного этапа определяется схема нагружения подъемника, обеспечивающая наибольшую его нагруженность, а также количество, уровень и характер нагружения (приложение 6.4. АЭ) и места установки АЭ-датчиков определяются конфигурацией узла (элемента) с учетом условия, чтобы расстояние между датчиками было не более 5 м (см. приложение 6.3. АЭ и 6.5. АЭ).

5. Подготовительные работы

При подготовке к АЭ-диагностике металлоконструкций подъемника выполняются работы по подготовке подъемника и АЭ-аппаратуры к испытаниям, выполняются подготовка конструкции к установке АЭ-датчиков, установка датчиков и предусилителей, калибровка аппаратуры.

5.1. Подъемник устанавливается в рабочее состояние на испытательной площадке.

Производится набор необходимых испытательных грузов из числа имеющихся, из условия обеспечения значения близких

0,5Qн, Qн и Kи Qн, где Qн — номинальная грузоподъемность, Kи — коэффициент испытательной перегрузки (см. приложение 6.4. АЭ) или при испытаниях с помощью «мертвого» якоря устанавливается тарированный датчик нагрузки на «мертвом» конце талевой системы.

При технической возможности необходимо подключить к подъемнику дистанционный пульт управления.

АЭ-аппаратура устанавливается в безопасной зоне.

Производится дополнительный инструктаж машиниста подъемника, отметив следующее:

программа нагружения подъемника;

немедленное выполнение заранее обусловленных указаний руководителя испытаний;

подъем и опускание груза или натяжение талевого блока, закрепленного на «мертвом» якоре выполнять по возможности медленнее, плавно, без рывков;

запрещается совмещение операций;

запрещаются при АЭ-диагностике хождение по конструкции и другие механические воздействия на нее.

5.2. Рекомендации по установке АЭ-датчиков и предусилителей на конструкции подъемника, погашению шумов, калибровке АЭ-аппаратуры изложены в приложении 6.5. АЭ.

В Акте (приложение 6.1. АЭ) фиксируются данные по аппаратуре (номер канала, номер предусилителя, номер кабеля, величина ослабления и пр.), места установки АЭ-датчиков, данные по нагружению и калибровке. В ПЭВМ вводятся программа записи и обработки АЭ-сигналов с датчиков, данные о подъемнике и условиях испытания. Выполняется пробный пуск на 10—20 с.

6. Оценка общего фона акустической эмиссии металлических конструкций подъемника

Оценка общего фона АЭ металлических конструкций выполняется на подъемниках из условий, рассмотренных ранее (см. п. 2).

Программа А Θ -комплекса включается за 2-3 с до включения механизмов подъемника. Целесообразно на втором цикле нагружения (режим 14-14, рис. 6.4.1 приложения 6.4. А Θ) при нагрузке (с подве-

шенным и опущенным грузом) на 5-10 с отключить (остановить) общий приводной двигатель.

В целях обеспечения безопасности проведения испытаний и предотвращения разрушения конструкции нагружение должно быть прекращено в случае значительного роста активности АЭ. Конструкция срочно разгружается и следующее нагружение выполняется с половинной величиной от предыдущего. При этом активность АЭ на участках 4—5 не должна увеличиваться, а на участках 1—2 и 5—6 должна отсутствовать (см. рис. 6.4.1 в приложении 6.4. АЭ).

По АЭ-данным выполняется оперативный анализ и выявляются «активные» зоны металлоконструкций подъемника по критериям АЭ-диагностики, изложенным в приложении 6.6. АЭ.

Программа выполняет поставленный анализ АЭ-информации в соответствии с методологией, изложенной в приложении 6.6. АЭ.

Далее, выявленные «активные» зоны металлоконструкций подъемника диагностируются в режиме локализации, если этот режим работы не проводился.

7. Акустико-эмиссионная диагностика контролируемых зон

Схема нагружения подъемника принимается при условии наибольшей нагруженности контролируемой зоны. Характер нагружения принимается в соответствии с приложением 6.4. АЭ.

Расположение датчиков на контролируемой зоне зависит от конструктивного решения узла и его размеров. Установка АЭ-датчиков и предусилителей, исключение помех и калибровка аппаратуры выполняются в соответствии с рекомендациями приложения 6.5. АЭ.

При этом учитывается, что наибольшее расстояние между датчиками не должно превышать 3 м, так как аппаратура работает в режиме локализации.

Методология получения АЭ-данных соответствует изложенной в п. 6. Имитатором уточняется место расположения дефекта в контролируемой зоне, если дефект имеется по критериям АЭ-диагностики. В случае если источник АЭ (визуально, ультразвуком) не обнаружен, дается рекомендация машинисту подъемника взять это место под особое наблюдение при дальнейшей эксплуатации подъемника и при обнаружении (выходе дефекта на поверхность) трещины прекратить эксплуатацию подъемника.

Дальнейшая безопасная эксплуатация подъемника зависит от степени опасности дефекта и его развития, что оценивается на втором этапе диагностики.

8. Анализ результатов и принятие решения

Окончательное решение о техническом состоянии и несущей способности металлоконструкций подъемника (его узла, элемента) принимается в результате комплексного анализа АЭ-информации по совокупности критериев (см. приложение 6.6. АЭ).

Составляется Акт (см. приложение 6.1. АЭ), в котором отражаются все данные по АЭ-диагностике и ее результаты.

9. Техника безопасности и охрана окружающей среды

При проведении испытаний по АЭ-диагностике металлоконструкций подъемника необходимо соблюдать требования Инструкции по эксплуатации подъемника испытуемой модели. Учитывать условия обеспечения безопасности, изложенные в п. 5.1 и п. 6. Перед включением АЭ-аппаратуры оператор должен убедиться в надежности заземления прибора. АЭ-аппаратуру следует подключать к малонагруженной электролинии, а на рубильник необходимо вывесить табличку с надписью: «Не выключать — идут испытания».

При работе с АЭ-аппаратурой необходимо соблюдать требования безопасности при работах с радиочастотами по ГОСТ 12.1.006—84 и Инструкций по эксплуатации приборов АФ-15, ПЭВМ и т. п.

Измерительная аппаратура и операторы должны находиться в безопасной зоне.

При значительном росте активности АЭ во время действия нагрузки дальнейшее нагружение прекращается и конструкция разгружается.

Работа с комплексом технических средств акустико-эмиссионной диагностики не влияет на состояние санитарно-гигиенических условий труда обслуживающего персонала, если при проведении работ по диагностике соблюдаются требования ГОСТ $12.1.001-83^{1}$, ГОСТ $12.2.003-74^{2}$ и ГОСТ 12.3.002-75.

¹ Действует ГОСТ 12.1.001-89 «Система стандартов безопасности труда. Ультразвук. Общие требования безопасности». (*Примеч. изд.*)

² Действует ГОСТ 12.2.003-91 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности». (Примеч. изд.)

В случае травмирования или плохого самочувствия работника ему необходимо прекратить работу, известить об этом руководителя работ и обратиться в медпункт или вызвать «скорую медицинскую помощь», а члены бригады должны оказать первую доврачебную помощь пострадавшему.

Требования по охране природы не предъявляются, так как при изготовлении, эксплуатации, транспортировке, хранении, утилизации комплексов технических средств акустико-эмиссионной диагностики не имеется вредных воздействий на элементы окружающей среды: воздуха, воды, почвы, растительного и животного мира.

Приложение 6.1. АЭ

AKT акустико-эмиссионной диагностики металлических конструкций подъемника

	модель							
пр	принадлежащего							
•	(владелец подъемника)							
г			«»	199_ г.				
Ko	омиссия в составе пред	седателя						
		(долж	ность, Ф.И.О., номе	р удостоверения)				
И	членов							
	(д	олжность, Ф.И.О., 1	номер удостоверения	1)				
В	соответствии с письмо,	OT	No					
	(письмо,	договор)	MV					
	выполнила работы по АЭ-диагностике МК подъемника							
(TI	(тип), за №							
pe	г. №, выпуц		_ году					
	(наимене еден в эксплуатацию і	ование завода-изгот в 19 году	,					
ΑŒ	Э-диагностика МК вы	полнена по ме	тодике ЦНИП	СДМ.				
ΑŒ	Э-диагностика МК вы 1. Материал ме							
	1. Материал ме	таллоконструк	ций подъемника	1				
M	1. Материал ме ачта	таллоконструк	ций подъемника	1				
M Pa	1. Материал ме ачта ма шасси	таллоконструк	ций подъемника	1				
M Pa On	1. Материал ме ачта	таллоконструк	ций подъемника					

2. Схема установки АЭ-датчиков и имитаторов на конструкции

(выполнение эскизов с габаритными размерами, указанием расстояний между датчиками,					
места расположения сварных швов, перегородок, шарниров, окончания листов,					
положение имитаторов и пр.)					
Примененная АЭ-аппаратура					
(тип, номер, изготовитель)					

Данные по датчикам, предусилителям, калибровке АЭ-аппаратуры представлены в табл. 6.6.1 (заполняется на отдельном листе).

Таблица 6.6.1

Номер дат- чика	Номер пред- усили- теля	Номер кабеля	Номер канала прибо- ра	Тип дат- чика (пьезо- преоб- разова- теля)	Вели- чина ослаб- ления	Ампли- туда тариро- вочно- го си- гнала (запись)	Интен- сив- ность внеш- него шума
1	2	3	4	5	6	7	8

Характеристики затухания сигнала в контролируемой зоне и оценка точности локализации при различных положениях имитатора представлены в табл. 6.6.2.

Таблица 6.6.2

Контроли-	Расстояние	Расстояние	Среднее	Величина
руемая зона	между АЭ-	от первого	значение	отклонения
ļ	датчиками	датчика до	зафиксиро-	<i>D/D</i> раз-
		имитатора	ванных	брос сред-
			координат	неквадра-
				тичное
				отклонение
1	2	3	4	5

[©] Оформление ЗАО НТЦ ПБ, 2010

3. Диаграмма нагружения подъемника, схема нагружения
(груз, положение мачты, нагрузка, выдержка, разгрузка, пауза, число циклов нагружения и пр
4. Полученные АЭ-данные диагностирования узлов подъемника
узел (код)
5. Корреляция накопленных АЭ-данных с критериями наличия дефекта, графическое изображение зон, в которых наблюдаются отклонения от норм
6. Особые отклонения от норм, наблюдаемые при АЭ-диагностике
7. Выводы о техническом состоянии и несущей способности МК
Председатель комиссии

Приложение 6.2. АЭ

СОСТАВ АЭ ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ И ТРЕБОВАНИЯ К НЕЙ

1. АЭ-аппаратура должна обеспечивать:

фиксирование и вычисление параметров сигналов АЭ (активность, число импульсов, скорость счета, суммарный счет, амплитуда), оценивать вторичные параметры (величина относительной энергии, координата источника АЭ);

обрабатывать АЭ-информацию и представлять в виде гистограмм и графиков.

- 2. Для выполнения АЭ-диагностики на объектах эксплуатации подъемников целесообразно, чтобы АЭ-аппаратура была смонтирована на транспортном средстве (микроавтобусе типа РАФ, УАЗ и т.п.).
- 3. Типовая конфигурация АЭ измерительной системы представлена на рис. 6.2.1.

4. Технические требования к элементам АЭ-системы

- 4.1. Датчики (АЭ-преобразователи). АЭ-преобразователи должны иметь следующие частотные зоны: 0,2-0,5 МГц, 0,2-2,0 МГц с коэффициентом преобразования $1,6\times10$ В/м; 0,5-1,0 МГц с коэффициентом преобразования 8×10 В/м и 0,02-0,2 МГц с коэффициентом преобразования $1,6\times10$ В/м. Датчики крепятся к конструкции при помощи магнитных держателей.
- 4.2. Кабель, передающий сигнал от датчика, должен быть коаксиальным с волновым сопротивлением 50 Ом.

С учетом минимизации наводок от электромагнитных полей длина кабеля от преобразователя до предусилителя, как правило, не превышает $0.5 \, \text{м}$, а от предусилителя до усилителя — до $200 \, \text{м}$.

4.3. Предусилители

Коэффициент усиления предусилителя должен быть не менее 40 дБ. Диапазон рабочих частот предусилителя от 20 кГц до 2 МГц.

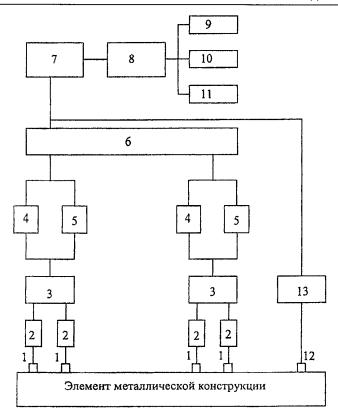


Рис. 6.2.1. Структурная схема АЭ диагностического комплекса: 1 — датчик (АЭ-преобразователь); 2 — предусилитель; 3 — основной усилитель; 4 — блок измерения значений пиковой амплитуды, активности и скорости счета; 5 — блок определения разности времени прихода АЭ- сигнала (вычисления координат); 6 — устройство согласующее; 7 — устройство ввода-вывода; 8 — ПЭВМ типа IBM PC; 9 — дисплей; 10 — принтер (плоттер) для отображения информации; 11 — накопитель на магнитном диске; 12 — датчик-имитатор; 13 — блок генерации импульсов

4.4. Основной усилитель

Коэффициент усиления основного усилителя должен быть не менее 40 дБ при частотном диапазоне от 20 кГц до 2 МГц.

Основной усилитель должен обеспечивать ступенчатую регулировку усиления с шагом 1 дБ, а также содержать фильтры с частотой среза: Φ BЧ, κ Гц-20, 200, 500, 1000; Φ HЧ, κ Гц-200, 500, 1000, 2000.

4.5. Устройство для измерения разности времен прихода

Устройство должно обеспечивать измерение разности времен прихода сигнала для минимального количества преобразователей, необходимых для локализации источников АЭ.

Разность времен прихода предпочтительно должна представляться в цифровой форме в диапазоне измерения от 8 до 800 мкс при погрешности измерения не более 3,0 мкс.

4.6. Блок для измерения величины пиковой амплитуды. Динамический диапазон регистрации амплитуды сигналов АЭ от 50 до 5000 мВ.

4.7. Оборудование для обработки данных

Это оборудование должно иметь возможность вычисления координат АЭ-источников, величины относительной энергии АЭ и др., рассчитанных на основе информации о разности времен прихода АЭ-сигналов и характеристиках сигналов АЭ (по ГОСТ 27655—88) при следовании импульсов не чаще 1000 имп/с по каждому каналу и продолжительности накопления информации не менее 20 мин.

Оборудование должно содержать компьютер, периферийные устройства и программное обеспечение.

В качестве компьютера могут применяться любые ЭВМ из семейства IBM PC.

Приложение 6.3. АЭ

ТИПОВЫЕ СХЕМЫ УСТАНОВКИ АЭ-ДАТЧИКОВ НА КОНСТРУКЦИИ ПОДЪЕМНИКА

Рекомендуемые зоны контроля при АЭ-диагностики МК подъемника представлены на рис. 6.3.1.

Характерные примеры установки датчиков, предусилителей и имитатора даны на рис. 6.5.1.

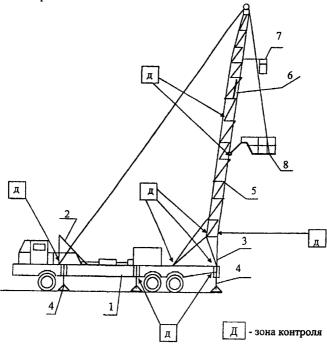
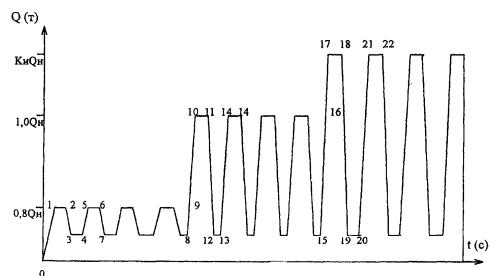


Рис. 6.3.1. Подъемник для капитального и текущего ремонта скважин: 1 — рама шасси; 2 — транспортная опора мачты; 3 — опора мачты; 4 — аутригеры гидравлические; 5 — опорная секция мачты; 6 — выдвижная секция мачты; 7 — балкон верхового рабочего; 8 — балкон для работы с трубами

РЕКОМЕНДАЦИИ ПО НАГРУЖЕНИЮ МК ПОДЪЕМНИКА

- 1. Для каждой контролируемой зоны выбирают схему нагружения подъемника, при которой имеют место наибольшие напряжения и наибольшие деформации.
- 2. Уровни нагрузки принимаются в соответствии с рис. 6.4.1. Коэффициент *К*и (испытательной перегрузки) обычно выбирается в зависимости от интенсивности АЭ и для подъемников принят равным 1,25 от номинальной грузоподъемности. Скорость подъема (опускания) груза (снятия натяжения) должна быть порядка 0,3—0,4 м/мин. Рывки не допускаются. При паузе с подвешенным либо опущенным на грунт грузе следует выключить двигатели механизмов, насосы и общий приводной двигатель.


Время нагружения (участки 0-1, 4-5, ..., 9-10, 13-14, ..., 15-17, 20-21, ...) принимается от 15 до 30 с (предпочтительно большее значение).

Время разгрузки (опускание груза на участках 2-3, 6-7, ..., 11-12, ..., 18-19, ...) принимается от 2 до 15 с (предпочтительно большие значения). Продолжительность пауз при подвешенном грузе (участки 1-2, 5-6, ..., 10-11, 14-15, ..., 17-18, 21-22, ...) принимается от 10 до 300 с (может быть принято наименьшее значение при отсутствии АЭ).

Продолжительность пауз при опущенном грузе принимается от 5 до 20 с.

Количество циклов нагружения каждого уровня должно быть не менее 3, а при наличии значительной A9 на третьем цикле должно быть увеличено до 5-6.

3. Режим нагружения подъемника фиксируется в журнале испытаний. Желательно записывать напряженное состояние (физический параметр) контролируемой зоны МК одновременно с записью сигналов АЭ.

Рис. 6.4.1. Диаграмма нагружения подъемника при испытании с проведением АЭ-диагностики:

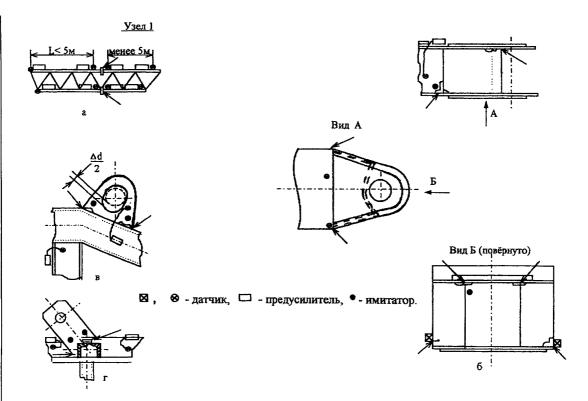
Qн — номинальная грузоподъемность по грузовой характеристике подъемника; Ки — коэф. перегрузки, принимаемый равным от 1,1 до 1,25 Qн в зависимости от интенсивности сигналов АЭ

РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ АЭ-ДАТЧИКОВ, ИСКЛЮЧЕНИЮ ПОМЕХ И КАЛИБРОВКЕ АППАРАТУРЫ

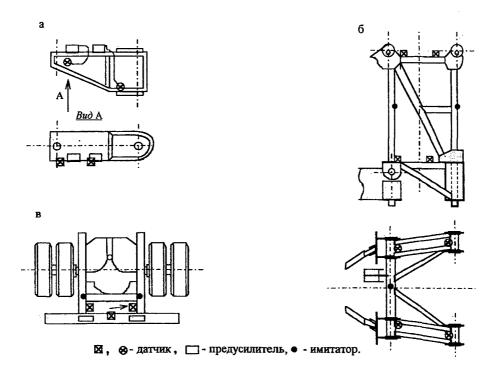
1. Установка АЭ-датчиков и предусилителей на конструкции подъемника

- 1.1. Место установки АЭ-датчика (пьезопреобразователя) должно быть очищено от краски и коррозии. Шероховатость поверхности должна быть не хуже Rz 40. В качестве контактной смазки может быть использована любая соответствующая смазка, например: вакуумная по ОСТ 38183—75, вазелин, солидол и др.
- 1.2. Предусилитель устанавливается вблизи АЭ-датчика (не далее 500 мм). Место установки предусилителя выбирается так, чтобы не произошло повреждения от деформации и подвижных частей подъемника при рабочих режимах и испытаниях.

Примеры установки АЭ-датчиков и предусилителей приведены на рис. 6.5.1, 6.5.2.


2. Исключение помех

При наличии шумов вводится ослабление до величины 12 дБ. Если это значение недостаточно, то используется, например, метод погашения шумов посредством заземления конструкции. При этом крепление заземляющего провода выполняют в непосредственной близости от мест установки АЭ-датчиков. Проверяют также изоляцию корпуса АЭ-датчика и предусилителя от конструкции.


3. Калибровка аппаратуры

- 3.1. Калибровка аппаратуры содержит работы по настройке измерительных каналов, проверке качества установки АЭ-датчиков, проверке прохождения АЭ-сигнала по конструкции к АЭ-датчику, проверке точности локализации дефекта в контролируемой зоне.
- 3.2. Калибровка аппаратуры выполняется непосредственно перед снятием АЭ-данных с конструкции подъемника, а также через каждые 20 циклов нагружения, 2 часа испытаний и после испытаний.

[©] Оформление ЗАО НТЦ ПБ, 2010

Рис. 6.5.1. Примеры установки АЭ-датчиков и предусилителей на конструкции подъемника: a — мачта; δ — рама шасси; ϵ , ϵ — узлы конструкции

Рис. 6.5.2. Примеры установки АЭ-датчиков и предусилителей на конструкции подъемника: a — аутригер; δ — рама крепления мачты; ϵ — балка ходовой рамы

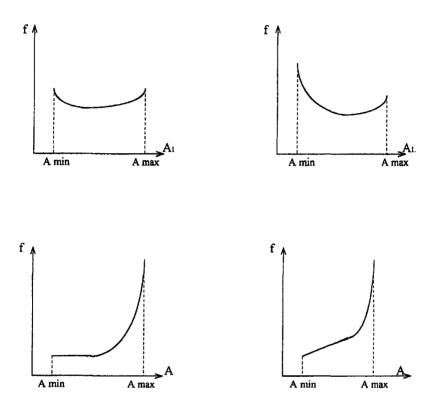
- 3.3. Калибровка выполняется посредством создания в конструкции сигнала, имитирующего АЭ-импульс, по каждому рабочему каналу. В качестве имитатора может быть использован АЭ-датчик (см. рис. 6.5.1) с подачей на него синусоидального сигнала либо импульсного сигнала, создаваемого аппаратурой, сигнала от источника Хсу-Нельсона, либо легким постукиванием металлическим предметом.
- 3.4. При калибровке АЭ датчик-имитатор устанавливается вблизи (0,1 м) от приемного АЭ-датчика, а также на расстоянии 1 м. При этом амплитуда принятого АЭ-сигнала должна быть максимальной; наиболее удобно это контролировать с помощью электронно-лучевого осциллографа.

Прохождение АЭ-сигнала по конструкции проверяется установкой имитатора в различных ее местах. При этом следует обратить внимание на места концентрации, где имеются внутренние мембраны, разъемные соединения, стыковка листов и т.п. В случае если контролируемая зона содержит также участки, где АЭ-сигналы искажаются, то целесообразно разделить всю зону на части (см. рис. 6.5.1).

Правильность установки параметров контролируемой зоны проверяется установкой имитатора вне контролируемой зоны, тогда при работе аппаратуры в режиме локализации АЭ-сигнал не должен фиксироваться аппаратурой.

3.5. Результаты калибровки фиксируются в Акте (приложение 6.1. АЭ).

Приложение 6.6. АЭ


КРИТЕРИИ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДЪЕМНИКА ПО АЭ-ДАННЫМ

При анализе АЭ-информации о поведении конструкции используют следующую совокупность критериев оценки ее технического состояния и несущей способности.

При оперативном анализе к конструкции, имеющей опасные дефекты, относится конструкция, у которой наблюдается наличие АЭ-сигналов при действии постоянной нагрузки (участки 1-2, 5-6, ..., 17-18 и т.п. на рис. 6.4.1 приложения 6.4. АЭ), а также в случае увеличения активности АЭ на однотипных этапах нагружения (участки 0-1, 4-5 или 9-10, 13-14 и т.п на рис. 6.4.1 приложения 6.4. АЭ).

При последующем анализе информации о параметрах сигналов АЭ с построением графиков и гистограмм о наличии развивающегося дефекта свидетельствует:

увеличение числа импульсов во время действия постоянной нагрузки (участки 1-2, 5-6, 10-11 и т. п. на рис. 6.4.1 приложения 6.4. АЭ); соответствие графика относительной частости амплитуд f=(A) одной из кривых, представленных на рис. 6.6.1 приложения 6.6. АЭ; концентрация координат источника АЭ в узкой зоне.

Рис. 6.6.1. Возможные виды распределения относительной частости амплитуд сигналов АЭ при наличии развивающегося дефекта

МЕТОДИКА КАПИЛЛЯРНОЙ ДИАГНОСТИКИ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ПОДЪЕМНИКА

Капиллярная диагностика может выполняться одним из двух способов:

а) керосиновая проба; б) цветной способ.

При «керосиновой пробе» поверхность проверяемого участка зачищается до металлического блеска, смачивается керосином, вытирается насухо и покрывается слоем мела. Через несколько минут после обстукивания поверхности молотком массой не менее 0,5 кг на месте трещины должна выступить темная полоса, определяющая характер и границы трещины.

При «цветном способе» в качестве жидкости применяют состав: 70 % керосина, 30 % трансформаторного масла и краситель (10 г красной краски типа «Судан III» на 1 л жидкости) либо специальный комплект аэрозолей типа СИМ с чувствительностью по 11 классу.

Проверяемый участок зачищают до шероховатости поверхности Rz 20—40 мкм, обезжиривают ацетоном и затем на подготовленную поверхность наносят пенетрант из комплекта аэрозолей СИМ не менее трех раз, выдерживая 3—5 мин, не допуская высыхания последнего слоя.

Затем производят удаление красителя при температуре воздуха $2-40\,^{\circ}\mathrm{C}$ с помощью воды при Rz $20\,\mathrm{mkm}$, с помощью раствора воды и CMC или хозяйственного мыла при Rz $20-40\,\mathrm{mkm}$. При температуре воздуха от $-40\,\mathrm{do}+2\,^{\circ}\mathrm{C}$ удаление красителя производят этиловым спиртом или ацетоном.

Проявление дефектов происходит после нанесения и высыхания проявителя из комплекта СИМ практически сразу же для крупных и через 20 мин для мелких (от 1 до 3 мкм).

Приложение 8

ИНСТРУКЦИЯ ПО ПРОВЕРКЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ПОРЯДКУ ПРОВЕДЕНИЯ ПЕРИОДИЧЕСКИХ ИСПЫТАНИЙ ВЫШЕК (МАЧТ) УСТАНОВОК ДЛЯ РЕМОНТА НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

1. Введение

Инструкция по проверке технического состояния вышек (мачт) установок для ремонта скважин (далее — Инструкция) разработана в целях обеспечения безопасности на протяжении всего срока их эксплуатации и устанавливает периодичность и порядок технического обследования и испытания вышек (мачт), нормативы для оценки пригодности их к дальнейшему использованию, состав и форму документации.

Инструкция распространяется на все вышки (мачты) установок для ремонта скважин отечественного и зарубежного производства.

2. Общие положения

- 2.1. Порядок и периодичность технического обслуживания и освидетельствования вышки (мачты) в пределах расчетного срока службы, установленного предприятием-изготовителем, определяются инструкцией по эксплуатации, составленной в соответствии с требованиями ГОСТ $2.601-68^1$.
- 2.2. Возможность и сроки продления эксплуатации вышки (мачты) сверх расчетного срока службы устанавливаются предприятием с привлечением организации, имеющей соответствующую лицензию, и по согласованию с региональным органом Госгортехнадзора.
- 2.3. Решение по п. 2.2 принимается после технического обследования вышки (мачты) в установленном порядке, отбраковки, реставрации или замены ее отдельных элементов и металлоконструкций в соответствии с установленными критериями и методическими указаниями.

 $^{^1}$ Действует ГОСТ 2.601—2006 «Единая система конструкторской документации. Эксплуатационные документы». (Примеч. изд.)

Основанием для принятия решения являются результаты проверки технического состояния вышки (мачты) одним из следующих способов:

- 2.3.1. Обследование с использованием мерительных средств и методов неразрушающего контроля.
 - 2.3.2. Статическое силовое испытание.
- 2.3.3. Акустико-эмиссионная диагностика состояния в сочетании со статическим силовым испытанием.
- 2.4. Выбор способа проверки технического состояния вышки (мачты) с учетом ее фактического состояния, времени эксплуатации и характера выявленных дефектов производится предприятием совместно со специализированной организацией.
- 2.5. Сроки продления эксплуатации вышки (мачты), установленные после проведения проверки ее технического состояния, не должны превышать трех лет.

Использование вышки (мачты) сверх двукратного расчетного срока службы допускается только после проверки ее технического состояния способом акустико-эмиссионной диагностики в сочетании со статическим силовым испытанием.

- 2.6. Проверка технического состояния вышки (мачты) и ее предварительная подготовка по п. 2.3 настоящей Инструкции производится специально подготовленным и аттестованным персоналом под руководством ответственного лица, назначенного приказом по предприятию, при участии представителей специализированной организации, имеющей лицензию Госгортехнадзора России¹, а в случае необходимости и при участии представителя регионального округа Госгортехнадзора России.
- 2.7. Порядок технического освидетельствования вышки (мачты) в период эксплуатации между очередными проверками ее состояния устанавливается графиком планово-предупредительного ремонта, разработанного предприятием, с учетом требований инструкции по эксплуатации завода-изготовителя.
- 2.8. Внеочередные проверки технического состояния вышки (мачты), вызванные возникновением нестандартных ситуаций (авария, отразившаяся на состоянии вышки, интенсивное развитие дефектов

¹ Ростехнадзор выдает лицензии на деятельность по проведению экспертизы промышленной безопасности. (Примеч. изд.)

металлоконструкций и т.п.), проводятся в соответствии с требованиями настоящей Инструкции.

- 2.9. Перечень документации, необходимой для проведения проверок технического состояния вышки (мачты) и оформляемой по результатам этих проверок, должен соответствовать требованиям ГОСТ 2.601—68, ГОСТ 2.602—68¹, а также требованиям других нормативных документов и настоящей Инструкции.
- 2.10. Проверку технического состояния вышек (обследование, статические силовые испытания) следует проводить в светлое время суток при благоприятных погодных условиях.

3. Порядок проведения проверок технического состояния вышки (мачты)

- 3.1. Обследование вышки (мачты) с использованием мерительных средств и методов неразрушающего контроля
- 3.1.1. Экспертиза технической документации. В состав документации входят:

паспорт на установку;

инструкция по эксплуатации предприятия-изготовителя; сведения о предыдущих ремонтах вышки (мачты); сведения о химическом составе (марки) стали металлоконструкций.

- 3.1.2. Подготовка вышки (мачты) к обследованию
- 3.1.2.1. Вышка (мачта) освобождается от талевой системы и укладывается в транспортное положение. Секции вышки (мачты) соединяются между собой скобой или другими средствами.
- 3.1.2.2. Вышка (мачта) освобождается от оснастки для выдвижения верхней секции и разъединяется с гидроподъемниками (шарниры штоков).
- 3.1.2.3. Грузоподъемным краном вышка (мачта) поднимается над передней опорой на 2—3 см. Стропы крана крепятся к вышке (мачте) на расстоянии одной четверти от каждого конца.
- 3.1.2.4. Разъединяется шарнирное соединение вышки (мачты) с основанием.

 $^{^{1}}$ Действует ГОСТ 2.602—95 «Единая система конструкторской документации. Ремонтные документы». (Примеч. изд.)

3.1.2.5. Подъемным краном вышка (секция в секции) снимается с агрегата и укладывается на специально оборудованной площадке или стационарном стенде (приложение 8.1, рис. 8.1). Конструкция стенда разрабатывается и изготовляется предприятием в соответствии с конкретным типоразмером вышки (мачты) агрегата. Стенд должен удовлетворять следующим требованиям:

иметь длину, достаточную для размещения на нем вышки (мачты) в раздвинутом состоянии;

оснащаться роликами 6 и 7;

оснащаться опорами 3, 4 и 5. При этом опора 5 — плоская, а опоры 3 и 4 — качающиеся;

оснащаться приспособлением для крепления нижней секции 2 к опоре 5;

оснащаться приспособлением 8 для крепления буксирного троса к секции I;

оснащаться буксирным тросом 9.

- 3.1.2.6. Секция 2, расположенная на опорах 4 и 5, прижимается и крепится к опоре 5.
- 3.1.2.7. Буксирным тросом 8 (рис. 8.1), перекинутым через ролик 6, верхняя секция 1 вытягивается из нижней секции 2 на полную длину с расположением верхней части секции 1 на опоре 3.
- 3.1.2.8. Вышка (мачта) очищается от грязи, замазученности, ржавчины, отслоенной краски и т.д. После окончания вышеуказанных работ она находится на стенде в горизонтальном положении на опорах 3, 4 и 5.
 - 3.1.3. Осмотр вышки (мачты) с выявлением дефектов

Осмотру подвергаются:

все элементы металлоконструкции вышки (мачты);

подкронблочные балки;

стопорные устройства для фиксации вышки (мачты) в вертикальном положении;

механизм подъема и выдвижения вышки (мачты);

балкон для работы с трубами (штангами).

Основные дефекты вышки (мачты)

Трещины

Внешними признаками трещин могут быть подтеки ржавчины, выходящие на поверхность металла, шелущение краски.

При осмотре необходимо обратить внимание на места концентрации напряжений (перепад сечений профиля, отверстия, перепады толщины сваренных «встык» деталей, прерывистые сварные швы).

Уточнение размеров трещин производится с применением луп со степенью увеличения в 5-10 раз или неразрушающих методов (капиллярного, ультразвукового и др.).

Поражение металла коррозией

Корродированные участки тщательно очищаются стальными щетками. Степень поражения металла коррозией определяется замером толщины стенок проката штангенциркулем, а при недоступности (коробчатая конструкция) — ультразвуковым толщиномером. Допустимые толщины устанавливаются изготовителем установки. Элементы с недопустимой толщиной стенок заменяются новыми, а секции коробчатой конструкции восстановлению не подлежат.

Расслоение металла

Элементы вышки (мачты) ферменного типа с участками расслоения металла подлежат замене новыми элементами с последующим неразрушающим контролем сварки. В коробчатой конструкции вышки (мачты) участки расслоения металла уточняются ультразвуковой дефектоскопией. Элементы с расслоением металла заменяются новыми, а секции с коробчатой конструкцией восстановлению не подлежат.

Дефекты сварных соединений

Основными дефектами сварных соединений являются: несплавление кромок шва с основным металлом, незаваренные кратеры, прожоги, подрезы, трещины всех видов и направлений. Сварные швы или отдельные участки швов с недопустимыми дефектами должны быть удалены и по возможности заварены вновь с последующим неразрушающим контролем качества швов.

- 3.1.4. Определение отклонений геометрических форм и размеров элементов вышки (мачты) от проектных
- 3.1.4.1. Отклонение формы поперечных сечений секции вышки (мачты) от прямоугольной формы проверяется в ее сечениях A, B,C и Д (рис. 8.1, приложение 8.1). Измерения производятся оптическим квадрантом.

Работы проводятся в такой последовательности.

Замеряется и регистрируется отклонение от горизонтали верхней плоскости вышки (секции) в сечении A-A (рис. 8.1, приложение 8.1; рис. 8.2, приложение 8.4, позиция I). Отклонение от горизонтали яв-

ляется базой, относительно которой определяется отклонение от вертикали и горизонтали всех плоскостей в сечении A—A и B—B.

Замеряются и регистрируются отклонения от вертикали и горизонтали в сечении A—A (рис. 8.1), по позициям 2, 3 и 4 (рис. 8.2) и в сечении 5—6 (рис. 8.1), по позициям 1, 2, 3 и 4 (рис. 8.2).

Замеряется и регистрируется отклонение от горизонтали верхней плоскости вышки (мачты) в сечении С—С (рис. 8.1), позиция *1* (рис. 8.2). Отклонение от горизонтали является базой, относительно которой определяются все последующие отклонения секции *1* (рис. 8.1).

Замеряются и регистрируются отклонения от горизонтали и вертикали в сечении C-C (рис. 8.1), позиции 2, 3 и 4 (рис. 8.2); в сечении Д-Д (рис. 8.1), позиции 1, 2, 3 и 4 (рис. 8.2).

Допустимые углы отклонения всех сторон каждой секции относительно принятой базы для измерения — позиция 1, рис. 8.2, приложение 8.4 — должны быть не более 17 мин.

При больших отклонениях секция к дальнейшей эксплуатации не допускается.

3.1.4.2. Определение прямолинейности ног секции.

Отклонением от прямолинейности ног секции является стрела прогиба (зазор) между ногой секции и натянутой струной в горизонтальной плоскости на стенде. Замер стрелы прогиба производится металлической измерительной линейкой. Результаты замеров регистрируются.

После окончания замеров стрел прогибов в одной плоскости вышка (мачта) переворачивается на стенде на 90° и производится определение стрел прогибов ног секции в другой плоскости.

Переворачивание вышки (мачты) на 90° осуществляется в такой последовательности:

снимается фиксатор секций между собой;

верхняя секция втягивается в нижнюю трактором, натяжением буксирного троса 9 (рис. 8.1);

ставится фиксатор секций между собой;

секция 2 разъединяется с опорой 5;

вышка (мачта) поворачивается на 90° в любую сторону на опоры 4 и 5; секция 2 крепится к опоре 5;

верхняя секция вытягивается из нижней секции натяжением буксирного троса δ (рис. 8.1).

В таком виде вышка (мачта) подготовлена к определению отклонений ног секции от прямолинейности в другой плоскости.

Допустимые отклонения от прямолинейности ног секции f:

$$f_1 \leq \frac{l_1}{700},$$

где f_1 — стрела прогиба; l_1 — длина секции (наибольшая),

$$f_2 \leq \frac{l_2}{400},$$

где f_2 — стрела прогиба; — расстояние между поясами секции (наибольшее).

При $f_1 > \frac{l_1}{700}$ и $f_2 > \frac{l_2}{400}$ секция восстановлению не подлежит.

3.1.5. Демонтаж вышки (мачты) со стенда и монтаж ее на установке

Демонтаж вышки (мачты) со стенда и монтаж ее на установке проводятся в такой последовательности:

Верхняя секция втягивается в нижнюю буксирным тросом 9 (рис. 8.1). Операцию проводят при закрепленном положении нижней секции к опоре 5.

Верхняя и нижняя секции соединяются между собой скобами.

Грузоподъемным краном вышка (мачта) поднимается со стенда, переносится и монтируется на агрегате в порядке, обратном ее демонтажу.

- 3.1.6. Определение неперпендикулярности оси вышки к ее основанию
- 3.1.6.1. В горизонтальном положении вышки (мачты) к ее ногам крепятся металлические измерительные линейки (магнитами или струбцинами). Линейки крепятся на самом верхнем и самом нижнем поясах вышки (мачты) и на ногах, примыкающих к указанным поясам.

Линейки предназначены для последующего определения перпендикулярности оси вышки (мачты) к ее основанию. На поясных линейках регистрируются показания на шкалах средних точек между ее ногами.

3.1.6.2. Вышка (мачта) поднимается в вертикальное положение и фиксируется в этом положении согласно инструкции по эксплуатации агрегата.

3.1.6.3. Теодолитом, расположенным на расстоянии от вышки (мачты) не менее ее высоты плюс 10 м, определяется разность отметок, зарегистрированных как средние точки на поясах (п. 3.1.6.1).

Допустимая разность показаний должна удовлетворять условию

$$A \leq \frac{L}{400},$$

где A — разность показаний;

L — расстояние между верхней и нижней линейками (поясами).

3.2. Статическое силовое испытание вышки (мачты)

3.2.1. Подготовительные работы

- 3.2.1.1. Экспертиза технической документации в соответствии с п. 3.1.1. настоящей Инструкции, а также сертификатов на канаты для оснастки талевой системы установки, оттяжек.
- 3.2.1.2. Вышка (мачта) подъемника приводится в транспортное положение. Определяется состояние (с использованием необходимых замеров) вышки (мачты), опорной рамы, транспортной базы, балконов. Выявленные дефекты вышки (мачты) устраняются в соответствии с п. 2.3 настоящей Инструкции. На верхний и нижний пояса вышки (мачты) и на ногах, примыкающих к этим поясам, крепятся металлические измерительные линейки.
- 3.2.1.3. Производится проверка состояния лебедки, талевой системы, других механизмов установки.
- 3.2.1.4. Установка устанавливается на испытательной площадке. Испытательная площадка для установки агрегата сооружается в соответствии с инструкцией по его эксплуатации с увеличением опорной площади на грунт, в 1,5 раза превышающим величину, необходимую для номинальной грузоподъемности агрегата. Якоря для оттяжек углубляются на 1,5-кратное значение установленной величины для нормальной эксплуатации агрегата. Конструкция якоря и трос оттяжек должны быть рассчитаны на 1,5-кратную перегрузку.
- 3.2.1.5. Вышка (мачта) поднимается в вертикальное положение и фиксируется в этом положении в соответствии с инструкцией по эксплуатации установки. Максимальное смещение оси талевого блока относительно оси приложения нагрузки на вышку (мачту) не должно превышать 50 мм. Вышка (мачта) закрепляется оттяжками, натянуты-

ми с усилием, рекомендуемым инструкцией по эксплуатации установки.

- 3.2.1.6. Проверяется работа агрегата на холостом ходу и перпендикулярность оси вышки (мачты) к ее основанию.
 - 3.2.2. Проведение статических силовых испытаний
- 3.2.2.1. В вертикальном положении вышки (мачты) на нижней и верхней измерительных линейках выбираются показания (любые); определяются их угловые координаты на шкале вертикальных углов теодолита. Показания теодолита регистрируются. Определяется соотношение угловых единиц теодолита с линейными единицами на измерительных линейках.
- 3.2.2.2. Нагружение вышки (мачты) проводится собственной лебедкой путем закрепления крюка подъемника за «мертвый якорь» или с применением других технических средств (вспомогательных лебедок, тракторов, домкратов). Пульт управления процессом нагружения должен быть установлен в безопасном месте (на расстоянии не менее высоты вышки плюс 10 м).
- 3.2.2.3. На вышку (мачту) создается номинальная нагрузка. Нагрузка выдерживается в течение 5-8 мин, после чего увеличивается до испытательного значения, равного 1,25-1,5 от номинального значения с последующей выдержкой 5-10 мин.
- 3.2.2.4. При испытательной нагрузке определяются угловые координаты на шкалах теодолита. Указанные углы регистрируются.
- 3.2.2.5. Определяется разность угловых координат выбранных точек (показаний) на шкалах измерительных линеек до нагружения и после нагружения вышки (мачты).

Разность угловых координат переводится в линейные единицы — определяется остаточная деформация.

Отсутствием остаточной деформации считается разность не более погрешности измерений. Допустимая погрешность измерения углов теодолита должна быть не более 30 с.

При наличии остаточных деформаций вышка (мачта) подлежит списанию. При отсутствии остаточных деформаций вышка (мачта) допускается к последующей эксплуатации.

3.3. Акустико-эмиссионная диагностика состояния вышки (мачты)

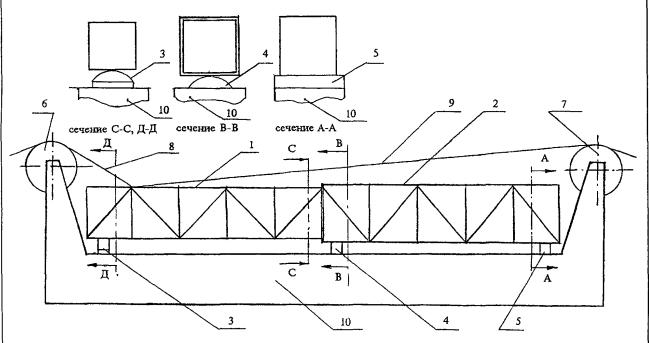
Метод акустико-эмиссионной (АЭ) диагностики наряду с выявлением скрытых дефектов обеспечивает возможность постоянного контроля за развитием деформаций в металлоконструкциях в процессе их нагружения и тем самым позволяет своевременно прекратить испытание, не доводя те или иные элементы вышки (мачты) до критического состояния.

Данные работы проводятся в соответствии с Методикой акустико-эмиссионной диагностики металлоконструкций подъемников для капитального и текущего ремонта скважин, приведенной в приложении 6 настоящей Инструкции по техническому диагностированию состояния передвижных установок для ремонта скважин.

4. Оформление результатов проверки технического состояния вышки (мачты)

В случае когда работы по проверке технического состояния вышки (мачты) являются частью работ по диагностированию состояния подъемника в целом, результат оформляется согласно разделу 2.8 (см. с. 16), приложений 1 и 3 данной Инструкции по диагностированию подъемников.

Если проверяется техническое состояние только самой вышки (мачты), то результаты оформляются актом (приложение 8.2).


К акту прилагается пояснительная записка, подписанная представителями организаций — исполнителями работ.

Пояснительная записка включает следующие данные:

- 4.1. Подробное описание обнаруженных дефектов вышки (мачты) на всех стадиях проверки ее технического состояния с приложением эскизов, определяющих их местонахождение, а также способов устранения.
- 4.2. Химический состав металла новых элементов вышки (приложение 8.3).
- 4.3. Копия удостоверения сварщика, допущенного к сварочным работам по ремонту вышки (мачты).
 - 4.4. Технология сварочных работ.

5. Меры безопасности при проведении проверки технического состояния вышки (мачты)

- 5.1. Работы по обследованию, ремонту и покраске вышки (мачты) должны проводиться в соответствии с действующими Правилами безопасности в нефтяной и газовой промышленности, утвержденными Госгортехнадзором России 14.12.92 г., а также другими нормативно-техническими документами.
- 5.2. Все участники проверки технического состояния вышки (мачты) перед началом работ должны быть проинструктированы по безопасному ведению работ.
- 5.3. Выполнение сварочных работ на открытом воздухе допускается при условии применения соответствующих приспособлений для защиты мест сварки от атмосферных осадков и ветра. Возможность и порядок производства сварочных работ при температуре воздуха ниже 0 °C должны устанавливаться инструкциями по технологии сварки.

Рис. 8.1: 1— верхняя секция вышки (мачты); 2 — нижняя секция вышки (мачты); 3, 4 — опоры качения; 5 — плоская опора; 6, 7 — ролики; 8, 9 — трос; 10 — основание стенда

Приложение 8.2

Полное наименование предприятий: специализированной организации, предприятия—владельца установки

AKT

провері	ки техническ					новки
_				для ремон	та скважин	
3.0	(тип)	(ном	(ep)			
№		_ OT				
	по проведені					ия вышки
(мачты)	выполнены_					
				(владелец ус	становки)	
совмест	но C (по.					
	(по.	пное наиме	новані	ие специализи	рованной органи	ізации)
по контј	ракту между	ними.				
	тате проверк					
гов вышки	(мачты)			,		
к дальне	ейшей работо	(завод В ДОПУСКА	цской 1 ается	номер) 1 (не допус	(инвертарный Кается)	і номер)
Дата сле	едующей про	верки _				
К акту п	ірилагаются:					
•	ельная запис	cka.				
	онтракта по	•	нию	работ.		
Подпис	и:					
	вители специ	เลสหรพทด	таны	ных органи	ганий	
-	вители владе	-		_		
продета	энгони владс	льца уст	anon			

Приложение 8.3

РЕЗУЛЬТАТЫ

анализа химического состава металла элементов несущих металлоконструкций вышки (мачты)

Эскиз с ука- занием мест отбора проб	Pe	ультаты х	химическ	шх анали	130B	

Заключение

Химический анализ пров	одился в лаборатории	
«»199_	г.	(наименование)
Начальник лаборатории		<u></u>
Лаборант	(Ф.И.О.) (подпись)	
	(Ф.И.О.)

Примечание. Место отбора проб может быть указано на отдельном эскизе.

Приложение 8.4

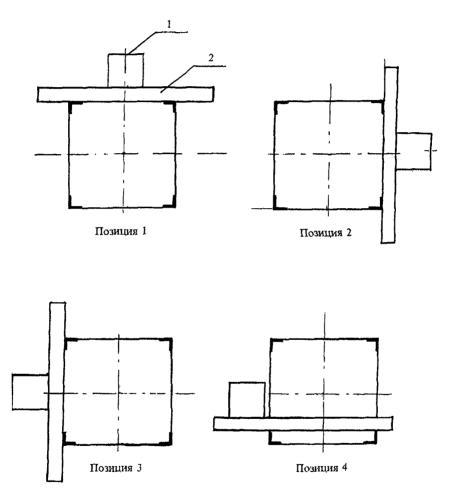


Рис. 8.2: 1 — оптический квадрант; 2 — поверочная линейка

ПЕРЕЧЕНЬ

нормативных актов и других документов, использованных для подготовки настоящей Инструкции

- 1. ГОСТ 16504—81. Испытания и контроль качества продукции. Основные термины и определения.
- 2. ГОСТ 14782—86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.
- 3. ГОСТ 18442—80. Контроль неразрушающий. Капиллярные методы. Общие требования.
- 4. ГОСТ 21105—87. Контроль неразрушающий. Магнитопорошковые методы.
- 5. ГОСТ 27655-88. Акустическая эмиссия. Термины, определения и обозначения.
- 6. ГОСТ 25.002—80. Расчеты и испытания на прочность в машиностроении. Акустическая эмиссия. Термины, определения и обозначения.
- 7. ОСТ 92-1500—84. Контроль неразрушающий. Сварные конструкции при прочностных испытаниях. Акустико-эмиссионный метод.
- 8. Правила безопасности в нефтяной и газовой промышленности. М.: НПО ОБТ, 1993. Утверждены Госгортехнадзором России 14.12.92.
- 9. Правила устройства и безопасной эксплуатации подъемников (вышек). М.: НПО ОБТ, 1993. Утверждены Госгортехнадзором России 19.11.92.
- 10. Правила устройства и безопасной эксплуатации грузоподъемных кранов. М.: НПО ОБТ, 1993. Утверждены Госгортехнадзором России 30.12.92.
- 11. РД 03-131—97. Правила организации и проведения акустикоэмиссионного контроля сосудов, аппаратов, котлов и технологических трубопроводов. Утверждены постановлением Госгортехнадзора России от 11.11.96 № 44.
- 12. Инструкция по испытанию буровых вышек в промысловых условиях. М.: ВНИИТнефть, 1996. Согласована с Госгортехнадзором России (письмо от 25.10.96 № 10-13/422).

- 13. Инструкция по проверке технического состояния вышек буровых установок АО «Уралмаш». М.: АО «Уралмаш», 1996. Согласована с Госгортехнадзором России (письмо от 16.07.96 № 10-03/277).
- 14. Инструкция по применению неразрушающего способа испытания буровых вышек в промысловых условиях. М.: МАИ. 1996. Согласована с Госгортехнадзором России (письмо от 21.06.96 № 10-13/224).
- 15. РД 22-319—92. Краны стреловые самоходный общего назначения. Методические указания по проведению обследования технического состояния кранов, отработавших нормативный срок службы. М.: ВНИИстройдормаш, 1992. Согласованы с Госгортехнадзором России 23.02.93.
- 16. МУЗ-АЭ. Методические указания по акустико-эмиссионной (АЭ) диагностике металлических конструкций кранов. М.: ВНИИстройдормаш, 1992. Согласованы с Госгортехнадзором России (письмо от 23.12.92 № 12-7/547).
- 17. РД 39-12-960—83. Методика неразрушающего контроля элеваторов и штропов. Куйбышев: ВНИИТнефть, 1984. Утверждена Миннефтепромом СССР 14.12.83.
- 18. РД 39-12-1150—84. Технология неразрушающего контроля вертлюгов. Куйбышев: ВНИИТнефть, 1984. Утверждена Миннефтепромом СССР 20.08.84.
- 19. РД 39-12-1224—84. Технология неразрушающего контроля кронблоков и талевых блоков. Куйбышев: ВНИИТнефть, 1985. Утверждена Миннефтепромом СССР 14.01.85.
- 20. РД 39-0147014-527-86. Технология неразрушающего контроля крюкоблоков и крюков грузоподъемных механизмов. Куйбышев: ВНИИТнефть, 1986. Утверждена Миннефтепромом СССР 14.03.86.

По вопросам приобретения нормативно-технической документации обращаться по тел./факсам: (495) 620-47-53, 984-23-56, 984-23-57, 984-23-58, 984-23-59 E-mail: ornd@safety.ru

Подписано в печать 19.10.2010. Формат 60×84 1/16. Гарнитура Times. Бумага офсетная. Печать офсетная. Объем 19,0 печ. л. Заказ № 500. Тираж 40 экз.

Закрытое акционерное общество «Научно-технический центр исследований проблем промышленной безопасности» 105082, г. Москва, Переведеновский пер., д. 13, стр. 21

Отпечатано в ООО «Полимедиа» 105082, г. Москва, Переведеновский пер., д. 18, стр. 1