CCCP	ГОСУДАРСТВЕННЫЙ СТАНДАРТ	ГОСТ
Комитет стандартов, мер и измерительных приборов при Совете Министров	Нефтепродукты темные МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ТЕМПЕРАТУРЫ	8513—57
Союза ССР	ЗАСТЫВАНИЯ	Группа Б09

Настоящий стандарт устанавливает метод определения максимальной температуры, при которой испытуемый темный нефтепродукт в условиях опыта загустевает настолько, что при наклоне пробирки с продуктом под углом 45° уровень продукта остается неподвижным в течение одной минуты.

Применение метода предусматривается в стандартах и ведомственных технических условиях на темные нефтепродукты.

І. АППАРАТУРА И РЕАКТИВЫ

- 1. При определении температуры застывания темных нефтепродуктов применяются:
- а) пробирки стеклянные со сферическим дном, длина пробирки 160 ± 10 мм, внутренний диаметр 30 ± 1 мм; на наружной боковой поверхности пробирки на расстоянии 40 мм от ее дна должна быть сделана несмываемая водой кольцевая метка;
- б) пробирки-муфты с вогнутым внутрь или сферическим дном, длина пробирки 125 ± 10 мм, внутренний диаметр 50 ± 3 мм;
- в) сосуд для охладительной смеси (деревянный, фарфоровый, стеклянный или металлический с тепловой изоляцией) цилиндрической формы, высотой не менее 160 мм и внутренним диаметром не менее 120 мм;
- г) термометры ртутные стеклянные по черт. 6 ГОСТ 400—64; термометры должны быть проверены в установленном порядке и иметь свидетельство о поверке с указанием поправок;
- д) термометр для измерения температуры охладительной смеси любого типа, с соответствующей градуировкой шкалы;
- е) термометр ртутный стеклянный по ГОСТ 2045-43 с пределами градуировки шкалы от 0° до 100° С и ценой деления шкалы 1° С для измерения температуры обработки нефтепродукта;

промышленности СССР 6/VII 1957 г.

- ж) колба коническая по ГОСТ 10394-63 номинальной вместимостью 100-250 мл;
- з) штатив с держателями для пробирки-муфты и термометра, предназначенного для измерения температуры охладительной смеси;
 - и) баня водяная;

к) вода и лед — для температур выше 0° С; соль поваренная и лед мелко истолченный или снег — для температур от 0° до минус 20° С; спирт денатурированный или спирт-сырец, или бензин «Галоша», или низкозастывающие лигроин и керосин прямой гонки и твердая углекислота (сухой лед) — для температур ниже минус 20° С. Допускается применение и других охладительных смесей;

л) кислота серная по ГОСТ 2184—65 или по ГОСТ 4204—66.

и. подготовка к испытанию

2. В случае необходимости приготовить охладительную смесь с твердой углекислотой в сосуд для охладительной смеси наливают до $^2/_3$ высоты его спирт или другую, указанную в п. 1 κ жидкость, и добавляют маленькими порциями, при перемешивании, кусочки углекислоты. По мере понижения температуры, размер порций углекислоты постепенно увеличивают, следя за тем, чтобы не было выбросов и разбрызгивания спирта; после прекращения интенсивного газовыделения в сосуд осторожно доливают спирт до необходимой высоты.

При применении в качестве охладительной жидкости спирта или бензина приготовление смеси рекомендуется производить в вытяжном шкафу.

3. Испытуемый нефтепродукт перед анализом в случае наличия в нем более 5% воды сушат.

ПЕТЕТИТЕ ИСПЫТАНИЯ

4. Обезвоженный продукт в количестве 100-120 мл наливают в коническую колбу, закрывают ее корковой пробкой с вставленным термометром с пределами градуировки шкалы от 0° до 100° С и погружают в кипящую водяную баню, время от времени взбалтывая содержимое колбы. Как только испытуемый нефтепродукт в колбе нагреется до $95-97^{\circ}$ С, колбу вынимают из бани, вытрают горло колбы от капель воды и разливают нефтепродукт в 3-4 пробирки с внутренним диаметром 30 мм до метки так, чтобы продукт не растекался по стенкам пробирки.

Каждую пробирку плотно закрывают корковой пробкой с вставленным в нее термометром для определения температуры застывания, укрепляя его так, чтобы он проходил по оси пробирки, а его резервуар находился на расстоянии 10—15 мм от дна пробирки. Для большей устойчивости термометра в его рабочем положении в пробирке

на нижнюю часть термометра (приблизительно на середине ее длины) надевают корковую пробку, пригнанную так, чтобы она входила в пробирку с небольшим трением.

Тотчас же после установки термометра каждую из пробирок с горячим нефтепродуктом погружают в охладительную смесь с тем-

пературой минус 5° С.

Когда нефтепродукт охладится до 0° С (что достигается по истечении 10-15 мин), пробирки вынимают из охладительной смеси, погружают в водяную баню с температурой 52° С и выдерживают до тех пор, пока нефтепродукт не нагреется до 50° С, после чего температура бани может быть снижена до $50-51^{\circ}$ С.

5. Затем одну из пробирок с испытуемым нефтепродуктом вынимают из водяной бани, насухо вытирают снаружи и укрепляют при помощи корковой пробки в пробирке-муфте так, чтобы стенки ее находились приблизительно на одинаковом расстоянии от стенок

муфты.

При определении температуры застывания ниже 0° С в пробиркумуфту перед испытанием наливают 0.5-1.0 мл серной кислоты.

Собранный прибор помещают в сосуд с охладительной смесью, температуру которой предварительно устанавливают на 5° С ниже

намеченной для определения температуры застывания.

Во время охлаждения продукта установленную температуру охладительной смеси поддерживают с точностью $\pm 1^{\circ}$ С. Когда продукт в пробирке достигнет температуры, намеченной для определения застывания, прибор наклоняют под углом 45° и, не вынимая из охладительной смеси, держат в таком положении в течение одной минуты.

Йосле этого прибор осторожно вынимают из охладительной смеси, быстро вытирают пробирку-муфту и наблюдают не сместился

ли мениск испытуемого продукта.

Если мениск сместился, то охлаждают вторую пробирку на 4° С ниже предыдущей температуры. Если в этом случае мениск не сместился, то третью пробирку охлаждают до температуры на 2° С выше и т. д.

В случае необходимости повторить определение температуры застывания нефтепродукта, испытуемый продукт снова нагревают в колбе до 95—97° C, наливают в пробирку, охлаждают до 0° C, а затем нагревают до 50° C. Повторно нагревать одну и ту же пробирку только до температуры 50° C нельзя.

6. За результат анализа в данном опыте принимают температуру, при которой мениск продукта остается неподвижным, а при повторе-

нии испытания на 2° С выше он сдвигается.

Для установления максимальной температуры застывания испытуемого нефтепродукта проводят два параллельных испытания.

7. В том случае, если требуется проверить только соответствие нефтепродукта норме, установленной на него стандартом, то прове-

ряют, смещается ли мениск этого продукта после испытания его по пп. 4—6 настоящего стандарта при температуре на 2° С выше температуры, установленной стандартом.

IV. УСТАНОВЛЕНИЕ ПОКАЗАНИЙ

8. За максимальную температуру застывания испытуемого нефтепродукта принимают среднее арифметическое результатов двух параллельных определений, расхождения между которыми не превышают допускаемые.

V. ДОПУСКАЕМЫЕ РАСХОЖДЕНИЯ ДЛЯ ПАРАЛЛЕЛЬНЫХ ОПРЕДЕЛЕНИЙ

9. Расхождения между двумя параллельными определениями максимальной температуры застывания темных нефтепродуктов не должны превышать 2° С.

Замена

ГОСТ 10394-63 введен взамен ГОСТ 3184-46 в части посуды из стекла «Пирекс» и в части посуды из стекла марок 23 и 846.
ГОСТ 2184—65 введен взамен ГОСТ 2184—43.
ГОСТ 400—64 введен взамен ГОСТ 400—41.
ГОСТ 4204—66 введен взамен ГОСТ 4204—48.