УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Термины и определения

Издание официальное

Предисловие

1 РАЗРАБОТАН Подкомитетом по стандартизации ПК 4 «Ускорители заряженных частиц» при Техническом комитете по стандартизации ТК 322 «Атомная техника», Федеральным государственным унитарным предприятием «Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова» (ФГУП «НИИЭФА им. Д.В. Ефремова»)

ВНЕСЕН Техническим комитетом по стандартизации ТК 322 «Атомная техника», Министерством Российской Федерации по атомной энергии

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 2 июля 2003 г. № 234-ст
 - 3 ВВЕДЕН ВПЕРВЫЕ

Содержание

1 Область применения	1
2 Термины и определения	1
Алфавитный указатель терминов на русском языке	. 14
Алфавитный указатель терминов на английском языке	17
Приложение А Термины и определения физико-технических понятий, необходимые для пони	[-
мания текста стандарта	22

Введение

Установленные в стандарте термины расположены в систематизированном порядке, отражающем систему понятий, относящихся к ускорителям заряженных частиц.

Для каждого понятия установлен один стандартизованный термин.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации, при этом не входящая в круглые скобки часть термина образует его краткую форму.

Наличие квадратных скобок в терминологической статье означает, что в нее включены два термина, имеющих общие терминоэлементы.

В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.

Приведенные определения можно при необходимости изменить, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

В стандарте приведены эквиваленты стандартизованных терминов на английском языке.

Термины и определения физико-технических понятий, необходимые для понимания текста стандарта, приведены в приложении А.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы — светлым.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Термины и определения

Charged particle accelerators.
Terms and definitions

Дата введения 2004—06—01

1 Область применения

Настоящий стандарт устанавливает термины и определения понятий, относящихся к ускорителям заряженных частиц.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы по ускорителям заряженных частиц, входящих в сферу работ по стандартизации и (или) использующих результаты этих работ.

2 Термины и определения

Основные виды ускорителей

1 ускоритель (заряженных частиц): Электрофизическое устройство, предназначенное для увеличения кинетической энергии заряженных частиц.

charged particle accelerator; particle accelerator

 Π р и м е ч а н и е — Принято, что в ускорителях энергия частиц увеличивается более чем на 0,1 МэВ.

2 **линейный ускоритель:** Ускоритель заряженных частиц, в котором ускоряемые частицы движутся по траекториям, близким к прямой линии.

linear accelerator

3 циклический ускоритель: Ускоритель заряженных частиц, в котором ускоряемые частицы движутся под действием ведущего магнитного поля по траекториям, близким к замкнутым или спиральным.

cyclic accelerator

Примечание — Частный случай — кольцевой ускоритель.

4 **высоковольтный ускоритель:** Ускоритель заряженных частиц, в котором ускорение частиц осуществляется в потенциальном электрическом поле.

high-voltage accelerator; HV accelerator

 Π р и м е ч а н и е — Принято, что в высоковольтных ускорителях разность потенциалов ускоряющего электростатического поля равна или более 0,1 MB.

- 5 электростатический высоковольтный ускоритель: Высоковольтный ускоритель, в котором ускоряющее напряжение создается электростатическим генератором напряжения ускорителя.
- 6 каскадный высоковольтный ускоритель: Высоковольтный ускоритель, в котором ускоряющее напряжение создается каскадным генератором напряжения ускорителя.

Van de Graaf accelerator; electrostatic accelerator; DC accelerator

Cockroft-Walton accelerator; cascade accelerator; DC accelerator

- 7 **трансформаторный высоковольтный ускоритель:** Высоковольтный ускоритель, в котором ускоряющее напряжение создается повышающими трансформаторами.
- 8 перезарядный высоковольтный ускоритель: Высоковольтный ускоритель, в котором ускоряющее напряжение используется двукратно посредством изменения знака заряда ускоряемых ионов.
- 9 **импульсный высоковольтный ускоритель:** Высоковольтный ускоритель, в котором ускоряющее напряжение создается и используется в виде импульсов.
- 10 **индукционный ускоритель:** Ускоритель заряженных частиц, в котором ускорение частиц осуществляется вихревым электрическим полем.
- 11 линейный индукционный ускоритель: Индукционный ускоритель, в котором ускоряемые частицы движутся по траекториям, близким к прямой линии.
- 12 циклический индукционный ускоритель: Индукционный ускоритель, в котором ускоряемые частицы под действием ведущего магнитного поля движутся по траекториям, близким к замкнутым или спиральным.
- 13 **бетатрон:** Циклический индукционный ускоритель электронов с нарастающей во времени магнитной индукцией ведущего магнитного поля.
- 14 **бетатрон с подмагничиванием:** Бетатрон с постоянной во времени составляющей магнитной индукции ведущего магнитного поля.
- 15 **резонансный ускоритель:** Ускоритель заряженных частиц, в котором ускорение частиц происходит в резонансе с переменным ускоряющим электромагнитным полем.
- 16 **линейный резонансный ускоритель:** Резонансный ускоритель, в котором ускоряемые частицы движутся по траекториям, близким к прямой линии.
- 17 резонаторный ускоритель: Линейный резонансный ускоритель, в котором для ускорения частиц используется электромагнитное поле стоячих электромагнитных волн в одном резонаторе или группе отдельных или связанных резонаторов.
- 18 ускоритель с пространственно-однородной квадрупольной фокусировкой: Линейный резонансный ускоритель, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем ускоряющее поле имеет квадрупольную симметрию.

 Π р и м е ч а н и е — Возможные модификации таких ускорителей: двухрезонаторные, четырехкамерные и др.

- 19 ускоритель с переменно-фазовой фокусировкой: Линейный резонансный ускоритель с трубками дрейфа, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем возможно чередование ускоряющих и фокусирующих зазоров между трубками дрейфа.
- 20 волноводный ускоритель: Линейный резонансный ускоритель, в котором для ускорения частиц используется электромагнитное поле бегущих электромагнитных волн в одном или нескольких волноводах.

transformer accelerator

high-voltage charge-exchange accelerator; tandem accelerator

high-voltage pulsed accelerator

induction accelerator

linear induction accelerator

cyclic induction accelerator

betatron

field-biased betatron

resonant accelerator

linear resonant accelerator

cavity accelerator; multy-cavity accelerator

RFQ accelerator

alternating phase focusing accelerator

waveguide accelerator

21 циклический резонансный ускоритель: Резонансный ускоритель, в котором ускоряемые частицы под действием ведущего магнитного поля движутся по близким к замкнутым или спиральным траекториям.

или спиральным траекториям.

22 **циклотрон:** Циклический резонансный ускоритель с постоянным во времени ведущим магнитным полем и посто-

 Π р и м е ч а н и е — Различают циклотроны с однородным по азимуту и имеющим периодическую вариацию по азимуту ведущим магнитным полем.

янной частотой ускоряющего напряжения.

23 секторный циклотрон: Циклотрон, в котором ведущее магнитное поле имеет периодическую вариацию магнитной индукции по азимуту, обусловленную секторной конфигурацией полюсов магнита.

 Π р и м е ч а н и е — B зависимости от формы секторов различают радиально-секторный циклотрон, в котором средние линии секторов направлены по радиусу, и спирально-секторный циклотрон, в котором средние линии секторов имеют кривизну.

- 24 циклотрон с секторными магнитами: Секторный циклотрон, в котором ведущее магнитное поле создается периодической последовательностью нескольких секторных магнитов со свободными от поля промежутками между ними.
- 25 изохронный циклотрон: Секторный циклотрон, в котором постоянство частоты обращения ускоряемых частиц обеспечивается возрастанием по радиусу усредненной по азимуту магнитной индукции ведущего магнитного поля.
- 26 **синхроциклотрон:** Циклический резонансный ускоритель с постоянным во времени велущим магнитным полем и переменной частотой ускоряющего поля.
- 27 секторный синхроциклотрон: Синхроциклотрон, в котором ведущее магнитное поле имеет периодическую вариацию магнитной индукции по азимуту, обусловленную секторной конфигурацией полюсов магнита.
- 28 **микротрон:** Циклический резонансный ускоритель электронов с постоянной во времени магнитной индукцией однородного ведущего магнитного поля, постоянной частотой и переменной кратностью частоты ускоряющего поля.
- 29 разрезной микротрон: Микротрон, магнитная система которого состоит из поворотных магнитов, разделенных промежутками, свободными от магнитного поля.
- 30 **синхротрон:** Циклический резонансный ускоритель с орбитой постоянного радиуса и нарастающей во времени магнитной индукцией ведущего магнитного поля.

Примечание — Различают синхротроны со слабой и сильной фокусировкой пучка ускоряемых частиц.

- 31 электронный синхротрон: Синхротрон для ускорения электронов, в котором частота ускоряющего поля постоянна.
- 32 **протонный синхротрон:** Синхротрон для ускорения протонов, в котором частота ускоряющего поля изменяется во времени.
- 33 ионный синхротрон: Синхротрон для ускорения многозарядных ионов, в котором частота ускоряющего поля изменяется во времени.

cyclic resonant accelerator

cvclotron

sector-focusing cyclotron

sector magnet cyclotron

isochronous cyclotron

synchrocyclotron

sector-focusing synchrocyclotron

microtron

racetrack microtron

synchrotron

electron synchrotron

proton synchrotron

ion synchrotron

34 **коллективный ускоритель:** Ускоритель заряженных частиц, в котором ускорение частиц осуществляется электрическим полем совокупности других заряженных частиц.

collective field accelerator

35 **коллайдер:** Комплекс с циклическими или линейными ускорителями, предназначенный для проведения исследований со встречными пучками ускоренных частиц.

collider

36 накопитель ускоренных частиц: Циклический ускоритель с длительным временем удержания заряженных частиц на орбите, предназначенный для повышения интенсивности пучка заряженных частиц.

storage ring; damping ring

Основные функциональные элементы ускорителей

37 **инжектор ускорителя:** Устройство ускорителя, предназначенное для создания и (или) предварительного ускорения заряженных частиц.

accelerator injector; particle injector

 Π р и м е ч а н и е — В качестве инжектора может быть использован отдельный ускоритель.

38 источник электронов [ионов] ускорителя: Устройство ускорителя, предназначенное для создания пучка электронов [ионов], подлежащих ускорению.

electron (ion) source; electron gun

39 плазменный источник ионов ускорителя: Источник ионов ускорителя заряженных частиц, в котором ионы вытягиваются из газоразрядной плазмы.

accelerator plasma ion source

40 **магниторазрядный источник ионов ускорителя:** Плазменный источник ионов ускорителя, в разрядной камере которого плазма создается колебаниями электронов в постоянном продольном магнитном поле.

accelerator penning ion source; electron-oscillation ion source

41 дуоплазматрон: Плазменный источник ионов ускорителя, в разрядной камере которого плазма создается дуговым разрядом и ее плотность увеличивается в результате сжатия в электрическом и магнитном полях.

duoplasmatron

42 высокочастотный источник ионов ускорителя: Плазменный источник ионов ускорителя, в разрядной камере которого плазма создается в высокочастотном магнитном поле.

accelerator radio-frequency ion source; RF ion source

43 ЭЦР-источник ионов ускорителя: Плазменный источник ионов ускорителя, в котором плазма создается высокочастотным разрядом, а для увеличения коэффициента ионизации в области отбора ионов используется электронно-циклотронный резонанс.

accelerator ECR ion source; microwave ECR ion source

44 лазерный источник ионов ускорителя: Источник ионов ускорителя, в котором ионы образуются при взаимодействии лазерного излучения с поверхностью твердотельной мишени.

laser ion source

45 электростатический генератор напряжения ускорителя: Устройство ускорителя заряженных частиц, в котором ускоряющее напряжение создается механическим переносом электрических зарядов на высоковольтный электрод ускорителя

Van de Graaf generator; electrostatic generator

46 каскадный генератор напряжения ускорителя: Устройство ускорителя заряженных частиц, в котором ускоряющее напряжение создается суммированием напряжения отдельных генераторов постоянного напряжения.

Cockroft-Walton generator; cascade generator

47 **ускоряющее устройство:** Устройство ускорителя заряженных частиц, в котором формируется электрическое поле, ускоряющее заряженные частицы.

accelerating unit

48 ускорительная трубка: Ускоряющее устройство высоковольтного ускорителя, состоящее из изоляционных колец и соединенных с ними металлических электродов с отверстиями в центральной части.

accelerating tube

49 ускорительная трубка с наклонными полями: Ускорительная трубка, в которой создается электрическое поле с периодически меняющейся по длине трубки поперечной составляющей.

inclined field accelerating tube

50 ускоряющий электрод: Электрод ускорителя заряженных частиц, на который подается электрический потенциал для ускорения заряженных частиц.

accelerating electrode

51 высоковольтный электрод ускорителя: Ускоряющий электрод высоковольтного ускорителя, имеющий максимальный потенциал относительно земли.

high-voltage electrode (terminal)

52 **транспортер зарядов:** Устройство электростатического высоковольтного ускорителя, предназначенное для механического переноса электрических зарядов к высоковольтному электроду.

charging chain (belt)

53 индуктор ускорителя: Ускоряющее устройство линейного индукционного ускорителя, переменное магнитное поле которого возбуждает на оси ускорителя продольное ускоряющее электрическое поле.

accelerator inductor

54 **трубка дрейфа:** Полый электрод ускорителя заряженных частиц, внутри которого заряженные частицы экранируются от ускоряющего электрического поля.

drift tube

55 ускоряющий резонатор: Ускоряющее устройство в виде единичного резонатора, в котором ускоряющее электрическое поле образуется стоячими электромагнитными волнами.

accelerating resonator; accelerating cavity

56 ускоряющий волновод: Ускоряющее устройство в виде волновода, в котором ускоряющее электрическое поле образуется бегущими и/или стоячими электромагнитными волнами.

accelerating waveguide

57 ускоряющая ячейка: Единичные резонаторы, из последовательности которых состоит ускоряющий волновод.

accelerating cell

58 ускоряющая структура: Ускоряющий волновод, характеризуемый размерами и формой его ускоряющих ячеек и видом колебаний.

accelerating structure

59 диафрагмированный ускоряющий волновод: Ускоряющий волновод, нагруженный по длине дисками с отверстиями, в котором ускоряющее электрическое поле образуется бегущими или стоячими электромагнитными волнами.

irised waveguide; disk-loaded waveguide; corrugated waveguide

60 **секция линейного ускорителя:** Модуль многосекционного линейного ускорителя, включающий в себя ускоряющее устройство и питающий его генератор.

linear accelerator section

Примечание — В состав ускоряющего устройства может входить один или группа резонаторов, волноводов или индукторов.

accelerator vacuum chamber

61 вакуумная камера ускорителя: Камера ускорителя заряженных частиц, внутри которой создается вакуум, необходимый для свободного движения частиц.

62 вакуумная система ускорителя: Совокупность элементов ускорителя заряженных частиц с устройствами для создания и поддержания в них вакуума необходимого уровня. accelerator vacuum system

63 система охлаждения ускорителя: Устройства ускорителя заряженных частиц, обеспечивающие отвод потоками жидкостей или газов избытков тепла, выделяющегося при работе ускорителя.

accelerator cooling system

64 система управления ускорителя: Совокупность измерительных, контролирующих и регулирующих элементов, обеспечивающих управление ускорителем заряженных частиц и контроль за его работой.

accelerator control system

65 дуант: Ускоряющий электрод в циклотроне или синхроциклотроне.

dee

66 дуантная рамка циклотрона [синхроциклотрона]: Рамка в вакуумной камере циклотрона [синхроциклотрона], создающая совместно с дуантом зазор, в котором происходит ускорение заряженных частиц.

dummy dee

67 дуантная резонансная линия циклотрона [синхроциклотрона]: Экранированная линия циклотрона [синхроциклотрона], к внутреннему токопроводящему элементу которой присоединяется дуант.

dee resonant line

68 вариатор частоты синхроциклотрона: Устройство, модулирующее частоту ускоряющего поля синхроциклотрона.

synchrocyclotron frequency variator

69 дуантная резонансная система циклотрона [синхроциклотрона]: Ускоряющее устройство циклотрона [синхроциклотрона], образованное дуантами и одной или несколькими дуантными резонансными линиями [и вариатором частоты].

dee resonant system

70 соленои ускорителя: Индуктивная катушка, создающая протяженное аксиальное магнитное поле для фокусировки пучка заряженных частиц в ускорителе заряженных частиц.

solenoid

71 дипольный магнит ускорителя: Магнит, создающий ведущее магнитное поле ускорителя заряженных частиц.

accelerator dipole magnet

72 **поворотный магнит ускорителя:** Магнит, создающий магнитное поле для отклонения пучка ускоренных частиц в заданном направлении.

electrostatic lens

bending magnet

73 электростатическая линза ускорителя: Устройство, предназначенное для фокусировки или дефокусировки пучка заряженных частиц постоянным электрическим полем.

magnetic lens

74 магнитная линза ускорителя: Устройство, предназначенное для фокусировки или дефокусировки пучка заряженных частиц магнитным полем.

multipole lens

75 мультипольная линза ускорителя: Электростатическая или магнитная линза ускорителя, поперечное поле которой при повороте линзы вокруг своей оси на угол $360^{\circ}/2n$, где число полюсов $n \ge 2$, совпадает по конфигурации с исходным, но имеет противоположное направление.

quadrupole lens

76 квадрупольная линза ускорителя: Мультипольная линза ускорителя, число полюсов которой n=2.

sextupole lens

77 **секступольная линза ускорителя:** Мультипольная линза ускорителя, число полюсов которой n=3.

78 **октупольная линза ускорителя:** Мультипольная линза ускорителя, число полюсов которой n=4.

octupole lens

79 параболическая линза ускорителя: Магнитная линза ускорителя с аксиально-симметричным полем в области, ограниченной токовыми поверхностями двух соприкасающихся вершинами параболоидов вращения.

parabolic lens

80 дублет квадрупольных линз ускорителя: Комплект из двух квадрупольных линз ускорителя, позволяющий осуществлять фокусировку или дефокусировку пучка заряженных частиц в двух взаимно перпендикулярных направлениях.

quadrupole doublet

81 триплет квадрупольных линз ускорителя: Комплект из трех квадрупольных линз ускорителя, осуществляющий фокусировку пучка заряженных частиц в двух взаимно перпендикулярных направлениях.

quadrupole triplet

82 электростатический корректор пучка заряженных частиц: Устройство, в котором параллельное смещение или изменение направления движения заряженных частиц осуществляется под воздействием постоянного электрического поля.

electrostatic charged particle beam corrector; electrostatic steering unit

83 магнитный корректор пучка заряженных частиц: Устройство ускорителя, в котором параллельное смещение или изменение направления движения заряженных частиц осуществляется под воздействием магнитного поля.

magnetic charged particle beam corrector; steering magnet

Примечание — Обычно магнитный корректор пучка заряженных частиц состоит из двух или четырех пар магнитов или индуктивных катушек, поля которых взаимно перпендикулярны.

accelerator outlet window; accelerator exit window

84 выводное окно ускорителя: Устройство ускорителя, предназначенное для вывода ускоренных частиц из вакуумной камеры ускорителя.

accelerator inflector

85 инфлектор ускорителя: Устройство ускорителя, предназначенное для изменения направления движения заряженных частиц для ввода их на заданную траекторию.

accelerator deflector

86 дефлектор ускорителя: Устройство ускорителя, предназначенное для изменения направления движения заряженных частиц для отклонения их с траектории движения, в частности для вывода с орбиты.

kicker magnet

87 ударный магнит синхротрона: Поворотный магнит синхротрона, создающий импульсное магнитное поле и предназначенный для быстрого вывода заряженных частиц с орбиты или ввода их на орбиту синхротрона.

wiggler

88 виглер: Устройство ускорителя, создающее сильное поперечное магнитное поле, изменяющееся по величине и направлению вдоль траектории пучка электронов.

undulator

89 ондулятор ускорителя: Устройство ускорителя, создающее поперечное магнитное поле, периодически изменяющееся вдоль траектории пучка электронов.

accelerator scanning device; scanner

90 сканирующее устройство ускорителя: Устройство ускорителя, предназначенное для формирования поля облучения пучком ускоренных частиц путем сканирования пучка по полю облучения в одном или двух взаимно перпендикулярных направлениях.

91 мишень ускорителя: Устройство ускорителя, на которое направляется пучок ускоренных частиц и с веществом которого взаимодействуют ускоренные частицы.

Примечание — Мишень ускорителя может быть внутренней — при установке ее перед выводным окном или в выводном окне ускорителя или внешней — при установке ее за выводным окном ускорителя.

- 92 тормозная мишень ускорителя: Мишень ускорителя, предназначенная для генерации фотонов тормозного излучения.
- 93 нейтронная мишень ускорителя: Мишень ускорителя, предназначенная для генерации нейтронов.
- 94 перезарядная мишень ускорителя: Мишень ускорителя, в которой происходит изменение знака или величины электрического заряда проходящих сквозь нее ускоренных ионов.
- 95 обдирочная мишень ускорителя: Перезарядная мишень ускорителя, в которой происходит срыв электронов с частиц первичного пучка.
- 96 коллиматор ускорителя: Устройство ускорителя, позволяющее ограничивать поперечные размеры пучка заряженных частии или пучка тормозного излучения.
- 97 выходной коллиматор ускорителя: Коллиматор ускорителя, предназначенный для формирования и ограничения размеров полей облучения пучками ускоренных частиц или фотонами тормозного излучения.
- 98 чоппер ускорителя: Устройство ускорителя, выделяющее из последовательности сгустков или непрерывного пучка заряженных частиц один или несколько коротких сгустков.
- 99 группирователь заряженных частиц: Устройство, осуществляющее фазовую группировку заряженных частиц.
- 100 разгруппирователь заряженных частиц: Устройство, осуществляющее фазовую разгруппировку заряженных частип.
- 101 магнитный анализатор ускоренных частиц: Устройство, осуществляющее пространственное разделение по энергиям заряженных частиц одного вида под воздействием постоянного магнитного поля.
- 102 электростатический анализатор ускоренных частиц: Устройство, осуществляющее пространственное разделение по энергиям заряженных частиц одного вида под воздействием постоянного электрического поля.
- 103 сепаратор ускоренных частиц: Устройство, осуществляющее пространственное разделение заряженных частиц с одинаковым импульсом, но с разными массами.
- 104 электростатический сепаратор ускоренных частиц: Сепаратор ускоренных частиц, в котором используется постоянное электрическое поле.
- 105 высокочастотный сепаратор ускоренных частиц: Сепаратор ускоренных частиц, в котором используется высокочастотное электромагнитное поле.

accelerator target

bremsstrahlung target; X-ray target; photon target

neutron target

charge-exchanging target

stripping target; stripper

particle beam collimator

accelerator exit collimator

chopper

charged particle buncher

charged particle debuncher

magnetic charged particle analyzer

electrostatic charged particle analyzer

charged particle separator

electrostatic charged particle separator

high-frequency charged particle separator

106 поглотитель пучка ускоренных частиц: Устройство, предназначенное для торможения ускоренных частиц и поглошения их энергии.

beam stopper; beam absorber; beam dump

Основные параметры ускорителей

107 энергия ускоренных частиц: Кинетическая энергия заряженных частиц после ускорения.

accelerated particle energy

 Π р и м е ч а н и е — За энергию ускоренных частиц принимают значение энергии, соответствующее максимуму кривой энергетического спектра.

injection energy

108 энергия инжектируемых частиц: Кинетическая энергия частиц, вводимых в ускоритель.

accelerating gradient; acceleration rate; energy gain per unit length (per turn)

109 темп ускорения частиц линейного [пиклического] ускорителя: Среднее увеличение энергии ускоряемых частиц на единицу длины линейного ускорителя [за один оборот в циклическом ускорителе].

beam perveance

110 первеанс пучка заряженных частиц: Параметр, характеризующий влияние объемного заряда на пучок заряженных частиц, равный отношению тока пучка частиц к эквивалентному ускоряющему напряжению в данной точке в степени три вторых.

energy spectrum width; energy spread; energy spread (FWHM)

111 ширина энергетического спектра ускоренных частиц: Минимальный диапазон значений энергии ускоренных частиц, составляющих заранее обусловленную долю всех ускоренных частиц.

 Π р и м е ч а н и е — Часто за ширину энергетического спектра ускоренных частиц принимают диапазон энергий на половине высоты кривой распределения ускоренных частиц по энергиям.

112 ток пучка ускоренных частиц: Электрический заряд, перенесенный ускоренными частицами в пространстве через поперечное сечение пучка в единицу времени.

accelerated particle beam current

113 **ток пучка циркулирующих частиц:** Ток пучка ускоренных частиц в циклическом ускорителе, удерживаемых на орбите, определяющий нагрузку ускоряющего устройства.

circulating beam current

114 **средний ток пучка ускоренных частиц:** Ток пучка ускоренных частиц, усредненный по интервалу времени, равному длительности рабочего цикла ускорителя.

average beam current

115 импульсный ток пучка ускоренных частиц: Ток пучка ускоренных частиц, усредненный по длительности макроимпульса.

pulsed beam current; peak beam current

 Π р и м е ч а н и е — В резонансных ускорителях различают макроимпульсы тока и следующие с частотой ускоряющего высокочастотного поля микроимпульсы.

116 **пиковый ток пучка ускоренных частиц:** Ток пучка ускоренных частиц, усредненный по длительности микроимпульса.

peak beam current; bunch beam current

117 число ускоренных частиц в импульсе: Число ускоренных частиц, перенесенных в пространстве через поперечное сечение пучка за интервал времени, равный длительности макроимпульса.

number of particles per pulse

118 поток ускоренных частиц; интенсивность пучка: Число заряженных частиц пучка, ускоренных в единицу времени.

accelerated particle flux

119 средний поток ускоренных частиц: Поток ускоренных частиц, усредненный по интервалу времени, равному длительности рабочего цикла ускорителя.

120 поток ускоренных частиц в импульсе: Поток ускоренных частиц, усредненный по длительности макроимпульса.

121 мощность пучка ускоренных частиц; поток энергии: Произведение потока ускоренных частиц на их энергию.

Примечания

- 1 Часто мощность пучка ускоренных частиц определяют как произведение тока пучка на эквивалентное ускоряющее напряжение.
- 2 Различают импульсную и среднюю мощность пучка ускоренных частиц.
- 122 частота следования импульсов тока пучка ускоренных частиц: Число импульсов тока пучка ускоренных частиц в единицу времени.

 Π р и м е ч а н и е — В резонансных ускорителях за частоту следования импульсов принимают частоту следования макроимпульсов.

123 длительность импульса тока пучка ускоренных частиц: Интервал времени между одинаковыми значениями тока пучка ускоренных частиц в начале и конце импульса на заранее обусловленном уровне относительно его максимального значения.

124 **длительность рабочего цикла ускорителя:** Интервал времени между началом двух последовательных макроимпульсов тока пучка ускоренных частиц.

125 коэффициент полезного действия ускорителя: Отношение средней мощности пучка ускоренных частиц к мощности, потребляемой ускорителем заряженных частиц.

126 коэффициент полезного действия ускоряющего устройства линейного резонансного ускорителя: Отношение импульсной мощности пучка ускоренных частиц к импульсной высокочастотной мощности, поступающей в ускоряющее устройство.

127 **длительность ускорения частиц:** Интервал времени, в течение которого происходит увеличение кинетической энергии ускоряемых частиц.

128 длительность инжекции заряженных частиц в ускоритель: Интервал времени, в течение которого в режиме инжекции происходит увеличение числа заряженных частиц, циркулирующих в ускорителе заряженных частиц.

129 длительность установления ускоряющего поля: Интервал времени, в течение которого в ускоряющем устройстве устанавливаются стационарные уровень и распределение электромагнитного поля.

- 130 коэффициент заполнения рабочего цикла ускорителя: Отношение длительности импульса тока пучка ускоренных частиц к длительности рабочего цикла ускорителя.
- 131 частота обращения ускоряемых частиц: Величина, обратная длительности одного оборота равновесной частицы в ведущем магнитном поле циклического ускорителя.

average accelerated particle flux

pulsed accelerated particle flux

accelerated particle beam power

beam current pulse repetition rate

beam current pulse duration; beam current pulse width; beam current pulse length

accelerator cycle time; accelerator cycle duration

accelerator efficiency

RF conversion efficiency

acceleration duration; acceleration time

injection duration; injection time

transient accelerating field duration; RF field build-up time; accelerating waveguide (resonator) filling duration

accelerator duty cycle; duty factor; RF duty cycle

revolution frequency of accelerated particles; orbital frequency of accelerated particles

- 132 **кратность частоты ускоряющего поля:** Целое число, равное отношению частоты ускоряющего поля к частоте обращения равновесной частицы в циклическом ускорителе.
- 133 частота бетатронных колебаний: Частота поперечных колебаний ускоряемых частиц относительно равновесной траектории в циклическом ускорителе.
- 134 число бетатронных колебаний за оборот: Отношение частоты бетатронных колебаний к частоте обращения ускоряемых частиц в циклическом ускорителе.
- 135 частота синхротронных колебаний: Частота колебаний фаз и энергий ускоряемых частиц относительно равновесных значений этих величин.
- 136 среднеквадратичный радиус пучка заряженных частиц: Среднеквадратичное отклонение радиальных координат заряженных частиц от оси пучка.
- 137 **критическая энергия протонного [ионного] синхротрона:** Энергия, при которой в протонном [ионном] синхротроне с сильной фокусировкой производная частоты обращения равновесной частицы по энергии равна нулю.

Примечание — При переходе энергии равновесной частицы через «критическую» ее равновесная фаза меняет знак.

138 фазовый объем пучка заряженных частиц: Объем области фазового пространства, содержащей совокупность точек, изображающих механическое состояние пучка заряженных частиц.

 Π р и м е ч а н и е — B качестве фазового пространства рассматривают пространство координат и составляющих импульсов заряженных частиц.

- 139 сепаратрисса: Область финитных смещений фаз и продольных импульсов ускоряемых частиц относительно равновесных значений этих величин.
- 140 фазовая плотность тока пучка заряженных частиц: Отношение тока пучка заряженных частиц к их фазовому объему.
- 141 **эмиттанс пучка заряженных частиц:** Деленная на импульс равновесной заряженной частицы площадь проекции фазового объема пучка заряженных частиц на плоскость.

Примечания к пунктам 141, 142, 143

- 1 Различают продольный и поперечный эмиттансы пучка заряженных частиц.
- 2 В циклических ускорителях рассматривается импульс равновесной частицы.
- 3 При записи значений эмиттансов пучка заряженных частиц множитель π выделяют в явном виде.
- 142 эффективный эмиттанс пучка заряженных частиц: Деленная на импульс равновесной заряженной частицы нижняя граница множества площадей эллипсов, охватывающих проекцию фазового объема пучка заряженных частиц на плоскость.
- 143 приведенный эмиттанс пучка заряженных частиц: Величина, равная произведению эмиттанса пучка заряженных частиц на приведенный импульс равновесной заряженной частицы.

accelerating voltage harmonic order

betatron oscillation frequency

betatron oscillation number per revolution

synchrotron oscillation frequency

root mean square beam radius; RMS radius

transition energy

beam phase-space volume

bucket; separatrix

phase-space current density

charged particle; beam emittance

effective charged particle beam emittance

normalized emittance

144 **яркость пучка заряженных частиц:** Отношение тока пучка заряженных частиц к произведению его поперечных эмиттансов во взаимно перпендикулярных направлениях.

ениях. максиbeam brightness

145 **аксептанс ускорителя:** Величина, равная максимальному значению эмиттанса пучка заряженных частиц, пропускаемого ускорителем заряженных частиц.

accelerator acceptance

 Π р и м е ч а н и е — Π ри записи значений аксептанса ускорителя множитель π выделяют в явном виде.

beta-function; amplitude function

146 **бета-функция ускорителя:** Квадрат огибающей поперечных колебаний пучка заряженных частиц, соответствующей эмиттансу пучка заряженных частиц, численно равному $1~\pi$.

beam extraction efficiency

147 эффективность вывода ускоренных частиц: Отношение числа ускоренных частиц, выведенных с орбиты циклического ускорителя, к полному числу ускоренных частиц.

beam extraction efficiency through exit window

148 эффективность вывода пучка ускоренных частиц через выводное окно: Отношение числа ускоренных частиц за выводным окном к числу ускоренных частиц до выводного окна ускорителя.

equilibrium particle orbit radius

149 радиус кривизны орбиты ускоряемых частиц: Радиус кривизны траектории равновесной частицы в ведущем магнитном поле циклического ускорителя.

Характеристики ускорителей

150 энергетический спектр ускоренных частиц: Распределение ускоренных частиц пучка по энергиям.

charged particle energy spectrum

151 дисперсионная характеристика линейного резонансного ускорителя: Зависимость фазовой скорости распространения ускоряющей электромагнитной волны в линейном резонансном ускорителе от частоты электромагнитного поля.

dispersion characteristic of linear resonant accelerator

152 нагрузочная характеристика резонансного ускорителя: Зависимость энергии ускоренных частиц от тока пучка ускоренных частиц резонансного ускорителя.

load characteristic of resonant accelerator

 Π р и м е ч а н и е — B импульсном режиме работы резонансного ускорителя рассматривают импульсный ток пучка ускоренных частиц.

VSWR-frequency dependance

153 частотная характеристика ускоряющего волновода: Зависимость коэффициента стоячей электромагнитной волны ускоряющего волновода от частоты высокочастотного поля.

accelerator modulation frequency characteristic

154 модуляционная частотная характеристика ускорителя: Соотношение между частотой ускоряющего поля и временем или магнитной индукцией ведущего магнитного поля циклического ускорителя.

accelerator modulation amplitude characteristic

155 модуляционная амплитудная характеристика ускорителя: Соотношение между амплитудой ускоряющего поля и временем или магнитной индукцией ведущего магнитного поля циклического ускорителя.

accelerator magnetic field dynamic characteristic

156 динамическая характеристика магнитного поля ускорителя: Изменение магнитной индукции ведущего магнитного поля в течение рабочего цикла ускорителя заряженных частиц.

157 частотно-энергетическая характеристика ускорителя: Зависимость энергии ускоренных частиц от частоты электромагнитного поля в ускоряющем резонаторе или ускоряющем волноводе резонансного ускорителя.

accelerator frequency-energy characteristic

Режимы работы ускорителей

158 номинальный режим работы ускорителя: Режим работы ускорителя заряженных частиц, при котором его основные параметры имеют номинальные значения, указанные в нормативных и/или технических документах.

rating accelerator operation mode; nominal operation mode

159 режим инжекции заряженных частиц в ускоритель: Режим работы ускорителя, при котором осуществляются накопление и ввод заряженных частиц в ускоряющее устройство.

particle injection mode

160 режим ускорения заряженных частиц: Режим работы ускорителя заряженных частиц, при котором осуществляется увеличение кинетической энергии заряженных частиц.

accelerating operation mode

161 непрерывный режим работы ускорителя: Режим работы ускорителя заряженных частиц, при котором пучок ускоренных частиц непрерывен или квазинепрерывен.

continuous operation mode; CW operation mode

 Π р и м е ч а н и е — Квазинепрерывный пучок ускоренных частиц состоит из микроимпульсов, следующих с частотой ускоряющего поля резонансного ускорителя.

pulsed operation mode

162 импульсный режим работы ускорителя: Режим работы ускорителя, при котором пучок ускоренных частиц представляет собой последовательность импульсов тока.

Примечание — Каждый из импульсов может состоять из микроимпульсов, следующих с частотой ускоряющего поля.

163 импульсно-периодический режим работы ускорителя: Режим работы ускорителя заряженных частиц, при котором пучок ускоренных частиц представляет собой последовательность групп макроимпульсов, разделенных интервалами времени.

double-modulated beam operation mode

Примечание — Частный случай — режим одиночных импульсов.

164 **режим автофазировки:** Режим ускорения заряженных частиц, при котором достигается устойчивость фазовых колебаний ускоряемых частиц относительно равновесной фазы.

phase stability mode

165 режим медленного вывода ускоренных частиц: Режим работы циклического ускорителя, при котором длительность вывода ускоренных частиц с орбиты значительно больше периода обращения частиц.

slow beam extraction mode

 Π р и м е ч а н и е — Π од периодом обращения частиц понимают длительность одного оборота равновесной частицы в ведущем магнитном поле.

166 режим быстрого вывода ускоренных частиц: Режим работы циклического ускорителя, при котором длительность вывода ускоренных частиц с орбиты сравнима с периодом обращения частиц или меньше его.

fast beam extraction mode

167 режим работы ускорителя на внутренние мишени: Режим работы ускорителя заряженных частиц, при котором пучок ускоренных частиц взаимодействует с мишенями, установленными в вакуумной камере ускорителя.

inner target accelerator operation mode

Алфавитный указатель терминов на русском языке

	аксептанс ускорителя	145
	анализатор ускоренных частиц магнитный	101
	анализатор ускоренных частиц электростатический	102
	бетатрон	13
	бетатрон с подмагничиванием	14
	бета-функция ускорителя	146
	вариатор частоты синхроциклотрона	68
	виглер	88
	волновод ускоряющий	56
	волновод ускоряющий диафрагмированный	59
	генератор напряжения ускорителя каскадный	46
	генератор напряжения ускорителя электростатический	45
	группирователь заряженных частиц	99
	дефлектор ускорителя	86
	длительность импульса тока пучка ускоренных частиц	123
	длительность инжекции заряженных частиц в ускоритель	128
	длительность рабочего цикла ускорителя	124
	длительность ускорения частиц	127
	длительность установления ускоряющего поля	129
	дуант	65
	дублет квадрупольных линз ускорителя	80
	дуолог квадрунольных линэ ускорители	41
	индуктор ускорителя	53
	инжектор ускорителя	37
	интенсивность пучка	118
	инфлектор ускорителя	85
	• • • •	38
	источник ионов ускорителя	42
	источник ионов ускорителя высокочастотный	44
	источник ионов ускорителя лазерный	40
	источник ионов ускорителя магниторазрядный	39
	источник ионов ускорителя плазменный	38
	источник электронов ускорителя	50 61
	камера ускорителя вакуумная	35
	коллайдер	96
	коллиматор ускорителя	96 97
	коллиматор ускорителя выходной	
	корректор пучка заряженных частиц магнитный	83
	корректор пучка заряженных частиц электростатический	82
	коэффициент заполнения рабочего цикла ускорителя	130
	коэффициент полезного действия ускорителя	125
	коэффициент полезного действия ускоряющего устройства линейного резонансного	120
уско	рителя	126
	кратность частоты ускоряющего поля	132
	линза ускорителя квадрупольная	76
	линза ускорителя магнитная	74
	линза ускорителя мультипольная	75
	линза ускорителя октупольная	78
	линза ускорителя параболическая	79
	линза ускорителя секступольная	77
	линза ускорителя электростатическая	73
	линия синхротрона резонансная дуантная	67
	линия циклотрона резонансная дуантная	67

магнит синхротрона ударный	87
магнит ускорителя дипольный	71
магнит ускорителя поворотный	72
микротрон	28
микротрон разрезной	29
мишень ускорителя	91
мишень ускорителя нейтронная	93
мишень ускорителя обдирочная	95
мишень ускорителя перезарядная	94
мишень ускорителя тормозная	92
мощность пучка ускоренных частиц	121
накопитель ускоренных частиц	36
объем пучка заряженных частиц фазовый	138
окно ускорителя выводное	84
ондулятор ускорителя	89
первеанс пучка заряженных частиц	110
плотность тока пучка заряженных частиц фазовая	140
поглотитель пучка ускоренных частиц	106
поток ускоренных частиц	118
поток ускоренных частиц в импульсе	120
поток ускоренных частиц средний	119
поток энергии	121
радиус кривизны орбиты ускоряемых частиц	149
радиус пучка заряженных частиц среднеквадратичный	136
разгруппирователь заряженных частиц	100
рамка синхроциклотрона дуантная	66
рамка циклотрона дуантная	66
режим автофазировки	164
режим быстрого вывода ускоренных частиц	166
режим инжекции заряженных частиц в ускоритель	159
режим медленного вывода ускоренных частиц	165
режим работы ускорителя импульсно-периодический	163
режим работы ускорителя импульсный	162
режим работы ускорителя на внутренние мишени	167
режим работы ускорителя непрерывный	161
режим работы ускорителя номинальный	158
режим ускорения заряженных частиц	160
резонатор ускоряющий	55
секция линейного ускорителя	60
сепаратор ускоренных частиц	103
сепаратор ускоренных частиц высокочастотный	105
сепаратор ускоренных частиц электростатический	104
сепаратрисса	139
синхротрон	30
синхротрон ионный	33
синхротрон протонный	32
синхротрон электронный	31
синхроциклотрон	26
синхроциклотрон секторный	27
система охлаждения ускорителя	63
система синхроциклотрона резонансная дуантная	69
система управления ускорителя	64
система ускорителя вакуумная	62
система пиклотрона резонансная луантная	69

соленоид ускорителя	70
спектр ускоренных частиц энергетический	150
структура ускоряющая	58
темп ускорения	109
ток пучка ускоренных частиц	112
ток пучка ускоренных частиц импульсный	115
ток пучка ускоренных частиц пиковый	116
ток пучка ускоренных частиц средний	114
ток пучка циркулирующих частиц	113
транспортер зарядов	52
триплет квадрупольных линз ускорителя	81
трубка дрейфа	54
трубка ускорительная	48
трубка ускорительная с наклонными полями	49
ускоритель	1
ускоритель волноводный	20
ускоритель высоковольтный	4
ускоритель высоковольтный импульсный	9
ускоритель высоковольтный каскадный	6
ускоритель высоковольтный перезарядный	8
ускоритель высоковольтный трансформаторный	7
ускоритель высоковольтный электростатический	5
ускоритель заряженных частиц	1
ускоритель индукционный	10
ускоритель индукционный линейный	11
ускоритель индукционный циклический	12
ускоритель коллективный	34
ускоритель линейный	2
ускоритель резонансный	15
ускоритель резонансный линейный	16
ускоритель резонансный циклический	21
ускоритель резонаторный	17
ускоритель с переменно-фазовой фокусировкой	19
ускоритель с пространственно-однородной квадрупольной фокусировкой	18
ускоритель циклический	3
устройство ускорителя сканирующее	90
устройство ускоряющее	47
характеристика линейного резонансного ускорителя дисперсионная	151
характеристика магнитного поля ускорителя динамическая	156
характеристика резонансного ускорителя нагрузочная	152
характеристика ускорителя амплитудная модуляционная	155
характеристика ускорителя частотная модуляционная	154
характеристика ускорителя частотно-энергетическая	157
характеристика ускоряющего волновода частотная	153
циклотрон	22
циклотрон изохронный	25
циклотрон секторный	23
циклотрон с секторными магнитами	24
частота бетатронных колебаний	133
частота обращения ускоряемых частиц	131
частота синхротронных колебаний	135
частота следования импульсов тока пучка ускоренных частиц	122
число бетатронных колебаний за оборот	134
число ускоренных частип в импульсе	117

TOTAL VOLUME TO	98
чоппер ускорителя	
ширина энергетического спектра ускоренных частиц	111
электрод ускорителя высоковольтный	51
электрод ускоряющий	50
эмиттанс пучка заряженных частиц	141
эмиттанс пучка заряженных частиц приведенный	143
эмиттанс пучка заряженных частиц эффективный	142
энергия инжектируемых частиц	108
энергия ионного синхротрона критическая	137
энергия протонного синхротрона критическая	137
энергия ускоренных частиц	107
эффективность вывода пучка ускоренных частиц через выводное окно	148
эффективность вывода ускоренных частиц	147
ЭЦР-источник ионов ускорителя	43
яркость пучка заряженных частиц	144
ячейка ускоряющая	57
	57
Алфавитный указатель терминов на английском языке	
accelerated particle beam current	112
accelerated particle beam power	121
accelerated particle energy	107
accelerated particle flux	118
accelerating cavity	55
accelerating cavity	57
accelerating electrode	50
	109
accelerating gradient	
accelerating operation mode	160
accelerating resonator	55
accelerating structure	58
accelerating tube	48
accelerating unit	47
accelerating voltage harmonic order	132
accelerating waveguide	56
accelerating waveguide (resonator) filling duration	129
acceleration duration	127
acceleration rate	109
acceleration time	127
accelerator acceptance	145
accelerator control system	64
accelerator cooling system	63
accelerator cycle duration	124
accelerator cycle time	124
accelerator deflector	86
accelerator dipole magnet	71
accelerator duty cycle	130
accelerator ECR ion source	43
accelerator efficiency	125
accelerator exit collimator	97
accelerator exit window	84
accelerator frequency-energy characteristic	157
accelerator inductor	53
accelerator inflector	85
accelerator injector	37
accelerator injector	31

accelerator magnetic field dynamic characteristic	156
accelerator modulation amplitude characteristic	155
accelerator modulation frequency characteristic	154
accelerator outlet window	84
accelerator penning ion source	40
accelerator plasma ion source	39
accelerator radio-frequency ion source	42
accelerator scanning device	90
accelerator target	91
accelerator vacuum chamber	61
accelerator vacuum system	62
alternating phase focusing accelerator	19
amplitude function	146
average accelerated particle flux	119
average beam current	114
beam absorber	106
beam brightness	144
beam current pulse duration	123
beam current pulse length	123
beam current pulse repetition rate	122
beam current pulse width	123
beam dump	106
beam emittance	141
beam extraction efficiency	147
beam extraction efficiency through exit window	148
beam perveance	110
beam phase-space volume	138
beam stopper	106
bending magnet	72
beta-function	146
betatron	13
betatron oscillation frequency	133
betatron oscillation number per revolution	134
bremsstrahlung target	92
bucket	139
bunch beam current	116
cascade accelerator	6
cascade generator	46
cavity accelerator	17
charged particle	141
charged particle accelerator	1
charged particle buncher	99
charged particle debuncher	100
charged particle energy spectrum	150
charged particle separator	103
charge-exchanging target	94
charging chain (belt)	52
chopper	98
circulating beam current	113
Cockroft-Walton accelerator	6
Cockroft-Walton generator	46
collective field accelerator	34
collider	35
continuous operation mode	161

corrugated waveguide	59
CW operation mode	161
cyclic accelerator	3
cyclic induction accelerator	12
cyclic resonant accelerator	21
cyclotron	22
damping ring	36
DC accelerator	5
DC accelerator	6
dee	65
dee resonant line	67
dee resonant system	69
disk-loaded waveguide	59
dispersion characteristic of linear resonant accelerator	151
double-modulated beam operation mode	163
drift tube	54
dummy dee	66
duoplasmatron	41
duty factor	130
effective charged particle beam emittance	142
electron (ion) source	38
electron gun	38
electron synchrotron	31
electron-oscillation ion source	40
electrostatic accelerator	5
electrostatic charged particle analyzer	102
electrostatic charged particle beam corrector	82
electrostatic charged particle separator	104
electrostatic generator	45
electrostatic lens	73
electrostatic steering unit	82
energy gain per unit length (per turn)	109
energy spectrum width	111
energy spread	111
energy spread (FWHM)	111
equilibrium particle orbit radius	149
fast beam extraction mode	166
field-biased betatron	14
high-frequency charged particle separator	105
high-voltage accelerator	4
high-voltage charge-exchange accelerator	8
high-voltage electrode (terminal)	51
high-voltage pulsed accelerator	9
HV accelerator	4
inclined field accelerating tube	49
induction accelerator	10
injection duration	128
injection energy	108
injection time	128
inner target accelerator operation mode	167
ion synchrotron	33
irised waveguide	59
isochronous cyclotron	25
kicker magnet	87

laser ion source	44
linear accelerator	2
linear accelerator section	60
linear induction accelerator	11
linear resonant accelerator	16
load characteristic of resonant accelerator	152
magnetic charged particle analyzer	101
magnetic charged particle beam corrector	83
magnetic lens	74
microtron	28
microwave ECR ion source	43
multipole lens	75
multy-cavity accelerator	17
neutron target	93
nominal operation mode	158
normalized emittance	143
number of particles per pulse	117
octupole lens	78
orbital frequency of accelerated particles	131
parabolic lens	79
particle accelerator	1
particle beam collimator	96
particle injection mode	159
particle injector	37
peak beam current	115
peak beam current	116
phase stability mode	164
phase-space current density	140
photon target	92
proton synchrotron	32
pulsed accelerated particle flux	120
pulsed beam current	115
pulsed operation mode	162
quadrupole doublet	80
quadrupole lens	76
quadrupole triplet	81
racetrack microtron	29
rating accelerator operation mode	158
resonant accelerator	15
revolution frequency of accelerated particles	131
RF conversion efficiency	126
RF duty cycle	130
RF field build-up time	129
RF ion source	42
RFQ accelerator	18
RMS radius	136
root mean square beam radius	136
scanner	90
sector magnet cyclotron	24
sector-focusing cyclotron	23
sector-focusing synchrocyclotron	27
separatrix	139
sextupole lens	77
slow beam extraction mode	165

solenoid	70
steering magnet	83
storage ring	36
stripper	95
stripping target	95
synchrocyclotron	26
synchrocyclotron frequency variator	68
synchrotron	30
synchrotron oscillation frequency	135
tandem accelerator	8
transformer accelerator	7
transient accelerating field duration	129
transition energy	137
undulator	89
Van de Graaf accelerator	5
Van de Graaf generator	45
VSWR-frequency dependance	153
waveguide accelerator	20
wiggler	88
X-ray target	92

ПРИЛОЖЕНИЕ А (справочное)

Термины и определения физико-технических понятий, необходимые для понимания текста стандарта

- А.1 заряженная частица: Частица вещества, имеющая электрический заряд.
- Примечание Под заряженной частицей понимают, как правило, элементарную частицу или ион.
- А.2 ускоренная частица: Заряженная частица, кинетическая энергия которой увеличена в ускорителе.
- А.3 ускоряющее напряжение: Разность потенциалов между точками, соответствующими началу и окончанию процесса ускорения в потенциальном электрическом поле.
- А.4 ускоряющее поле: Электромагнитное поле, электрической составляющей которого ускоряются заряженные частицы.
- А.5 ведущее магнитное поле: Магнитное поле, придающее необходимую кривизну траекториям заряженных частиц в циклических ускорителях.
- А.6 пучок заряженных [ускоренных] частиц: Совокупность заряженных [ускоренных] частиц, движущихся по близким траекториям, имеющая ограниченные поперечные размеры.
- П р и м е ч а н и е Пучок заряженных [ускоренных] частиц в резонансных ускорителях обычно состоит из сгустков, следующих с частотой ускоряющего высокочастотного поля.
- А.7 кроссовер пучка заряженных частиц: Сужение пучка заряженных частиц, в котором размер пучка по одной или двум поперечным осям минимален.
- А.8 сгусток заряженных частиц: Совокупность движущихся заряженных частиц, ограниченная в пространстве по всем направлениям.
- А.9 фокусировка пучка заряженных частиц: Воздействие постоянным электрическим, магнитным или высокочастотным электромагнитным полем на пучок заряженных частиц, приводящее к уменьшению его поперечных размеров.
- Примечание Для циклических ускорителей под фокусировкой пучка понимают поддержание поперечной устойчивости движения заряженных частиц.
- А.10 дефокусировка пучка заряженных частиц: Воздействие постоянным электрическим или магнитным полем на пучок заряженных частиц, приводящее к увеличению его поперечных размеров.
- А.11 бетатронные колебания: Поперечные колебания ускоряемых частиц относительно равновесной траектории под воздействием ведущего или фокусирующего магнитного поля.
- А.12 сильная фокусировка пучка ускоряемых частиц в циклическом ускорителе: Фокусировка пучка заряженных частиц, при которой частота бетатронных колебаний значительно превышает частоту обращения заряженных частиц.
- А.13 слабая фокусировка пучка ускоряемых частиц в циклическом ускорителе: Фокусировка пучка заряженных частиц, при которой частота бетатронных колебаний не превышает частоты обращения заряженных частиц.
- А.14 фазовая группировка ускоряемых частиц: Образование сгустков ускоряемых частиц под воздействием высокочастотного поля.
- А.15 фазовая разгруппировка ускоренных частиц: Увеличение размера сгустков ускоренных частиц в направлении движения.
- А.16 приведенная скорость частицы: Скорость частицы, выраженная в безразмерных единицах и равная отношению скорости частицы к скорости света.
- А.17 приведенная энергия частицы: Энергия частицы, выраженная в безразмерных единицах и равная отношению полной энергии частицы к ее энергии покоя.
- А.18 приведенный импульс частицы: Отношение импульса частицы к произведению ее массы покоя на скорость света.
- А.19 равновесная частица: Заряженная частица, скорость которой постоянно совпадает с фазовой скоростью ускоряющей волны высокочастотного поля в линейном резонансном ускорителе, или частица, период обращения которой совпадает с периодом ускоряющего напряжения или кратен ему в циклическом резонансном ускорителе.
- А.20 равновесная траектория: Траектория, по которой движется равновесная частица в циклическом резонансном ускорителе.
- А.21 фаза ускоряемой частицы: Фаза высокочастотного поля в момент прохождения ускоряемой частицы через выбранную плоскость в ускоряющем устройстве.
- А.22 огибающая поперечных колебаний пучка заряженных частиц: Граница поперечных отклонений частиц ускоряемого пучка с заданным эмиттансом от орбиты равновесной частицы, зависящая от продольной координаты ускорителя.
- Примечани е В циклическом ускорителе огибающая поперечных колебаний пучка заряженных частиц замкнута и периодична, а в линейном ускорителе незамкнута и квазипериодична.

УДК 001.4.621.384.6:006.354

OKC 01.040.07 07.030 $\Phi 00$

ОКСТУ 6910

Ключевые слова: ускорители заряженных частиц, виды ускорителей, функциональные элементы ускорителей, параметры ускорителей, характеристики ускорителей, режимы работы ускорителей

Редактор *Л В Афанасенко* Технический редактор *Н С Гришанова* Корректор *М С Кабашова* Компьютерная верстка *С В Рябовой*

Изд лиц № 02354 от 14 07 2000 Сдано в набор 18 07 2003 Подписано в печать 14 08 2003 Усл печ л 3,26 Уч -изд л 2,80 Тираж 182 экз С 11598 Зак 708